
Enhancing Game-Based Learning with Citizen

Science Concepts

by

Nayoung Lee

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2019

c○ Massachusetts Institute of Technology 2019. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 24, 2019

Certified by. .
Eric Klopfer

Director, MIT Scheller Teacher Education Program
Thesis Supervisor

Accepted by .
Katrina LaCurts

Chair, Master of Engineering Thesis Committee

2

Enhancing Game-Based Learning with Citizen Science

Concepts

by

Nayoung Lee

Submitted to the Department of Electrical Engineering and Computer Science
on May 24, 2019, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

TaleBlazer is a location-based augmented reality platform for educational mobile
games. Currently, typical TaleBlazer games enhance passive learning by engaging
players in a fictional narrative, but the platform lacks the capabilities to promote
active observation of the real world in its games. On the other hand, there have
been numerous past projects and initiatives that note the positive impact of citizen
science on participants’ curiosity and observation about the world around them. For
this reason, I have worked to incorporate citizen science concepts and themes into
TaleBlazer. Many of the concepts that are central to citizen science focus on giving
participants the ability to collect information; however, due to limitations of the Tale-
Blazer platform, there is no easy way for players to input information into the games.
In order to improve TaleBlazer in respect to this limitation, I have added features
that allow players to input information into TaleBlazer games. I have implemented
two new types of agents (in-game entities): an agent that allows players to tag their
current location as a point of interest, which players can review later in the game, and
an agent that can use a player’s input to impact the game. I have also implemented a
form editor on the online web interface that allows game developers to customize the
types of input that plays can submit. These new features not only enhance learning,
but also open the door for games that can build on top of player-generated content
instead of relying solely on game developer-generated content.

Thesis Supervisor: Eric Klopfer
Title: Director, MIT Scheller Teacher Education Program

3

4

Acknowledgments

I’d like to thank Eric Klopfer, the TaleBlazer team, and the entire STEP Lab for giving

me the opportunity to work on this project and for the friendly and encouraging work

environment.

I’d like to thank Lisa Stump and Judy Perry for all their technical and managerial

support, for their wonderful ideas, for their constructive feedback, and for encouraging

and empowering me to express my ideas and thoughts. I’d also like to thank my fellow

overlapping students in the TaleBlazer team for their support, ideas, and feedback as

well: Carlos Henŕıquez, Sneha Ramachandran, Nisha Devasia, Angela Lin. I’d also

like to thank Brandon Hanks for his help and support in wrapping up the project.

I’d also like to thank Sophie Russo for her continued support and feedback through-

out the year. I’d also like to thank all my friends who have helped me make the most

of this last year at MIT.

Lastly, I’d like to thank my parents and my brother for their support, love, and

encouragement all my life.

5

6

Contents

1 Introduction 13

2 TaleBlazer 15

2.1 Users . 15

2.1.1 Players . 15

2.1.2 Game Developers . 17

2.2 Game Concepts . 19

2.2.1 Maps . 19

2.2.2 Agents . 19

2.2.3 Mobile Tabs . 21

2.3 Typical Game Scenario . 22

3 Citizen Science 27

3.1 Projects and Impacts . 27

3.2 Apps and Websites . 29

3.3 Interview with an iNaturalist User . 30

4 Motivation for TaleBlazer 33

4.1 Citizen Science Learning . 33

4.2 Portability . 34

5 Goals 37

5.1 Targeted Use Cases . 37

5.1.1 Interaction Initiation . 38

7

5.1.2 Number of Submissions . 38

5.1.3 Reviewing Submissions . 39

5.2 Design Considerations . 39

5.2.1 User Friendliness and Flexibility 39

5.2.2 Simplicity . 39

5.2.3 Playful Learning . 40

6 New Features 41

6.1 Custom Form . 41

6.1.1 Form Creation Software . 42

6.1.2 Custom Form on the Editor 46

6.1.3 Custom Form on the Mobile App 49

6.1.4 User Testing . 51

6.2 Different Agent Types . 53

6.2.1 Agent Types on the Editor . 54

6.2.2 Tag Agent . 55

6.2.3 Choice Agent . 56

6.3 Reviewing Information . 57

6.3.1 Tags Tab . 57

6.3.2 Tags on the Map Tab . 60

7 Future Work 63

7.1 Blocks for Choice Agents . 63

7.2 Aggregate Information from Tag Agents 64

7.3 Sharing Information . 65

8 Conclusion 67

A User Testing Documentation 69

A.1 Background . 69

A.2 Tasks . 70

A.3 Follow-Up Questions . 71

8

List of Figures

1-1 TaleBlazer’s homepage. 14

2-1 The homescreen of the TaleBlazer mobile app (left) and an example of

a TaleBlazer game (right). In the right image, the blue icon represents

the player locations, and the red icon represents an agent in the game. 16

2-2 TaleBlazer’s online web editor. The current tab is for the Agents view. 17

2-3 Example of a partner organization page and their featured games on

the mobile app. 18

2-4 The Map view of TaleBlazer’s online game editor. The option to use

a dynamic vs. a static map can be seen under ”Map Type”. 20

2-5 An example of an agent’s dashboard. 21

2-6 The Settings view in the online editor. The section to configure tabs

can be seen in the “Mobile Tabs” section. 22

2-7 Example of how the map tab might update as a player progresses a

game. The images show the map before (left) and after (right) a player

bumps the first agent in the game. 23

2-8 Example of traits for a player on the player tab (left), and example of

an agent that requires the player to make a choice (right). 24

2-9 The final map region of “Dollars and Sense” (left), and the different

outcomes players could have ended with (right). 24

3-1 A figure from a published paper, showing the number of ladybeetle

observations recorded in scientific surveys and spotter submissions. . 28

9

6-1 Two mockups showing the difference in possible UI on the form editor.

The image on the left has more assistive text to help the user while

the image on the right more reflects the final look of the designed form. 47

6-2 A prototype of how it might look to interact with each element of the

form. 47

6-3 A prototype of how a tabbed form editor interface might look. 48

6-4 The implemented custom form on TaleBlazer’s online web editor. . . 49

6-5 A mockup of the form on the mobile app. 50

6-6 A mockup of having templated agents with customizable characteristics

(called a “Section” in the mockup). 54

6-7 Screenshots of how the game developer could add agents before (top)

and after (top) implementing different agent types. 55

6-8 Popups of settings for the mobile tabs that can be customized in the

Settings view. Left is the newly created “New Agent Tab” box, and

right is the already existing “Mobile Tabs” box. 56

6-9 Mockup of how players could review information. The leftmost image

is a new tab with a list of agents, the center image shows a singular

record view, and the rightmost image shows a multiple record view. . 58

6-10 Mockup of how players could review information using a Tags tab on

the mobile app. 59

6-11 Screenshots of the two different views for the Tags tab. Left is the “All”

view with the submissions ordered by time, and right is the “Grouped”

view with the submissions grouped by the Tag Agent. 59

10

List of Tables

6.1 A table of the available types of questions and their options (if appli-

cable) in the custom form. 44

11

12

Chapter 1

Introduction

The MIT Scheller Teacher Education Program (STEP) Lab focuses on improving

education with technology. One of their active projects is TaleBlazer, a location-

based augmented reality (AR) platform for educational mobile games. TaleBlazer

launched in 2013 and is currently being used as an educational tool in schools and

other informal settings (e.g., museums). It is also continuously being improved as

new features are added to enhance the platform. TaleBlazer’s homepage is shown in

Figure 1-1, and it highlights how TaleBlazer’s platform can be used for both making

games and playing games.

I have been working with the TaleBlazer group for my Masters of Engineering

(MEng) project. My project spanned from June 2018 to the end of May 2019. Using

the current TaleBlazer platform, it was difficult to incorporate citizen science ideas

and themes into games, because there was no easy way to add player-generated con-

tent to the games. To solve this problem, I developed features that allow players

to input and review information in-game. These features will also enhance a user’s

learning about the act of research and observation about the world around them.

Throughout the rest of this paper, I discuss the motivation for this work and explain

the work I have done.

Chapters 2 and 3 provide some background information that is helpful in under-

standing the scope of the project. Chapter 2 talks about TaleBlazer’s current users,

relevant game concepts, and typical game mechanics. Chapter 3 explains some further

13

Figure 1-1: TaleBlazer’s homepage.

background related to the citizen science field, including some significant projects and

an interview with a user of a citizen science app. Chapters 4 and 5 explain overarching

design goals. Chapter 4 ties together both of the previous background chapters by

further explaining the motivation behind incorporating citizen science into the Tale-

Blazer platform. Chapter 5 then illustrates the desired use cases and lays out some

design principles that guided the project. Chapter 6 then outlines each of the new

features added to TaleBlazer, how they were designed, how they each work, and how

they blend into the existing platform. Chapter 7 talks about where this project can

go in the short term and how the features could further be used to enhance learning.

Lastly, Chapter 8 ties everything together and explains some lessons I have learned

throughout this project.

14

Chapter 2

TaleBlazer

TaleBlazer is a location-based augmented reality platform for educational mobile

games. In this chapter, I will first explain the different types of TaleBlazer users,

then the game concepts that are especially relevant to my project, and lastly I’ll walk

through a game to better explain typical game mechanics.

2.1 Users

There are two main components to TaleBlazer’s platform: the mobile app and the

online web editor. This allows users to: 1) learn about the educational concepts

wrapped into the gameplay experience as a player, and 2) learn about the computer

science concepts behind making games as a game developer. These are two related

but also distinct ways to interact with the platform; a user might take on only one

or both of these roles.

2.1.1 Players

As a player, a user can download and play games in the TaleBlazer mobile app,

which is freely available for iOS or Android. Through the app, a player can access

featured games that are located nearby (these are usually example TaleBlazer games

or featured games by a nearby partner organization) or games that they have created

15

(a) The homescreen for the mobile app. (b) An example of a TaleBlazer game.

Figure 2-1: The homescreen of the TaleBlazer mobile app (left) and an example of
a TaleBlazer game (right). In the right image, the blue icon represents the player
locations, and the red icon represents an agent in the game.

on their account. A user can also access other games by using a game code, which is

a unique sequence of letters. As shown in Figure 2-1a, when a player first opens the

map, they will see the TaleBlazer homescreen for the mobile app. After a player finds a

game and opens it, they might first see a map with their location represented by a blue

circle, along with other icons, which represent in-game characters or objects called

agents, as shown in Figure 2-1b. As a player walks around in the real world, they

can trigger events with agents by approaching that agent’s location on the map; this

is called bumping the agent. When a player bumps an agent, that agent’s dashboard

will appear, which is a screen with more information about the agent and/or ways to

interact with the agent (an example of an agent dashboard is shown in later in Figure

2-5).

16

Figure 2-2: TaleBlazer’s online web editor. The current tab is for the Agents view.

2.1.2 Game Developers

As a game developer, users create games using TaleBlazer’s online game editor. As

shown in Figure 2-2, the editor has multiple tabs (such as Map, Agent, etc) that

open different views and allow game developers to easily customize the gameplay

experience. The editor uses blocks-based programming (as shown on the right side

of Figure 2-2) to let game developers add logic to their games, while also allowing

them to learn programming concepts in a more user-friendly environment. Blocks can

be pieced together visually like puzzle pieces and, rather than having to memorize

syntax, users simply need to find the right block and move it into place. This is

similar to other blocks-based programs such as Scratch or App Inventor. TaleBlazer’s

online game editor makes it easy for novice developers to customize a user’s game

experience, making it a useful tool for education in classrooms.

In addition to being used in classrooms, TaleBlazer partners with organizations to

help develop engaging educational experiences for specific locations, such as historical

sites or museums. These partner organizations can be considered a more specific type

of game developer for TaleBlazer, because they are also involved in the development

of a game for their specified locations. As a prime example, TaleBlazer features a

17

(a) The organization page. (b) The organization’s featured games.

Figure 2-3: Example of a partner organization page and their featured games on the
mobile app.

game called “Dollars and Sense” which is located at the Old Sturbridge Village, New

England’s largest outdoor living history museum. Old Sturbridge Village is a partner

organization to TaleBlazer (officially referred to as one of the TaleBlazer “Places”),

and their game “Dollars and Sense” is one of their featured games. Using TaleBlazer,

students can learn about the typical finances and decisions involved in the lives of

old New England rural families by making decisions to buy and sell throughout the

game. The game not only engages students beyond just passive listening, but it also

immerses students to teach them about old New England lifestyles. Games created

by partner organizations are generally featured and can be easily found if the game

is located nearby. Figure 2-3 shows Old Sturbridge Village’s page and games, as seen

on the mobile app.

18

2.2 Game Concepts

There are many different features in the TaleBlazer platform, but I will focus on the

ones that are most relevant to my project: the map, the agents, and the game tabs.

For each of these features, I will first explain how players interact with the feature

and how game developers can customize the feature. Then, I will explain what a

typical TaleBlazer game looks like and how they are generally played to give a sense

of typical game mechanics.

2.2.1 Maps

One of the main features of any TaleBlazer game is its map, which shows the location

of the player and the location of other agents in the game; as a player moves around

in the real world, the location of the player icon on the map gets updated. On the

online editor side, a map can be customized in the Map view, which is shown in

Figure 2-4. In the Map view, a game developer can drag agents around to place them

somewhere on the map. They can also specify one or multiple regions of a game,

which can each hold their own set of agents; this is useful if a game spans a large

geographic area because a player only sees one region on the map at a time. Each

region can be designated as a dynamic map or a static map. If a dynamic map is

used, the game requires a data connection to load the map. If a static map is used,

a data connection is not required because the game developer uploads a static image

to the game instead.

2.2.2 Agents

As mentioned earlier, another key component of TaleBlazer games are the agents.

When a player bumps an agent, they can see the agent’s dashboard, which is shown

in Figure 2-5. An agent’s dashboard can have three sets of characteristics: informa-

tion about itself (image, name, description), traits (attributes and their values), and

actions (buttons the player can tap to initiate some action). These characteristics are

labelled and shown in Figure 2-5. The information about itself includes the agent’s

19

Figure 2-4: The Map view of TaleBlazer’s online game editor. The option to use a
dynamic vs. a static map can be seen under ”Map Type”.

image, the agent’s name, and a textual description of the agent. Traits are attributes

associated with an agent, and these attributes have values which can change as the

game progresses; changes are specified in the blocks. Actions are large buttons that

appear on the dashboard that allow a player to initiate some action with the agent.

The logic for what happens when a player presses an action button can be defined in

the blocks as well.

A game developer can customize agents and specify any logic associated with

agents in the Agents view of the web editor, which is shown in Figure 2-2. New

agents can be added, and their dashboard information can be customized on the left

panels. That is also where game developers can add and customize the traits and/or

actions of an agent. In the middle is the blocks drawer, where game developers can

pull out blocks and place them to the area on the right, where blocks logic is defined.

20

Figure 2-5: An example of an agent’s dashboard.

2.2.3 Mobile Tabs

Another important aspect of TaleBlazer are the tabs that appear in the game on

the mobile app. These mobile tabs are the main control of the game, and they

allow players to switch back and forth between different screens that provide different

information. The tabs that are most relevant to my project are the map, player,

inventory, and history tabs.

∙ Map tab: On this tab, a player can see their location and the locations of agents

in the game. This tab is generally used to guide players and show them where

to go next.

∙ Player tab: On the player tab, a player can see information about their role

and any traits that might be associated with themselves.

∙ Inventory tab: On the inventory tab, a player can see the list of agents that are

in their inventory. These will usually be agents that represent objects or items

in the game. A player can still interact with agents from the inventory.

21

Figure 2-6: The Settings view in the online editor. The section to configure tabs can
be seen in the “Mobile Tabs” section.

∙ History tab: On the history tab, a player can see the list of agents with which

they have interacted in the game. A player can only see a snapshot of what

they have seen most recently after visiting this agent, and they can not interact

with the agent in a new way from the history tab.

A game developer can customize the tabs that appear in a game in the Settings

view of the web editor, which can be seen in Figure 2-6. This is where game tabs can

be added, removed, and reordered. Currently, there is a set list of possible tabs that

can be used in the game. This view also allows game developers to customize global

game settings, which are not specific to any particular object or feature in the game.

2.3 Typical Game Scenario

TaleBlazer games are typically storytelling games where players can interact with

agents to progress the story. To help explain how a typical TaleBlazer game might

work, I will walk through “Dollars and Sense”. In this role-playing game, a player

22

(a) The map tab before bumping the first
agent. Only the first agent is shown on
the map.

(b) The map tab after bumping the first
agent. Only the second agent is shown on
the map.

Figure 2-7: Example of how the map tab might update as a player progresses a game.
The images show the map before (left) and after (right) a player bumps the first agent
in the game.

gets to experience the lives of typical New England families, making decisions to affect

the end outcome. When first opening the game, the player is taken to a static map

of the area, with a single agent on the map. After a player bumps that agent, a new

agent will appear on the map, which leads the player to walk to a new location as

shown in Figure 2-7. When a player bumps an agent, they might also be required to

make a decision by choosing one action out of several. Figure 2-8b shows an agent

that requires the player to make a decision.

As the player progresses and makes decisions throughout the game, the player’s at-

tributes (e.g., bank account or number of members of their household) reflect changes

from those decisions, as shown in Figure 2-8a; in this way, a player’s choice can im-

pact the game. The game will continue like this, with the player bumping agents and

progressing the storyline until the player gets to the end of the game. The end of a

game is typically signified by changing the map region to one that is designated as

23

(a) The player tab in the game, which
displays player information.

(b) An agent that prompts the player to
make a decision.

Figure 2-8: Example of traits for a player on the player tab (left), and example of an
agent that requires the player to make a choice (right).

(a) The final map of the game. (b) The different outcomes of the game.

Figure 2-9: The final map region of “Dollars and Sense” (left), and the different
outcomes players could have ended with (right).

24

the final map region by the game developer, an example of which is shown in Figure

2-9. Typically, a game developer can upload a static map with a custom image that

is different from a picture of a map to help the player realize the game has finished.

This is by no means the extent of TaleBlazer’s features, but it does demonstrate

a common use case for TaleBlazer game mechanics which will be helpful for under-

standing my design considerations.

25

26

Chapter 3

Citizen Science

TaleBlazer aims to create engaging educational experiences for players and relies

largely on storytelling to achieve that; citizen science also aims for engaging educa-

tional experiences through active learning about scientific research and observations.

Citizen science is the involvement of the public in research, usually in the form of

collecting and/or analyzing data [1]. This makes it possible for anybody, no mat-

ter age or occupation, to participate in scientific projects, make discoveries through

collecting data and analyzing trends, and develop an interest in their surroundings

and communities. In addition, the crowd-sourcing of data and information allows

scientists to develop new hypotheses and make new observations through the help of

hundreds and thousands of volunteers.

3.1 Projects and Impacts

There have been a number of significantly widespread citizen science projects, with

some examples of earlier projects including the Lost LadyBug Project and the Monarch

Larva Monitoring Project [2]. Both projects were designed to observe and track wild

insects; the contribution of the general public allowed scientists to gather thousands

of sightings and pictures that, if even possible, would have taken much longer to

collect with the effort of only a handful of scientists. More recently, citizen science

projects have also been moving towards mobile apps, such as the iNaturalist app and

27

Figure 3-1: A figure from a published paper, showing the number of ladybeetle ob-
servations recorded in scientific surveys and spotter submissions.

the LeafSnap app. Both apps aim to collect information about nature, and they make

it simple and easy for users to capture photos wherever they go. In addition, web-

sites such as SciStarter (scistarter.com) and CitSci (citsci.org) allow anybody to start

citizen science projects and invite wider communities to participate and contribute

[5].

An example of the impact of citizen science in both research and the education of

those participating can be found in the Lost Ladybug Project. Using the information

obtained through the project, researchers were able to make interesting observations

that they could not make before, with the collected information used in several publi-

cations [4]. Figure 3-1 is from one of those publications and explains how effective the

citizen science project was; the contributions from citizen scientists (called “Spotter

submissions”) can be seen to cover a large geographical region. The study admit-

ted that scientist surveys captured more data than typical spotter submissions but

that spotter submissions covered more breadth, and that might have been what con-

tributed most to bringing new information about ladybug locations and migrations

[3].

Some key findings of educational impacts of the Lost Ladybug Project can be

28

found in a report from the researchers at Cornell who started the project [6]. Both

children and adults involved showed an increased knowledge about ladybugs: adults

showed an increased knowledge of ladybug biology and diversity, and children showed

increased knowledge of ladybug vocabulary. The study also found that children dis-

played skills relating to data collection and understanding of the purpose of the study,

while skills in data analysis and inference proved to be lacking in general. Addition-

ally, the report found that a strong motivation for both children and adults was being

able to make useful contributions to research.

3.2 Apps and Websites

More recently, citizen science projects have also been able to take a more flexible

approach with apps and websites. The apps that most directly take inspiration from

citizen science are environmental apps such as iNaturalist and LeafSnap. As briefly

mentioned in the previous section, these apps allow users to better understand the

natural world as citizen scientists. In the iNaturalist app, users are encouraged to

observe animals and plants by taking photos and sharing them with a community

of other nature-enthusiasts. Once an observation is shared, others can help identify

what the animal or plant species is in the photo. These observations are also tagged

on an interactive map, which allows users to see what types of species are common

in their neighborhood (or places they visit) and find out where they might commonly

see the species. In addition, because these photos are tagged with the species name,

location, and time the photo was taken, these make for very useful data points for

scientists who may be interested in a species or even creating a dataset of photos of

certain species. In the LeafSnap app, users can take photos of leaves and have the

app suggest some types of leaves that match the leaf’s appearance in the photo. In

addition to helping users learn by assisting in the identification of local plants and

trees, the app provides some games to help train the users on identification as well.

This is something that is more typically seen when researchers try to crowdsource

help for activities such as photo identification - they need to equip the volunteers

29

with the skills to know how to identify and label such pictures.

This is especially common in other citizen science projects that have been gamified.

Projects such as Citizen Sort and Project Nightjar are a couple examples. A user

can go to the website for Citizen Sort and begin participating by identifying animals

in a photo. Users try to correctly identify animal species in photos that have been

taken by cameras with motion detection sensors. For the game aspect, users are given

a set number of lives and a score for how many they succeed to identify. There is

also AI that has already classified the animals in the photos, and if a user thinks the

AI misidentified an animal, they can mark the photo with the correct identification

along with a comment about why it is incorrect. This helps the researchers, designers,

and developers behind Citizen Sort, a team from Syracuse University’s School of

Information Studies, confirm how well their AI seems to be working. For Project

Nightjar, scientists both create awareness about nightjars, which are a species of

birds, and give users an opportunity to check their speed in being able to identify

the birds who are camouflaged into the background. This also helps researchers and

scientists understand how well predators may be able to perceive these species.

3.3 Interview with an iNaturalist User

In trying to understand the motivations and incentives behind participating in citizen

science activities, as well as understanding the effects of such activities on an individ-

ual, my team found and interviewed an enthusiastic user of the iNaturalist app. We

found several interesting points from this interview, and I will highlight several here.

In summary, we found the reason the interviewee liked using the app had a lot to

do with self-discovery and improvement. They felt motivated by the fact that their

pictures could be used for research purposes and that they were able to look back

and identify different trends from the various observations that they had made. In

addition, they felt that the activity gave them the time and space to observe - to see

and hear all the things around them, which was an activity that they hadn’t engaged

with before. It gave them a bigger appreciation of even the different species in their

30

backyard.

This further motivates our project and helps us understand what aspects of cit-

izen science might be worth including. The interviewee really enjoyed aspects of

iNaturalist that seemed more like a game or an assessment of skill. For example,

the interviewee felt motivated by the “grading” of the photos and wanted to perform

better to get better “grades”. They also stated they would have enjoyed something

in the app that would have encouraged him/her to aim for something, which is sim-

ilar to what one might consider quests or scores in games. Most importantly, the

interviewee enjoyed the aspect of being able to make discoveries and identify trends

by themselves. This means it might be helpful to include some way for players to

analyze the things that they have observed while playing a game.

31

32

Chapter 4

Motivation for TaleBlazer

There are several motivations for this project, beneficial both for TaleBlazer users

and its partners. One primary motivation for this project is to allow users to learn

more about science and research using the TaleBlazer platform, and in doing so,

connect with the world around them in meaningful ways. Another related but distinct

motivation is opening the door for TaleBlazer games to be built upon player-generated

content instead of solely relying on game developer-generated content. TaleBlazer

games currently place the burden on the game designer to define, a priori, all the

elements of the game, including the real-world locations of all the elements in the

game.

4.1 Citizen Science Learning

Currently, TaleBlazer allows for games that are very narrative-focused, such as games

teaching history or cause-and-effect of events, but it is very limiting towards games

that allow players to record meaningful information about the world around them. As

mentioned in Chapter 3.1, researchers with the Lost Ladybug Project found positive

impacts of the project in the knowledge of ladybugs that participants had. Because

TaleBlazer is a generic game-making platform, rather than focusing on a specific

topic, I focused on adding functionality that could enhance a student’s abilities to

understand the process of research, including both data collection and data analysis.

33

The educational impacts of a game would vary depending on each individual game,

but the addition of these features would open the doors for creating games with these

goals in mind. An important factor that was mentioned both in the results of the

Lost Ladybug Project and our interview with an iNaturalist user is the notion of

self-discovery and feeling like one is making a contribution. Currently, there is no

way for a player to make unique discoveries in TaleBlazer; everything a player sees or

interacts with in the gameplay experience is predefined by the game developer.

4.2 Portability

Because gamedevelopers must predefine all game content, it is very difficult to take

one TaleBlazer game, which is designed for a specific location, and adapt it to another

location. TaleBlazer games are intended to enhance a player’s real-world experience,

so games are conceptually tied to a certain location; when trying to move the physical

location of a game, a game developer not only has to explicitly link together all of the

individual agents of the game with new real-world locations, but they must also ensure

the game still makes sense. For example, if an agent referenced a building in the area,

the game developer would have to make sure that there was still a building close to

that agent to reference. However, if players had more ways to input information,

games could then use that player-generated content to shape the game rather than

relying solely on static information determined from the start by the game developer.

For example, if a game needed an agent to be placed next to a tree, the player could

identify and specify the location of a tree in the real world, and the game could use

that information to place the agent, rather than requiring a game developer to know

exactly where a tree was for the location of every player who wanted to play.

Using the features developed during this project, the TaleBlazer platform will have

functionality readily available for game developers to create citizen science project-

like games. Players will be able to collect and analyze information during gameplay.

In addition, players will be able to incorporate information about the world around

them into the game and potentially make it easier to port games from one location

34

to the next, by not leaving all the burden on the game developer.

35

36

Chapter 5

Goals

In the designing of the new features, there were many trade-offs I had to make between

different designs and implementations. There was not always an obviously correct

or better way to handle something, so I prioritized the most important goals to

TaleBlazer and to this project. In this chapter, I’ll describe the targeted use cases

my team and I aimed for and highlight some design goals we had in mind as well.

5.1 Targeted Use Cases

In considering different use cases and different possible games, we narrowed the use

cases down to two different types of games:

1. Data Collection Game: This might be a game that is very similar to iNaturalist,

allowing players to decide when and where they would like to enter data and

be able to review this data. This type of game would be the most “citizen

science”-like use case.

2. Sequential Decision Making: This might be a game that is similar to current

typical TaleBlazer games. A player can input information to make choices

throughout the game, and these choices would directly impact gameplay. This

type of game would be more focused on blending form information into the

”gaminess” of TaleBlazer.

37

In the end, there were two main types of games we wanted to support - a data

collection game and a sequential decision making game. We found that these were the

two distinct use cases of having players inputting information into the game. This also

factored into my decision to create two different types of agents with different purposes

because there are three distinct differences between how players would interact with

a form in these two cases.

5.1.1 Interaction Initiation

The first difference is in how the interaction would be initiated. Typically, an inter-

action with an agent can be initiated in one of several ways. One way is through

approaching an agent’s location in the real world, another way is by the game devel-

oper running a script that has the player bumping the agent after certain events, and

yet another way is by tapping on the agent icon on the map (this method is typically

used for debugging purposes for the game developer). In a data collection game, a

player should be able to control when they input information because they are the

ones who decide if and when they see something of interest; a player should be able to

input information anytime and anywhere. On the other hand, in a sequential decision

making game, a player would not have to input information unless they are prompted

to make a decision and ask a question by an agent.

5.1.2 Number of Submissions

The second difference, assuming the player can fill out a form to input information, is

in how many times a player might submit the form. In a data collection game, a player

might make multiple observations of the same type, where each type of observation

has its own form to submit. In this case, a player should be allowed to fill out and

submit a form multiple times. In a sequential decision making game, a player might

only have to make a decision or answer a question once. It would not make sense for

the player to go back and make another decision or answer the question in another

way because the game would likely be following a narrative.

38

5.1.3 Reviewing Submissions

Lastly, there are differences between how the player might want to interact with the

inputted information. In a data collection game, a player might like to see the col-

lected information in some meaningful way; this might include seeing the submissions

marked on the map where they found the point of interest or seeing them all in a

list. In a sequential decision making game, players would typically be able to see the

impact of their decisions directly in gameplay, and at most, a player would need to

be able to see the history of decisions they have made but not in a collective view.

5.2 Design Considerations

Throughout the design process, my team and I prioritized the following three goals

when making decisions. First, we wanted to make sure that TaleBlazer remained a

user-friendly and flexible platform. Second, we wanted to emphasize simplicity of

design and usability. Lastly, we wanted to remain focused on prioritizing both the

education value and the fun value of the TaleBlazer platform.

5.2.1 User Friendliness and Flexibility

TaleBlazer users can range in age from elementary students to adults, and their

expertise level can vary from beginner to expert. We wanted to ensure the plat-

form remained flexible enough to be easily used for beginner users and well-equipped

enough for advanced users, for both players and game developers. This meant a lot of

decisions were made to ensure the most generic use case was obvious and easy, while

hiding away some of the more complex features. These features would ideally still be

easily found in the tutorials and in sample games for expert users.

5.2.2 Simplicity

We also wanted to emphasize simplicity of design and usability. TaleBlazer has a

rather large codebase and has had many different software developers working on the

39

code, and there will likely continue to be more working on the code in the future. For

this reason, its design must be easy to understand and ready for change. In addition,

in accordance with our goal of user-friendliness, the usability of TaleBlazer should

remain simple. As long as something works and meets 90% of our possible use cases,

there’s less importance in getting that last 10% if it adds too much complexity to

both the codebase and the feature’s use.

5.2.3 Playful Learning

Lastly, we wanted to prioritize both education and playful engagement for this project.

While it was important to add features that would expand the potential for education,

it was also important that users could still feel like they were playing a game and not

just filling out information in the midst of gameplay. We wanted the new features to

enhance the learning experience in gameplay while not taking away from the playful

and engaging experience of it all.

40

Chapter 6

New Features

There are three related but distinct features I designed and implemented to incorpo-

rate concepts central to citizen science into TaleBlazer games. First, to allow game

developers to ask players for specific information, I implemented a custom form and

added it as a characteristic to agent dashboards. Second, to represent the two distinct

use cases for player input described in Section 5.1, I designed two different types of

agents that can hold the form. Lastly, to display the information collected through

these forms, I added and modified the tabs in the mobile app to display collected

information in a meaningful way.

6.1 Custom Form

Something that became evident after looking at various citizen science apps and

websites was the need for some way for players to input information. However, one

of the biggest weaknesses towards scientific learning in TaleBlazer’s current platform

was a lack of a way for players to do just that. On an agent’s dashboard, there are

predefined actions (as described in Section 2.2.2) that can reflect a player’s choice.

There are also password-protected agents and a cluecode tab, which require a player

to input text that must match a predefined keyword. However, there is no way for a

player’s custom inputted information to be saved and used in a game. In addition,

because TaleBlazer is a platform for making all kinds of games with different themes

41

and purposes, there’s no set piece of information that would be useful across the

board; it is arguably necessary to give game developers the flexibility to decide what

information is relevant to their game. To address these issues, it became evident

that there was a need for some type of custom form, where game developers could

customize what type of information a player could record.

6.1.1 Form Creation Software

To get a sense of what might make intuitive sense to users, I took a look at some

existing form creation software - Google Forms and Survey Monkey. Particularly,

I focused on the types of questions they offered, as well as the user interface and

experience (which is explained later in Section 6.1.2).

Types of Input

In the process of creating a custom form creation software, I considered different

types of inputs and tried to include only those that would make sense in TaleBlazer’s

platform. I first looked at what types of inputs were common to both Google Forms

and Survey Monkey; this gave me a good breadth of options to think about because

both platforms cater to many different uses. Some of the types of questions that

were common to both platforms were: short text, long text, multiple choice/radio,

dropdown, checkboxes, date/time, and file upload. From this list, I refined the options

even further by thinking about what issues were faced by TaleBlazer users and what

information would be helpful to collect.

In a data collection game, a player might want to write notes about or take photos

of what they have observed. For this reason, I decided to include short text, long text,

and photo input types. Both the short text and long text input types were common to

both the Google Forms and Survey Monkey platforms. Photo input was not common

to both platforms, but a file upload type was; in TaleBlazer’s use cases, players would

have no need to upload generic files, but photos would indeed be helpful.

Although not implemented for this project, it is possible that information from

42

these forms might get aggregated and used for analysis in the future. To make it

easier to analyze inputted information, it would be helpful to have input types that

were more limiting, as opposed to text and photo inputs which are free-form and

could be anything. For this reason, I have included number, radio/multiple choice,

and checkbox input types. The number input type would appear the same as a

short text input type, but the inputted information would be limited to being a

number; this would be useful for aggregating information into, for example, sums,

averages, minimums, or maximums. The radio/multiple choice and checkbox input

types would contain options that were predefined by the game developer. These input

types would also be helpful for the sequential decision making game, where players

might be expected to choose one or multiple options out of many.

Lastly, date and time input types seemed to be useful, especially if players are

allowed to submit a form multiple times; however, I decided to make that a necessary

metadata component of any submission of a form instead of an input field for the

player. Google Forms and Survey Monkey serve all types of forms including RSVP

forms and date planning forms which is why those fields might be presented to a user.

However, TaleBlazer games would not need to gather that type of information from

users. Instead we would want to use that information as metadata associated with a

form submission.

Overall, I made decisions to include types of input that would help maximize

simplicity and understanding for our users and game developers, while additionally

considering our goal of enhancing scientific capabilities. The implemented input types

are listed in Table 6.1.

Input Format Design

The next question I had to consider was how to present a form to the player. In

alignment with our goal of wanting to keep the fun aspect of TaleBlazer, I did not

want the player to feel like they were leaving the game to fill out a form. Instead,

I wanted to give agents in the game the ability to “ask” the player questions, to

create the experience of the player responding to an agent in the game, which is

43

Type Options
Short Text None
Long Text None
Photo Limit to 1, No Limit, Custom Limit
Number None

Radio (Multiple Choice) Add Option
Checkbox Add Option

Table 6.1: A table of the available types of questions and their options (if applicable)
in the custom form.

why we incorporated the form into the agent’s dashboard. Typically, an agent has

three sets of characteristics (as described in Section 2.2.2): information about self,

traits, and actions. I considered adding inputs as an option to one of these existing

characteristics but realized it would be rather restricting; the only suitable place for

inputs would be in the actions, and having an input on top of a button would lead

to a confusing user interface. In the end, adding capabilities for a new characteristic

of custom forms seemed to be the best option.

In designing this feature, there were two distinct components; it needed to both

be supported on the online web editor for our game developers and the mobile app

for our players. In the following sections, I’ll talk first about how the game developer

can create the form, followed by how the player can then interact with the new form

and input information.

Implementation Decisions

Another question I had to consider was how to represent a custom form in the code.

TaleBlazer’s current representation of agents in the game is in a single Agent class,

which extends the Entity class. Each Entity object is given a unique id and name,

which is helpful in identifying the objects. I considered two options of implementing

the form on the agent: the first was creating a different class of an agent which

only contains the form, and the second was simply adding a flag (e.g., some field or

attribute) to the existing Agent class that would indicate whether this agent has a

form. I could have also considered having a child class of an agent, but difficulties

44

with type checking would have complicated the code; there were many places where

an object’s type of class was checked to perform certain operations, and I would

have needed to include checking for the parent as well in these places. The problem

with creating a completely different class of agent was whether or not this new class of

agent also had traits and actions available. If this new class of agent were to also have

traits and actions, it would lead to replicated code that would have to be maintained

whenever one was changed (because we would want the traits and actions to be the

same across both types of agents). However, if an agent were to have traits, actions,

and a custom form, there would be a lot on the screen for novice users to process

and understand. In order to keep a low threshold for using TaleBlazer, I decided, for

my project, that an agent who has a form would not have traits and actions. On the

other hand, it is completely possible that in the future there is a need for an agent

to have both a form and traits. For this reason and also to maintain simplicity of

the codebase, I decided to simply create a flag in the existing Agent class to indicate

whether an agent had a form or not. The traits and actions of these agents are

currently suppressed, but it would not be too difficult to undo.

I also had to consider how to represent each question on the form in the code.

In following the examples of how traits and actions are each defined in their own

Trait and Action classes, respectively, I created a FormElement class to represent

each question in the form. In addition, I let this class also extend the Entity class, so

each FormElement could have its own unique id, which is useful when elements are

reordered from dragging and dropping on the editor. By following existing examples

and extending existing classes, I hoped to make the code simpler to understand for

software developers who may work with the same code later on.

In addition to creating new classes for new objects, I was met with various chal-

lenges in how to incorporate my code into the existing codebase. For example, for

adding new elements into the game, there already existed a pipeline for adding Entity

objects. This pipeline was rather convoluted and had many steps that went through

different files, some of which were not necessary for adding a new FormElement object.

However, if I were to create my own pipeline for specifically adding FormElement ob-

45

jects, there would be a new and separate entry point for adding Entity objects into the

game that someone following me would have to know existed. This would complicate

the codebase and make it more difficult for others to understand. After considering

how my code might be understood by future software developers, I chose to follow the

existing pipeline for my new FormElement objects. More generally, I tried to either

mirror an existing function’s structure or incorporate my code into existing pipelines

whenever I could, for simplicity and ease of understanding.

6.1.2 Custom Form on the Editor

Allowing players to input information during gameplay starts from enabling the game

developer to decide when and how they want players to do so. As mentioned pre-

viously, to make the custom form editor as intuitive as possible, I looked at Google

Forms and Survey Monkey. Both interfaces had similarities in allowing a user to add

a question with the click of a single button. I wanted to reflect this design to prioritize

simplicity and user-friendliness for the game developer.

A difference between the form design of Google Forms and Survey Monkey was

in the user interface of how to customize each question. Survey Monkey was more

explicit in its design and had clear instructions for each field. Google Forms was more

consistent in how the questions end up looking to those filling out the form. On the

one hand, having less helping text, such as labels for each textbox, means there’s less

information on the page about what each box is for, but on the other hand, it would

look more similar to the final layout on the mobile device. With these differences in

mind, I mocked up two different versions of the form editor, as shown in Figure 6-1.

Although the difference was subtle, I opted for having a more informative design to

keep the floor low for our users, as shown in Figure 6-1a.

I also wanted to make the editing of the forms as intuitive and simple as possible.

TaleBlazer already has some existing features that allow dragging and dropping in the

movable Save Bar and the drag-and-drop Action buttons. To match the intuitivity

of these features, I created a prototype showing how the elements could be dragged,

as shown in Figure 6-2.

46

(a) Survey Monkey inspired mockup. (b) Google Forms inspired mockup.

Figure 6-1: Two mockups showing the difference in possible UI on the form editor.
The image on the left has more assistive text to help the user while the image on the
right more reflects the final look of the designed form.

Figure 6-2: A prototype of how it might look to interact with each element of the
form.

47

Figure 6-3: A prototype of how a tabbed form editor interface might look.

Adding this characteristic to agents also means adding more to the agent editor

screen, so I considered some ideas on how to declutter the screen and simplify the

editing experience for the game developer. One thought was to tab the characteristics

so you only see one at a time, as shown in Figure 6-3. However, this might lead

to confusion with tabbing within tabbing because the different views are already

tabbed. Instead, we later explored creating different types of agents with different

characteristics, as explained later in Section 6.2.

After an initial prototyping phase, I implemented the custom form in the online

web editor. Because it was added as an additional characteristic for agents, it was

simple in terms of implementation to follow similar patterns from actions and traits.

To simplify the experience for the game developer, I’ve implemented a one-step add

process, where the game developer simply adds a question or text section before

customizing each section.

Each question or text section that gets added to the form is called a FormEle-

48

Figure 6-4: The implemented custom form on TaleBlazer’s online web editor.

ment. Each FormElement can be dragged or dropped, and reordered by doing so.

Each FormElement can be made required or optional with a simple toggle button,

and a required question is indicated to the player through a red asterisk on the mobile

app (as shown in Figure 6-5). This would be especially relevant in a data collection

game, where there might be certain pieces of information that are necessary to an ob-

servation. There might also be some questions that could help the player record more

details but which might not be necessary for analyzing all the information collected,

which the game developer might want to leave optional. In addition, the TaleBlazer

editor employs its own undo/redo operations, so I implemented the undo/redo func-

tionality to maintain consistency with other features on the editor. The implemented

custom form on the web editor can be seen in Figure 6-4.

6.1.3 Custom Form on the Mobile App

After providing a way for game developers to add forms to agents via the online web

editor, I looked towards adding the relevant functionality to the mobile app. After a

49

Figure 6-5: A mockup of the form on the mobile app.

player bumps an agent containing a form, they should see a form that they can fill

out; this will be the form that was customized by the game developer on the web

editor. A mockup of the mobile view can be seen in Figure 6-5.

Initially, I only had one type of agent in mind when I created this form in the

agent dashboard, but my team and I eventually decided that there are two distinct

use cases, as discussed later in Section 6.2. The main reason for this distinction came

about when considering how the player would interact with the agent in the two use

cases discussed in Section 5.1. In a data collection game, a player might want to fill

out information for a form anytime they see something interesting. In this scenario,

a player has control over when they see the agent and they would be able to submit

the same form multiple times. Additionally, after submitting information, it would

be helpful to see that information displayed or listed in aggregate. Alternatively, in a

sequential decision making game, it may make more sense for a player to be prompted

to fill out information during the game and to only be allowed to submit the form once.

It would also be more interesting and useful if game developers could use the player-

50

inputted information throughout the game using blocks. Although both use cases

were similar in asking the player for more information, there were differences in how

the player would interact with the agent and the results of interacting with the agent.

To make these subtle distinctions clearer, we decided to create two subcategories of

agents who had forms.

6.1.4 User Testing

Throughout the design process, I was getting feedback from other members of the

TaleBlazer team and my supervisors. However, we were all familiar with TaleBlazer,

so it was important to also get another perspective on the new features. There were

a couple instances throughout the year where I had a chance to get feedback from

people who had never used TaleBlazer before. The first was another graduate student,

and the second was a group of high school students who came to visit the lab. Both

offered helpful perspectives and feedback for the online custom form editor. I ran

both tests with a think-aloud protocol, where I had the participant(s) speak out loud

as much of their thoughts and actions as possible. The introduction and task list

used for the user tests is included in Appendix A.

Graduate Student

After completing the custom form feature, I had a chance to get feedback from a

fellow computer science graduate student who was familiar with the design process.

The student was tasked with creating a new agent with a form and was asked to

add various questions with specific options. Through the testing, I wanted to see

how intuitive and user-friendly the form was, both of which are very qualitative

measures. Throughout the test, they were able to complete each task quickly and

efficiently. Other than some cosmetic issues, such as difficulty dragging-and-dropping

larger formElements or having to click twice to move the focus off an element, they

seemed to finish the tasks with ease.

One more significant point for confusion was in their understanding of the differ-

51

ent options. They weren’t quite sure what all the different options were and thought

it might be helpful to have illustrations to help the user understand what they were

selecting. Overall, the student claimed that it was pretty intuitive and said it “be-

haved similarly to Google Forms, which [they] were used to”. However, they did wish

it was more colorful because the interface felt very sterile although it was for creating

games.

High School Students

After the first user test, I had an opportunity to receive feedback from high school

students about the platform and current features. One change from the previous test

was that I had a chance to create a mock up of what the form would look like on the

mobile app, to test whether it matched their expectations. I tested with two pairs

of people, for a total of four people. My team and I thought having a pair of people

during each session would help the participants feel more comfortable both with the

tasks and with thinking out loud by talking to each other.

One big mismatch of expectation was when I asked them to have the agent ask the

player a question. Immediately, both groups went towards the blocks section of the

editor. There were two factors that probably played into this expectation. One factor

was that both groups had experience with blocks-based programs such as Scratch and

App Inventor, and they explained that they “thought of the blocks as the brains”.

They expected to be able to define some logic such as, “if player bumps bob, then ask

for his name”. The other factor was probably not being able to see the form section

immediately when creating a new agent. The form section can only be reached by

scrolling down past the agent description section. I did not end up addressing this

issue because it could be mostly alleviated with a tutorial about the form, but it may

be something worth considering in the future.

After pointing them towards the form section on the editor, both pairs had an

intuitive grasp of how to add new questions, how to change the questions, add options,

set questions as required, and how to reorder the questions. There was a smaller

confusion where they didn’t quite understand what the question “type” meant. It

52

was not immediately clear to them that this meant the type of response the player

could input. At the time, I also had the multiple choice question type called a “radio”

type, reflective of the more technical name for having a multiple choice question. The

participants understandably did not know what “radio” meant, so I changed the

question type to be “multiple choice”, which is definitely a more user-friendly term.

At the end of all the tasks, I showed them the mock up of how the form would look

on the mobile app. Both groups felt it was rather similar to what they were expecting.

However, both groups did claim they expected the questions to appear one at a time

with a “next” button to go to the next question instead of being able to see all the

questions at once. This was an option that I had considered with the TaleBlazer team

for how to display questions to the user - in a “wizard” format. However, we strayed

away from this design because it slows down the question answering process when

players have to press buttons to go between questions when the questions don’t rely

on each other.

The participants came in with a little to no understanding of TaleBlazer; they were

given a chance to briefly play through a sample game, along with a brief introduction

to TaleBlazer concepts as a background introduction. In practice, a TaleBlazer user

could learn about the functionality in more detail through the tutorials on the side

and they might also be more familiar with the agent interface. However, the interview

was still very helpful because I wanted to see how intuitive the interface was to new

users and what their mental picture of the outcome might be.

6.2 Different Agent Types

As mentioned in previous sections, agents were divided into different types based on

their purpose in the game. This helped both with decluttering the Agent view for

the game developer and for clarifying an agent’s purpose and associated actions for

any TaleBlazer user.

As we continued working and talking about end use cases, we defined two subtle

but distinct ways we wanted players to interact with agents. The first case is for the

53

Figure 6-6: A mockup of having templated agents with customizable characteristics
(called a “Section” in the mockup).

end use case of a data collection game where players would be able to make multiple

submissions of the same form and possibly review all the information they’ve collected

- we call the agent that handles this the Tag Agent. The second case is for the end

use case of a sequential decision making game where players might want to visit an

agent and submit their answer to a question once - we call the agent that handles

this the Choice Agent.

6.2.1 Agent Types on the Editor

I originally considered having something similar to templates when creating new

agents, similar to Google Slides and Microsoft Powerpoint. Game developers could

quickly select a default agent template, but they would also be given the option to add

and remove different agent characteristics, as illustrated in Figure 6-6. However, there

would be added complexity when trying to add and remove different characteristics,

so I decided to simply break them up into separate agent types without a way to

move different characteristics between different agents. I chose to prioritize simplicity

in design and implementation in this case. In the future, if someone wanted to add

more flexibility for the game developers, it would not be too complicated to extend

the feature such that each agent could have custom characteristics; however, it would

require more affordability for the game developers and a more intuitive interface.

There were several designs that I considered for how to add these new types of

agents, but ultimately, I kept to the same design as the editor currently has and added

54

(a) The existing “Add Agent” button.

(b) The new buttons for adding different agents.

Figure 6-7: Screenshots of how the game developer could add agents before (top) and
after (top) implementing different agent types.

buttons in addition to the existing one. This was to make it easier for both new and

current users when creating these agents. Current users are used to the one “New

Agent” button. By keeping that button there, we create affordances for the new types

of agents without confusing existing game developers. This was also possible because

the current view has enough real estate space on the screen that was not being used,

as can be seen in Figure 6-7.

6.2.2 Tag Agent

The Tag Agent is an agent with an agent description and a form, and it allows a player

to “tag” their current location and leave information about that location behind. The

Tag Agent is designed to be accessible at anytime for the player, because a player

should be able to initiate the interaction when they find something interesting to

tag; instead of placing the Tag Agent at a specific location the map for the player to

bump, I added it as a mobile tab to the game. In addition, because a Tag Agent still

is characteristic of an agent (in that it has an agent image, name, and description

and can be “bumped”), it can be added to the game through the Agent view on the

55

(a) The popup box for the “New Agent
Tab” box. (b) The popup box for the “Mobile Tabs”

box.

Figure 6-8: Popups of settings for the mobile tabs that can be customized in the
Settings view. Left is the newly created “New Agent Tab” box, and right is the
already existing “Mobile Tabs” box.

online web editor; although it functions differently from regular agents in the game,

the separate agent types help capture the distinction.

As seen in Figure 6-7, a game developer can add a Tag Agent from the Agent

view. Once the agent has been added to the game, they can then add the tab to the

mobile tabs in the game and customize the tab for that agent from the Settings view.

A name for the new tab can be given (as shown in Figure 6-8), which will be used

as the text on the tab in the mobile app. When a player taps the custom-made Tag

Agent tab, the player bumps the Tag Agent and any associated bump scripts with

the Tag Agent will be run.

6.2.3 Choice Agent

The Choice Agent is the other variant of an agent with a form. The Choice Agent

allows only one submission to their questions. Players can revisit a Choice Agent and

change their answers, but only the most recent set of answers is kept track of at any

time. Both the Choice Agent and the Tag Agent display similar agent dashboards,

but the Choice Agent will be more similar to a regular agent as it is designed to

56

appear on the map in-game.

Once a player bumps a Choice Agent, the agent will show up in the History mobile

tab. From this tab, the player can see the choices they had made, but they will not

be able to edit any of their choices. A player may also re-bump a Choice Agent; when

this happens, the player will see the choices they had made but will also be able to

edit their choices. However, it may be the case that a game developer does not want

to allow a player to edit their choices; this can be achieved by not allowing a player

to re-bump an agent, which is an already existent feature in TaleBlazer.

6.3 Reviewing Information

In addition to collecting information from players, it would be helpful to display that

information back to the user during gameplay. As discussed previously, I designed two

agent types with player inputted information - the Tag Agent and the Choice Agent.

Other than how the player initiates the interaction and how many times a player can

submit, another difference between the two types of agents is what happens to the

submitted information for each agent. The Choice Agent was designed more for the

sequential decision making use case game, where a player would input information

that impacts the gameplay, and not necessarily information that would be useful to

review. The Tag Agent was designed more for the data collection use case game,

where it makes more sense for a player to review the information they had gathered

so far. To simplify the two designs, I have created ways to review information from

the Tag Agent and not the Choice Agent.

Once a player submits information through the Tag Agent, they will have two

options to review the information they had submitted so far. The first option is

through the Tags mobile tab, and the second option is through the Map mobile tab.

6.3.1 Tags Tab

From the beginning, I did have an idea for players to review information that they

had collected or inputted through agents with forms. An example mock up can be

57

Figure 6-9: Mockup of how players could review information. The leftmost image is
a new tab with a list of agents, the center image shows a singular record view, and
the rightmost image shows a multiple record view.

seen in Figure 6-9. Note that this was before I had the notion of separating the

agents into two different types, so there is no distinction between agents who allow

one submission and agents who allow multiple submissions.

After I came up with the notion of Tags, I created a mockup of how this tab

might look, as shown in Figure 6-10. It was clear that the location and time of

submission information would be important for Tags, so I chose to make those visible

when reviewing information, so players could more easily distinguish between different

submissions for the same Tag Agent.

Within the Tags tab on the mobile app, there are further two ways to review

information. The first is seeing a list of all the tags submitted, ordered by the time

of submission. In the case of having multiple Tag Agents (e.g., having a Tag Agent

for collecting information about trees and another for collecting information about

birds), the tags would be mixed together in this view. The second is seeing a list of

Tag Agents, with the submissions grouped by the Tag Agent. When a player taps

the Tag Agent, they would see all the submissions for that agent in a carousel view.

Figure 6-11 shows the implemented Tags tab with the two different ways to view

information.

58

Figure 6-10: Mockup of how players could review information using a Tags tab on
the mobile app.

(a) The “All” view of the Tags tab. (b) The “Grouped” view of the Tags tab.

Figure 6-11: Screenshots of the two different views for the Tags tab. Left is the “All”
view with the submissions ordered by time, and right is the “Grouped” view with the
submissions grouped by the Tag Agent.

59

When a player is reviewing information through the Tags Tab, the submissions

will appear in an uneditable state. However, the game developer can specify whether

players can edit submissions, per Tag Agent; if they specify that, the players will also

see an edit icon when reviewing the information that will allow them to edit their

submissions.

6.3.2 Tags on the Map Tab

Because the Tag Agents are meant to help tag locations, instead of only displaying

them in a list view on the Tags tab, it was important to also place the submissions

on the Map tab of the mobile app. This makes it easier for players to visually review

the locations that they had tagged and where they had seen interesting things. The

tags will appear on the map as the Tag Agent’s icon, which is chosen by the game

developer and which will default to a pin icon (as shown in the icon of the “Bird

Agent” in Figure 6-11). To implement this feature, I looked at TaleBlazer’s cloning

feature, which allows a game developer to clone an agent and have it appear in

multiple places on the map. The cloning feature presented a similar functionality by

how it creates copies of the same agent in multiple locations. However, as opposed to

how the cloning feature allows a player to bump the agent, a player cannot bump a

tag on the map; instead, they can tap it to review the information for that particular

tag.

If a player submits a tag, the tag will appear at the player’s current location.

Because TaleBlazer uses different map regions, it was also important to distinguish

the tags’ behaviors between regions. The tags will appear only on the region the

player was in when tagging the location; this makes it simpler on the implementation

side because each location has its own x,y coordinates on the map for the current

region. If I were to include tags across multiple regions, I would need convert the

x,y coordinates for each region the player changes into. This also makes it simpler

for players because they wouldn’t see tags from a previous region when they change

regions.

TaleBlazer also supports indoor games with the use of beacons. Because there is

60

no equivalent x,y coordinates for indoor games, the tags would not be recorded on

the Map tab; however, they can still be recorded and reviewable from the Tags tab.

61

62

Chapter 7

Future Work

There are several areas that can be expanded upon following completion of this

project. One area for improvement would be giving game developers a simple way

to track player choices from Choice Agent submissions. Another area for improve-

ment would be allowing game developers to make use of aggregated information from

Tag Agent submissions. The other area would be allowing players to do more with

the information they have gathered either in-game or outside of the game. Learning

does not have to stop within the game, and with more ways to interact with the

information outside of the game, learning can continue after the gameplay has ended.

7.1 Blocks for Choice Agents

A useful feature would be giving game developers a simple way to track player choices.

This may be useful if a player’s form submission can impact how the game progresses.

For example, suppose players are asked to count the number of trees around them,

and they are only allowed to move forward in the game if they input that they can see

at least two trees. The game would have to be able to know what the player inputted

into the form and compare it against a value specified by the game developer.

As mentioned in the previous section, an agent can have actions, which are buttons

that the player can press to interact with an agent. Currently, this is the only way

for players to influence how a game progresses. However, after a player has made a

63

choice, there is no way for the game to know what choice was made later on in the

game. For example, suppose a player bumped an agent, and the player could choose

between talking to this agent or ignoring this agent. And suppose at the end of the

game, the player receives a present for having chosen to talk to that agent, or a coal

for having chosen to ignore that agent. In order to create an event as simple as this in

the game, the game developer would have to create some round-about logic to keep

track of the player’s state and know what choice the player had made, because there’s

no built-in way to simply check what choice a player had made during gameplay. A

proposed solution for this problem would simply involve creating blocks (as part of

the blocks-based programming editor) to test the value of a player’s choice. If game

developers could more easily incorporate player choices into gameplay, players could

have a more meaningful and engaging experience with TaleBlazer, which goes towards

our goal of maintaining a fun experience for users.

7.2 Aggregate Information from Tag Agents

One way to expand upon this project might be to help make the Tag Agent submis-

sion information more meaningful for the users. Although it is difficult to use the

value from any single question from the form, because there would be multiple values

to choose from if there are multiple submissions, it might be useful to allow game

developers to review and use aggregated information from the forms. For example,

suppose there was a TaleBlazer game centered on collecting information about nearby

trees, and this game was being used as an educational tool in a classroom. As the

students are collecting information about the trees, it might be helpful and meaning-

ful if they could see some aggregate information about all the trees they have seen

so far. This information might involve the min, max, average, or sum of all values of

a ”number”-input type of question, or it could involve getting the count of all sub-

missions the student has made so far. There are many examples of how to make use

of collected information from databases, so this work could be inspired by database

design.

64

7.3 Sharing Information

Another area for expansion could be improving upon player-to-player interaction.

There are other aspects of TaleBlazer that are being worked upon, namely bluetooth

interaction between different players in-game. With this module, it might be possible

to build up a set of observations about the world together with another player, being

able to modify and influence each others’ information.

In addition to in-game sharing, it might be interesting to export or share infor-

mation from these games outside of the games as well. For example, suppose the

previously mentioned example of a TaleBlazer game about observing trees being used

in a classroom. After making individual observations, the students could all come

back and identify various trends about the trees they observed. They could see

how the information they gathered, combined with the information gathered by their

classmates, can lead to some interesting conclusions.

65

66

Chapter 8

Conclusion

Through the design and implementation of customs forms, Tag Agents, Choice Agents,

and new mobile tabs to review information, I believe TaleBlazer will be better equipped

to encourage scientific learning through its games. I created these features to help en-

hance the two main end use case games mentioned before - the Data Collection game

and the Sequential Decision Making game. The main goals were to design intuitive,

useful features that can be used for a variety of different ways, and that can enhance

both the education and the fun of TaleBlazer games.

In addition to the implementation of the features, there were some key takeaways

I learned from simply working with the TaleBlazer team. One key lesson was in

widening my perspective of who I was designing for. Often times, I found myself

thinking I had a good solution but realized there were a lot of different types of users

I had not considered when coming up with the design. For one thing, TaleBlazer

users have a wide breadth of experience, so I had to make sure new features were

obvious and intuitive while also adding enough depth to the feature to make it usable

for experienced users. In addition, because TaleBlazer is already being used, I had to

ensure each new feature I implemented lets current users continue using the platform

effortlessly and does not break any current games. Another key lesson was working

with a large codebase that has been and probably will continue to be modified by a

lot of people. There were challenges in understanding the code from a perspective of

needing to modify it, but there was also a challenge in making sure my code would be

67

understandable and easily modifiable by the next person who uses it. To this end, I

used existing classes and incorporated my code into existing pipelines where possible.

68

Appendix A

User Testing Documentation

A.1 Background

Hi, thank you so much for coming to visit us. My name is Nayoung [and intro myself

a little]. Today, we’re pilot-testing a new feature, so any problems you run into will

help us improve the software and are not a reflection of your capabilities. So please

don’t hesitate to let us know if you run into any questions or problems at any point.

Just to give you a little background, TaleBlazer is a platform for creating location-

based AR games (mention Pokemon Go). Anybody can create a game on our online

editor at taleblazer.org, and then you just download the mobile app and start playing!

So I’ll briefly talk about these two components: the app and the web editor.

In the app, you’ll see a map and a small blue circle for your location. The other

icons on the map are what we call agents, which are characters in the game. When

you walk close enough to an agent’s location, you’ll bump into the agent and see its

information and other ways to interact with the agent.

JUDY can show quick demo of Grapefruit Tour. (PREP on 2 devices)

So all that is on our mobile app, which is how people play TaleBlazer games. The

games are created on our web editor (usually this is done on a computer). You can

choose the map location, create new agents, add tabs to the game, and customize

other settings such as how agents are bumped. Then you can also add logic to how

the game is played, by using blocks (mention Scratch or AppInventor as examples).

69

Right now, we’re working on allowing players to input their own information into

TaleBlazer. Things like having the agent ask for a player’s name or a player’s favorite

color. So we’ll have you test out what it might look like to try to create an agent that

can do that. We have a pretty wide audience, ranging from novices to experts, and

our goal is to make this system easy to understand for beginners while also useful for

more experienced users as well.

Do you have any questions so far?

Now I’m going to explain how this will work. We’ll be using something called

the think aloud model today. I’ll give you guys some tasks to do and I want you to

think aloud any thoughts or actions that you’re doing as you’re doing them, anything

that comes to mind. This is really helpful for us because we learn more about things

that seem off or things that seem to work well from just how you’re thinking. [talk

through example of making PBJ sandwich]

Now I’m going to list out several tasks for you to do, and I would like you to try

to do them while talking through your thought processes as much as possible. Also,

let me know if you need to take a break at any point.

A.2 Tasks

1. Brief Instructions on Getting Started

(a) Go to dev.taleblazer.org

(b) Go to the Agents tab

2. Create a new Form Agent. This agent will be asking the player for information.

3. Give the new Form Agent a name and description. [If they can’t find it – let

them fail, tell them it’s somewhere on this page, show them where it is]

4. Ask the player for the following:

(a) Their name

(b) Whether they like dogs or cats better

70

(c) What their favorite season is (a choice from spring, summer, fall, winter)

(d) Their age

(e) One photo of himself/herself

5. Make the question for their name required.

6. Order the questions as follows:

(a) Name

(b) Photo

(c) Age

(d) Dogs or cats

(e) Favorite season

7. Delete the question about dogs or cats.

8. Change the questions about seasons to allow the player to choose multiple fa-

vorite seasons.

9. Undo the last two actions (changing the seasons question and deleting the

dog/cat question).

A.3 Follow-Up Questions

1. Was there anything that was frustrating or confusing about what you just did?

2. What did you like the most? What did you like the least?

3. Have you ever used any other technology to create a form or a survey?

4. Did you know what all the question types meant? Or are there different word-

ings that would have made more sense?

5. Do you have any suggestions?

6. Do you have anything other thoughts you’d like to share?

71

72

Bibliography

[1] United State Environmental Protection Agency. Basic information about citizen
science, 2019.

[2] Janis L. Dickinson, Jennifer Shirk, David Bonter, Rick Bonney, Rhiannon L.
Crain, Jason Martin, Tina Phillips, and Karen Purcell. The current state of
citizen science as a tool for ecological research and public engagement. Frontiers
in Ecology and the Environment, 10(6):291–297, August 2012.

[3] John Losey, Leslie Allee, and Rebecca Smyth. The lost ladybug project: Citizen
spotting surpasses scientist’s surveys. American Entomologist, 2012.

[4] The Lost Ladybug Project. Recent publications from the llp, 2018.

[5] Elizabeth R.Ellwood, Theresa M.Crimmins, and Abraham J.Miller-Rushing. Cit-
izen science and conservation: Recommendations for a rapidly moving field. Bio-
logical Conservation, 208:1–4, April 2017.

[6] Jessica Sickler and Tammy Messick Cherry. Lost ladybug project: Summative
evaluation report, 2012.

73

