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Abstract

Interface Agents are semi-intelligent, semi-autonomous computer programs — per-
sonal assistants that help their users in dealing with computer applications. They
make use of knowledge about the tasks, habits and preferences of their users to sim-
plify the use of the application by automating tasks on their users’ behalf.

A difficult problem in the design of Interface Agents is that of Knowledge Ac-
quisition. Forcing either a knowledge engineer or the end-user to program the agent
can work in some situations but is very limited. A learning approach is indicated,
yet no single learning technique is truly sufficient for an application of this complex-
ity. An integrated approach is presented here, involving Memory-Based Reasoning
augmented by Significance Feedback Learning and Rule-Based Induction.

This thesis discusses a particular Learning Interface Agent which has been im-
plemented using this integrated approach — a Meeting Scheduling Agent. Complete
testing of this agent would have required it to be used in a meeting-intensive environ-
ment for a period of several months — a requirement which it was not practical to
meet. However, preliminary testing of the agent was performed in a variety of ways,
which demonstrated the potential for the Meeting Scheduling Agent to learn a user’s
preferences within a reasonable amount of time, provided that the user’s criteria for
making a scheduling decision are things which the agent has access to.

The results suggest that meeting scheduling is a task of reasonable complexity for
an agent of this sort; however, because of the time required to accumulate a sufficient
number of examples for the agent to really learn the user’s habits, this approach to
developing agents may be more appropriate for applications in which a larger number
of examples occur within a shorter time frame. An important but surprising result
which arose from the testing was that simplistic rules can actually hinder the agent’s
learning by misleading it in many situations. It will be important to carefully educate
users about the effective use of rules when facilities to enter them are provided.

Thesis Supervisor: Patricia E. Maes
Title: Assistant Professor of Media Arts and Sciences
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Chapter 1

Introduction

As computers become more prominent in the home and work place, an increasing
number of users come to rely upon them for more and more of their day-to-day tasks.
This interaction tends to include a great deal of boring repetitive activities, such as
deleting “junk” electrcnic mail (e-mail), filing away certain types of interesting news
articles, or responding to meeting requests. In the name of efficiency and relief from
tedium, it is desirable to be able to automate the most predictable of these actions.

One possibility that exists today is for users to write macros to automate truly
repetitive tasks. Yet often a somewhat more flexible and/or easier to use solution is
required. This is where interface agents can fill an important need.

An interface agent is a semi-intelligent, semi-autonomous computer program that
assists a user in dealing with one or more computer applications. Interface agents
typically behave as personal assistants: they have knowledge about the tasks, habits
and preferences of their users and use this knowledge to automate actions on their
behalf.

In order for an interface agent to be useful and acceptable, it must satisfy the
following criteria:

e Competence: The agent must be able to correctly predict the user’s actions

in order to automate tasks for him or her. In addition, the agent must recognize

situations in which its competence is questionable, and defer to the user in these

cases.



e Trust: The user must feel confident that the agent is in fact competent, as

described above, and thus feel comfortable delegating tasks to it.

o Helpfulness: The user must feel that any effort that went into building or

training the agent was worthwhile because of the savings in effort realized later.

One of the main problems in the actual implementation of Interface Agents is
that of Knowledge Acquisition: How does the agent acquire the knowledge it needs to
provide effective personalized assistance? The answer to this question is a significant
factor in determining how well the agent can meet the above criteria.

This thesis argues for an integrated Machine Learning approach to the problem
of Knowledge Acquisition. It presents an example of a Learning Interface Agent
built in this way, integrating Memory-Based Reascning, Significance Feedback and

Rule-Based Induction.

1.1 Motivation

This thesis makes contributions to the field of Intelligent Interface Agents, and to the
field of Machine Learning.

Contributions to the field of Intelligent Interface Agents

This thesis develops Pattie Maes’ proposal to further explore the idea of a Machine
Learning approach to Knowledge Acquisition for Intelligent Interface Agents. It does
so by the implementation of a specific Learning Agent, namely the Meeting Scheduling

Agent. This has led to the following contributions:

o This implementation has required investigation into what learning techniques

would be appropriate for such an agent, and how they might be combined.

o The results from testing this agent confirm that the Machine Learning approach
to Knowledge Acquisition is indeed a promising approach which should continue

to be investigated further.
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o Finally, the experience of implementing this agent has suggested various direc-

tions for future research, as presented in Section 7.3.

Contributions to the field of Machine Learning
This thesis also makes contributions in the area of Machine Learning:

@ It validates the use of Memory-Based Reasoning [15] for an incremental learning

task.

o It expands upon the work of Stanfill [16] in incorporating Rule-Based Induction

into the Memory-Based Reasoning paradigm.

o It suggests a mechanism by which Memory-Based Reasoning, Significance Feed-
back Learning and Rule-Based Induction can be combined within a single sys-

tem, allowing the systern to share the advantages of all of these techniques.

1.2 Organization of this Thesis

The next chapter discusses contemporary approaches to Knowledge Acquisition, as
well as our learning approach. It examines how well each approach deals with the
three requirements introduced above: competence, trust and usefulness.

Chapter 3 introduces the Meeting Scheduling Agent, the particular Learning
Interface Agent implemented for this thesis. It describes the functionality of the
agent, from the user’s point of view.

Chapter 4 describes the underlying algorithms used in the implementation of
the Meeting Scheduling Agent.

Chapter 5 discusses issues involved in combining rules and exampies within the
Memory-Based Reasoning Paradigm.

Chapter 6 contains the results and analysis of tests run to evaluate the Meeting
Scheduling Agent.

Chapter 7 describes related work and contains conclusions based on the experi-

ence of implementing, and upon the results of testing the Meeting Scheduling Agent.

12



It also contains suggestions for directions of future work.

13



Chapter 2

Knowledge Acquisition for

Interface Agents

One of the most important obstacles in the quest to develop competent, trustworthy
and heipful Interface Agents is that of Knowledge Acquisition — somehow the agent
must gain access {o the information which it requires in order to assist the user
effectively.

In order for an agent to perform competently, it requires some way of determining
what the user would want it to do in a particular situation. This requires knowledge
at least about the user, and sometimes also about the particular application the agent
is agsisting the user with.

The other aspect of competence is recognizing when a prediction is weak, or being
able to compute a confidence level in any prediction. This ability is closely tied to
the Knowledge Acquisition strategy, as how the knowledge got there is a major factor
influencing how likely it is to be correct. The knowledge acquisition strategy also
determines what facilities the agent may have for judging the correctness of its own
knowledge.

How trustworthy an agent is is largely dependent upon its competence; however it
is also greatly influenced by how good the the user’s understanding of it is. In addition
to affecting the agent’s competence, the choice of Knowledge Acquisition strategy

also determines how well an agent can foster this very important understanding, thus

14



having a significant impact on the user’s level of trust in the agent.

In evaluating the helpfulness of an agent, we must consider both user effort in
training the agent, and the amount of benefit the user is finally able to derive from
using the system. The latter is again closely related to competence, while the former
is probably the factor which is most directly influenced by tie choice of an approach
to Knowledge Acquisition, as this decision determines the degree to which the user is
expected t> help the agent acquire the knowledge it needs.

This chapter contrasts contemporary approaches to Knowledge Acquisition with
our learning ap.roach, in terms of how well each succeeds in meeting the requirements

of competence, trust and helpfulness.

2.1 Contemporary Approaches

Contemporary approaches to the problem of knowledge acquisition have focused on
programming the agent. Either a Knowledge Engineer programs it in advance with a
hopefully comprehensive set of rules (cf. [1, 7]), or the end-user programs it himself

or herself in order to create a truly personalized assistant (cf. [9]).

2.1.1 Knowledge-Based Approach

In the “knowledge-based” approach, the agent is endowed by its creator with a great
deal of knowledge about the application and typical users (the domain model and
user models, respectively). This is currently the most popular approach taken by the
creators of interface agents [17]; however, no commercial products have yet appeared
which employ this technique.

An example of an agent built using this approach is Chin’s UCEgo [1]. This
program is a help system for the UNIX operating system that uses built-in knowledge
to help recognize a user’s plans and provide appropriate help, by either answering the
user’s questions or volunteering information te help correct perceived misconceptions
on the part of the user. UCEgo has a great deal of knowledge about UNIX (domain

model) and its typical uses (user models), which it can use in deducing users’ goals,

15



allowing it to provide such help.

In this approach the agent is knowledgeable from the start, and can assist very
naive users immediately. However, this approach requires a huge investment of time
and expertise to build the domain and user models. Furthermore, once built, agents
designed in this manner are neither customizable to individual users’ (possibly chang-

ing) requirements, nor adaptable to other domain areas.

Competence

The agents’ competence in this approach is determined by the ability of the Knowledge
Engineer to predict in advance all situations in which the agent will find itself, and
the correct action to take in each of these situations.

It is thus very difficult to develop a competent agent using this approach unless
the application domain is very simple and well-defined, and all the users’ actions fall
into easily recognizable patterns of behavior.

The need for the agent to be able to recognize a weak prediction is minimal in
this scenario. It is incumbent upon the Knowledge Engineer to determine in advance

the situations for which rules can be developed, and those for which they cannot.

Trust

In this scenario, the agent is a Black Box. The user has no idea what the agent’s rules
are, and thus has little reason to trust such an agent until he or she has some expe-
rience with it. Unfortunately, having to gain the required experience while working

with an agent one cannot trust is quite undesirable.

Helpfulness

The user has little effort invested in this agent. Provided that it does prove to be
sufficiently competent and trustworthy, it will also probably be perceived by the user
as being helpful, even if it is only able to assist with a few tasks; however, as discussed
above, the likelihood of devising a competent and trustworthy agent of this type is

small.

16



2.1.2 User-Programming Approach

At the other end of the spectrum we find the user-programming approach. In this
case, the user programs agents to perform tasks he or she wishes to have automated.
This is similar to writing macros, but can be more flexible due to the availability of
a more expressive language.

For example, Malone and Lai’s Oval system [9] allows the user to create “semi-
autonomous agents” consisting of a collection of rules for processing information re-
lated to a particular task.

As this approach is the easiest for a developer to design and implement, com-
mercial agents employing this approach are beginning to appear on the market. For

1M is an electronic mail system which allows the user to specify

example BeyondMai
rules for sorting, prioritizing and discarding incoming electronic mail. It also allows
one to arrange for mail to be automatically answered with a canned message while
on vacation. Magnet™ is another user-programmed agent which allows the user to
automate file-related tasks on the Macintosh, such as copying or moving files fitting
a given profile, doing directed back-ups, cleaning up the desktop, and keeping track
of shared files to ensure that the user has the most recent version.

Systems such as this one are extremely flexible. For example, an Oval user could
create a personal mail sorting agent by generating rules that sort incoming mail
messages into different folders, depending on various characteristics of the header
information. The problems with this approach are that the user must recognize the

opportunity to use an agent, have the motivation and ability required to program it,

and take responsibility for its maintenance.

Competence

The competence of agents developed in this manner depends upon the user’s ability
to program them and the system’s ability to support the user in this task. In most
cases a very skilled user would be able to create competent agents in this type of
system. However, in some cases a user may be unaware of all the true rules he or she

uses in making certain types of decision, and thus even if skilled may end up being
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unable to create a sufficiently competent ageat to handle this type of situation.
The issue of recognizing weak predictions is again less important with this ap-
proach, as the user sets up rules specifying the situations in which the agent should

take control, and those in which he or she wishes to be deferred to.

Trust

This approach permits a great degree of trust (providing that the user trusts his or her
own programming ability), as the user determines exactly how the agent is supposed
to behave. However, even in this type of system, there is sometimes doubt as to how
the user’s instructions will be interpreted by the agent or what it will do if ambiguity
arises, because the user generally programs the agent in a language that utilizes a high
level of abstraction. It may also be difficult for the user to test his or her programs
(i.e., agents) before letting them loose on real data. In this case the user may still be
hesitant to trust it. (See [11] for an example of just such a misunderstanding which
arose in Steven Levy’s first use of the Magnet™ product, causing a temporary panic

until he found his missing files sitting in his Macintosh’s virtual trash can.)

Helpfulness

The user must put a great deal of effort into developing such an agent, thus it will
need to save the user a lot of time in order for it to be considered worthwhile to the

user.

2.2 A Machine Learning Approach to Knowledge
Acquisition

Professor Pattie Maes, of the MIT Media Laboratory, has argued that neither of the
contemporary approaches is truly satisfactory, and has proposed a research agenda
to explore a third possibility — having the agent learn the knowledge it needs to

effectively assist the user.

18
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Figure 2-1: Interaction between Agent, User and Application

In our conception, there is one agent per user, able to learn the complex preferences
of that particular individual. In the current conception we also envision different
agents for different tasks, but in the future, these could conceivably be combined into
one overall personal assistant.

The agent learns the user’s behavioral patterns by observing the user’s interaction
with the application, as shown in Figure 2-1. When it is confident that it knows
what the user would do in a situation, it can automate that action for the user,
by interacting with the application in the ways it has observed the user doing so.
It can receive feedback from the user when iis prediction is incorrect (regardless of
whether or not that prediction was acted upon). It can also provide explanations of
its predictions to the user.

Although it is called an “Interface Agent,” as shown in this figure, the agent is

19



not an interface between the application and the user. The user may still use the

application directly, making only as much use of the agent as he or she desires.

Competence

A learning agent gradually builds up competence, learning what to do in a particular
situation by observing and memorizing what the user has done in previous similar
situations. Clearly this will only be possible in applications in which there is a fair
degree of regularity and repetitiveness — if each situation is entirely independent
from all prior ones, it will be impossible for the agent to make good judgments based
on this type of knowledge acquisition.

However, the advantages of a learning approach are many. In addition tc requiring
less overhead of either a knowledge engineer or the user to program them, learning
agents are able to learn very subtly complex and individualized rules — rules of which
even the user himself or herself might not have been consciously aware.

In a learning scenario, some scheme is necessary whereby the agent is able to
determine to what extent it has acquired the knowledge required to make a particular
prediction. We accomplish this by having the agent compute a confidence in its
prediction, which is made possible by the main type of learning algorithm we use,
namely Memory-Based Reasoning (MBR) [15]. This is discussed in greater detail in
Section 4.1.3. The agent makes use of user-provided thresholds (discussed further in
Section 3.2.2) to determine when that confidence is great enough to take the action,

and when the user should be deferred to instead.

Trust

Because the agent learns everything by observing the user, it is easier for the user to
come to trust such a system than one in which, for example, rules had been provided
in advance by an unknown knowledge engineer.

The ageut gains its competence gradually. Our goal is to have it earn the user’s
trust over that same time period. In order to foster this gradually improving trust re-

lationship between user and agent, we provide a means by which the user can provide

20



confidence-level thresholds to control the level to which the agent takes autonomous
actions on the user’s behalf. We also provide a means by which the agent can demon-
strate its progress to the user on a continuous basis in a relatively unobtrusive manner.
Finally, we endow the agent with the ability to explain its suggestions and actions,
permitting the user to understand it better, which will hopefully help to foster a
greater degree of trust. The specific mechanisms by which these are accomplished in

the Meeting Scheduling agent are discussed in Section 3.2.2.

Helpfulness

The investment made in training a learning agent falls somewhere between that of
a Knowledge-Engineer-programmed agent (i.e., none) and a user-programmed agent
(i.e., significant). Training a learning agent takes mainly patience — it takes very
little additional effort on the part of the user, but does take time. It also takes a
certain amount of monitoring so that the user feels confident about setting appropriate
thresholds to allow the agent to take autonomous actions.

The main idea in accomplishing the goal of helpfulness is to make the agent
as unobtrusive as possible during its training, so that whatever help it manages to
provide (and after a while it will be significant) comes at small enough a cost to make

it immediately worthwhile.



Chapter 3

A Meeting Scheduling Agent

The remainder of this thesis discusses the implementation of a Learning Interface

Agent for Meeting Scheduling. This agent runs alongside a graphical calendar appli-

cation (see Figure 3-1) and learns the user’s scheduling preferences.
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Figure 3-1: The Calendar Application (with the Agent Alert and Ready to Learn)
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When a meeting request arrives, the agent makes a prediction as to what action
the user will take (i.e., accept the invitation, decline it, request renegotiation of
the suggested time, accept it and skip or reschedule a conflicting meeting, etc.).
Depending on its confidence in its prediction, the agent will either do nothing, suggest
that action to the user, or take it autonomously, and prepare a report for the user
describing the action which was taken.

If the agent does not take the action autonomously, it memorizes the action the
user chooses in that situation. If it does take an autonomous action, it adds that
action to its memory of examples when the user approves of the action described in
the agent’s report. Here approval consists of not changing the action after seeing the
report — if the user does change the action the user’s newly chosen action is mem-
orized instead. As the agent memorizes more and more correct actions, it becomes

more accurate in subsequent predictions.

3.1 The Calendar Application

The Meeting Scheduling Agent is intended to run alongside a top of the line calendar
application, such as Meeting Maker”™. However, in order to allow an agent the access
it needs, such an application would need to be both “recordable” (meaning the agent
could learn what actions are taking place within the application) and “scriptable”
(meaning the agent could take actions in the application directly). Since currently
available commercial calendar software is not written to provide these facilities, it was
necessary to implement a calendar application from scratch as part of this project.
Although care was taken to make the application usable and convenient, designing
and implementing the calendar application was a minor part of this research, and
thus this application does not compare favorably with those currently on the market.
(Work is currently underway in our group to develop a protocol by which agents
could communicate with any appropriately instrumented Macintosh applications by
means of Apple Events [13]. This will make such implementations unnecessary in the

future.)



Both the calendar application and the agent were implemented on a Macintosh
Quadra 900 in Macintosh Common Lisp with CLOS. The calendar application takes
advantage of the Macintosh’s Ethernet connection to access the UNIX SMTP server
and file system to send and receive mail.

The calendar application supports regular weekly, biweekly and monthly meetings,
in addition to one-time-only meetings. It supports meetings scheduled within the
system (internal meetings) as well as two types of meetings scheduled outside the
system: external and personal meetings. (The types of meeting scheduled outside
the system are provided as a convenience to the user — they do not have any a
priori meaning to the application, though the agent can “learn” differences in the
user’s treatment of the two types, if applicable.) To initiate a meeting, the user
specifies the details of the meeting (date, time, length, participants, description) and
the application sends mail to the other users who were invited. Users receive e-mailed
meeting invitations and choose a response. If the new meeting does not conflict with
an existing appointment, the user may choose to accept the meeting, decline it, or
request renegotiation, that is, appeal to the initiator of the meeting to select a more
convenient meeting time. If the new meeting does conflict with one or niore existing
meetings, the user’s choices become: decline, request renegotiation, or accept
and skip conflict (simply don’t show up to the conflicting meeting(s)), accept and
cancel conflict (cancel the conflicting meetings if initiated by the user, otherwise
send a message to the meeting initiator changing one’s prior accept to a decline),
accept and renegotiate conflict (renegotiate the meeting time(s) of conflicting
meeting(s) if initiated by the user, otherwise send a message to the meeting initiator
requesting renegotiation), or partial accept (inform the initiator that the user will
be able to attend only part of the meeting, as the rest of it conflicts with another).
Screen snaps of the application showing these choices are found in Figures 3-4 and
3-5.

Depending upon the responses the initiator gets to the invitation, and upon other
demands on the initiator’s schedule, he or she may at any time cancel or renegotiate

the meeting, where renegotiating means selecting a new date and time for the meeting.
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In the current implementation of the calendar application, all of the participants in
a meeting must be using the application. A more sophisticated version could permit

semi-structured electronic mail to provide an interface to people outside the system.

3.2 The Meeting Scheduling Agent

This section introduces the basic architecture and functionality of the Meeting
Scheduling Agent. The details of the algorithms used to implement the agent are
discussed in the next chapter.

The agent starts out with extremely minimal knowledge about the calendar ap-
plication, and learns everything else it needs to know. Initially it is given a list of
features of a meeting scheduling situation, and a list of possible actions a user might
take. It has a partial ordering on the “positiveness” of the actions, but does not know

which actions are appropriate or even permitted in a particular situation.

3.2.1 The Agent Architecture

A diagram of the agent architecture is shown in Figure 3-2.

The agent’s learned knowledge is contained in two databases. The main one is
an example base of situation-action pairs that represent all the actions the agent has
observed. The other is a database of weights assigned to other users and meeting
topics. These weights are used to interpret the raw information contained in the
example base. For example, the meeting initiator is stored as part of the example,
and it, is possible to use the initiator’s weight in the auxiliary database to determine
the initiator’s importance, which may in some cases predict the user’s behavior more
consistently than the specific identity of the initiator.

For the calendar application, a situation consists of a meeting invitation. Cur-
rently thirty-two features of such a situation are considered, including such things
as day of the week, time of day, number of participants, initiator’s importance, how
busy your schedule for that day was before the meeting request arrived, whether

there is already a conflicting meeting in your schedule, and how the average and total

25



AGENT

Predicted Action
P _—w=t  Situation-Action Pairs ) e
// //
II -~
Priority Weightings . 7
/ ty Weighting Reinforcement \g [
I Learning T~
| N
| \
| \
| \
i \
| |
! |
{ USER ]
\ /
\\ New Situation New Action _/
] |
N\
~ 7/ /
~2_ _ 7

—~—
S e St o — — — — — —— — ——

Figure 3-2: The Agent Architecture

importances of the participants in this meeting compare with those in a conflicting
meeting. The full list of features used in the current implementation may be found
in Appendix A.

As shown in Figure 3-2, the example base is updated and analyzed using Memory-
Based Reasoning, a nearest-neighbor technique whereby a current action is predicted
on the basis of previously memorized situation-action pairs. The database of weights
is updated using Significance Feedback Learning, wherein weights are increased or
decreased by a small amount each time feedback is given to suggest they are incorrect

in the relevant direction. Details of these learning algorithms are given in Chapter 4.

26



3.2.2 Fostering a Trust Relationship

A major factor contributing to a user’s trust relationship with a computer program
must be a feeling of ultimate control. To this end, I allow the user to set two thresholds
on the confidence level the agent has in its prediction. A “tell-me” threshold defines
the confidence level above which the agent will tell the user what its prediction was
and request additional feedback if its prediction was incorrect; a “do-it" threshold
sets the confidence level above which the user authorizes the agent to take actions
autonomously. These thresholds may be set on a per-situation basis — they may
depend upon the action that the agent is predicting and the number of days before
the meeting is scheduled to take place. In this way, the user may allow some (perhaps
easier to recover from) actions to be taken at lower confidence levels than others. This
gives the user control over when and in how far to entrust the agent to act on his or
her behalf.

In order to help the agent gain the user’s trust as it gains competence, I provide
a means by which it can show the user its progress, in a way that is not too intrusive
to the user. This is done by means of caricature faces which display the state of the
agent, allowing the user to detcrmine this state at a glance, as shown in Figure 3-3.
When the agent makes a prediction, a caricature face is used to show it’s degree of
certainty, relative io the two user-set thresholds. Once the user takes an action (or
reacts to an action taken autonomously by the agent), a new expression is used to
show whether or not the agent’s prediction (or action) was correct.

The user may make use of a relatively low “tell-me” threshold to observe the
confidence levels at which the agent consistently makes correct predictions. However,
with the caricature faces indicating the agent’s success or failure on each prediction,
the user can gain a feeling for how often the agent is correct, even when the “tell-me”
threshold is high.

To further ensure that the agent understands and begins to trust the agent, a
facility is provided by which the agent can explain its prediction to the user if asked
to do so (as shown in Figure 3-6). This is again made possible by the Memory-Based

Reasoning algorithm used as the agent’s main learning technique, and is discussed in
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Figure 3-3: Caricature Faces Displaying the Agent’s Current State

greater detail in Section 4.1.4. The user may also request that the agent’s prediction
and confidence be displayed in any particular situation (i.e., even if the confidence

fell below the “tell-me” threshold) by simply clicking on the agent’s caricature face.

3.2.3 Handling Meeting Requests

Whenever a new meeting request arrives, the agent intercepts it and makes a predic-
tion as to what the user’s response would be. Along with each prediction, the agent
computes its confidence in the prediction. It then compares its confidence level to the
“tell-me” and “do-it” thresholds set by the user.

If the confidence is above the “do-it” threshold for that type of situation, it takes

the predicted action and prepares a report so that the user can learn what actions
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were taken on his or her behalf. If not, the agent queues the message for the user
(rememberirg its prediction, confidence level and reasoning so that it may reveal
these to the user if appropriate). The queued messages and reports are presunted at
the user’s convenience.

Queued messages consist of items of information for the user, such as replies
received from others to meeting invitations the user had issued, and new invitations
that the agent was not authorized to reply to autonomously, by virtue of the fact
that its confidence was below the “do-it” threshold. If the agent’s confidence was
also below the “tell-me” threshold, the agent will appear “unsure” of what to predict,
and will simply present the user with a dialog containing the details of the invitation
and the reply choices available (as determined by the calendar application). This is
shown in Figure 3-4.

If the agent’s confidence was above the “tell-me” threshold when mal.:ng a predic-
tion for a particular request, the prediction will be displayed to the user along with
the dialog containing the details of the invitation and the replies to choose from, as
shown in Figure 3-5. In this case, if the user makes a choice other than the predicted
one, the agent will request feedback from the user. If the action the user takes is
more “positive” than the one the agent predicted (the agent is provided with a par-
tial ordering on actions as part of its initial knowledge), the agent will ask whether
any of the initiator, the participants or the keywords were more important than the
agent had previously thought. (The user should answer in the affirmative if these
factors had an impact on his or her selection of the more positive response than the
one the agent had predicted.) If the use~’s action is less positive than the one the
agent had predicted, the agent will first ask if it was just a bad time (in which case
no change to the weights occurs). If not, the agent will ask whether any of the ini-
tiator, participants or keywords were less important than it thought. If the user does
indicate that any of these things were more or less important than the agent thought,
the significance feedback algorithm will increase or decrease their importance ratings
accordingly.

When reviewing reports of autonomous activity taken by the agent, the user may
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30



For the INITIATE request for meeting:

Dazer WEDNESDAY 67271993
Time: 1000 - 11:00

Length: 1 hours O minutes
Freaquency: ONCE

Beagrlntisat

1T W

Neat teo discuss internship
requiresents end pepersork

s

1 thought you would chocoe
REQUEST-RENEGOTIATION because it ta ¢imitar to

Lo

Labet

Date: WEDNESDAY , 67271993
Tihoae: 1100 - 1200

Lesgth: 1 hours O minutes

Frequency: ONCE
faageiatien:

[weat o discuse intermenip 1

BT *olE ]

k-]

il

21

po

[ festure compartsen )

IR

Figure 3-6: The Agent Explains its Suggestion

change the action taken by the agent if necessary (causing a “changed reply” message
to be sent out to the initiator). When this occurs, the agent also requests feedback

as described above.

3.2.4 Accelerating Agent Trairing using Rules

Although the learning approach to knowledge acquisition has many advantages,
agents built using this approach do take time to train. While users should not have
to program rules into their agents, it is beneficial to be able to provide them with the
opportunity to do so if they are so inclined.

Users who wish to take advantage of this facility may enter rules for their agents.
Each rule consists of a user-generated hypothetical situation, with some or all of the
details filled in, along with the action the user would have taken in this case. Each
(possibly wild-carded) situation is paired with the given action and incorporated into
the MBR Example Base, as shown in Figure 3-7. These rules may be specified to be
either default or hard-and-fast rules. A description of how rules were included in the

Meeting Scheduling Agent is found in Section 4.3. More details on the general issues
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Figure 3-7: The Agent Architecture Incorporating Rules

involved in the integration of rules into the MBR paradigm are given in Chapter 5.
There are two levels of detail at which one can consider situations — there are the
high-level details of the situation which are stored, and the lower-level features which
are computed from these details (in a one-way transformation) for use in the Memory-
Based Reasoning algorithm. In most cases the user would specify a hypothetical
situation by settin; some or all of the high-level details of the meeting request and
the week it occurs in. Meeting details may be set using a form which closely resembles
the dialog box for initiating a new meeting. Details of the surrounding week may be
specified using an interface in which various blocks of time during the week can be

set as either being free, or as containing internal, outside or personal meetings; or can

remain unspecified.
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Figure 3-8: The Low-Level Interface for Entering Rules

However, some features cannot easily be set using this type of interface. For
example, it would not be possible for the user to indicate that there was one conflict
with the new meeting, without specifying particular times for the meeting and the
conflict. For cases like this the user is provided with an alternate interface by means
of which it is possible to set the values of any of the lower-level features, such as
number of conflicts, directly (see Figure 3-8). Both interfaces may be used together
to specify a rule, with most details being entered on the high-level interface, and
then a few details tweaked at the lower-level (but once the lower-level is used the
user cannot go back to the higher-level as the transformation down to the lower-level
features is not reversible).

(In the current implementation, the high-level rule interface has not yet been
implemented, but the framework for allowing rules to be specified in either way is in

place.]



3.2.5 Suggesting a Meeting Time

To take advantage of the agents that each user is training to his or her own preferences
and habits, the initiator of a meeting may request that the agents suggest a convenient
meeting time (and date) within date and time constraints (ranges) set by the initiator.
When this happens the initiator’s agent contacts the other invited users’ agents and
collects information from them in an attempt to suggest an optimal time for all users
(with the preferences of users whom invitees considered most important as compared
to themselves having greater impact on the decision than others’). The algorithm by

which the agents predict an optimal meeting time is given in Section 4.4.
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Chapter 4

Algorithms for the Meeting
Scheduling Agent

The previous chapter described the Meeting Scheduling Agent fiom the user’s point
of view. This chapter provides details of the aigorithms used in the implementation
of this agent.

The Meeting Scheduling Agent learns by observing the user performing the task
it is to assist with, remaining largely in the background untii it has learned enough
to become useful. This learning by observation is largely accomplished using the
Memory-Based Reasoning technique discussed below. This technique is quite pow-
erful, but is not ideally suited to all of the types of knowledge the agent needs to
acquire, and can be slow in getting up to speed. Therefore, the agent’s learning may
be improved by receiving direct feedback from the user (Significance Feedback) and
accelerated by being explicitly taught certain rules by the user in the form of hypo-
thetical examples (Rule-Based Induction). The algorithms for these techniques are
discussed in the first three sections of this chapter.

The final section of this chapter detail the algorithm used to suggest an optimal

me-'  time based on the input of all the invitees’ agents.
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4.1 Memory-Based Reasoning

The main technique used for the agent’s iearning is a k-nearest-neighbors technique
known as Memory-Based Reasoning [15]. This technique stores a large set (example
base) of correspendences between situations and actions as learned from the training
data. Whenever a new situation occurs, an action is selected by considering “closest”
matches between the new situation and stored situations, and selecting the action
which is most often and/or strongly associated with very similar situations (see Figure
4-1). The definition of similarity is based upon a weighted sum of distances between
the values of a set of features defining the situation. Figure 4-2 shows some possible
distances and weights for a few of the Meeting Scheduling Agent’s features. (Note that
it is possible for two values to have distance of zero even if they are not identical.
This occurs when they both always predict the same actions.) The distances and
weights for the various feature-values are based upon a statistical analysis of the
example base which determines how consistently particular features correlate with
the different possible actions.

This technique is particularly well suited to a learning agent because it lends itself
relatively easily to the computation of confidence levels in the prediction, as discussed
in Section 4.1.3.

Memory-Based Reasoning is also appropriate for our purposes because it provides
a natural way of generating explanations of the agent’s actions. Actions can be
explained on the basis of the similar examples which the agent used to make its
prediction, as discussed in Section 4.1.4.

A further advantage of Memory-Based Reasoning is that information is not lost
or discarded — all of the information is retained, and is used to make increasingly
more accurate predictions as time goes on and the amount of information available
increases.

The distance computation algorithm given the next section comes directly from
[15]. The action selection and confidence computations described in the following

sections are my own.
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4.1.1 Computing Distances between Old and New

Situations

Each situation is represented as a set of values for various fields which represent
different features of the situation (i.e., the number of participants in the meeting —
see Appendix A for the full list of Meeting Agent Features). The distance between
a new situation and a memorized situation (the cituation part of a situation-action
pair in the example base) is computed as a weighted sum of the distances between

the values in cach field, as follows:

A(sncws 3mcm) = Z dj(snew'fa smcm'f)wj(snew’f)
JEF

where:

e F is the set of fields,

@ Sy.w 1S the new situation and syem is the memorized situation,
e d; is the field-distance between two given values in the field f,

¢ wy is the field-weight to be assigned to the field f when it contains the given

value, and
e for any situation s and field f, s-f represents the value in field f of situation s.

The distance between field-values is based on a metric computed by observing
how often in the memory the two values in that field correspond to the same action.
The weight given to a particular field depends upon the value of that field in the new
situation being considered, and is computed by observing how well that value in the

field has historically correlated with the action taken. These are computed as follows:

I1f = Snew1lg = v)| _ |If = Smem-Sllg = vn)2

df(sncw‘f,smcm‘f) B Z ( I[f=3new'f]| |[f=sm°m‘f]|

vEV,
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Wy(Snew* f) =

=)

veV,
where:
@ g is the goal field,
8 V, is the set of possible values for g, and

e the notation |[f = Spew- f][g = v]| represents the number of examples in the
database where the field f contains value s, f and the field ¢ contains the
value v. (The notation where only the value of f is indicated represents the

obvious analog.)

4.1.2 Action Selection

Once the distance between the new situaiion and all of the memorized situations has
been predicted, a score is computed for each of the actions, A, predicted by the m

closest memorized situations as follows:

1
Scorey = —_—
z‘;‘ A(3pew, 3)

where:
© S,.w i8 the situation for which an action is being predicted,

o 54 is the set of those memorized situations, among the m closest being consid-

ered, that predict the action A, and

@ A(Snew,s) is the distance between the current situation s,.., and the memorized

situation s.

The action with the highest such score is selected.
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4.1.3 Confidence Computation

Along with each prediction a confidence value is computed as follows:
dpredicte

(1 _ ;ﬁe:sm:) v N¢otal

dother, m
Rother

where:
e m is, as before, the number of situations considered in making a prediction,

® dpredicted 18 the distance to the closest situation with the same action as the

predicted one,

0 dother 18 the distance to the closest situation with a different action from the

predicted one,

® flpredicted 18 the number of the closest m situations with distances less than
a given maximum, d,,, (the greatest distance which may still be considered

“close”), with the same action as the predicted one,

© N,her 18 the maximum of 1 or the number of the closest m situations with

distances less than d,,, with different actions than the predicted one, and

® nN¢ote1 18 the total number of the closest m situations with distances below d,;0z.
(If there is at least one situation with a distance less than d,,., and a different

action than the predicted one, then nia1 = Npredicted + Moiker-)

If the result of this computation is < 0, the confidence is truncated to be 0. This
occurs when dpredicted/Npredicted > dother [Tother Which is usually the result of several
different actions occurring in the top m situations. If every situation in the memory
has the same action attached to it, d,¢per has no value. In this case the first term of
the confidence formula is assigned a value of 1 (but it is still multiplied by the second
term, which in this case is very likely to lower the confidence value as this will usually
only happen when the agent has had very little experience). When dyiper = 0 the

confidence is set to 0. This occurs in the case when there are exact matches to two
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or more situations corresponding to different actions. When n,,.s = 0 the confidence
is also set to 0. This case arises when none of the situations with the same action as
the predicted one have distances less than dpqz.

This computation takes into account the relative distances of the best situations
predicting the selected action and another action, the proportion of the top m sit-
uations which predict the selected action, and the fraction of the top m situations

which are within distance d,,4; of the current situation.

4.1.4 Explanations

As mentioned above, one of the advantages of using a Memory-Based Reasoning
algorithm 1is that it allows the agent to give “explanations” for its reasoning and
actions in a language that the user is familiar with, namely in terms of past examples
which are similar to the current situation. For example, the agent might say, “I
thought you might want to take this action because this meeting and your current
calendar are similar to the following situations we have experienced before.”

If the user wants more details on why the given situations were considered similar
to the current one, the agent can show the user which features were weighted heavily
in the distance computation, and how similar each memorized value for that feature

was judged to be to the value in the current situation.

4.1.5 Computational Complexity

The weight and distance metrics theoretically need to be recomputed whenever a new
situation is added to the memory; however, this is a relatively time-consuming (O(n?)
where n is the number of examples in the example-base) procedure which may be done
in batches if the application does not require immediate learning in response to every
new action. (The new examples will be taken into account in the action selection
stage of the algorithm, but the distances and weights for the various feature-values
may be slightly off until the next update is run.)

Once the above computation has been done, the actual prediction is only O(n),

40



which is quite reasonable provided n is not allowed to get too large. This will be
ensured by keeping a bounded number of entries in the memory. This is probably
advisable in any case, since entries which are toc old may reflect user preferences and

habits which have since changed.

4.2 Significance Feedback

The agent also keeps a database of weights to be updated by Significance Feedback.
For example, the Meeting Scheduling Agent stores weights for other participants, and
for keywords within the meeting topic. Many of the features the MBR algorithm uses
depend on these weights, as well as the raw information about the situation. For
example, the “initiator importance” feature is computed by taking the initiator from
the raw information, and looking up the user’s rating of that person. By design, the
features are recomputed in this way each time they are needed, rather than being
fixed once and for all at the time the situation occurs. This allows the agent to take
advantage of improved importance weightings to better interpret the details of what
happened in past situations. This is appropriate in cases where there are “true”
ratings which remain relatively constant, and which the agent is getting a better and
better estimate of. In applications where the ratings would be more likely to change
over time, so that the current values would not be appropriate when used in old
situations, it would be better to fix the features’ values when the situations occur.

When the agent makes a prediction with a confidence level greater than the “tell-
wne” threshold, but is incorrect, it can ask the user for feedback which will help it
determine whether any of these weights should be adjusted. For example, the Meeting
Scheduling Agent may ask the user, “Was the meeting topic more (or less, depending
on whether the user took a more positive or more negative action than the agent had
predicted) important than I thought?” and then update the scores for the keywords
found in the meeting description accordingly.

The level of questioning was chosen to be reasonably unobtrusive, thus it does

not hone in on which particular keywords were more or less important — all of the
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keywords get updated at the same time. This is not a limitation of the algoritiim,
however, but rather of the interface. It is quite conceivable that in some applications,
more specific questions would be preferable (and tolerated). Another possibility is to
have an option that allows the user to state that he or she wishes to assign credit
specifically to certain keywords, and then request the detailed information only in
those cases. A final possibility would be to permit the user to adjust the weights

manually if desired.

4.3 Rule-Based Induction

The user may speed up the training of the agent by providing rules for it to use as
a guideline. This allows the user to quickly bring the agent 1nost of the way up to
speed by specifying a few of the most important rules the user employs in deciding
which actions to take in a given situation. The user can then allow the agent to learn
the more subtle nuances of the desired behavior by observation. For example, a user
might want to tell the agent up front that he or she does not like 1o meet before
10 a.m.. and that meeting requests from his or her boss are always to be accepted.
(What the agent will do with a request from the boss for an 8 a.m. meeting will be
determined by how these rules were implemented.)

Stanfiil [16] introduced the idea of combining rules and examples within the MBR
framework. He showed that pronunciation rules could be expressed within a Memory-
Based paradigm by allowing wild-card values in some of the features of an example.
He proceeded to implement a system that learned to pronounce English text using
the Memory-Based approach with the examples augmented by pronunciation rules.
In that work, the rules are stored separately from the training examples. Memory-
Based induction is applied to a new situation using the example base and, in a
separate induction, the rule base. The results are combined (the paper does not
specify precisely how) to decide the output phoneme.

As Stanfill suggested, rules may be seen within the MBR paradigm as simply

exarnples which contain wild-cards {0 indicate features in which the value does not
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matter. A simple extension of this idea is to allow wild-cards to either represent any of
the possible values for that field (a true “don’t care”), or to represent any subset of the
possible field-values. For example, in the day-of-the-week feature, one possible wild-
card could represent Monday or Wednesday, while in the initiator-importance field
a possible wild-card is greater-than 3. This allows considerably more sophisticated
rules to be expressed.

I have devised a method for combining the rules and examples in a single database,
and for allowing multiple rule-types to co-exist within the same system. This work is
discussed in greater detail in the following chapter.

For the Meeting Scheduling Agent, two kinds of rules have been implemented,
default rules and hard and fast rules. Default rules are invoked only if there is no
other close match in the example base, while hard and fast rules are invoked whenever

they match the current situation.

4.3.1 Default Rules

In a default rule, matching a wild-card is treated as slightly worse than a natural
match in the distance computation stage of the MBR algorithm. This allows actual
examples to win out over similar default rules. It also allows more specific rules (of
which examples are really just an extreme case) to win out over less specific rules,
since the latter will contain more wild-cards.

Rules which do not match the situation exactly should never (or at least rarely)
contribute to the selection of an action. This is ensured by assigning a greater than
usual field-distance to any mismatches which occur in a rule. (When comparing two
examples which mismatch in a particular feature, they contribute a distance x weight
term to the weighted sum being computed as the distance between the examples, as
described in the Memory-Based Reasoning section above. Here the distance may
be a very low number, depending upon the particular values in question. When
comparing an example to a rule which mismatches in the same way, we guarantee
that the distance contributed is large, making mismatches which occur in rules more

“gerious” than those which occur in examples.)
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Default rules do not affect the weights and distances computed for each of the
features, as they are discarded when counting the number of occurrences of the various
values in each field (which are needed for the weight ar.d distance computations).

Default rules are given the same weight as a single example in the action selection
stage of the MBR algorithm, so that a single close example will win out over a close
default rule. However, they are given a somewhat greater weight in the confidence
computation stage. This allows a reasonable level of confidence to be returned when

the action is selected on the basis of a default rule alone.

4.3.2 Hard and Fast Rules

For hard and fast rules, matching a wild-card is treated just like a natural match (i.e.,
distance is zero). This is because for hard and fast rule behavior, the rule needs to
look as good as an exampie.

As with default rules, mismatches are assigned a steep penalty. Hard and fast
rules also do not contribute to the computation of weights and distances.

In order to ensure that hard and fast rules are selected over any matching ex-
amples, they are given significantly more weight than a single example in the action
selection stage. To allow more specific rules to win out over less specific ones, this
weight decreases with the generality of the rule, as determined by the number of ex-
amples the rule represents. (This is computed as the product of the number of values
represented by each wild-card in the rule, and thus requires advance knowledge of
what all of the possible values in each field are.)

At the confidence computation stage, hard and fast rules are given significantly

more weight than any single example, allowing them to be applied with confidence.

4.3.3 Combining the Different Rule Types

The different types of rule behavior can be combined within a single database by
permitting the slight modifications required in how the rules are to be treated to be

made based on a tag identifying the particular rule’s type.
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In the case of the 8 a.m. meeting with the boss suggested above, if the user had
specified the no meetings before 10 a.m. rule as a default rule and the always accept
meetings with my boss rule as hard and fast, then the decision would be to accept
the early meeting. If both rules had been of the same type, the decision would have
likely come down to other examples in the database which closely match the features
of this particular 8 a.m. meeting with the boss. (In other cases deciding between two
rules of the same type often comes down to which is most specific, but in this case

the two are equally general.)

4.4 Suggesting an Optimal Meeting Time

As discussed in the previous chapter, a user wishing to initiate a meeting may request
that the group of involved users’ agents suggest an appropriate meeting time. When
this happens, mail is sent to all invitees requesting all available meeting times of the
prescribed length within the specified date and time ranges, and the user’s importance
ratings for all of the other invitees. Though this could theoretically be handled by
the human, in this implementation it is always intercepted by the agent. When
the initiating agent has collected the replies, a set of candidate meeting times is
assembled. If there is a non-empty intersection of the sets of available times returned
by the invitees {and the initiator), then that set becomes the set of candidate times.
Otherwise each timeslot in the meeting initiator’s list is given a score which is the
sum of the total importances of each invitee who is able to attend. The top k such
times become the set of candidate times. The candidate times are then sent out te
each invitee, who is asked to give each one a rating indicating how favorable a time
it is for him or her. Again, this request is always intercepted and handled by the
agent in the current jmplementation. (Responding to these specific requests are the
only actions that the agents take autonomously without prior authorization from the
user.) The agents reply based on how likely their user is (in their “opinion”) to accept
a meeting with the given characteristics at each of the possible candidate times. (The

reason this is done in two steps, first narrowing down the list of possible times and
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then requesting ratings for the surviving candidates is that computing a rating for any
given time-slot is a somewhat compute-intensive operation (O(n) where n is the size
of the example-base), so the number of times this is required is kept to a minimum in

this way.) The replies are combined to arrive at a suggested meeting time as follows:

Given:

e candidate times t,,%;,...,tm,
® people P1,P2y -+« s Pny
¢ preferences r;; defined as person p;’s preference rating for time ¢;, and

o priorities ¢;; defined as person p;’s assessment of the relative importance of

person p;. (Vi gii = 1; other ¢ values are relative to that in the range § to 5.)

then define the optimality of any given time ¢, to be:

i=1 i=1

n n
=) (rik 2 jS)
In other words, the sum over all participants of each person’s preference for that

time, weighted by his or her overall importance, defined as the sum of the importance

measures assigned tc him cr her by the other participants.
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Figure 4-1: Memory-Based Reasoning — Action Selection
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Figure 4-2: Memory-Based Reascning — Computing Distances
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Chapter 5

Incorporating Rules into the

MBR Example Base

The main advantage of permitting rules to be incorporated into a Memory-Based
Reasoning system is that it allows a user to provide rules which give the system some
initial confidence, while allowing it to learn the subtle nuances from examples. This
is particularly important when the examples are arriving one at a time, instead of
having a pre-existing example base to work from.

As discussed in the previous chapter, Stanfill [16] introduced the idea of using
wild-carded examples as rules. This chapter discusses an extension of that work. It
explores how rules and examples may be combined wivhin the same example-base and
how different types of rule behavior may be easily achieved within the MBR paradigm.

The work described in this chapter is applicable to any application employing

Memory-Based Reasoning — it is not specific to Learning Agents.

5.1 Rules in the Example Base

Rules within the exarnple base may have differing effects depending upon how the
wild-cards are treated in computing weights and distances, selecting actions and com-
puting confidence values. This affords the possibility of creating several different types

or strengths of rules by using different types of wild-cards, each with a different treat-
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ment.
Listed below are the areas in which different treatments could be considered, and

some possibilities in each case.

1. Occurrence Counts: When counting the occurrences of each field-value which
correspond with a given action (in order to enable the computation of dy and
wy as described in Section 4.1.1), the weight given to information included in
rules determines how much input the rule gets into deciding which fields are
most important: the more weight each rule gets at enumeration time the more

input it gives.

e If a rule is not intended to offer information on which action to choose
in cases where the situation does not match with it exactly, it should be

disregarded during this phase of the algorithm.

o There are several ways a rule’s information can be included in the occur-
rence counts to allow it to provide guidance in situations that are close to

it but do not match, if that is desired.

— The simplest method is for the values which are not wild-cards to be

counted as usual, disregarding the wild-cards.

— Because rules represent more information than do single examples it
may be desirable to give them more weight than a single example.
On the other hand, if rules which do not match the situation exactly
are expected to be less valuable in predicting the action than similar
examples, it may be prudent to give them less weight than a single
example in this computation. The weight given to a rule in occurrence
counts represents the number of examples it will be treated as being
equivalent to, and will be denoted by w.

— In cases where the wild-cards can represent some but not all of the
possible values in a field, it may be desirable to “credit” the values
which are consistent with the wild-card as having “occurred”. This can

be accomplished by apportioning the rule’s weight (w) over all of the
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examples it can be seen as representing. Thus in fields where no wild-
card occurs, the value seen will have its occurrence count incremented
by w; wild-cards will result in all of the consistent values having their
occurrence counts incremented by w/ f, where f is the number of field-
values consistent with that wild-card.

— In some cases, it may be desirable for the total weight contributed by
a rule not to be constant, but instead to be proportional to the total
number of examples it represents. In this case a (usually small) con-
stant occurrence weight v is counted for each of the examples the rule
represents. In this case, non-wild-card values will have their occurrence
counts incremented by vn, where n is the number of examples repre-
sented by the rule; wild-cards will result in all of the consistent values
having their occurrence counts incremented by vn/ f, where once again
f is the number of field-values consistent with the wild-card.

— In the above two approaches, it is also possible to weight natural values
differently from wild-card values, by using different values of w or v

for the wild-card vs. the regular fields.

2. Distance Computation: The way the distances between the current situation
and the rules is computed contributes to the determination of what tradeoffs
are made when choosing between conflicting ruies and examples. (Recall that
a wild-card represents all or some of the possible values for the field — thus it

is possible to “mismatch” a wild-card.)

@ The simplest thing to do is count a field-distance of 0 whenever the value
matches the wild-card, and some constant positive field-distance whenever

it mismatches.

o If it is desirable for the examples tc take precedence over the rules when
both match a situation, it is necessary make matching a wild-card a little
worse than a natural match. To this end a wild-card match can count as a

small constant field-distance, §. Variations on this theme would be to make
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§ a constant which depends upon what the field-distances are for other
differences in the database (i.e., make it smaller than the smallest “true”
field-distance, which could be arbitrarily small), or to have a non-constant

& which depends upon the number of situations the rule represents.

If § is a constant, rules with fewer wild-cards will be preferred over those
with more wild-cards; if instead 6 increases with the number of examples
represented by the rule, rules which match fewer situations will be preferred
over those which match more situations. In most applications the latter
would be more appropriate; however, in applications where the wild-cards
will all represent approximately the same number of values, these two
approaches will produce almost identical results, with the former being
less computationally intensive, and having the advantage of not requiring
advance knowledge of all the possible field-values, since the number of

examples represented by the rule need not be computed.

Rather than using a constant distance when a wild-card is mismatched, it
may make sense to make the distance depend on the actual distances to
the values which the wild-card represents. Any of the maximum, minimum
or average of the distances to the values consistent with the wild-card may

be appropriate.

Scmetimes it is important that the rules are never (or at least rarely)
applied when their fully or partially specified fields (i.e., those containing
non-wild-card values or those containing wild-cards which match only some
of the possible values for the field) do not match exactly. This can be
achieved by using a large (i.e., twice the usual maximum field-distance
of 2) constant distance for wild-card mismatches, and by reassigning the
field-distance contributed by a regular value mismatch to also be a large
constant, or to be some multiple of the computed field-distance whenever

the mismatch occurs in a rule (i.e., when there are wild-cards in other

fields).

51



3. Action Selection: The selection of an action based upon the m closest situations
is another area in which the decision of how to treat wild-cards will affect the

interaction between rules and examples which are similar to the given situation.

» A rule can simply be counted as a single example, or, to give rules either
more or less weight than examples, as more than one or a fraction of an

example.

o The number of examples a rule represents can depend upon number of
situations it represents. Using a value which increases with the number
of rules represented would cause more general rules to have more weight,
while using a value which decreases with the number of rules represented

would favor more specific rules, which will generally be preferred.

[Note that the choice of § in the previous stage also impacts the choice of

more vs. less specific rules.]

s Another approach is to break down any close rules into the individual
examples they represent, and then compute the actual distance to each
one. The weighting of each example in this case could be a constant or a

fraction of some total weight assigned to the rule.

4. Confidence Computation: The computztion of the confidence can be adjusted to
reflect a difference in the confidence with which rules and examples are applied.
This may stem, for instance, from a difference in the source of the rules and

examples, so that one set is considered more reliable than the other.

o When rules are not broken down they can be treated as one or some other
constant number of examples. Again, they can instead be treated as a
number of examples which depends upon the number of situations repre-

sented.

A variation would be to alse discount or increase the confidence rating
computed in one of these ways by a factor related to the number of rules

used.
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o When rules are broken down confidence can be computed as if there were
no rules, or the rule-generated examples can be weighted differently from
natural ones, again either using some constant value or a fraction of some

total weight allocated to the rule.

e It may also make sense in some situations to replace the confidence com-
putation with something completely different in the case where there are

rules involved.

¢ When rules are involved (and matching a wild-card is treated as an exact
match), it is much more likely that two or more situations (rules and/or
examples) will match a given situation exactly, yet suggest different ac-
tions. If one is confident in the method used to select the rule(s) and/or
example(s) which win out in this case, it may be desirable to adjust the
confidence computation, which would otherwise return 0 whenever this

occurs.

Different combinations of treatments in these four phases will lead to different rule
properties. Note that many of the options listed above require a priori knowledge of all
the possible values for each field. (When breaking up a rule into the set of situations
it represents, and whenever a weight depends on the number of examples the rule

represents.) This may make those choices inappropriate in certain applications.

5.2 Types of Rules

In this section I explore a few different types of rules, and the way that such rule
behavior could be generated in the above context. In particular I discuss default
rules, hard and fast rules and rules directly representing multiple examples.

A default rule is intended to help in the decision process when there are few or
no examples or other rules which match the current situation closely.

Hard and fast rules are rules which are intended to be applied regardless of any

support for a contradictory action in the form of examples.
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In soine cases it makes sense to treat a rule simply as & replacement for the set
of examples which are consistent with it. This type of rule could be used to increase
efficiency by compacting the database. Rules such as these would be applied whenever
they matched, since matching a rule would be just like finding an exact match among
the examples. These rules do not behave as one expects “real” rules to behave in
some cases, however. In particular, they do not handle the case of more specific rules
in the usual way.

To illustrate these types of rules, consider the following small database:

A A A A A — actionl
A B B A A — action2
A B x * % — actiond
* B B A * — actiond
B B B A A — actiond
A B B A C — actionb

For the new situation ABBAC:

e If the rules have been implemented as default rules, action6 will be selected, as

it is suggested by an exact match.

o If the rules have been implemented as hard and fast rules, actiond will be

selected as it is suggested by the more specific of the matching rules.

e If the rules have been implemented as multiple examples, action3 will be selected
as it is suggested by the rule which represents the most situations (assuming

for simplicity that each field has the same number of possible values).
For the new situation ABBAB:

e If the rules have been implemented as default rules, actiond will be selected
as there is no exact match, and the most specific matching rule suggests that

action.
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o If the rules have been implemented as hard and fast rules, action4 will again be

selected for the same reason.

o If the rules have been implemented as multiple examples, action3 will again be

selected for the same reason as in the previous case.

5.2.1 Default Rules

To implement default rules, in the distance computation stage a match with a wild-
card is treated as slightly worse than a natural match, by counting it as contributing
some small field-distance, 8, to the total. This can be either a small constant or a
small value directly proportional to the numbe. of examples represented.

If it is desirable for the rule to be unlikely to be applied unless its non-wild-card
fields match exactly, this can be accomplished by assessing a large field-distance for
mismatches that occur in non-wild-card fields of a rule, increasing the total distance
computed in this case. However, depending upon the weight of the mismatching field
in determining the total distance, and upen the total number of fields contributing to
this computation, the total distance may still be relatively small, and may still end up
contributing to the decision of which action to take, particularly when there are few or
no very close examples or other rules. This is inherent to the MBR paradigm and could
not be changed without “going outside the system” and including special case rules
at a higher level to provide the desired behavior. However, rather than considering
this a problem with the MBR approach, I consider it an advantage. In the case where
there are not enough close examples or precisely matching rules to decide what to do,
a non-matching but nenetheless “close” rule can make a contribution. (Because the
confidence computation considers how close the contributing rules and/or examples
were, this will be done with very low confidence, which is as one would want it to
be.)

In the action selection stage the rule is given a weight of 1 (same as a single
example). This is necessary to ensure that it will not be able to override a single

close example; however, it also means that if several not-so-close examples suggest
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the same action (which is different from the one the rule suggests) the action suggested
by the multiple examples may win out. If this is not desirable, it will be necessary to
select a very small é to use when matching a wild-card, to ensure that the rule ends
up matching so much more closely that its action gets selected. (However, using too
small a constant for § has the problem of a rule with many wild-cards being seen as
a very clos : match for every situation, simply because it has a very close match with
the many wild-card fields. Using a proportional § can help get around this but may
reintroduce the problem of multiple not-so-close examples winning out in cases where
the rules are general enough that relatively large value of § ends up getting used. The
trzde-offs here will need to be carefully considered in any application.)

Since the information contained in a default rule is not supposed to come into
play except in the case where nothing else in the database informs us regarding a
given situation, the rule information should not be incorporated into the correlation
information computed in the occurrence counts stage of the algorithm. Thus default
rules should be disregarded during this stage.

In the confidence computation, if the action has been selected based upon a rule, it
is usually desirable for a higher confidence to be computed than would be the case if
an action was based largely on a single example. Thus a weight higher than 1 should

be used at this stage.

5.2.2 Hard and Fast Rules

Hard and fast rules can be implemented by treating wild-card matches as exact
matches in the distance computation while wild-card mismatches contribute some rea-
sonably large constant field-distance, and by giving this type of rule a high weight in
the action selection stage. To ensure that more specific rules will be preferred over
more general rules which also match, it will be necessary for the weight used in the
action seiection stage to decrease with the number of examples the rule represents.
Cnce again, if one wishes to discourage the rule from being applicable in situations
where non-wild-card fields do not match exactly, one can apply the maximum possible

field-distance to mismatches occurring in the rule’s non-wild-card fields.
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In most cases one would also want to assign a high confidence to actions selected
in this way — this could be accomplished by assigning this type of rule a high weight
in the confidence computation stage, or perhaps even bypassing the usual confidence
computation in the case where such a rule is apolied and instead returning a confidence
which depends only or mostly upon the expected reliability of the rule.

Usually a rule such as this would nct be expected to provide useful input into the
correlation data being collected on the examples, and thus rules of this type should

be disregarded in the occurrence counts stage of the algorithm.

5.2.3 Rules as Multiple Examples

One notable difference between this type of rule and the other types presented here is
that one normally would want these rules to contribute to the correlation data being
cbmpiled in the occurrence counts stage of the algorithm.

Since the rule is supposed to be replacing a set of examples, it makes sense to
give each example the same weight it would be given if it had actually occurred in
the example base; however, when the number of examples represented by a rule is
large in comparison to the number of examples in the example base, it will usually
be desirable to discount the weight given each of the represented examples, lest they
completely take control. Once again, this can be done by assigning a small constant
weight to each example represented by the rule, or by distributing a total rule-weight
among the examples represented by it.

During distance computation matching a wild-card should be the same as a natural
match (i.e., 0 field-distance). Mismatching a wild-card should probably contribute a
field-distance equal to the minimum of the distances to any of the consistent field-
values. This allows a rule to match closely whenever any of the examples it represents
would have matched closely, which is important if you want to truly simulate the effect
of having all the examples there.

In the action selection stage, if there is a rule which is close enough to be con-
sidered, it will be necessary to break the rule down into the examples it represents

and compute a precise distance for each one, and then use those distances along with
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the distances to other examples to do the selection as usual. (This makes this type
of rule computationally more intensive than others when the learning algorithm is
performed on a serial computer.)

The confidence computation could proceed in the usual (rule-free) way, with the
possibility of weighting rule-generated examples differently from natural ones, as in
the case of default rules.

One use for this type of rule is compressing the example base. If a set of examples
in the example base is identical to the set that would be generated by a wild-card ex-
ample, then those examples could automatically be replaced by the wild-card version
to cut down on computational and storage requirements. (Computational require-
ments are lower because this new example would only need to be compared once to
a new situation; it would just have a greater chance of matching it closely. Only if
it turﬁed out to be cne of the closest matches would the full computation have to
be done for each of the examples it represented.) In this case you would want each
example generated to count as a full example (in occurrence counts, and distance and
confidence computations) since it actually occurred.

As an extension of this idea, it would be possible to allow the agent to consider
adding a rule whenever a certain proportion of the examples it represents (like 90%)
make their way into the example base, perhaps contingent on acknowledgment of
the user or a “teacher.” In the case where no acknowledgment is sought, it may be
desirable to decrease the confidence by a small amount whenever this rule is applied,
but that would have the possibly undesirable effect of decreasing the confidence in
all the cases that were really already there in addition to the cases that were newly
inferred.

As discussed above, this type of rule does not deal with the occurrence of more
and less specific rules in the expected way. Because more general rules represent
more examples, they have a better chance of representing more very close matches to
a given situation than do more specific rules matching the same situation.

One way around this problem would be to change the behavior in the action

selection stage to not break down the rules and then assign weights to the rules
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which decrease with the number of examples they represent. This would cause the
expected behavior in this case, but at the cost of no longer really representing the set
of examples consistent with the rule. (It is probably better to simply recognize that
rules of this type have some inherent value, but do not behave in the most intuitive

way in cases like this.)

5.2.4 Other Types of Rules

Above I have discussed three types of rules possible in a Memory-Based learning
system. Clearly they represent only a small fraction of the possible types of rule
behavior achievable by combining the different options presented in novel ways. For
example, it would be easy to create rules which behave like default rules, except that
they also contribute to the correlation data collected during the occurrence counts
stage.

A rule type well-suited to virtually any application can be easily constructed in this
system. All that is required is to decide what combination of the possible behaviors
is desired, and then do a little empirical experimentation with the weight parameters
to get something that works well.

There is also no reason why only one type of rule must be selected for a given
application. It would be quite simple to tag rules of different types with enough
information to identify them, and then combine several different types of r..les in
the same database, as was done with default and hard and fast rules in the Meeting
Scheduling Agent. This diversity and ease of combination allows very sophisticated

rule behavior in a system.
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Chapter 6

Testing the Meeting Scheduling
Agent

6.1 Introduction

The Meeting Scheduling Agent was tested in three ways. It was used within our group
at the' Media Lab for a period of six weeks, during which time all meetings between
members of our group (consisting of a professor, a research scientist, five graduate
students and three undergraduate students) were scheduled through the system.

It was tested on a set of eight inexperienced experimental subjects role-playing
various members of a ccmpany. This data was collected in a single evening, and
covered two weeks worth of meetings.

It was also tested on a set of hypothetical data in which seven users, with behav-
ioral patterns and interactions based upon those of members of our research group,
scheduled five months worth of meetings. The users’ behaviors were all determined

by me, based upon profiles describing their meeting scheduling habits.

60



6.2 “Real User” Testing Within our Research
Group

The real-user tests were mainly intended to glean information about how people felt
about using such an agent, and to collect data regarding the ways in which they
used it. This test period also served to help debug the system, and make minor
improvements to the user interface.

Unfortunately, a lot of the raw data collected during this test period was lost,
mainly due to ~omputers crashing (either caused by the Meeting Scheduling Agent
system or other software running on the same Macintosh) while the data files were still
open. In addition, the total number of meetings scheduled by people in this research
group with others in this group during the weeks in question was small enough that
the agents did not end up having a chance to learn very much.

Peoples’ impressions of the system were mainly positive, however, this was hardly
an unbiased group of users. People did have practical concerns, such as not being
able to access their calendar when dialing in over the modem. Most members of the
group were quite dilligent in entering their outside meetings into the calendar (one of

the usual problems with groupware calendar software [6]).

6.3 Tests of the Agent with Role-Playing Users

The agent was also tested by hiring eight people to come in and role-play corporate
characters using the Meeting Scheduling Agent. The hope was that within an evening,
we would be able to run through four to six months of meeting scheduling situations.
The users’ inputs were collected so that the scenario could be replayed using different
versions of the program (as discussed in the next section).

Unfortunately the hastily developed calendar application did not stand up to this
vigorous a test, and so there were problems with it crashing, slowing down the process
considerably.

There were also difficulties with the method chosen to send mail between the
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agents, which worked quite well during the period of testing within our research
group, but which also could not withstand the assault of several users sending mul-
tiple messages at the same time. Unfortunately, these problems often caused the
Macintoshes we were running the system on to crash, resulting in a loss of data, and
inconsistency between users. Additionally, sometimes mail between agents took up
to 30 minutes to arrive, which would not be much of a problem in real life, but was
in this simulation, where a day or two might have “passed” in the interim.

Furthermc.e, it was quite unrealistic to expect that such a long simulation could be
completed in an evening — it is now clear that even under ideal situations (including
faked e-mail), it is necessary to allot about 30 minutes per week of simulation, plus
about 30 minutes training time at the beginning and an extra 30 minutes (i.e. allow a
full hour) for the first week, in which peoples’ schedules are set up, rules are generally
entered and the majority of regular meetings are initiated.

In the end, only the first two weeks of the scenario were completed in the four hours
allotted. However, the results were somewhat promising, and are thus presented here
in any case. Because of the incensistencies and data loss caused by machine crashes,
however, comparative tests using different versions of the software were not run. (Such

tests were instead run for the hypothetical inputs as described in the next section.)

6.3.1 The Scenario

Here is the general information distributed to all participants:

General Information:

You all work for the Bar company in their software division, on the
Foo project. The company has recently reorganized, bringing
Programmer/Analysts Alan, Beth, Carl and Dianne, along with new
student interns Sam and Tina, together under Pat’s management. Pat’s

manager, Chris, supervises 3 other groups like yours as well as yours.

Everyone works flex-time, with the company policy being merely that

you make yourself sufficiently available that you can interact with
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others as necessary to get your job done. You are paid to work 40
hours/week. Because of poor building layout, you don’t get much

chance to talk to other group members except at scheduled meetings.

This Scenario will go from June 1 until the end of November, time
pernitting. There are holidays May 31, July 5 and Sept 6, all
Mondays. The students’ internships run 6 months, frem June through

November (i.e. the same as the course of this simulation)

You may be instructed in boldface to schedule a meeting or respond in
a particular way to a request. However, you are free to schedule
whatever other meetings you feel are appropriate to the situation.
[some logistical information deleted]

Feel free to be creative. As long as your character is not a
meeting-hater, feel free to initiate meetings for reasons and at times

other than those indicated on your information sheets.

Thanks for Participating!

In addition, each user was given a private information sheet containing details of
his or her character. These may be found in Appendix B.
Each user then got a new private information sheet each week. For the Week of

May 31, each contained a version of the following:
Monday is the Memorial Day holiday, so you start on Tuesday. You meet
your new group, who discuss their preferred work hours.

Alan prefers to work 8-4, with more flexibility in the morning than
the afternoon, as he has to leave by 4:30 at the latest to pick up his

child at daycare.
Beth prefers 9-5 but is quite flexible about that.

Carl prefers 7-3, and claims to be relatively flexible about that, but

you notice a twinge of hesitancy in his reply.
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Di~nne, a real aight person, tends to work 10-6, and really hates to

have to come in any earlier than 10.

Sam doesn’t really know what hours he will end up keeping --- at
school he kept very varied hours. He seems very flexible about making

himself available for meetings and discussions, though.

Tina is a morning person, and prefers a 7-3 working day, but is quite
flexible about that.

There are two main pieces to the Foo project, the Baz part and the Zam
part. The Baz part is the larger part, and Alan, Beth and the
students have been allocated for that part. Carl and Dianne will

handle the Zam part.

6.3.2 Results

The two bosses, Chris and Pat, were not invited to enough meetings (7 and 4, respec-
tively) for their agents to actually learn anything (the agents were wrong in every
single case!) — their data is not graphed here.

The data for the other characters is presented in Figures 6-1 through 6-6. This
data represents what could be salvaged from the audit files after several crashes in
gome cases, and thus only represent partial results (i.e., there were other meetings
for which the results of the agents’ predictions were lost, particularly in the cases of

Beth, Sam and Tina).

6.3.3 User Questionnaires

The participants in this experiment were also asked to fill out questionnaires concern-
ing their impressions of the system after the experiment.

The participants were split as to whether or not they’d like to use the systemon a
regular basis. (Some felt they could not look past the difficulties we'd encountered in

order to really asses how it would feel to use a more polished version of the system.)
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Figure 6-1: Scenario Results — Alan
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During the experiment, all subjects used a single, all-situation “tell-me” threshold
of 0.0 (i.e., they saw all predictions) and a single “do-it” threshold of 1.0 (i.e., the
agents took no actions autonomously). This allowed the most general data collection
to allow for re-simulation under different conditions. On the questionnaire, they were
asked what thresholds they would want to use if they were using the system regularly.
Answers for the “teli-me” level ranged from 0 to 0.8. For “do-it” users indicated values
ranging from 0.9 to 1.0, with most indicating that this would be highly dependent
upon the situation — certain actions would be more serious if taken in error. Three of
the eight would use 1.0 in all cases, stating that they just would not feel comfortable
having this type of action taken on their behalf, even by an extremely competent
agent.

Participants were asked to rate their agent’s competence. It was hoped to compare
this rating to the agent’s actual performance; however with so much lost data this
was impossible. Participants also rated how helpful they felt the system would be, if
used with their choice of thresholds. Responses on a scale of 1 to 10 (10 being the
best) were: one 3, two 5's one 6, one 7, one 8, and two “unsures”.

Finally, despite all the problems encountered in attempting this simulation, many
participants left feeling enthusiastic about the future of such agents, and anxious to

hear more about further developm.ents.

6.4 Tests of the Agent using Hypothetical Input

A test suite for the agent was generated by querying several members of our research
group about their meeting scheduling preferences, and then developing characters
based upon their responses. A set of meetings that these characters might invite one
another to was devised, and each character’s response to the invitations was deter-
mined based upon that character’s description. Five months of meeting scheduling
data was generated in this way, which amounted to between 15 and 43 meetings per
person.

The main benefit of the use of hypothetical data was that it allowed a longer

67



period of meeting scheduling behavior to be monitored than was possible by any other
method. Ancther benefit was that the data created was complete and consistent, in
contrast to that developed by actual users of the program, who were plagued by both
hardware and software problems, and more prone to error. This allowed the scenario
to be replayed exactly in slightly different versions of the program, thus allowing an

analysis of the roles of different parts of the agent.

6.4.1 The Characters

The Professor

The professor prefers to have most meetings between 10 a.m. and 6 p.m. Because of
a class she teaches Thursday afternoons, for which she spends at least that morning
preparing for, she does not meet on Thursdays until after 4 p.m. Because preparation
for her class takes such a long time, she also tries to keep meetings on Tuesdays and
Wednesdays to a minimum, preferring Monday and Friday meetings. The Director of
the Lab is a very high priority for her — she will usually accept an invitation from
him regardless of how convenient it is for her. Her workload varies greatly from week
to week, making her scheduling behavior rather unpredictable.

She meets with her graduate students on a weekly basis, and the undergraduates

biweekly.

The professor has four rules in the system:

1. Meeting begins before 10 a.m. or after 6 p.m. — Request Renegotiation (de-
fault)

2. Meeting on Thursday beginning before 4 p.m. — Request Renegotiation {hard
and fast)

3. Meeting invitation from the Director with no conflicts — Accept (default)

4. Meeting invitation from the Director with one or more conflicts — Accept and

Resechedule Conflicts (default)
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Graduate Student #1

This student is in his first year of a Master’s program. He prefers to meet between
9:30 a.m. and 5 p.m., and does not like to meet at all on Fridays. He tries to
arrange his schedule so that meetings occur in clumps by attempting to add meetings
immediately following other meetings (or classes, which show up as outside meetings)
in his schedule. He is quite whimsical in his meeting preferences, often decidirg about
an invitation based on his mood that day and his workload that week, neither of which

the agent has access to.

This student has three rules in the system:

1. Meeting begins before 9 a.m. or after 5 p.m. -+ Request Renegotiation (default)
2. Meeting on Friday — Request Renegotiation (default)

3. Meeting beginning immediately after another meeting ends — Accept (default)

Graduate Student #2

This student is also in her first year of a Master’s uegree. She prefers meetings which
begin after 11 a.m., and if given her choice would meet in the evening rather than in
the afternoon. She prefers to keep Tuesday and Thursday afternoons free, and has
frequent lunch engagements on Fridays, so tries to leave that time open as well. She

is interested in all topics which get discussed in this group.

This student has four rules in the system:

1. Meeting begins before 11 a.m. — Request Renegotiation (default)

2. Meeting on Tuesday or Thursday beginning after noon — Request Renegotia-

tion (default)

3. Meeting on Friday beginning between noon and 2 p.m. — Request Renegotia-

tion (default)
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4. Meeting beginning after 5 p.m. and no conflicts — Accept (default)

Graduate Student #3

This student is finishing up his Master’s degree. He prefers not to meet before 10:30
a.m., and is otherwise occupied most of the day on Mondays, so prefers not to come
in on Mondays at all, and cannot possibly meet on a Monday until after 3 p.mn. He
also dislikes meeting on Friday afternoons. He tries to schedule meetings whenever
possible for 2-3:30 p.m. on Tuesdays, Wednesdays and Thursdays. He will often try
to renegotiate a meeting that does not fall within that time frame, particularly if it

is only with one other person.

He has five rules in the system:

1. Meeting begins before 11 a.m. — Request Renegotiation (default)
2. Meeting on Monday — Request Renegotiation (default)

3. Meeting on Monday beginning before 3 p.m. — Request Renegotiation (hard
and fast)

4. Meeting on Friday beginning after noon — Request Renegotiation (default)

5. Meeting on Tuesday through Thursday beginning between 2 and 3 p.m. lasting
for less than 2 hours — Accept (default)

Undergraduate Student #1

This is a transfer student, taking a light load to finish up her degree. She does not
have classes on Tuesdays or Fridays, and tries not to have to come to campus those
days. She dislikes morning meetings, and prefers to schedule meetings right after a
class or another meeting. She is doing her Bachelor’s thesis in this research group,

but is only interested in attending meetings whose topic directly relates to her thesis.

This student has three rules in the system:
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1. Meeting begins before noon — Request Renegotiation (default)
2. Meeting on Tuesday or Friday — Request Renegotiation (default)

3. Meeting beginning immediately after another meeting ends — Accept (default)

Undergraduate Student #2

This student has a busy schedule of mostly afternoon and evening classes. He does
not like to meet before 11 a.m. He prefers to avoid Wednesday and Friday meetings,
and tries to schedule new meetings either immediately before or after other meetings
or classes. He works in this group developing software which Graduate Student
#£1 uses in his research, and thus needs to meet with him relatively frequently. He is
not terribly interested in the research issues which come up in this group, and tends

to avoid brainstorming meetings, reading groups, etc.
He has four rules in the system:
1. Meeting begins before 11 a.m. — Request Renegotiation (default)
2. Meeting on Wednesday or Friday — Request Renegotiation (default)

3. Meeting beginning immediately after another meeting ends — Accept (default)

4. Meeting ending immediately before another meeting begins — Accept (default)

Undergraduate Student #3

This student is also doing a Bachelor’s thesis in this research group. She is a morning
person, and likes to have all of her meetings between 7 a.m. and 2 p.m. She tries to
avoid meeting on Mondays and Thursdays if possible. She does not like to schedule
regular (weekly or biweekly) meetings, preferring to schedule each one as it comes
along. She does not have much free time, and tries to avoid all unnecessary meetings,

as educational as they might be.

She has 2 rules in the system:
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1. Meeting begins before 7 a.m. or after 2 p.m. — Request Renegotiation (default)

2. Meeting on Monday or Thursday — Request Renegotiation (default)

Relationships

As mentioned above, The Professor considers invitations from the Lab Director
(who enters this scenario only to invite The Professor to a few meetings) to have a
very high priority.

In addition, all of the students consider The Professor’s invitations to have
a high priority, and Undergraduate Student #2 considers Graduate Student
#1’s requests to have high priority as well.

6.4.2 Results

The scenario was replayed four times. The first time, the system was used intact.
Then the scenario was replayed with one or both of Significance Feedback and Rule-
Based Induction disabled. When rules were used, the rules listed in each user’s
description were entered into the system at the beginning of the scenario, before any
meeting invitations arrived. The results from these trials are shown in Figures 6-7 to
6-13.

Not surprisingly, the agents for The Professor and Graduate Student #1,
whose meeting scheduling behaviors depend on factors such as workload that the
agents have no access to, did not fare particularly well, each achieving about a 50%
hit rate. (This is still better than random, as there are many more than two op-
tions to chcose between, including three common ones: accept, decline and request
renegotiation.)

Graduate Student #2 was quite consistent in her behavior, and her agent did
quite well, despite her having been invited to only 15 meetings.

Although Graduate Student #3 was fairly consistent in his behavior, his habits
are complex enough that his agent did not really have a chance to learn them well

in the 21 meetings he was invited to. It did, however, improve from a 30% hit rate

72



Yes

Rules

No

Feedback

73

Yes No
Tha Protussor The Professor
VRN Rules : m“"ﬁ With Rules :
With Feedback Without Feedback
1 1LoTé 2
a 0 a &
LN L ® L4 ®A
o c o ° °
° s © ® o
oM a o4 ® A a
© ° [ A ] [ ]
® a a o
04 ry A 069 A
z Rl
- A -
-§ o R 5 a& P [} A
Iy a °
ax]ag o e a2
a Iy
ao. . ° a0 a N P S
10 20 7 30 40 o v 20 30 40
Predictions Predictions
Tha Professor The Profassor
Without Rules © Coma Without Rules ©
With Feedback A voma Without Feedback &
1.0 1.04
A o l a a o
LN 4 o [
o e ™ a®e
[ ] Y (-]
Qe a a# A A a
[ ] [4]
] o 4 a a L a
s o .
§ §
< A P
5 ¢ £ a
o 04 ®
A a
a a ® a
axag ° L] b L) e a
a A a
o N ° o u 8, o
) 20 7 30 40 10 20 T30 40
Predictions Pradictions
Figure 6-7: Results — The Pro’essor




Yes

Rules

No

Feedback

Yes No
Graduate Student #1
Gndmtvl“:!:dcu.:t LA : : Whth Rules : :
WHA Fesdback Jncamect Without Feedback heorect
Loro——x Lore—xg
o, o® a a
° °© [
® °
o a o o. ° a
a24% 20
a6 o
b s e
i . g
H ° e H ° °
[V T o 044
®
aN a A
[ A
e 1o 20 30 10 20 10
Prediction Predictions
Graduats Student #)
oy e Y Winout Rues v
With Fesdback Without Feedbzck A rorea
1.0 10
[ ] ©
4 e a a R R
o a a4 a e
L 7Y L J
A AA
(3 a6
. 3 '
b1 A o ® §
‘5 ® [ ] -g ae [
3 o a 3 aH
A
A [ ]
a o
9 o hd 20 30 o 10 e v20 30
Predictions Pradictions

Figure 6-8: Results — Graduate Student #1

74




Yes

Rules

No

Feedback

Yes No
Graduate Student $2 Graduate Student #2
Wih Rutss @ Comect With Rules @ Carect
With Feadback & boma Without Feedback A hoxrex
10— -Gy 1y 1oy O -3
° °
[ ] e
L A aH A a
a
aed a6
i i
& ad 8 as
Q2 (%3
a A
- 10 20 d o 20
Pradictions Predictions
Graduate Student #2 Graduate Student #2
Wkhout Rutes 9 Cort Without Rules @ Carea
Wih Feodback & icomect Without Feedback A icorect
e ——— - ] > . 0 ©
1.0 otV s ® ' v
Qs o as ©
Q1 o a6
g o [ g a4
[+ a2
[ ] ® ®
aot < T 1 ° - 2
Predctons Predctans

Figure 6-9: Results — Graduate Student #2

75




Yes

Rules

No

Feedback

Yes

No

\raduvate Student #3

Gzaduate Student #3

WRh Rulss ® Carect With Rules @ Coret
With Feedback A houroct Without Feedback A trorea
Lor8ead o 10T-00-Ordrty <
QA a ® .A a Y
o [ ]
a A
s L e °
A A
L L4 e °
i i
3 a a < a
:§ ae a a .§ Q44 a
a a °
M a2
a6 © a0 A
it 0 20 30 o 20 30
Pradictions Predictions
Graduate Student 83 ® Comect Gndua“tﬂtt “:‘l'ud;t::' 3
mmm ) Without Feedback
1 '
° ®
® o a ° a
[ ] [ ]
* aa o as
®
® e
a6 asd
3 £ 3
a i A
S ae H ao
L Q4+ A a A S ad a a
LY [-¥ Py
a{e ax{ e
L a
& a
" 0 20 30 0 20 30
Predictions Predictions

Figure 6-10: Results — Graduate Student #3

76




Yes

Rules

No

Feedback

Yes No
Undergraduate Student #1! Undergraduate Student &1
WRh Rules With Rulos © Covect
With Fesdbacx Without Fesdback 4 bhonea
1.0y =& @ 1.0 L
o" & A " A
b ,A.A ob A.A'A°¢°’
° 80 o 0g0 ° L LI a4
as e s ® s ® .
© [
aed asd
§ :
§ ar § o
$ s
< <
Qs ae
o a
Qs [ as ¢
a4 ¥ T Q A Y
10 20 30 10 20 30
Preadictions Predictions
Undergraduate Student ®1 d 81
Wi Rulos : Comect und“"“:l?t'h.outs:!u ent ry n
With Feadback ok Without Feedback A hoxret
1o o 1
o ) : a v o
a o o® e e ® © o
e o " o0 ™ a e 2" o, ®
A a
0.8+ a o8 a a
a
A A
Qa6 Q6
» -
'3 o
§ ° ® H ° i
& o+ .§ o
(<] [ ]
(-]
0 A az] &
Y 20 30 - A 20 30
Predictions Predictions

Figure 6-11: Results — Undergraduate Student #1

11




Yes

Rules

No

Feedback

Yes No
Undergraduste Student #2 Undsrgraduate Student #2
Wih R @ Cavezt With Rules ® Corect
With Feedback 4 homa Without Feedback 4 hoorsat
1.0y—dir o 1.o—& 0
N A. ° .O LN a a ° [ a ) a
a ° o a0
a
asf ° a® s a8 ° ae
Qs Qe
. ‘ -
i ° i 4o e
& o L
[ o
a2 a® Q24 a9
® (-]
w0 20 30 o 20 30
Predictions Predictions
Undergraduate Student #2 e Undargraduate Studeant ®#2
Without Rules a Pl Without Rules © Carect
With Fesdback Wwithout Feadback A homa
1.0 X
oo 6 4 .‘o 2? ’o Y 04 0b
L]
a [ ]
[T P (-] a8 a ° °
A
a
a a
a6 Qs
e © ° 2 e0 © °
! . :
& o & ol
[ ]
[}
® ®
a2 A aq & (]
s a a a
Q.0 A& v v L v v
10 20 30 0 20 30
Predictions Predictions

Figure 6-12: Results — Undergraduate Student #2

78




Yes

Rules

No

Feedback

Predictions

Yes No
Und«omiuau Student 83 Uhd“ﬂfldull. Studant #3
With Rules With Rules
With Fesdback Without Fesdback
mru—o——«'—v-‘—a—vn— 107t ° T e e
a L ° a °
ad a a0 2
[} a LJ a A Aa@
asla & a a asfa 4 LIPS a
A a A Iy
& a
a A
a6 A Q6 a
- . .
§ ° a i b a
3 S & < ® &
5 Q4 5 Q4 ®
LI & o A
Q24 a4
A
wl—2 o R — v al—% & ——— .
11+ 20 30 40 50 10 20 30 40 S0
Predictions Predictions
Undargrad Stud, 3 Undergraduate Student #3
Without Rules © Comet Without Rules © Comoct
V/ith Feedback A ot Without Feadback A teomect
[ * — 1.0 e
2 % ] 4 "2 s &
e L) -]
e A ® a
a .,“oo L ) a s o .'oc
®
as{ ° a8, LY °
® °
) A )
044 Q.64
. a a - a 5
§ ° § .
: ° 3 ® a
® add ©
¢ 04 a ° © P
°
°
oMaa © a2{44
®
& o
L ®
0 20 30 40 50 o e 20 30 0 50
Predictions

Figure 6-13: Results — Undergraduate Student #3

79




in the first 10 meetings to a 50-60% hit rate (depending on the particular test run
considered) in the remaining meetings.

The agents for Undergraduate Students #1 and #2 did quite well overall,
and decreased the proportion of incorrect predictions over time; however, they did
quite poorly at recognizing when they were making a weak prediction, and had many
incorrect predictions 2' high confidence levels.

Because Undergraduate Student #3 had fairly simple scheduling habits, and
an aversion to regular meetings (thus providing his agent with a large number of quite
similar meetings as examples), his agent did the best of all (at least without rules —

section 6.4.2 for more details.)

Effects of Significance Feedback

The inclusion of Significance Feedback tended to have a very small but positive ef-
fect. It usually allowed one or two extra correct predictions, and often decreased the
confidence in at least one incorrect prediction or increased the confidence in a correct
prediction or two.

For reasons which are unclear, Significance Feedback caused somewhat worse per-
formance for Undergraduate Student #1 when applied in the absence of rules,
and for Graduate Student #3 both with and without rules.

Significance Feedback would be expected to be more helpful in an application
like news filtering, where many more keywords appear within a short time span, and

where repetitions of keywords are more common.

Effects of Rules

Rules turned out to be somewhat of a mixed blessing — though they generally allowed
a few additional correct predictions, they also tended to significantly raise the agent’s
confidence in its incorrect predictions. This occurred because the rules were entered at
the beginning of the scenario, before the agent had any examples to serve as possible
counter-examples. Thus the agent would confidently make a prediction based upon

a rule, where before it would have made a very unconfident guess. Since the rules

80



entered were quite general, there were lots of exceptions to them which the agents
did not have a chance to learn before beginning to apply them.

The agents for Graduate Student #2 and Undergraduate Student #3 did
significantly worse when using rules. This occurred because the rules were far to
general, and did not really reflect the users’ true behavior. For example although
Undergraduate Student #3 says: “Meeting on Monday or Thursday — Request
Renegotiation,” she really means something like, “If the meeting is on a Monday
or Thursday, and I'm interested in going to it, or even if I might be interested in
going to it if it were at a better time, then request renegotiation. If I’'m not inter-
ested then decline. If this is a re-invitation to a meeting for which I had previously
requested renegotiation but for which renegotiation has been declined, and I'm inter-
ested encugh in the meeting topic to go at an inconvenient time, or if it was initiated
by The Professor then accept, otherwise decline.” Entering the simple rule misleads
the agent in a number of situations. Eventually, the agent will gain enough coun-
terexamples to know how to deal with these situations, but in the mean time it makes
numerous mistakes by using that rule in situations where it should not really apply.
Similarly, when a user has a rule which defaults to accepting the meeting, because
it is at a time they like to meet, they usually also mean, “provided that there is no
conflict, and it is a topic I am interested in.” Again, eventually counter-examples will
amass which allow the agent to correctly deal with the situation, but it would have
been better off simply to learn the pattern from scratch than to start out with this
often incorrect rule.

It would have been possible to get much better results by entering more complex
sets of rules expressing things like the above, however the rules in this test were based
upon the ones group members gave me when I interviewed them in order to set up this
test. The rules used are the types of rules naive users are likely to use. An important
lesson from these tests are that naive rules are at best marginally helpful, and may
actually be quite harmful. It will be important to educate users on the construction

of meaningful rules if they are to be used effectively.
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6.5 Testing the Meeting Time Suggestion Algo-
rithm

As described in Section 4.4, the Meeting Scheduling Agent has the ability to coliab-
orate with other users’ agents to suggest an optimal time for a group to meet. This
facility was tested in an earlier version of the agent software, using a hypothetica!
scenario similar to the one described in 6.4 (see [8]). In this test, the seven agents
were asked to collaborate to schedule two group meetings. One such instance oc-
curred one third of the way through the scenario, and the other two thirds of the way
through. In each case the agents were given a one-week range of dates in which to
try to schedule the meeting. In both cases, the times suggested were acceptable to
all of the participants. In the second case, the time was less convenient for two of the
users, but they were able to accept it. It was confirmed manually that there were no
times available that would have been more convenient for all of the participants.
Because this part of the Meeting Scheduling Agent has not changed since these
tests were performed, and because of the difficulty in evaluating a suggested meeting
time (which essentially requires manually confirming that other possible times would
not have been as good), the meeting suggestion facility was not re-tested for this

thesis.
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Chapter 7

Related Work, Conclusions and
Future Work

7.1 Related Work

7.1.1 Another Meeting Scheduling Agent

A similar project to the one described in this thesis is underway at Carnegie Mellon
University [4]. Dent and others in Tom Mitchell’s group have developed a personal
learning apprentice, called CAP, that assists a user in managing a meeting calendar.
Their experiments have concentrated on predicting meeting parameters such as loca-
tion, duration and day of the week for a user attempting to ini'iate a meeting. (By
contrast, my meeting scheduling agent concentrates on predicting a user’s replies to
meeting invitatiuns.)

CAP makes a suggestion for every parameter it predicts. It is presented in such
a way that the user can easily accept that suggestion, or simply enter another value.
CAP never takes any action autonomously for its users, it simply speeds things up by
often making the desired value available.

Their apprentice uses two competing learning methods: a decision tree learning
algorithm and a back-propagation neural network. As discussed earlier, one advan-

tages of my largely Memory-Based approach is that there is no loss of information:

83



when making a prediction the detailed information about individual examples is used,
rather than general rules that have been abstracted beforehand. Another advantage
of the Memory-Based appreach is that it lends itself easily to the computation of a
confidence level for any prediction. Thus the agent has a good idea of the accuracy of
its suggcstions. The main disadvantage of the Memory-Based approach, as compared
to approaches such as CAP's, is that it requires more computation time to make a

suggestion.

7.1.2 Demonstrational Interfaces

The agent presented in this thesis shures its learning-by-example approach with a
class of programs called demonstrational interfaces, in which the user demonstrates
a task and the agent learns to perform and generalize it.

E..GER [3] is an “eager personal assistant” for HyperCard which continuously
ob..rves the user, and offers to take over if it notices a pattern in the user’s sequence
of actions. Mondrian [10] and Peridot [14] are demonstrational systems for graphical
applications in which the user tells explicitly demonstrates a task to be learned by
means of an example, and then the agent generalizes it to other situations.

Some of the differences between these systems and mine are that the Meeting
Scheduling Agent’s learning takes place over a longer time frame (weeks and even
months) while these programs learn very quickly. This means that they must learn
relatively simple patterns, compared to the ones the Meeting Scheduling Agent is
able to learn. These systems essentially allow the creation of macros (sequences of
actions) based on examples.

Also, Mondrian and Peridot require the user to explicitly tell the agent when to
observe, whereas the Meeting Scheduling Agent is constantly observing and learning,
while still retaining the ability to be intentionally trained by its user, by means of

rules.
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7.2 Conclusions

The implementation of the Meeting Scheduling Agent demonstrates how Memory-
Based Reasoning, Significance Feedback and Rule-Based Induction may be combined
in one system. This method is application-insensitive, and thus provides a basis for
other similar Learning Interface Agents to be built.

Ideally, to test a system such as this one, one would install it in a meeting-intensive
environment for a period of several months, collecting statistics on the agents’ per-
formance, and interviewing the users regularly. However, several factors make this
approach impractical. First there is the matter of time — such a long testing period
would be very difficult to fit into the time frame of a Master’s degree. Second, people
would be reluctant, with good reason, to use a completely unproven system. Third,
the fact that the calendar application is not state-of-the-art and merely a prototype
would make it unreasonable to expect people to rely upon it.

The testing which was done and described in the previous chapter suggests that
this approach is a promising one, but considerably more testing is required. A signifi-
cantly longer (i.e., 100 invitations per person) hypothetical scenario would be helpful
in determining just how much experience is really needed for the agent to become
competent at predicting relatively complex behavior; however, what is really required
is real field testing. Hopefully this will become more practical with the arrival of
software written to support Apple Events, since a top-of-the-line application could
then be coupled with an agent built in the manner described in this thesis. Since
the agent can be made relatively unobtrusive by judicious setting of the thresholds,
users could continue using the software they normally use, while training an agent
with minimal inconvenience.

The results presented in the previous chapter demonstrated that the learning
approaches used are sufficient to begin learning a user’s habits within about 25 to 40
examples, provided that the user a) is fairly consistent in his or her behavior, and b)
uses criteria the agent has access to to make scheduling decisions.

This generalizes to suggest that the integrated machine learning approach applied
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to build this agent is a good one for applications whose complexity is similar to that
of the calendar application and whose users tend to exhibit consistent patterns of
behavior.

However, for users with more complex patterns of behavior 20 to 40 examples
were not enough for the agent to really gain any significant amount of competence.
This is particularly true when the example set contained contradictory behavior.
Although Memory-Based Reasoning has been shown to work on example bases con-
taining exceptions [15, 2|, these results apply to very large example bases. In a small
incrementally growing example base, every example has a fairly strong weight, and
atypical cxamples have the potential to confound the agent’s learning. Some relicf
from this problem could come from user-directed forgetting, as discussed in Section
7.3.1.

Orne problem noted in the testing, especially using the hypothetical scenario, is
that the agents did not succeed particularly well in recognizing when they were making
weak predictions — confidence levels for incorrect predictions tended to be quite high
for most of the agents. This is an important problem, as a user’s trust depends in
large part upon feeling that the agent not only knows what to predict most of the
time, but also realizes when it cannot make a good prediction. The development of a
more accurate confidence computation algorithm is thus an important area in which
to focus future research into building this type of Learning Agent.

Although the task of meeting scheduling seems to be of a reasonable complexity
for this type of agent, the amount of time (i.e., months) that it takes for most people
to provide enough examples for the agent to learn makes this particular application
somewhat less than ideal for this type of agent, except in very meeting-intensive
environments.

The comparative testing run on the hypothetical scenario raised an important
caveat regarding the use of rules — that carelessly added rules are often too general,
and thus worse than no rules at all. This will need to be taken into account when
deciding whether or not to provide facilities for adding rules in a particular Learning

Interface Agent.

86



Interviews with people who had the experience of using the Meeting Scheduling
Agent during the course of the testing confirmed that many people are enthusiastic
about the upcoming arrival of Intelligent Interface Agents, and anxious to be able to
use them in their everyday life.

The fact that some people were reluctant to hand over the meeting scheduling
reins to their agents was not unexpected — this author feels the same way. However,
the system still has benefits for people who do not allow the agent to take autonomous
action. Provided that the system is used enough that the agent gets to know the user’s
preferences, it can provide (in collaboration with other users’ agents) a very powerful
method of suggesting meeting times. This method is significantly better than the
usual method of simply intersecting the participants’ schedules and taking the first
available slot for two reasons: 1) it can handle the case where there is no intersection
of the users’ available time, and 2) it takes into account significantly more information

than just who's free when.

7.3 Future Work

7.3.1 Intelligent Forgetting Strategies

In the Memory-Based Reasoning algorithm presented, it is necessary to keep the size
of the example-base down to a reasonable size, where reasonable may be determined
empirically. (On serial machines this is due to execution time getting out of hand, and
on parallel machines the practical example-base size will be limited by the number
of processors available, though the latter will normally permit more examples.) This
has the additional advantage of allowing for behavior which changes over time —
eventually the older behavior will be forgotten.

In the current system, a simple cut-off is used — after a certain number of examples
are amassed, the oldest are discarded. I propose that numerous alternatives to this
approach be considered.

One simple alternative is to consider decaying material before discarding it. While
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decayed rules would not directly help with the computational complexity issue, they
may be a more accurate way of dealing with changing user behavior, and it may turn
out that this is thus more desirable, even when the total example-base size is held to
the same maximum as before.

Another option would be to consider when the examples originated, and perhaps
use, for example, the past three months worth of examples (or the most recent N
examples) plus the examples that arose during the previous year during this month.
This could be a very effective approach in organizations where schedules tend to
be predictably cyclic in some way. A further step in this approach would be to
automatically analyze a set of examples (some of which are not in current use in
making decisions, due to having been retired some time earlier) to determine whether
there is a set of older ones which seem to correlate particulariy highly with current
situations, and reinstate those.

A more sophisticated approach would be to somehow allow certain parts of a
person’s recent behavior to be discarded, while other parts remain (perhaps abstracted
into rules as discussed in Section 5.2.3). For this to occur, there would need to either
be a way for the user to tell his agent what to keep and what to ignore, or for the
agent to infer it automatically. This could be very importan in an environment like
a university, where schedules and thus particular time preferences change frequently,
but a person’s more general types of preferences are less likely to change.

One way for the agent to decide which examples could be discarded would be
to monitor the quality of each example by keeping track of 1) how many times the
example was involved in making a prediction; and 2) how many of those times the
prediction was correct.

It would also be useful if a user could just label a particular example as exceptional,
and have it be ignored (or perhaps just weighted less strongly) by the agent. This
type of user-directed forgetting would allow the agent to learn more reliably when

dealing with a relatively small example base.
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7.3.2 Confidence Computation

As mentioned in Section 7.2 above, the confidence computation algorithm did not do
a very good job of recognizing weak predictions. As a reliable confidence computation
algorithm is important to the.development of a trustworthy agent, this is an area into
which further research is required.

The current algorithm (described in Section 4.1.3) takes three factors into account:

e the relative distances of the best situations predicting the selected action and

those suggesting another action,
e the proporiion of the top m situations which predict the selected action, and

e the proportion of the top m situations which fall within a reasonable maximum

distance from the current situation.

I believe that these factors are the correct ones to consider, but hopefully ex-
perimentation into different possible weightings of these factors can reveal a more

accurate formula to use.

7.3.3 Feature Specification

Currently the set of features that are used to specify a situation are hand-coded and
inflexible. A truly intelligent ag~nt would need the capacity to allow change to the
feature set (particularly additions — deletions would affect speed but not accuracy as
irrelevant features are quickly detected as such by the MBR algorithm and given low
or zero weight). The MBR code which was implemented for the Meeting Scheduling
Agent does allow for the simple addition of features — the hard part is getting them
specified.

User-Specified Features

It would be beneficial to eventually allow a user to specify some particular features

for the agent to consider, so that even very idiosyncratic criteria could be included.
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The most open-ended way of doing this would be to allow the user to write some Lisp
code, but this is somewhat undesirable for obvious reasons. Ideally a nice interface
could be provided which allows a user a way of specifying at least some of the more
likely types of features for users who do not wish to program their agents directly in

Lisp.

Automatic Feature Generation

Another option for improving the set of features examined, perhaps used in addition
to user-programmed features, is automatic feature generation. Some work in this area
has been done by Fawcett and Utgoff |5]. The idea is that you have a (complete) set
of very low-level features, and various combinations of these are examined in order to
find meaningful ones. This could be useful in cases where the importance of a field
depends not only on the value in it, but also on the value of some other field. For
example, there are a number of fields which contain information about conflicting
meetings, which are only relevant when the number of conflicts (another field) is at
least one. Automatic feature generation could be used to create a new feature which
is an appropriate combination of the related fields. Even better would be if a true
low-level set of features could be devised for this (or any agent’s) . pplication, which

could be used as input to the automatic feature generation algorithm.

7.3.4 Ranges of Feature Values

The basic Memory-Based Reasoning algorithm as discussed in [15] expects there to
be a relatively small number of distinct possibilities for each field, whereas in this
application, several of the fields have numerical values which can fall in a rather
wide range (for example the amount of time that week which is already scheduled for
meetings). Currently this is being dealt with by breaking the range into subranges,
so that there are a relatively small number of subranges a value can fall into. This
was done manually in this version of the implementation, but future implementations

might concentrate on how this might be done automatically.
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Appendix A

Features used by the Meeting
Scheduling Agent

This appendix Jescribes the features used by the Meeting Scheduling Agent in the
Memory-Based Reasoning algorithm. In what follows, all references to “the meeting”
refer to the proposed meeting that the user is replying to.

Because the Memory-Based Reasoning algorithm requires each feature to have a
reasonably small number of distinct values so that particular values will be repeated
frequently, most of the numeric features used for this agent have their possible values
broken down into a relatively small number of ranges of values, with the ranges then
serving as the feature values. Features for which this is the case are indicated by an
asterisk (*) preceding their name. (In the case of values based on other feature-values,
the actual values of the component features are used, and the value is only trans. .ted

into a range after the computation is done.)

Day of Week that the meeting was scheduled for.

* Starting Time of the meeting.

* Length of the meeting.

Frequency of the meeting.

Number of Participants invited to the meeting (including the initiator).
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* Total Participant Importance: the sum of the user’s importance ratings for all

of the people invited to the meeting.

* Average Participant Importance: the average of the user’s importance ratings

for all of the people invited to the meeting.
Initiator of the meeting.
* Initiator Importance: the user’s importance rating of the initiator.

* Total Keyword Importance: the sum of the user’s importance ratings for all
of the keywords found in the meeting description. (Keywords are all of the

uncommon words in the meeting description.)

* Average Keyword Importance: the average of the user’s importance ratings

for all of the keywords found in the meeting description.
Number of Conflicts between the meeting and other items in the user’s schedule.

* Number of Conflict Participants: the total number of participants in meetings
which conflict with the proposed meeting. (Only “internal” conflicting meetings
count in this and the other following participant importance totals and averages,
as those are the only types of meeting for which the system has participar*

information.)

* Difference in Participant Number = Number of Participants — Number

of Conflict Participants.

* Total Conflict Participant Importance: the total of the user’s importance rat-

ings for all of the participants in all of the conflicting meetings.

* Difference in Total Participant Importance = Total Participant Impor-

tance — Total Conflict Participant Importance.

* Average Conflict Participant Importance: the average of the user’s impor-

tance ratings for all of the participants in all of the ccuflicting meetings.
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* Difference in Average Participant Importance = Average Participant

Importance — Average Conflict Participant Importance.

* Total Conflict Keyword Importance: the total of the user’s importance rat-
ings for all of the keywords found in the descriptions of all of the conflicting

meetings.

* Difference in Total Keyword Importance = Total Keyword Importance

— Total Conflict Keyword Importance.

* Average Conflict Keyword Importance: the average cf the user’s importance
ratings for all of the keywords found in the descriptions of all of the conflicting

meetings.

* Difference in Average Keyword Importance = Average Keyword Im-

portance — Average Conflict Keyword Importance.

* Scheduling Lead Time: the number of days between the receipt of the invitation

and the date of the meeting itself.

Activity Immediately Before the Meeting i.e., Free time, other meetings, ar-

rival, etc.

* Time for Activity Before the Meeting: how long a contiguous block of time

is dedicated to the Activity Immediately Before the Meeting.

Activity Immediately After the Meeting i.e., Free time, other meetings, ar-

rival, etc.

* Time for Activity After the Meeting: how long a contiguous block of time is
dedicated to the Activity Immediately After the Meeting.

* Time Already Scheduled for Meetings the day of the proposed meeting.

(This and the next feature refer only to “internal” meetings.)

* Weekly Total Time Already Scheduled for Meetings luring the week con-

taining the proposed meeting,.



* Time Already Scheduled the day of the proposed meeting. (This and the next

feature refer to everything on the user’s schedule.)

* Weekly Total Time Already Scheduled during the week containing the pro-

posed meeting.

Request Type: indicates whether this is an initial invitation, a rescheduling at-
tempt for a meeting or a re-invitation to a meeting for which the user requested

renegotiation but was turned down.
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Appendix B

Role-Playing Scenario — Personal

Profiles

Pat: Group Manager

You manage a group of 4 Programmer/Analysts on the Foo software project, named
Alan, Beth, Carl and Dianne. You have also hired 2 student interns, named Sam and
Tina.

| Your manager is Chris. He also manages 3 other groups like yours.

The company has just been reorganized, so this group of people is new to you,
though you have managed similar projects before. Through the grapevine, you've
heard that Alan and Beth are independent workers, but that Carl prefers a lot of
feedback. Dianne is new to the company, and you haven’t met her. Both of the
students are also new, but you have met them, and think they will turn out to be
pretty independent, but will likely need more technical help than your regular group
members.

You will do a little technical work on the project, but your main responsibility is
to ensure that your group remains organized and efficient. You are also responsible
for dealing with upper Management.

You tend to work more than your required 40 hours/week, which you believe to

be in part responsible for the fact that you have been made a manager at a relatively
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young age. You usually arrive by 8 and leave sometime around 6:30 when your work
is done.

It is standard in the Bar company for groups such as yours to meet once a week
for an hour to discuss everyone’s progress. You will want to set up a regular group
meeting soon. You should also expect that Chris will want to set up a weekly meeting
with you and a monthly meeting with the entire group, again to check on status.
You may also want to set up regular individual meetings with your group members,
depending upon their individual needs.

In your spare time you like to golf and play squash.

Chris: Senior Manager

You supervise 4 projects including the Foo project.
You work long hours, usually centered somewhere around 8-5, but often working
up to 60 hours a week.

You are getting ulcers and see a doctor frequently.

Alan: Programmer/Analyst

You are a Programmer/Analyst on the Foo project.

You prefer to work 8-4, with more flexibility in the morning than the afternoon,
as you have to leave by 4:30 at the latest to pick up your child at daycare.

You like having all of your meetings organized in clumps, to leave éood chunks of
time in which to actually work.

You are independent and rarely nted or want teedback from your manager.

Beth: Programmer/Analyst

You prefer to work 9-5 most days, but are quite flexible about that.

You hate to have more than one meeting in a row, unless they are both very short.
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You prefer to keep at least one day a week free from meetings to be sure you get a
good clump of time to do "real work.” You like it if Wednesday is your meeting-free
day. As much as possible, you like to avoid meetings altogether, and make an effort
to minimize their number in your group.

You are an independent worker, rarely wanting or needing reassurance from above.

Carl: Programmer/Analyst

A morning person, you prefer to work 7-3, and have regular squash dates with friends
outside the company on Tuesdays and Fridays at 4p.m., as well as whenever else you
can manage it.

You thrive on positive reinforcement — you like to hear about it when you have
done something well, and like encouragement along the way that you are on the right

track.

Dianne: Programmer/Analyst

You are new to the Bar company, having been hired during the reorganization.
A real night person, you tend to work 10-6, and really hate to have to come in

any earlier than 10.

Sam: Student Intern

You don’t really know what hours you will end up keeping — at school you kept very
varied hours. You are quite eager to impress the Bar company so they will hire you
when you graduate, so you are quite willing to be flexible about your work hours
so that you can be accessible to others. In general though, you are quite the night
person and will rarely arrive before noon unless you have a meeting.

You are independent, rarely seeking or needing the approval cf your supervisor.

You do however want to make sure you have been keeping people happy in the long-
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term to make sure you mzake the right impression.

Tina: Student Intern

You are a morning person, and prefer a 7-3 working day, but are quite flexible about

that.

You are an independent worker and would prefer to be left to do your work rather

than constantly checking in with superiors.
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