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Abstract. We study the communication complexity of asynchronous distributed algonthms. Such
algonthms can generate excessively many messages in the worst case. Nevertheless, we show that.
under certain probabilistic assumptions. the expected number of messages generated per time unit
1s bounded by a polynomuai function ot the number of processors under a very general model of
distributed computation. Furthermore. for constant-degree processor graphs. the expected num-
ber of generated messages s only O(nT). where n is the number of processors and T is the
running time. We conciude that (under our model) any asynchronous algorithm with good time
complexity will also have good communication complexity. on the average.
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l. Introduction

In recent years. there has been considerable research on the subject of
asynchronous distributed algorithms. Such algorithms have been explored both
in the context of distributed numerical computation. as well as for the purpose
of controlling the operation of a distributed computing system (e.g.. finding
shortest paths, keeping track of the system’s topology, etc. {Bertsekas and
Gallager 1987]). Some of their potential advantages are faster convergence.
absence of any synchronization overhead. graceful degradation in the face of
bottlenecks or long communication delays, and easy adaptation to topological
changes such as link failures.

In the simplest version of an asynchronous distributed algorithm. each
processor : maintains in its memory a vector ' consisting of a variable x .
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together with an estimate x of the variable x. maintained by every neighbor-
ing processor j. Every processor / updates once in a while its own variable x.
on the basis of the informauon available to it. according to some mapping f..
[n particular. x 1s replaced by f.(y’). Furthermore. if the new value of x, 1s
different trom the old one. processor ; eventually transmits a message contain-
ing the new value to all of its neighbors. When a neighbor : receives (in
general. with some delav) the new values of x .. it can use it to update its own
estimate x‘ of x .. ’

A standard example s the asvnchronous Bellman-Ford algorithm for the
shortest path problem. Here. there 1s a special processor designated by 0. and
tor each pair (i. j) of processors. we are given a scalar ¢, describing the length
of a link joining 1 to ;. One version of the algorithm is initialized with x, = ¢,
¢ = 0. and 1s described by the update rule

X = rmnx. mn {c,,+x;>}, i # 0.
' &0}

Under reasonable assumpuions. the distributed asynchronous implementation

of this algorithm terminates :n finite time and the final value of each x, is

equal to the length of a shortest path from 1 to 0 [Bertsekas 1982].

In general. whenever some processor ¢ receives a message from another
processor J. there 1s 4 change in the vector ' and. consequently. a subsequent
update by processor « mav icad to a new value for x, that has to be eventually
transmitted to the neighbors of processor i. Thus, if each processor has d
neighbors, each message reception can trigger the transmission of d messages.
and there is a clear potenual for an exponential explosion of the messages
being transmitted. Indeed. there are simple examples. due to Gaini and
Gallager (see [Bertsekas and Tsitsiklis 1989, p. 450]), showing that the asyn-
chronous Bellman-Ford algorithm for an n-node shortest path problem is
capable of generaung (}(27) messages, in the worst case. These examples.
however. rely on a large number of “‘unhappy coincidences™: the communica-
tion delays of the different messages have to be chosen in a very special way. It
is then reasonable to inquire whether excessive amounts of communication are
to be expected under a probabilistic model in which the communication delays
are modeled as random variables.

In the main model studied in this paper. we assume that the communication
delays of the transmitted messages are independent and identically distributed
random variables. and show that the expected number of messages transmitted
during a time interval of duration T is at most of the order of
nd**"""™(Ind)'*'"/"T, where n is the number of processors. d is a bound on
the number of neighbors of each processor, and m is a positive integer
depending on some qualitative properties of the delay distribution: in particu-
lar, m = 1 for an exponential or a uniform distribution, while for a Gamma
distribution. m equals the corresponding number of degrees of freedom.' Note
that this estimate corresponds to O(d'*'/"(Ind)'*'/™) messages per unit time
on each link, which is quite favorable if d is constant (i.e.. when the interpro-
cessor connections are very sparse). Our result is derived under practically no
assumptions on the detailed operation of the asynchronous algorithm, with one

"In fact. 1t will be seen that. for m = 1. the logarithmic factor in the upper bound can be
removed.
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exception discussed in the next paragraph. Furthermore. the result is valid for a
very broad class ot probability distributions for the message delays. including
the Gamma distributions as special cases.

Since we are assuming that the delays of different messages are independent.
messages can arrive out of order. Suppose that a message / carrying a value x,
is transmitted (by processor j) before but is received (by processor i) later than
another message /' carrying a value x'. Suppose that / is the last message to be
every received by «. Then. processor i could be left believing that x, is the
result of the final update by processor j (instead of the correct x). Under such
circumstances. it is possible that the algorithm terminate at an inconsistent
state. producing incorrect results. To avoid such a situation. it is essential that
a receiving processor be able to recognize whether a message just received was
transmitted earlier than any other already received messages and. if so. discard
the newly arrived message. This can be accomplished by adding a timestamp to
each message. on the basis of which old messages are discarded. There are also
special classes of algorithms in which timestamps are unnecessary. For exam-
ple. in the Bellman-Ford algorithm described earlier. the value of x, is
nonincreasing with time. for every j. Thus. a receiving processor : need only
check that the value x in a newly received message is smaller than the
previously stored value x . and discard the message if this is not the case.

The above-described process of discarding “outdated™ messages turns out to
be a very effective mechanism for controlling the number of messages gener-
ated by an asynchronous algorithm. In particular, whenever the number of
messages in transit tends to increase, then there are many messages that are
overtaken by others. and therefore discarded. On the other hand. our “post
office” model of independent and identical distributed message delays is
unlikely to be satisfied in many parallel processing systems. It is more likely to
hold in loosely coupled distributed systems in which processors communicate
by means of some general communication facility.

1.1. OUTLINE OF THE PAPER. In Section 2. we present our model and
assumptions and state the main results, which are then proved in Section 3. In
Section 4. we discuss issues related to the average time complexity of an
asynchronous algorithm under the same probabilistic model. Finally. in Section
5. we provide a brief discussion of alternative (possibly, more realistic) proba-
bilistic models of interprocessor communication. and argue that under reason-

able models. there will exist some mechanism that can keep the number of
transmitted messages under control.

2. The Model and the Main Results

There are n processors. numbered 1....,n, and each processor i has a set
A(i) of neighboring processors.” Let d = max,|A(i)l. The process starts at time
t = 0, with processor 1 transmitting a message to its neighbors.

Whenever processor i receives a message. it can either ignore it, or it can
(possibly, after some waiting time) transmit a message to some of its neighbors.
Suppose that a message / is transmitted from i to j and. at some later time,
another message /' is transmitted from i to j. If I is received by j before /. we

*To simplify language. we make the assumption that ( € A(j) if and only if j € At/). Our
subsequent results remain valid in the absence of this assumption.

Mo
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say that [ has been orertaken by (. and that [ is discardable. We will be
assuming that discardable messages have essentially no effects at the receiving
processor. In addition. we will allow processors to send messages that are
self-triggered. that is. not caused by a message reception. However. a bound
will be assumed on the frequency of self-triggered message transmissions. Our
main assumption Is:

Assumprion 2.1

(a) Every discardable message is ignored by the receiving processor.

(b) Every nondiscardable message can trigger atr most one transmission to each
one of the ncighbors of the receiving processor.

(c) During any time interval of length 7. a processor may send at most T

messages that have not been triggered by a received message, on any
outgoing link.

Assumption 2.1(b) uilows a processor to ignore messages that are not
discardable. In practicai terms. this could correspond to a situation where a
processor  recewves i message. updates its value of y‘, evaluates x, = f(y")
and finds that the new value of x, is the same as the old one. in which case
there is nothing to be communicated to the neighbors of i.

We will be assuming that the communication delays of the different mes-
sages are independent and identically distributed. with a common cumulative
probability distribution tunction F: that is. if D is the delay of a message. then
Pr(D <t) = F(1).

Simply assuming that message delays are independent and identically dis-
tributed. is actually insutficient for our purposes and does not fully capture the
intuitive notion of “completely random and independent” communication
delays. For example. cven with independent and identically distributed message
delays it is still possible that a processor “knows™ ahead of time the communi-
cation delay of each one of the messages to be transmitted, and then acts
maliciously: choose the waiting time before sending each message so as to
ensure that as few messages are discarded as possible. Such malicious behavior
is more difficult to analyze, and also very unnatural. Our next assumption
essentially states that as long as a message is in transit, there is no available
information on the remaining delay of that message, beyond the prior informa-
tion captured by F.

Note that if a message has been in the air for some time s > 0. and only the
prior information is available on the remaining delay of that message. then its
total delay D is a random variable with cumulative distribution function

- F
F(r) (s) r>s. (2.1)

G(rls) TG >

]

Pr{D <rlD > s] =

[Of course, G(rls)

0if r <s.]

Assumption 2.2

(a) The communication delays of the different messages are positive. indepen-
dent and identically distributed random variables. with a common cumula-
tive distribution function F.

(b) For every s > 0.t > 0. and every i, j, k, the following holds. The condi-
tional distribution of the delay of the kth message transmitted from 1 to .
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conditioned on this message having being sent at time ¢ and not being
received within s time units. and also conditioned on any other events that

have occurred up to time ¢ ~ s. has the cumuiative probability distribution
function G(-is).

Finally. we will be using the following technical assumption on F:
Assumpnon 2.3. There exists some positive integer m and some €, > 0

(with F(e,) < 1] such that £ is m times continuously differentiable in the
interval (0. 2¢€. ] and satisfies

) ~dF dm='F
hm F(t) = lim — (1) = - = lim ——{) =0 and
1iu 40 di 0 dt™

m

lim _T(” > 0;
.0 {

moreover. there exist ¢,, ¢, > O such that the mth derivative of F satisfies
d™F

¢, £ —={1) <c,. Vi e(0.2¢,].
dln -

Our assumption on the distribution of the delays is satisfied. in particular. in
the case of a probability density function f that is right-continuous and
infinitely differentiable at 0. Of course. the assumption also holds under milder
conditions. such as right-continuity of f at 0 together with lim, ,f(t) > 0: in
this case. we have m = 1. (Various important distributions satisfy these proper-
ties: e.g.. the exponential and the uniform distributions.) Assumption 2.3 is aiso
satisfied by the Gamma distribution with m degrees of freedom. Roughly
speaking. Assumption 2.3 requires that F(r) = ©(t™) for 1 € (0.2¢,].

Our main results are given by the following two theorems. In particular.

Theorem 2.4 corresponds to the case where Assumption 2.3 is satisfied with
m = 1. while Theorem 2.5 corresponds to m > 1.

THEOREM 2.4. . Assume that T > | and that m = 1. Then. there exists a
constant A (depending only on the constants c,,c, and €, of Assumption 2.3).

such that the expected total number of messages transmitted during the time interval
[0, T} is bounded by And"T.

THEOREM 2.5. Assume that T > | and that m > 1. Then. there exists a
constant A’ (depending only on the constants m.c,.c, and €, of Assumption 2.3),

such that the expected total number of messages transmitted during the time interval
[0, T] is bounded by A'nd**''"(Ind)'* "' ™T.

Notice that the difference between Theorems 2.4 and 2.5 lies on the
logarithmic factor: a short discussion of this point is provided in Subsection 3.5.
3. Proofs of the Results

3.1. AN Easy SpeciaL Case. In this subsection. we motivate Theorem 2.4
by considering the the following special case:
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i) The message delavs have exponential probability distributions. with mean
L.
(i) Each processor transmits a message to every other processor. immediately
upon recetpt of a nondiscardable message. (That is, the underlyving graph
Is assumed to be complete.)
ai) There are no sclt-triggered messages except tor one message that starts
the computation.

Let m (1) be the number ot messages in transit from ¢ to j at time 7. that
have not been overtaken: that 1s. no later transmitted message from ¢ to j has
alreadv rcached itv destinauon. [The notation m, (1) should not be confused
with the constant m involved in Assumption 2.3.] Every message that is n
transit has probabilitv A of being received within the next A time units. Thus,
at ume . the rate at which messages arrive to J along the link (7. ) is m, (1).
Since any such arrivai triggers a message transmission by j. the rate of increase
of m (1) is &, m () On the other hand. an arrival of a message traveling
along the link (i. ;) overtakes ton the average) half of the other messages in
transit across that ink Thus.

Eln \ El{m (1) =1 ) (1)
- [ ’1(”} Lim (1)] _E[m_,\([)} {( a )mk [l
di ..-‘ ' -

]

~

1 .
< S Eim (!)i - :E[”T;L“)l_- (3.1

(-

Let M) =57 .. FElm (). The Schwartz inequality gives

e Y ¥ E(m, 0]

n J=1 ke

and eq. (3.1) becomes

d 1
— M) < nM(t) — —M?*(1).
dt 2n-

Note that whenever M(1) = 2n*, we have (dM /di)1) < 0 and this implics that
M(t) < 20", for all + > 0. Thus. the rate of reception of nondiscardable
messages, summed over all links. is O(n"). Since each such message rcccption'
generates O(n) message transmissions. messages are generated at a rate ot
O(n*). We conclude that the expected number of messages generated during a
time interval (0.7] is O(n*T). which agrees with Theorem 2.4 tor the case
d = O(n).

We can now provide some intuition for the validity of Theorem 2.4 for the
case m = |: messages with communication delay above ¢, will be overtaken
with high probability and can be ignored: messages with communication delay
below €, have approximately uniform distribution (cf. Assumption 2.3 with
m = 1), which is approximately the same as the lower tail of an exponential
distribution. for €, small. Thus. we expect that the anaiysis for the case.of
exponential distributions should be representative of any distribution satisfving
Assumption 2.3 with m = 1. In fact. the proof of Theorem 2.4 is based on the
argument outlined above. The proof of Theorem 2.5 is based on a somewhat
different 1dea and is more involved.
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3.2. SOME NOTATION AaxD TERMINOLOGY. We start by considering the
transmissions along a particular link. say the link from i to j. Let M, be the
(random) number of messages transmitted by processor i along that link during
the time interval {0. 7). Any such message is called successful if it arrives at j
no later than time T and if it is not discarded upon arrival. that is. if that
message has not been overtaken by a later transmitted message along the same
link. Let § be the number of successful messages sent from i to j. With the
exception of T self-triggered messages. only successful messages can trigger a
transmission by the receiving processor. Therefore.

M,<T+ Y S, VkedAaQ).
1€ A(j)
which leads to
EM,)<T+ Y ES,]1 VkeA()). (3.2)
' (€ A

In order to establish Theorems 2.4 and 2.5. we upper bound E[S,] by an

appropriate function of E[ M, ]. This is done in a different way for each of the
two theorems.

3.3. THE PrROOF O+ THEOREM 2.4.

THEOREM 2.4,  Assume that T > 1 and that m = 1. Then. there exists a
constant A (depending onlv on the constants c,. ¢, and €, of Assumption 2.3).

such that the expected total number of messages transmitted during the time interval
(0. T} is bounded by And*T.

The proof of Theorem 2.4, rests on the following result:

LEMMA 3.3.1. There exist constants B. B', depending onlv on the constanis c,,
¢, and €, of Assumption 2.3, such that

E(S,) < BTE[M,] + B'T. (3.3)

PROOF OF THEOREM 2.4. Let Q = max, E[M, ] Then Eq. (3.3) vields
E(S,] < ByTQ + B'T. Using Eq. (3.2). we obtain EIM,]| < T +dByTO +
dB'T. Taking the maximum over all j, k£, and using the tjact d > 1. we obtain
Q < dBJTQ +d(B + )T. Suppose that Q > T. Then Q <d(B + B +
DYTQ, which yields Q < (B + B + 1)*d*T. If Q < T. this last inequality 1s
again valid. We conclude that there exists a constant A4 such that Q < Ad-°T.
Thus, E[M, ] < Ad’T for every link (i, /) and since there are at most nd links.
the expected value of the total number of transmitted messages is bounded
above by And’T. which is the desired result. O

It now remains to prove Lemma 3.3.1.

PROOF OF LEMMA 3.3.1. For the purposes of the lemma. we only need to
consider a fixed pair of processors i and j. We may thus simplify notation and
use M and S instead of M, ., and S, jo respectively.

Note that if E[M] < T/eo, then E[S] < T/¢€? (because S < M) and Eq.
(3.3) holds. as long as B’ is chosen larger than 1/¢;. Thus. we only need to
consider the case E{M| > T/¢;, which we henceforth assume.
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Successtul messages can be of two types:

(i) Those that reach their destination with a delay of at least ¢,; we call them
slow messages.

(it) Those that reach their destination with a delay smaller than ¢,; we call
them fast messages.

Let S, and §. be the number of slow and fast successful messages. respec-

tivelv. We will bound their respective expectations using two somewhat differ-
ent arguments. starting with E(S,].

3.3.1. 4 Bound on the Expected Number of Fast Successful Messages. We
split (0. T'] into disjoint time intervals of length

6d_ef / T
-~ VEM

To simplify notation. we assume that yTE[M] is an integer. (Without this
assumption. only some very minor modifications would be needed in the
- ) . . 1 271
argument that follows.) Thus. the number of intervals in T/8 = yTE[M].
Note also that 6 < ¢, due to our assumption E{M] > T/¢€l.
Let 1, = (k — 1)8 be the starting time of the kth interval. Let .%_be the set
of messages transmitted during the kth interval. and let I, be the cardinality of
- Let.J/, be the set ot messages with the following properties:

(a) The uime ¢ at which the message was transmitted satisfies 1, — €, <t < t,.
(b) At time ¢, the message has not vet reached its destination.

(¢) The message has not been overtaken by another message that has reached
its destination by time 1, .

Thus. the set.; contains the messages that are in transit at time 1, , that still
have a hope of being successful (not yet overtaken), and that have not been in
the air for “too long™. Let N, be the cardinality of .#;.

Consider now a message in the set.#; and suppose that it was transmitted at

time ¢, — s, where 0 <5 < ¢,. Such a message reaches its destination during
the time interval (¢, ¢, , ] with probability

F(& +s) — F(s)
1 — F(s)

[See eq. (2.1) and Assumption 2.2.] Furthermore. Assumption 2.3 (which was
taken to hold with m = 1) implies that

G(6 + sis) =

6 <F(6+s)~-F(s)<c,6. V8.5 €(0,¢l;

also, for s € [0, ¢y}, we have 0 < 1 — F(e¢,) < 1 — F(s) < 1. [Recall that F(e,)
< 1 by Assumption 2.3.] Thus, it follows that

€,8 < G(6 + sls) < a, 6, V8,5 € (0, €1, (3.4)

where a, = c,/[1 ~ F(¢,)]. Therefore. the probability that a message in the
set .7, reaches its destination during (7,,1,,,] lies between ¢,8 and «,é.
Similarly, for any message in the set %, the probability that it reaches its
destination during the time interval (¢, 1, ,] is at most F(§), which does not
exceed a,4. [To see this. apply eq. (3.4) with s = 0.]
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For a message 10 be received during the time interval (¢,.7, -] and for it to
be successful and fast. 1t is necessary that it belong to the set .7, U, Using
the bounds of the preceding paragraph. the expected number of such success-
ful fast messages is bounded above by @, 6(E[N, + [, ]). Adding over all k. we
see that the expected number of successful fast messages satisfies

T.é
E(S,) = a8 EIN +1.]. (3.5)

k=1

Next. we estimate the number of messages in the set./, that also belongs to
1,.,. (Notice that these two sets may possibly intersect. because 1, .| — €, <,
due to the assumption & < ¢€,.) Let us number the messages in the set .#]
according to the times that thev were transmitted. with later transmitted
messages being assigned a smaller number. Note that the /th message in .#;
belongs t0. 4, ., only if none of the messages I..... ! has been received during
the time interval (1., ¢, , ,]. Using our earlier calculations. each message in .#;
has a probability of at least .3 of being received during (7,1, ,]. Using the
independence of the delavs of different messages (Assumption 2.4). the /th
message in ./, makes it into./, _, with probability no larger than (1 - c,8).
Summing over all /. the expected number of elements of . #; that make it into

1;., is bounded above by | (¢.8). The set ./, ., consists of such messages
together possibly with some ot the elements of ;. We thus have
, 1
E[A’L-|].<._6'+E[lk] (3.6)
G

Combining eqs. (3.3) and (3.6). and using the property Z[ .} El1,] = E[M].
we obtain
T/8

+ 0362 E[I,\_l +]L]
k=1

E(S,]

A

a.T
c,6
a,T

IA

+2a,8E(M]

¢

i

Q- J——
(——‘ - Za:)\/TE[M}. (3.7)

[ !

3.3.2. 4 Bound on the Expected Number of Slow Successful Messages. We
now derive an upper bound for the expected number of successful “slow”
messages. For the purposes of this argument. we split [0.7] into intervals of
length €,/2. (The last such interval might have length smaller than €,/2 if
2T /¢, is not an integer.) The total number of such intervals is [2T/€,). Let
t, =(k - 1)€,/2. Let us number the messages transmitted during (e, 00.0).
with later transmitted messages being assigned a smaller number. Clearly. a
message generated at time ¢, ., — 5. with 0 < s < €,/2. is received during the
time interval [t ,, ¢, .] with probability F(s + €,/2) — F(s): reasoning simi-
larly as in previous cases. it is seen that this probability is at least c¢,(€,/2).
Notice now that for the /th message transmitted during [7,.7,. ] to be a slow
and successful message. it is necessary that none of the messages 1l..... [
transmitted during that same interval is received during the time interval

e

AR R
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.

/... i, .- the probabilitv ot this event 15 at most (1 — ¢.t€,/2)). Thus. the

expected number ot messages that are transmitted during [¢,.¢, .,] and are
slow and successtul is bounded above by 2,c, €,. Adding over all k. we obtain
[2r} 2
E[S ] - I —
€

ool U €y

<B'T. (3.8)

where B’ 15 a suitable constant.
Since E{S]=E[S.] - £1S ] cus. (12 7) and (3.8) complete the proof of the
lemma. =

3.4, THE PROOF OF THEOREM 2.3

THEOREM 2.5 Assume it T - | and that m > 1. Then. there exists a
constant 4 (depending oniv on e constants m., ¢, ¢, and €, of Assumption 2.3).

such that the expected towi rnumoer of messages transmitted during the time
meerval (0. T) is bounded v 4 nd-""' “(nd) *'"'"T.

The proot of Theorem 2.3 rests on the following resuit:

LemMva 341, There custs u «onstant B. depending oniv on the constants m.
¢ oosand €, of Assumpnon 23 such that

. e L EIM)
E(S, 1< BT " (E[M ) (

'max<\l.an T

PROOF OF THEOREM 2.5 let Q = max,  E[M, ] Then. eq. (3.9) yields

’}‘ (3.9)

ES.| < BT" 'm”Q'/""’”max{l,ln(%)}».

Using eq. (3.2), we obtain

E[M,] < T ~dBT" ""’”Q”"”"‘max{l.ln(%)}_

Taking the maximum over all J. k. and using the fact d > 1. we obtain

IS

. [ \!
. moom e ) lyim= 1) —
Q <dT - JdBT Q maxil.ln‘ T

\ !

Suppose that

Q > r(m+l)/mT
Then.

~IRQ

Q <d(B + 1)T”'"’""‘Q'/"""'ln( )
which vields
(Q/TH)"/m+Y -
9/ < Bd, (3.10)

in{(Q/ 7)™

where B = ((m + 1)/mXB + 1).
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Next. we prove the following auxiliary result: If x > e and x/In x < y. then
v< Zvin v Indeed. since v Inx is an increasing function of x for x > e. it is
sufficient to show that if x/lnx = v then x < 2viny. Thus. it is enough to
show that v < 2(x/In x)ntx In x) or x < 2x — 2x(nln x/In x) equivalently
2Ininx < Inx orln x < vx. which is true for all x > e.

Due to eq. (3.10) and the assumption Q > expl{m + 1)/m)T. we can apply
the above result with x = (Q /7)™ = 4nd v = Bd: thus. it follows that

motm o+ it

(%} < 2Bd In( Bd).
which gives
Q <Ad"" "(nd) """"'T,

where .4' is a suitable constant. If Q < exp{m + 1)/m)T. this last inequality
is again valid. We conclude that there exists a constant .4' such that Q<
Ad'"""(Ind)' """ T. Each processor sends M messages along every link
(e.7). Since E[M, ] <.Ad'"" "(Ind)'"~''™T and since there are at most nd
links. the expected value ot the total number of transmitted messages 1s
bounded above by A'nd="" "(Ind)' = """ T. which is the desired result. =

[t now remains to prove Lemma 3.4.1.

PROOF OF LEMMA 3.4.1. For the purposes of the lemma. we only nced to
consider a fixed pair of processors « and j. We may thus simplify notation and
use M and S instead of M and S . respectively.

Let & be defined as follows:

det ( T )l/(m+|l
b= | ——

E(M]
Note that if & > ¢,.then E[M] < T/¢*". which implies that

(3.1

' l " /Am
E[M] < —) Tm”'""’(E[M])I( I):

E(l

therefore. cq. (3.9) hoids as long as B is chosen larger than 1/¢€;". Thus. we
only need to consider the case 6 < ¢,. which we henceforth assume.

We split the interval [0, 7] into disjoint intervals of length 5. To simplify
notations. we assume that 7.8 is an integer. (Without this assumption. only
some very minor modifications would be needed in the arguments to follow.)
For definiteness. let the gth interval be S, =[(g — 1)8.g8). with the excep-
tionof J; s={T - 5.T] Let M, denote the number of messages generated
during /. Clearly, we have

/5

L EIM,] =EM]. (3.12)

g=1

Let S , be the number of nondiscardable messages generated during S, We
have

T/8
L ElS,] = E(S]. (3.13)

g=1
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Hencetorth. we fix some g = {l..... T/8) and we concentrate on bounding
E(S,]
q

Let N, be the number of messages that are generated during the intervai ./,
and arrive no later than ume ¢é.

LEMMA 342, E[N,] < a.87E[M,], where a, = c./m!. where c, and m are
the constants of Assumputon 2.3

PROOF OF LEMMa 3.4.2. Let f,....,1, be the times in 7. in increasing

order. at which messages are generated Let D,..... Dy, be the respective
delays of these messages. We have

E[N,] - : Pr(M, = kIPt[ D, < q8 — 1M, = k]

k=
< ¥ PriM, = kIPt[D, < 8IM, = k], (3.14)
ko=

where the last incquality follows from the fact 7, > (g — 1)8. By Assumption
2.2. the delay of a message 15 independent of all events that occurred until the
ume of its generation: hence. we have

Pr[D, < 8IM, > k| = F(8). (3.15)

because. at time ¢ . the event M, 2k s known to have occurred. Further-

more. using Assumpnon 2.3 and some elementary calculus, we see that there
exist constants a,. a. > () such that

alx™ =y") < Flx) = F(y) < a.{x™ =y™), for 0 <y <x < g,

(In particular, «, = c,/m! and a, = c,/m!.) Applying eq. (3.16) with x = &
and v = 0. we have F(5) < a,8™; combining this with egs. (3.14) and (3.15).
we obtain

> k] = a,8"EIM,]. (3.17)

¢ 2
O

Let S be the number ot nondiscardable messages that are generated during

./, and arrive afrer time ¢6. Recalling that N is the number of messages that

are generated during .7, and arrive no later than gé8. we have
E(s,) < E[N,] + E[S,]. (3.18)

Lemma 3.4.2 provides a bound for E[l\:’q]; thus. it only remains to upper
bound §_.

LEMMA 3.4.3. We have

m B. 1
E[S,] < BSN+—B:ln(N+I)+1 -

where a,, B,, B.. B.. ¥ are constants that depend onlv on the constants introduced
in Assumption 2.3.
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PROOF OF LEMMA 3.4.3. Let .7 stand for the history of the process up to
and including ume gé. Let .\, be the number of messages that were transmit-
ted during _-, and have not been received by uime gé: note that N =M, — N,
We will be referring to the aforementioned .\, messages as P ...... P In
particular. message P, is taken to be generated at time 1. where tg - 18'< 1,
<t < 2ty < q6 The delav of P, is denoted by D, : there holds D, = qo

. by assumption. Note that .\, and (1,..... ly,) are 7- measurable: that is.
thexr values are known at time ¢ 3. Also. Assumption 2.2 impiies that. condi-
tioned on .7, the random variables D...... Dy  are independent. with the

conditionai cumulative distribution ot D, bemng G(-lgé — 1,).
In the analvsis to follow. we assume that N,z 2: the trivial cases N, = 0 and

N, = 1 will be considered at the end. At time gé. message P, has been in the

. def

air for 5, = g6 — ¢, time units: nouce that s, < 8. Let R, denote the random
variable D_ - s,: that is. R, is the residual time (after g8) for which message
P, will remain in the air. As argued above. conditioned on 7. the random

vanables R..... R, are independent: moreover. the conditional cumulative
distribution tunction of R, is given by

F(r+s,) — F(s.)

Hor S PR, < rF] = Glr~s,.5,) = e B
Let flr) = «dF/drXr) and h (r) = «dH,  dr)Xr): both derivauves are guaran-

teed to exist in the interval ) €.} due to Assumption 2.3 and the fact
5; <8 < e, Clearly. if k = N, then tor P_ not to be discardable 1t is necessary
that messages P__,,.... P, arrve later than P.. Theretore. we have

Pr{ P, is nondiscardable |5} < Pr[ R, <R forl=k+1.....N l?]

A

[Prlr e R fort =k + L NLF]dH ()

/]

X

[T - pe

We split this integral into three parts and for each part. we usc a different
bound for the integrand: for r € [0. §]. we use the bound 1 — H{(r) < L. for
r € [€,.=). we use the bound | — H(r) < | — H{e,). We therefore obtain

I—I Pr[R, = ri¥ ]\ dH (r)

I=k =~

dH, (r).

N,

o

Pr( P, is nondiscardable |5 < H,(8) + f (

\ =A+|

[ —H,(r)]) dH(r)

N,
+ [T U -He)] (3.20)

[=k+|

In what follows. we derive an upper bound for each of the three terms in eq.
(3.20).




{rerage Communicaton Compiexity ot Asvncaronous Distnbuted Algorthms 395

Starung with H (4. we have

m

u_‘{(ﬁ*sk) - sf]
I - F(s)

H (8) <
due 1o egs. (2.19) and (3 1n). Since s, < 8. we have (5, = 8)" — 6" < (27 ~
118" morcover. there holds 0 < | = Fle,) < 1 = F(s,). because 5. £ 8 < €,
and Fle,) < 1 (see Assumption 2.3). Combining these facts. it follows that

G227 = 1)
- - (3.21)

Hisr < 57 = B.8™
" T - Flen A

Furthermore. lct A be 4 small positive real number: by eq. (3.19). we have

Flir+s,+A)—-F(r+s,)
' ’Al - ! = .
H(r } f4r) T — F(s,)

since s < 8 < et tollows trom eq. (3.16) that

(J! f " m
——tr =+ - 1)) —«r+s‘.)l
| — Fist :
< Hr - X - il
. " .
< ———ren =0 =)7L Vre(Oel
| — Fig

Reasoning similarly as in the case of eq. (3.21). it follows (after some aigebra)
that
altr+ N7 —r7) < Hor = A) = H(r)
. (27~ 1) m
T (e )" - Vrelligl 322
Il - F(e,)

On the other hand. using eq. (3.16). we have
altr+ 37 = < Flr+ A) = F(r) < anllr = )7 = r].
Vre (0.6,
this together with eq. (3.22) implies that there exist constants B3.. 8, > U. which
do not depend on (. such that

BAF(r+23) = F(n] < Hir + A) = H(r) < B.[F(r + 3) = F(r)].

Vre (0, el
Using this. it follows easily that
h(r) < B,f(r). vre (0. ¢, (3.23)
and
(3.24)

H/(r) = B-F(r). vre [0.¢,].
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Combining egs. (3.23) and (3.24). we have

N

f( [1 0 - Aol dH () < B[ 1 = BET T f ar
8 ! 8

[=k+|
- 52./6"[1 — B F(MO™  d( B F(r))
Bg F i )
< Ez-fl(l —y) YRy
B; 0
s 1
B (3.25)

where we have also used the fact B,F(e,) < H,(e,) < 1 [see eq. (3.22) with
r=¢€, and ! = k. Simiiarly. by eq. (3.24). we have

N

Y

[T 11 - He)] <[1 = B Fle))¥ ™t =yt (3.26)

(=« |

where vy is constant and sausfies 0 < ¥ < 1.
Combining eqgs. t3.20). (3.21). (3.25). and (3.26). we obtain

B, 1

Pr{ P, is nondiscardable 17} < 8,8™ + E: m + oy Ntk
The above result holds for & = 1...., Nq — 1: adding over all those k. we have
Nu- |
Y Pr(P, is nondiscardable |¥) < B,8™(N, — 1)
k=i

B8 N, -1 1 N, -1

+—= Y + Y yNh

By «oi Nq"k*’l k=t

~

(3.27)
Notice that

and

because 0 < y < 1. Thus. it follows from eq. (3.27) that

N‘l

Y Pr[ P, is nondiscardable |7}
k=1

E[S,7]

IA

o B LA
B8N, + ZEIn(N, = 1+ 3= = L.
3

-7
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where the term ~ + 1" bounds the probabilitv that P.., is nondiscardable. The
above result was established for all N, = 2: it is straightforward 1o see that it
also holds for , = 1 and for N, = 0. We now take expectations. to remove the
conditioning on .. and the desired result is obtained. O

We now combine Lemmas 3.4.2 and 3.4.3. together with eq. (3.18), and
obtain

1
1 -

where we have also used the fact N, < M,. The above inequality holds for all
ge{l..... T/8}. adding over all g. and using eq. (3.13), we obtain

E(S,) < ta, -~ B)E"E(M,] ~ %-E{ln(Mq + 1)] +
3

T8
E{S] = ¥ ELS,)
q=1
<la. -8 )S”r‘iaE[M ] - &%ﬁE[ln(M + 1)] + : I—
- ' ami ! ‘quﬂ ! ez
(3.28)
Since the logaritnmic tuncuion is concave. Jensen's inequality vieids
T8 s T 5 7/8 ‘
L E[IntM - D)< ¥In(EIM,]+1)< Eln(? Y E(M,] + 1).
g=1 g=1 qg=1
This together with egs. (3.12) and (3.28) implies that
B.T (6 1 T
E[S) <ta.+ B))S"E(M] + E—gln(7E{M1 + 1) o s (3.29)

By eq. (3.11), we have S§"EM]=T/86=T"""*™EMD"'"" and
(8/TYE(M]) = 1/8™ = (E[M])/T)""""*"; since § < €,, we have (§/T)E[M]
> 1/¢€q', which gives (after some algebra) that

) é
ln(—fE[M] + 1) < ln(;E[M]) + In(e] + 1).

Using these tacts. 1t follows from eq. (3.29) that

E[S] < [a: + B, + -~ |n(elf)" +1) T"'/("””(E[M])‘/(m’“

-y
mf,

+ -.—__——-_—Tm/tm*ll(E[M])l/(m+l)ln(E{M]/T):
(m+ 1)B,

this proves the lemma for the case § < ¢;. O

3.5. Discussion.  First, we discuss a generalization of Theorems 2.4 and 2.5.
Let us suppose that the distribution of the delays is as described by Assump-
tion 2.3, except that it is shifted to the right by a positive amount. (For
exampie, the delay could be the sum of a positive constant and an exponen-
tially distributed random variable.) As far as a particular link is concerned. this
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change of the probability distribution is equivaient to delaying the time that
cach message is transmitted bv a positive constant. Such a change does not
affect the number ot overtakings that occur on any given link. Thus. Lemmas
3.3.1 and 3.4.1 remain valid. and Theorems 2.4 and 2.5 still hold.

Next. we discuss the tightness of the bounds in Theorems 2.4 and 2.5. These
bounds are obviously tight if ¢ = O(1). that is. for sparse processor graphs. In
general. we are not able to establish that our upper bounds are tight. However.
it can be shown that the bound in Lemma 3.3.1 is tight and the bound in
Lemma 3.4.1 is tight within a logarithmic factor [Tsitsiklis and Stamoulis 1990].
Since these lemmas are the key to our proofs. we are led to conjecture that the
upper bound of Theorem 2.4 is tight and that the upper bound of Theorem 2.5
is tight within a logarithmic factor.

In our results. we have assumed that the delay of all messages are indepen-
dent and identically distributed. cven for messages on different links. If we
assume that message declavs are independent but that the mean delay is
different on different links. then our resuits are no more valid. In fact. under
those circumstances. one can construct examples in which the number of

transmitted messages over a given ume interval increases exponentially with
the number ot processors.

4. Some Remarks on the Time Compiexiy

[n this scction. we still assume that the model of Section I is in effect.
Furthermore. to simplify the discussion. let us assume that if a message
reception triggers the transmission of messages by the receiving processor.
these latter messages are transmitted without any waiting time.

Consider the asynchronous Bellman-Ford algorithm and consider a path
(iguiy - ,.....1,.0) from a node 1, to the destination node 0. We say that this
path has been rraced by the algorithm if there exist times ,.7...... ¢, such that
a message is transmitted by processor 1, at time ¢, and this message is received
by processor i ., at time ¢, j = l..... k — 1. Under the initial conditions
introduced in Section 1. it is easilv shown [Bertsekas and Tsitsiklis 1984] that
the shortest distance estimate x, of processor i/, becomes equal to the true
shortest distance as soon as there exists a shortest path from i, to 0 that has
been traced by the algorithm.

[t is easilv scen that under the model of Section 2. the time unti a path 1s
traced is bounded by the sum of (at most ) independent and identically
distributed random variables. Assuming that the delay distribution has an
exponentially decreasing tail. we can apply large deviations bounds on sums of
independent random variables (c.g.. the Chernoff bound [Chernoff 1952]). We
then see that the time until the termination of the asvnchronous Bellman-Ford
algorithm is O(n), with overwhelming probability. Furthermore. the expected
duration of the algorithm is also O(n).

From the above discussion and Theorem 2.4, we can conciude that. for
m = 1. the number of messages until termination of the asynchronous Bell-
man-Ford is O(n’d"). with overwhelming probability.” Similarly. for m > 1.
the corresponding upper bound is O(n*d**""™(In d)' "' "™’). We note that for
sparse graphs [i.c.. when d = O(1)], the asynchronous Bellman-Ford has very

good communications complexity. equal to the communication complexity of its
synchronous counterpart.
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It should be ciear at this point that the above argument is not specific to the
Bellman—-Ford aigorithm. In particular. any asynchronous algorithm with poly-

nomial average time compiexity will also have polynomial communication
complexity. on the average.

3. Different Modeis

We have established <o tar that (under the assumption of independent and
identically distributed message delays) the average communication complexity
of asynchronous distributed algorithms is quite reasonable. In particular.
discarding messages that are overtaken by others is a very effective mechanism
for keeping the number of messages under control.

Modeling message delayvs as independent and identically distributed random
variables seems rcasonable when a “general mail facility” is used for message
transmissions. and the messages corresponding to the algorithm are only a
small part of the tacility's load. On the other hand. for many realistic muitipro-
cessor systems. the independent and identically distributed assumption could
be unrealistic. For ¢xampic. any system that is guaranteed to deliver messages
in the order that thev are transmitted (FIFO links) will violate the independent
and identically distributed assumption (unless the delays have zero variance).
This raises the 1ssuc ot constructing a meaningful probabilistic model of FIFO
hnks. In our opimion. 1 anv such model (and. furthermore. in any physical
implementation ot such a model) the links have to be modeled by servers
preceded by butfers. in the usual queuing-theoretic fashion. We discuss such a
model below.

Let us assume. for concreteness. that each link consists of an infinite buffer
followed by a server with independent and identically distributed. exponentially
distributed. service times. In this setup. the following modification to the
algorithm makes the most sense: Whenever there is a new arrival to a buffer,
every message that has been placed earlier in that same buffer. but has not yet
been “served™ bv the server. should be deleted. This modification has no
negative effects on the correctness and termination of an asynchronous dis-
tributed algorithm. Furthermore. the rate at which a processor receives mes-
sages from is neighbors 15 O(d). This is because there are at most d incoming
links and the arrival rate along each link is constrained by the service rate of
the server corresponding to each link. Each message arrival triggers O(d)
message transmussions. We conclude that the expected communication com-
plexity of the aigorithm will be O(nd*T). where T is the running ume of the
algorithm.

We have once more reached the conclusion that asynchronous algorithms
with good time complexitv T will also have a good communication complexity.

Let us conclude by mentioning that an alternative mechanism for reducing
the communication complexity of an asynchronous algorithm is obtained by
introducing a “svnchronizer” {[Awerbuch 1985]. A synchronizer could result in a

1 .
For m = 1. the formal argument goes as follows. If T is the random ume unul termination and
C(1) is the number of messages transmitted until time ¢. then

PriC(=) > A, 4,n°d*] < Pr{T 2 A\n] + Pr{C(A.n) 2 4,A,n"d"].

We bound Pr{T > A4.n] using the Chernoff bound. and we bound Pr{C(A.2n) 2 4. 4 .n-d’} using
Theorem 2.4 and the Markov inequality.
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communication complexity that is even better than the one predicted by
Theorem 2.4 or by the calculation in this section. On the other hand. our

results indicate that acceptable communication complexity is possible even
without a svnchronizer.
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