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SCATTERING THEORY ON COMPACT MANIFOLDS
WITH BOUNDARY
by

Tanya J. Christiansen

Submitted to the Department of Mathematics on April 30, 1993
in partial fulfillment of the requirements for the Degree of
Doctor of Philosophy in Mathematics

Abstract

This thesis proves trace-type formulas in two different settings. In chapter one,
we use b-geometric methods to give a proof of a classical result in one-dimensional
scattering theory. Working on R, consider the Laplacian A = D? and let V € CZ°(R),
V > 0. Then, in a distributional sense,

. d
FTr[cos(tvVA + V) — cos(tVA)(A) = —-z)-ﬁ log det S(\),

where F denotes the Fourier transform and S is the scattering matrix.

The main result of this thesis is a trace-type formula for cos(tv/A) on smooth,
b-Riemannian manifolds (following Melrose) with exact b-metrics. These are compact
manifolds with boundary and b-metric (and b-tangent space) which gives them com-
plete ends of infinite volume. By changing coordinates on such a manifold, one gets a
manifold with an infinite “cylindrical” end. The Laplacian has continuous spectrum
of high multiplicity as well as possible discrete spectrum. Using some methods from
scattering theory, we compute the b-trace of cos VAL, a regularized integral of the
restriction of the kernel to the diagonal:

F[b-Tr(cos VAL)(A) = 7 Yoo A=)+ 14 log det W(A)

AfeppSpecA 20 dA
+ I > 6(A—ak)+c-}6(/\).
A2€spec Ayx

Here W()) is the scattering matrix, obtained from the leading behavior at the bound-
ary, of the generalized eigenfunctions of A associated with A? and c is the number of
connected components of the boundary of X.
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Title: Professor of Mathematics
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Chapter 0

Introduction

0.1 Background

Trace formulas may be used in spectral theory to get information about the spectrum
of an operator. Below, we discuss several cases where the trace of an operator is given

in terms of an object of interest in spectral or scattering theory.

Recall the definition of the trace of an operator. A continuous linear operator
A: H — H, where H is a Hilbert space, is trace class if for all orthonormal systems
{ej}, {fi} in H, T, |(Ae;, f;)| < co. If Ais trace class, then the trace of A is defined
to be Tr(A) = Y_(Aej,e;), where {e;} is a complete orthonormal system in H. If
H = L*(M), then Lidskii’s theorem tells us that

Te(4) = [ Ap,p)

where A(p,p'), p,p' € M is the Schwartz kernel of A.

Consider, for example, the case of a smooth compact Riemannian manifold M

without boundary. The Laplacian, A, has only discrete spectrum of finite multiplicity.
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Consider the operator cos(tv/A) which satisfies

(D? — A)cos(tvVA) =0
cos(t\/Z)h=° =1Id (0.1)
D, cos(tVA),,_, = 0.

If p € CX(R), then (cos(tV/A), p(t)) is trace class and

Tr(cos(tVA),p(t)) = 5 3 4(o5) + p(—0);
af&specA

DN |

that is, in the distributional sense, with F denoting the Fourier transform,
FTr(cos(tVA)A) =7 3 8(\ —o5) + mecb(N), (0.2)
o?GspecA

where c is the number of connected components of M. This fact can be used to prove

Weyl’s law for the asymptotic distribution of eigenvalues:
N(X) ~ e, Vol(M)A" + O(A" ) as A — oo

where N()A) = number of 0 < A? (see [H6rmander 68); or [D-G] for an improved

remainder term).

Another example of this type of trace formula can be found in one-dimensional
scattering theory. Here, we consider the operators A = D? and A + V(z), where
V(z) € C°(R) is a compactly supported potential, and, for simplicity, V > 0. The
scattering matrix, S()), relates solutions of the perturbed equation (A4 V) fy = A2f,
to solutions of the model Agy = A%g,. A classical theorem says that

t

FTrfcos(tvVA + V) — cos(tVA)(A) = —5% log det S(\). (0.3)

Note that we must subtract cos(tv/A) as a way of regularizing, since cos(tvA + V)
is not trace class even in a distributional sense. Here logdet S(\) is the analog of the

counting function for the eigenvalues in the previous case.

A proof of this equality can be found in Chapter 1 of this thesis.

8



0.2 Problem

This thesis proves a trace formula in a new setting, that of b-Riemannian manifolds,
as discussed by [Meirose]. Let X be a smooth compact manifold with boundary
9X and an exact b-metric (see chapter 2 for definition). Then, if « is an appropriate
boundary defining function (z > 0, {z = 0} = dX), the Laplacian on X is given, near
the boundary, by (:l:D;,)2 + Asx + 2@, where Apy is the Laplacian on X obtained
from the restriction of the metric on X to X, and @Q is a differential operator of at
most second order tangent to the boundary. This operator has continuous spectrum

of high multiplicity, as well, perhaps, as discrete spectrum.

As in the previously mentioned cases, we can define and construct cos(t\/_A_).
Like the one-dimensional scattering case, cos(tV/A) is not trace class even after being
paired with a smooth, compactly supported function in t. We must use a regulariza-
tion of the trace, the b-trace defined in [Melrose]: if A is an operator with continuous

kernel A(p,p'),

b, A =lim{ [ A(p,p)+loge | Alp.plpeox] (0.4

x>€
where v € C®(8X,+ NOX) is a trivialization of the normal bundle of X and z is a
boundary defining function with dz - v =1 at the boundary of X. The problem here

is to find the analogue of the right hand sides of (0.2) and (0.3). This thesis proves

Theorem 0.2.1 Let ¥()) be the scattering matriz defined in chapter two. Then
1d

Fb-Tr{cos(tVA))(\) = 575 log det ¥(A) - 20T -
= o?€specAgx
+§c6(A)+7r T 6(A =)

/\3 €ppSpecd

where c is the number of connected components of 9X.

The scattering matrix relates the leading behavior of solutions of Afy = Afy to

solutions of ((zD:)? + Aax)gr = A2ga. It is defined in Chapter 2.

9



0.3 Organization of Thesis

This thesis is organized into 5 chapters. As previously mentioned. the first chap-
ter gives a proof of the trace formula for the one-dimensional scattering case. The

remaining chapters are devoted to proving Theorem 0.2.1.

We include chapter 1 because it uses b-geometric methods and is simiiar in method
to the proof for the manifold with boundary. However, the rest of the thesis is

independent of this chapter.
We outline the proof, given in chapters 2-5, of Theorem 0.2.1.

The second chapter defines the wave group U(t) on X.
U(t) : C'°°(X) x C®(X) 3 (ug,uy) — (u(t). Dou(t)) € C(X) x C=(X)
with

(D? — A)u(t) =0
u(t)),.o = Uo (0.5)
Dg'll(t)

I(.—.O = ul

and gives some of its properties. For p € S(R) we will calculate
b-TeU(p) = b-Te(U(t), p(t)) = 2b-Tr(cos(tVN), p(1)),
which will give us what the b-trace of cos(t\/K) is in a distributional sense. This

chapter also defines the scattering matrix W(A) and explores a few of its properties.

The third chapter proves the existence for @ in a subset of the finite energy space
of
Jim Us(=t)x(tV/E)U ()7
where Up(t) is the wave group on the model manifold X = [0.00) x X and  is a cut-
off function which is 1 in a neighborhood of the boundary of .X and 0 outside a slightly

larger neighborhood. We define this limit to be A/, i and extend it to a slightly larger

10



class of initial data. The operator M, separates initial data corresponding to discrete
spectrum of the Laplacian from that corresponding to continuous spectrum: in fact,

we show that
U(t) = M Up(t) M, + U(t)Py (0.6)

where Py is projection onto the span of the L? eigenfunctions of A and M, is an
operator defined in a way analogeus to the definition of M,. This Moeller wave

operator is analogous to the M, which appears in Chapter 1.

The fourth chapter uses the results of the third to begin to calculate b-Tr(cos t\/Z)
It calculates the contribution from the discrete spectrum and reduces the contribution

from the continuous spectrum to integrals of Us(p) M, and M, Us(n) over the corners

of X x X.

The final chapter actually calculates the contribution of the continuous spectrum

to the b-trace, using the results of chapters 3 and 4.

11
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Chapter 1

One-Dimensional Scattering

This is an explanation of how to use b-geometric methods to prove a trace formula for
one-dimensional scattering theory. It assumes some knowledge of scattering theory
(see, for example, [Zworski] or [D-T] for one-dimensional scattering, and [Thoe]
for a discussion of the wave groups and wave operators in R®) and some b-geometry

(see [Melrose)).
Let Ve CP(R),V > 0. For t € R let Uy(t) be the wave group,

Uv(t) : CP(R) x C(R) 3 (uo, u1) — (u(t), Deu(t)) € C=(R) x C*(R) (1.1)

with:
(D} = D} —V(z))u(t) =0

u(0) =wup
DgU(O) = Uj.

(1.2)

We denote the special case V = 0 by Up(t). Let S(A) be the scattering matrix, which
is defined by (1.12-1.16). We want to prove the following classical theorem:

Theorem 1.0.1 For all p € C*(R),

TH(Uv (2) - Un(t), p(1))) = (~i/2m)( - og det S(A), 5(A).

13




Let My = lim;_.o, Up(—¢t)Uy(t) be the wave operator. Then Up(t)M, = M Uy(t),
and thus

Te(Uv(2) — Uo(t), p(8)) = Tr[MZ, (Uo(t), p(t)) M4). (1.3)

If the operators in the commutant were trace class, then the trace would be zero.

This is not the case, however.

What the commutant formula suggests is that we do something which looks more
complicated: work on a compact manifold with boundary and b-metric, where we
can use the ideas that relate the b-trace of a commutant to the indicial families
of the operators involved. We get such a manifold by compactifying the real line
to the interval J = [—1,1], (by sending y € R to (e¥ + 1)/(e¥ — 1)). Under this
mapping, (Uo(t), p(t)) and (Uy(t), p(t)) go to elements of ¥;*([-1,1}). While M
and M, do not go to elements of the small b-calculus, they almost become elements
of the overblown b-calculus ®®¥([—1,1]). For the purposes of this note, the overblown

calculus will be defined as follows:
Ae®Y([-1,1]) & A=A+ A"K", (1.4)

where A', A" € ¥y([-1,1]),and R: J — J, R(z) = —=z.

Using a (known) formula relating the b-trace of the commutator of two operators
in the small b-calculus (when they are sufficiently smooth) to their indicial families,
we develop a similar formula for elements of the overblown b-calculus. Then, since
the indicial family of M, can be calculated in terms of the scattering matrix, this

will give b-Tr({Uy — Uy, p.)) = Tr((Uv — Uy, p)), as desired.

What we are doing here, really, is using the fact that for “well behaved” operators
A and B on X a compact manifold with boundary, b-Tr[A, B] depends only on the
kernels of A and B near the corners of X x X. The indicial family captures the leading

behavior of the kernels at the corners.

Unfortunately, making this rigorous requires some digressions off the subject of

14



scattering theory and into b-gcometry.

1.1 Some Lemmas for the Overblown Calculus

In this section we prove some lemmas we will need for a b-geometric proof of the trace

formula.
Lemma 1.1.1 IfA € *¥™([-1,1]), B € ®*¥™([-1,1]) then AB € ®¥™+™'([-1,1)).

Proof: This follows easily from composition for elements of ¥,. Let
A=A'"+A"R", B=B' + B"R", (1.5)
where A’, A" € ¥*([-1,1)), B, B" € ¥}*([-1,1]). Then

AoB =(A'+ A"R*)o(B'+ B"R")
= (AIBI + AIIROBIIR‘) + (AIBII + AII(R-BIR‘))R-
= Cl + CIIRO,

where C’ and C” are in ¥"*™'([—1,1]) by the usual composition formula.
Q.E.D.

Defining the indicial family (in larger sense than usual):

Recall the usual definition of the indicial family of A € ¥*(.X), for X a smooth
compact manifold with boundary: If x(A) is the kernel of A lifted to X2, and v is a

trivialization of the normal bundle of X, then

© . ds
(40 = [~ s w(a), 2

where s is the projective coordinate x/2’ at the front face (ff) of X2, and v -dz = 1

at the boundary, and similarly for z’.

15



We wish to define an indicial family for an element of the overblown calculus in
a way which reduces to the usual indicial family for elements of the small b-calculus.
The indicial family for an element A of ®*¥([—1, 1]) is a two-by-two matrix (one entry
for each corner of [-1,1] x [—1,1]) of functions depending on A and will be denoted

I(A, X). For our purposes, we will require that R*v = v.

If A’ € ¥y([-1,1]), let It and I!' denote the usual indicial families at the
diagonal corners (—1,—1) and (1,1) respectively. Then, for A € ®W¥([-1,1]), with
A= A+ AR as usual, let [¥'#1(A, ) = [141( 4", \). Let

IVYNAX) = TVYARTA) = 7V (A ) (1.6)
and
YA = IM(AR, A) = IM (A", ). (1.7)

Then, finally, define I,(A, A) to be:

(1.8)

LAY = ( IYY(A, N I71(A, 0 ) |

(AN LY(AN)

Notice that if A € ¥([—1,1]), then I,(A, )) is a diagonal matrix since A vanishes at
the off-diagonal corners. Also, notice that requiring R*v = v has the pleasant effect

that, for example, IX1*'(A, \) = IF'"FY(R*AR", ).

This definition for the indicial family has the advantage that

Lemma 1.1.2 If A, B € ®*¥([-1,1]), then

L(AB,A) = L(A,\L(B,\).

Proof: The proof relies on the composition formula for the overblown calculus
and the fact that if P, Q € ¥, then I,(PQ,)) = L (P,\)1,(@,)). This implies the

proposition directly in the case that A and B are both in the small calculus.

16



Consider I;1'"}(AB, ), the upper left hand entry.

I[;%"Y(AB,)) = I;'-Y(A'B'+ A"(R*B"R"), )
= VYA NV (B ) + VYA ISV YRUBYR D)
= ;YA NIV Y (B A) + VY A" M) Y B, A).

Thé calculations for the other entries are similar.
Q.E.D.

We need to define the b-trace of A € **¥™([-1,1]). Recall, for X a compact
manifold with boundary, ¢ continuous, » € C*(dX, ,NOX) a trivialization of the
normal bundle of X, and £ € C*(X) a boundary defining function with dz - v = 1
at 90X,

-/X ¢ - ltllrgl[ e ¢ + loge[ix ¢|3X]
([Melrose]). Now, define, for A € U™ ([—1,1]) with m < —1
b-Tr,(A) =" f['—l.l] Aja,
= uf[-l,l](A' + A"R.)lAb
= b-Tr,(A’) + Tr(A"R").

Now we can find a formula for the b-trace of the commutator of two elements of
the overblown calculus. Fortunately, with this definition of indicial families it has a

nice form.

Lemma 1.1.3 If A € ®#¥~°([-1,1}), B € *¥™([-1,1]), then
1 d
b-Tr, (4, B]) = —5—Tr / (2514, )L (B, .
Proof: As one should expect by now, the proof uses a similar formula for the

b-trace of the commutator of elements of the small b-calculus. Writing A and B in

the usual fashion,
b-Tr,([A, B]) = b-Tr,[A'+ A"R", B’ + B"R"]
= bTr,([A,B|+[A,B"R’| + [A"R*, B’} + [A"R", B"R’"])

17



Consider the terms one at a time. By the result from the small b-calculus, the

first term is
d

T (AL )L(B', A)dA.

b-Tr,[A!, B] = ———Tr / (=
The second and third terms both give zero. Consider, for example, the second
term, [A', B"R*] :
1 N - ’ nNRU
bTr,[A', B"R’] = lim ( / e | 4,28z, ~2)

¢—0
_'/;1+¢<,<1_¢ [I A (1"37 )B (17 , —m) - (log 6)7)

where 7 is the constant which makes the limit converge. However,

lim / / A'(z,2')B"(z", —z) = 0,
€e—0Jz<~14¢ JJ

since B"(z’, —r)is rapidly vanishing near (—1,~1) and A'(x,z’) is rapidly vanishing
at the boundaries away from the diagonal corners. The same is true at the other

corners, so

lim"’o [f-l+¢<z<l—¢ f.l A’(‘T’ wl)B”(zl’ --.'l') - fJ f-l+c<:’<1—¢ A’(.T, x')B"(z” _z)]
= [, [; A'(z,2")B"(z', —z) - [; [; A'(z,2')B"(z', —x)
=0.

The third term likewise vanishes.
The fourth term is
b-Tr,[A"R", B"R"]

= ez JGRI AN BN + (I A NI (B0,

as shown below:
b-Tr,[A"R", B"R’]
= bTr,(A"R*B"R* — B'"R*A"R")
= bTr, (A"(R"B"R*) — (R°"B"R*)A" + R°"B"R"A" — B"R*A"R")
= bTr,[A",R"B"R*| + b-Tr,(R"B"R"A" — B"R"A"R"). (1.9)

18



For the first term in (1.9) we can use the result from the small calculus to get:

b-Tr,[A”, R*B"R"] = —%Tr / (il.,(A" M)L(R*B"R", \)d)

— — —— -l -1 n —l.—l - " D=
= o ./(dAI" (AL AR B, A)
+ (_II.I(AII /\))I:.I(R:BIIR-’ A)dA
@ 1,-1
‘m/( I7VY A M) IEY(B, A
d
+ (57N (A NS V(B, M)A
d\
Since we have chosen the trivialization of the normal bundle, v such that R*v = v,
b—Tl‘.,(R'B”R‘A”) — b—T;‘,,(B"R' A”R.)

and the second term in (1.9) is zero.

Q.E.D.

1.2 Application to Scattering Problem

Finally, we return to the one-dimensional scattering problem outlined earlier. We will
use the notation U(t), Us(t) and M, for the wave groups and wave operator whether

they areon R x R or [-1,1] x [-1,1].
Unfortunately, M, is not wholly contained in the overblown calculus. If we let
my m
ma1 My

then my;, my, and my; € *¥([—1,1]), but my, € Y ([-1, l])+.A$,f’°), where Af,(,’,ﬁ'o)
is the space of operators whose kernels are polyhomogeneous conormal distributions
with “trivial” expansions at the boundary. Since

M;'= (m;‘ e ) (1.11)

my My,

19



M;! is very similar. However, since we are only interested in the diagonal terms in
[M;1, (Us, p)M,], and since my, vanishes rapidly at the boundaries of X2, the same
argument used to prove the b-trace formula for elements of the small b-calculus works
in this case. Therefore, the formula for the b-trace of the commutator of two elements

of °®*¥([—1, 1)) is applicable here.

To apply the b-trace formula, we need to know the indicial families of (Us, p) and
M. We can, without loss of generality, assume that p is even, since the diagonal
entries in Uy (t) — Uo(t) are even in t. This assumption makes I((Us, p), A) have the
nice form I((Uo, p), A) = p(A)Id, where Id is the 4 x 4 identity matrix (the kernel of
Uo(t) is a 2 x 2 matrix).

We need to fix a little more notation. Suppose supp(V) C [a,b]. Using the
notation of [Zworski], let ¢, (z, )) satisfy

D¢, + Vo, = N3¢,

. (1.12)
de(z,N) =€ ifx > b
and ¢_(z,)) satisfy
Di¢_+Veé_=A¢_
¢ ¢' ) (1.13)
$_(z,\)=e""ifzr<a
Then there is a distribution X and a function Y such that
—idg4(z,A) = X(=N)p_(z,A) + Y(N\)d_(x, =) (1.14)
and
iAp_(z,A) = X(N)gy(z,A) + ¥(N) oy (x, —A). (1.15)
The scattering matrix is
—_| X XN
S(A) = Py ir (1.16)
X(\) X\

20



Lemma 1.2.1 Using the notation above, we have

[ B+ F+1+ins0) M R () )
R R U N )

To a0 g+l g+ - ins()

S R TN SRR

Proof: Since the calculations are similar for all the entries, we will calculate

only a few. Letting I(M;,)) = (b;;), we will calculate b, = I Ymy, A), by =
Il'-l(ngl, A) and b21 = I_l‘_l(mn, A)
If we work on R x R,

I-l'-l(M-hA) = /e-i”\ ,llm Alq.(s +l'ls 'r’)d's

and
IV Y My, = /e'i”\ lim My (-s -2 z")ds.

To compute I-1"1(m,;,A) and I'~(mg,, A), consider, for zo < a

M, ( O(x — z0) + 6(z — z0) ) (1L17)
D:6(x — x¢) — D, b(z — x0)

N —

é(z — z0) ) _

M,
0

Since, for t > 0, the support of Uy(t)(6(z — o), D;6(x — zo)) does not meet the

blx—z0) | [ &(z— o)
D, §(x — x0) - D;é6(x — x0) '

support of V,
M, (

Now consider (6(z — o), —D:6(x — z0)). For ¢ sufficiently large,

( flztzott) )forw<a
)

Uv(t)( e )=< Deflz 20t
—D.8(z — o) et A
L\ —Dzg(z — 20— t)

21



where f()) = }‘l(%{—) and §(\) = 3%\7 Since, for a < £ < b, Uy (t)(uo,u;)(z) — 0 as
t — o0, we get
Va0 (D) ( 6z — 20) ) . ( f(z+20) + 9l = z0) )
=D, é(z — x0) D.f(x + x0) — Drg(z — 20)
as t — oo. Since we have g(r) = 0 for r > (b—¢) and f(r) = 0 for r < 2a, by letting
g — —00, we get

I"4"Ymay, A) = 3 [ e ) (g(s) + 6(s))ds

Similarly, we get

1" (ma, ) = 5 / e~ (=D, f(—s))ds

/ Ae A (f(—s))d

= -5/\f (=)
_1AY(=))
2 X(\)
Computing I~1~!(m;3,\) is somewhat more difficult. For zo < a, consider

M, (0,8(z — z0)). For 0 <t < a — zo,
Uv(t)( 0 )=%(iH(:c—xo+t)—iH(:c—:co—t))
é(z — zo) - §r—xo+t)+6(x—z9—1t)
For large t,
'Oifx<:co—t
[ iH(z — 20 +1)

o =

) frg—t<zr<22a—z9—1t

-~

0 \ 0(z—z0+1)

Uv(t)( )=ﬁ Fz+zo+1t)
6(z — zo)

\D F(z+z9+1)

( Glz -z —1) ifz>b
\D,G(z—:co—t)

B =

) if2a —zg-t<zr<a

o |
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where G()) = 7{— As in the previous case, we get

It Y mag, ) = § [e N iH(s) + G(s))ds
= 3(3 +im8(N) - 35)

Q.E.D.

Finally, we can prove the trace formula theorem.

Theorem: For all p € C*(R),

T(Uv (8) = Vo). (0))) = (=i/2x)( = log det S(X), AX).

Proof: The proof has now been essentially reduced to linear algebra.

Tr((Uv(2) — Uo(2),p(1))) = b-Te[M*, (Uo, p) M)
= 52T [ (XM, ANI((Us, p), NI( My, A)dA
z,.Trf AN g5 (LM, A)" )My, N)dA
= 557 [ A(X) 35 log det(I(M,, A))dA

The final equality comes from the fact that

Tr(A“(t)%A(t)) = %log det A(t)

for A an invertible matrix depending on ¢t € R. Then, since det(I(M,, ))) = det S(\),

we are done.

Q.E.D.






Chapter 2

Wave Group and Scattering Matrix

This chapter gives some technical background, defining some terms and fixing nota-

tion for much of the thesis.

Let X be a smooth compact manifold with boundary dX and an exact b-metric
g- A b-metric is a metric on the interior of X with the property that there exists a
boundary defining function z (z € C*°(X), with ¢ > 0 and dX = {z = 0}) such that

near the boundary,

o(z9) = (Z) +9(29) (2.1)

where y € 90X, ¢’ € C®(X;T*X ® T*X), and gj,x is a metric on dX. Throughout
this thesis, z or ', when it is a coordinate function on X, will refer to this boundary

defining function, and, unless stated otherwise, y,y’ € 9.X.

A technical note: Both the b-trace and the definition of the scattering matrix
depend on a choice of boundary defining function . We may initially choose any
boundary defining function z so that at the boundary g has the form (2.1) (although
this condition essentially fixes = at the boundary up to a constant positive multiple
at each component of the boundary). After this, however, we must be consistent and

use this fixed boundary-defining function. We do not indicate this dependence on

25



choice of boundary-defining function in our notation.

A b-differential operator of order m is differential operator of order m on X which

is tangent to the boundary; ie, at the boundary, it is given by

Z @a,j(z, y)(:cD,)jD;,

Jt|al<m
where the a;,, are smooth coefficients. We denote the space of such operators Diff*( X).
Associated to the metric g is the Laplacian A, a second crder b-differential operator,

which, near the boundary, is given by
A = (zD:)’ + Aox +2Q

where Asx is the Laplacian on the boundary dX associated with 9lox 2nd Q is a

b-differential operator of order at most two.

Also associated with the b-metric is a b-density. The space of distributions which
are square integrable with respect to this density is denoted by L}(X). Analogously,

for m > 0 an integer,
H'(X)={u€ L{X): PueLiforall Pe Diffy*(X)}.
For a € R, we have the weighted space
HY (X)) ={u:u=1%v€ HMX)}.

Another space which we will often use is C°(.X), the space of smooth functions on

X which vanish, with all derivatives, at the boundary.

2.1 The Wave Group
In this section we define the wave group on X and give some of its properties. We
define the wave group, U(t), for t € R to be:

U(t) : C(X) x C=(X) 3 (ug,uy) — (u(t), Dyu(t))
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with
(D? — A)u(t) = 0
u(t)),.0 = o (2.2)
Deu(t)),n = w1

Note that the distance from a point in the interior of X to a point on the boundary
in infinite. Since we are interested in the b-tangent bundle (tangent vectors with finite
length with respect to our b-metric), the manifold is complete, and the existence and
uniqueness of the wave group is standard. Below, we state some usual facts about

the wave group, and show that the kernel at the corner of X x X is of a special form.

We can think of U(t) as an operator with (D? — A)U(t) = 0, and U(t))eo = Idy,
where Id; the 2 x 2 identity matrix; or, equivalently, as a distribution U(t, p, p’ ), with
(D? - A)U(t,p,p') =0, U(0,p,p) = Idy6,(p). If p' is in a compact set I C X with
K NAX =0, then the existence of such a kernel for finite time is well-known, as are

some of its properties:

e Finite propagation speed: U(t,p,p’) = 0 if d(p,p’) > t; note that in particular
this means that for p’ in the interior of X, and p € X, U(t,p,p') = 0 for all ¢
such that |t| < co.

e U(t,p,p') is unique in that [, U(t, p, p')ii(p') is the unique solution to the Cauchy

problem with initial data @ supported in i .

o The singular support of U(t, p,p') C {(t,p,p') : there is a geodesic of length [t|
joining p to p'}; moreover, WF(U(t,p,p’)) C {(t,7,p,& P vn) : T* = [€]* and
(p, &) = ®*(p',n), where ®* is the flow of the Hamilton vector field associated
to |¢| on T* X}

(see, for example, [D-G], [Duistermaat], or [Hérmander]).

We are particularly interested in U(¢, p, p') for p’ (and p) near the boundary of X.
Consider p’ in a neighborhood of the boundary. In particular, let V' be a neighborhood
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of the boundary with V = [0,a); x 30X, and then let’s restrict ourselves to p' =
(«',y') € [0,a/2) x DX = V. Then we can expect (and we will show this is true
below) that for some T > 0, U(t,p, p') has support in [0,a) x X for t < T this
allows us to use these local coordinates. Let p = (z,y) and p' = (z',y') € V, where,
as usual, «,z’ are boundary defining functions and y,y’ € dX. As previously, we

want, for small ¢, U(t, z,y,2’,y’) to be a solution to

(th - A)U(tv I, y,.r', y,) =0,
U(0,z,y,2',y") = Idaz6(z — z')6 (y).

(2.3)

The extra z comes from the fact that the density on X has a factor of 1/z in it.

We introduce the space X7, which is X x X, blown up at the corner (p,p'),
p,P € 8X. Really, this means we introduce polar coordinates in the boundary

defining functions near the boundary: r = z + 2/, 7 = =5, where r € [0,a) and

7 € [-1,1]. Then we use the fact that C~=(X?) = C~*°(X}?). We lift the problem to
X2, and then if we can find a solution on X2, we map it back to X2 to get a solution

there.

Using projective coordinates s = z/z’,z’ and y,y’ € 9X, this lift turns the prob-

lem into
(D} — A, ,)U(t,sz',y,2",y') =0 (2.4)
U(O,.‘L‘, Y, 17'» y,) = !d26(3 - 1)6y:(y).

If in local coordinates g = goo("'—:-)2 +23 50 gojd;xdyj + 2-i >0 9ijdyidy;, then

By = ﬁllstgoo 9sD, +Z 3Ds90j\/§Dy, +2 D,, \/S_’gjoDy, + Z Dy, \/ggijDv,]’
J>0 Jj>0 1,j>0

where the coefficients depend on y and sz’, g is the determinant of (g;;) and (g*)

is the inverse of (g;;). That is, A, is a Laplacian on [0,00) x X, depending on a

parameter z'. Thus, we need only solve

(D? - A,_y)g(t,s,y,y’; z')=0

U0, z,y,y"s2') = 1d26(s — 1)by(y)

(2.5)
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in a neighborhood of s = 1, where it is non-degenerate, with ' as a parameter. Since
for small ¢, by the usual properties of solutions to the wave equation, the support of
U(t) stays in a small neighborhood of s = 1, we may map this back to X x X to
get a solution to (2.3) for small time. We also get that U(t,s,y,y"; z') has the same

properties as before:
e Finite propagation speed: U(t,s,y,y";z') = 0 if d((s,y),(1,9)) > &

o Ut,s,y,v; ') is unique in the following sense: if we map it back to X? and
apply it to @ with support in V, for small time it gives the unique solution to

the Cauchy problem for initial data ;

o The singular support of U(t,s,y,y";z') C {(t,s,y,9"; ') there is a geodesic (de-
pending on ') of length |t| joining (s,y) to (1,¥')}; moreover,
WE(U(t,s,9,952") C {(t.7,5,60,9,€, 9, 7'32) : 78 = |€]* and (s,y,60,€") =
®‘(1,y,m0,7"), any no, where £ = (&,¢')}.

The uniqueness of U(t) for small time means we can patch together these two
pieces to get a global solution for small time. Then existence and uniqueness of U (?)
for small ¢ is enough to show the existence for all ¢, since uniqueness implies the group
property: for t,s € R, U(t)U(s) = U(s+t) since both sides solve the same differential

equation with the same initial conditions.

This construction tells us that f](t,s,y,y’;O) = (:fo(t,s,y,y’;x), where U, is the
corresponding operator on the model manifold [0,00) x 80X with product metric
(5) + gy

This discussion tells us that we expect the b-trace of U(t) to have singular support
contained in {t} such that there is a closed geodesic of length |t| on X. In addition,
it tells us the singularity at ¢t = 0 which will be of interest in the future (although not
really in this thesis).



The wave front set properties are enough to show that
U(t) : C®(X) x C=(X) = C=(X) x C2(X).
Moreover, if we define,
lI(uo, w)lIE = llgraduollzz + lluallZz,
then, for (u,u) € C®(X) x C=(X)
WU (£)(uo, ur)lie = (o, w1l
for all t. The space of functions with finite energy is
Se(X) = {(uo,w1) : gradug € L2, u, € L?}.

The energy “norm” is only a seminorm on Sg(X); note that ||(c,0)||g = 0, for c a

constant. We define a Hilbert space Hg which is given by
Hg(X) = Se(X)/{(c,0) : c€ C}.

Note that the equivalence classes of C®(X) x C®(X) are dense in Hg(X), and then
we can extend U(t) : Hg(X) — Hg(X). Additionally, U(¢) : (c,0) — (c,0) for c a
constant, and we may write U(t) : Sg(X) — Sg(X).

We check that the properties of the wave front set are enough to show that if

p € C=(R), then
U(p) = (U(t), p(t)) € ¥5=(X). (2.6)

First, U(p) is smooth because there is no point .in the wave front set of U with 7 = 0,
where 7 is the cotangent variable corresponding to t. Second, we need to check that
U(p) is rapidly decreasing at {bLIrb of XZ. This follows from the second part of the
discussion of constructing U(t), since for all finite time the support of U(t, s, y,y'; ')
does not reach s = 0 or s = 0o, and anything starting from the interior cannot reach

the boundary in finite time.
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2.2 The Scattering Matrix

Let {¢;} be a set of orthonormal eigenfunctions of Asx on dX and let {2} be
the corresponding eigenvalues in nondecreasing order. Then if (A — r)f = 0 and

f € z7<H°(X) for any € > 0, then at the boundary f is a linear combination of

'V éj, r> aJ,
™V %Gy, > af,

log ¢m, if r =03,

Joi—r
zVouTTd, > of,

(2.7)

and a term of order zlogr at worst. The space of generalized eigenfunctions of A
associated to A? is f € z-*H°(X) for any € > 0 with f g L3(X) and (A — A f =0.
The dimension of the space, which we call m () for the continuous multiplicity of A,

is given by

m.(A) = number of a} < A2, og; 2 0.

For A > o, > 0, we are particularly interested in the generalized eigenfunctions

&}, B, € zHP(X) for any € > 0, where
(A= N)0f, = (2.8)

and, at the boundary, for 9.X connected,

k,\ ~ x v \2-ak¢k + Z iy '\z-d'znsmk()‘)qsm

0<om <A
287, ~ VY% + S VY RTL (M) g, (2.9)
0<om<A

If 0X is not connected, and o} is an eigenvalue of 9.X;, the ith boundary compo-

nent, then at dX; we have an expansion of ®f, as in(2.9), where the sums above are
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taken over o2, € spec Apx,. If AX; is a different boundary component, then, at 9.X;

207\ ~ > WVN=22 8 (N)on

0<on<A
nGSPCCon
20, ~ Y IVYRTL(A)gn. (2.10)
0<on<A
"ne-POCAax

The existence of such generalized eigenfunctions is discussed in [Melrose], Chap-
ter 6. The Syi'’s and Tui’s will, with a few other bits thrown in, give us the entries

of the scattering matrix.

Consider the boundary pairing B defined in [Melrose] (Chapter 6): for f,g a

sum of terms of the form (2.7) and possibly terms of lower order,

B(f,9) =7 [ (18 - l0eH9) - (xNE=710xa))

where x € C*(X), x = 1 near X and x = 0 away from a product neighborhood
of the boundary. This pairing depends only on the leading parts of f, ¢ and the
Laplacian at the boundary. Taking r = A%, we know that B(fi, f;) = 0 for all
fi € z7°Hy® for any € > 0 such that f; is the leading part, at the boundary, of a

generalized eigenfunction corresponding to A%

Using this boundary pairing gives us

0= B(®;,. %))

= —[ 61‘1\/A2 - O'L + Z - UiSmL(A)Sml()‘)] (211)

0<om <A\

and, using the &,

Sufa—al= 3 /W= a2 T MTm(M) (2.12)

0<om <\

Then, if we set

W(A) = (¥;r(A)),
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with j, k < m,(}), and
\N2_g2 12 ~ .
(3\7-\2:%) Sik(A) if A > max(|ow|,|ojl)

"I’jk()‘) = o7\ /2
( .\2_a§) Ti(—=A) if A < — max(|owl.|o,)])

(2.13)
then ¥()) is a unitary matrix whose dimension changes when A crosses a point in the

spectrum of Agx. This will be our scattering matrix.

Equations (2.11) and (2.12) tell us a bit more information. We know that |Smi(A)]
and |Tmk())| are bounded, and if ox > o > 0, then Spi(or) = limyjs, Smi(A) = 0,
and Ti(ok) = limy g, Tok(A) = 0. Also, because of the method of construction, and
the algebraic relations above. near \* = g, S,.x(\) and T,..(\) are smooth functions

of /A2 — o}

The boundary pairing also tells us that

0= 'ZB(QZ.'\,@,'\)
= —Tu(A/A? — of + Si(A)\/A? = o},

which in turn shows that ¥(—A) = ¥*(\).

We are particularly interested in %log det W(\), the argument of the deterininant
of (), especially its derivative in A, since that is what appears in the right-hand
side of Theorem 0.2.1. We may take limyo 3 logdet W(A) € [0,2r) (actually, with
this choice it is 0 or 7), although this is not crucial. What we need to know is what

happens to the argument of the determinant when we cross A = oy.

Consider the matrix W (o) = (¥;;(A)),, Where 0; = 0 = o;. It is a unitary
matrix; moreover,

\i!k(ak) = ‘i’k(—dk) = \il,:'(ak).

Therefore, W (%) has only 1 and —1 for eigenvalues. Suppose for a moment that the
dimension of the eigenspace with eigenvalue oy is 1 and o4 # 0. Then U (ok) = 1.

If ¥x(ox) = 1, then it is not unreasonable to expect the argument of det ¥()) to be
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continuous at A = 0. If. however, Wi(or) = —1. then the argument of det W(\)
should change by = at A = o4. This is meant to motivate the following: If o €
spec Agx, 02 # 0, then at A = o, we take }logdet W(}) to decrease by « times the
multiplicity of —1 as an eigenvalue of Wi(ok). At A =0, we take the argument of the

determinant to decrease by 27 times the multiplicity of —1 as an eigenvalue of Wo(0).

The multiplicity of —1 as an eigenvalue of W, (o) can be interpreted as the dimen-
sion of the space of generalized eigenfunctions associated to \* = o which behave
like log z¢ at the boundary of X, where ¢ is a boundary eigenfunction (Aox o = o}¢).
If o > 0, —1 being an eigenvalue of ¥, (0k) means there is a linear combination F())
of Q}:,\ a; = ok, with F(A) = 0 as A | o, The leading behavior at the boundary
of limA | O'kF(/\)/\/XQ_TG—Z is given by logro, where o is an eigenfunction for the

boundary Laplacian and is an eigenfunction with eigenvalue —1 of Wi(op).

2.3 General Notation

The following are some notational conventions which we will observe throughout.

X is our smooth compact manifold with boundary JX. We denote by X the
model manifold which is [0,00), x X, with the product metric ( £)? + gjpx- The
generalized eigenfunctions @} , on X are as described ir (2.8) and (2.9). For any € >0
and )\ # 0y, the {®F,} or the {®F,} span the part of null(A — A%, - ¢) perpendicular
to the L? eigenfunctions. The corresponding generalized eigenfuctions on the model
X are

1 . a2 :
o) = 5 V-olgp and BT = Sam V¥ %k gy, (2.14)

l\blh—‘
.

For \ # gy, altogether these span the generalized eigenfunctions of (*D;)* + Agx on
[0,00) x 0X.
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We denote the wave group on the model manifold by Up(t), which is given by

U (D,l"(t) F(t) ) ‘
o(t) = (2.15)
D2F(t) DF(1)

where
F(t’ z, y’ z" y')
l 0o . : —_— e _ _—
== 5 [ (M= et (r ) Ok ) + YT (2, )R (2, y")]
T 55207k A2 — o

if 8X is connected. If the boundary isn’t connected, we get a similar operator on each

connected component of X, with the sum taken over the eigenvalues of boundary

Laplacian of that component.
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Chapter 3
The Moeller Wave Operator

We continue to use the notation U(t) for the wave group on X, and use the notation

Uo(t) for the wave group on the product manifold X = 8X x [0, o).

In this section we define an operator, M., which maps Hg(X) to Hg(X), and has

the following properties, among others:

1. Null(M,) = Hp,(X) = span of the L? eigenfunctions of A
2. M, is a partial isometry

3. MLU(t) = Up(t)M, for all t € R.

The first two properties show that M, is an isometry from the orthocomplement
of the discrete spectral subspace of A onto its range. The advantage of such an
operator is that, as in the one-dimensional scattering case, Up(t)M, = M, U(t), and
then M, Uy(t)M, = P.U(t), where M, is an analogous operator mapping Hg(X) -
Hg(X), and P. is projection onto the part corresponding to the continuous spectrum.
Then we will use arguments similar to those from the formula for the b-trace of the

commutator of elements of the small b-calculus to calculate b-Tr(U(t) P., p(t)).

If X is connected, let x € C°(X),0< x <l,y=1lnearz =0,and x =0
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away from a neighborhood of the boundary. We find a subspace of Sg(X), dense in

the energy seminorm, so that
lim Uo(—t)x(zvV1)U(t)

exists on this subspace, and show it is continuous. Then we extend by continuity to
the rest of Hg to define M,. If X is not connected, a similar construction would
define operators M, ; corresponding to connected components 8X; of X. In general
we limit ourselves to the case of X connected, although the changes involved to

switching to a manifold with disconnected boundary are primarily notational.

3.1 Preliminaries

The proof requires a number of lemmas which rely heavily on the spectral measure of
the Laplacian constructed in [Meirose]. There it is shown that the spectral measure
of A, dE, is

dE =Y D6 - (M)PdA+ Y (A —a?); FidA (3.1)
k o2€spec(Bax)

for A > 0, taking A? as the spectral variable, which is convenient later. Here (\})?
are the eigenvalues of A, all of finite multiplicity, and P, is projection onto the
kth eigenspace. The F; are smooth functions of (A% — af-)%, valued in ¥, :;é, where
€ = (Eu, Eys) and Ey = E,; is the smallest C* index set containing (:tz'\/z\_z_———a_,"f, 0),
for o < A? and (\/;?——)\2,0), for of > A%. The range of the F; is in the null space

of A — )2 Let
dE,= ¥ (W-o)) Fd)

o?€spec(Aox)

denote the part of the spectral measure corresponding to the continuous spectrum.

Recall the notation fixed in the previous chapter: {¢.} is an orthonormal set of

eigenfunctions for Asx corresponding to the eigenvalues {o?}. Then, for A > o, > 0
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@} , are the “generalized” eigenfunctions with fixed leading behavior at the boundary;

O%E are corresponding generalized eigenfunctions on the model manifold X.

We will need a more explicit formulation of F;. From the formal self-adjointness
of dE and the fact that the range of F; is in the null space of *A — A2, we get, for p,
r€X,

-1 ,
Y. (N¥-ohPFp = Y du(M) @A (P)O)\(P)  (3.2)
ageopec(A,x) kl<me(A)

where m.()) = the number of 6} < A? with 4 > 0 is the continuous multiplicity of
A
-1
dkl(/\) = Z (Az - U?)_,,’Cjk[(/\)

o3€spec(Apx)
is a self-adjoint matrix, and
Y. cu(N®E\(p)@F(P)
kd<me(A)
is C* in (A2 — 0?)3, with values in z~*H®(X) ® (z')~ H*(X).

Using the notation above,

U(t)=( [ cos(M)dE fisin(/\t)dE). 3

[ Xisin(A)dE [ cos(M)dE

We define a set of “good” initial data, Si(X) = {@ € Hg(X), dE# is compactly
supported in A,supp(dE.@) N {o;} =0 for all j, and dE.u is C*™ in A with values in
z™*Hg°(X) for any € > 0}.

Lemma 3.1.1 For every ¢ > 0 and every ii € Sg(X), there exists v € S1(X) such

that ||@ — 9|} < e.

Proof: Since for every @@ € Sg(X) there is a u' € C™(X) x C®(X) such that
l& - w'|g < €, without loss of generality we can assume that @ = (uo,u;) € C®(X) x

C>(X).
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The proof involves finding vo and v, independently. Since the proof is essentially

the same for both, we will construct only v.

Using A? as the spectral variable, we have

lgraducliyy = [ NdB(p, ', \uolpIua(s)

Consider first the part of the spectral measure corresponding to the discrete spectrum.

Since T A} || Peto)|22 < oo, clearly there is a K such that

2

€
z /\Z"Pk‘uO"iz < I—V-
k>K

Now consider the part of the spectral measure corresponding to the continuous

spectrum. Since [5° [y [x A2dE.(p,p’, \)uo(p)uo(p’) < oo, there is an R such that

/ : /x /x N dE(p,p', Nuo(p)uo(p') < ;V—z

Let p € C°(R), p(A) =1 for A < (R —1), and p(A) = 0 for A > R. We will use p to
get compact support. Let

M= max [[AF(p.p, NuolPluols).

a,.dk(
|A=axi<1

This is possible since F; is continuous in (A2 — of)%, and hence continuous in A, and
since ug € C®(X). Pick a § > 0 such that V8 < €/NRM(m.(R))®. Let n € C*(R)
be such that 0 < n < 1, 5(t) = 0 if |¢| < g, and 7n(t) = 1 if |t| > 6. Then, for
0 <1< m,R), let
#(3) = o) TT (¥ = o) [ i @uo(p
oi<R

Let v; = 0if | > m.(R).
Finally, let

w)= 3 Pao+t / T du(N®L(p)ar(A)dA.

k<K (AL)?€specA kd<mc(N)
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Note that dEvo has the desired support properties, and that dE.ve is C® in A with

values in z~*H°(X). Checking that v, is suitably close to ug, we find

lgrad(uo - vo)llZ;
= D4 IPi(o = vo)llcs + 2 f dE(p, ', NPl p
< 2865k (A4)? | Pl
F2E NN =aDT | T () ] Of(pHalp) [ T uol)

v Smt

+ 21‘]4\’—0?|<6 l"(A)'\2 2()‘2 - ”});% Zk.ISmc(X) cini(X) [ ‘btA(P)UO(P) J ‘I’tx(l” Juo(p')
< 2%+ %)+ RM(m.(R))? < 65

so it is enough to choose N > 24.

Q.E.D.

3.2 Definition of M,

In this section we define M, for X connected. A slight generalization works for 8X

not connected. We have a series of lemmas leading to the proof that
lim Us(—~t)x(zvV)U ()i € Sg(X)

exists for @ € 5;(X), which approximates Sg(X) in the energy norm. From this it is

a fairly easy step to existence of the limit for all @ € Hg(X).

Let

urr(t) = 3 [{Zui(eMO + T, e M%7 Sk )dia (M) (uo, B7,) }dA

. _ (3.4)
+5 L HE k(™M — T, e MO Sk )dia( M) (g, By ) A

Strictly speaking, urr(t) is defined on [0,00) x &X, but by multiplying it by x(zv?)

we can also consider it to be defined on X, at least for large t.
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Lemma 38.2.1 For i € S)(X),

x(zVt)U(t) o - x(zV?) ver(i) =0
u; Dyupr(t) g

lim
t—00

Proof: Recall

v) uo | _ [ 'cos(At)dE(uo) + [ £sin(At)dE(u;)
J Aisin(At)dE(uo) + [ cos(At)dE(u,)

uy

This is rather naturally divided into four terms and the proof is essentially the same

for all four, so we will concentrate on proving:

lim || d x(zv4) / cos(At)dE (uo)

~dx(@VDg [ (Tl 00 + 5 N8l SmeNondna(V) o, 81}V

We have
/cos(At)dE(uo) = Zcos(ALt)Pkuo + /cos()\t)dEcuo
Consider first the part corresponding to the discrete spectrum.

limo || d x(zv?) 5 cos(/\i.t)Pkuo”Lg < limgoo S((AL)2 + ) fz<7a: | Peuo|?
=0

since Pyug € L}(X) for all k. Note that it follows from this (and the corresponding es-
timates for the other parts), after we show that M, exists, that the L? eigenfunctions

of A are in the null space of M,.

The part corresponding to the continuous spectrum is

/cos(z\t)dEcuo = %/(e"M + 7)Y dia (V)] (w0, B ).
2 kd
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Since (uo, ®},) is non-zero for only a finite number of ! and for a compact set in A

(and thus we are summing over only finite k and {), it suffices to consider a general

term corresponding to one k and one [. We have
x(@VA) [16™ + = Mdii ()87, (0, 87,))

"X(z\/_)/[e"\t-l-e-"\t]dk‘(A [(I) + Z ‘pm A.S'mk

0<om<A

+ E x\/«;—?.-_)"gn’mn + O(z log x) ] (uo, B, )dA

on>A

Consider first
[x(zvD) [ dritn)e a0t (wo, o)1

]
1 . .
= é‘ x(z\/t_)/e"’\'z'v '\z_a’z‘ékD,\ (dk'[(—-t + log JZ—L—z)_l(uo, (b,t\)) d\

2
A — o}

< Cx(z\/t-)t‘%*"(log a:)'%“. (3.5)

Since the same is true of x(rv?)A [ dii(A)e=MBYY (ug, ®F\)dA, with a different con-
stant C, we get that

Jim llgrady (2v4) [ dea(N)e™ ™00 (o, &\)dAl 3 = 0.
A similar argument shows
Jim llgrad(xvE) [ dii(A)e™ @03 Sty @)A1z = 0.
It remains to show that

lim ||gradx(a:\/—)/cos(At)[ Y- 2V NG, ka + Oz log )] (uo, ¢\ iz, =0.
on>\
First notice that on the support of (uo, ®},),

Z x\/aﬁ—.\zsn'k‘ﬁn — 0(1,()

on>\
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for some € > 0. Then we have
lgradx(zvE) f cos(At)[To,55 2V S, 480 + O(a log )] (uo, ®/\)dA||73
<C fz<;,; z*
oo 0

Q.E.D.

Now think of urr(t) as being defined on [0, 00) x X. We need to know that as ¢
goes to infinity, x(zv/?)uLz(t) behaves like upp(t).

Lemma 8.2.2 For @ € Si(X), and upr(t) defined in (3.4),

t t
urr(t) @V urr(t) 0.
Dyupr(t) Dyupr(t) E
Proof: As in the previous lemma, we will show only that

limeoo [|grad(1 — x(av/2)) [{(Tx €M + Thm €M% Spni(A))
X Lidia(A){(uo, 8f,) }dN)|| 2

lim

t—+00

=0
(3.6)
since the other terms are similar. As before, it is enough to consider a term corre-

sponding to one k and one /.

The main thing to notice is that for A € supp(uo, ®},) and for z € supp(l —

x(zv?))

- Alog z £0
A\ —oa?

for large t. This allows us to use an integration by parts argument.
For z € supp(1l — x(zV?)) and for ¢ large,
| €@ dia(M)(uo, B, )dA|
= (4 255 Dy (B )i (V) o, O, )N
= 1] MO Dyt + H282) 1y (\) (o, 1) (3.7)
= | [ eMOUH(Dy(t + ﬁj—z)-')mk,,(x)(uo, o )d)|
< Ct7'7¢(1 + |log x]) '+
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A similar argument shows that
(1= x(@VE) |A [ N80 dui(N) o, 81)dA| < CH1-(1 + | tog o)+
Since
lgrad(1 — x(zVv?)| < CVE

and
|AQ1 - x(zvt)| < Ct,

the previous inequalities are enough to show (3.6).
Q.E.D.

We will need an energy decay estimate for a variety of reasons, including proving
that the null space of M, is only the span of the L? eigenfunctions. Since it uses

some results of the previous lemmas, we include it here.

For a > 0, but small enough to for r = a to make sense, define the energy of @ in

z > a, E.5,(%), to be

—~\\2 __ 2 2
(Eesal@)* = [ lgraduol + [ fusf?.

Let S, C Sg be the span of the L? eigenfunctions.

Lemma 3.2.3 Let i € Sg N S},. Then, for anya > 0,

lim E, 5 (U(t)i) = 0.

Proof: Notice that we can reduce this to the case @ € $;(X) N Splp by the

following: Given ¢ € SgN S, we want to find, for any € > 0, a T such that fort > T,

PP
E,>*(U(t)t7) <e. By Lemma 3.1.1, we can find @ € $,(X) N S}, such that
€

14— <
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Then
E,>*(U(t)t')‘) = E‘,>:’:(U(t)(b'— u) + U(t)a)
= o> 5, (V)7 - ) + Ex> 5, (U())
< §+ B> 5 (U(1)0)

since U(t) is unitary in the energy norm.

Let @ € $3(X). As usual, we make use of the spectral measure, and will limit

ourselves to showing

lim/ - !gra.d/cos(At)dEuo|2 =0.
>z

t—s00

Remembering that we only need concern ourselves with the continuous part of the

spectral measure, we have
2 / cos(At)dEug = / €™ + e 3 diey (\®F (10, 7, dA
kJd
We work with a single k and [.

Near the boundary,

Of, =0  + D O Smi + D TV BN Gkt + f(z,)

050m<A ¢n>/\

where f(z,y) € 2t H°(X).

We have already shown that, for b small enough so that X has the product struc-

ture for z < b,

'/b>z> &

For z < b, for A\ € supp(uo,(bj-:,\), there is an € > 0 such that

2

— 0

grad [[e™ + e L du(NOE + T 9005 Smal(uo, 1A
kJd

0<om<A

otl - (‘Dg:;’ + Z o:»;:\'S'm.k) = zegz\(xv y)s

0$0m<.\

where gx(x,y) € HP(X) is smooth in A on the support of (uo, ®f ). Certainly,
2

/b”)* grad/cos(At)xch(x,y)dk,l(A)(uo,(I)J.t\)d)\

</
r<b

2

grad / cos(At)ztga(z, ¥ )dr(A) (uo, @F\)dA
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Since gx(z, y)dii(A)(uo, ¥},) is compactly supported and L? in A,
Jerad f cos(he)g(a,u)ea (M) o, 85,04
is smooth in ¢ and z,y, for z < b and L? in t. Then

lim
t—+0c0 z<b

2
grada:‘/cos(z\t)g(z,y)dk,l(/\)(uo,O}:,\)d)\l =0.

Now consider

fon

Since @}, is smooth on z > b, we can use the same argument to say

2
grad [ cos(At)dk,l(A)Q{,\(uo,Q;f_x)d)‘l .

lim
t—>00 >b

2
grad [ cos(A)di(\)@F, (uo, @}:_\)d/\l 0.

Q.E.D.

The preceding lemmas show

Proposition 3.2.1 For @ € (X)),
M@ = lim Us(~t)x(zvR)U(t) € Sg(X)
exists and is given by

[ {02 + T 8058 mi)ia (M) (0, 85)}dA )
. + [ HEk (PR — T B2 Sk )i (M) (ur, BF,) }dA

DN | =

T MEa(BRF = T B Sk )it (V) o, Bt}
\ +H{Ze( PR + T O S ks (A) (1, BFy) }dA )

Moreover, ||M, dl||g = ||(I — P,)il|e, where I — P,, is projection off of Spp.
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Proof: First, we rewrite Up(—t)x(zv2)U(t):

Uo(—t)x(zVE)U(t) ( to ) = Up(~1) ( urz(t) )

uy DtULT(t)

—Uo(—t)(l—x(w\ﬁ))( uer(t )
DguLT(t)

— Us(=t)x(zVA) ( ( uer(t) ) —U(t) ( o )) :
Deupr(t) uy

The first term is an element of Sg(X) independent of ¢:

Uo(—-t) uLT(t) _ uLT(O) '
Dyurr(t) D,u;7(0)

By Lemma 3.2.1, the limit as ¢ goes to infinity of the second term is 0 in Hg(X).
The third term is 0 € Hg(X) in the limit by Lemma 3.2.2. This means that as
an element of Sg(X), the last two terms have as limit (c,0), where c is a constant.
However, a slight strengthening of (3.5) and (3.7), along with the corresponding
estimates for the other terms involved, gives us that these two terms are actually

both 0 (say, in H}(X) x L3(X)) in the limit.

The statement on the energy follows directly from Lemma 3.2.3.

Q.E.D.

Then, to define M, on (5] € Hg(X), take a sequence of u@; € S;(X) converging in

the energy norm to ¢. Then define
M. (7] = Jim[M} 5]
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3.3 Some properties of M,

We call [i#] € He(X) “left-moving” if
lim ExsUo(t)i =

for any a > 0. “Right-moving” elements of Hg(X) can be defined similarly, changing
only £ > a to ¢ < a. Using methods similar to Lemma 3.2.1 one can show that

HEg(X) can be separated into left-moving and right-moving pieces.
Lemma 3.3.1 The range of M, is the left-moving elements of Hg(X).

Proof: Clearly, from the definition of M; we have that the range of M, is
contained in the left-moving elements of Hg(X). To prove the converse, we construct
M, something like a left inverse to M, which is non-zero on the left-moving elements
of Hg(X). Of course, since M, is not one-to-one, we cannot expect a true inverse;

only one off of the kernel of M,.

Consider ¥ = (vo,v1) € S1(X), where # is left-moving. Let x(z) be a smooth
function which is 1 near 2 = 0 and 0 away from a neighborhood of that boundary.

We have

—— (€™ + (B4 (vo, B2X) + BR3 (vo, B13))d

A
2L
uO( ) G§Z>0 A>aox A2 — a-z
Iy / 1
T ox20 Adoy \ /A2 - a—z

By calculations similar to those for the general manifold X, we get that the long time

(e — e M) (BN (v1, BRY) + BY5 (v1, BY'))dA

behavior of x(z\ﬁ)uo(t) is given by

(e
0k>0 '/'\>6" v A? — 0'

;Atq)o.+ ‘U ,(pod' _ e—i.\t@ ’U ,(I) )dA
">o./:\>“ \/)\2_-;; 1 k,A) kANTL A)

MBI (vo, BYT) + e MBYT (vo, D'y ) )dA
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In fact, if ¥ is left-moving, this is the same as the long-time behavior of u(t).

For t sufficiently large, we can consider x(zv/)uo(t) to be defined on X , and it
approaches a solution to the wave equation on X. Indeed, simply by replacing (I)(,::I
by &}, and 02:; by ®; , in the above equation, we get a solution to the wave equation

on X which has the same long-term behavior as x(zv/?)uo(t). Thus we have

( 2 Z oo [PEA (Ao, BET) + (1, BT)) )
BT (Ao, $45) = (00, 97))} —2er

lim U(=t)x(zvt)Uo(t)7 =
DM Do (@R (A (vo, ‘1’2:}') + (v, Qg}')) (3.8)
|~ e (Mvo, 613) — (v, <1>2;;))}7§gl_ja /

Define this to be M}% € Sg(X). Define M, on Hg(X) by continuity as for M,.
Note that M, M, = I — P,, and that M, M, = P, where Py is projection onto the

left-moving elements of Hg(X).
Q.E.D.

A note about the Schwartz kernel of M,: The Schwarz kernel of M, is defined
up to a constant. Since we really want M, to be 11714_ on S;(X), this choice will

fix the constant. We need to determine the kernels of M + and M 4+ so that for & €
C®(X) x C>(X),

M M,i=(1- P)i

M U(t)i = Up(t) M d
not just in Hg but in Sg. This would fix the constant. Set M} = (m;;), ¢, j = 1,2.
Then let M’ = (m};) (up to the constant question, this follows from the fact that M,
is M}, with the adjoint taken with respect to the energy norm). Try giving M the

kernel which appears, paired with (vo, v1), in (3.8) (that is, just “erase” the v;). Then

we can check that these kernels have the desired properties. (Note that (3.8) above
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gives us the constants di;(A) which we did not know before.) We use these kernels
for the kernel of M, and M,.

Lemma 3.3.2 As defined above, M, has the following properties:
1. Null(M) = Hpp(X) = span of the L? eigenfunctions of A C Hg(X)
2. M, is a partial isometry

8. M U(t) = Up(t)M, forallt e R

Proof: (1) The proof of Lemma 3.2.1 shows that the L} eigenfunctions are in the
kernel of M,.. The energy estimate of Lemma 3.2.3 shows that nothing else can be in

the kernel.

(2) We show that ||M,5||z = ||7||g for & orthogonal to H,,(X). This follows
essentially immediately from the definition of M,v. Take a sequence u € S$1(X)

going to ¥ in the energy norm, and orthogonal to Hyp(X). Then
1MLl = &5 le
and
1M3lle = lim (| M, dlle = |17
(3) To show that M, U(t) = Uy(t)M,, we use the definition of M to write, for
i € 5(X),
M U(t)d = Jim Us(=s)x(zv/s)U(s)U(t)i
= lim (Uo(t)Uo(~t — s)x(zV5 F O)U(s + )
+ Uo(=s)(x(zVs +1) = x(2/5))U (s + t)dl)
= Jim [Uo(t)Uo(~s)x(2V5)U (s)i
+Uo(=3)(x(2vs +1) = x(2v/5))U(s + t)]

= Up(t) M, .
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The corresponding fact for M, follows by a limiting argument.

Q.E.D.




Chapter 4

Reduction of the b-Trace to

Integrals at the Corners

Thus far we have shown that
U(t) = M Us(t)M, + PiU(2)
where P is projection onto the L} eigenvalues. Pairing with p € C2(R), we get
V(o) = (Ut), 1)) = M, Uo(p) M, + PaU(p). (4.1)

We know that U(p) € ¥;*°(X), so we may take the b-trace of U(p). In the first
section of this chapter we show that we may take the b-Trace of each of the terms
on the right hand side of (4.1). The second section calculates the contribution of
the discrete spectrum. The remaining sections work with b-Tr( M, Uy(p) M), putting
it into a form that, in the final chapter, we use to calculate the contribution of the

continuous spectrum.
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4.1 Continuity of Summands

In practice, since we are concerned only with the diagonal entries of U(p), we may
take p to be even, since the diagonal entries of U(t) are even in t. This makes both

U(p) and Up(p) diagonal matrices.

Lemma 4.1.1 For p € S(R), p even, and Py, P, € Diff*(X), the Schwartz kernel
of Pgﬂ...Uo(p)M...Pg is continuous.

We will need another lemma to prove this one.

Lemma 4.1.2 For @ € Hg(X) such that Ad € Hg(X),

Al.’.Al-l‘ = AX» M+'l.l‘.

Proof: We work on a dense subset of Hg(X). Let @ € S;(X), and note that
U(t)Ad = AU(t)u
since they satisfy the same differential equation and initial conditions. Therefore,
M. Ad = lim Us(~t)x(zv)U(t)Ad
= lim Us(~t)x(zvD)AU(t)T
= lim[A g Us(—t)x(zVOU ()i + Us(—t)[x(aV1)A — A g x(zVE)U(t)d]
= Ag My @+ lim Us(—t)[\(zV)A - Agx(zVE)U(t)d.
This reduces the proof to showing that
lim [|(x(z2V1)A — A gx(zv)U ()il g = 0.
We have
(x(zVH)A - Agx(zVE)))U ()i = (x(zVE)A - x(avV)Ag )U(t)i — [Ag, x(zVEU(t)d
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Since A = Ag+zQ, where Q is a b-differential operator of order at most two, the first
term tends to zero as ¢ goes to infinity and the support of x(rv/?) shrinks toward the
boundary. The support of [Ag, x(zv?)] is contained in the region av? < z < b/Vt,
a region in which the energy of U(t)i is tending to zero. For this reason, the second

term tends to zero as t goes to infinity.

Q.E.D.

Proof of Lemma 4.1.1 : To show that the diagonal entries of P, M, Up(p)M, P,

are continuous, consider pairing it with

(0, 161’0(1’)) ® (0, $'6p6(p')),

and show that this varies continuously with py and p, € X. This will show that the
lower right entry is continuous. Since the upper left entry is actually the same, this

is sufficient.

Choose an N such that —112'3 —m+ 2N > 1, and use Lemma 4.1.2 to write
M Us(p)M* = (1 + AN ML (1+ Az )*NUs(p)M* (1 + A)~N.

We have
_n 2—m
(1 +A)-NP,-‘C’6P")(P') € Hb =2 +2N(.\,)’

so that (1+A)~~ P'(0, z'6,:(p')) is in the finite energy space, and thus is in the domain
of M. Applying M, , we get

My (14 A)™(0,6,(p)) € He(X)

varying continuously with py. Applying (1 4+ A;)*¥Uy(p), we get another element of

Hg(X), which again depends continuously on pj. Then
M (1+ Ag)VUs(p) My (1 + A)V by (p) € Hi(X),

and
(14 AY MM (1+ Ag)¥Ualp) My (1 + A) N6, (p') € H(X)
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depends continuously on p; and has for its second entry a continuous function. Thus

it may be paired (continuously) with z4,,.
Q.E.D.

Restrict ourselves to even p. Since
P,U(p) = U(p) — M Us(p) My, (4.2)
and the right hand side is continuous for p € C°(R), we have that P,U(p) is contin-
uous for p € C°(R). However, note that for 5 € C®(R),

l za\ieppSpecA pA(Ak)fkf_k 0
2 0 ZAZ €ppSpecA ﬁ( Ak )fk-f—k

where the fj are the corresponding L7 eigenfunctions, is in ¥, *°(X). Since M, Us(p)M,

PaU(p) =

is continuous for all p € S(R), we have that both summands in the right-hand side of
(4.2) are continuous for j compactly supported. In the following calculations, it will
often be convenient to assume that the Fourier transform of p, rather than p itself, is

compactly supported.

4.2 Contribution of the Discrete Spectrum

Now that we know that P,;l/(p) is smooth, we can easily calculate its b-trace. Note
that for j € C®(R), T 4(\) fifi is actually trace class, so we have b-Tr(PylU(p)) =
Tr(PyU(p)). We have

ec 7] A‘ —. 0
bTH(PU(p)) = bTes | = icposreca PR B
) 0 ~ Lxzeppspeca A M) fifx
= T i [ AP
I\zGPPSpecA X
= > AW
A2eppSpeca

since [ fullzg = 1.
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4.3 Restatement of the Problem for P.U(p)

The main trick we will use now is, as mentioned earlier, to rewrite b-TrP.U(p) as
the b-Trace of a commutator, and then use methods similar to those in [Melrose] to

calculate the answer in terms of leading behavior at the boundary.

To make our operators nicer and simplify calculations, we will make some further
restrictions on p. As previously noted, we may assume that p is even. Secondly, we
will work with p such that 5 € C°(R). Since such functions are dense in S(R), this
will be sufficient for our use. Finally, since this is a linear problem in p, it suffices
to prove the identity for both p such that 4(A) = 0 in a neighborhood of A = 0 and

oy

for p such that supp(p) C [— %L, %], where o, is the first non-zero eigenvalue of Agy.

Summarizing, we are working with p such that

1. pis even
2. peCE(R)

3. supp(p) C [—%*, %], where g, is the first non-zero eigenvalue of Agx OR 5())

is 0 in a neighborhood of the origin.

The last condition seems to make a difference only in the proofs of Lemmas 4.4.1 and

5.2.4.

Assuming that p is even we get that

Us(p) = 2; e / eV )'V""” A ) I - \/—_d)\ . 1d
a 0 —ak
(4.3)

where Id is the identity for 2 x 2 matrices. We can use one more trick to make our
operators nicer. Given an even p such that p € C®(R), pick an n € S(R) such that

7 is even and % = 1 on the support of 5. Then, by examination of equation 4.3, we
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can see that Us(p x ) = Up(p). We also have that Uos(p * 1) = Us(p)Us(7), since

Uo(p)Uo(n) = [ Us(t)p(t)dt [ Up(s)n(s)ds
= [Up(t — s)p(t — s)dt [ Up(s)n(s)ds
= [T Uo(t)p(t — s)n(s)dsdt
= Us(p *n)

Then we can rewrite
M, Us(p)M, = (M Us(n))(Uo(p) M)

Then, using the fact that (Uo(p)M+)(M.,.Uo(n)) is R*-invariant, and thus its b-trace

is 0 (see [Melrose]), we write
bTx(PU(p)) = b-Te(MUo(p)My) = bTe[M, Un(n), Uo(p)M, ). (4.4)

This is very similar to the trick we used to calculate the normalized trace of the wave
group in the one-dimensional case. However, here our operators are a little more
complicated, so we can’t use the results of [Melrose] directly in this instance; we
will, however, follow the general idea of his proof, putting in additional calculations

where necessary.

We put in the extra Up(n) so that we have the commutator of two fairly well-
behaved operators; this makes a number of proofs practically identical for both oper-
ators. In practice we require that 7 satisfy conditions 1 and 2 above, and also that it
have the property that either supp(7j) C [, 324] (if suppp C (%, %) org=0
in a neighborhood of the origin (if p has the same property).

4.4 Reduction to Corners

This section shows that the only contribution to b-Tr[ M, Us(), Uo(p)M 4] comes from
the kernels of M, Up(p) and Uo(p) M, near the corners of X x X and X x X respec-

tively. This result is fairly easy for the b-Trace of the commutator of two elements of
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W;*, since their kernels decay rapidly at IbU rb. We will use instead Lemma 4.4.1
below, which says something about the decay of the kernels of M, Up( n) and Us(p) M,

at the boundaries away from the corners.

Here,.as often, we use the same letters to refer both to operators and to their
Schwartz kernels. Recall that M, is a 2 x 2 matrix of operators; we will call the
entries m;j, ¢ = 1,2, j = 1,2 with the usual conventions, and then M, = (m};). Since
Uo(p) = A - Id, where Id is the 2 x 2 identity matrix and A € ¥;*, we will abuse
notation and write Up(p) for both A . Id and A.

Lemma 4.4.1 For any x € C™(X x X) with x = 1 near the corners of X x X,
S 10 = 00U 2, ) Ul o)) 8 ) < o0

Proof: We prove this for 9X connected, although the general case is only nota-

tionally more difficult.

Since the kernels of all the operators involved are continuous, we only need to
worry about their behavior near the boundaries. Because of the cut-off function, we
need only concern ourselves with the behavior of the kernels on a compact set away
from the corners. We begin with the case i = j, the simpler of the two cases. First we
show that in a compact set away from the corners, Us(p)m,; decays as 1 /log = near
the boundary z = 0. A similar proof gives decay of 1/ log z’ at the z' = 0 and z' = 0o
boundaries away from the corners. The same proof works for m};Uo(n). Multiplying
the two together with a factor of (1 — ), we will get something which decays as

c|log z|~2 or c}log z'|~? at the respective boundaries, and is thus integrable.

Using the formula for the kernel of m,; obtained in Chapter 3, we have
1 o — — A
Uspymu =~ 3= [ 6@ BT, + 878 )—=—d).
T oxEspechgx YOk A? — g
For simplicity, we will prove the estimate only for
o - A
Y [T aneptet,-

ox€EspecAgy V%K A2 — 0'2

dA,
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since the other part is analogous. Since p is compactly supported, it suffices to
consider a term corresponding to one k. Expanding &, at the boundary z = 0, we

get

A
0,+ ~
/, 80t ,,‘,;(A)——)\2 - d)

=/ <I>°’+[ B+ Y Sme(NENS+ Y Smk(A):r\/”M“\2¢m+O(a:log.1:)] p(A)Ad)

om<A om>A NY _(4;)

Dealing with the terms one at a time, we have, for the first term,

A
[ ety ) = (m“l (D V=T g,)d

— UE Ok

= fog 2" k)¢k¢k+—— = [ Do RE .

Since the last integral is bounded, the left hand side is bounded by a constant times

1
iogz Near z =0 and away from the corners.

The second term of 4.5 is slightly more difficult. Consider a term corresponding

to just one m (there are finitely many relevant ones):

oo . — A
[ B S8, =
maxog,0m A2 — o-z
o - . A2 - g2
= At Bre N b ——Di (V¥ =5) YT 4y
maxog,0m lOg T A2 — 0.2

i SONSngo= VA~ oh
= —— (Q::IP(A)Smk(A)‘D?:;,.\__)

log * A? — 0'% |maxom,ox
- D A)Smi(A)®) ¢ "\d).
10g 2 Jmoxcs.om A (P( )Smk(A) @iy N - o? m,\
Using the fact that S,,, k(A) is continuous, we get that the second summand

behaves like ;- in the reglon in question.
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The third term is much the same. Considering a term corresponding to one m,

we get

[ 68T NgmaVAmT 2 iy
A

A\ — g}
Voh-62 -
= / ANBLY Smk (V) pmz VRN 4
o A2 — a-z

Om . 0+F . 1 1 d /02 A2 \/ 02 — A?
5 1 Voh -"’Cz A
=O0(z )+ Togz ( (M)} Smi(A\)dmz \/_—_Uk |,/a= 5

(A(N) DY 6 ) L AL Vad )x\/“"‘ )\
,/A

The fourth summand is ezasiest, since it is clearly bounded by z% near z = 0.

logz ./,/a2 =5 dA

The harder part to prove is the case i # j. If p(A), and thus ii(A), are 0 in a
neighborhood of A = 0, the above proof works essentially without modification. The
case of p supported in [—2Z, %] is slightly trickier, since the kernel of Uos(p)m,, is
given by

had §O-+ 0-F— 1

[ HON@LE, - 82585,) ———dh. (4.6)

o‘,eapecAax Ik A2 — U,%

The problem arises when o = 0, which only happens when a4 = 0, because then we
are dividing by A and integrating down to 0. Note that by choosing suppp C [-%t, Z],

we have eliminated the terms which behave like those in the previous proof and thus

have simplified our calculations.
‘First we work on getting a bound on Up(p)m,2 near the boundary, say z' = 0:
<, 1 — -
AN OLIOE, - 82787 ) (4.7)
But, at A =0, 02:}' = const = @2;; and &}, = const = & . Therefore, the integrand

in (4.7) is continuous. We can use a Taylor expansion of the integrand to see that

near z' = 0, (4.7) will be bounded by a constant times log 2.
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Then consider the behavior, near the boundary z' = 0, of m3,Us(), where # is

supported in [—222, 321];
wm3,Uo(n) = /0 T HA@L,OTT - 97, 877)a)
1 o0 N\—t - i
=360 [ BOON@EL) - 07, ())d)
= Siu(10g #) A(OBE s amo + (A0F ) ac)
1 n- *® R n-i A ~ V(Y
+ 5(10g =) e [ {DAHANGE)() + Da(AN)ABE,)(=') A

"N~ 1 * A —1 A - AV
= (log =) 3¢ [ {DAA(NABrx+)(=')™ ~ DAHAADE,) (=) dA
Properties of the Mellin (Fourier) transform in turn allows us to bound

PRGN )@) = DRGOML NN < @) (48)

where f(z') € L} for p > 2, for (z,z') in a compact set away from the corners. One
can get similar decay at the boundary r = 0, and away from the corners. Therefore,

the product of m3,Us(n), Uo(p)mi2, and (1 — x) is integrable.
Q.E.D.

Lemma 4.4.2 Let x0, Xoo € CO(X x X), with xo =1 in a neighborhood of the corner
0X x {0} x X and 0 outside a product neighborhood of the corner, and Xoo satisfy
the same conditions for X x {oo} x X. Then

b-Tr{ M, Uo(n), Us(p) M+]
= lim
el0

dz d
(T'/ax L / Xo(@ 3223, 4') (M4 Vo)) (2, ¥, 23, ) Ual )My )3, 2,y) ==

’ dzd
B Tr/ax[ax/; ./c xoo(x,y,m y') (M4 Uo(n))(z, y,._ 24" (ol p)M+)( ,y z, y)_‘”_si

— vloge)



Proof : Essentially by definition we have

5-Te[ M, Uo(n), Uos(p) M)

=B (T’/m/XW+U°<'1))(P',p)(Uo(p)M+)(p, ?) (4.9)
e [ Do) B, P Usl) M ).~ 710g )

where 7 is the constant which makes the limit exist. Then rewrite

M, Us(n)(P', P) = (Xo + Xoo) MsUs(n)(P'P) + (1 = Xo — Xeo) M1 Uo(n)(#', p)-

Substituting this into (4.9), we get two pairs of terms. In the limit as € goes to 0, the
pair with a (1 — xo — Xoo) adds to give 0, since the integrands are integrable over the
whole of X x X by Lemma 4.4.1, and thus we can switch the order of integration.

We are left with

b-Te[M,Uo(n), Uo(p) M)

= lim (Tr / /{m}x X(Xo + Xoo) (M4 Uo(n))(p, P')(Uo(p) M4 )(', )

0]
B Tr/-/{1/¢>z'>¢}xx(xo + Xoo)(M-}.Uo(ﬂ))(p’ P’)(Uo(p)M+)(p” p)

—vloge). (4.10)

We have managed to reduce the b-trace to integrals near the corners. In this

region we can introduce local coordinates (z,y) € X and (2',3') € X = [0,00) x 8X.

We can lift the kernels of M, Us(n) and Us(p) M, to (X x X)s, which is (X x X)
with the corners blown up (in the same manner as we blew up the diagonal corners
of X? to get X? in Chapter 2). Let’s work just with the integral near the corner
dX x {0} x 8X; the calculation for the other corner is essentially the same, using
1/’ instead of z’. On the support of xo on (X x X), we can introduce coordinates

o

/ ’
r=rx+z,T=——,4,¥
9 $+$” k]
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with y,y’ € X. For 6§ > 0, let {; € C*((X x 0X)) be such that 0 < (s <1 and

near r = 0,

1ifl=1|r]>6/2
Co(rr) = Ir| > é/
0ifl —|r| < é6/4

Multiplying by (s has the effect of cutting off an amount proportional to § near lbUrb
(that is, the boundary faces of (X x X), which do not meet the lifted diagonal).

Let a and S denote the lifts, respectively, of M,Us(n) and Up(p) M, to (X x X).

Rewriting, we have

xoaB = xolsaf + xo(1 — (s)ap.

For the first term, we can use projective coordinates s = z'/z, = (and, of course, the

usual tangential coordinates y and y’). Then

/arx-/;XoCsaﬂ—/ﬂx/xxg(gaﬂ: /ax /ax [)w /j Xo(saf.

Then

Tr ( / . [ XolF1Ua(m)) (2, P} Ual )M (&', )

- [ [ X0 (B Uslm) .7 YU )M )

= Tr./ax Lx /000/‘% xoésaB + Tr [//r(u_r»h Xo(l — (s)af — //r(l—r)>2¢ xo(1 — (5)afB

The left hand side is independent of §, and the second and third terms of the right

hand side go to 0 as 6 goes to 0 by an application of Lemma 4.4.1. The first summand

Ir /ax ,/;x /0°° -/c % Xoa,

which, translated to the usual language, is, in the limit as ¢ | 0

goes to

> [+ y dz ds
Tr/”, /zax/o /‘ xo(z,y,zs, ¥ ) (M Uo(n))(z,y, 25,y ) (Uo(p) Ms )(xs, ¥, 2, ) ——.

Q.E.D.
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4.5 Dependence Only on Leading Behavior

This section shows that the b-trace depends only on the leading behavior of o, at
the boundary. Recall that near the boundary
= z'V¥-%ig 4 Yo Sme(NzT VY=t + 5" Sk (M)2VOAN 6, +0(z log z).
0<om<A an>A
By the leading behavior, ®f, ; of ®f, we mean the first two summands in the ex-
pansion above, and we have an analogous definition for ®, ;. Since the kernel of

M, is given in terms of the <I>f ), for example

T 5k2070k \/ - a,f
it makes sense to ask if the limit in (4.10) or in Lemma 4.4.2, which is the uumit
of integrals over the corners of X x 9X, depends on the lower order terms in the

expansion of ®F,. The answer is

Lemma 4.5.1 The integrals in (4.10) and in Lemma 4.4.2 depend only on the leading
benavior of ®F, at the boundary.

Proof: Again, we give the proof only in case dX is connected, for notational ease.

The reason is that only the leading expansion can give something which is not L!
on X x X. We prove this for the corner near z’ = 0 and for one term in the expansion

of Up(p)m;;, but it is true for the other terms as well.

By the argument of Lemma 4.4.1, we can bound

log z

lmqu( l lOg 2

Then consider

A
/ SF B (N =i

-/, (z')‘V*"’?=¢k[<I>t.A.L+ 5 Fs(N2VATV G + O(z log )|A(N) —2—d.
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The term with O(z log z) can be bounded by |c(log z')~}(log z)?z|, which, multiplied
by xom};Uo(n), clearly results in something integrable, and thus the limits in question

are 0.

Consider, then, the other term. For any small § > 0,

/am-ﬁ(x,)i\/,\ﬁ-az¢kTM(A)x, /a?"—l\zmﬁ(A)——A——dA

on A2 — g2

|
oga:zs,,,

<
€ log z’

Multiplied by xom;Us(n), this results in something integrable for any 6 > 0; and thus
the limits in question are 0. Since this is true for all small § > 0, and since the point

A = oy, is included in the leading part of @}, we are done.

Q.E.D.
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Chapter 5

Final Calculations

Finally, we will calculate b-Tr( M Uo(p)M,) by calculating the integrals over the cor-
ners of M, Uo(n)Us(p) My, to which we reduced the problem in the previous chapter.

The result of this chapter is

Theorem 5.0.1 The part of the b-trace corresponding to the continuous spectrum is

given by

Y - . 1 a d 1 a C .
b-TH{ ML Lo(pIMy) = 75 [ A7y logdet WA+ X ilow) + 55(0)

ai €specdpyx

RS

where ¢ is the number of connected components of 0X.

Note that this and the results of Sections 4.1 and 4.2 are enough to show Theorem

0.2.1.

We use Lemma 4.4.2 or the intermediate result. equation 4.10, which reduce the
left hand side of the above equation to a limit of integrals at the corners. Lemma 4.5.1
shows that the limit depends only on the leading behavior of M, Us(n) and Up(p) M4
at the corners. A similar argument shows that on the support of Yo or ., we may
use the density dvodvy, where dvg is the product density (on X =[0,00) x 8X), since

the difference between this and the density on X x 9.X is integrable.
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We give the proof for 3X connected, although the general case is only marginally

more difficult (for notational reasons).

5.1 Notation

In an attempt to make calculations clearer, we fix some notation. Recall that My
is a 2 x 2 matrix with entries m;;. The leading parts of mj,Us(n) and Ug(p)m1, are

given by

m;IUO(q) ar 20k>0[ak(a* T )¢L(J)¢L( )"'Z::r.,,)OC‘mI»(l £ )¢m(y)¢k( )]
Uo(p)m1 ~ 35 ZazolBi(a’. 2)duly’ )01(y) + Tons0 Aulr’ 1) ow(y’ )6n(y)]

where

- "\/;'T'7 \/7—2:? 7 —d7
ar(z,z ) / [( ) + ( Kla(r \/TTU—L-
amk(ziz’) - [ SiVri-eh ( l)—! v rz_a‘Smk(T)

max(am Ok)
\/r"z_( )meL ] S —
Bl 2) = L UE PV 4 (2 VI ) et

fulz,a) = [ [PV R VISO)
+ VY (o \/"-”’T,,(A] A)—)‘——d)\.

2
— 0]

Integrating the leading terms of ymj,Uo(n)(z.y, 2",y )o(p)mn(a',y', z,y) over
y € 0X,y' € 0X, gives

1
=) = o gzlam 2)Bi(@’,7) + an(x. 2" Bl )

+ ap(z, 2) B2 2) + D ami(x. 2" Bui(2’, z)]. (5.1)
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We need to define the analogous leading terms for a pair of off-diagonal terms;
ie, m3;Uo(n)Uo(p)mji, where 2 # j. We will do only the case : = 1, j = 2, since
the proofs for the other off-diagonal contribution is the same. The leading parts of

m3,Uo(n) and Us(p)ma, are given, respectively, by

m},Uo(n) ~ ﬁ Y lek(z. 2N e(m)de(y) + Y el 2")bm(y)dk(y"))

ox20 om0
Us(p)mar ~ 74— Z)O[ﬂz(l‘ ,2)du(y ) bily) + Z) Bz’ 7)Y ) ba(y)]
o2 on>0

where

oz, = / °°l(”;'> VI () J—
Ok TS — 0}
a:nk(z, I') = [ - v -63"(1 )-‘ - me(T)

max(amak)

(1) mL(T)] )( )\/T—_—a'k
vt oy [T Ne—a? Ne_g?
ﬂ:(z,z)—fa (v ;v 1(;\)\/__5@

ﬂ:d(z,-'!:‘,) - max(a 04)[ \/\27—02( :)i\/.\2—0,2‘5'nl(,\)
| . 2
gy /'\2—6'2'(x’)—"/'\z—a?Tnl(/\)] /}(A)—?——sz
A2 —gj

Integrating the leading terms of mj,Uo(n) multiplied by those of Up(p)may over y €
90X, y’ € 0X results in

1
W‘y'(z,x') == 2Z[a,‘(a, ) Br(a' &) + af (v, 2") B (al, x)

+ aly (2, 2) B2’ ) + D alla ) B (2, 2)] (5.2)

5.2 Contribution from the Corner z =0, 2/ =0

The goal of this section is to prove
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Proposition 5.2.1 The contribution of the integral near the corner x =0, ' =0 is

lim Tr ( /]{mm2 oML, Us(m)) (2 ) (ol p) M4 ) (', )

~ [ XU p')(Uo(p)Mn(p',p)) =5 300 (o)
'>e}xX h

where xo is a smooth function on X x X, with its support contained in a product
neighborhood of the corner X x {0} x 0X, and equal to 1 in a smaller neighborhood

of the corner.

We prove this lemma in two subsections below. The first subsection shows that
the contribution of the diagonal entries (m7%Up(n) and Up(p)m;;) is 0. The second

subsection calculates the contribution of the off-diagonal entries.

It will be helpful to make use of some symmetries involved in the problem. To do
this, first choose xo to depend only on & + 2, and have support in x + 1’ < a, where
a is chosen small enough that x < a is contained in a product neighborhood of the

boundary.

Next, fix some notation. Let R{, denote the region {2 > ¢} N {x < a,2’' < a} and

Rg, denote the region {z’' > ¢} N {z < a,2' < a}. Let
ro: {r<a,2'<d} = {&r<a2' <a} (5.3)

be given by ro((x,z')) = (2',2). Note that ro maps Ry, diffeomorphically to Rg,,

roore = Id, and xo 0 ro = Xo-

Consider any distributions, smooth enough that their product is defined, on [0, a] x

[0,a], @ = a(z,z') and B = F(a',x). With the w.otation fixed above,

fz>¢/ Xoah — /,,.N / Xoal = /Rg'( Xoaf — /R - \oa/3
= /R+ volaB — (a o rg)(3 0 mp)). (5.4)

Thus, if af is even under ro, (5.4) is 0.



5.2.1 Contribution of the Diagonal Entries

Lemma 5.2.1 The contribution of the diagonal entries at the corner x =0, ' =0

ts 0; i.e.,
i T ( Lo XoELO ) B, Ui )i 0 )

- / /{,,N}x , Xo(miUo(m)(p, p’)(Uo(p)ma)(p',P)) = 0.

Proof: As previously noted, we need only consider the leading parts of m7,Us(n)

and Up(p)m11, which means showing that

13{5‘(/,»/\07“ z)d—ld—l—/x/\o, (v.x d—”l—l> =0 (5.5)

by (5.1).

First, we make use of the symmetries involved. A simple calculation shows that
arorg = ay and Brorg = Br. In addition, for any m for which o, = oy (in particular
for m = k), amk © 7o = ami and Bk 0179 = Bk This, along with the definition of v,

immediately gives us that the left hand side of (5.5) is equal to

lim '/Ro Y ami(,2")Bma(2 .l)—/ Y ami(@,2") k(2 2)

€ 0k, 0m20 0 € o, am>0

ok#om okFom (56)

Finally, since xo@miBmk s in L}([0.¢] x [0, ]) by the lemma below, (5.6) is 0.

Q.E.D.
Lenima 5.2.2 For oy # 0k, \oQmkBmk is in L}({0.a] x [0.4a]).

Proof of Lemma:
We have
oo . . - )
ami(z, ") =/ 2TV o (2!) VIS ()

max(om.ok)

T L)
T —-O'k
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We will work only with the first summand in the integrand, since the other one can

be treated independently in the same way.

/ T VIR )V (i)
max(om.Tk) ¢ — O’E.
Tl0g$ Tlog‘l’ —lD -ﬁ/r’—a?n(ml)—i\/r’-ak) (T) T’(T) N dr

- mmt(t'mm:) \/ T2 — \/ — o}

dr

If ox > o, rewrite this as

ey - —a" log z — log 2']71 Dy (x ™V =% (2!) ™'V =) ST (T)dT

= [o (z“‘\/;z'_"z(;z \/;3‘—":. ( AC,___T o log x — log /]! 'mk(r)f)(r)) dT(5.8)

since Smi{ok) = 0. Consider

2 — o2
([_ log & — log 2’7 Syuk(T )'7(T)) :

T2 — 02,

Since D, Smk is integrable, and behaves like ¢(y/72 — o)~ near r = oy, we can bound

Dr (Smk(T)ﬁ(T))

i ’
s log 2 + log
D, (Smr(7)i(7))
(\/1'2 —aL) ( a" logl + log 2')? (—\%“’ = 7L=—'° Y |

< (logz)~*(log ') |.‘/(T)|

~1
[SV]



where g(r) € L”(R) for any p' < 4/3. Similarly, for the term with the derivative

falling on the denominator, we have

log  (Sm(7)ii(7)7 (07, — 0}))

(/72— 02)3/% /12 — a,f(%;_;iz‘ log z + log 2')?
. log 2 (ci()r(d2 — o))

3 log r logz! 1 r3-0} . i 1 log z'
(V72— 02)5(71-"2%‘2 + T:g%;z)z(ﬁlog a + log 2’) 7 ( Ta + lou\;ﬂ_ai)

< |(log z)~*(log =) ¢'(7)).

with ¢'(r) € LP(R) for any p' < 4/3. Thus, using the mapping properties of the

Fourier transform (or here, the inverse Mellin transform). we get
_1 _1
lami| < |(log )77 (log 2')72 f(a, 2)]

with f(z,z') € L{([0,a];) uniformly in 2’ and f(x,2’) € L}([0.a]x) uniformly in =,
for any p > 4.

If o,, > o, we merely rewrite (5.7) as

and proceed as before.

We can bound B in exactly the same way. The product. then, is bounded by
lamkﬁmkl S I(log -l')-l(log '1")-1.,‘.(”-,

where f € L([0,a),s) and g € L{([0,c),) for any p > 4. Therefore. amiBmi is Ly on

the region in question.

Q.E.D.



5.2.2 Contribution of the Off-diagonal Entries

The main result of this section is

Proposition 5.2.2 For i # j, the contribution of (m;;Us(n))(Uo(p)m;i) near the

cornerz =0,z =0 is

limejo Tr ([fizsepxx Xo(mi;Us(m))(p, P)(Uo(p)mi) (P, p)
= [z xx Xo(m5Uo(m))(ps P ) Uolp)m;i) (P, P))
= & 020 A0k)(Skr(0n) + Skr(ow)).

We limit ourselves to proving the case i = 1,5 = 2. As before. only the leading
terms at the boundary can give a non-zero contribution. Therefore, by (5.2), we need

to calculate

Lda da’ ,do de
16‘1:‘2 610 [

where

(e ) = loe, # DB 2) + ol £Vl ) +

akk(t €T ).BL l‘ l’)+zamk(’l T ﬂmk(llﬂ‘l“)]'

We break the proof of the proposition down into three lemmas.
Lemma 5.2.3 For all k, the limit

hm[/ akﬂk + Zamlsﬂ L_ aLIBL + Z:amkf’mL] = 0.

0,¢ m

Proof: As for the diagonal contribution, we can make use of some symmetries to

get a few results without much work. Simple calculations show that

aj org = —a,
Q! >
Bpore=—4

T4



and if o,, = 0k, then

/ NN
Qi OTo = Qi

Bk © To = Bk

This shows that the pairings o} 8, and o), 3., for om = 0, contribute nothing to
the b-Trace. For o, # 0%, the argument of Lemma 5.2.2 shows that Yoo, 0mk 1s in

L}, and thus

li / f’.'.—/ ool Bk | = 0. .
)f(ljl( R;’_( \Oamkﬂmk R- ,\Oaml./jml. (5 9)

O.c

Q.E.D.

It remains to calculate the contributions of o} multiplied by 3;, and aj, multiplied

by ;.
Lemma 5.2.4 For the terms with o, =0,

ljlf{}[/}!s, o Bk + i) — /R_ (B + o)) = T2A(0)(Skk(0) + Sk(0))
'€ 0,¢
Proof: First we show that the product of a} 3}, is in L} near the blown up corner

z =0,z = 0 and thus contributes nothing.

Here we return to the convention that either j is 0 in a neighborhood of the origin
(and 7 is too) or that the support of j is contained in [—04/2.04/2] (and then the
support of # is contained in [—30,/4,30,/4]) that we discussed in section 4.3. If § is
0 in a neighborhood of the origin, then it is pretty obvious that the product aj Sy is

L} in a neighborhood of the corner. If not, we have

o . N
oz, 52)] = | [ (5777 = 57 Yi(r)—dr]

<C



and

|Bii(z,2)| = |/0 [(22")*Seo(A) = (a2”) ™ Too(N)]A(A)AdA|
< |(log z2")"*f]
where f € L}, in s say, for p > 2. This is enough to ensure the the product in question
is in L}.

Now turn to the pair aj; and 3;. We have

llnil aj(z,z') = llm (/ [(22")""" Sia(r) = (22") " Tha(T)) (TT)(]T

= 3(5“..(0) + Sk(0))7(0)

and it approaches this limit rapidly. Additionally,

lim/ / Bi(x, .ls)fl—l:i'2 = logs/w /m(s"\ — sTMAA(N)dA

€l0
- —1/ / o ‘l )(1\‘1—“

= —21ip(0).
Q.E.D.

Lemma 5.2.5 Ifor > 0, then

. lx ds —_—
l:lrg/ / B + akkdki(—- = 72p(04) (Sik(ok) + See(or)).

Proof: We will calculate only the term with a}, and 3, since the other calculation
is similar.
We know that

Bz, zs) = /a “[(zzs)"\/ V=0 See(N) = (225) VT (V)]

2
—d\
VA2 — o}

= —ioxp(or)(log(2%s)) " (Skr(ok) + Skk(ok))

— (log(z?s))™" /oo ((wzs)"\/"?“’i DA[AS(A)A(A)]
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+(a2s) V= D,\[,\TI.;(,\),;(,\)]) d).
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o/(z,s) is bounded, and

aj(z,sz) = —;%ﬁ(ak)(log )M+ /oo(log s)" stV Tk 4 stV ’2'“i]Dr@d
ok

First, note that the second integrand in the expression for 3j, is small enough that
the product of it and @} is in L}, and thus the limit in question is 0 for that summand.
Thus, we need only consider, for the 3}, term, the leading part, d, / log(z%s), where
dy = —iokp(ok)(Skx(ok) + Six(ork)). Now we show that the limit of the integral over
a compact set in s away from s = 0 is 0. Here, (log(2?s))™" behaves like (log(z?))!

Then, for 0 < c < d < o0

d prefs . (1 l
liml/ / Xoo'k(z, zs)d, (log(a?s))™" - ul < lunC / log | log 1|¢/,
el0 " Je Je le
<lim(C log 1— logs ds
cl0 loge

= 0.

The antisymmetry of o} 3%, under ro, combined with the results from above, means

that we have reduced the problem to

l
2d, hm/ / xo0(z, zs)(log x?s) ‘il-(—i

£

= 2d, hm [/ / ol (z, zs)(log 2* .-,)' dl ds / / ol (z,25)(log 2%s) ! ‘i—x%

(5.10)

where the second line is obtained by approximating \o by a function which is 1
when z + zs < a < 1 and 0 when x + s > a; since the difference of xo and this
approximation has support in a compact set away {rom the corners, it disappears in

the limit.
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Then calculate the two terms separately. With dy = —2ij(o)/i0k, we have

. lo ds
l(nlr(r)I/ / s)(log x%s)™ ‘%(—3
2log e — log s | ds
51(11%1/ c ap(z,xs)log ——_—)logc+logs -
d; 2loge — log s| ds
=2 log s)~" log | =8¢~ %671 &2
) lcllr(‘)] (Ogb) log 710g€+10g:~' s

since the rest of aj is in L}, which makes its contribution go to 0. Setting

| = log s

loge

we get, with ¢(e) — 0 and d(e) — L.

li /C /( a (.r T (10 l ) ldl (1.5 ([2 1 /(I(C) l (2 —_— t dt
m —— = ——1ln \ -
elo J < Je k SI08 s r s 2 clllul ) 8 241/t

For the second term in (5.10), we get. similarly,

. a—¢ l+s _l’(l_l(l_..
l(llr(r)l / (r.as)(log x%s) —
a-c s 1 [‘\

—dghm /H (log s)™"(log 2 a)_l( 1=
2loga — Zlog(l + s) + log s
2loge + log s

ds

_ & —lim “_‘(log s)~! log

T 9 o S

With the substitution ¢t = log s/ log ¢, and f(€) — 0 this becomes

y a—2lo| s }
dy . /°° b Zoga-2logli+slt)) 4 4|\ dy [ ( t )dt
— — = —— 0' — —

2 €lo Ji-g(¢) g 2 N B\ t

log e
24

N|
N~




Putting it all together, we get that

lim/ / ay(x,28)B(x, sa) dl ds

30

1/2 1=\ dt
=—d1d2[/ log<l+t,)( / log( 1+t)—]

X ) 1 )
= —dydy[- le(;) + Lig(—3) + Li,(—2)]

—_  x?
= 2p(01)(Skr(o%) + Skk(dk))T

where Lis is the dilogarithm and the last equality is obtained by consulting [Lewin].

Q.E.D.

5.3 Contribution from the Corner z =0, '’ = c©

Finally we are going to calculate the last part of the b-Trace.

The main result of this section is

Proposition 5.3.1 The contribution to the b-trace of the integral over the corner
z =0, ' = 00 is given by

_— l |
— ¥ /A Ten (AN T 0kNAA+5 2 plow)¥ue(on)

a' Ok 20 [AI>max(ox,0m) ai EspecAyyx

+ Y- A(0)¥k(0).

a,, =0

It will be helpful if we fix a little notation, reminiscent of that for the other corner,
before we actually start calculating. We choose \ . to be a function only of z +1/2’,
with support in the region {x < «,(1/2') < «}. In analogy with the previous section,
we define RY,, to be the region {r > ¢} N {2 < «.(1/2') < a} and R, to be the
region {(1/2') > e} N {z < a,(1/a’") < a}. Let

Too : {T < @, (1/2") < a} = {0 < a.(1/2') < a}
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be given by ro((z,2’)) = (1/2',1/x). As before, ro, maps RY,, diffeomorphically to
Ry, and ro 070 = Id, and Yo 075 = \ 0. We use the fact that if af ore, = af,
then fps aB — [p- aB =0.

As in the case for the calculation at the other corner, we break this down into two

subsections: the first for the proof of the contribution of a pair of diagonal terms,

and the second for the contribution of the off-diagonal terms.

5.3.1 Contribution of the Diagonal Entries

The main result of this section is

Proposition 5.3.2 The contribution of the m5;Us(y) and Up(p)m;; at the corner & =

0,2’ =00 is
d
Z / \I’Lm(/\) ) l/\ mk(/\)d’\

Um k20 |\|>max(o,om)

This is rather harder to prove than Lemma 5.2.1, so the proof will be broken into
a number of lemmas. We continue to use the a;’s, a,'s. etc. defined in the first
section of this chapter. As before, the Proposition immediately reduces to showing

that

da ds dr ds
10[/ NoY(. ¥ )——:— Ro‘.\\l(l X )TT]
_— . d
=z | T (N W, ()N
O, 0520 \|>m5\(¢7k FTm) (11\

Lemma 5.3.1 For all k.

el0

lim (/ /Xoo(akﬂk + otk + Qi) — / / \oo Qi3 + ar ik + Okkﬂk)) = 0.
e 1/r'>e

Proof: We show that each summand in the integrands above is Lj, which is

sufficient.




Consider first

lar(z, 2] = |[2UZ)VR 4+ (2 Vi) 7——,2 = dr
= f::)[logm _ logmll—-l[Dr(__ \/r2_0k - I i\/rz—ai]ﬁ dT
= |[logz — log 2']™! [; [(’” AV (Z)'v "ok Dyi(r d"l

< |[log z — log 2']7* f(z,2')]

(5.11)

where f(z,z') is LY, for any p > 2 in z uniformly in 2’ on the support of Xoo, O L}

in z’ uniformly in z on the same region. The same bound can be made on S.

For the next piece we will use the projective coordinates s = (za' )71, z. Consider

ark(z, (sz)7)

= [RS8 u(r) + 8V R T(r )i r) =

= ¢(log s)’l[Su.(UL) — Tixlow )]'7(0A)

(5.12)
+ (log s)™! [s"V ©-iD (Ske(T)i SV =% D (Ti(7)i(7))]dT.

We can bound By in the same way. The inequalities in (5.11) and (5.12) and their
analogues for the 3’s are enough to show that the products which appear in Lemma

5.3.1 are integrable on the support of \ .

Q.E.D.
Lemma 5.3.2 If o, = oy, then

lim Yooamkﬂmk —-/R' \o:;amk/jmk

‘10 OO 14 o0,¢

=2 [ " {Smr N DAFAFON] = T N DT WA FIA

Proof: Let

.1

a, . = S[ka — Qmi O "-x']

af —-l-[a + Qi 0 ']
mk = 5 mk mk N
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be, respectively, the odd and even (under ry) parts of ams, and similarly for fk.
Clearly, amk = oS, + a2, We need to calculate the contribution of amkBmk; only

the pairing of an even and an odd can contribute something nonzero.

Consider first the pairing a¢,, and 32,,.. We will use the more refined version of the
integral at the corners, Lemma 4.4.2. We write the kernels in terms of the projective

coordinates s = 1/zz’, z:

(2, 1/z8) =3IV 4 5TV IR (Si(7) + Tkl 1)) T) imemdr
= 1% 5™ S/ + 07) + Tk /2 + 0212 + oF)dt

and
o 1 fe —i‘/.\2-02 i\ =ad\ T T R A
mk — 5/ (S b= k)(bmk(’\) - Irnk('\))p('\)—"._'_zd/\.
ok A2 —of
We want to know
, drd
l:ll})l/ / (\mkl mI\( . ( 3 : (513)

Since at,,(z,1/xs)B3, is independent of ., pointwise

/ @ mkfjml. IOS )Omk jmk

This is integrable, since 32, ~ ¢/ log s and af,; ~ 1/(log s)f. where f € L} for p > 2.
Additionally,

|/ \\'amkfjmk | < | lOg s + C)( Qokr mk)‘ (514)

for small e. Therefore, by the dominated convergence theorem. (5.13) is given by

— [ log sat, B
=1 [ as, [ Dy(s VYo 4 sV k) (Sk(A) = Tar(N)a(N)dA%
= "'%f(;o mk fak —‘ \2—0‘ + \ —aL D\[( smk( \) mL A) /\ ](l/\d’

v 7]
S



Substituting in the value of af,, we get

00 ds
= Jo log saq Bmiy

= =4 I0° J2% 57 [Smr(7 () + Touie(r ())]iN(7 (1))
x [32(s7 VR~ 4+ $VV=oL) D\ [(Sk(A) — Tk A)A(N)]dAdt 22
220 oo (8t + /22 = af) + 8(t — /A2 — 7)) [Smr(T (1)) + Tmi(7(1))]i(7(t))
x Dy[(Bmr(A) — Tar(A) (M)At
= 1 [2[Sme(A) + Tk M) DA[Fmr(A) — T A,

Wi

For the term with a2, 35, we get

7 2 HO)Smr(A) + Tk (M) D[St A) = T M)A
= =7 [2[Smb(N) = Tk MDA e (V) + T A))]dA

Summing, the entire contribution of aykBmi. for o, = o, is given by
=27 | {Smk(A)Dr[Smr(M)AA)] = Toie(A) DA[Tour( A)A(A)] }dA
ok
Q.E.D.

Finally, we need to calculate the messiest contribution: that of ams, Bmr when

Om F Ok.

Lemma 5.3.3 Ase¢— 0,

w s . o
_A /‘ XooCmk(Z, 1/3$)ﬁmk(a',1/1?3)%%:3

00 /\2 - 0’? - A? - a?ﬂ,
+2rloge f (BN Smel(N) + :nnkamk(A)lf»(f\)z\‘/ — / dA

max(om ok

1 L
M [ ——— VA2 — o} *d A2 —o2\?
- m p A - Sm'
= = [ Sl )(————A «(\) dx

Ok




Proof: Recall that

ami(z,1/z8) = /:mx(a . [x-'\/"-“v’ﬁ'\/"-”i3'\/’2"’5- Sor(T)

faiVr-ohmiVr-olg "’\/TL"*T:IA(T)] ("')——T dr
T2 — o}
and
ﬂmk(x 1/3?3) / ( ) [ vi\/.\z-a,z,,—i\/.\z—af,s-i\/.\?—aim
max(Om.,J
I A VA "*T,;L(z\)] A(A) A dX.

VA2 — o?

We will work first with the product arising from the first summand in each integrand;

that is, Ajx and By, where

oS EN T " T
Ami(z,1/25) = [ pm Ve T (1) ()
max(om.ok) \/ T — Cf%

Bmk(x’ l/mS) = /oo \/\ i \/\T—ak s \/\7-0“ H'ml\( \)/)( \) 4 2d/\

max(om .ak) /\2 — o}

dr

Since

£ £ &
/. ,\'ooAkamk = /‘ -'1mk3mk - /’(l e \-x')-”lkamks (5-15)

and Lemma 5.3.4 below shows that the iniegral over s of the second term goes to 0

as € goes to 0, we need only concern ourselves with the first term on the right hand

side of (5.15).

For the sake of sanity-preservation let’s assume that oy > ,,. It makes almost

no difference in the calculations. \We have

/f Api(z,1/28)Bni(, 1/.1'3)%
_ /oo /oo CD(r"\)si\/ﬂ-ag,-\/.\2_0,2,, ERIVE R RV
ox Jok D(t,A)
X Sk(1)(7)——==Smk (N A(N) === d7d)

(5.16)



where

D(1,\) =i(y/r2 -0} - \/)\2 —of — \/7"2 — ok + \/,\2 —o02).
Note that D(7, ) is 0if and only if 7 = ), but despite this, the integrand is continuous.

A change of coordinates to r = \/A\? — o} and £ = \/ T2 -0 — \/ A2 — g2 for the first

summand and § = \/‘r2 —of— \/)\2 — o} for the second summand gives us that (5.16)

is equal to
o o o fNi(§,7) Nz(&"‘))
gie (2l :
L. (Dl(c,r)" DyE,r)) U (5.17)
where
Ar) = \/rt + o}
and

n(6r) = (6 + P+ ok~ oLV + 3

n(ér) = m

Da(€,r) = i(€ — \J7R(E,7) — 02 +\/r2 + 0F — 02)

Ni(€,7) = H(E+/r? + 0F — 0% = /o] = 02)Sus(n (€. 1)) SueA(r)A(A(r)
x A(r1(€, R))[r2(€, 1) — o?)Felé+V/Proi-ehiDiten)

Na(€,7) = H(E + 1) Smi(m2(& 1) s (Ar))AA) Vi (ra(€, 1)),

The change of coordinates is justified since the integrand remains continuous.

If (5.17) is L} in s, then we can use the Fourier inversion formula to say that the

integral of (5.17) over s is equal to

o (2 [ Ni(&r)  Na(&ir) _
27r/0 (Dl(é,l‘) D'Z(‘f""))le=od" (5.18)

A brief sketch of how to show that (5.17) is in Lj in s follows.
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If

had Arl(&» ") _ 1\,2({’ ") I
A (Dl(a,r) Dz(ﬁn'))d (5.19)

igin L' and its first € derivativeis in L? for some p > 1, then (5.17) is L} in s. Clearly
the problem is near £ = 0. Let Dy = £dy and Dy = £da. Then d; # 0, and we may
rewrite (5.19) as

' f,r) No(&,r ) 1 ( . :\’2(:.1‘))
{j (dl(f, dy(é.1) /; d= (l,(~ 1) dy(z.1) =t drdt
(5.20)

which is clearly continuous and corpactly supported in €. and thus L'. Differentiating
the right hand side of (5.20) with respect to £ gives us something which is L? in &,
for p < 2. This is because of some nice properties of Sk. First, near A = oy,
Smk(A) ~ cy/A? — of. Secondly, although Spk(A) may not be smooth. it is continuous,
and near an element o; of the point spectrum of the Laplacian on the boundary, it
is smooth in /A? — 0}, so a z derivative falling on S,(7i(z.r)) gives something

continuous when integrated over r, and then the € derivative of the integral does not

behave worse than 1/,/€2 — of.

Now we return to (5.18). Evaluating the integrand at £ = 0 and returning to the

coordinate A, we have

[ [ aue

21r/ TN MH(A) _‘_l_(q (\))M+l (\) —————/\2_072" d\
o mk d\ Ymk (——,\2 — a'z 9" mA ‘ ’\ 2 _ a'z

VA2—at -\ /N -a?
d)

—orloge / " S MAN) k(M)A

2
. A — o}



Similarly, for (amk — Amx) multiplied by Bn — B, we get a contribution of

-/:o /f Xoo(@mk = Amk)(Bmk — Bmk)

2r [ . d A2 —ad ] d V’\Z_G'Z"
=-5/ Trmi(N)A(X) (d_A(ka(A))ﬁ + 3TNy (,Az _o? )) “
N2 _ _ 42
VA2 —af - ‘/ Imax + f.,

—2rloge / Tk NN Tt (M)A \2

Tk

where f, goes to 0 as € goes to 0 by Lemma 5.3.4 below.

The other two products arising from this division of ami and Bm contribute
nothing in the limit. Consider the pairing of (Qnk — Amk) and B,,;. By Lemma 5.3.4

we need only consider

ls
/ / (amk - AmL)BmL dx :
=] (o] 20 S_‘\/r _olll-‘\[\z—a;"n —_ s—i\/rz—ﬂi’_—i\/.\2—ni_
- -/0 '/"k /vk D(\, 1)
T ds

X Tonke(7) Sk (A)iR(T)p(N) . d\dT—

\/Az—aﬁ \/r'z—a S
DO\ 7) =iy/12 =02 + i\ /N — o2 +i\[r2 — o} + i\ - o

and we have assumed that o, > o,,, although it makes no difference except in the

where

limits of integration. Notice that the denominator is non-zero, and we may write, for

example,

/ / / ( s—iVr2-a} —;\/\ -al ) Tk (T)Smr(A) \/f’_\_))‘_\/’ﬂ_d/\d d_s_
ox Jox A, - —
— /°° /m/w ( SD,S“\ﬁg‘”i-‘\/-\’-“k \)
T oo DO - e
XTWIL(T)5mk Ji(T)Ac \)\/———— ,____ ak

dAdT

(v}
-1



since Smk(A) ~ ¢\/A? — o} near \ = oy.

Q.E.D.

Lemma 5.3.4 For o, # 0k,

dr ds

lim/m/;(l _\co amk X, 1/1 \)ﬂmk(l l/lb)—— =0

el0 Jo

Proof: Suppose that \o(2 + sz) = 1 when r + so < b. Then we can estimate

da ds

Loo ‘/¢; |(1 - \'oo)amk X, l/l")/jmk X, l/l")l—_
hr Is
S/ / lami(a. 1/ xs)Bm(. 1/“”@_(_ (5.21)

b/2s lr ds
+/ / [amr(e. 1/ es)dmrlr. 1/“”2(—'

Now we would like to estimate the size of ani(r.1/rs). Consider, for example,
the first summand in the expression for a,,:

I VT o (2s) VT ok S ()i (T)

max(ok,0m)

\ ’ — a'k
-1
0o . . 2
_ T T, || Lot gt Sustrite)| .
max(ok,0m)

Consider the region where s < 1. Then. in the region of interest (that which appears

on the right hand side of (5.21))
log(rs) < loge

so that

—\/r? = 0o}
log x + log(xs) #0.
T2 — 02,
Then, in this region we can use the same methods as in the proof of Lemma 5.2.2 to

bound the right hand side of (5.22) by

|(log x)~ ¥ (log xs)™% f(s)]
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where f € L for p > 2. We can do the same for the region with s > 1, b/2s <z <,
and for the other summand in the expression for a,, and for 3,x. We have, then,

that
o refs
/ / (1 = Xoo)ami(t, L/x8)Bmr(x, 1/2s)
0 3

/b refs lr ds ¢/s dz d
S/ / |(log(.1:s)log.r)"‘fg|gf-;+ |(log(s)logx)~" fyg| i
o Ju2 r s Joja

T s
with f and g in L! in s, for p > 2. Consider just the integral for s < 1, which is
b 5

indicative of what happens.

e/b rels 1, dzds
/ /m |(log(zs) log 2) ™ fg| ==

e/b
-4

dr ds
(log s)~! fg (log | log x| — log | log ;l's)lu; —

£IS

e/b b/2 . .
= / (log s)"fg' log | log €/s| — log | log b/2| + log log b/2 + log s £lid_s
0 log e r s
The integrand on the right side is L}, independent of ¢. and so
1 refs
lim/ / (1 = \o)ame(r 1/ 2s) (. 1/2s) — 0. (5.22)
elo Jo Je
Since we can say the same for the integral over s > 1, we are finished.
Q.E.D.

Proof of Proposition 5.3.2 Since by Lemma 5.3.1 the only non-zero contribu-
tions come from a pairing of a,,x and 3.k, we need only sum over all indices m and
k to get the contribution of the diagonal terms near the corner « = 0, 2’ = co. Note

that since

A — o} _
Tok(A) = F=—=5tm (), (5.23)

2 _ g2
A2 — o2

summing over m and k gets rid of the log € terms which appezi in Lemma 5.3.3. This

and the fact that

1/2

)‘) Smk(A) 1A > weax(|og], |om|)
\2—02 1/2 -

( \/\_Qj) Toi(A) i A < = max(|onl- [oml)
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give the desired result.

Q.E.D.

5.3.2 Contribution of the Off-diagonal Entries

Proposition 5.3.3 The sum of the contributions of the integrals of the off-diagonal

entries at the corner x = 0,2’ = 00 s

4mi Z/Al>w(“ﬂm)‘l’km()\)p(/\) d\ Ymi(2) d)‘+ Zp (04)Winlow)+ Z p(0)W(0).

dk—O

Fortunately, by now we have done most of the work for this one. Below we outline

a proof for the contribution of mj,Us(y) multiplied by o(p)m2.

Lemma 5.3.5 With o)., 3, defined as in section I,
lnm/ o a-'.3'.—/ 3] =0
(10[ \ o Qg9 . ESYREA

Proof: Since
QO Tog = Oy Fi O Ty = 3k

this follows from our usual symmetry arguments.
Q.E.D.

Lemma 5.3.6 The sum of the contributions of the pairings of o} and B} and aj;

paired with B, at the corner r =0, 2' = o0 is
T2 p(ok)(Skr(0k) + Skr(or))-
Proof: The proof is just a combination of the proofs of Lemmas 5.2.4 and 5.2.5.

Q.E.D.
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The above two lemmas are true for the analogous terms from the other off-diagonal

pair, m3,Us(n) and Ug(p)mia.
Lemma 5.3.7

— d 1
hmz:[/ mk mk_/ mkrjmk] Z/ \\l’km(A)fs(’\)IX(X\I’mk)dA

|\[>max(ax,om)

Proof: The proofs of Lemma 5.3.2 and Lemma 5.3.3 work equally well here, with

the only real difference being the changes in the factors of A.

Q.E.D.

Proof of Proposition: We have calculated the contribution of one off-diagonal
pair of terms here. The other ofi-diagonal pair gives the same delta functions at the
spectrum of the boundary Laplacian, but for the continuous part. which would be

the analog of Lemma 5.3.7, we have

QwZ/ LT (M)A - (AW, A,
: m.k |\|>max(ox gm)A k'"( )/) )—( mk )(

Summing over the two off-diagonal pairs, then. gives us the result claimed in the

proposition.

Q.E.D.

5.4 Proof of Theorem 5.0.1

Propositions 5.2.1 and 5.3.1 show that
b'Tf(M+Uo(P)M+)

_— . d | )
= ¥ /A 7S SREVISE S S CALTHEN

max(\o.0
om0k 20 IAl> (0k0om) ﬂ;’:Gapi?t‘A().\'

+ - Z A(0)¥ k(0

ak—O
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Then, using the fact that for A(f) an invertible matrix with continuous dependence
ont €R, A"‘(t)f—tA(t) = % log det A(t). the first term on the right hand side gives
1/(27ri)ﬁ log det ¥(\) except at points where log det W(A) might jump (A = o). Re-
calling the discussion of the jumps in the argument of the determinant of the scattering

matrix (Chapter 2, Section 2), we are done.
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