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Abstract

The incorporation of advanced digital processing technologies including high-bandwidth
networks, low-cost commercial components, and advanced FPGAs into novel radio fre-
quency (RF) sensors has resulted in significantly increased sensor capabilities while at
the same time dramatically increasing the size of the data associated with test events.
This work focuses on the development of management tools to analyze these large
datasets to increase overall situational awareness and as a result, sensor performance
which requires the development of advanced algorithms designed to address data
decimation, parallelization of processing, and novel detection and filtering techniques
among others. These algorithms are developed and optimized through post-processing
existing MIT-LL sensor data in MATLAB.
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Chapter 1

Introduction

Radar uses radio waves to detect the range, Doppler (velocity), and the azimuth of

target objects. The earliest radar systems were developed shortly before the start

of the Second World War to allow the Royal Air Force to detect Nazi ships crossing

the channel before they could attack English towns and cities. At the time, targets

appeared as just a blip on a screen. Because radar systems then were not at all

as sensitive as the modern radars today, clutter was rarely a problem since larger

objects, such as ships, were displayed as these blips, while smaller objects did not

appear at all [1]. Advancements in radar technologies have expanded the range of

applications for radar systems, and have improved radar performance and efficiency.

Consequently, modern radars face the issue of accurately determining and tracking

the presence of a target signal in unwanted clutter and noise.

1.1 System Overview

Figure 1-1 presents a diagram of a modern radar system. The current radar system

used for this project consists of a series of 8 cross-dipole antennas for a total of 16

receiver channels. A waveform generator generates a low power signal that is amplified

by the high power amplifier to some power 𝑃𝑡. The high power signal is sent to the
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transmitter and is emitted by the antenna with antenna gain 𝐺 and antenna aperture

𝐴𝑟. The signal travels through space with propagation factor 𝐹 until it comes across

some object with radar cross section, 𝜎𝑟 some distance, 𝑅, away. The portion of

the signal that has crossed paths with the object is reflected back to the antenna.

The power received by the receiver is given by Equation 1.1. This equation is more

commonly known as the radar-range equation. The data is then filtered and processed

to maximize the signal while minimizing the noise, so that target detection is an easier

and simpler process.

𝑃𝑟 =
𝑃𝑡𝐺𝑡𝐴𝑟𝜎𝑟𝐹

4

(4𝜋)2𝑅4
(1.1)

Waveform
Generator

Power
Amplifer Transmitter Duplexer

Receivers

Antennas

A/D
conversion

Pulse
Compression

Doppler
Processing

Detection Tracking Display

Figure 1-1: A block diagram of a modern radar system
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1.1.1 Processing Tool

The radar signal processing tool consists of three major sections: filtering and Doppler

processing, target detection, and direction finding. In part 1 of the design, the raw

quadrature data (or I/Q data) from the radar is subject to preprocessing and filtering

to compress the overall size of the data and reduce total runtime. A matched filtering

pulse compression technique is used on the channel data in order to maximize the

signal-to-noise ratio (SNR) in the presence of stochastic noise and increase range-

resolution. After pulse compression, the reduction of input data size is implemented

through one of two methods: data decimation and downsampling. Data decimation

consists of two steps: first is the reduction of high-frequency signals through a digital

low-pass filter, then the downsampling of the newly filtered data by a factor 𝑟 by

keeping only every 𝑟𝑡ℎ sample point. Both decimation and downsampling successfully

reduce the total sample size by a factor of R. However, decimation has the added

benefit of removing aliasing effects from the downsampling of the data.

The runtime of decimation is significantly longer than that of downsampling alone,

and it only increases as the order of the filter and size of the data increases. For

this project, the data has a high enough sampling frequency compared to its band-

width that aliasing is avoided. Therefore, decimating the data would add unnecessary

computational load, while downsampling would provide the most advantages in the

creation of a real-time data-processing tool.

Finally, a range-Doppler map is generated for each time instance by applying

a Fourier transform to convert the data to channel space in the order of 16 range-

Doppler maps (RDMs). This data is run through a beamformer to generate 11 evenly-

spaced beams for each time interval for a total of 𝐵 * 𝑇 range-Doppler maps, where

𝐵 is the number of beams and 𝑇 is the number of time instances. Again the data

size is reduced by having a smaller number of beams than channels, and we get some

information about the angle from the data alone.

From here, we move to the second section of the tool: target detection. The
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original detection algorithm takes the sum of the power across each of the 11 beams

and performs a target detection algorithm on the resulting range-Doppler map. The

result of performing the detection algorithm on the resulting range-Doppler map is

a logical matrix of the same size, where a value of 1 corresponds to a target being

present, and a value of 0 corresponds to a target not being present. The logical matrix

is then multiplied by the summed range-Doppler matrix to receive a matrix of target

powers across range and Doppler.

One goal of the system is to reduce the number of targets to be processed. Finding

the regional maximum of the matrix does this by only taking the detection with the

highest power level in each connected group of detections as they are more likely to

be target detections, therefore speeding up the process while minimizing the range,

Doppler, azimuth errors in comparison to the truth data. This method works under

the assumption that no two aircraft are operating relatively near each other in both

range and Doppler. Any nonzero value resulting from the regional max matrix is

considered to be a target.

The final section runs a direction finding algorithm called Root-MUSIC [2] to find

the location of targets in azimuth. The current implementation of this algorithm,

while efficient, is not as accurate as is desired for the current system, with angle

estimation errors as high at seven degrees for a single target.

1.2 Thesis Overview

This thesis consists of five chapters. In Chapter 2 of this thesis, I will describe the

original implementation for target finding in the system and introduce the various

Constant False Alarm Rate (CFAR) algorithms and their performance relative to

the original target finding algorithm. In Chapter 3, I will present the monopulse

direction-finding algorithm. I will discuss how this direction-finding algorithm further

processes the detection data to find the targets’ angle of arrival. In Chapter 4, I
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will introduce the Extended Kalman FIlter and propose how to use the combined

results from Chapter 2 and Chapter 3 for multiple target tracking to improve system

accuracy. Lastly, in Chapter 5, I will summarize and analyze how the improved target

and direction finding algorithms as well as the Kalman Filter tracker overall improved

system accuracy and efficiency.
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Chapter 2

Detections

The simplest way to detect objects from a series of range-Doppler maps is by deter-

mining a constant threshold that any cell is unlikely to exceed if it consisted solely of

background noise. This threshold can be determined by examining the distributions

of both the signal and noise. Since the maximization of the probability of detection

is desired, a threshold should be chosen that brings the detection probability close to

1.0.

Frequently, there will be some overlap between the signal and noise distributions

(see Figure 2-1). In such cases, determining a threshold is more complicated than

choosing an arbitrary value that the noise distribution is unlikely to exceed, as it is also

desirable to have a high probability of detection while maintaining a low probability

of false alarm. Instead, information from the cells immediately surrounding the cell

being tested for the presence of a target should be used to determine the threshold

for target detection in that cell. Nevertheless, if clutter, interference, or multiple

targets are present in the data, there is a higher probability for misclassification of

both target and non-target cells.

19



Figure 2-1: Displays an example of overlapping signal and noise distributions with a
threshold that attempts to maximize the probability of detection while minimizing
the probability of false alarm
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Figure 2-2: CFAR window where the cell under test (CUT) is the cell in question,
the reference cells are the cells used to estimate the expected noise at the CUT, and
guard cells are ignored.

2.1 CFAR Detectors

The original system addressed the concerns that result from naive thresholding by

convolving the data in range-Doppler space using the kernel shown in Figure 2-3.

The center cell is the cell under test (CUT), and the surrounding zeros in the kernel

mask any information of the target that may have bled into the surrounding range

and Doppler cells, they are referred to as guard cells and the remaining cells are

the window’s reference cells 2-2. The result of this convolution is an estimate of the

expected noise present near each cell. The test cell is subsequently divided by this

noise value, and the result is used to calculate the signal-to-noise ratio (SNR) using

Equation 2.1.

𝑆𝑁𝑅 = 10 log10

𝑠𝑖𝑔𝑛𝑎𝑙

𝑛𝑜𝑖𝑠𝑒
(2.1)
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Figure 2-3: Detection kernel to find targets within the window

If the SNR exceeds 13dB, then there is a high likelihood that the cell contains

a target. For each of the 11 beams at each time step, the previously described

detection algorithm is applied, resulting in 11 logical matrices that correspond to

where detections lie in range and Doppler for each time step. The 11 logical matrices

are then superimposed to obtain a matrix where each cell in the matrix represents

whether a target exists there, in at least one of the 11 range-Doppler maps. The

logical matrix is then multiplied by a range-Doppler matrix that is the maximum

power across the 11 beams, and the regional maximum of the resulting matrix is

calculated to find the final detections.

While the original system has done an exceptional job in detecting targets in

beamspace, it is vital to achieve a constant false alarm rate (CFAR) in radar systems

to prevent too many signals from being falsely labeled as targets and to improve the

probability of target detection. In this case, clutter and interfering targets in the data

have yet to be addressed in the detection algorithm. The most common approach to

address these concerns in radar detection has been through the use of the CFAR cell

averaging and censoring algorithms [3].
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Figure 2-4: CFAR diagram

In this section, we will discuss five different CFAR algorithms that were imple-

mented in the system and analyze their performances. All CFAR detectors follow a

simple structure, as shown in Figure 2-4.

2.1.1 Cell-Averaging CFAR (CA-CFAR)

Finn and Johnson introduced the simplest CFAR algorithm in 1968 called Cell-

Averaging CFAR (or CA-CFAR) [3]. It finds the average of the reference cells and

multiplies it by a constant multiplier, 𝑇 (2.2), where 𝑃𝐹𝐴 is the probability of false

23



alarm.

𝑇 = 𝑃
−1/𝑁
𝐹𝐴 − 1 (2.2)

The Cell-Averaging CFAR detector is most effective in detecting targets in range-

Doppler space that exists within one range and Doppler cell and homogeneous clut-

ter; it fails in multiple-target situations and detections that exist in non-homogeneous

clutter. In multiple-target situations, there may exist another target within the refer-

ence cells other than the target in the CUT. Higher than expected values in the CUT

will increase the average of the reference cells and therefore, increase the threshold

for the CUT to be considered a target. The CUT might be incorrectly classified as

noise if the average becomes too high as a result of other targets that exist within

the reference cells. Figure 2-5 displays 50 targets in a single-target geometry (Figure

2-5a) and a multiple target geometry (Figure 2-5b). Figure 2-6 shows how targets

can be masked by using the Cell-Averaging detector in the system.

2.1.2 GO-CFAR Detector

Greatest-Of CFAR, or GO-CFAR, was introduced by V.G. Hansen in 1973 [4][5], and

it introduced a new feature in the CFAR windows; the window is subdivided into

a leading window and a lagging window (Figure 2-7). The sum of the signals in

the leading window is compared to that in the lagging window. Whichever window

contains the more significant sum has the CFAR operation applied to it. It then

calculates the threshold multiplier, 𝑇 , using Equation 2.3.

The GO-CFAR detector faces the same issues present in the CA-CFAR detector

if both the leading and lagging windows contain multiple targets. Figure 2-8 shows

how targets can be masked by using the GO-CFAR detector in the system.

𝑃𝐹𝐴 = 2(1 + 𝑇 )−𝑀 − 2Σ𝑀−1
𝑘=0

(︂
𝑀 + 𝑘 − 1

𝑘

)︂
(2 + 𝑇 )−(𝑀+𝑘) (2.3)

24



(a)

(b)

Figure 2-5: 50 targets in (a) sparsely arranged in range and Doppler so that no more
than one target exists in every set of reference cells, and (b) closely clustered together
so that multiple targets exist within the reference cells
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(a)

(b)

Figure 2-6: Performance of the CA detector in (a) sparse target situation (b) a
clustered multi-target situation
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Figure 2-7: CFAR window where the leading window contains the reference cells to
the left of the CUT and the lagging cells contain the reference cells to the right of
the CUT

2.1.3 SO-CFAR Detector

G. V. Trunk presented Smallest-Of CFAR, or (SO-CFAR), in 1978 [6]. It is similar

to GO-CFAR except it performs the CFAR operation on whichever window (leading

or lagging) contains the smaller sum. It calculates the threshold multiplier, 𝑇 , by

using Equation 2.4. It somewhat solves the issue of masking, as can be seen by 2-9,

by choosing the smaller average of the two windows, decreasing the noise floor and

increasing the probability that a window with multiple targets in its reference cells

will be correctly classified. However, once again, if there were ever a case that both

the leading and lagging windows contained multiple targets in its reference cells, there

is a possibility for the CUT to be misclassified as a noise.

2-9

𝑃𝐹𝐴 = 2(2 +
𝑇

𝑀
)−𝑀Σ𝑀−1

𝑘=0

(︂
𝑀 + 𝑘 − 1

𝑘

)︂
(2 +

𝑇

𝑀
)−𝑘 (2.4)
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(a)

(b)

Figure 2-8: Performance of the GOCA detector in (a) sparse target situation (b) a
clustered multi-target situation
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(a)

(b)

Figure 2-9: Performance of the SOCA detector in (a) sparse target situation (b) a
clustered multi-target situation
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2.1.4 OS CFAR

H. Rohling describes the Ordered-Statistic CFAR, or OS-CFAR, detector in 2011 [7].

It removes the 𝑘 largest cells in the reference window and calculates the average of the

remaining cells, where 𝑘 is some predetermined constant. It calculates the threshold

multiplier, 𝑇 , using Equation 2.5.

𝑃𝐹𝐴 = Σ𝑘−1
𝑖=0

𝑁 − 𝑖

𝑁 − 𝑖 + 𝑇
(2.5)

A 𝑘 of 10 was used to generate Figure 2-10, where 𝑘 was determined through

trial and error. This was the optimal k in order to find all 50 detections in the

range-Doppler map. Any choice of 𝑘 lower than 10 would result in missed targets.

2.1.5 GCMLD-CFAR Detector

The GCMLD was introduced by S.D. Himonas and M. Barkat [8]. The GCMLD algo-

rithm determines the number of interfering targets in the reference cells by iteratively

censoring cells without any prior knowledge of the number of interfering targets in

the window. It follows a slightly different structure than what is depicted in Figure

2-4. Instead, it sorts all of the reference cells into a list in ascending order. It assumes

that the first cell in the list (𝑘 = 1) is the estimation for the background noise and

compares its value to the product of the next cell value and some threshold multiplier,

𝑇1, calculated through Equation 2.6. If the value of the product is larger than the first

cell, then all cells after the first cell are assumed to be interfering targets. Otherwise,

the new noise estimation is the sum of cells one and two. This new sum is compared

to the product of cell three and some multiplier 𝑇2. This process is repeated until

the end of the list is reached, or some cell (and consequently all proceeding cells) are

declared to be interfering targets and are censored. Given the number of censored

cells in the window, 𝑚, it is now possible to perform regular CFAR detection in the

window for the CUT using Equation 2.7. As can be seen by Figure 2-11, the GCMLD
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(a)

(b)

Figure 2-10: Performance of the OS detector in (a) sparse target situation (b) a
clustered multi-target situation
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algorithm finds all fifty detections in both single and multi-target geometries.

𝑃𝐹𝐶 =
𝑀 − 𝑘 + 1

(1 + 𝑇𝑀−𝑘)𝑀−𝑘
(2.6)

𝑃𝐹𝐴 =
1

(1 + 𝑇 )𝑁−𝑚
(2.7)

2.2 Results

From Table 2.1 it is apparent that in sparse-target situations or single-target sit-

uations, any CFAR detector, including the Cell-Averaging CFAR detector will be

sufficient to locate any target that exists within a range-Doppler map. However, ac-

cording to Table 2.2, none of the detectors, except for OS and GCMLD, found all 50

targets in a multiple-target setting.

OS CFAR is exceptionally efficient as it only requires sorting and calculating the

threshold given the probability of false alarm. On the other hand, it also requires

some prior knowledge of how the targets are clustered, which may not always be

available. Otherwise, arbitrarily choosing some value for 𝑘 may result in an increased

probability of misclassified targets. GCMLD CFAR is significantly slower than OS

CFAR but requires no prior knowledge on the targets. Therefore it was chosen to be

the default algorithm for the radar signal processing tool.
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(a)

(b)

Figure 2-11: Performance of the GCMLD detector in (a) sparse target situation (b)
a clustered multi-target situation
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CFAR Detection Analysis
CFAR Algorithms Targets Found Missed False Alarm
CA 50 50 0 0
GOCA 50 50 0 0
SOCA 50 50 0 0
OS 50 50 0 0
GCMLD 50 50 0 0

Table 2.1: Performance of the 5 CFAR algorithms in non-clustered geometries.

CFAR Detection Analysis
CFAR Algorithms Targets Found Missed False Alarm
CA 50 28 22 0
GOCA 50 12 38 0
SOCA 50 47 3 0
OS 50 50 0 0
GCMLD 50 50 0 0

Table 2.2: Performance of the 5 CFAR algorithms in clustered geometries.

34



Chapter 3

Direction Finding

3.1 Monopulse Direction Finding

Currently, the system has been updated to use a variation of monopulse direction

finding rather than Root-MUSIC in the interest of efficiency and accuracy. The

application of Root-MUSIC on the system seems to result in a high root-mean-square

error which we would like to improve through monopulse direction-finding. In the

monopulse direction-finding algorithm, information about the detection amplitude

across beams is used to determine the precise direction of a target given an initial

guess by the detection’s beam position.

The 11 beams are used as an initial estimate of where a detection exists in azimuth.

Given 11 beams labeled as integers between -5 and 5, Figure 3-1 shows an example

of how beam numbers map to angle values between -60 and 60 degrees. A target is

detected by a beam if the signal passes through it. Most of the time, a target is not

detected by a single beam. As can be seen in 3-2, the signal first passes through beam

2, then it passes through beam 1, and finally, it passes through beam 3. All three of

these beams will contain some amount of target information. Since the signal first

passes through beam 2, it is assumed that the detection has been found at an angle

of about 24 degrees.
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Figure 3-1: Diagram of how beam position corresponds with angle
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Figure 3-2: Example of propagation wave passing through 3 beams

The point of intersection between a beam and a signal is related to the power

level of the detection found in that beam. From Figure 3-2 it can be concluded that

the power level of a target (at a specific range and Doppler cell) found by beam 2 is

significantly higher than the power level for that same detection found by beam 1,

and similarly for beam 3.

An estimate for the actual direction angle can be made by extracting detection

power levels from beams at either side of the main beam where the detection is

thought to exist in (in this case, beam 2). With these three data values it is possible

to make a polynomial fit of the data to map power levels to detection angle.

We then extrapolate data points from the polynomial that results. For an accurate

measurement, we extrapolate 100 points from the polynomial. This is similar to

placing 100 smaller evenly-spaced points between beams 1 and 3, each representing a

.24 degree difference in angle. From the extrapolated points, we find the point with
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the smallest difference between itself and the highest power level among the three

original data points. The location of the point with the minimum difference in the

list of 100 points gives an estimate of where the detection angle lies. For example, if

point 40 gave the smallest difference, then the new detection angle is 24 - 2.4 degrees,

or 21.6 degrees. As will be further discussed in the conclusion, this method reduced

root-mean-square error in the detection angle by 1.48deg.
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Chapter 4

Multi-Target Tracking With Kalman

Filtering

The tracking algorithm helps to eliminate false alarms that the CFAR detector and

filtering algorithms introduce into the system. It eliminates the number of false

alarms in the system by deleting detections that are more likely to be noise rather

than targets. This is done by calculating the expected motion of the detections, as

opposed to the power levels of the detections. Running the extended Kalman filter [9]

on the detections found at each time step should also reduce the error in parameter

estimation by reducing the noise introduced into the system by its sensors. The

following sections will discuss the tracking algorithm and discuss the performance

of its two subparts: the track association algorithm and the parameter-estimation

algorithm.

4.1 Nearest Neighbor Association Groups

In single target situations - assuming that each target exists in one range-Doppler cell

- all detections made at each time step should be a result of either a different target

detected or a false alarm.
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After the first time step and in all subsequent time steps, there is some under-

standing of where a target should be in the next time step given its previous position

in range, Doppler, and azimuth. For example, if a single detection was found at a

range of 80km while all previous detections were found at ranges between 10 and

20km, it can be assumed with high probability that the detection found at 80km is

either a false alarm - where eliminating it reduces the overall false alarm rate of the

radar signal processing tool - or the detection of a new target.

Since the goal of the radar signal processing tool is to detect and track multiple

targets, it is essential to place the detections into track groups, where each group is a

list that represents a potential target detected by the tool and its detected movement

over time.

One challenge in creating these track groups lies in the fact that a single target

may exist in more than one range-Doppler cell. If detected by a conventional CFAR

detector, it may result in the target being represented by several detections at each

time step. This poses the challenge of determining which detections belong to which

targets at each time step as to not create a new track for a target that already exists.

As a result of the detection filtering methods described in Chapters 1 and 2,

it is safe to assume that each detection made at a specific time step represents the

detection of a different target. If the radar processing script finds 𝑛 detections at time

step 1, then it initializes 𝑛 tracks for the 𝑛 potential objects. Looping through each

subsequent time step, 𝑡, the processing script extracts all of the detections at that

time step using the methods described in Chapter 2. Then, for each track, it performs

a gating test on every detection found at that time step. This gating test finds all

detections that may be associated with a track by eliminating any detection that is

too distant in range, Doppler, or azimuth values with the last associated detection in

the track. After gating, each track is left with a set of possible detections it may be

grouped with. All detections that do not exist in any of the sets are placed in new

tracks.

40



Finally, the 1-Nearest Neighbors algorithm is applied on the remaining detections

to associate detections to each track [10]. If there are fewer detections than tracks,

then those tracks that were not updated are recorded. If there are more detections

than tracks, then the remaining detections after 1-Nearest Neighbors are placed into

new tracks. If any track exceeds five-time steps where it is not updated, then the

track is deleted, and those detections are considered false alarms. The pseudocode

for the association algorithm is given in Algorithm 1.

Algorithm 1 Association algorithm for radar tracking
1: procedure AssociateGroups(𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝐷𝑎𝑡𝑎,𝑅𝐺,𝐷𝐺,𝐴𝐺)
2: Let 𝑇𝑟𝑎𝑐𝑘𝑠 be an struct array of length 𝑛
3: 𝐷𝑒𝑡𝐷𝑎𝑡𝑎_𝑡𝑟𝑢𝑒← 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝐷𝑎𝑡𝑎
4: for 𝑡 = 2 to length of 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝐷𝑎𝑡𝑎 do
5: Let 𝑝𝑎𝑠𝑠𝑒𝑑_𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠 be an empty set
6: for 𝑡𝑟𝑎𝑐𝑘 in 𝑇𝑟𝑎𝑐𝑘𝑠 do
7: for 𝑑𝑒𝑡 in 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝐷𝑎𝑡𝑎(𝑡) do
8: if 𝑡− 𝑡𝑟𝑎𝑐𝑘(𝑒𝑛𝑑).𝑡 > 5 then
9: Delete detections in 𝑡𝑟𝑎𝑐𝑘 from 𝐷𝑒𝑡𝐷𝑎𝑡𝑎𝑡𝑟𝑢𝑒

10: Delete 𝑡𝑟𝑎𝑐𝑘
11: else
12: if 𝑡𝑟𝑎𝑐𝑘.𝑖𝑠𝑈𝑝𝑑𝑎𝑡𝑒𝑑 is 𝑓𝑎𝑙𝑠𝑒 then
13: 𝑝𝑎𝑠𝑠𝑒𝑑_𝑟𝑛𝑔 ← |𝑑𝑒𝑡.𝑟𝑎𝑛𝑔𝑒− 𝑡𝑟𝑎𝑐𝑘.𝑟𝑎𝑛𝑔𝑒| < 𝑅𝐺
14: 𝑝𝑎𝑠𝑠𝑒𝑑_𝑑𝑜𝑝← |𝑑𝑒𝑡.𝑑𝑜𝑝𝑝𝑙𝑒𝑟 − 𝑡𝑟𝑎𝑐𝑘.𝑑𝑜𝑝𝑝𝑙𝑒𝑟| < 𝐷𝐺
15: 𝑝𝑎𝑠𝑠𝑒𝑑_𝑎𝑧 ← |𝑑𝑒𝑡.𝑎𝑧𝑖𝑚𝑢𝑡ℎ− 𝑡𝑟𝑎𝑐𝑘.𝑎𝑧𝑖𝑚𝑢𝑡ℎ| < 𝐴𝐺
16: if 𝑝𝑎𝑠𝑠𝑒𝑑_𝑟𝑛𝑔 and 𝑝𝑎𝑠𝑠𝑒𝑑_𝑑𝑜𝑝 and 𝑝𝑎𝑠𝑠𝑒𝑑_𝑎𝑧 then
17: add 𝑑𝑒𝑡 to 𝑝𝑎𝑠𝑠𝑒𝑑_𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠

18: Perform 1−𝑁𝑒𝑎𝑟𝑒𝑠𝑡𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 on 𝑇𝑟𝑎𝑐𝑘𝑠 and 𝑝𝑎𝑠𝑠𝑒𝑑_𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠
19: Create new tracks for unassociated detections in 𝑝𝑎𝑠𝑠𝑒𝑑_𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠

4.2 Parameter Estimation and the Extended Kalman

Filter

Given the list of the tracks received from the method described above, the extended

Kalman Filter is applied to each track for better parameter-estimation in the form of
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Figure 4-1: A propagation wave extended to range 𝑟 with azimuth 𝜃 represented in
an xy-plane

noise reduction. This project used an implementation of the extended Kalman Filter

as opposed to the regular Kalman Filter [11] because the system is nonlinear. The

Kalman Filter cannot be applied to nonlinear or non-Gaussian systems.

The extended Kalman Filter allows the system to be nonlinear so long as the

model is differentiable and it works by transforming the nonlinear model at each time

step into a linearized approximation through the use of the Jacobian of the model.

After the system has been linearized, an algorithm very similar to Kalman Filter-

ing is applied to get the estimated state. In this case, the system makes measurements

in terms of range (𝑟), azimuth (𝜃), and Doppler (�̇�). The Extended Kalman Filter

receives these data values and obtains a linear approximation of the state of each

detection in terms of x-position, x-velocity, y-position, and y-velocity, where the xy-

plane is ground position relative to the antennas.

Figure 4-1 and Equations 4.1 and 4.2 show how x- and y-positions are calculated

using the range and azimuth observations. The positions and velocities are stored in

a vector, �̂�𝑖.
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𝑥𝑖 = 𝑟𝑖 cos 𝜃𝑖 (4.1)

𝑦𝑖 = 𝑟𝑖 sin 𝜃𝑖 (4.2)

In Kalman Filtering, there is the prediction step and the update step. In the

prediction step, the prediction for �̂�𝑖, as shown in Equation 4.3, is calculated using

the state estimation for the previous time step, 𝑥𝑘. For the system current model, the

prediction for �̂�𝑖 is calculated using simple kinematic equations as shown in Equations

4.4 and 4.5. The kinematic equations are represented as the state-transition matrix,

𝐹 (Equation 4.6), and which is then used in Equations 4.3 - 4.8 to calculate the state

prediction.

Also in the prediction step, the prediction for the error of the state at time step

𝑖 is represented as the covariance matrix, 𝑃 , calculated using Equation 4.9, where 𝑄

is the covariance matrix of the process noise.

�̂�𝑖 =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑥𝑖

�̇�𝑖

𝑦𝑖

�̇�𝑖

⎤⎥⎥⎥⎥⎥⎥⎦ (4.3)

𝑥𝑖 = 𝑥𝑖−1 + �̇�𝑖∆𝑡 (4.4)

𝑦𝑖 = 𝑦𝑖−1 + �̇�𝑖−1∆𝑡 (4.5)

𝐹 =

⎡⎢⎢⎢⎢⎢⎢⎣
1 ∆𝑡 0 0

0 1 0 0

0 0 1 ∆𝑡

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦ (4.6)
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�̂�𝑖 = 𝐹�̂�𝑖−1 (4.7)

�̂�𝑖 =

⎡⎢⎢⎢⎢⎢⎢⎣
1 ∆𝑡 0 0

0 1 0 0

0 0 1 ∆𝑡

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦ �̂�𝑖−1 (4.8)

𝑃 = 𝐹𝑃𝐹 𝑇 + 𝑄 (4.9)

The next step in Kalman Filtering is the update step where the observed mea-

surement is used to update the prediction made during the prediction step. The

observation vector, given by 𝑧, is the measurement in range, azimuth, and Doppler

received by the system’s sensors, and it is of the for 4.10.

The next step requires the calculation of the observation matrix, 𝐻, which is the

Jacobian of the state-transition model. It maps the state, 𝑥𝑖 to its equivalent in polar

coordinates as can be seen in Equation 4.11. The values of the Jacobian matrix,

𝐻 can be calculated using Equations 4.12 - 4.14. The resultant matrix is given in

Equation 4.15.

𝑧 =

⎡⎢⎢⎢⎣
𝑟

𝜃

ˆ𝑑𝑜𝑝

⎤⎥⎥⎥⎦

=

⎡⎢⎢⎢⎣
𝑟

𝜃

ˆ̇𝑟

⎤⎥⎥⎥⎦ (4.10)
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𝐻𝑖𝑥𝑖 =

⎡⎢⎢⎢⎣
𝑟

𝜃

ˆ̇𝑟

⎤⎥⎥⎥⎦

=

⎡⎢⎢⎢⎣
√︀
𝑥2
𝑖 + 𝑦2𝑖

arctan 𝑦𝑖
𝑥𝑖

𝑥�̇�+𝑦�̇�√
𝑥2+𝑦2

⎤⎥⎥⎥⎦ (4.11)

𝑟 =
√︀

�̂�2(1) + �̂�2(3) (4.12)

𝜃 = arctan
�̂�(3)

�̂�(1)
(4.13)

𝐻 =

⎡⎢⎢⎢⎣
𝜕𝑟
𝜕𝑥

𝜕𝑟
𝜕�̇�

𝜕𝑟
𝜕𝑦

𝜕𝑟
𝜕�̇�

𝜕𝜃
𝜕𝑥

𝜕𝜃
𝜕�̇�

𝜕𝜃
𝜕𝑦

𝜕𝜃
𝜕�̇�

𝜕�̇�
𝜕𝑥

𝜕�̇�
𝜕�̇�

𝜕�̇�
𝜕𝑦

𝜕�̇�
𝜕�̇�

⎤⎥⎥⎥⎦ (4.14)

=

⎡⎢⎢⎢⎢⎣
𝑥√

𝑥2+𝑦2
0 𝑥√

𝑥2+𝑦2
0

− 𝑥
𝑥2+𝑦2

0 𝑥
𝑥2+𝑦2

0

𝑦(𝑦�̇�−𝑥�̇�)

(𝑥2+𝑦2)3/2
𝑥√

𝑥2+𝑦2

𝑥(𝑥�̇�−𝑦�̇�)

(𝑥2+𝑦2)3/2
𝑦√

𝑥2+𝑦2

⎤⎥⎥⎥⎥⎦ (4.15)

Now that the observation matrix has been calculated, the remaining steps in

extended Kalman are the same as those in the regular Kalman Filter. Calculate the

covariance estimate of the total error (𝑆), the Kalman gain (𝐾), the residual between

the observed measurement and the predicted measurement (calculated as 𝐻𝑥), then

update the estimate for the state at time step 𝑖 using the Kalman gain, residual, and

the original estimate for the state calculated in the prediction step. Finally, update

the error covariance 𝑃 . These steps are outlined in Equations 4.16 - 4.20.
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𝑆 = 𝐻𝑖𝑃𝑖𝐻
𝑇
𝑖 + 𝑅 (4.16)

𝐾 = 𝑃𝑖𝐻𝑖𝑆
−1 (4.17)

𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑖 = 𝑧𝑖 −𝐻𝑖𝑥𝑖 (4.18)

𝑥𝑖 = 𝑥𝑖 + 𝐾 * 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 (4.19)

𝑃 = (𝐼 −𝐾𝐻)𝑃 (4.20)

4.3 Performance

In conclusion, the association algorithm helps to eliminate false alarms by deleting

detections whose projected motion over time does not fit with the detections found

by the system. The tracking algorithm was expected to reduce the noise in the

estimations of range, Doppler, and azimuth through the use of an extended Kalman

Filter; which transforms the nonlinear model of the system into a series of linear

equations through the use of the Jacobian of the model. However, with the use of the

extended Kalman Filter, it was found that the estimations of the parameters tended

to diverge and was not consistent with the data found by the detection algorithm.

The weak performance of the tracking algorithm could be a result of one of several

failings of the extended Kalman Filter. The first reason lies in the fact that the

extended Kalman Filter is not an optimal estimator if the system is nonlinear, as is

the case with our system. Secondly, the poor performance of the Extended-Kalman

Filter may be due to poor initial estimations of the model. In other words, because

the model uses Jacobians to linearize the system, poor model initialization may cause
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the extended Kalman Filter to diverge. Finally, in extended Kalman Filtering, the

estimated covariance matrix is often an underestimate of its real value. Therefore,

the system runs the risk of becoming inconsistent without the addition of "stabilising

noise" [12].
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Chapter 5

Conclusion

In summary, I improved a radar processing tool by implementing and benchmark-

ing several CFAR algorithms and settling on GCMLD as the detector with the best

performance. I implemented detection filtering techniques to reduce the overall size

of the detection data. This reduced the size of the data that needs to undergo fur-

ther processing by the system while maintaining enough target information that the

overall accuracy of the system remains unaffected. Then, from the set of filtered de-

tections, I used a simplified direction finding technique to calculate detection angles

and improve the efficiency of the processing script processing tool. Finally, I imple-

mented a detection tracker using 1-Nearest Neighbors to group the detections into

target tracks based on the range, Doppler, and azimuth information received from

the previous section. Then, I applied the Extended Kalman Filter to these tracks in

an attempt to reduce noise in parameter estimation.

5.1 System Performance

In an effort to test the accuracy of the processing script, I relied on another MATLAB

script designed to test the accuracy of detection data given the truth data. Essentially,

this script plots the truth data and calculates the mean error and the root-mean-
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square error between the truth data and the data collected from the processing script

in range, Doppler, and azimuth. This then creates a short movie of the progression

of the detections on a grid in range and azimuth. I improved the script in two

major ways. One, the script only had truth data from a single object. In order

to prevent over-fitting, I included truth data from an additional 49 objects - all of

which varied in both shape and size for a total of 50 objects. The addition of truth

data helped to create a more accurate tool to measure the performance of the radar

signal processing tool. Two, the truth data for Doppler velocity for all 50 objects was

nonexistent because of an error present during data collection. Doppler velocity can

accurately be measured by the difference in range over time given by Equation 5.1.

Therefore, we can use both the range truth data and the sampling times for the truth

data to estimate Doppler velocity.

𝑣𝑖+1 =
𝑟𝑖+1 − 𝑟𝑖
𝑡𝑡+1 − 𝑡𝑖

(5.1)

One problem with this method is that the truth data for detections were not

sampling consistently. Gaps between sampling times could range anywhere between

0.03 seconds to 15 seconds. This is a problem because significant gaps in sampling

times can cause large leaps in Doppler frequency from one-time instance to another

and a visibly non-smooth curve which causes detection to be misclassified as a false

alarm. Unfortunately, this leads to less accurate measurements for Doppler frequency.

In order to address this problem, it is essential to make the sampling times small

and consistent. The issue was solved by using a Gaussian Process to estimate the

range at a range of 10 per second and then using these new sampling times and esti-

mated range values to calculate the truth doppler velocity. With these improvements

to the accuracy tool, we can now analyze the performance of the new processing tool

in comparison to the original.

From Table 5.1, it is apparent that the error in azimuth experienced the most sig-

nificant improvement in the new radar signal processing code. There was an overall
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Error Analysis
Original RMS Error Updated RMS (Mean) Error

Range (km) 0.39 0.31
Doppler (m/s) 4.11 3.46
Azimuth (deg) 3.63 2.15

Table 5.1: The the rms error analysis of the new radar signal processing tool in
comparison to the original in range, doppler, and azimuth.

reduction of root-mean-square error by nearly 41% (1.48deg). There was an improve-

ment in the Doppler velocity by 16% (0.65 m/s) as well as a reduction in the range

root-mean-square error by 20% (0.08 km).

The root-mean-square error in Doppler velocity also improved by 16% (0.65 m/s)

and the root-mean-square error in the range reduced by 20% (0.08 km).

After making the previously described changes, it was clear that there was a

significant improvement in the overall runtime of the script. Initially, the script

took an average of 3782 seconds (over an hour) to process 5 minutes of radar data.

However, now the script runs in approximately 1949 seconds (around half an hour).

This change cut the runtime by nearly half. This project was able to cut the overall

runtime of the script in half by parallelizing the code and downsampling the data as

opposed to decimating it.

The parallelization of the code produced the most substantial speedup, particu-

larly in the target detection portion of the code. Nearly 80% of the runtime was used

in detection finding alone. Parallelizing this section of the code initially improved

the runtime of the code by a factor 9 yet, since the detector has been changed to

GCMLD, a much less efficient algorithm than the detector in the original system, the

overall runtime of the script saw a less impressive improvement in speed.

Downsampling the data rather than decimating it produced the next largest

speedup. As explained in Chapter 1, decimation passes the data through a high

pass filter. This is computationally intensive. It removes the effect of antialiasing.
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On the other hand, downsampling with a rate of 𝑘 takes every 𝑘𝑡ℎ data point. Since

we can assume that the data has a high enough sampling frequency compared to

its bandwidth that aliasing is avoided, downsampling is much more efficient than

decimation.

5.2 Future Work

There are several different routes that this project may take in the future. One such

route would be to improve the efficiency of the script. Currently, it takes over 30

minutes to process 5 minutes of data in the updated MATLAB script on a machine

with 16 cores. That is over 6 times the amount of input data collected, 60% of which

is spent beamforming and performing the detection algorithm at each time instance

and each. This is because the detection algorithm has to iterate through each beam

at each time instance, so for 300 time instances with 11 beams each, for example,

that is 3300 calls to the GCMLD algorithm.

If the project should continue to be developed in MATLAB, there may still be some

valuable improvements in runtime through MATLAB’s Parallel Computing Toolbox.

Currently, the code is parallelized through simple parallel for loops when performing

data extraction, downsampling, and detection finding. However, there may be other

areas in the code that may benefit from parallelization. Another such way to improve

runtime is to develop in C++. Ultimately the goal would be to develop a radar signal

processing tool that can detect and track objects in real-time using C++.

Another route this project may take in the future is using machine learning to

improve detection techniques. This can be done through two different methods. The

first method would train the detector against many different sets of truth data to de-

velop a detector that would be able to recognize target features much more efficiently

and just as accurately as a CFAR detector. The second method would be to create a

continuously learning detector. This detector would learn while processing the data,
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in order to keep introducing new data sets and possible target features to the detector.

However, this method would severely degrade the runtime of the detector, possibly

making it impossible to design a real-time version using it.

Another route this project may take in the future is in the use of machine learning

to improve the detection techniques. This can be done through two different methods.

The first method would train the detector against many different sets of truth data

to develop a detector that would be able to recognize target features much more

efficiently and just as accurately as a CFAR detector. The second method would be

to create a continuously learning detector. This detector would primarily learn while

processing the data, to keep introducing new data sets and possible target features

to the detector. This, however, would severely degrade the runtime of the detector,

possibly making it impossible to design a real-time version using it.
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