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Abstract

A large body of work has shown that a group of individuals can often achieve higher
levels of intelligence than the group members working alone. Despite these expecta-
tions of group advantage, many examples of collective failure have been documented-
from market crashes to the spread of false and harmful rumors. To reconcile these
results, a major effort in the study of collective decision making has been focused on
understanding the role of group composition and communication patterns in promot-
ing the "wisdom of the crowd" or, conversely, leading to the "madness of the mob." In
the past decades, much of this effort has been devoted to inferring the importance of a
particular attribute, in isolation, by its capacity to explain the accuracy of collective
judgments. In this thesis, we argue that such a perspective can lead to inconsis-
tent conclusions: an 'incoherency problem.' We assert that the importance of an
individual-level or structural attribute may change as a function of the environment
in which the group is situated. Hence, we propose a research agenda to investigate
the relative importance of the group composition and the structure of interaction
networks under an environment-dependent framework. We show that under such a
framework, we can reconcile previously conflicting claims from the collective intelli-
gence literature and motivate a future research program to identify stable principles
of collective performance. Although implementing such a program is logistically chal-
lenging, "virtual lab" experiments of the sort discussed in this thesis, in combination
with emerging "open science" practices such as pre-registration, data availability, open
code, and "many-labs" collaborations, offer a promising route forward.

Thesis Supervisor: Alex "Sandy" Pentland
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Chapter 1

Introduction

A substantial body of work has shown that a group of individuals can often achieve

higher levels of intelligence than their members working alone. For example, the

classical concept of the "wisdom of crowds" articulates how-in a startlingly wide

range of settings-the aggregate (e.g., average) estimate of a group is better than

the estimate of the best-performing individual. Examples include financial markets,

which provide a mechanism for revealing investors' private information in order to

arrive at a global estimate of value, and democracy, which aggregates differences of

opinion to reach a collective decision on who should lead us.

The use of these (e.g., teams, markets, polls, and votes) and related modern mech-

anisms is on the rise, finding applications in areas as diverse as problem-solving [136,

108] technological and economic forecasting [140, 215], crowdsourcing [100, 33, 194],

product rating [192, 144], public policy design [137, 176], and mapping natural disas-

ters [133, 70]-just to mention standouts. At the same time, there are many instances

of collective failure-from market crashes to the spread of false and harmful rumors.

Such collective decision systems are central to the way society organizes and allocates

resources; hence, providing a sound understanding of and useful design guidelines for

improving the performance of collective decision systems is of paramount importance.

Although recent availability of massive digital traces on human behavior and the

ubiquity of computational approaches have both extended and changed classical social

science inquiry [174] bringing the era of computational social science [117] and the
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emergence of network science 122, 209J (see Section 1.1). These advances have allowed

scientists to generate a tremendous number of studies on collective intelligence, but

they have been much less successful at reconciling some of the many inconsistencies

and contradictions amongst them. For instance, studies have shown that the same

attribute of interest (e.g., social interaction via communication networks, cognitive

style diversity of team members, etc.) can either promote the "wisdom of the crowd"

or, conversely, lead to the "madness of the mob." In general, for the same social

context being studied and for the same global feature of interest, different theories

have disagreed on which attributes are most relevant, and empirical studies offered an

overwhelming lack of consistent evidence (see Section 1.2 on the incoherency problem).

However, I argue that many of the studies on this topic only consider, explicitly or

implicitly, static and stable environments, offering at best a partial view of human

collective decision making (see Section 1.3 on the need for an environment-dependent

framework).

In this dissertation, I address the question of the determinants of collective in-

telligence using an illustrative example (see Section 1.3.1) and a series of human ex-

periments and supporting simulations (see Chapters 2 and 3). The results show that

what is optimal always depends on the environment, and that groups provided with

appropriate learning mechanisms can adapt to biased and non-stationary informa-

tion environments, significantly improving both individual and collective judgments.

The findings presented in this thesis can help reconcile some previously conflicting

claims from the collective intelligence literature and motivate a future research pro-

gram to more systematically identify stable principles of collective performance (see

Chapter 4).

1.1 Premise: A Unifying Theory

Many scientists continuously aspire to discover universal principles that are valid

across many different systems. While the domain of physical systems has offered

examples of such widely applicable "laws," social phenomena have tended to be less
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fruitful in terms of generating such generalizations. This desire to build models of

social phenomena that are as predictive as those in physics, as well as the pursuit of

unifying principles and operationally meaningful theorems in the social sciences, has

has been termed "physics envy" in the social sciences [1 23, 125, 4 7]. While physicists

can explain most of all observable physical phenomena using Newton's three laws of

motion, social scientists (probably) wish they had 99 laws that explain 3% of human

behavior. It is not only that social science has one theory for one thing and another

theory for another thing 194], but rather that it has many theories for the very same

thing [2101.

The unfavorable comparison of social sciences to the natural sciences (and physics

in particular) has a long [1411 and quite unproductive history (e.g., see Watts argu-

ment against it in [210]). However, is it possible that this state of affairs has changed

with the study of computational social science and complex networks emerging into

prominence?

The Era of Computational Social Science. Recent widespread adoption of

electronic and pervasive technologies, the development of e-government, and open

data movements have enabled the study of human behavior at an unprecedented

level and helped uncover seemingly universal patterns underlying human activity.

Lazer, Pentland et al. [117] formally introduced computational social science (CSS)

as a new field of research that studies individuals and groups in order to understand

populations, organizations, and societies using big data', i.e. phone call records [4, 5,

'11, 10], GPS traces [104], credit card transactions [184, 521, web page visits [59, 7],

emails [105, 16], and data from social media [152, 6, 12, 8J. Driven by the ubiquitous

availability of data and inexpensive data storage capabilities, the concept of big data

has permeated the public discourse and led to surprising insights across the sciences

and humanities. Such understanding can answer epistemological questions on human

behavior in a data-driven manner, and provide prescriptive guidelines for persuading

people to undertake certain actions in real-world social scenarios. In particular, this

availability of data over the past fifteen years has shed light on the important role

'I acknowledge that no one who works with such large-scale data likes the term big data.
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networks play in human society.

The Emergence of Complex Networks. At least for half a century now,

there has been a surge in data availability and the ability to represent different sys-

tems (e.g., physical, biological, social, and technological) as a collection of nodes (or

entities) connected with each other according to specific link topologies. Examples

range from the tiny intracellular system, which consists of different molecules sig-

naling each other via chemical reactions, that determines our biological existence,

to the enormous cosmic web composed of discrete galaxies held together by grav-

ity that determines the fundamental structure of our universe. We also see networks

between these two scales, from food webs that represent the who-eats-whom (or inter-

dependence) between species in ecology to social actors-be they individuals, orga-

nizations, or nations-exchanging ideas and favors in a social system. Indeed, recent

research efforts have revealed a number of distinctive structural properties that many

networks seem to share across many domains. Such properties include the "small

world" effect [211, 208], the right-skewed degree distribution [21], clustering [149],

and community structures [80]. Considering the ubiquity of networks and their struc-

tural properties, much effort has been made to understand the relationship between

network structures and a system's function. This is a topic that is of utmost rele-

vance to the social sciences: what is the role of social network structural properties in

generating globally observable, dynamical features? More relevant to the topic of this

dissertation: what role could the group composition and communication structure

between individuals play in generating collective intelligence?

While these advances have allowed social scientists to generate a tremendous num-

ber of studies and theories on many important topics, they have been much less suc-

cessful at reconciling some of the many inconsistencies and contradictions amongst

them (see Section 1.2 and [210]). I conjecture that a non-trivial portion of the re-

cent scholarly work on collective intelligence is based on simplistic axioms from which

one can derive seemingly mathematically rigorous universal principles, carefully cal-

ibrated simulations, and the very occasional (and narrowly conditioned) empirical

tests of those theories. Thus, I will argue that we need a research agenda to inves-
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tigate the relative importance of different theories under an environment-dependent

framework. I hypothesize that under such a framework, we can reconcile those pre-

viously conflicting claims from the collective intelligence literature and motivate a

future research program to identify stable principles of collective performance.

1.2 Reality: An Incoherency Problem

Over the past couple of decades, scientists have generated many studies on the topic of

collective intelligence. Although many of these studies share similarities in empirical

motivation and theoretical objectives (i.e., studying the same 'thing'), the prescriptive

consequences of their findings are not only different, but are logically incompatible--

that is, each makes assumptions and reaches conclusions that, if true, would render

the other false [210]. Duncan J. Watts in his Nature Human Behavior article titled

"Should social science be more solution-oriented?" highlighted that for any topic of

which he has undertaken a great amount of studying-be it cooperation mechanism,

organizational performance, collective action, network dynamics, systemic risk-one

would likely encounter the problem of irreconcilable results [2101. In this dissertation,

I argue that the topic of collective intelligence is no exception.

For instance, studies that focused on the patterns of social interactions on collec-

tive intelligence found that social influence can promote the "wisdom of the crowd" [261

and, conversely, lead to the "madness of the mob" 1127]. Inefficient communication

structures simultaneously enhance [116, 58] and hinder [136, 82, 26] collective perfor-

mance. Weak bridging ties are advantageous for innovation [87, 165, 168], as well as

the opposite-strong cohesive ties are more advantageous [202, 203, 164, 204]. Other

studies have found that network structures can affect (i.e., promote or hinder) coop-

eration [162, 74, 38], while others report no relationship between network structure

and cooperation levels [1931. Homogeneity of tie strengths have been found to be

beneficial for coordination and also can derail it [38, 157, 1581.

The issue of incoherency exists in many modeling and empirical settings, not

just in those that focus on social network phenomena mentioned in the previous
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paragraph. For instance, when it comes to the composition of the group (i.e., the

attributes of the constituents), some studies have identified the individual ability of

the group members as an important predictor of collective performance [187, 60, 27],

while others report no or at best a weak relationship [217, 166, 1541. Skill diversity

(i.e., variance in group members' ability) has been shown to both enhance [98] and

handicap collective performance [18, 67, 60]. Similar inconsistencies arise for cognitive

style diversity [118, 150, 3], social perceptiveness [217, 69, 72, 120], and even the

relative performance of teams versus individuals [48, 190, 219].

In general, for the same social system being studied and for the same global

feature (i.e., collective outcome) of interest, theories disagreed on which attributes are

most relevant, and empirical studies have offered an overwhelming lack of consistent

evidence for a direct effect of any such property. What is most troubling is not the

coexistence of theoretical and empirical disagreements in the literature, but that such

incoherence is barely noticed and little demand for reconciliation efforts has been put

forward [210].

1.3 Resolution: An Environment-Dependent Frame-

work

There are some notable efforts that have focused on providing a partial resolution

to some of the inconsistencies in the literature [16, 24, 123, 15, 86]. The common

theme of these attempts is the finding that what is advantageous depends on the

environments in which the social system is situated. This dependence on environ-

mental conditions is well established in other fields, like the modern investigations of

ecological communities [40, 185, 191, 41, 37, 169, 172].

Therefore, I hypothesize that in order to systematically reconcile these contradic-

tory results, we need to understand the relative importance of the determinants of

collective dynamics under an environment-dependent framework. If the actors are

the subjects, then the environment is the object (i.e., the stimulus). Therefore, the
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environment itself is system-dependent (e.g., may vary from one social system to an-

other). In the case of problem-solving and collective intelligence, the environment

may be characteristics of the task (e.g., complexity, type, information distribution

across agents, etc.); in a product diffusion setting the environment may be charac-

terized by the thing being diffused (e.g., product characteristics); and in cooperation

or coordination games the environment may be characterized by the incentives (the

payoff matrix, the rate of interaction, mutation, etc).

So far, most theories of collective outcomes have been largely silent on the rele-

vance of those environmental conditions. For example, within the context of collective

intelligence, to what extent does the optimal communication structure depend on the

characteristics of the task being performed? Different studies usually adopt different

types of tasks; therefore, it is possible that the discrepancy in the results is partly due

to varying task characteristics across studies. Typically, a large number of degrees of

freedom involved in these analyses (e.g., choice of task parameters) limits the gener-

alizability of the results. Thus, if studies focus on a specific set of task characteristics

in order to infer the general importance of a structural attribute, it would lead to in-

consistent conclusions. Also, all of these studies only consider, explicitly or implicitly,

stable environments, offering at best a partial view of human collective outcomes.

I want to highlight that I do recognize that the environment is only one of the

possible sources that contribute to the inconsistencies in this literature. For exam-

ple, some theoretical constructs can be vague (e.g., what do you mean by "structural

diversity"?) or ambiguous (e.g., how do you operationalize tie strength?), potentially

causing different studies ostensibly about the same phenomenon (e.g., the impact of

network diversity on innovation) to measure quite different things. Another source

of inconsistency could be the presence or absence of other mediating variables (i.e.,

multiple causes), or the misidentification of causal effects due to false positive re-

sults (e.g., underpowered experimental designs, misspecified or faulty computational

models) or bias in publications (e.g., incentives to find counterintuitive results).

Additionally, studying the relationship between attributes of interest and collec-

tive outcomes usually suffers from less than ideal empirical conditions. This method-

29



ological limitation also can give rise to inconsistencies. For instance, many of the

empirical observational studies are correlational (i.e., no exogenous manipulations)

and cannot account for self-selection or homophily. Experimental studies, on the

other hand, offer a great degree of control and allow for the identification of causal

effects, but they suffer from many constraints such as short duration, high cost, small

scale, homogeneous participants, simplistic design, unrealistic and static tasks, etc.

Such constraints limit the ability to explore the parameter space of social theories

(i.e., systematically manipulating the environment) as well as the external validity of

their findings.

I concede that it is not clear to me how much each of these possible factors

contributes to the problem of incoherency. Therefore, in this dissertation, I will focus

on the role of the environment and assume that the studies referenced above are not

suffering from any of those other issues.

1.3.1 Illustrative Example

To illustrate how paying little attention to the environmental conditions can lead to

inconsistent conclusions, I will use a structural stability approach common to the

study of ecological communities [169, 40]. The idea of structural stability, as Rene

Thom puts it, is a

natural condition to place upon mathematical models for processes in

nature because the conditions under which such processes take place can

never be duplicated; therefore, what is observed must be invariant under

small perturbations and hence stable.

As such, the structural stability approach focuses on studying the following ques-

tion: how structurally stable is a system vis-A-vis environmental changes? In other

words, does the qualitative behavior of a dynamical system change as a function of

the parameters of the system itself?2 .

2I learned about structural stability from discussions with the members of the Structural Ecology
group at MIT: Serguei Saavedra, Simone Cenci, and Chuliang Song.
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While Thom explicitly refers to mathematical models, the same argument goes for

lab experiments: social theories are rarely precise enough to estimate exact parameter

values from empirical data (i.e., we can never duplicate nature in the lab). Thus, a

robust test of even a single theoretical claim may require many experiments, each

corresponding to a different set of parameters.

For illustrative purposes, let us take a simple belief dynamics model as an example

of relating network structure (i.e., the attribute of interest) to a collective outcome.

This particular toy model was developed to resemble a Lotka-Volterra (LV) system,

in order to easily and directly associate the structure of the feasibility domain (i.e.,

the parameter region where the desired collective outcome is achieved-we will define

this formally later) with the network structure. Our simple belief dynamics model is

as follows:

Yt+1i = Yt(X - AYt)

In this model, the strength of beliefs in a community about some topic (e.g.,

the existence of supernatural agents) is represented by the n-dimensional vector Y,

where yi,t corresponds to the strength/level of belief of individual i at time t. The

temporal evolution of beliefs (e.g., how individuals update their beliefs in the next

time step, Y+ 1) is a function of the beliefs at any given point Y, the vector of in-

trinsic attributes of individuals X (i.e., confirmation bias, which is the rate at which

individuals increase/decrease their belief independently about the topic), and the in-

teraction matrix A that captures the structure of social influence (i.e., the attribute

of interest). Note that the confirmation bias rates are inherently linked to environ-

mental conditions-in other words, the events that the individuals encounter in their

environment. If we take our measure of collective outcome to be the persistence of

the belief in the community (i.e., there are no non-believers at equilibrium), then this

implies Yt* = A-1 (X - 1) > 0. We can see that this condition will be satisfied as long

as the vector of confirmation bias rates falls inside a feasibility domain constrained
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by the interaction matrix [173, 40]. Formally, this domain is defined by:

DF(A) = IX = Yt*,1a1 --- + Yt*,nan > O}l

where aj is the ith column of the interaction matrix A. Now, for simplicity (and to

be able to depict the system graphically), let us assume that we have two types of

individuals in this community (i.e., individuals can have one of two possible rates of

confirmation bias3). Then we can view the system from the lens of its parameter space

in Figure 1-1. The axes of Figure 1-1 represent the 2-dimensional parameter space of

confirmation bias rates. The points el, e2, and e 3 are three choices of confirmation

bias parameter values. The colored regions correspond to the set of confirmation

bias rates compatible with positive beliefs about the topic in the community (the

necessary condition for the persistence of the belief). The size and shape of this

region depend upon network structure (structures A1 and A2). In mathematical

ecology, these regions are usually called the feasibility domain of a community [126].

In Figure 1-1, it is easy to see how three different investigations can reach different

conclusions about the role of social network structure in the persistence of beliefs

in a community. For instance, if the first investigator sets the confirmation bias

values to el then the conclusion that will be reached is that social structure A1 is

superior to A 2 when it comes to the persistence of beliefs. On the other hand, another

investigator that sets the confirmation bias to e2 will reach exactly the opposite

conclusion. A final investigator choosing e3 (or implicitly assuming no confirmation

bias i.e., enoBias = [0, 0]) will find no relationship between network structure and the

persistence of beliefs.

In this example, one might be tempted to come to the general conclusion that

network structure A1 is superior to A2 when it comes to persistence of beliefs be-

cause of the relative sizes of the feasibility domains of these two networks'-i.e.,

volume(DF(Al)) > volume(DF(A2)). This can be interpreted as follows: if the en-

3I want to highlight that this approach can be applied to any combination of structures/attributes
of interests, environments (with an arbitrary number of dimensions), and models (including nonlinear
functional responses) as demonstrated in [391.

4 In some cases, the size and shape of the feasibility domain can be analytically investigated [1711.
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Parameter 1

Figure 1-1: Linking network structures and collective outcome. The green regions

represent the feasibility domains (parameter space or values of confirmation bias

rates compatible with the persistence of the belief in the community) of two network

structures in a belief dynamics model.

vironment values were uniformly sampled from the parameter space, then it is more

likely to achieve the desired collective behavior under network structure A, than A2.

However, this conclusion has no conceptual support, as the environmental con-

ditions we care about are usually characterized by a distribution (e.g., set of en-

vironmental conditions over a period of time), rather than any particular point in

the parameter space--that is, in the field, it is virtually impossible to measure the

environment exactly. Therefore, what we care about is the overlap between the en-

vironmental conditions in a given setting/time and the feasibility domains defined

by social network structures. In Figure 1-2, we can see that under different environ-

mental conditions, what network structure is "best" can vary. Therefore, independent

of the environment, there is no conceptual support of either a positive, negative,
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Environment 1 Environment 2

E I E

Parameter 1 Parameter 1

Figure 1-2: Although the left domain (the efficient network) is larger than the right
domain (inefficient network), what matters is the overlap between the feasibility do-
main and the characterization of the environment.

or no association between network structure and function, even when we can fully

characterize the feasibility domains.

1.3.2 Conceptual Reflections and Dissertation Organization

Overall, this simple conceptual analysis demonstrates that the association of a given

attribute of interest (i.e., network structure, in this case) with global outcome depends

on the environment. Therefore, without an environment-dependent framework from

which to draw hypotheses and tune our intuitions, it is difficult to distinguish results

that are unusual and interesting from results that are unusual and probably irrelevant

(i.e., wrong or not generalizable).

Additionally, in some areas where there is a premium on slick studies with sur-

prising results, 'surprising' should occur with reference to the particular region in the

parameter space, and not in absolute terms. For instance, if a counterintuitive result

can only emerge under very specific environmental conditions that are narrow and not

representative of the conditions we care about or only occupy a small region in the

parameter space that we rarely encounter, then how much does this result matter?

In the rest of this dissertation, I will continue to illustrate the importance of the
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environment-dependent approach by conducting human experiments and simulations

where we explicitly manipulate the environment (i.e., task characteristics in Chapter 2

and information distribution in Chapter 3). In order to conduct those studies, we

built an experimentation platform that allows for conducting behavioral experiments

of a scale, duration, and realism that far exceed what is possible in brick-and-mortar

facilities and blur the line between lab and field experiments (see Chapter 4).

One of the main contributions of those studies is having a framework where the

environment in which groups are situated is explicitly defined and manipulable (e.g.,

to simulate the non-stationarity of the environment). For instance, by manipulating

the environment (and keeping everything else fixed), we can show how some of the

seemingly contradictory results in the literature can be obtained as a function of the

environmental conditions (i.e., whether nominal teams are better than real teams as

in Chapter 2; or whether efficient network structures are more advantageous as in

Chapter 3). Therefore, this allows us to reevaluate the importance of some of these

attributes from the point of view of the environment (i.e., the conditions under which

those attributes are of relative importance).

In particular, In the first study (i.e., Chapter 2), we focused on how different

individual level attributes and group compositions (e.g., skill, cognitive style diversity,

social perceptiveness) can affect collective performance, and examined whether those

effects are robust to environments (i.e., tasks) of variable complexity. In this study,

we asked two main research questions: 1) Do groups perform worse than comparable

individuals on simple tasks but better on complex tasks?; 2) Do the effects of group

composition on group performance vary with task complexity?

In the second study (i.e., Chapter 3), we focused on the role of dynamic communi-

cation structures on promoting collective intelligence. In recent years, both theoreti-

cal and experimental work has been limited mainly to frameworks where agents are

placed in static social structures in stable environments. Yet, it is increasingly recog-

nized that most natural and social systems are best described as "dynamic" networks,

with links existing only intermittently in response to environmental variations (i.e.,

the different environments the group can be situated in). In Chapter 3, we shift the
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focus on the role of communication networks from the purely structural aspects of the

topology to the role environmental changes play in determining the dynamical pro-

cesses defined on it. This would mean changing the usually ill-defined question "Which

network structure is best to promote collective intelligence?" to "What mechanisms

should we provide the social system to enhance its ability to adapt in a changing en-

vironment?" In the context of collective intelligence and group problem-solving, this

dissertation overcomes some of the common limitations of prior studies by consid-

ering dynamical social influence networks where individuals can actively choose and

dynamically rewire their social connections in non-stationary environments, which

narrows the gap between stylized experiments and real-world social contexts.

In order to operationalize the "environment" in our lab settings, we built an exper-

imentation platform (Empirica.ly). The platform forces the investigator to explicitly

define the space of the environment in which the group of participants is situated,

and therefore, the exploration of the interactions between the environments and the

attributes of interest becomes more systematic (as opposed to having isolated and

non-comparable studies). It is necessary to acknowledge that this remains a sim-

plistic view of real social system environments. In real-world social systems (e.g.,

health, education, inequality, cultural norms, economic policies) environments are

high-dimensional and interact in much more complicated ways in order to produce

particular individual and group outcomes [2101.

1.3.3 On the Shoulders of Giants

Samuel Taylor Coleridge, in The Friend (1828), wrote:

The dwarf sees farther than the giant, when he has the giant's shoulder

to mount on.

Indeed, academic advancements rarely happen in a vacuum, but transpire as we build

on ideas and tools from others: a path-dependent wisdom of crowds. The work of this

dissertation is inspired by and built upon a few common patterns that have emerged

in several different research programs. Here, in addition to the structural stability
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approach used for the illustrative example earlier", I will briefly mention several-

non-exhaustive -- strands of academic research that lend support to the environment-

dependent framework presented in this thesis.

Representative Design

There is little technical basis for telling whether a given experiment is an

ecological normal, located in the midst of a crowd of natural instances, or

whether it is more like a bearded lady at the fringes of reality, or perhaps

like a mere homunculus of the laboratory out in the blank. [34]

Egon Brunswik developed an innovative methodological framework called repre-

sentative design, where he wondered why the logic we demand for generalization (i.e.,

sampling theory) over the subject side' is ignored when we consider the object side

(i.e., conditions, stimulus, input, or environment)? In particular, he highlighted that

one may only generalize the results of observations and experiments to those en-

vironmental conditions (or objects) that have been sampled in the experiment-in

the same way that scientists apply this principle to the subjects (i.e., the partici-

pants) [611. That is, to study the agent x environment relations, the environmental

conditions should be sampled from the agent's natural environment in order to be

representative of the population of environments to which it has adapted and to which

the experimenter could generalize. Therefore, Brunswik called for an explicit theory

of the environment in experimental psychology [85]. Similar to the discussion (in Sec-

tion 1.3.1) on feasibility regions, Brunswik argued that experimenters should avoid

oversampling highly improbable conditions (or conditions that do not exist in the

population), because even if the results from those conditions are interesting, are

they really relevant?

5I have already demonstrated how tools borrowed from the study of ecological communities [40,
173, 169] are valuable for viewing communities through the lens of their environmental variations.

'Interested readers should also refer to the No Free Lunch Theorem [102, 95, 216] and the Con-
tingency Theory of Organizations [631.

71n actuality, as Henrich [93] pointed out, most participants in psychological experiments are
WEIRD; also see Chapter 4.
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Since Brunswik's time, the idea that human behavior is shaped by the environ-

ment structure has been generally accepted (e.g., ecological rationality, evolutionary

psychology/game theory, ecological psychology) and the concerns with the limited

generalizability of research findings have been expressed periodically. Nonetheless,

there were two mainstream criticisms of the representative design approach that I

want to highlight here. First, there are concerns regarding the associated difficulty of

implementing representative designs [501. How can one possibly sample situations?

However, I would argue that the difficulty of sampling situations8 can be overcome

with modern technologies, such as the Web, to effectively reproduce and explore

environments (see Chapter 4 on high-throughput social science using virtual labs).

The second objection argues that, even if we could define and sample the envi-

ronment, there is no need to do so. After all, the goal of the social scientist is not

to generalize the results from the experiment to situations 'outside' the experiment,

but to test hypotheses and advance particular theories. This criticism is brought on

by the strong emphasis on ensuring internal validity for the sake of replicability, at

the expense of external validity. In other words, this objection presupposes that the

purpose of social science experiments is not to solve practical problems in the real

world.

Solution-Oriented Social Science

Duncan Watts has argued in a recent article that social science should be more

"solution-oriented" in order to reconcile the competing claims in the literature (i.e.,

the incoherency problem in Section 1.2). That is, the research community needs to

place more emphasis on solving practical problems-the sort with direct engineering

analogues [2101-rather than the advancing of particular theories. For instance, in

the article Watts suggests asking questions like:

* "How do I maximize the impact of my advertising spending?"

8 am referring to formal situational sampling [84], which focuses on the formal properties of the
environment (i.e., defining the universe of possible environments), irrespective of its operationaliza-
tion.
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* "How do I increase productivity in my organization?"

* "How do I increase pro-social behaviour in my community?"

I want to argue that Watts's perspective is akin to the environment-dependent

framework proposed in this dissertation. In all of these questions, the locust of activity

(e.g., "in my organization") is limiting the generality of the answer to the objective

(e.g., "how to increase productivity"). In other words, the answer to the first part of

the sentence is dependent on the conditions specified in the second part. Hence, the

answer will be relative, not absolute, which-I will argue-will lead to reliable and

coherent results, not falsely conceived as universally valid.

Adaptive Market Hypothesis

Andrew Lo 112:3, 124] applies the principles of biological evolution (i.e., competition,

adaptation, and natural selection) to financial markets. In particular, the approach

focuses on explaining how emergent market attributes (e.g., prices) are related to the

interaction of distinct groups of market participants within a specific environmental

conditions (e.g., regulations, number of competitors, magnitude of profit opportuni-

ties).

In particular, the Adaptive Market Hypothesis asserts that market behavior adapts

to a given financial environment, and an efficient market (the dominant theory of mar-

kets) is merely the steady-state limit of a market in a static financial environment;

an idealized market is unlikely to ever exist in practice.

The Adaptive Market Hypothesis is specifically studying the individual-level in-

vestor (i.e., economic agent) as well as the larger market (i.e., macroeconomy). How-

ever, I think the adaptiveness to environmental conditions approach applies to other

collective social phenomena, more generally, and for the same reasons (i.e., evolution-

ary processes working in a non-static environment). In this work, we see how similar

ideas can expand beyond the domain of financial markets.
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Ecological Rationality

Ecological rationality [198, 183, 81]-proposed by the German psychologist Gerd

Gigerenzer of the Max Planck Institute for Human Development-in contrast to ra-

tional choice theory, maintains that the rationality of a particular decision depends

on the context of circumstances in which it takes place. Therefore, what is consid-

ered rational under the rational choice account that focuses on agent characteristics

(e.g., preference consistency) might not be considered rational under the 'ecological

rationality' account, which also considers the structure of the environment.

This approach to decision-making is inspired by earlier work by Herbert A. Simon

on heuristics and bounded rationality [1811. In particular, he explored how heuristics

(a decision strategy that partially ignores available information) in appropriate context

can achieve higher intelligence than other more complex approaches. The ecological

rationality focuses on individual-level decision making, while in this dissertation we

investigate the emergent phenomenon of collective behavior.
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Chapter 2

Varying Environmental Complexity

Recent work on teams has emphasized the counterintuitive claim that the absolute

skill level of team members matters less to collective performance than other factors

such as skill diversity, cognitive style, and social perceptiveness. Through a novel

two-phase experiment (phase one N = 1200, phase two N = 828; pre-registered') in

which individual on-task skill, cognitive style, and social perceptiveness were mea-

sured ex-ante and then systematically varied in team composition, we show that the

effect of skill on team score is larger than all other factors across environments (i.e.,

tasks) of widely varying complexity. More importantly for practical applications, skill

predicts twice as much out-of-sample variance as all other factors combined. We also

show that while teams outperform comparable individuals on average, when compared

with the best member from a same-sized group of individuals, teams score worse but

compensate with faster completion time and higher efficiency when the task environ-

ment is complex. Our results help to clarify inconsistencies in the existing literature

on the relationships between team construction and performance; they highlight the

value of online experiments capable of supporting large sample sizes and complex,

multifactorial designs; and they motivate a future research program to identify stable

principles of collective performance (see Chapter 4).

'All of the data, analysis code and the pre-registration plan are publicly available at the Open

Science Framework (OSF) repository. Our main hypotheses, experimental design, and analyses were

pre-registered before the collection of the data (AsPredicted #13123). The study was reviewed and

approved by the Microsoft Research Ethics Advisory Board (Approval#: 0000019).
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2.1 Environments of Widely Varying Complexity

As organizations have moved inexorably to more team-based structures, the prob-

lem of improving team performance through judicious selection of team members has

preoccupied management scientists and managers alike [115, 2, 101, 197, 145]. Pre-

vious research has found a variety of intriguing results regarding the impact of skill

diversity [981, cognitive style diversity [68], and social perceptiveness [110, 217] on

team performance. However, the existing literature exhibits two important limita-

tions that undermine the practical relevance of these findings. First, the difficulty

of executing large-scale experiments with complex multifactorial designs means that

individual studies typically focus on single effects rather than comparing multiple

effects directly; thus, it remains unclear which of many hypothesized relationships

matter most in practice. Second, definitional ambiguity of quantities of interest (e.g.,
skill, cognitive style, collective performance) combined with researcher freedom to

select among possible definitions create inconsistencies across published results for a

given effect. For example, on the one hand, meta-analyses of lab studies conducted

between the late 1960s and early 2000s find that average individual ability is the

most consistent predictor of team performance [60, 187, 27]. On the other hand,
more recent studies have argued strongly that average ability is less relevant to col-

lective performance than other factors such as social perceptiveness (aka emotional

intelligence) [217, 69, 120] and diversity [98, 13, 3]. Similar inconsistencies arise for

more fundamental questions about the value of being in a team. For example, there

is little consensus on whether teams always outperform independent individuals (i.e.,
the relative perforinance of teams versus individuals) [48, 219, 190].

Reading this literature, a hypothetical manager wishing to construct a team for

some task (or environment) would have difficulty deciding whether for a particular

task would team be less/more effective than their members, which of potentially

many individual-level attributes to measure, how to optimally combine individuals

with those attributes, and how that combination might depend on the difficulty of

the task at hand. Moreover, because the effects of different combinations of attributes
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are typically expressed in terms of regression coefficients, not their ability to predict

the outcome of interest, it is unclear how much control over performance the manager

could expect to exert in practice [122, 96, 2201. Here we address these limitations

by using a novel two-phase experiment to answer two main questions: 1) Under

what conditions, if any, do teams perform better than individuals? 2) Which of the

four widely studied attributes of teams-average skill level, skill diversity, cognitive

style diversity, and social perceptiveness-individually and collectively dominate team

performance (effect size and predictive power) and does it vary with task complexity?

Our experimental design exhibits five important features that address limitations

with previous studies and speak directly to the hypothetical manager's problem out-

lined above:

1. By varying the difficulty of the task (i.e., the environmental conditions) over

a wide range (from "easy" to "super hard") without changing the nature of the

task (see Sections 2.2.1, 2.2.1), we determine how, or if, the relative importance

of different attributes changes with task difficulty (e.g., does being in a team,

or the level of social perceptiveness, or skill diversity, matter more for the most

difficult tasks than for easy tasks?).

2. The separation of the experiment into two "phases" eliminates confounding be-

tween individual and team measures of performance [481. In phase one we

measure all relevant attributes for individual workers (see Section 2.2.2); then

in phase two we use this information to construct teams with desired combi-

nations of individual attributes (e.g. "high skill but low social perceptiveness,"

"mixed skill but high social perceptiveness," etc.; see Section 2.2.3). In this way,

all individual attributes are measured before assignment to teams or individuals.

3. Rather than relying on generic metrics for ability and cognitive style we measure

them on the task itself, thereby improving reliability.

4. The combination of the two-phase design and the ability to recruit large sam-

ples online facilitates a relatively complex multifactorial design which in turn

improves our ability to compare multiple effects directly (see Chapter 4).
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5. Finally, we directly address the practical problem outlined above by express-

ing our team-level results in terms of their individual and combined predictive

accuracy.

2.2 Experiment: Optimal Team Construction for a

Complex Task

The goal of our experiment was to examine which of several factors (e.g., skill level,

skill diversity, social perceptiveness level, cognitive style diversity, etc.) predicts team

performance. To answer this question, we used a novel "two-phase" experimental de-

sign in which we recruited the same group of participants (recruited from Amazon's

Mechanical Turk; see Section 2.2.1) twice to solve a sequence of Constraint Satis-

faction and Optimization Problems (CSOPs)-a class of complex problems that are

widely studied in artificial intelligence and operations research as abstractions of var-

ious real-world resource allocation and scheduling problems (see Section 2.2.1).

2.2.1 Experimental Setup

Specifically, participants were asked to solve a "room assignment" problem in which

they had to assign N "students" to M "rooms" where each student had a specified

utility for each room. Participants' objective was to maximize total student utility

while also respecting Q constraints (e.g., "Students A and B may not share a room

or an adjacent room"). Task difficulty (or the "environment complexity," therefore,

could be varied systematically by changing the number of students (N), the num-

ber of rooms (M), and the number of constraints (Q). After completing five such

tasks, each participant also completed a standard "Reading the Mind in the Eyes"

(RME) test [25], which is commonly used as a measure of social perceptiveness (see

Section 2.2.1).

On the high-level, phase one (see Section 2.2.2) was used for gathering ex-ante

measurements of each participant's skill level on the room assignment problem, social
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Figure 2-1: Schematic illustration of the experiment design.

perceptiveness level, and cognitive style. Then, in phase two (see Section 2.2.3), we

deployed a block randomization scheme to randomly assigning participants into one

of six blocks based on their phase one measurement results. Within each block, we

randomized whether the participants will work as individuals or in teams (i.e., teams

of three randomly selected participants) to solve another set of room assignment

problems. Teams were also provided with a chat box, enabling them to communicate

freely with each other and scores were now assigned to teams not individuals. See

Figure 2-1 for an illustration of the experiment design

Finally, we used the ex-ante measurements from phase one to construct the inde-
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pendent variables (i.e., whether the participants were assigned to individual or team

condition as well as different influencing factors of team performance) and used the

actual performance in phase two as the dependent variables, which together allowed

us to examine the performance effects of being in a team versus an individual and

the effect of different team compositions (see Section 2.2.4).

The experiment was developed using Empirica (https://empirica.ly/), an open-

source "virtual lab" framework and a platform for running multiplayer interactive

experiments and games in the browser 1156].

The source code for the Room Assignment Tasks can be found at here, and the

source code for the Reading the Mind in the Eye Test can be found at here .

Room Assignment Problem

In our experiments, we asked participants to solve room assignment problems, first

individually and then within a team. A room assignment problem is a type of Con-

straint Satisfaction and Optimization Problem (CSOP, that is, an optimization prob-

lem on top of a constraint satisfaction problem) [79, 200]. We chose this task for

three reasons. First, CSOPs are an abstraction of many resource allocation and opti-

mization problems; thus, they capture important features of real-world team problem

solving exercises without requiring participants to have specialized skills. Second, the

payoff function for CSOPs can be described as a "rugged landscape" characterized by

many locally optimal but globally suboptimal solutions. Correspondingly, CSOPs are

amenable to potentially many solution strategies and styles, where no single strategy

is universally superior. Third, the complexity of CSOPs can be systematically varied

by adjusting a few key parameters; in our case, by changing the number of students

N, the number of rooms M, and the number of constraints Q.
In our operationalization of this problem, participant(s) were tasked with assigning

each of N "students" to one of M "rooms," while also respecting Q constraints on

their choices (e.g., students A and B must be neighbors, must not share a room,

etc.). In each room assignment problem, a "utility table" was presented, providing

participant(s) with the information on students' ratings (between 0 and 100) to each
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of the M rooms indicating how satisfied they would be if being assigned to the room.

The participant(s) was then asked to find a room assignment plan that maximized

satisfaction across all students without violating any constraints.

To incentivize the search for an optimal solution (i.e., the optimal room assignment

plan) we provided participant(s) with additional bonuses based on how good their

submitted solutions for the problem were. In particular, we defined the "score" of a

room assignment plan as the following:

Score = The sum of students' ratings of their assigned rooms

- 100 x the number of violated constraints

By submitting a complete plan (that is, each student got assigned to one room)

with a positive score in a room assignment problem, participant(s) could earn a

"performance-based bonus" using a 500 points:$1 USD conversion rate to exchange

scores into payments. Moreover, if the submitted plan was indeed the optimal one, an

additional $0.5 USD "optimal assignment bonus" would be given 2. We determined

these values for the payments by conducting a series of pilot studies and observing

how participant behavior responded to different payment schemes. For screenshots

of the task, see Appendix A.1 and A.3.

Reading the Mind in the Eyes (RME)

Each participant also completed the revised version of the "Reading the Mind in the

Eyes" test [69], a widely used test for measuring Social Perceptiveness/Emotional

Intelligence. In this test, participants are shown 36 pairs of eyes. For each pair of

eyes, they are provided with four words describing emotions. The participant is asked

to select one of the four words that best describe what the person in the picture is

thinking or feeling. See Appendix A.2 for an illustration of the test.

2 These bonus rates are for phase one experiment. In phase two, the performance-based bonus
conversion rate is 1000 points:$1, while the optimal assignment bonus is $0.7. We set these bonus
rates to maintain a similar level of hourly payment between the phase one and two experiment.
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Participants Recruitment

All participants were recruited on Amazon Mechanical Thrk (MTurk3 ), which is an

online labor market with a large and diverse pool of people ready to promptly perform

tasks for pay (called human intelligence tasks, or HITs) [9]. We recruited our partici-

pants by posting a HIT for the experiment, entitled "Play games and get up to $17 in

total pay," a neutral title that was accurate without disclosing the purpose of the ex-

periment. The study was reviewed by the Microsoft Research Ethics Advisory Board

and approved by the Microsoft Research Institutional Review Board (Approval#:

0000019). All participants provided explicit consent to participate in this study and

MSR IRB approved the consent procedure. All data collected in the experiment could

be associated only with the participant's Amazon Worker ID on MTurk, not with any

personally-identifiable information. All participants remained anonymous for the en-

tire study. In each phase of the experiment, participants first read instructions and

could start the experiment only after they had correctly answered a set of questions

testing their comprehension of the instructions (see Appendix A. 1 screenshots and

examples).

2.2.2 Design of Phase One Experiment

In phase one of the experiment, participants were asked to complete a sequence of

36 "Reading the Mind in the Eyes" (RME) test questions as well as a sequence of 5

room assignment tasks. More specifically, CSOP and RME were implemented as two

distinct web apps, each of which appeared as a separate link in the MTurk iframe.

The order of the links was randomized for each participant but they could choose to

click on them in whatever order they wished. For the RME questions, participants

were shown in each question a pair of eyes and were asked to select one of the four

words that best describe the emotions shown by the eyes (See Appendix A.2 for an

illustration of the test).

For the room assignment task part, we first introduced participants to the problem

'http://mturk.con
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and each completed one practice task (as per our pre-registration, it is not included

in the analysis), in which N = 8 students need to be assigned to M = 5 rooms while

respecting Q = 4 constraints. Each participant was then given a sequence of five

room assignment tasks, to be completed independently, where the maximum amount

of time a participant could spend on a task was 5 minutes. Table 2.1 summarizes the

main properties of the five task instances used in phase one.

Table 2.1: Main properties of the 5 room assignment tasks used in phase one of our
experiment.

Task Order N M Q Max possible score Difficulty
1 6 4 2 343 Easy
2 9 6 8 554 Hard
3 6 4 2 323 Easy
4 9 6 8 564 Hard
5 6 4 2 325 Easy

As shown in the table, we intentionally included 3 easy task instances and 2 hard

task instances in the sequence. We did not randomize the order of the task instances in

phase one to minimize the noise in the measurement of individual skill due to random

ordering effects. We included more easy task instances than hard task instances in

phase one to minimize potential self-selection in phase two of our experiments (i.e.

where only participants who did well in phase one would return for phase two'), which

turned out to be very effective (see Appendix A.5 for more details).

When working on a room assignment task, a participant was presented with a

graphical interface where each student was represented as a person icon and each

room was shown as a box (see Appendix A. 1 for examples of the interface). The

participant could then drag the icons of students and drop them to different boxes

to adjust the room assignment plans. Assistive information such as the score of the

current room assignment plan, the list of violated constraints, and the amount of time

left in the task was also displayed and updated on the interface while the participant

changed the solution. At any time during the allotted 5-minute period for a task,
4For example, participants who performed well in phase one may be more likely to participate

the phase two experiment, implying possible self-selection biases; by having more easy task instances
in phase one, most participants may feel they performed well thus bias is attenuated.
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the participant could push a button to submit her solution and move on to the next

task (or to the end of the room assignment task sequence), or the participant would

be automatically redirected to the next task when the 5-minute timer was up. After

the participant solved all five room assignment tasks in phase one, she was asked to

complete an exit survey, in which we asked her to self-report the following information:

" Age

" Gender

" Highest Education Received

- High School

- US Bachelor's Degree

- Master's or higher

- Other

e Were the instructions clear?

" Was the pay fair?

" Was the time limit per task reasonable?

* Did you encounter any problems with the user interface?

" If you had assigned all students to rooms and had no conflicts, which of the

following would you be most likely to do?

- Submit your solution and move on the next task

- Try to increase your score by moving students around as long as you didn't

generate any new conflicts

- Try to increase your score by moving students around even if it meant

generating new conflicts
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* If you had assigned some (but not all) students to rooms and had encountered

one or more conflicts, would you:

- Put off resolving the conflict(s) until all students had been assigned?

- Stop assigning students to rooms until conflict(s) had been resolved?

- Continue assigning students as long as no more than one conflict were

present?

" When assigning a student to a room, did you focus more on

- Which room had the highest score?

- Which room(s) would avoid generating conflicts?

" Any other feedback?

At the end of phase one, we obtained a number of measurements for each partic-

ipant:

" Skill: defined as the sum of the participant's score on the two hard room assign-

ment tasks. We only use participant's scores on the hard tasks as hard tasks

are more discriminative and scores on hard tasks have higher variability, but we

note that a participant's score on the two hard tasks highly correlate with the

participant's score on each of the five room assignment tasks (see Appendix A.4

for validity check).

" Social perceptiveness level: defined as the number of RME questions the par-

ticipant correctly answered.

" Cognitive style: operationalized in four different ways:

1. speed (fast vs. slow), which is decided by whether the total amount of

time the participant spent on solving the hard instances of phase one room

assignment tasks is below or above the median;
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2. problem-solving style (pragmatic vs. tenacious), which is decided by the

participant's self-reported answer for the exit-survey question "If you had

assigned all students to rooms and had no conflicts, which of the following

would you be most likely to do?": pragmatic (i.e., the participant chose

"submit your solution and move on the next task" or "try to increase your

score by moving students around as long as you did not generate any

new conflicts") or tenacious (i.e., the participant chose "try to increase

your score by moving students around even if it meant generating new

conflicts");

3. constraint violation tolerance (low vs. high), which is decided by the par-

ticipant's self-reported answer for the exit-survey question "If you had as-

signed some (but not all) students to rooms and had encountered one or

more conflicts, what would you do?": low (i.e., the participant chose "stop

assigning students to rooms until conflict(s) had been resolved") or high

(i.e., the participant chose "put off resolving the conflict(s) until all stu-

dents had been assigned" or "continue assigning students as long as no

more than one conflict were present"); and

4. problem-solving focus (optimizer vs. satisficer), which is decided by the

participant's self-reported answer for the exit-survey question "When as-

signing a student to a room, what did you focus more on?": optimizer (i.e.,

the participant chose "which room had the highest score") or satisficer (i.e.,

the participant chose "which room(s) would avoid generating conflicts").

Although our measurements of each participant's skill and social perceptiveness

level are continuous, to facilitate the block randomization scheme that we would

adopt in phase two of our experiment, we further used a median split to categorize

each participant into the high or low class on both measurements. For example, a

participant whose skill was above the median skill while social perceptiveness was

below the median level would be categorized as "high skill, low social perceptiveness."

We note that in our analysis we use the original (continuous) scores for individuals
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that we obtained from phase one (where a team's score is the average of the team

members' scores), not the block labels, to differentiate high-skilled/low-skilled (or

high social perceptiveness/low social perceptiveness) teams. See Section 2.2.4 for

more details.

2.2.3 Design of Phase Two Experiment

As per our pre-registration, we included the first 1200 participants who completed our

phase one experiment into the second phase of our experiment. Among these 1200

participants, there were 313 "high skill, high social perceptiveness" (HH) individuals,

284 "high skill, low social perceptiveness" (HL) individuals, 249 "low skill, high social

perceptiveness" (LH), and 354 "low skill, low social perceptiveness" (LL) individuals.

During a pilot study we conducted prior to our main experiment, we deployed

a simple randomization scheme and had individuals of different levels of skills and

social perceptiveness to form teams of three members at random in phase two. The

majority of the teams formed in this way contained a mixture of high/low skill (or

high/low social perceptiveness) individuals. As a result, the variance of a team's skill

or social perceptiveness level (defined as the average skill or social perceptiveness

level of members in that team) across different teams was limited. Practically, this

implies that a large sample size would be needed to detect any statistically significant

performance effect of team composition.

To address this problem, we adopted a block randomization scheme in phase two

of our main experiment. Specifically, prior to the start of phase two, we created

six qualifications on Amazon Mechanical Turk, with each qualification corresponded

to a "block." Participants of one particular block could only find and work on the

HIT corresponding to their block, but not the other five HITs. Table 2.2 provides a

summary of these six blocks.

For each individual of a particular type (e.g. "high skill, low social perceptiveness"

or HL), with 50% probability we assigned her to the block in which all individuals were

of the same type (e.g., the "HL" block), and with 50% probability we assigned her to

the block in which all individuals had the same social perceptiveness label as her, but
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Table 2.2: Summary of the six blocks that we used in phase two of our experiments.

# assigned # showed up
Block name to this block in this block

HH 155 100
MH 285 213
LH 122 90
HL 147 97
ML 310 221
LL 181 107

Table 2.3: Main properties of the 5 room assignment tasks used in phase two of our

experiment. The order of tasks was randomized in the experiment.

Task ID N M Q Max possible score Difficulty Level
1 6 4 2 340 Easy
2 8 5 5 441 Medium
3 9 6 8 672 Hard
4 12 7 12 673 Very Hard
5 18 8 18 996 Super Hard

may have different skill labels (e.g., the "ML" block, meaning "mixed skill levels, low

social perceptiveness"). Within each block, we further randomly assigned participants

either to the individual condition (31% of the time) or to the team condition (69%

of the time). The individual condition was identical to phase one except that the

five room assignment tasks were different (and generally more difficult) and that

the maximum time allotted per task was ten rather than five minutes. Table 2.3

summarizes the main properties of the 5 task instances we used in our phase two

experiment (the task sequence used in the individual condition is the same as that

used in the team condition). In the team condition, participants worked in teams of

three members from the same block.

The main effect of the block randomization scheme was to oversample statistically

less frequent combinations (e.g., all team members had high skills or high social

perceptiveness), which helped us to increase the statistical power of our experiments

(a secondary benefit was that it allowed us to match the distributions of participant

types in phases one and two; see Appendix A.5). To illustrate, the frequency of HH

individuals in the population is 1 x 1 = 1 hence under simple random assignment the
2 2 -4
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expected frequency of all HH teams would be = 134. Of the 1,200 participants who

were qualified for phase two, 828 participants entered the experiment and 237 of them

placed in the individual condition (the data for 3 of them was incomplete; hence the

effective number of individuals is 234) and 591 placed in the team condition. Of the

197 teams formed, the data for 1 team was incomplete, hence the effective number of

teams is 196. In the absence of block randomization, therefore, we would expect to

have 196/64 = 3 All-HH teams. With block randomization, we guaranteed at least 22

All-HH teams (because of random assignment in the MH block it is possible that one

or more additional All-HH teams would result). Put another way, to generate 22 All-

HH teams with simple random assignment we would have required 22 x 64 = 1408

teams or over 4,000 participants just for the teams condition (6,000 in total). In

summary, the number of teams formed in HH, MH, LH, HL, ML, LL blocks were 22,

55, 18, 21, 56, 24, respectively. Note that we did not block on participants' cognitive

styles, as doing so would require a much larger sample size.

During the experiment, each individual (or team) first completed one practice

task (N = 9, M = 6, Q = 8). Then, they could proceed to complete the sequence of

room assignment tasks of various levels of difficulty; each task had a maximum time

limit of 10 minutes (unlike phase one, which had a time limit of 5 minutes), and the

task order was randomized (to account for any ordering effects). While participants

in a an individual condition were presented with a set up that is identical to phase

one, participants assigned team condition were presented with an interface where

all team members can drag any icon of students to any room cell simultaneously as

they wish (see Appendix A.1 for an example of task interface). To avoid conflicts,

when one team member was moving a student icon, that particular student icon

was "locked" and other team members could not move it until it was released. We

provided a chatbox on the task interface, enabling team members to communicate

freely with each other during the tasks. We also presented an event log on the task

interface to help team members make sense of all movements that had been made

within the current task. At any time during a task, each team member could indicate

whether she was satisfied with the current solution using a toggle button. Once all
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three members of a team indicated they were satisfied with the solution, the team

would move on to the next task (or to the end of the experiment). If the team had

never unanimously suggested they were satisfied with the solution, the team would

automatically be redirected to the next task when the 10-minute timer was up.

At the end of phase two of the experiment, while participants in the individual

condition were asked to were asked to complete an exit survey that is identical to the

one in phase one, participants in team condition were asked the following:

* How would you describe your strategy in the game?

" Do you feel the pay was fair?

" How satisfied are you with the outcome of the game?

- Extremely satisfied (1) - Extremely dissatisfied (7)

" Do you think your team worked well together?

- Strongly agree (1) - Strongly disagree (7)

* How valuable do you think your perspective was to the end results?

- Extremely valuable (1) - Extremely invaluable (7)

* How comfortable were you in sharing your perspective with the team through

the chat?

- Extremely comfortable (1) - Extremely uncomfortable (7)

* Feedback, including problems you encountered.

2.2.4 Details of Analysis

In this work, we are interested in comparing the effect of being in a team (i.e., teams

vs individuals) as well as examining the several factors (e.g., skill level, skill diversity,

social perceptiveness level, cognitive style diversity, etc.) that determine the team

performance. In the case of the first question (i.e., team vs individual) or independent
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variable is a binary indicator that specifies whether the observation in phase two is

generated by an individual or a team. For the second question (i.e., different team

compositions), we defined a number of measures as our independent variables to

capture various possible influencing factors of team performance:

" (Team-level) skill: the average value of three team members' skills (recall each

member's skill was measured in phase one experiment as the sum of scores

obtained on the two hard tasks)

" (Team-level) social perceptiveness level: the average value of three team mem-

bers' social perceptiveness level (recall each member's social perceptiveness level

was measured in the phase one experiment as the number of RME questions

correctly answered)

" Skill diversity: the variance of the three team members' skills

* Cognitive style diversity: Given an operationalization of cognitive style, we label

the team as homogeneous or diverse on that cognitive style by checking whether

the three team members in the team belong to the same type ("homogeneous")

or not ("diverse").

The main dependent variable is each team's or individual's performance in the

second phase of our experiment. As per our pre-registration, we measured team

performance in two ways:

" Normalized score: the score a team obtained in a room assignment task divided

by the maximum score of that task, i.e., normalized score = score on Task TI max score for task T

* Duration: the amount of time a team spent on solving a room assignment task

" Efficiency (not pre-registered): Acts as a useful summary of the two other

metrics i.e., efficienc = normalized score on task T
duration on task T
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Figure 2-2: The five task difficulty levels in phase two were characterized by the differ-
ent number of students to be assigned, the number of dorm rooms available, and the
number of constraints. Increasing the task difficulty (i.e., environment complexity)
reduces the normalized score and increases the time it takes participants to submit
an assignment. Data is combined across both individual and team conditions across
all 6 blocks. Error bars indicate 95% confidence intervals. The effective normalized
score of a feasible solution is 80% and the minimum time required for a solution to
be submitted is one minute, hence the starting points of the Y axes.
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2.2.5 Results

Performance as a Function of the Environment Complexity

Fig 2-2 shows how overall performance varied as a function of task complexity, where

we use two independent definitions of performance. First, we define performance as

normalized score (i.e., cor n Task 7) thereby allowing us to compare performance

across tasks of different complexity which may have widely varying maximum possible

scores. Second, we also define performance as duration (i.e., time elapsed from the

start of a task until a solution is submitted)'. In addition, Fig 2-2 also shows our

third metric, efficiency, which acts as a useful summary of the two other metrics (i.e.,

efficiency = normalized score on task T
duration on task T /'

Fig 2-2 shows that higher complexity led both individuals and teams (see also

Appendix A.6) to score a lower fraction of the maximum possible score (2A) and

work for longer (2B). Efficiency, therefore also decreased with task complexity (2C).

Although the direction of these results is unsurprising, the large and roughly linear

dependency of two separate performance measures on complexity validates our design,

in which overall complexity is manipulated by varying one or more task/environment

parameters (N, M, Q).

Moreover, the ability to vary human-experienced complexity by such substantial

margins (on average, individuals and teams spent roughly three times as much work

time on "super hard" as "easy" tasks, but obtained normalized scores that were roughly

ten percentage points lower) allows us to test for interaction effects between optimal

team composition and task complexity where theories of collective performance have

been largely silent, i.e., to what extent does the optimal composition depend on the

characteristics of the task being performed? Alternatively, one can view varying com-

plexity as a robustness check on findings obtained for any single task [23]. In other

words, systematically varying task/environment complexity is informative with re-

spect to our main research questions regardless of whether optimal team composition

depends on it.

5where we note that all tasks timed out at 10 mins regardless of complexity
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Groups are Superior; Only when the Environment is Complex

Fig 2-3 compares overall team performance with that of "comparable individuals,"

which we define in two ways: first, a randomly drawn individual from the same block;

and second, by constructing a "nominal team," drawing three individuals randomly

and without replacement from the same block, and then choosing the individual with

the highest score from phase one. Nominal teams, therefore, simulate a situation in

which teams simply nominate their best performer to do all the work while the others

contribute nothing. For all levels of task complexity, Fig 2-3A shows that teams score

higher than randomly selected individuals but lower than nominal teams, consistent

with longstanding findings that nominal teams outperform real teams under various

circumstances [197].

Interestingly, however, Fig 2-3B shows that teams complete the most complex

tasks-but not simpler ones-faster than either random individuals or nominal teams,

suggesting that for tasks with many components (students and rooms) and many

constraints the benefits of distributing work to a team outweigh the process losses

(e.g., motivation loss, coordination cost) associated with groups [109]. Finally, Fig 2-

3C shows that for complex tasks the gains in speed exceed the deficits in score,

resulting in a striking interaction between task complexity and configuration with

respect to efficiency: for easy tasks teams are considerably less efficient than either

random individuals or nominal teams, yet they are considerably more efficient than

either for the most complex tasks. This result is reminiscent of group decision making

among social insects where a study have found that colonies outperform individuals

when the discrimination task is difficult but not when it is easy 1177].

Skill Accounts for 4 Times as Much as Everything Else

Fig 2-4 shows the absolute and relative effects of all pre-registered independent vari-

ables on collective performance, which is quantified as score (Fig 2-4A), duration of

completion (Fig 2-4B), and efficiency (Fig 2-4C) respectively (and all three metrics

are standardized within each task complexity level as per our pre-registration). Across
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Figure 2-3: Comparing performance across individuals, real teams, and nominal

teams. Individual, real team, or nominal team data is combined across all 6 blocks and

standardized within each task complexity level. Error bars indicate 95% confidence

intervals.
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Figure 2-4: Team composition and team performance. The effects of cognitive style
diversity shown in the figure are for participants' cognitive styles in solving the room
assignment task as defined by "optimizer" vs. "satisfier." Error bars indicate 95%
confidence intervals. See Appendix A.7 for additional analyses on the effects of
skill/cognitive style diversity.
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Table 2.4: Relation between team's average skill level and team performance. Data

is combined across teams in all six blocks, and for all five tasks. Models relate perfor-
mance measures (standardized within each task) with the team's average skill level.

All models included random effects for teams as intercept to account for dependence

across tasks (i.e., random effects are clustered on each team, using team id as the

identifier). Increasing a team's average skill significantly increases the team's score

in solving CSOPs, but has no effect on duration or efficiency.

Score Duration Efficiency

(Intercept) 0.081* -0.028 0.050
(0.035) (0.056) (0.051)

Skill level 0.303*** 0.102 -0.100
(0.041) (0.066) (0.061)

N 980 980 980
teamid 196 196 196

Significance: *** p < 0.001; ** p < 0.01; * p < 0.05

all complexity levels Fig 2-4A shows that average skill had the largest effect on teams'

scores, and was both positive and highly significant (Table 2.4). In addition, the effect

of skill is consistently and significantly larger than that of social perceptiveness (Wald

chi-square test; X2 = 6.35, P = 0.012; see Appendix A.7 for additional "relative im-

portance" analysis), which was also positive and significant (Table 2.5). In contrast,

skill diversity (i.e., variance in team members' ability) has consistently and signifi-

cantly negative effects on the score (see Table 2.6) while no measure of cognitive style

diversity has any consistent and significant effect (see Table2.7 and Appendix A.7).

Compared with team score, the effects of skill, social perceptiveness, and diversity

on duration (Fig 2-4B) and efficiency (Fig 2-4C) are small and not significant at the

p < 0.05 level.

Effect sizes are important for testing theories, but in practice, it is also important

to consider predictive accuracy [96, 210, 2201. To illustrate, recall our hypothetical

manager who wishes to compose a team for some task, and who has prior information

about the skill, cognitive style, and social perceptiveness of prospective team mem-

bers. In essence, the manager's task is to predict which combination of traits will

yield the best collective performance. More specifically, the manager cares about two
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Table 2.5: Relation between team's average social perceptiveness and team perfor-
mance. Data is combined across teams in all six blocks, and for all five tasks. Models
relate performance measures (standardized within each task) with the team's average
skill level. All models included random effects for teams as intercept to account for
dependence across tasks (i.e., random effects are clustered on each team, using team
id as the identifier). Increasing a team's average skill significantly increases the team's
score in solving CSOPs, but has no effect on duration or efficiency.

Score Duration Efficiency

(Intercept) 0.068 -0.030 0.053
(0.038) (0.056) (0.051)

Social perceptiveness 0.171*** -0.051 0.036
(0.040) (0.060) (0.055)

N 980 980 980
teamid 196 196 196

Significance: *** p < 0.001; **p < 0.01; * p < 0.05

Table 2.6: Relation between team's skill diversity and team performance. Data is
combined across teams in all six blocks, and for all five tasks. Models relate perfor-
mance measures (standardized within each task) with the team's average skill level.
All models included random effects for teams as intercept to account for dependence
across tasks (i.e., random effects are clustered on each team, using team id as the
identifier). Increasing a team's average skill significantly increases the team's score
in solving CSOPs, but has no effect on duration or efficiency.

Score Duration Efficiency

(Intercept) 0.082 -0.010 0.026
(0.203) (0.062) (0.057)

Skill diversity -0.072* -0.035 0.046
(0.030) (0.045) (0.041)

N 980 980 980
teamid 196 196 196

Significance: ***p < 0.001; ** = p < 0.01; * = p < 0.05
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Table 2.7: Relation between team's cognitive style diversity and team performance.

Data is combined across teams in all six blocks, and for all five tasks. Models relate

performance measures (standardized within each task) with the team's average skill

level. All models included random effects for teams as intercept to account for de-

pendence across tasks (i.e., random effects are clustered on each team, using team id

as the identifier). Increasing a team's average skill significantly increases the team's

score in solving CSOPs, but has no effect on duration or efficiency.

Score Duration Efficiency

(Intercept) 0.070 -0.031 0.053
(0.039) (0.056) (0.051)

Cognitive style divesrity -0.060 -0.070 0.087
(0.039) (0.056) (0.051)

N 980 980 980
teamid 196 196 196

Significance: *** p < 0.001; ** p < 0.01; * p < 0.05

related questions. First, what is the predictive accuracy of his or her "model" (i.e.,

how much observed variance can be accounted for by all independent variables in

combination)? Second, what fraction of overall predictive performance is accounted

for by each independent variable? The answer to the first question quantifies the

extent to which team performance depends on the observed individual traits (versus

unobserved traits, factors external to the individuals, and random noise), and hence

to what extent it can be "engineered" at all. The answer to the second question in-

dicates which of the observed variables to prioritize, and how much, when selecting

team members. The latter is particularly important when there is a cost associated

with the measurement of the relevant variables.

Addressing the first question, Fig. 2-5A shows the out-of-sample R2 for a simple

linear regression model where the dependent variable is the total normalized score

(i.e. summed over all tasks), and all observed independent variables are included first

independently (i.e., separate, univariate regressions; green symbols) and then cumu-

latively (purple symbols) in order of increasing independent explanatory power (i.e.,

the R2 of the corresponding univariate regression). Overall, the R2 was approximately

0.24, meaning that the model "explained" about 24% of the observed variance in held-
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Figure 2-5: Using linear regression (70% training, and 30% testing; randomized and
repeated 5 times) to predict team's normalized score with team's skill level, skill
diversity, social perceptiveness, cognitive style diversity, and the number of female
team members. (A) Compares predictive performance for covariates regressed in-
dependently (i.e. in separate models; green symbols), and in a single model where
covariates are added in order of increasing independent predictive performance (purple
symbols). (B) Predictive performance for a single regression model where covariates
are added in order of decreasing independent predictive performance. Error bars
indicate 95%confidence intervals..

out data (more complex machine learning models scored similarly, see Appendix A.8).

The obtained overall R2 ~ 0.24 is a figure that is intermediate between recent at-

tempts to predict individual life-course outcomes [167] (i.e., 0.03 < R2 < 0.23) in the

Fragile Families predictive challenge [128, 111, 1211 and attempts to predict the size

of Twitter cascades (R2 = 0.4) [135].

Addressing the second question, Fig. 2-5B shows cumulative R2 for the same model

but starting with the most explanatory variable (i.e., skill level) and adding variables

in order of decreasing explanatory power. Although social perceptiveness and skill
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diversity do visibly increase out-of-sample R2 , these improvements are even smaller

than one would surmise from the corresponding regression coefficients in Fig. 2-4A:

skill alone corresponds to an R 2 of 0.19, or 80% of all explained variance. In other

words, our hypothetical manager could predict her team's performance almost as

well knowing only skill as she could with variables together. In contrast, predicting

duration is a much harder task: almost no variance can be explained either by skill

or by any combination of measured attributes (see Appendix A.8).

2.3 Discussion and Chapter Reflections

These results provide mixed support for previous studies and also help to clarify

some inconsistencies between them. First, our results help to reconcile conflicting

prior findings regarding the effectiveness of teams vs. individuals: whereas we find

that teams clearly outperform comparable individuals selected at random, consistent

with [219], we also find that teams score worse than the best individual selected from a

nominal team of the same size, consistent with 1109, 197]. Interestingly, even as teams

underperform nominal groups in terms of score, for the most complex tasks-but not

for simpler tasks-they attain higher efficiency by completing their work faster.

Second, our finding that the effects of average individual skill and social percep-

tiveness are positive and highly significant is consistent both with the aforementioned

meta-analytical studies that favored ability [60, 187, 27], and also with the more recent

experiments that emphasized social perceptiveness work [217, 120, 69, 110]. However,

our ability to compare effect sizes and predictive performance across multiple effects

resolves the apparent inconsistency between the two sets of results: skill dominates

social perceptiveness by an order of magnitude.

Third, our findings of that skill diversity is negatively associated with team per-

formance is consistent with 1181 but directly contradicts [98]. Even if the latter claim

is interpreted as implicating cognitive diversity more generally rather than skill per

se, we find no evidence that any of several measures of skill or cognitive style diver-

sity is positively associated with performance. Naturally, teams can be diverse with
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respect to attributes other than skill and cognitive style (e.g., demographics, political

ideology, worldview etc.) and diversity can affect outcomes other than performance

on task (e.g., satisfaction, legitimacy, social equity, etc.); thus our results should not

be construed as finding any effect of diversity writ large. Nevertheless, they do rein-

force recent research [53, 66] which also concludes that unambiguously positive effects

of diversity are more difficult to detect in carefully controlled empirical studies than

what would be expected from theory [98].

Indeed, team composition and team performance are multifarious constructs each

of which can be operationalized in many ways; moreover, the relationship between

the two may be contingent on numerous other mediating variables related to the na-

ture of the task [186, 138] and the environment [123, 35]. Finally, the literature on

team performance comprises a mixture of simulation, observational, and experimental

studies; thus it is hardly surprising that it exhibits inconsistencies. In this paper we

have introduced an approach to studying team performance that leverages a unique

combination of (a) class of tasks with variable environmental complexity (i.e., the

complexity parameters, N, M, and Q) to increase the robustness of our results and

allows us to test for interaction effects; (b) two-phase design which allows us to mea-

sure individual on-task skill and cognitive style as well as social perceptiveness prior

to team assignment; (c) large sample size and block randomization to increase power;

and (d) a pre-registered analysis plan to constrain researcher degrees of freedom [180].

In conclusion, our results show that on-task skill of team members far outweighs

other factors, such as skill diversity, cognitive style diversity, and social perceptive-

ness, that have been emphasized in recent years, accounting for roughly three-quarters

of explained variance. Although this result is robust to task complexity, which we

varied widely, a major limitation is that we only studied one type of task. We, there-

fore, hope that future work will apply a similar approach to qualitatively different

tasks as well as varying other parameters of interest (e.g., team size, communication

patterns, division of labor, leadership, etc.). Naturally a research program that ex-

plores many parameters while still running large-N samples is logistically challenging;

however, we propose that "virtual lab" experiments of the sort that we have described
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here, in combination with emerging "open science"l practices such as pre-registration,

open data and code, replication, and "many-labs" style collaborations [112], offer a

promising route forward. Finally, our emphasis on predictive accuracy seeks to move

studies of team performance away from tests of theoretical conjectures (e.g., "does X

correlate with performance?") and toward tests of practical significance (e.g., "how

much observed variance can be explained an in terms of what?").
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Chapter 3

Non-Stationary Information

Environments

Social networks continuously change as people create new ties and break existing ones.

It is widely noted that our social embedding exerts strong influence on what informa-

tion we receive, and how we form beliefs and make decisions. However, most studies

overlook the dynamic nature of social networks, and its role in fostering adaptive

collective intelligence. It remains unknown (1) how network structures adapt in non-

stationary environments, and (2) whether this adaptation promotes the accuracy of

individual and collective decisions. Here, we answer these questions through a series

of behavioral experiments and supporting simulations. Our results reveal that social

network plasticity (i.e., dynamic networks) when provided with feedback can adapt to

biased and non-stationary information environments. Moreover, we show that groups

in dynamic networks when provided with feedback can significantly outperform their

best-performing member, and that even the best member's judgment substantially

benefits from group engagement. Thereby, our findings substantiate the role of social

network plasticity and feedback as adaptive mechanisms for refining individual and

collective judgments.
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3.1 Adaptive Systems and Environmental Conditions

Adaptive systems, both natural and artificial, rely on feedback, empirical learning,
and reorganization [213, 2011. Such systems are widespread, and can often be viewed

as networks of interacting entities that dynamically evolve over time. Cell repro-

duction, for example, relies on protein networks to combine sensory inputs into gene

expression choices adapted to environmental conditions [711. Neurons in the brain

dynamically rewire in response to environmental cues to enable human learning [83].

Eusocial insects modify their interaction structures in the face of environmental haz-

ards as a strategy for collective resilience [1911. Human social network plasticity

and feedback have been shown to promote human cooperation [161, 77], and culture

transmission networks over generations enabled human groups to develop technologies

above any individual's capabilities [89, 147]. In the artificial realm, prominent ma-

chine learning algorithms rely on similar logic, where dynamically updated networks

guided by feedback integrate input signals into useful output [30, 146]. Across the

board, the combination of environmental feedback (e.g., survival, payoff, reputation

etc) and network dynamics represent a widespread strategy for collective adaptability

in the face of environmental changes; providing groups with an effective and easy-to-

implement mechanism of response to external and internal disturbance [97, 119, 191].

In our view, the information processing capabilities of interacting human groups

are no exception. People's behavior, opinion formation, and decision-making are

deeply rooted in cumulative bodies of social information [20], accessed through social

networks formed by choices of whom we friend [11, 206], follow [195], call [65, 155],
imitate [222, 179], trust [46, 205], and cooperate with [207, 161, 75]. Moreover,
peer choices are frequently revised, most often based on notions of environmental

cues and feedback such as: success and reliability, or proxies such as reputation,
popularity/prestige, and socio-demographics [142, 107, 214, 90, 77].
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3.2 Conventional Wisdom on the Wisdom of Crowds

It is widely noted, however, that social influence strongly correlates individuals' judg-

ment in estimation tasks 1144, 127, 26, 82], compromising the first of two assump-

tions underlying common statistical accounts of 'wisdom-of-crowds' phenomena [194]:

namely, that (i) individual estimate are uncorrelated, or negatively correlated, and

(ii) individuals are correct in mean expectation 178, 82].

In recent years, numerous studies have offered conflicting findings, showing that

social interaction can either significantly benefit group and individual estimates [142,

18, 26, 148], or, conversely, lead them astray by inducing social bias, herding, and

group-think [144, 82, 127]. There are some notable efforts that focused on provid-

ing a partial resolution to the conflict between the 'wisdom' and 'madness' of in-

teractive crowds and found that these divergent effects are moderated by whether

well-informed individuals are placed in prominent positions in the network struc-

ture 182, 26], how self-confident they are 118, 114, 129, 106], ability to identifying ex-

perts 1142, 36], dispersion of skills [142, 16, 130, 29] and quality of information [103],

diversity of judgments among group members [49, 29], and social learning strategies

being deployed [24, 199] as well as the complexity/difficulty of the task being per-

formed [199, 130]. In other words, what is advantageous for the group depends on

the environment in which the group is situated in. Because people often do not know

their environment (or the environment is non-stationary) it is advantageous to find

easy-to-implement mechanism that perform well across shifting environments.

3.3 The Role of the Environment, Again

Notably, both theoretical and experimental work on collective intelligence (includ-

ing the reconciliation effort mentioned above) has been predominantly limited to

frameworks where the communication network structure is exogenous, where agents

are randomly placed in static social structures -dyads [18, 114], fully-connected

groups [142, 127, 217, 148], or networks [82, 26].
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Unlike what is explicitly or implicitly assumed in most existing work, the social

networks we live in are not random or imposed by external forces, but emerge shaped

by endogenous social processes and gradual evolution within a particular environmen-

tal conditions. The present study builds on the observation that agent characteristics,

such as skill and information access, are not randomly located in network structure.

Intuitively, groups can benefit from awarding centrality to and amplifying the influ-

ence of well-informed individuals. Therefore, the distribution of agents is often the

outcome of social heuristics that form and break ties influenced by social and envi-

ronmental cues [107, 214, 32, 90], and therefore, the emergent structure cannot be

decoupled from the environment.

Here, we hypothesize that dynamic social influence networks guided by feedback

may be central to human collective intelligence, acting as core mechanisms by which

crowds, which may not initially be wise, evolve into wisdom, adapting to biased and

potentially non-stationary information environments.

3.4 Experiment: Guess the Correlation Game

3.4.1 Experimental Design

To test these hypotheses, we developed two web-based experiments (i.e., S1 and S2)

that allow us to identify the role of dynamic networks and feedback in fostering an

adaptive 'wisdom of crowds.' In both studies, Participants (Ns, = 719; Ns 2 = 480)

from Amazon Mechanical Turk engaged in a sequence of 20 estimation tasks. Each

task consisted of estimating the correlation of a scatter plot, and monetary prizes were

awarded relative to performance. Participants were randomly allocated to groups of

12, and each group was randomized to one of three treatment conditions in S1 or

four treatment conditions in S2. In study 1, the feedback level is fixed (i.e., full

feedback) and network plasticity is manipulated (i.e., static network versus dynamic

network). In study 2, plasticity is fixed (i.e., always dynamic network) and feedback

is manipulated (i.e., no feedback, self feedback, and full feedback). Fig. 3-1 illustrates
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the overall experimental design.

Environment Study 2: Study 1:
Manipulates feedback Manipulates plasticity

Revised answer

Task & private Social learning Feedback Rewiring
signalsP

t+1

Figure 3-1: An illustration of the overall experimental design.In study 1, the feed-
back level is fixed (i.e., full feedback) and network plasticity is manipulated (i.e.,
static network versus dynamic network). In study 2, plasticity is fixed (i.e., always
dynamic network) and feedback is manipulated (i.e., no feedback, self feedback, and
full feedback).

Study 1: Manipulates network plasticity; full feedback

In S1, each group was randomized to one of three treatment conditions:

* solo condition: each participant solved the sequence of tasks in isolation (i.e.,

no social information). This condition corresponds to the traditional 'wisdom

of the crowds' context [78, 194, 1601. See Figure 3-2A.

e static condition: participants were randomly placed in static communication

networks. That means, participants will engage in a stage of active social learn-

ing, where they are exposed to their ego-network's estimates in real time. See

Figure 3-2B. This context is analogous to that studied by work at the intersec-

tion of the 'wisdom of crowds' and social learning, such as 1127, 129, 82, 55, 136].

* dynamic condition: participants at each round were allowed to select up to

three peers to to follow (i.e., get the ability to communicate with) in subsequent

rounds. See Figure 3-2C. This condition is novel to the work of this dissertation.
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signals

t +1

Figure 3-2: Illustration of the experimental conditions in study 1. Panel (A) depicts
the Solo condition (i.e., no social information) where participants make independent
estimates. This condition corresponds to the baseline wisdom of the crowd context.
Panel (B) describes the Static network condition (i.e., social learning) where partici-
pants engage in a stage of interactive social learning, where they are exposed to the
estimates of a fixed set of peers in real time. Panel (C) describes the Dynamic network
(i.e., selective social learning) condition that adds the possibility for participants to
choose who to follow and be influenced by in the next round.

Note that in the social learning stage (i.e., in the static and dynamic conditions;

see Figure 3-2) participants observe in real-time the estimates of the other participants

that they are connected to and can update their estimates multiple times before they

submit their final estimate. It is up to the participant to decide how to update their

guess to accommodate the information and experiences, the opinions and judgments,

the stubbornness and confidence, of the other players.

After submitting a final guess, participants in all conditions were given perfor-

mance feedback. That included how much they earned, what was the correct corre-

lation, what was their guess.
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Study 2: Manipulates feedback; dynamic network

In S2, each group was randomized to one of four treatment conditions:

* solo condition, where each individual solved the sequence of tasks in isolation.

* no feedback condition, in which participants were not shown performance feed-

back.

" self feedback condition, in which participants were shown their own performance

feedback.

" full feedback condition, in which participants were shown scores of all partici-

pants (including their own)

Participants in all conditions (except solo, our baseline) were allowed to revise

which peers to follow in subsequent rounds (i.e., similar to the 'dynamic network' con-

dition in study 1). To further assist with reproducibility of our study, we pre-registered

our S2 main research questions and analysis plan (AsPredicted.org #16474), and

made all data and code available at OSF.io.

Estimation Task: Guess the correlation game

Participants were prompted to estimate the correlation from a scatter plot and were

awarded a monetary prize based on the accuracy of their final estimate. We call this

task, 'Guess the Correlation Game' [151].

This estimation task is designed to expose the mechanisms that allow intelligent

systems to adapt to changes in their information environment. We can influence the

performance level of participants by implementing three difficulty levels (i.e., varying

the number of points, and adding outliers or non-linearities): easy, medium, and hard.

see Figure 3-3.

At every round, all plots seen by participants shared an identical true correlation,

but difficulty levels could differ among them [143]. The allowed the simulation of

a shock to the distribution of information among participants. Specifically, each
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A. Examples of the plots used in the experiments
Correct answer: r=0.09

Hard

Easy

'M

r= 0.91

F
1
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r=0.03

, 4.9

2010

Round

B. Information environment
Hard

.. i.
0
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S

0

0
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-I
Figure 3-3: Guess the Correlation Game. An illustrative examples of the scatter
plots used in the experiment is shown in Panel (A). Task difficulty, therefore, could
be varied systematically at the individual level by varying the number of points,
linearity, and the existence of outliers. For any given round, all participants saw plots
that shared an identical true correlation, but difficulty levels could differ among them
as shown in Panel (B). Participants were not informed about the difficulty level they
or other participants were facing.

participant experienced a constant difficulty level across the first ten rounds; then,

at round eleven, we introduced shocks by reshuffling difficulties to new levels that

remained constant thereafter (see Figure 3-4). Participants were not informed about
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Information Shock

100 .
1 10 20

Round

Figure 3-4: Shock to the Information Environment. We provide a change in the
environment after round 10 by changing the difficulty levels for the participants for
the remainder of the experiment and thereby we simulate non-stationary distributions
of information among participants.

the difficulty levels they or their peers faced. See Appendix B.1.

Participant Recruitment

Amazon's Mechanical Turk is an online labor market with a large and diverse pools

of people ready to promptly perform tasks for pay (called human intelligence tasks,

or HITs). Typical tasks include image labeling, sentiment analysis, or classification

of URLs. Additionally, Mechanical Turk is increasingly becoming a popular tool for

behavioral scientists as well. Studies from across the social sciences have systemat-

ically replicated classic results from psychology and economics with data obtained

from such online labor markets and deemed online experiments to be as reliable as

that obtained via traditional methods [17, 45, 99, 28, 91. Accordingly, we posted each

of our experimental sessions as an external HIT (a URL of our web application, is

displayed in a frame in the Worker's web browser).

All participants were recruited on MTurk by posting a HIT for the experiment, en-

titled "Guess the correlation and win up to $10", a neutral title that was accurate with-

out disclosing the purpose of the experiment. The study (Approval#: 1509172301)

was reviewed and approved by the Committee on the Use of Humans as Experimen-

tal participants (COUHES) at MIT. All participants provided an explicit consent

to participants in this study and COUHES approved the consent procedure. All

data collected in the experiment could be associated only with participant's Amazon
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Worker ID on MTurk, not with any personally-identifiable information. All players

remain anonymous for the entire study. At the beginning of a session, participants

read on-screen instructions for the condition they are randomly assigned to their con-

ditions. Participants could start the experiment only once they have completed a set

of comprehension questions.

3.4.2 Experimental Results

Individual and Collective Outcomes

We first compared individual- and group-level errors across conditions. Evolutionary

reasoning suggests that people's propensity to imitate follows from its direct ben-

efits to the individual, but it may, nonetheless, induce benefits to the population

as a whole [32]. Our first result is that networked collectives across studies signifi-

cantly outperformed equally sized groups of independent participants, which is con-

sistent with prior work on search [136, 571 as well as estimation tasks [1301. Fig. 3-5

shows the individual and group error rates-using the arithmetic mean as group es-

timate-normalized with respect to baseline errors in the solo condition. Overall, we

find that participants in dynamic networks with feedback achieved the lowest error

rates. The performance edge was larger in periods where networks had adapted to

their information environment (rounds [6, 10] U [16, 20], the 'adapted periods').

In particular, in S1 dynamic networks averaged 33% lower individual error (P <

105), and 34% lower group error, compared to participants in static networks (P <

104). In the adapted periods, dynamic networks reduced error by 47% (P < 1010)

compared to groups that lacked plasticity (i.e., connected by static networks).

In S2, participants with full feedback averaged 47% lower individual error (P <

1010), and 54% lower group error, compared to participants in the no-feedback con-

dition (P < 10'). Additionally, participants with full feedback averaged 42% lower

individual error (P < 104), and 42% lower group error, compared to participants

in the self-feedback condition (P < 10-). Overall, the differences between the self-

feedback and no-feedback conditions are not significant. However, in the adapted
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Study 1: Manipulating Plasticity
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Figure 3-5: Individual and collective outcomes. Groups connected by dynamic influ-
ence networks and provided with feedback incur substantially lower individual errors
as shown in Panels (A) & (B); and collective errors in Panels (C) & (D). The reduc-
tion is notably larger and more significant in periods where networks had adapted to
the information environment (i.e., rounds [6, 10] and [16, 20]). Errors are normalized
with respect to average errors in the solo condition within each study. Error bars
indicate 95% confidence intervals.

periods, participants in the self-feedback condition achieved 60% lower group error

than the no-feedback condition (P < 10-3).

Hence, these results from both studies support our primary hypothesis that adap-

tiveness through feedback and network plasticity can benefit both individual and

collective judgment. Additional analyses on individual and group level errors are

presented in Appendix B.2.

Adaptive Mechanisms

Two social mechanisms underlie the favorable performance of networked groups. First,

dynamic networks adaptively centralized over high-performing individuals. This be-

havior was predicted by abundant evidence from cognitive science and evolutionary
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Figure 3-6: Mechanisms promoting collective intelligence in dynamic networks. Panel
(A) shows that the network becomes more centralized with time (Freeman global
centralization-i.e., how far the network is from a star network). Panel (B) depicts
the relation between performance (i.e., average error) and popularity (i.e., number of
followers). Panel (c) shows the relationship between accuracy of initial estimate and
confidence (i.e., resistance to social influence). Error bars indicate 95% confidence
intervals.
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anthropology, which indicate that people naturally engage in selective social learn-

ing [32, 214, 89]-i.e., the use of social cues related to peer competence and reliability

to choose whom we pay attention to and learn from selectively. Figs. 3-6A and 3-6B

show that participants in dynamic networks consistently used peers' past perfor-

mance information as success cues to guide their peer choices. As rounds elapsed,

performance information accrued, and social networks evolved from fully distributed

into networks that amplified the influence of well-informed individuals. Upon receiv-

ing an information shock, the networks slightly decentralized, entering a transient

exploration stage before finding a configuration adapted to the new distribution of

information among participants (see Fig. 3-7).

Fkund I FkAnd 3 Pbund d

... . . . Shock oh..gkng the i.t.bu.on of InfamgIon qu

RAwid11 RonAd i- Is RouId 20

ItI

Figure 3-7: An example of the network evolution in the experiment. The circle color
represents performance. The size of each circle represents the number of followers (i.e.,
popularity). The dashed orange line is the distribution of estimates prior to social
influence, the blue solid line is the distribution of post-social influence estimates, while
the dashed vertical line is the true correlation.

A centralization mechanism alone could suggest that group members may merely

follow and imitate the best individual among them, hence bounding collective per-

formance by that of the group's top performer. However, research on the two-heads-

better-than-one effect indicates that, in the simpler case of dyads, even the best indi-

vidual can benefit from social interaction [18, 1141; and that the critical mechanism

enabling this effect is a positive relationship between individuals' accuracy and their

confidence. Fig. 3-7C shows that participants in dynamic networks had, overall, a
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positive correlation between the accuracy of their initial estimates and their self-

confidence (measured in terms of resistance to social influence). Participants were

likely to rely on private judgments whenever these were accurate and likely to rely

on social information otherwise. Fig. 3-7C also shows that, as rounds elapsed, par-

ticipants used task feedback to calibrate their accuracy-confidence relation gradually,

and were able to re-adapt gradually upon the shock. Consistent with prior liter-

ature [26, 129], a positive correlation of confidence and accuracy was found in all

networked conditions (i.e., including static networks in study 1), explaining their

favorable performance compared to unconnected groups in both studies.

Mean-Variance Trade-off

The joint effect of centralization and confidence mechanisms explains the adaptive

advantage of dynamic networks with feedback. Moreover, it suggests that their col-

lective performance may not be bounded by that of the best individual, and that

even the best individual may benefit from network interaction. To test these im-

plications, we generalize the use of group means as collective estimates, common in

'wisdom of crowds' studies, and analyze the performance of top-k estimates-that is,

collective estimates where only the guesses of the k best-performing group members

are averaged. Top-k subsets within each group were computed based on ex-post in-

dividual performances across all rounds. In particular, top-12 estimates correspond

to the group mean, and top-1 to estimates of the group's best-performing individual.

Fig. 3-8 reports the mean and standard deviation of estimation errors incurred by

top-k estimates during the adapted periods. Ideal estimates would minimize both

mean error and variability, approaching the lower left end of the trade-off space.

The shape of top-k curves reveals that, as we remove low-performing individuals

(from k = 12 to k = 1), estimates initially improve in both mean and standard

deviation. Then, as we further curate the crowd beyond k = 6, top-k estimates

trade off between decreasing mean error and increasing variability, and finally regress

in both objectives as k -+ 1. Comparison across conditions shows that, for any

k E [1, 12], dynamic influence networks improved estimation errors in terms of both
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mean and standard deviation. In particular, Fig. 3-8 shows that the full-group average

in dynamic networks got 28% lower error and 48% less variability than the best

individual in the solo groups (dynamic top-12 vs. solo top-1; P < 10-2). Moreover,

even the best individual derived substantial benefits from social interaction, averaging

32% lower error and 38% less variability when forming and revising social connections

rather than working in isolation (dynamic top-1 vs. solo top-1; P < 10-2)

0.14

k=1

' 0.12

k=1W

0.10

A

ke1 A k=6 *k-12

0.08 A A

k=6

0.06 
k-e 

Mk-12

E Dynamic A Static * Solo

0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20

Average error

Figure 3-8: Mean-variance trade-off. Mean and standard deviation of absolute errors
incurred by top-k estimates during the adapted periods (rounds E [6, 10] U [16,20]).
Top-12 estimates correspond to the full-group mean, and top-1 to the group's best
individual. Within each condition, top-k trade-off curves first gain in both objectives,
then trade off lower average error for higher variability, and finally regress in both
objectives as k -+ 1. Across conditions, for any k E [1, 12], groups in the dynamic
condition outperformed groups in the static and solo conditions. Moreover, the full-
group mean of dynamic networks averaged 28% lower error and 48% less variability
than the best individual playing solo (dynamic top-12 vs. solo top-1; P < 10-2);
and the best individual in the dynamic condition averaged 32% lower error and 38%
less variability than her analogue in solo (dynamic top-1 vs. solo top-1; P < 10-2).
Bars indicate 95% confidence intervals.

85



3.5 Numerical Model and Simulations

We implemented numerical simulations to further assess the extent to which the inter-

action between the quality of performance feedback and the adaptability of dynamic

networks. Therefore, we focus on two conditions: 1) traditional wisdom of crowds

(i.e., independent actors with individual feedback); 2) adaptive wisdom of crowds

(i.e., dynamic networks and full feedback). In order to follow the properties of our

framework (see Figure 3-1), we need to operationalize models of its human compo-

nents, i.e., the social learning and network rewiring heuristics. We model the former

as a DeGroot process[54J, and propose a performance-based preferential detachment

and attachment model for the latter.

3.5.1 Model Specifications

Notation. Let N = {1, 2, ... , n} represent a group of agents that participate in

a sequence of tasks, indexed by discrete time t. Let G(N, E(t)) be a sequence of

directed graphs representing the influence network at each period t. Let e E [0, 1]

denote the edge weight of (i, j) at time t, and M() the row-normalized stochastic

matrix associated with E(t), i.e., M =
EhEN Eih

Agents receive private signals st) E [0,1], for i E N, regarding the true state of

the world w(t) E [0, 1]. Similarly, we denote agents' post-social learning beliefs by

pt) E [0, 1], for i E N.

Private Signals. We depart from the commonly made assumption of collective

unbiasedness of agents' private signals 1194, 127, 55, 82, 1J, allowing agents' signals

to be distributed with arbitrary means and skewness. Let ,ui = E[si] denote the

mean of agent i's signal, and ft = -J pi be the collective mean of private signals;

we are interested on the more general setting of information environments where

p # w, i.e., where the collective distribution of initial signals is not centered on the

truth. Figure 3-9 illustrates the difference between unbiased and biased information

environments.

Social Learning Process. Social learning is modeled as a DeGroot process [54],
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Figure 3-9: Traditional accounts of 'wisdom of crowds' phenomena assume unbiased
and statistically independent signals among agents. In our model, we assume arbitrary
(potentially biased) initial signals.

where each agent updates her belief by taking weighted averages of her own belief

(i.e., private signal) and the beliefs of neighboring agents. DeGroot averaging as

social learning heuristic has been well studied empirically and theoretically [55, 82],

and shown to robustly describe real-world belief updating better than more optimal

rational Bayesian models [431. In particular, we model post-social learning beliefs as

the result of a two-stage DeGroot process on private signals, given by

P(t) = (M )2 (3.1)

Individual performance is evaluated based on the errors of post-social influence

estimates. Individual cumulative error is defined by:

e= A+lZP

where A controls the number of retrospective periods that performance information

is averaged across.

Agents assess performance of other agents relative to the performance of the best

agent in the group. We define relative error of agent i as 7r = E - CWn , and
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denote the set of performance information available to agent i at time t by vector

1I E [0, 1]' with elements

(t) W for jy' i

S(t)7r for j = i

where w.Y is the relative error of agent i's private signal.

Collective error. We are interested on the wisdom of the dynamic network

(WDN) error, Ewdn, which captures collective error after selective social learning ac-

cording to the interaction network. We compare c,,d against the wisdom of the crowd

(WC) baseline, , which captures collective error of the simple averaging of agents'

initial signals.

EW =w(t) - p t) (3.2)

Ew = w(t) - s1 (3.3)

WC n

Influence Rewiring Process. Individuals connect by weighted influence links

that are revised over time. We model influence rewiring heuristics that strengthen

links when a neighbor exhibits high performance and weaken or break links when

a neighbor performs poorly. Agents can distribute attention among a limited num-

ber of peers, captured by parameter K, which represents cognitive or infrastructure

constraints (e.g., limits on our ability to keep track of social information and rela-

tions [64]). In particular, agents dynamically allocate , E N shares of their attention

to other agents. Let eijk E {0, 1}, for k E {1, 2, ..., K}, indicate that i places attention

share k on j, then eij = Ek eijk and eij E {0, 1, 2, ..., K}.

Probability of detachment. Probability that agent i detaches from j is a

positive function of i and j's errors, and given by equation 3.4. For example, if i's

error is among the lowest of the group (i(t) ~~ 0), i is unlikely to rewire her local

network. Conversely, if i's error is significant (e.g., rt) ~~ 1), i detaches from j with
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probability dependent on j's error '.

7r 0 (3.4)

Probability of Attachment. High-performing agents are more likely to be fol-

lowed. Analogous to generalized preferential attachment [21], probability that agent

i attaches to j is inversely proportional to j's error, and given by

1- 7r9 2

a = ) C (3.5)

where c is a normalization constant.

Network Evolution. Define i.i.d. random variables b) ~, Bernoulli( 3 ) V(i, j, k),
then random variables bt) Z b et) Binomial(e ) indicate the a mount

23 = Ek ijk zi idct teaon

of attention shares that i detaches from j in period t. Define n-dimensional random

vectors at) - Multinormial ( >j b 0) , where at) is i's vector of attachment

probabilities. Elements a E {o, 1, ... , } indicate the amount of shares that i at-

taches to j in period t , and network evolution is given by

e = e -b + a) Vilj (3.6)

3.5.2 Simulation Results

Using the above-described model, we performed Monte Carlo simulations of a group

of twenty agents who participate in a sequence of estimation tasks, where agents can

follow and be influenced by a maximum number of five peers (K = 5). We intentionally

chose parameter values that differ from our experiments in order to examine the

robustness of our findings under different parameter values. Indeed the results of

these simulations corroborate our main experimental results that relates adaptability

in non-stationary information environments to plasticity and feedback. Figure 3-

'Analogous to the Watts-Strogatz network rewiring model [2111, the expression's exponent can be
parameterized to reflect context-dependent costs of rewiring edges, due to infrastructure or cognitive
constraints.
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10 highlights how the dynamic agent network responds to environmental shocks.

Figure 3-1OB compares the dynamics of collective intelligence for WC and WDN under

a non-stationary environment, where shocks to the joint distribution of private signals

p. and truth w. are introduced at t = {100, 200}. The dynamic network adapts

to post-shock distributions by shifting influence to agents with better information

in the post-shock environment, driving collective error Ewdn significantly below ewc.

Difference in means tests showed that E[EW) < E[c$1] for all t E {[3, 99]U [140,199] U

[225,300]} with a 95% confidence level. Therefore, dynamic networks indeed adapted

to shocks by shifting influence weight to agents with better information, substantially

decreasing individual and group error.

0.18
WC0.16

0.14 WDN

w 0.12
0.10

_ 0.08
L 0.06

0.04
0.02

0.16 WC
0.14WDN

S0.12
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~006
o0.04

0.02
0.00

t

Figure 3-10: Evolution of collective error: wisdom of the crowd (WC) and wisdom of
the dynamic network (WDN). Panel A) stationary distribution of information among
agents. Panel B) non-stationary information environment, shocks to the information
distribution introduced at t = {100, 200}

Moreover, simulation results show that accurate peer performance information

(i.e., high quality feedback) is necessary for enabling beneficial group adaptation by

means of social rewiring. Figure 3-11 shows that, as we add increasing noise of peer

performance information, the collective performance of adaptive networks deteriorates

until converging to that of the simple wisdom of crowds2 .
2This is a realistic assumption as usually the environmental cues about performance can be noisy

in many cases.
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Figure 3-11: As the nose level increases in the provided feedback, the collective per-

formance degrades until it converges to the performance of the independent crowd.

Lastly, we explore through simulation the interaction between network learning

rates-a network's sensitivity to changes in agents' performance, parameterized by

A-and the arrival rate of environmental shocks 3-12. Networks with faster learn-

ing rates could adapt to environments with frequent information shocks. Conversely,

networks with slower learning rates could leverage longer learning periods, eventually

achieving lower error rates in environments with infrequent shocks. This short-term

versus long-term accuracy trade-off implies that optimal network learning rates de-

pend on the pace at which the information environment changes, analogous to no-

tions of optimal learning rates in natural systems and artificial intelligence algorithms

[30, 113].

3.6 Chapter Summary and Reflections

Social networks have a strong influence on how people form judgments and make

decisions. We address the question whether the structure of such networks can adapt

to leverage the skills of individuals and promote collective intelligence. In our exper-

iment, groups of participants were embedded in social networks and asked to solve a

series of estimation tasks. We show, for the first time to our knowledge, that groups

in dynamic networks-where network structure can change by forming and breaking
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Figure 3-12: Panel (A): Learning rates associated to different A's, where colored bands
show 95% confidence intervals. Panel (B): Effects of A and p on collective error, where
shades of orange indicate time-averaged collective error. Panel (C): Effects of A and
p on collective error, normalized per type of information environment (p column).

ties in response to peers' performance-improve individual and collective performance

substantially (compared to static networks and unconnected groups), and far outper-

form even their best-performing member in isolation. Such findings highlight the role

of adaptive social networks as prime mechanisms for refining individual judgments

and inducing the collective 'wisdom of the network.'

We acknowledge that the results of laboratory experiments and numerical models

do not translate directly into the real world, the evidence presented here suggests that

details of interpersonal communications-both in terms of the structure of the social

interactions and the mechanism of its evolution-can have an effect on the ability
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of the system to promote collective intelligence. This is an evidence that dynamism

of the network has profound effects on the processes taking place on them, allowing

them to be more efficient, stable against perturbations, and able to adapt to non-

stationary environments. This can help/motivate the design of field experiments in a

real system, which would narrow the gap between stylized experiments and real-world

social contexts.

The insights here provided suggest design guidelines germane to real-world collec-

tive intelligence mechanisms, in contexts such as commodity markets, social trading

platforms, crowdfunding, crowd work, citizen science, prediction markets, and on-

line education (e.g., MOOCs). We expect the adaptive systems view on collective

intelligence to further sprout connections with fields such as evolutionary biology

and artificial intelligence, advancing an interdisciplinary understanding and design of

social systems and their information affordances.
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Chapter 4

The Virtual Lab: High-throughput

Social Science

Behavioral labs have long played an important role in all social science disciplines.

The "Behavioral Lab" approach is a useful tool that offers a great degree of control

and allows for the identification of causal effects. However, many social phenomena of

interest to researchers and policy makers alike involve large populations interacting

in complex non-stationary environments over extended periods of time. By con-

trast, behavioral experiments have historically been restricted to small N samples of

WEIRD' subjects interacting in highly simplified environments over very short (i.e.,

up to 1 hour) intervals. Consequently, the results of even well designed and run lab

experiments suffer from severe external validity problems.

Another related problem, which is even more relevant to the framework of this

dissertation, is that social theories are rarely precise enough to estimate exact param-

eter values from empirical data; thus, a robust test of even a single theoretical claim

may require many experiments, each corresponding to a different set of parameters.

Unfortunately, the costs and logistics involved in running lab experiments typically

restrict researchers to exploring a tiny fraction of the relevant parameter combina-

tions, thereby leading to fragile and inconsistent findings that in turn lead to the

'Henrich's research [92, 91, 178, 93] demonstrated that people with a Western, Educated, In-
dustrialized, Rich, and Democratic background - the WEIRD people - are not representative of
humans at large, but rather outliers.

95

.



problem of incoherency discussed in Chapter 1 (in particular, Section 1.2).

We propose to address both sets of problems by dramatically scaling up and

speeding up the current state of the art in virtual lab technology. Specifically, we

intend to ease three main bottlenecks to existing research capabilities:

" Size. Alleviate scaling and replication difficulties by recruiting and maintaining

a large and diverse pool of subjects (see Section 4.2.1).

" Duration. Relieve the constraints on location in order to enable the design

of experiments with human interactions at different time intervals (see Sec-

tion 4.2.2).

" Complexity. Diminish the technological cost associated with building "immer-

sive" environments and more realistic tasks that are characterized by a large set

of parameters (i.e., beyond the 2 x 2 payoff-matrix 2; see Section 4.2.3).

Achieving these goals will require virtual lab software (e.g., Empirica.ly [156])

that is optimized for reducing the overhead associated with building and running

experiments (see Section 4.1), and in return, it will allow research teams to coordinate

research designs by recruiting a community of researchers to collaborate on a single

research program (e.g., optimal team composition, increasing cooperation in real-

world scenarios, influence maximization on networks) to explore the parameter space

of social theories and maximize cumulative knowledge (see Section 4.2).

4.1 The Interactive Environment

The idea of web-based "virtual labs" to create experiments with rich interactive en-

vironments and crowdsourced labor from the internet has started to gain popularity.

Although the number of synchronous online experiments is on the rise [175, 132, 133],

most of them make use of customized implementations, leaving a large number of

2Stylized economic experiments like prisoner's dilemma shows how two rational individuals with
two possible actions (i.e., cooperate or defect) might not cooperate, even if it appears that it is in
their best interests to do so.
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open methodological challenges yet to be solved [19]. So far, researchers trying to

pursue this approach get side-tracked mostly by the tedious logistics of randomiza-

tion, storing data, managing participants, synchronization, waiting rooms, setting up

an infrastructure, etc. It can be frustrating for the researchers to put all that effort

in before even getting to the experiment. This is a lot of work, and this work is re-

dundant. It also encourages bad practices like copy-pasting boilerplate from someone

else's code without understanding it and slowing down the pace of science by building

ad-hoc experiments that are not reusable by others.

While the virtual lab is a promising methodology and a growing area of research,

the field is still young, and it lacks established software for conducting synchronous

online experiments. There are a few platforms that allow researchers to run online

experiments. For example, commercial products include Testable.org and Gorrila.Sc.;

while non-commercial (open-source or free) products include jsPsych [51] and Psy-

Toolkit 1189, 1881. However, these are designed to support questionnaires and single-

participant reaction-time experiments (i.e., no group interactions or multiplayer types

of games). Experimental software like Breadboard 1139], Z-tree [73], and oTree 1441

do support group interactions, but they are originally designed for sequential inter-

actions (not continuous) and for an insufficient number of highly constrained settings

(e.g., stylized economic games or studies of social networks). Finally, nodeGame [19]3

and TurkServer [131] are flexible and support real-time group interactions; however,

they require relatively substantial programming expertise.

Therefore, we decided to build our own platform, Empirica (https://empirica.ly/),

which is a free, open-source framework that allows researchers to conduct behavioral

experiments of a scale, duration, and realism that far exceed what is possible in brick

and mortar facilities. The goal is to address the problem of long development cycles

required to produce software to conduct online experiments. It handles all the logistics

and allows researchers to go straight to their research questions. Also, it provides data

and experiment design layers that allow different researchers to coordinate designs.

3 This is probably one of the most flexible tools currently available for developing synchronous
games.

97



Empirica has modular source code and defines an API (application programming

interface) through which experimenters can create new strategic environments and

configure the platform. The deployment of the experiment happens from a live web

interface and allows the researcher to watch the progress in real time with the ability

to create one-way mirrors to observe the behavior of participants. With no installation

required on the participants' part, experiments can run on a great variety of devices,

from desktop computers to laptops, smartphones, and tablets. This software has been

used to run the experiments in Chapters 2 and 3.

4.2 Towards Expanding the "Lab Experiment" De-

sign Space

As we have discussed in the beginning of this chapter, the "virtual lab" approach is

intended to lift the historical barriers along three major conceptual dimensions: (i)

size, (ii) time, and (iii) complexity (see Figure 4-1).

4.2.1 Size: In Complex Systems, Large is Different

Morris Zelditch in 1969 argued in his paper "Can you really study an army in the lab-

oratory?" that it is neither possible nor necessary to study large human organizations

in the lab [22 11. Zelditch asserted that it is sufficient to test social theories in small-

group experiments and then use theory to generalize the results to the larger group.

Today, we know that this perspective is inadequate. In complex systems, the collective

behavior is not merely the sum of the individual components. We cannot understand

how an ant colony operates by studying individual ants. In the same way we cannot

understand social systems-such as markets, organizations, institutions-by studying

individuals or small groups in the lab setting. Groups behave differently at different

scales [212, 196]. For example, Elinor Ostrom4 found empirically a non-linear rela-

tionship between community size and its ability to protect the commons [t 591. Also,

4 The first-and so far, only-woman to win a Nobel Memorial Prize in Economic Sciences.
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- More realistic tasks * Physical labs
- Immersive environments
- Precise instrumentation Virtual labs

Time: duration, synchronicity

-Longer periods of time
-Fewer constraints on location

/ -Real time interaction

gf- More samples of data
ep*' - Large -scale social interaction

Figure 4-1: The Virtual Lab Framework. The figure illustrates the three conceptual
dimensions for virtual lab experiments.

experimental work has shown some interesting relationships between group size and

collective performance such as generating complex cultural artifacts [5615, mapping

disasters [ 13 31, and disrupting science and technology [2 1 ]. This explains why the

municipal is different from the national and why the United States is not just x 1, 000

Singapores.

Therefore, when it comes to social theories, the size of a group is an important

parameter that can change the qualitative behavior of interacting individuals. It

5Although this result is controversial [111.
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seems that we do need to study the army in the lab, after all.

Unlike the physical lab, which is constrained by the behavioral lab space at a

university, the virtual lab-in theory-has no limit to the number of participants.

In particular, shifting the meaning of a "large group" from a couple of dozens to

hundreds of participants has been enabled by the availability of a large and cheap

labor market for research. The ability to crowdsource participants has had a large

impact on human subjects research, from the computational sciences to the behavioral

sciences. For instance, crowdsourcing labor from Amazon Mechanical Turk (MTurk)

is an increasingly popular tool for conducting behavioral studies. There have been

efforts to systematically replicate classic results from the social sciences [17, 99, 281,

with outcomes that in many cases appear to be as reliable as data obtained via

traditional methods.

The use of crowdworkers has had a profound influence on the nature and pace

of data collection and has opened new avenues to cost-effective replication and ex-

tension of familiar research paradigms. This shift has had special impact in areas

such as studies of cooperation and conflict, person perception, intergroup attitudes

and stereotypes, and group behavior, where cumbersome interactive multi-participant

experiments can be conducted much more easily via online platforms [88, 9].

The advances in scale offered by online labor markets for crowdsourcing partici-

pants, though significant, are not without limitations. In particular, there are at least

three challenges yet to be solved [134]: 1) recruiting simultaneous participants (i.e.,

availability at the same time to study interaction between participants); 2) partici-

pants' uniqueness (i.e., avoiding learning affects [163, 42], where prior exposure to a

task affects subsequent experimental results on similar tasks); and 3) large sample

size (i.e., at any given time there are only around 2K active high-effort workers on

MTurk [62]).

4.2.2 Timescale: Social Interactions Evolve Over "Time"

Social interactions between individuals evolve over time (as we have discussed in

Chapter 3), and the nature of time-be it simultaneous or sequential; real-time or
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offline; continuous or discrete; fast or slow; one-shot or repeated--can fundamentally

change group-level outcomes [182, 170, 311.

A notable example is the dynamics of cooperation (i.e., paying a personal cost

for a shared benefit). In Prisoner's Dilemma, where defection is the prevailing ac-

tion in one-shot interactions, cooperation can be sustained when interactions are

repeated and participants can remember previous actions of their peers [153]. More-

over, cooperation can be further sustained in long-run experiments (i.e., lasting for 20

consecutive weekdays [132]) and real-time interactions (i.e., going from discrete-time

to continuous-time increases cooperation from 40% to 90% [76]).

Virtual lab experiments grant great flexibility to experimenters to study human

interactions at different time intervals, from one-shot real-time (i.e., seconds) to very

long sequential (weeks and months) interactions- thereby allowing for more "immer-

sive" environments.

Despite the opportunities virtual labs can bring to studying human behavior,

behavioral research online has so far remained largely limited to offline decision-

making tasks6 or one-shot interactions with simultaneous decisions. This is partly

because of the lack of an established software that is widely used for conducting

synchronous online experiments, which leaves a large number of open methodological

challenges yet to be solved by the experiment designer.

4.2.3 Complexity: The Parameter Space of Social Theories

Throughout this dissertation, I have argued that the importance of a result needs to

be evaluated through the lens of the environment-that is, the qualitative behavior

of an attribute changes as a function of the combinations of parameter values chosen

by the researcher (cf. Section 1.3).

For instance, the collective intelligence literature can be mapped into a very high-

dimensional parameter space, where each dimension represents what the investigator

thinks is a relevant attribute. A non-exhaustive list of potentially relevant variables for

6 E.g., using the strategy method, where decisions for each possible information set are collected,
then interactions are emulated post hoc.
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team composition and performance is: scale (2 individuals - 104 individuals), problem

dimensionality (estimation tasks - complex problems), problem difficulty (easy that

anyone can solve; hard, or no one can solve alone), interdependence between task com-

ponents, means of communication (slider, language, cursor, price, wager, probability

judgment), communication structure (fully connected - chain - nominal), informa-

tion access and feedback, goal (forecasting, searching, estimating, acting, transferring

information), timescale (one-shot, iterative), etc. The parameter space of these the-

ories has been sparsely investigated with ad hoc experiments, each solving specific

problems with custom operationalization and often reaching simplistic conclusions

that are in contradiction with each other and hard to reconcile (cf. Section 1.2 on

the incoherency problem). A common language between researchers is missing and

the results remain isolated rather than cumulative. With a virtual lab framework,

researchers could solve the problem of exploring the parameter space 7 empirically in

at least two ways:

The Exhaustive Exploration. Due to the lower cost associated with running

virtual lab experiments, researchers could test multiple combinations of parameters

of behavioral theories and generate empirical "phase diagrams," where the collective

outcome of interest is observed against all the possible combinations of model param-

eters8 .

The Coordinated Exploration. The exploration of this massive space can

potentially proceed in a distributed and guided fashion'. The following would be a

possible iteration, where a community of researchers collaborate on a single research

program (e.g., optimal team composition, increasing cooperation in real world sce-

narios, influence maximization on networks) coordinate research designs (e.g., define

the relevant variables and outcomes) to maximize cumulative knowledge:

* The researcher asks the "framework" what experiment to run, specifying what

parameters to hold fixed (e.g., task characteristics) and which are allowed to

vary (e.g., team compositions).
7 The exploration of parameter space is usually done through computational or analytical models.
8 1n Section 1.3.1 we illustrate this using an analytical model, instead of empirical; see Figure 1-1
9 This is based on discussions with Niccolo Pescetelli, Duncan J. Watts, and James A. Evans
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" The platform suggests experiment parameters to be evaluated (e.g., scale=50

individuals, means of communication=language, structure ='teams', skill diver-

sity= high, etc.).

" The researcher implements the experiment using the provided parameters.

" The results are fed back to the framework, which uses them to update its pa-

rameters and proceeds to the next iteration of experimentation.

" Code and results (that are compatible and comparable) are made publicly avail-

able and published in peer-reviewed journals.

4.3 Reflections and Conclusions

In conclusion, group attributes (e.g., network structure, team composition, individual-

level attributes) and collective performance are multifarious constructs each of which

can be operationalized in many ways. Moreover, the relationship between the two

may be contingent on numerous other mediating variables related to the nature of the

environment. Therefore, without an environment-dependent framework from which

to draw hypotheses and tune our intuitions, it is difficult to distinguish results that

are unusual and interesting from results that are unusual and probably irrelevant.

Although the idea that the environment shapes human behavior has been gen-

erally accepted, there are two mainstream criticisms of this approach. First, there

are concerns regarding the associated difficulty of manipulating and measuring en-

vironment (i.e., how can one possibly sample situations?). In this dissertation, we

showed that focusing on the formal properties of the environment (i.e., defining the

universe of possible environments) and the use of modern virtual lab technologies

can effectively overcome this limitation. The second objection argues that, even if

we could define and sample the environment, there is no need to do so. After all,

the goal of the social scientist is not to generalize the results from the experiment to

'outside' situations but to test hypotheses and advance particular theories. However,

recent movements in social science have argued that social science should be more
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"solution-oriented" to reconcile the competing claims in the literature. That is, the

research community needs to place more emphasis on solving practical problems-the

sort with direct engineering analogs [210]-rather than the advancing of particular

theories. In this dissertation, we have followed a "solution-oriented" approach by

advancing our fundamental understanding of collective intelligence in the course of

solving applied problems.

In future work, we hope to apply the same approach to qualitatively different

environments by varying other parameters of interest (e.g., group size, communication

patterns, division of labor, leadership). Although such a program would be logistically

challenging, "virtual lab" experiments of the sort that we have described here, in

combination with emerging "open science" practices such as pre-registration, data

availability, open code, and "many-labs" style collaborations, offer a promising route

forward. In order to operationalize the "environment," we built an experimentation

platform (Empirica.ly). The platform forces the investigator to explicitly define the

space of the environment in which the group of participants is situated, and therefore,

the exploration of the interactions between the environments and the attributes of

interest becomes more systematic (as opposed to having isolated and non-comparable

studies). We hope that our emerging ability to conduct virtual lab experiments-of

a scale, duration, and realism that far exceed what is possible in brick-and-mortar

facilities-will blur the traditional boundary between "lab" and "field" experiments

and revolutionize our understanding of human behavior, not only for the design of

social science experiments but for rebuilding society as a whole.
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Appendix A

Supplementary Information for

Chapter 2

A. 1 Room assignment task
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*1*1* *
ROOt 102 Room 103

101 102 103 104 Constraints
StuditA 10 47 32 20 * B and E must be neighbors.
Student I 78 65 46 37 a C and F can't live In the same room or be neighbors.

Student C 35

Student D 40
StudentE 18

Studont F 22

59 41 53

65 12 43

39 40 78

51 57 40

Figure A-1: An illustration of the "room assignment" task used in phase one of the
experiment. In this case, there are N = 6 students that need to be assigned to M = 4
rooms, while satisfying Q = 2 constraints.
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kM 16

Constraints
* A and B must be neghbors.
* A and j can't live in the same room or be neighbors.
* BandFmustbeneighbors.
X B and H must ive in the same room.
* B and P can't live in the same room or be neighbors.
X C and E must be neighbors.
" C and jcan't ve i the same room.
" D and F can't live In the same room or be neighbors.
" E and Q can't live in the same room or be neighbors.
" F and I can't live in the same room.
X Gandjmustbeneighbors.
" I and N can't live in the same room or be neighbors.
" j and K cant live in the same room or be neighbors.
X K and R must be neighbors.
* L and Q can't live in the same room or be neighbors.
* M and O must Dve in the same room.
* N and R must live in the same room.
* O and P must be neighbors.

Figure A-2: An illustration of a more difficult "room assignment" task. In this case,
there are N = 18 students that need to be assigned to M = 8 rooms, while satisfying
Q = 18 constraints.
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Figure A-3: An illustration of phase two "room assignment" task that was done by a
group of three individuals in phase two.
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A.2 Reading the mind in the eye

Pensive Irritated

I

.1

I
Excited Hostile

Figure A-4: An illustration of the "Reading the Mind in the Eye" test used in phase
one of the experiment. The participant is shown a pair of eyes and asked to choose the
emotion that best describes what the individual in the picture is feeling or thinking
of.
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A.3 Screenshots of the instructions and comprehen-

sion check

Game Overview
In this game, you will be asked to solve a sequence of resource allocation tasks. in each task, you are going to assign a
group of students into dorm rooms. You are asked to find the room assignment plan that maximizes overall satisfaction
for the group while respecting certain constraints (e.g., some students can not live together in one room).

You have at most 10 minutes to work on each task. Completing the entire game may take you as long as 60 minutes. If
you do not have at least 60 minutes available to work on this HIT please return it now.

You will play this game simultaneously with 2 other participants in real-time. As we will explain in more detail later,
in each task, you and your teammates will submit a single room assignment plan.

At the end of the game, you will have the opportunity to earn a bonus payment and the amount is dependent on your
accumulated score in all tasks. Note that "free riding" is not permitted. If we detect that you are Inactive during a tosk
you will not rerelve a bonus for that task

The game must be played on a desktop or laptop. There is NO mobile support

For the best experience, please maximize the window containing this task or make it as large as possible.

(( Previous =
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Room Assignment Tasks
in each task (or round), you will be asked to assign students to dorm rooms. Students express their degree of

satisfaction for living in a room as a number between 0 and 100 (the higher the rating, the more satisfied the student is).

You are provided with a handy drag and drop tool to solve the problem. To assign a student into a room, drag the icon of
that student and drop it into the room. Try this example:

Payoff

StudentA 20 80 65
Student s 67 90 76

Student C 85 82 79
Student D 20 75 78

Room 101

Score

N/A

Room 102

Room 103

NOTE: ALL the students HAVE to be assigned to a room in order for your score to count.

4C Previous x

Respecting the Constraints
You need to consider some constraints when assigning students to rooms. Some students can't live together In the
same room and some students must be neighbors.

These constraints vary from task to task, and there are no additional constraints you need to respect other than the ones
stated (e.g., feel free to leave one room empty if no constraint requires you to assign at least one student in each room).

Try this example again and see what will happen if a constraint is violated:

Constraints
* A and 8 can't live In the same room or be neighbors.
* B and C must live in the same room.

Room 101

*i999
Room 102

Room 103

NOTE: Every violated constraint will result in deducting 100 points from your score.

NOTE: t is OK to leave some rooms empty, but you have to assign all the students.

4 Previous N
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Task Room Arrangements
Depending on the number of rooms, number of students, and your screen/browser size and resolution, the arrangement
of the rooms might "look" different on your screen.

AMO *I k16 1402 No W oo

n~~m.AO MINen m

In all cases and for any arrangement that appears for you, you only need to consider the numbers on those rooms when
addressing constraints in a task. In particular, "neighbor" Is defined as rooms with consecutive numbers. For example.
regardless of the arrangement you have on the screen, Room 102 is next door to both Room 101 and Room 103. On the
other hand, Room 101 is only next door to Room 102.

a Previous

You will be part of a team
in this game, you will play together with 2 other participants (your teammates). They are other MTurk workers who
are undertaking the same study simultaneously. Throughout all the tasks, the team will submit only one answer, and
therefore, all members of the team will receive the same score. To help you identify yourself and differentiate each
other in the team, we will assign a color to you when the game starts (as shown in the following example).

: :o

Blue (You) Green P,

Total
score

Note that the game allows for simultaneous and real-time actions. That means that you will be able to drag students to
assign them to rooms while your teammates are doing the same. However, when any member In the team starts dragging
a student, that student will be locked (i.e., no one else can move it) until it is assigned to a room. The student that Is
being moved will have the color of the participant.

q0 Previous N

111

- Is

room lee



Event Logs and In-Game Chat
We will log every action taken by you or any of your teammates, and this log will be shown to you to help you keep track

of all the actions that have taken place so far.

Also, you may communicate with your teammates through the in-game chat. This chat room is public so whatever you

write will appear to the other 2 teammates. You can use this in anyway you want.

Remember, you and your teammates have 10 minutes In each task to find a room assignment plan. You will automatically
progress to the next task when the time Is up.

However, you can always indicate whether you are satisfied with the answer before the timer is up (indicated by the check
mark on the avatar). Click on the *Satisfied" button in the following example and see what happens!

Blue (You) Green Pink 340

x Unsatisfied v Satisfied

If all team members are satisfied with the answer before the timer Is up, the answer will be submitted and your
team will proceed to the next task. If the "Satisfied" button Is undickable (I.e., Inactive) for you for more than 10
seconds, try to refresh the page..

W Previous M

Scores and Bonuses
In each task, we use "score" to evaluate the quality of the room assignment plan that your team came up with. Your score

starts counting only when you have a complete assignment (that is, each student has been assigned to a room).

The score of your assignment Is calculated as:

S - The sum of students' ratings of their assigned rooms - 100 * the number of violated constraints

That means, for each constraint you violate, you get 100 points deducted.

As a team, you will submit ONE answer per task and therefore all team members will have the same score on each
task.

There are two parts of the bonus that you will have opportunity to earn in each task:

1. "performance-based bonus": When your score is positive, no matter whether your answer is the BEST possible
assignment or not. The exchange rate is 1000 game points - $1 bonus.

2. "optimal assignment bonus" : When your answer is the BEST possible assignment, you get an additional bonus of
$0.7 In that task.

Therefore,big part of the bonus is for finding the BEST possible assignment (i.e., "optimal assignment bonus", which
can be up to $3.5 total). Also,you can earn more game points (i.e., more performance-based bonuses) from the
difficuft tasks compared to the easier ones (more students/rooms means more possible bonus).

Together with your teammates, you should try to find a complete room assignment with a score that is as high as
possible to earn more bonus In each task!

Remember, free riding is not permitted. If we detect that you are inactive during a task, you will not receive a
bonus for that task.

4C Previous NMII
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Quiz
How many participants will play at the same time, including yourself?

Select the true statement about the score:
I will score points only based on the assignments that I make
We will submit only one answer as a team and therefore we will all get the same score.

is It ok to have some rooms empty? (the answer Is Yes')
Yes!

No

If your team ended up NOT assigning all students to room (i.e.. at least one student remained In the deck) then your score in that task will be:

For each unsatisfied (i.e., violated) constraint, how many points will be deducted from you?

Which of the following rooms is a neighbor of Room 101? Please select all that apply.

Room 101 Room 102

Room 103

Room 104 Room 105

Which of the following rooms is a neighbor of Room 103? Please select all that apply.
Room 101

Room 102 Room 103

Room 104

Room 105

4 Back to instructions
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A.4 Validity of participant's individual skill measure

In our experiment, we defined an individual participant's skill score as the sum of

her scores on the two hard tasks in phase one experiment, and we further labeled

the participant as "high" or "low" on skill by examining whether her skill score was

larger or smaller than the median score obtained among all participants. To illustrate

the validity of this measurement of skill level, Figure A-5 contrasts the normalized

scores (i.e., actual score obtained in a task instance / the maximum possible score

for that task instance) obtained by "high skill" participants with those obtained by

"low skill" participants, on each of the six tasks in phase one, including one practice

task (hard) and five actual tasks (3 easy and 2 hard). Clearly, on all task instances,

participants that are determined as "high skill" outperformed those participants that

are determined as "low skill." In other words, participants' scores on the two hard task

instances are highly correlated with their scores on any single task instance, regardless

of whether it is easy or hard, which suggests that it is valid to use participants' scores

on the two hard tasks to measure skill levels.
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Figure A-5: Participants who obtained a higher score on the two hard tasks in the
phase one experiment (i.e., "high skill") outperformed participants who obtained a
lower score on those two hard tasks (i.e., "low skill") on each single task instance.
Error bars represent 95% confidence intervals.
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A.5 Comparing participants in phase one and two

One natural concern regarding the two-phase experimental design is whether different

participants' experience in the phase one experiment will lead to a varying tendency to

participating in the phase two experiment, implying potential self-selection that may

result in biased experimental results. To examine whether self-selection bias would be

a substantial concern, we first conducted a pilot study, in which 42 participants (these

participants were not allowed to participate in the actual study) were recruited from

Amazon Mechanical Turk to complete the first version of our two-phase experiment.

In this pilot study, we asked each participant to complete a sequence of 5 room

assignment tasks of varying difficulty levels as well as 36 RME questions in phase

one. Two hours later, we invited all participants who had completed phase one to

join the second-phase experiment, in which they would be randomly grouped together

into teams of three members and they were asked to solve another sequence of 5 room

assignment tasks together with their teammates.

Figure A-6 (left panel) compares the distributions of participants who completed

phase one (i.e., gray bars and curves) and phase two (i.e., blue bars and curves) of

the pilot study, with respect to their skill levels (i.e., the cumulative score a worker

got in the 5 room assignment tasks of the phase one experiment; top row) and their

social perceptiveness levels (i.e., the number of RME questions a worker answered

correctly in the phase one experiment; bottom row). Visually, it is clear that during

the pilot study, participants who decided to take the phase two experiment had both

higher skill levels and higher social perceptiveness levels, compared to the entire pool

of participants who had completed the phase one experiment. In other words, the

experimental design and procedure that we adopted during our pilot study indeed led

to a degree of self-selection bias. To decrease the level of self-selection bias, we made

three changes during our main experiment. First, we altered the mix of tasks that

we included in the phase one experiment to 3 "easy" tasks and 2 "hard" tasks. We

hypothesized that with a higher fraction of easy tasks in phase one, participants would

have a higher perceived self-efficiency in the room assignment tasks, and thus more
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Figure A-6: Comparing the distributions of phase one participants and phase two par-
ticipants with respect to their skill (i.e., scores obtained in room assignment tasks)
and social perceptiveness levels (i.e., scores obtained in RME tests). Left: compar-
ison results for the pilot study; Right: comparison results for the main experiment.
Gaussian kernels are used for kernel density estimation.
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likely to come back during phase two to complete more such tasks. Second, we adopted

a block randomization scheme rather than a simple randomization scheme during our

real experiment. Each block corresponded to a particular mixture of participants

with high/mixed/low skill and high/low social perceptiveness (see Section 2.2.3 for

more details), and we set the target number of workers to recruit at the block level.

Doing so allowed us to effectively oversample the subgroups of participants who were

potentially underrepresented in phase two, compared to the pool of participants in

phase one (e.g., participants who had a lower skill and social perceptiveness levels) 1 .

Finally, we extended the gap between the two phases of our experiment from two

hours to six days, conjecturing that a longer gap would refresh participants' memory

and potentially lead more of them to find it enjoyable to take similar types of tasks

again in our phase two experiment. Figure A-6 (right panel) shows the distribution

comparisons between participants who completed phase one and phase two of the

real experiment. Here, we find there is no clear difference between the two groups of

participants in terms of either their skill or their social perceptiveness. In other words,

with the three changes that we made, we managed to minimize the self-selection biases

between the two phases in our real experiment.

A.6 Performance as a function of the environment

complexity

'As we mentioned in Section 2.2.3, another benefit brought up by the block randomization scheme
is that we effectively oversampled less frequent combinations of workers (i.e., teams) even if self-
selection bias was not present, such as teams with all three members being high on skill and social
perceptiveness.
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Figure A-7: Varying the room assignment task difficulty vs normalized score. The

five task difficulty levels were characterized by the different number of students to be

assigned, the number of dorm rooms available, and the number of constraints. Data is
analyzed separately for individuals and teams from each of the six blocks. Increasing
the task difficulty reduces the normalized score for both individuals and teams of all

skill levels and social perceptiveness. Error bars indicate 95% confidence intervals.

119

HH

E Individuals Real teams

100

95

90

2

85

so

75

S70
0z

65

60

95

90

8 85
C, ~80

75

700
65

60

100

95

90

8 85

80

75

70

65

60

[h]

--

-



0

10

a)

E

0

0

0

10

0

12

0

10
HH Individuals I Real teams

Easy Medium Hard Very Hard Super Hard

MH Individuals * Real teams

Easy Medium Hard Very Hard Super Hard

LH UIndividuals t Real teams

Easy Medium Hard Very Hard Super Hard
Difficulty

Figure A-8: Varying the room assignment task difficulty vs duration. The five task
difficulty levels were characterized by the different number of students to be assigned,
the number of dorm rooms available, and the number of constraints. Data is analyzed
separately for individuals and teams from each of the six blocks. Increasing the task
difficulty increases the time it takes participants to submit an assignment for both
individuals and teams of all skill levels and social perceptiveness. Error bars indicate
95% confidence intervals.
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A.7 Group composition; Supporting tables

Table A. 1: The relation between the team's cognitive style diversity (in terms of
whether all team members are fast/slow problem solvers or both types exist in the
team) and team performance. Data is combined across teams in all six blocks, and for
all five tasks. Models relate performance measures (standardized within each task)
with the team's cognitive style diversity. All models include random effects for teams
as well as the team's skill level category as an intercept to account for dependence
across tasks. Increasing a team's cognitive style diversity has no effect on the team's
score, but reduces duration

Score Duration Efficiency
# CI (95%) P # CI (95%) P 3 CI (95%) P

a 0.04 -0.38 - 0.47 0.843 -0.03 -0.14-0.08 0.578 0.05 -0.05 - 0.16 0.326
CogStyle. -0.02 -0.09 - 0.04 0.466 -0.15** -0.26 - -0.04 0.007 0.14** 0.04 - 0.24 0.005
(Speed)
Random Effects

a 0.57 0.51 0.60
Too 0.11 team id 0.50 team id 0.38 team id

0.14 skill-type 0.00 skill-type 0.00 skill_type
ICC 0.14 teamid 0.50 teamid 0.39 teameid

0.17 skill-type 0.00 skilltype 0.00 skill_type
N 980 980 980
R 2 0.303 NA 0.400
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Table A.2: The relation between the team's cognitive style diversity (in terms of
whether all team members have the same constraint violation tolerance or not) and
team performance. Data is combined across teams in all six blocks, and for all five
tasks. Models relate performance measures (standardized within each task) with the
team's cognitive style diversity. All models included random effects for teams as well
as the team's skill level category as an intercept to account for dependence across
tasks. Increasing a team's cognitive style diversity has no effect on the team's score,
but reduces duration.

Score Duration Efficiency
/ CI (95%) P / CI (95%) P / CI (95%) P

a 0.04 -0.39 - 0.47 0.846 -0.03 -0.15 - 0.09 0.604 0.05 -0.08 - 0.18 0.421
CogStyle 0.01 -0.05 - 0.08 0.688 -0.12 -0.23 - -0.01 0.028 0.12 0.02 - 0.22 0.023
(tolerance)
Random Effects

o.2 0.57 0.51 0.60
TOO 0.11 team id 0.51 team id 0.38 team id

0.14 skill type 0.00 skill_ type 0.01 skilltype
ICC 0.14 team id 0.50 team id 0.39 team id

0.17 skill-type 0.00 skilltype 0.01 skill type
N 980 980 980
R2 0.305 0.508 0.401

Table A.3: The relation between the team's cognitive style diversity (in terms of
whether all team members are pragmatic/tenacious or both types exist in the team)
and team performance. Data is combined across teams in all six blocks, and for all
five tasks. Models relate performance measures (standardized within each task) with
the team's cognitive style diversity.
well as the team's skill level category
tasks. Increasing a team's cognitive
and duration.

All models include random effects for teams as
as an intercept to account for dependence across
style diversity has no effect on the team's score

Score Duration Efficiency
/3 Cl (95%) P / CI (95%) P 3 CI (95%) P

a 0.04 -0.39 - 0.47 0.846 -0.03 -0.14 - 0.08 0.585 0.05 -0.07 - 0.17 0.379
CogStyle

(conservative -0.02 -0.09 - 0.04 0.467 -0.04 -0.15 - 0.08 0.533 0.04 -0.06 - 0.14 0.473

/progressive)
Random Effects

a.2 0.57 0.51 0.60
TOO 0.11 gameid 0.52 gameid 0.40 game_id

0.14 skilltype 0.00 skilltype 0.00 skilltype
ICC 0.13 gameid 0.51 game id 0.40 gameid

0.17 skill-type 0.00 skilltype 0.00 skilltype

N 980 980 980
R2 0.306 0.508 0.400
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A.8 Out of sample prediction accuracy
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Figure A-10: Out of sample predictions on the team's cumulative score. Predict
the team's normalized score with the team's skill level, skill diversity, social percep-
tiveness, cognitive style diversity, and the number of female team members. Three
models (i.e., linear regression, elasticNet, and random forests) are used. Models are
first learned on 70% of the teams and then tested on the rest 30% of the teams. This
procedure is then repeated 5 times. Error bars indicate 95% confidence intervals. In
all models, the majority of the explained variance in team's normalized score can be
attributed to the team's skill level. .
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Figure A-11: Out of sample predictions on team's duration on tasks. Predict the
team's duration on tasks with the team's skill level, skill diversity, social percep-
tiveness, cognitive style diversity, and the number of female team members. Three
models (i.e., linear regression, elasticNet, and random forests) are used. Models are
first learned on 70% of the teams and then tested on the rest 30% of the teams. This
procedure is then repeated 5 times. Error bars indicate 95% confidence intervals.
The set of independent variables can hardly be used to explain the variance in team's
duration on tasks. .
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Appendix B

Supplementary Information for

Chapter 3

B. 1 Guess the correlation game
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Figure B-1: Participants in all conditions
lation of two variables independently.

make independent guesses about the corre-
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Figure B-2: Participants in the network condition engage in a an active social learning

phase, where they are exposed to their ego-network's estimates in real time.
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Figure B-3: After each task round, participants in the feedback conditions see the
appropriate level of feedback for the conditions. This figure illustrates the dynamic
network condition with full feedback (i.e., as opposed to no-feedback or only self-
feedback). In all of our experiments, the maximum number of outgoing connections
is three.
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B.2 Si: Individual and collective error
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Figure B-4: Dynamic social influence benefits the performance of individuals in the
crowd. (A) Kernel Density Estimate (KDE) of participants' individual performance
(i.e., average error across all rounds) for the three experimental conditions. We find
that participants in groups connected by dynamic influence networks (Dynamic con-
dition) achieved 38% reduction in average error compared to participants in uncon-
nected groups (Solo condition), and 12% reduction in average error compared to par-
ticipants in groups connected by static influence networks (Static condition). Panel
(B) compares the average performance of individuals across conditions. Two-sample
t-tests show a significant difference between the average individual error of partici-
pants in the Solo and Static conditions (P < 0.0001), as well as between participants
in the Static and Dynamic conditions (P < 0.001). Panel (C) compares the standard
deviation of participant's individual performance across conditions, and shows that
individual performance in groups connected by dynamic influence networks was, not
only better on average, but also substantially more equal on its distribution among
group members.
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Figure B-5: Panel (A) shows individual errors in the full game and Panel (B) shows
the error in the adapted period (i.e., periods 16-10] and [16-20]). The error for the
initial guess in both panels is the same across conditions, however, the dynamic
network condition incurs much lower errors in the adapted periods (as in Panel B).
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