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Abstract

Fashion retail is typically characterized by (1) high demand uncertainty and products
with short life cycles, which complicates demand forecasting, and (2) low salvage
values and long supply lead times, which penalizes for inaccurate demand forecasting.
In this thesis, we are interested in the design of algorithms that leverage fashion
retail data to improve demand forecasting, and that make revenue-maximizing or
cost-minimizing pricing and inventory management decisions.

First, we study a multi-period dynamic pricing problem with feature information.
We are especially interested in demand model misspecification, and show that it can
lead to price endogeneity, and hence inconsistent price elasticity estimates and sub-
optimal pricing decisions. We propose a "random price shock" (RPS) algorithm that
combines instrumental variables, well known in econometrics, with online learning,
in order to simultaneously estimate demand and optimize revenue. We demonstrate
strong theoretical guarantees on the regret of RPS for both IID and non ID features,
and numerically validate the algorithm's performance on synthetic data.

Next, we present a case study in collaboration with Oracle Retail. We extend
RPS to incorporate common business constraints such as markdown pricing and in-
ventory constraints. We then conduct a counterfactual analysis where we simulate
the algorithm's performance using fashion retail data. Our analysis estimates that
the RPS algorithm will increase by 2-7% relative to current practice.

Finally, we study an inventory allocation problem in a single-warehouse multiple-
retailer setting with lost sales. We show that under general conditions this problem is
convex, and that a Lagrangian relaxation-based approach can be applied to solve it in
a computationally tractable, and near-optimal way. This analysis allows us to prove
structural results that give insights into how the allocation policy should depend on
factors such as the retailer demand distributions, and demand learning.

Thesis Supervisor: David Simchi-Levi
Title: Professor
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Chapter 1

Introduction

In this thesis, we are interested in pricing and inventory management problems that

arise in fashion retail. Among retail applications, fashion retail is unique for a number

of reasons. Most distinctive is the seasonality of fashion retail: Every season, new

product lines are introduced at stores, sold for only around 10 weeks, then removed

from stores (Fisher and Raman, 1996).

Also, the amount of inventory available during each season tends to be fixed.

This is because items have to be shipped across long distances, from the countries

where they are manufactured, to reach stores located in the US, Europe, etc. Since

supply lead times are long relative to the product lifecycles, replenishments during

the short selling seasons are thus either not possible, or are limited in number. For

example, at the Spain-based fast fashion retailer Zara, which is one of the largest

fashion retailers today, initial shipments from the production to distribution centers

before the start of each season make up around half of the total volume of available

inventory during each season (Gallien et al., 2017).

A third defining characteristic of fashion retail is that items that are not sold to

customers by the end of each season are resold at very low salvage values. These

salvage values tend to be much lower than the full prices of the items, and may even

be lower than the cost of production (Fisher and Raman, 1996).

Given these factors, fashion retailers face two big challenges: For one, it is difficult

to forecast demand accurately for products with short lifecycles, as only a limited
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amount of information is available on the sales of each product. At the same time,

since inventory is fixed and salvage values are low, inaccurate demand forecasting, or

inadequate planning to meet demand, can lead to costly lost sales opportunities.

The three parts of this thesis address these various challenges in fashion retail by

proposing data-driven algorithms that make use of the kinds of data that are available

to fashion retailers - such as transaction and item feature data - to perform more

accurate demand forecasting, and to consequently make better pricing and inventory

management decisions. We are particularly interested in algorithms that "learn and

earn" on the fly, meaning that learning and optimization take place simultaneously

rather than in separate stages. As additional sales or demand data is observed, it is

used to update the retailer's demand forecasts, and to then make pricing or inventory

management decisions that generate demand, and so on and so forth. Since product

lifecycles are so short in fashion retail, incorporating the most recent data in demand

forecasting is essential to making more accurate predictions.

Another strategy that fashion retailers can use to improve their demand forecast-

ing for products with short lifecycles is feature-based pricing. Rather than considering

each item in isolation, fashion retailers can look at the sales of products with similar

characteristics, i.e. products that are in the same category, and that share similar

features such as color, brand, design pattern ete, and that are therefore likely to ex-

perience similar demands. These kinds of item feature data can be combined with

transaction data in order to perform demand estimation and make pricing decisions.

Large fashion retailers, such as Zara and its closest competitors H&M and Forever 21,

where the number of new articles of clothing released every year are in the thousands

(Caro and Gallien, 2012), especially stand to benefit from feature-based pricing.

Chapters 2 and 3 of this thesis study feature-based pricing, the former from a

theoretical perspective, and the latter from the point of view of the company Oracle

Retail, which is a business unit of Oracle and a leading provider of software and IT

solutions to retailers. In Chapter 2, Dynamic learning and pricing with model mis-

specification, we show that one of the pitfalls of designing a dynamic pricing policy

when demand depends on feature information lies in correctly estimating the causal
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relationship between demand and price. For example, if the policy assumes a mis-

specified demand model, either because the decision maker is unsure of how demand

is affected by the features, or of how to model such a dependence, demand noise can

become correlated with the price (price endogeneity). Price endogeneity then leads to

biased estimates of the demand-price relationship, and results in suboptimal pricing

decisions. Another factor that can lead to price endogeneity is that pricing managers

at companies may choose admissible price sets based on their own beliefs of future

demand, and in response to demand factors such as product quality, trendiness, etc.,

that are unobservable to the algorithm.

In Chapter 2, we thus propose a "random price shock" (RPS) algorithm that

manages these pitfalls by dynamically generating randomized price shocks to estimate

price elasticity while maximizing revenue. We show that the RPS algorithm has strong

theoretical performance guarantees, that it is robust to model misspecification, and

that it can be adapted to a number of business settings, including (1) when the feasible

price set is a price ladder, and (2) when the contextual information is not IID. We also

perform numerical experiments on synthetic data to gauge the performance of RPS,

and find that it significantly outperforms competing algorithms that do not account

for price endogeneity.

In Chapter 3, Feature-based dynamic pricing with for fashion retail: A case study,

we adapt the RPS algorithm to be broadly applicable to fashion retail settings. We

keep the price experimentation structure of the RPS algorithm proposed in Chapter

2, but modify it to incorporate business constraints faced by many fashion retailers,

such as fixed inventory and markdown pricing constraints. The modified algorithm

makes use of intuitive and computationally tractable approximations to optimize the

retailer's total expected revenue subject to these constraints. To gauge its perfor-

mance, we have run a number of offline numerical experiments using retail data from

one of Oracle Retail's clients. The heuristic exhibits revenue gains of around 2-7%

over current practice, and seems robust to different retailer parameter settings such

as the length of the markdown and no-touch periods.

Finally, in Chapter 4, we turn our attention from pricing to inventory alloca-
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tion. We study an inventory allocation problem in a two-echelon (single-warehouse

multiple-retailer) setting with lost sales. At the start of a finite selling season, a

fixed amount of inventory is available at the warehouse, and can be allocated to the

retailers over the course of the selling horizon with the objective of minimizing total

expected lost sales costs and holding costs. We allow each retailer to experience cor-

related demands, and show how this framework can capture learning in the sense of

demand forecasting (e.g. ARMA) model, as well as a Bayesian learning mdoel.

Then, we pose the questions of (1) how to solve the inventory allocation problem

under demand learning in a computationally tractable way, and (2) how demand learn-

ing impacts effective inventory allocation policies. To address the first question, we

adapt the Lagrangian relaxation-based technique proposed by Marklund and Rosling

(2012) for a backordering, no-learning setting. We show under general assumptions

that the resulting heuristic remains near-optimal in our setting, compared to the orig-

inal dynamic program. Finally, we use this analysis to investigate the relationship

between demand learning and early allocation decisions. Through a combination of

theoretical and numerical analysis, we show our main result: Demand learning has

a similar effect as risk pooling on inventory allocation policies, as it provides an in-

centive for the decision maker to withhold inventory at the warehouse rather than

allocating it in earlier periods.
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Chapter 2

Dynamic Learning and Pricing with

Model Misspecification

We study a multi-period dynamic pricing problem with contextual information where

the seller uses a misspecified demand model. The seller sequentially observes past

demand, updates model parameters, and then chooses the price for the next period

based on time-varying features. We show that model misspecification leads to corre-

lation between price and prediction error of demand per period, which in turn leads

to inconsistent price elasticity estimate and hence suboptimal pricing decisions. We

propose a "random price shock" (RPS) algorithm that dynamically generates ran-

domized price shocks to estimate price elasticity while maximizing revenue. We show

that the RPS algorithm has strong theoretical performance guarantees, that it is ro-

bust to model misspecification, and that it can be adapted to a number of business

settings, including (1) when the feasible price set is a price ladder, and (2) when the

contextual information is not ID. We also perform numerical experiments gauging

the performance of RPS on synthetic data, and find that it significantly outperforms

competing algorithms that do not account for price endogeneity.
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2.1 Introduction

Motivated by the growing availability of data in many revenue management applica-

tions, we consider a dynamic pricing problem for a data-rich environment. In such an

environment, a firm (i.e., seller) observes some time-varying contextual information

or features that encode external information. The firm estimates demand as a func-

tion of both price and features, and chooses price to maximize revenue. By including

features into demand models, the firm can potentially obtain more accurate demand

forecasts and achieve higher revenues.

In this work, we are especially interested in the consequences of model misspec-

ification, namely, when the firm assumes an incorrect demand function on features.

In practice, features may contain various kinds of information about demand such as

product characteristics, customer types, and economic conditions of the market. A

mixed set of heterogeneous features can affect demand in a complex way. The seller

may assume an incorrect demand model either because it is unsure how demand is

affected by features, or because it prefers a simple model for analytical tractability.

In fact, several recent works on dynamic pricing with features make the assumption

that demand is a linear or generalized linear function of features (Cohen et al., 2016;

Qiang and Bayati, 2016; Javanmard and Nazerzadeh, 2016; Ban and Keskin, 2017).

We observe that when the demand model is misspecified, model parameters es-

timated from demand data may become biased and inconsistent. This phenomenon

is illustrated in Fig. 2-1 below. In this figure, the inner oval represents a parametric

family of demand models assumed by the seller. The white "x" mark represents the

seller's initial parameter estimation. The triangle mark represents the true model,

which lies outside the oval region, since the model assumed by the seller is misspeci-

fied. Over time, as the seller collects past demand data and updates demand model

parameters, one would expect that the updated parameters would converge to the

best approximation of the true model (denoted by a solid "x" dot on the boundary,

i.e., the projection of the triangle mark to the oval region). Under some assumptions,

the model with the best approximation is also the one associated with the highest
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Assumed
Models

Figure 2-1: The dynamics of parameter estimates under model misspecification.

revenue performance within the assumed model family (see Sometimes, the updated

model parameter (circle dot) may even have worse revenue performance than the

initial model estimation (white "x")!

The reason why the estimated parameters are inconsistent is that model misspec-

ification can cause correlation between the price and demand prediction error. We

refer to this correlation effect as price endogeneity. If an estimation method ignores

the endogeneity effect and naively treats the assumed model as the true model, it

would produce biased estimates. Note that we use the word "endogeneity" here in a

pure statistical sense, indicating that an independent variable is correlated with the

error term in a linear regression model (Greene, 2003).

In this work, we will mainly focus on the price endogeneity effect caused by model

misspecification; however, a discussion of all possible factors that may cause price

endogeneity is beyond our scope.
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2.1.1 Overview

To illustrate the price endogeneity effect caused by model misspecification, we specifi-

cally consider a dynamic pricing setting where the true demand model is quasi-linear,

in that the expected demand is linear in price but nonlinear with respect to features.

The seller does not know the underlying demand function, and incorrectly assumes

that the demand function is linear in both price and features.

To address the issue of model misspecification, we propose a "random price shock"

(RPS) algorithm that is able to obtain unbiased and consistent estimates of the model

parameters while controlling for the price endogeneity effect. The idea of the RPS

algorithm is to add random price perturbations to "greedy prices" recommended by

some price optimization model using biased parameter estimates. The variances of

these price perturbations are carefully controlled by the algorithm to balance the so-

called exploration-exploitation tradeoff. Intuitively, using a larger variance can help

explore and learn the demand function, while using a smaller variance can generate

a price that is closer to greedy prices, which can exploit current parameter estimates

to maximize revenue.

The RPS algorithm is related to three types of methods in econometrics and op-

erations management for demand estimation. First, the RPS algorithm is in some

sense similar to the randomized controlled trials (RCT) method, which offers ran-

domly generated prices to eliminate selection bias. For example, Fisher et al. (2017)

applies RCT in a field experiment to estimate an online retailer's demand model.

However, it is important to note a key difference between RPS algorithm and the

RCT method: the price offered by RPS algorithm is not completely random, because

it is the sum of a greedy price, which is endogenous, and a small perturbation. As a

result, the sum of the two prices is also endogenous; therefore, standard analysis for

randomized control trials cannot be applied to the RPS algorithm. Moreover, Fisher

et al. (2017) implemented RCT in two phases: a first phase where random prices

are offered, and a second phase where optimized prices are tested. In contrast, the

RPS algorithm does not have these two phases, and it estimates the demand model
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while optimizing price. The benefit of estimating demand and optimizing price con-

currently is discussed in Besbes and Zeevi (2009); Wang et al. (2014). The analysis

of the RPS algorithm is also significantly different from that of RCT, and the proof

idea for the RPS algorithm is built on the analysis of the least squares method in

nonlinear models (Hsu et al., 2014).

The second type of method that is related to the RPS algorithm is the instrumental

variables (IV) method. Instrumental variables is a widely used econometric method

to obtain unbiased estimates of coefficients of endogenous variables. It aims at finding

the so-called instrumental variables that are correlated with endogenous variables but

are uncorrelated with prediction error. In the RPS algorithm, the randomly generated

price perturbation serves as an instrumental variable, because it is correlated with an

endogenous variable, i.e., the actual price offered by the firm (recall that the actual

price is the sum of a greedy price and a perturbation), but is obviously uncorrelated

with prediction error since it is randomly generated by a computer. This connection

to instrumental variables allows us to use econometrics tools in the design of RPS

algorithm, more specifically the two-stage least squares (2SLS) method.

Lastly, the RPS algorithm is related to the family of "semi-myopic" pricing policies

that has been studied in the revenue management literature more recently (Keskin

and Zeevi, 2014; den Boer and Zwart, 2013; Besbes and Zeevi, 2015). A semi-myopic

pricing policy keeps track of whether there has been sufficient variations in historical

prices; if not, an adjustment is made such that the actual price offered would deviate

from greedy or myopic price. Our proposed RPS algorithm belongs to the family

of semi-myopic policies. However, it is important to note that most existing semi-

myopic algorithms make deterministic price adjustments to the greedy prices, whereas

the RPS algorithm makes randomized price adjustments. This is a major difference

since our ability to perform unbiased parameter estimation in the presence of price

endogeneity heavily relies on the fact that those price perturbations are randomized.

In Section 2.3, we show that the RPS algorithm accurately identifies the "best"

linear approximation to the true quasi-linear model in the presence of model misspec-

ification. The algorithm achieves an expected regret of O((1+ m)v T) compared to
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a clairvoyant who knows the best linear approximation, where m is the dimension of

features and T is the number of periods. Our regret bound matches the best possi-

ble lower bound of Q(V) that any non-anticipating algorithm can possibly achieve.

Moreover, RPS improves the O(Vlog T) regret bound proven by Keskin and Zeevi

(2014) for a special case of linear models without features (i.e., m = 0).

Two extensions of the RPS algorithm are considered. In the first extension, we

consider the case where prices must be chosen from a discrete set. We establish a

O(T 2 / 3) regret bound for this generalized setting. In the second extension, we remove

the assumption that feature vectors are drawn IID, and allow them to be sampled

from an arbitrary distribution. Again, a O(T 2/ 3 ) regret bound is shown.

Finally, we test the numerical performance of the RPS algorithm using synthetic

data in Section 2.4. These experiments demonstrate that the RPS algorithm obtains

unbiased estimation in the presence of price endogeneity, and shows that it outper-

forms other pricing algorithms proposed in the literature, which do not account for

price endogeneity.

2.1.2 Background and Literature Review

Demand model misspecification is a common problem faced by managers in revenue

management practice (Kuhlmann, 2004). Cooper et al. (2006) have discussed several

reasons why model misspecification can arise, including revenue managers' lack of

understanding of the pricing problem, or their preference for simplified models for

the sake of analytical tractability.

Several previous papers study the consequences of model misspecification in dy-

namic pricing. Cooper et al. (2006) study a problem where an airline revenue manager

updates seat protection levels sequentially using historical booking data. The revenue

manager incorrectly assumes that customer demand is exogenous and independent,

but because the true demands for different fare-classes are substitutable, the booking

data is affected by the manager's own control policy. Cooper et al. show that when

an incorrect demand model is assumed, the firm's revenues would systematically de-

crease over time to the worst possible values for a broad class of statistical learning
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methods, resulting in a so-called "spiral down effect." On a high level, the spiral-down

effect discovered by Cooper et al. (2006) is analogous to the phenomenon we illus-

trated in Fig. 2-1: As more data is collected, ignoring model misspecification in the

estimation process increases bias in parameter estimates over time, and the seller's

revenues deteriorates. Besbes and Zeevi (2015) consider a single product dynamic

pricing problem in which the seller uses a linear demand function to approximate the

unknown, nonlinear true demand function. The authors have proposed a learning

algorithm that would converge to the optimal price of the true model. Cooper et al.

(2015) consider an oligopoly pricing setting where firms face competition from each

other, but their demand models do not explicitly incorporate other firm's decisions.

The authors have studied conditions under which the firms' decisions would converge

to Nash equilibria. We note that in these three papers, demand function is assumed

to be stationary. Instead, we consider a setting where demand function is affected by

features, which are changing over time.

The effect of model misspecification on decision making has also been studied

in other operations management applications. For example, Dana Jr. and Petruzzi

(2001) study a newsvendor problem where the customer demand distribution depends

on the inventory stock level chosen by an inventory manager, but the manager in-

correctly assumes that demand distribution is exogenous. Cachon and K6k (2007)

consider a newsvendor model where the salvage value is endogenously determined

by remaining inventory, while the inventory manager assumes the salvage value is

exogenous.

We consider a setting where the demand model contains unknown parameters

that are being estimated dynamically from sales data. In such a setting, the firm

faces an exploration-exploitation tradeoff: towards the beginning of the selling season,

it may test different prices to learn the unknown parameters; over time, the firm

can exploit the parameter estimations to set a price that maximizes revenue. Our

problem setting is closely related to the one considered by Keskin and Zeevi (2014).

They study a linear demand model without features, and consider a class of semi-

myopic algorithms that introduce appropriately chosen deviations to the greedy price
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in order to maximize revenue. Keskin and Zeevi show that this class of algorithms

has the optimal regret rate, i.e., no other pricing policy can earn higher expected

revenue asymptotically (up to a logarithmic factor). Another related paper is den

Boer and Zwart (2013), which proposes a quasi-maximum-likelihood-based pricing

policy that dynamically controls the empirical variances of the price. Besbes and

Zeevi (2009) and Wang et al. (2014) consider dynamic pricing for a single problem

under an unknown nonparametric demand model. Besbes and Zeevi (2012) extend

the previous result to a setting with multiple products and multiple resources under

an unknown nonparametric demand model. For an overview of some of the other

problem settings and solution techniques used in dynamic learning and pricing, we

refer readers to the recent survey by den Boer (2015).

We are particularly focused on a dynamic learning and pricing problem that con-

tains contextual information (i.e. features). In related work on dynamic pricing

with features, Qiang and Bayati (2016) extend the linear demand model in Keskin

and Zeevi (2014) to incorporate features, and apply a greedy least squares method

to estimate model parameters. Cohen et al. (2016) propose a feature-based pricing

algorithm to estimate model parameters when demand is binary. Javanmard and

Nazerzadeh (2016) and Ban and Keskin (2017) study pricing problems where feature

vector is high dimensional and the demand parameter has some sparsity structure.

We note that all these papers assume that demand models are correctly specified. In

contrast, we study a feature-based pricing problem where the model is misspecified,

and focuses on the impact of model misspecification on the seller's revenue. Among

these papers, Qiang and Bayati (2016) and Ban and Keskin (2017) are closest to our

work as they both consider linear demand models with features. Nevertheless, due to

the differences in model assumptions, the regret bounds in Qiang and Bayati (2016)

(O(logT)), Ban and Keskin (2017) (O(vTlogT)) and this paper (O(VY)) cannot

be directly compared. In particular, Qiang and Bayati (2016) make an "incumbent

price" assumption, which gives the firm more information initially and allows the firm

to achieve a much lower regret bound of O(log T) rather than O(T).

We note that a few recent papers apply nonparametric statistical learning ap-
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proaches to pricing with features in a batch learning setting where historical data are

given as input (Chen et al., 2015; Bertsimas and Kallus, 2016). These works differ

from ours in that we focus on a dynamic, multi-period setting. As stated in Van Ryzin

and McGill (2000) and Cooper et al. (2006), in revenue management practice, there

is usually a repeated process where controls (e.g., booking limits or prices) are en-

acted, new data are observed, and parameter estimates are updated. In this work, we

are specifically interested in the case where historical data is dynamically generated

the seller's pricing decisions. In addition, although nonparametric approaches avoid

model misspecification, parametric models are widely used in revenue management

practice (Kuhlmann, 2004; Cooper et al., 2006; Besbes and Zeevi, 2015), so the con-

sequence of model misspecification remains highly relevant to revenue management

practice.

As mentioned earlier, model misspecification can cause price endogeneity, because

the demand prediction error and the seller's pricing decisions are both determined

endogenously by the feature vector. More generally, the phenomenon of price endo-

geneity are extensively studied in economics, marketing, and operations management.

Empirical studies have found that price endogeneity exists and has a significant im-

pact on price elasticity estimation in many real-world business settings (Bijmolt et al.,

2005). The econometrics literature has proposed various methods to identify model

parameters with endogeneity effect (e.g. Greene, 2003; Angrist and Pischke, 2008);

Talluri and Van Ryzin (2005) also provides an overview of these methods with rev-

enue management applications. The price endogeneity effect has been studied in

settings with consumer choice (Berry et al., 1995), consumer strategic behavior (Li

et al., 2014), and competition (Berry et al., 1995; Li et al., 2016); these factors are

beyond the scope of this paper. We note that empirical revenue management studies

often take the perspective of an econometrician who is outside the firm and does not

observe all the information that revenue managers can observe, such as cost, product

characteristics, consumer features, etc. (e.g. Phillips et al., 2015). However, we take

the perspective of a revenue manager within the firm who makes pricing decisions,

much like in Cooper et al. (2006) and Besbes and Zeevi (2015). We show that even if a
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decision maker observes all the past pricing decisions, untruncated historical demand

and contextual information, price endogeneity can still arise when the seller assumes

an incorrect model.

Notation

For two sequences {an} and {bn} (n = 1,2,...), we write an= O(bn) if there exists

a constant C such that a, < Cbn for all n; we write an = Q(bs) is there exists a

constant c such that an> cbn for all n. All vectors in this chapter are understood to

be column vectors. For any vector x E Rk, we denote its transpose by xT and denote

its Euclidean norm by ||x|| := VxTx. We let ||xj|1 be the f1 norm of x, defined as

xlli = E |xil. We let ||x||- be the £2 norm, defined as ||x||, = maxi lxt|. For any

square matrix M E Rkxk, we denote its transpose by MT, its inverse by M- 1 and its

trace by tr(M); if M is also symmetric (M = MT), we denote its largest eigenvalue

by Amax(M) and its smallest eigenvalue by Amin(M). We let |IMI2 be the spectral

norm of matrix M, defined by JMI2 = Am(MTM). We denote the Frobenius

normofMbyllM||F,namely|MH|F= ftr(MTM).

2.2 Model

We consider a firm (seller) selling a single product over finite horizon. At the beginning

of each time period (t = 1, 2, ... ,T), the seller observes a feature vector, xt E R',

which represents exogenous information that may affect demand in the current period.

We assume that feature vectors xt are sampled independently for t = 1, 2,.. ., T from

a fixed but unknown distribution with bounded support. (In Section 2.3.5, we will

relax the IID assumption on the features and assume an arbitrary sequence of random

feature vectors.) Without loss of generality, we assume xt E [-1, 1]" after appropriate

scaling. Moreover, we assume that the matrix

M= E[[ i ]
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is positive definite. 1

Given the feature vector xt, customer demand for period t as a function of price

p is given by

Dt(p) = bp + f (xt) -+ et, Vp E [tp, t]. (2.1)

Here, parameter b is a constant representing price sensitivity of customer demand,

and f : R" -+ R is a function that measures the effect of features on customer

demand. Both b and f are unknown to the seller. We assume that the demand

function is strictly decreasing in price p (i.e. b < 0), and f(xt) is bounded for all

xt such that If(xt) < f. The latter assumption would follow immediately from the

fact that the set of all features xt is compact if f were continuous. The last term et

in Eq (2.1) represents a demand noise. Without loss of generality, we assume et has

zero mean conditional of xt: E[t | xt] = 0; otherwise, the conditional mean E[et I xt]

can be shifted into function f(xt). We assume that et has bounded second moment

(E[e] < o2 ,Vt), and is independent of historical data (x,, E,) for all 1 t s t - 1.

However, the distribution of et is allowed to vary over time. We refer to Eq (2.1) as a

quasi-linear demand model, since the demand function is linear with respect to price,

but is possibly nonlinear with respect to features.

We denote the admissible price range in period t, i.e. the range of prices from which

the price p must be chosen, by [p,, pt]. In particular, we allow the admissible price

interval to vary over time. We assume that p, and pt are inputs to the seller's decision

problem, while they may be arbitrarily correlated with features xt and demand noise

et. We also assume there exist constants 6 > 0 and pmx such that pt Pmax and

Pt - p, > 5 for all t. Given features xt, we denote the optimal price for the true

demand model (as a function of xt) by Pt(xt) (xt). We assume that the optimal
2b

price Pt(xt) c [p, pt] for all t.

This assumption is equivalent to the condition of "no perfect collinearity," i.e., no variable in
the feature vector can be expressed as an affine function of the other variables. If matrix M is not
positive definite, the dimension of feature vector can be reduced by replacing certain variable as a
combination of other variables.
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2.2.1 Applications of the Model

The above model has applications in several business settings that involve feature-

based dynamic pricing. One example is dynamic pricing for fashion retail, which

will be discussed in more detail in Chapter 3. In the fashion retail setting, a retail

manager dynamically sets prices for fashion items throughout a selling season, while

the demand is highly uncertain when the selling season begins. The feature vectors

represent the characteristics of fashion items, such as color and design pattern, as

well as seasonality variables. Throughout the season, the retail manager may learn

from sales data about how customer demand varies for different product features, and

adjust prices accordingly to maximize revenue. Another example of an application of

feature-based pricing is personalized financial services. Phillips et al. (2015) describe a

setting in the auto loan context, where the price (interest rate for a loan) is adjusted

based on features such as credit score of the buyer, the amount and term of the

loan, the type of vehicle purchased, etc. They find that using a centralized, data-

driven pricing algorithm could improve profits significantly over the current practice,

where local salespeople are granted discretion to negotiate price. In our model, the

admissible price interval t, pt] is allowed to vary for different periods. For example,

in the auto loan context, the price interval represents the range of admissible interest

rates set by the financial headquarters, which varies based on the amount and term of

the loan offered. As time-varying bounds may depend on features and demand noise,

our model makes no assumption of the distribution of price range ,pt], and allows

the price bounds to be arbitrarily correlated with past prices, feature vector xt, and

noise Et. If such a correlation is present, it will lead to price endogeneity (in addition

to the price endogeneity caused by model misspecification) and will be accounted for

in our pricing algorithm.
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2.2.2 Model Misspecification and Non-anticipating Pricing Poli-

cies

We consider a seller who is either unaware that the true demand function has a

nonlinear dependence on features, or is unsure how to model such dependence. As a

result, the seller uses a misspecified linear demand function to approximate the true

quasi-linear demand function given by Eq (2.1). The seller assumes a linear demand

model as

Dt(p) = a + bp + cTxt + VtI, Vp E ,Pt], (2.2)

where a E R and c E R" are constants and vt is an error term.

We focus on the linear demand model, because the linear model and its variations

are widely used in revenue management practice and in the demand learning literature

(Qiang and Bayati, 2016; Ban and Keskin, 2017); in addition, the model can capture

nonlinear factors in the feature vector by including higher order terms in the feature

vector.

The parameters (a, b, c) are unknown to the seller at the beginning of the selling

season. We assume that the seller knows that the parameters a and c are bounded,

and that there exist a, such that jal < a and 1|clb < c, but do not assume that the

seller knows the values of aI . As for the price sensitivity parameter b, we assume that

the seller knows not only that the parameter b is bounded, but also the range within

which b lies, 0 < b < |b| b. The assumption that the range of b is known to the seller

is strong, and is indeed a limitation of our model. However, there are applications

for which it may be reasonable to assume that the seller has some knowledge about

this range, perhaps from her prior experience with the sales of similar items during

previous selling seasons. For example, in our case study in Chapter 3, where we

apply our demand model to a fashion retail setting, our estimates of b for different

categories of fashion items were found to be of the same order of magnitude, lying in

the range [-1, -0.1]. Thus the seller could assume that b lies in the range [-1, -0.11

for future selling seasons. More generally, the economics and marketing literature

finds that price elasticity, a quantity related to our price sensitivity parameter, tends
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to fall within finite ranges across markets and products. Bijmolt et al. (2005), for

example, analyze 1851 price elasticities from 81 different publications between 1961

and 2004, across different products, markets and countries. They observe a mean

price elasticity of -2.62 and find that the distribution is strongly peaked, with 50

percent of the observations between -1 and -3.

The seller must select a price pt E [p,,pt] for each period t = 1, 2,..., T sequen-

tially while estimating the values of (a, b, c) using realized demand data. The seller's

objective is to maximize her total expected revenue over T periods.

We denote the realized demand given pt by dt, defined as

dt = Dt(pt) = bpt + f(xt) + ct.

Note that the realized demand is generated from the true model, i.e., the quasi-linear

model Eq (2.1).

The history up to the end of period t - 1 is defined as

Wt-1 = (x1, pi, Ei, . . . , xt_1, pt_1, Et_1).

We say that 7r is a non-anticipating pricing policy if for any t, price pt is a measurable

function with respect to Wt-1 and the current feature vector and the feasible price

range: Pt= 7r(7it-1, xt, p, pt). The seller cannot foresee the future and is restricted

to using non-anticipating pricing policies.

2.2.3 Price Endogeneity Caused by Model Misspecification

and Other Factors

By comparing the true quasi-linear demand model (cf. Eq (2.1)) and the misspecified

linear model (cf. Eq (2.2)), it is easily verified that the error term in the misspecified

linear model is equal to vt = f(xt) - (a + cTxt) + et. This error term vi is composed

of an approximation error, f(xt) - (a + cTxt), which is correlated with features xt,

and a random noise Et, which is uncorrelated with the features. When the model

32



is misspecified, we have f(xt) - (a + cTxt) / 0, so the error term vt is not mean

independent of feature xt, namely E[vt I xt] # 0.

The fact that the error term is not mean independent of the features could cause

bias in the seller's demand estimates if the estimation procedure is not designed

properly. Suppose the seller uses a non-anticipating pricing policy7r suchthat

Pt =_ r (t_1I, Xt, pt, Pt). (2.3)

Because the error term vt is correlated with the features xt while price pt is a function

of xt, the seller's pricing decision causes a correlation between vt and pt. More

specifically, we have E[vtpt] # 0 since E[vtpt I xt] = E[vt . 7r(Nti_,xt,P,pt) | xt] f 0.

We refer to the correlation between pt and the error term vt as the price endogeneity

effect, and refer to pt as the endogenous variable. Throughout this chapter, the word

"endogeneity" is used in a pure econometric sense to indicate the correlation between

pt and vt.

It is well known that in a linear regression model

dt = a + bpt + cTxt + vi, (2.4)

when the regressor pt is endogenous, naive estimation methods such as ordinary least

squares (OLS) would give biased and inconsistent estimates of parameters (a, b, c).

Biased estimates of model parameters then lead to suboptimal pricing decisions.

Moreover, the seller cannot test whether price pt and error vt are correlated using

historical data, since she does not observe the error term vt directly; even if the

seller has complete historical data, without knowing the values of (a, b, c), the term

vt cannot be computed.

In addition to model misspecification, other factors can also cause the price en-

dogeneity effect. If a manager believes she has expert knowledge about future de-

mand, she may set the price range [pt,,p] in anticipation of future demand, so the

price bounds p ,pt are endogenous. Because our pricing algorithm chooses price pt

in [p,,pt], the price pt also becomes endogenous. In our algorithm proposed in Sec-

33



tion 2.3, we account for such endogeneity by allowing the price bounds t, pt to be

correlated with noise ct.

The endogeneity problem has been extensively studied in the econometrics lit-

erature (Greene, 2003; Angrist and Pischke, 2008). There are a few key differences

between the pricing model considered in this work and typical research problems

studied in econometrics. First, we study a pricing problem from the perspective of

a firm that wants to maximize its revenue, whereas econometricians often take the

perspective of a researcher who is outside the firm and wants to estimate causal effects

of model parameters. The second key difference is that econometrics and empirical

studies often consider batch data, whereas our pricing model considers sequential data

generated from dynamic pricing decisions. Analyzing these two types of data usu-

ally requires different statistical methods and correspondingly different performance

metrics.

Although there are differences between the problem considered in this work and

those in the econometrics and empirical literature, a common challenge is in studying

a regression model with endogenous independent variables. In fact, the dynamic

pricing algorithm that we introduce in the next section is inspired by statistical tools

in econometrics such as instrumental variables and two-stage least squares.

2.3 Random Price Shock Algorithm

In this section, we propose a dynamic pricing algorithm which we call the random

price shock (RPS) algorithm. The idea behind the RPS algorithm is that the seller can

add a random price shock to the greedy price obtained from the current parameter

estimates. As the number of periods (T) grows, the parameters estimated by the

RPS algorithm are guaranteed to converge to the "best" parameters within the linear

demand model family, which we will define shortly in Section 2.3.1. Therefore, the

prices chosen by the RPS algorithm will also converge to the optimal prices under

the misspecified linear demand model.

We present the RPS algorithm below (Algorithm 1). The RPS algorithm starts
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Algorithm 1 Random Price Shock (RPS) algorithm.
input: parameter bound on b, B = [-,-b]
initialize: set &I = 0,b 1 = -b, 1 = 0
for t 1, ... , Tdo

set ot +-At-I2

given xt, set unconstrained greedy price: p,"t +- b+

project greedy price: pg,t - Proj(pu,, [pt + tpt - Jt])
generate an independent random variable Apt- o w.p. j and
At < t w.p. 1
set price pt <- pg,t + Apt
choose an arbitrary price pt E [pI pt]
observe demand dt = Dt(pt)

set bt+1 <- Proj(- ,pd B)

set (&t+1, t+1) <- arg min 2 1 (ds - bt+ips- a- -YTxS) 2

end for

each period by choosing a perturbation factor ot. The algorithm computes the greedy

price, pg,, and adds it to a random price shock, Apt. Note that the greedy price is

projected to the interval [pt + ot,pt - 6t], so that the sum of greedy price and price

shock is always in the feasible price range [p,,pt]. (We denote the projection of a

point x to a set S by Proj(x, S) = arg minxEs IIx - x'.) The interval [t + t, Pt - Jt]

is non-empty, since t - p - 26 t > J(1 - t-1 /4 ) > 0. The price shock is generated

independently of the feature vector and the demand noise (e.g., it can be a random

number generated by a computer).

After the demand in period t is observed, the algorithm updates parameter es-

timations by a two-stage least squares procedure. First, the price parameter b is

estimated by applying linear regression for dt against Apt. It is important to note

that we cannot estimate b by regressing dt against the actual price pt, since pt may be

endogenous and correlated with demand noise. Since the random price shock Apt is

correlated with the actual price pt but uncorrelated with demand noise, we can view

it as an instrumental variable. Therefore, this step allows an unbiased estimate of

parameter b. The second stage estimates the remaining parameters, a and c.

In the RPS algorithm, the variance of the price shock introduced at each time

period (Apt) is an important tuning parameter. Intuitively, choosing a large variance
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of Apt generates large price perturbations, which can help the seller learn demand

more quickly; choosing a small variance means that the actual price offered would

be closer to the greedy price, which allows the seller to earn more revenue if the

greedy price is close to the optimal price. The tradeoff between choosing a large price

perturbation versus a small price perturbation illustrates the classical "exploration-

exploitation" tradeoff faced by many dynamic learning problems. In Algorithm 1, the

variances of the price shocks are set as O(t-) to balance the exploration-exploitation

tradeoff and control the performance of the algorithm.

We would like to make two remarks about the RPS algorithm. First, the idea

of adding time-dependent price perturbations to greedy prices has also been used in

Besbes and Zeevi (2015). However, there is a fundamental difference between the price

shocks introduced in RPS algorithm and the price perturbations in Besbes and Zeevi

(2015), which assumes a fixed (unknown) demand function. The algorithm proposed

in Besbes and Zeevi (2015) separates the time horizon into cycles and requires testing

two prices in each cycle: a greedy price (say, pg) and a perturbed price (say, p+ p).

Observed demand under the two prices is then used to estimate price elasticity. This

strategy of testing two prices is not applicable when demand function depends on

feature vectors, because demand is constantly changing as features are randomly

sampled. As a result, the RPS algorithm can only test one price for each realized

demand function, since the demand functions in future periods may vary. That is,

the RPS algorithm only observes demand under price p9 + Ap, but not pg.

Second, one may ask why the RPS algorithm is concerned with the correlation

between the price pt and the error term vt, but ignores the correlation between feature

vector xt and error term vt. Indeed, the error term vt contains an approximation part

f(xt) - (a + cTxt) due to model misspecification, so the least squares parameters a

and c will be biased if xt and vt are correlated. The reason why we can ignore the

correlation between xt and vt in pricing decisions is that computing an optimal price

for the linear model, namely -(a + cTxt)/(2b), only requires an unbiased estimate

of the aggregated effect of the feature vector on demand, which is measured by the

numerator a + cTxt rather than the treatment effect of each individual component
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of xt. Unbiased estimates of a + cTxt and b can be provided by the RPS algorithm.

However, when xt is endogenous, the RPS cannot guarantee that the estimates of a, c

are unbiased component-wise.

2.3.1 Performance Metric and Regret Bound

To analyze the performance of Algorithm 1, let us first define regret as the performance

metric. Recall that the true demand function is given by

Dt (p) =_ bp + f (xt) + et, Vt = 1,-.., T (2.5)

where both b and f(-) are unknown to the seller. We would like to compare the

performance of our algorithm to that of a clairvoyant who knows the true model a

priori. However, it can be shown that the optimal revenue of the true model cannot

be achieved when the seller is restricted to use linear demand models, because the

optimal price Pt(xt) = - 2*) cannot be expressed as an affine function of xt. In

Appendix A.1, we show that if the sequence of pt for t = 1,..., T is chosen based on

linear demand models, the model misspecification error is quantified by

' T T~

E Pt(xt)D(Pt(xt)) - ZptD(pt) Q(T).
.t=1 t=1_

Therefore, the optimal revenue of the true model is not an informative benchmark,

since no algorithm can achieve a sublinear (o(T)) regret rate with a misspecified

model.

If the Q(T) misspecification error is large, a first order concern would of course be

to find a better demand model family than the current linear model in order to reduce

the misspecification error. However, even if the seller uses other parametric models,

the revenue gap to the true model can always grow as Q(T), as the same argument

in Appendix A.1 applies to any parametric model because it is always possible that

the parametric model is misspecified.

We then consider the revenue of a linear model that is the"projection" of the true
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model to the linear model family. Ideally, if the true model is well-approximated by

a linear model, the seller will be able to achieve near optimal revenue even though

it uses a misspecified model. Given a nonlinear function f, we define the following

linear demand model:

D,(p) = a + bp + cTxt + v, Vp E [P, pt], (2.6)

where a and c are population least squares estimates of f(xt):

a, c =arg min E[|lf(xt) - (a + YTXt) 2 ].

It can be shown by solving first order conditions that a, c are given by the closed form

expression:

a= E XtT11 E .f(xt) (2.7)
c JLxt Xt Xt Jf -V(xt)Xt-

One can view linear model (2.6) as the projection of the true quasi-linear model

(2.1) to the linear model family (see Fig. 2-1). Let p*(xt) = _a+c xt be the optimalt 2b

price under the best linear model given by Eq (2.6). The proposition below shows that

the linear demand function (2.6) gives the highest revenue among all linear demand

functions. Therefore, we will call it the best linear model.

Proposition 1. For any period t, consider a price p' =-+1 Xt that is affine int203

features xt, where a,,7 are measurable with respect to history 7 -l_1. Then, the

revenue under price p' is upper bounded by the revenue under p*(xt), namely

E[p*(xt)Dt(p*(xt))] - E[p'Dt(p')] = -bE[(p*(xt) -- p) 2 ] > 0.

By Proposition 1, if the seller uses a linear demand model D'(p) a +±/p + 7Txt

for period t, the expected revenue of its optimal pricep'= - ismaximized

when p'= p*.
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We now define the seller's regret as the difference in the cumulative expected

revenue of a clairvoyant who uses the best linear model and the expected revenue

achieved by an admission pricing policy, namely

T T

Regret(T) = E[p*(xt)D(p*(xt))]- E[pt D(pt)], (2.8)
t=1 t=1

where the expectation is taken over all random quantities including features xt, price

ranges [p, pt], demand noise et, and possibly external randomization used in the

pricing policy.

To reiterate, in the definition of regret in Eq (2.8), we use the optimal price of

the best linear model (2.6), p*(xt), instead of the absolute optimal price for the true

quasi-linear model (2.5), Pt(xt). The reason is that the optimal price p*(xt) of model

(2.6) gives the highest achievable revenue if the seller is restricted to making pricing

decisions using linear demand models. Should we replace p*(xt) by Pt(xt) in the

definition of regret in (2.8), the benchmark would be too strong to be achieved by

any linear model, and the regret would grow linearly in T no matter which pricing

policy is used.

2.3.2 A Upper Bound of Regret

We now prove the following regret upper bound for the RPS algorithm.

Theorem 1. Under the quasi-linear demand model in Eq (2.1), the regret of Algo-

rithm 1 over a horizon of length T is O( v T).

Theorem 1 expresses the upper bound on regret in terms of the horizon length

T, the dimension of features m, and the minimum eigenvalue of the design matrix

M = E[(1, xt)(1, xt)T], while the constant factor within the big 0 notation only

depends on model parameters b, ,0 o and pmax. We note that the constant factor

does not depend on the unknown values of a, b, c, or the unknown distribution of xt

except through the parameter Amin(M). The proof of Theorem 1, which is deferred

to Appendix A.3.2, shows explicitly how the regret depends on these parameters.
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The main idea behind the proof of Theorem 1 is to decompose the regret into

the loss in revenue due to adding random price shocks, and the loss in revenue due

to parameter estimation errors. Since the randomized price shocks have variance

O(t- 1/ 2 ) at period t, the former part is bounded by O(v'). The latter part can

be bounded in terms of the expected difference between the true parameters a, b, c

and the estimated parameters. We then modify results on linear regression in the

random design case (Hsu et al., 2014) to prove that the estimated parameters converge

sufficiently quickly to their true values.

Theorem 1 shows that the RPS algorithm is robust to model misspecification:

Even if the true demand model is nonlinear in features, the RPS algorithm is guar-

anteed to converge to the best linear demand model (2.6), which gives the highest

expected revenue among all linear models. The RPS algorithm achieves such robust-

ness because it correctly addresses the price endogeneity effect introduced by model

misspecification.

Theorem 1 immediately invites comparison with the upper bound in Keskin and

Zeevi (2014)). Keskin and Zeevi (2014) consider a linear demand model without

features and fixed price bounds. They propose a family of "semi-myopic" pricing

policies that ensure the price selected at any period is both sufficiently deviated from

the historical average of prices and sufficiently close to the greedy price. They show

that such policies attain a worst case regret of at most O( log T). Since the model

in Keskin and Zeevi (2014) is a special case of demand model (2.1) with f(xt) = 0, the

result for the RPS algorithm in Theorem 1 thus improves the upper bound in Keskin

and Zeevi (2014) by a factor of log T. In addition, as we have already noted, the RPS

algorithm can be applied to a broader setting with features and price endogeneity.

2.3.3 A Lower Bound on Regret

The upper bound on the regret of the RPS algorithm scales with O(T) as the

number of period T grows. We can prove a corresponding lower bound on the regret

of any admissible pricing policy.
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Theorem 2. The regret of any non-anticipating pricing policy over a selling horizon

of length T is Q(V").

The proof of Theorem 2 is given in Appendix A.3.3. This theorem relies on a

Van Trees inequality-based proof technique (Gill and Levit, 1995), and is related to

the lower bound of Q(v) described by Keskin and Zeevi (2014) on the regret of

any non-anticipating pricing policy in the special case of our model where m = 0

(i.e., there are no features) and the demand model is linear (i.e., model is correctly

specified). Theorem 2 extends the result of Keskin and Zeevi (2014) to the case where

m > 0, showing that the regret lower bound does not change in terms of T even in the

presence of features. Further, Theorem 2 shows that the regret of the RPS algorithm

is optimal in terms of T.

Note that the lower bound in Theorem 2 does not depend on the dimension of the

feature vector m. The upper bound in Theorem 1, however, grows with m, and our

numerical experiments show the regret usually increase with m (see Appendix A.2.2).

We conjecture that the RPS algorithm's dependence on m is due to the two-stage

least squares procedure needed to obtain an unbiased estimate of the price coefficient

b. We leave it as future work to close the gap between upper and lower bounds.

2.3.4 Price Ladder

A common business constraint faced by retailers is that prices must be selected from a

price ladder rather than from a continuous price interval. A price ladder consists of a

discrete set of prices that are typically fairly evenly spaced apart. For example, a firm

may use prices such as $9.99, $19.99, $29.99, etc., because these prices are familiar to

customers and easy to understand. In this section, we show how the RPS algorithm

and theoretical results can be adapted to the setting where prices are drawn from a

price ladder rather than from price intervals.

We model this setting as follows. Suppose that the seller is interested in selecting

prices from the price ladder {q1,...,qN} where N > 2 and qi < ... < qN. Assume

that for the purposes of price experimentation, she is also allowed to use two additional
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prices qo, qN+1 such that 0 < qO < qi and pmax > qN+1 > qN. Then at each time

period t, the selected price satisfies pt C {qo, q  , qN,qN+1} where N > 2 and

O < qi < ... < qN+1. Analogous to our assumption in Section 2.2 on the width of

the price intervals, we assume here that 6 < qi+1 - qi < for some positive constants

6 S and alli= 0, ... , N. The remaining assumptions on features xt, demand noise ct

and function f are as stated in Section 2.2.

We benchmark the performance of admissible pricing algorithms against a clair-

voyant who knows the "best" linear demand model given by (2.6), and selects price

=p* = Proj(-(a + cTxt)/(2b), {qi, q2 , ... qN

upon observing feature xt. Then the expected regret, as before, is given by

T T

Regret(T)= E [p*D(p*)]- E[ptD(pt)], (2.9)
t=1 t=1

where the expectation is taken over all random quantities including features xt and

the demand noise et.

The RPS algorithm as designed for the price interval setting (Algorithm 1) cannot

be directly applied to the case where prices must be drawn from a price ladder. In the

experimentation structure of Algorithm 1, price shocks of decreasing magnitude are

selected along the selling horizon, violating the price ladder constraint. We thus adapt

the RPS algorithm to the price ladder setting by modifying the price experimentation

step. Suppose at time period t the estimated greedy price pg, is pg,t = qj for some

1 < i < N. We perform price experimentation by selecting the price pt from the

set {qi-1, qi, qj+1} with probabilities set to ensure Apt = pt - pg,t satisfies E[Apt] = 0

and Var[Apt] is a decreasing function of t. While Algorithm 1 sets Apt such that

Var[Apt] oc , our modified RPS algorithm sets Apt such that Var[Apt] c 1. This

shifts the balance between exploitation and exploration, allowing our modified RPS

algorithm to reduce its regret. The full statement of the Random Price Shock (RPS)

algorithm for the price ladder setting is given in Algorithm 2.
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Algorithm 2 Random Price Shock (RPS) algorithm with price ladder.
input: parameter bound on b, B [-b, -b]
initialize: choose di = 0,b 1 = -bb = 0
for t = 1, ... ,T do

given xt, set unconstrained greedy price:pg,t<- - t

find it = argminjE{1,...,N} qj - pgu,t and set constrained greedy price: pg,t+- qi

generate an independent random variable

qt- qj-1j .p. -qtl-

~Pt q~ - qj w~p. qit -qit-i

0 w.p. 1 - t-1/3
set price pt <- pg,t + Apt
observe demand dt = Dt(pt)
set bt+1 <-- Proj( ,pB)

set (&t+1, 6t+1)+- arg minZ>(d -sb+1p. - a- -YTx 8 )2
end for

We prove the following regret bound for the RPS algorithm with price ladder.

As in the previous section, we assume the regret is benchmarked against a linear

clairvoyant who uses the optimal price for the best linear approximation given by

Eq (2.6).

Theorem 3. The regret of Algorithm 2 over a selling horizon of length T is O( m+1AXmin (M)

T 2/3).

The proof of Theorem 3 is given in Appendix A.3.4. We can see that when

price intervals are replaced with a price ladder, our bound on the regret of the RPS

algorithm worsens in terms of T. The intuition is that the clairvoyant's optimal

prices p* = Proj(_a+xt ,{qi,q 2 ,...,qN}) do not satisfy the first-order optimality

condition, VRt(p*) = 0, in the price ladder setting. Deviations from the clairvoyant's

price are thus more costly, worsening the regret bound.

2.3.5 Non-IID features

Previously, we assumed that the features {xt}=1aredrawnfromanIDdistribution.

This assumption is too strong for some scenarios. For example, when the features
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include seasonal variables such as day of the week, day of the month, or month or

the year etc., the distribution of xt is correlated over t and is not IID. In this section,

we relax the IID assumption and allow the sequence {xt i to be sampled from an

arbitrary distribution on [-1,1]" (after appropriate scaling). The assumptions on

the demand noises Et, the function f and the price sensitivity parameter b are the

same as in Section 2.2.

Since the sequence {xt} is non-IID, we redefine the regret benchmark as the

following linear model:

bt (p) = ax + bp + cxTxt, VpE , Pt], (2.10)

where ax and c, are defined for an arbitrary sequence of features, {xt 1 ,as

Fal T
ax arg min |If (xt) - (a' + c/Txt) 2.
cx a ,ct

It can be shown by solving first order conditions that ax, cx are given by the closed

form expression:

ax (T1,[i xt T1 i f(xt) (2.11)

Notice that Eq (2.10) describes the linear model that best approximates f(xt) under

the empirical distribution given {Xt}t= 1

We assume that the parameters (ax, b, cX) are bounded as follows: I ax < d, b <

lbI <, |c X|1 < . The seller is assumed to know the bounds on b, b and b, but not

the bounds on ax and cx. The regret of any admissible pricing policy over a selling

horizon of length T can now be defined as the difference in the expected revenue

of a clairvoyant who uses a linear demand model with parameters axb, cx, and the

expected revenue achieved by that pricing policy. 2 We note here that although the

2Again, we could define regret relative to the "true clairvoyant," who knows the true de-
mand model and sets price Pt = -f( at each time period. But this definition can re-
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clairvoyant has full knowledge of the realization {Xt}T 1 at the start of the selling

horizon, any admissible pricing policy does not know this realization, and can only

observe the history Ht_1 = {p1,x 1 ,d i ,... ,pt-1,xt_1,d_ 1}. The expected regret is

given by
T T

Regret(T) = E[p*D(p*)]- E[pt D(pt)], (2.12)
t=1 t=1

where p* - _ ax+CTxt are the price chosen by the clairvoyant upon observing featuret2b

Xt. The expectation in Eq (2.12) is taken over all random quantities, including the

features xt, price ranges [pept], and demand noise et.

To validate that the linear clairvoyant is indeed an upper bound of any pricing

policy using linear demand models, let the prices chosen by our linear clairvoyant

be p*(x) = a+cx Tx for all t and for any features x. Analogous to Proposition 1,t 2b

Proposition 2 below shows that the linear demand function (2.10) gives the highest

revenue among all linear demand functions, justifying our choice of regret benchmark.

Proposition 2. Given a particular realization {xt I', of the features, consider price

a+-Y x* where a,0, yare measurable with respect to history

Wt-_1 = {p I, di, pt_1,I dt_1}

Then, we have

T T

E[p*Dt(p*)1, ... , XTI > E[p'Dt(p' )x1,...,x].
t=1 t=1

Algorithm. We adapt the RPS algorithm to the non-ID setting by introducing

two main modifications: Firstly, we modify the second regression step in the two-stage

regression performed by RPS. Instead of using bt+ 1 as an estimate for b and regressing

ds - bt+1ps against previously observed feature vectors x,, we use bs as an estimate

sult in a linear regret (see details in Appendix A.1). Namely if {xt} happens to be IID,
E [T1 Pt (xt)D(Pt (xt))- ET I ptD(pt)] = Q(T). Therefore, the optimal revenue of the true model

is not a particularly informative benchmark, since no algorithm can achieve a sublinear regret rate
with misspecified model.
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Algorithm 3 Random Price Shock (RPS) algorithm for the non-IID setting.

input: parameter bound on b, B = [-b, -b]
initialize: choose di = 0, 61 = -bb 1 = 0
for t = 1, ... ,T do

set 6t <- At-

given xt, set unconstrained greedy price: p,+--+ t

project greedy price: pg,t +- Proj(pug, [pt + ,t - 6t])

generate an independent random variable Apt +- 6 t w.p.j and -t w.p.2 an2t~.
set price pt +- pg,t + Apt
choose an arbitrary price pt C [pt]
observe demand dt = Dt(pt)

set 6t+1 +- Proj(F51Ald , B)

set (tt+1, It+1) -- arg min 1(dj -sps - a - +- Txs))2 _ 2+ xt+1)2

end for

for b at period s and then use Vovk-Azoury-Warmuth (VAW) estimator (Azoury

and Warmuth, 2001) to regress ds - bep, against past xs. This modification allows

us to extend the analysis to an arbitrary sequence of features {xt'1. Secondly,
1 1

the magnitude of the price shock at each period t is increased from t-- to t-6.

This changes the balance of exploration and exploitation, putting more emphasis

on exploration and allowing the modified RPS algorithm to learn the parameters

more accurately regardless of the distribution of features. The full description of our

modified algorithm is given in Algorithm 3.

We can prove the following upper bound on the regret of the RPS algorithm in

the non-IID setting.

Theorem 4. The regret obtained by the RPS algorithm for the non-IID setting is

O(T 2/3).

The proof of Theorem 4, given in Appendix A.3.6, relies on the properties of the

VAW estimator, a variant of the ridge regression forecaster (Cesa-Bianchi and Lugosi,

2006, Ch 11.8). Our analysis follows the analysis in Cesa-Bianchi and Lugosi (2006),

which studies the prediction of sequences in the presence of feature information. In

their setup, a sequence {(Yi, g(y1)), (y2 , g(y2))...} is observed, where the yes are

d-dimensional feature vectors and the function g determining the outcome variable
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g(yn) is potentially nonlinear. The goal is to predict the outcomes g(yn) for each

n based on the observations {(yi,g(yi)),i = 1...n - 1}. Cesa-Bianchi and Lugosi

(2006) show that if the VAW estimator is used to predict outcomes, the regret for the

square loss relative to the best offline estimator that can observe the entire sequence

can be shown to be logarithmic in terms of n. They show that this bound is optimal

in n. Since our linear clairvoyant functions as the best offline estimator, we can

bound the regret of Algorithm 3 by expressing it in terms of the square loss regret in

Cesa-Bianchi and Lugosi (2006).

Theorem 4 shows that even when the features {xt} are generated from a non-IID

distribution, it is possible to achieve a non trivial, sublinear regret in terms of the

length of the selling horizon T as long as the features and the component f(x) of

demand are bounded. Nevertheless, it is not clear whether this upper bound on the

regret is asymptotically optimal as we do not have a matching lower bound in the

order of Q(T 2/3). Noting that Proposition 2 implies that in the special case that the

features are IID, the expected revenue of the non-IID linear clairvoyant is at least as

much as the expected revenue of the IID linear clairvoyant, we see that Theorem 2

also serves as a lower bound in this setting. Thus there is a mismatch between our

lower bound Q(v'T) from Theorem 2 and upper bound O(T 2/ 3) from Theorem 4. We

leave the problem of determining the asymptotic optimality of Algorithm 3 to future

work. Finally, the constants in our upper bound are given in our proof of the theorem

in Appendix A.3.6.

2.4 Numerical Results

In this section, we add to the analysis in the previous section with numerical sim-

ulations that empirically gauge the performance of the RPS algorithm. These are

conducted on synthetic data, and investigate the dependence of the regret of the RPS

algorithm on the length of the selling horizon T for the IID, price ladder and non-

IID settings. They show that the regret growth matches our theoretical guarantees

from the previous section, thus validating our theoretical analysis. We also bench-
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mark the RPS algorithm against competing algorithms that do not account for price

endogeneity, and show that the RPS algorithm alone learns the correct parameters

of the demand function over the selling horizon, and thus outperforming competing

algorithms in terms of the revenue earned over the course of the selling horizon.

Each simulation is run over a selling horizon of length 5000 periods and repeated

200 times. The three competing algorithms that we benchmark the RPS algorithm

against are as follows:

" Greedy algorithm: The greedy algorithm (Algorithm 4) operates by estimating

the demand parameters at each time period using linear regression, then setting

the price to the optimal price assuming that the estimated parameters are the

true parameters. This algorithm has been shown to be asymptotically optimal

by Qiang and Bayati (2016) in a linear demand model setting with features, and

with the availability of an incumbent price, but in general is known to suffer

from incomplete learning, i.e., insufficient exploration in price Keskin and Zeevi

(2014).

" One-stage regression: This algorithm introduces randomized price shocks to

force price exploration, but uses a one-stage regression instead of a two-step re-

gression as in RPS to learn the parameters. A full description of the one-stage

regression algorithm (Algorithm 5) is given below. The one-stage regression

algorithm is analogous to the class of semi-myopic algorithms introduced by

Keskin and Zeevi (2014), which use (deterministic) price perturbations to guar-

antee sufficient exploration. However, Algorithm 5 does not consider the price

endogeneity effect caused by model misspecification in the estimation process.

* No feature clairvoyant: As a benchmark, the performance of RPS is compared

with the performance of a no feature clairvoyant. This clairvoyant knows the

values of the parameters a and b but considers the features x, which will be

drawn from a zero-mean distribution, to be part of the demand noise. Hence

this clairvoyant will set prices to be- at each time period. Such a pricing2b

policy would be optimal in the absence of features but would evidently incur
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regret linear in T when m > 0. This highlights the importance of considering

demand features in dynamic pricing.

Algorithm 4 Greedy algorithm.

input: parameter bounds B = [-I> -b]
initialize: choose di = 0, 1 = -Id1 0
for t = 1,..., T do

given xt, set unconstrained greedy price: pt<- - t

if admissible price set is a price ladder then
project greedy price onto price ladder: pg,t +- Proj(p,t, [qi,.. . , qN])

else
project greedy price onto price interval: pg,t 4- Proj(p",t, [P, 7Pt])

end if
set price pt +- pg,t
observe demand d :=Dt(pt)

set (&t+i, bt+1I, t+ 1 )<- arg mine 1(d - a - #ps- T X) 2

end for

ID Setting

The first simulation example considers the case where the features xt are indepen-

dently distributed, prices are chosen from continuous price intervals, and the source

of endogeneity is a misspecified demand function. In this set up, demand is given by

the quasi-linear function

1
Dt(p) + -0.9p + Et,2(xt + 1.03)

where X is a one-dimensional random variable uniformly distributed between [-1, 1]

and the noise ct is normally distributed with mean 0 and standard deviation 0.1.

Using the closed-form expression in Eq (2.7), it can be seen that the linear demand

model approximated by least squares is given by

bt(p) ~ 2.05 - 0.90p - 1.76xt,

where all coefficients are expressed to 2 decimal places. The price range at period t is

lower bounded by p = $0.69 and upper bounded by pt = $9.81. The retailer assumes
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Algorithm 5 One step regression.
input: parameter bounds B = [-b,-]
initialize: choose di = 0, b1 = -b,= 0
for t = 1, ... ,T do

given xt, set unconstrained greedy price: p -a + t--
if admissible price set is a price ladder then

find i = arg minjEN{1I.N} qj-pg,t and set constrained greedy price: pg,t+- qi
generate an independent random variable

qi-q_1wp qi-j--qi

-qj1W*P_*t1
Apt qi~li- qW. P. iq

2 qi1-qi1t
0 w.p. 1 - t-1/3

else
set tI if {xt} is IID

t t-6 otherwise.2
project greedy price: pg,t - Proj(p , [p + 6t P - 6 t])

generate an independent random variable Apt +- 6t w.p.
12

and Apt <- -6t w.p. 1
set price pt +- pg,t + Apt
choose an arbitrary price pt E [Ptt]

end if
observe demand d: Dt(pt)
set (&t+1,b t+I, t+1)<- arg minaOEB, Z E_1(dS --- j-f zy)2

end for

that a lies in the interval [1.5, 2.5], b lies in the interval [-1.2, -0.5] and c lies in the

interval [-2.2, -1.2].

Results. Fig. 2-2a shows that in this numerical example, the regret of the

greedy algorithm, the one-stage regression algorithm, and the clairvoyant who ignores

features, grow linearly with t, and in all cases the regrets are higher than that of RPS

after around 1000 iterations. Fig. 2-2b confirms that the regret of the RPS algorithm

is O(v'T). Finally, Table 2.1, which provides summary statistics of the parameter

estimates of all the pricing algorithms except the clairvoyant at the end of the selling

horizon, shows that the RPS algorithm produces close estimates of all the parameters.

However, for the greedy and one step regression algorithms, the parameter estimates

are actually moving away from the least squares true value, and converge to a point

on the boundary of the feature parameter set. This demonstrates that parameter

estimates may be significantly biased when the endogeneity effect caused by model
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misspecification is not handled properly.

In Appendix A.2.1, we include additional numerical experiments for sensitivity

analysis. We consider a family of quasi-linear demand functions of the form

1
D(p) = I + 1 - 0. 9P + et,

2(xt + -y)

where -y ranges from 1.02 to 2. As y decreases and approaches to 1, the function

f(xt) = 1/2(xt +-y) becomes more nonlinear for xt E [-1, 1], and the fit of the closest

linear approximation of demand function deteriorates. Since model misspecification

worsens as -y approaches 1, we would expect that the endogeneity effect is more signifi-

cant for demand models with smaller values of y. The simulation results confirm that

the regret gap between the RPS algorithm and the one-stage regression algorithm

increases as -y decreases. Moreover, we find that the RPS algorithm produces unbi-

ased parameter estimates for all -y, while the estimates from the one-stage regression

algorithm are biased especially when y is close to 1.

We also analyze how the regret of the RPS algorithm changes with the dimension of

the feature vectors, m. The detailed simulation results are included in Appendix A.2.2

. We find that the regret of RPS tends to increase with m, and that the growth rate

of regret appears to match Theorem l's theoretical bound of O((m+1) T) in terms

of m.

Price ladder setting We now consider the same set up as in the IID setting, but

replace the price range [$0.69, $9.81] with a price ladder [$0.50, $0.70,..., $9.70, $9.90].

where the features Xz are independently distributed, prices are chosen from continuous

price intervals, and the source of endogeneity is a misspecified demand function.

Results. As in the previous subsection, the regret of the Greedy algorithm,

the One Step Regression algorithm, and the clairvoyant who ignores features, grow

linearly with T (Fig. 2-2c) while the regret of the RPS algorithm (Algorithm 2)

is O(T 2/3) (Fig. 2-2d). The summary statistics of the parameter estimates of the

competing algorithm (Table 2.2) again show that the RPS algorithm produces close

estimates of all the parameters, while we once more observe that the greedy and
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one-step regression produce biased estimates.

Non ID setting Finally, we consider the case where prices are chosen from

continuous price intervals but the features xt are not independently distributed. In

this set up, the demand function is given by the quasilinear function

Dt(p) = -0.9p + f(xt) + Et,

with
1

f (W = 1 + 1.5.
2(x + 1.1)

We assume that xz is one dimensional (i.e. m = 1), xt = -1 + for t = 1,... ,5000

(note that X E [-1, 1] Vt) and the noise Et is normally distributed with mean 0 and

standard deviation 0.1.

Recall from the definition of the cumulative expected regret in Section 2.3.5 that in

the non-IID setting, Regret(T) is expressed relative to a clairvoyant who bases pricing

decisions on the realized sequence of feature vectors, {xI,... , XT}. Thus, to estimate

Regret(t) for t = 1,... , 5000, we define a separate clairvoyant for each time period t;

we calculate the regret by comparing the cumulative revenue of our pricing policies

at time t with the cumulative revenue of a clairvoyant who bases pricing decisions on

{x1 , ... , t}. Denote the demand model parameters assumed by the clairvoyant at

time t as (a(t), b, c(t)).

The remaining parameter settings are as follows: At period t, the admissible price

range is set to

[p, pb- b] = [$0.97, $3.61].-2b 2b

We assume that the retailer knows that a lies in the interval

[min{a(t)} - 0.5, max{a(t)}] = [1.9, 2.6],
t t

that b lies in the interval [-1.2, -0.1] and that c lies in the interval

[min{c(t)} - 0.5, max{c(t)}] = [-7.3, 0.3].
t
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Results Fig. 2-2e plots the average regret of the RPS algorithm (Algorithm 3),

as well as the competing Greedy and One-step regression algorithms. The regret

incurred by the RPS algorithm is for t > 1000 lower than the regret of the other three

algorithms, and its regret is O(T2 /) as shown by Fig. 2-2f. Table 2.3 shows that

the RPS algorithm accurately estimates the parameters a(5000), b, c(5000) while the

Greedy and One Step Regression algorithms do not.

Table 2.1: End of selling horizon parameter estimates in the IID setting

True value RPS algo. Greedy algo. One step reg.

Mean (dT) 2.05 2.04 1.50 1.50
Median (&T) 2.05 2.04 1.50 1.50

Mean (bT) -0.90 -0.91 -0.50 -0.50
Median (bT) -0.90 -0.89 -0.50 -0.50

Mean (T) -1.76 -1.74 -1.20 -1.20
Median (T) -1.76 -1.75 -1.20 -1.20

Table 2.2: End of selling horizon parameter estimates in the price ladder setting

True value RPS algo. Greedy algo. One step reg.

Mean (er) 2.05 2.16 1.50 1.50
Median (iT) 2.05 2.31 1.50 1.50

Mean (bT) -0.90 -1.01 -0.50 -0.50
Median (bT) -0.90 -1.11 -0.50 -0.50

Mean (T) -1.76 -1.81 -1.20 -1.20
Median (T) -1.76 -1.88 -1.20 -1.20

Table 2.3: End of selling horizon parameter estimates in the non IID setting

True value RPS algo. Greedy algo. One step reg.

Mean (&T) -1.38 -1.35 -1.49 -0.87
Median (6T) -1.38 -1.37 -1.50 -0.88

Mean (bT) -0.90 -0.91 -0.16 -0.40
Median (bT) -0.90 -0.91 -0.16 -0.40

Mean (T) -6.63 -6.60 -3.95 -4.40
Median (T) -6.63 -6.66 -3.97 -4.40
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2.5 Conclusion

We have shown that in dynamic pricing with contextual information, model mis-

specification can give rise to price endogeneity. We have proposed a "random price

shock" (RPS) algorithm, which employs a combination of randomly generated price

shocks and a two-stage regression procedure in order to produce unbiased estimates

of price elasticity. This allows the RPS algorithm to maximize its revenue despite

the presence of endogeneity. Our analysis shows that RPS does indeed exhibit strong

numerical and theoretical performance; Our upper bound on the expected regret,

O((m + 1)vT), is optimal in T.

We have also shown that the RPS algorithm is versatile and can be adapted to

a number of common business settings, where the feasible price set is a price ladder,

and where the contextual information is not ID. We have introduced simple modifi-

cations to the RPS algorithm to adapt it to these settings and proved corresponding

theoretical guarantees; the regret of the modified RPS algorithm is O( (m-+ 1)T2/3 )

in the price ladder setting, and O(T2 / 3) in the non ID setting.

We end by noting that in this paper, we are primarily interested in model mis-

specification, and have addressed the problem of price endogeneity in dynamic pricing

specifically as caused by model misspecification. A natural question is whether our

model and analysis can be generalized to include other sources of endogeneity po-

tentially faced by a retailer, such as competition and strategic customers. These are

beyond the scope of this paper, and we leave such extensions to future work.
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Chapter 3

Feature-based Dynamic Pricing for

Fashion Retail: A Case Study

In collaboration with Oracle Retail, we design and test a pricing heuristic, called the

"random price shock" heuristic, that is broadly applicable to fashion retail settings.

This heuristic is an online learning algorithm that does not assume any knowledge of

the underlying demand distribution, but instead learns this distribution by dynam-

ically generating randomized price shocks to accurately estimate price elasticity. In

addition, the RPS heuristic incorporates business constraints faced by many fashion

retailers, such as fixed inventory and markdown pricing constraints. It makes use

of intuitive and computationally tractable approximations to optimize the retailer's

total expected revenue subject to these constraints. To gauge the performance of

the RPS heuristic, we have run a number of offline numerical experiments using re-

tail data from one of Oracle Retail's clients. The heuristic exhibits revenue gains of

around 2-7% over current practice, and seems robust to different retailer parameter

settings such as the length of the markdown and no-touch periods.

3.1 Introduction

Pricing in fashion retail has historically been the province of retail managers - execu-

tives who, through a combination of expertise and experience, anticipate how demand

57



will be influenced by factors such as product characteristics, seasonality and geogra-

phy, and set prices accordingly. With the successful application of data-driven and

algorithmic approaches to price optimization in fashion retail (Ferreira et al., 2015;

Caro and Gallien, 2012), a growing number of retailers have become interested in

pairing their price managers' expertise with more rigorous analytics-based solutions.

Companies such as Oracle Retail, SAP SE, and IBM Retail fill this niche by offering

software and IT solutions that help retailers to understand and exploit their data

without the need for in-house data scientists.

In this work, we collaborate with Oracle Retail, a business unit of Oracle and one

of the leading providers of software and IT solutions to retailers, to design and test

a feature-based dynamic pricing algorithm that is broadly applicable to a variety of

fashion retail settings. Our aim is to eventually integrate our algorithm into Oracle

Retail's suite of price optimization products. Currently, these products forecast de-

mand by using static estimates of the demand-price relationship: Prior to the start of

each selling season, the demand-price relationship is estimated using historical data,

and is not re-estimated until the start of the next selling season. Instead, we design

and test a dynamic learning and pricing algorithm. Every season, this algorithm takes

a batch of new, never-before-seen line of products, and updates the prices of these

products on a weekly basis without assuming any prior knowledge of the underlying

demand distribution. This demand distribution is learned through a combination of

price experimentation and exploitation, by using historical transaction and feature

data to update demand model estimates and prices in an online fashion.

As we have discussed in Chapter 2, one of the pitfalls of designing a dynamic

pricing policy when demand depends on feature information lies in correctly estimat-

ing the causal relationship between demand and price. For example, if the policy

assumes a misspecified demand model, either because the decision maker is unsure

of how demand is affected by the features, or of how to model such a dependence,

demand noise can become correlated with the price (in other words, we will have

price endogeneity). Another factor that can complicate demand estimation in this

context, and which was only briefly discussed in Chapter 2, is that retailers seldom
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give data driven pricing algorithms free rein in setting prices. Instead, prices must fall

within some price interval or set recommended by pricing managers. These bounds

could be determined by managers in response to signals observed by them but not

by the algorithm, such as product quality, the cost of manufacturing the product, or

competitors' prices, behavior, and market shares. Since these signals could be corre-

lated with demand noise, the prices set by any policy could in turn be correlated with

demand noise, thus inducing price endogeneity. Our first order of business is hence

to propose a feature-based pricing algorithm that corrects for this endogeneity effect,

and that sets prices based on a correctly estimated demand model.

Recall that in Chapter 2, we proposed a "Random Price Shock" (RPS) algorithm

that corrects for price endogeneity by adding randomized price perturbations to the

greedy prices proposed by some price optimization model. RPS tailors the variances

of these price perturbations to balance the exploration-exploitation tradeoff inherent

in this class of learning and optimization problems. It uses larger variances at the

start of the season to explore and learn the demand function, and uses smaller vari-

ances towards the end of the selling horizon to exploit current parameter estimates

and maximize revenue. While this idea of introducing randomized price shocks is

applicable to our setting, none of the variants of RPS proposed in Chapter 2 (Algo-

rithms 1, 2 and 3) can be directly applied to a fashion retail setting. Firstly, these

algorithms assume that a single product, rather than a batch of products, is sold

throughout the selling horizon. More importantly, they do not take into account

business constraints commonly practiced by retailers. For example, fashion retail-

ers universally practice markdown pricing towards the end of each sales cycle, where

unsold items are repriced at dramatic discounts. Retailers also face fixed inventory

constraints, where each store only has access to a limited amount of inventory of each

item. In this work, we show how the RPS algorithm can be adapted to incorporate

these constraints in a natural and computationally tractable way.

To gauge how the RPS heuristic might perform in a real world setting, Oracle

Retail has shared with us sales data from an anonymous brick-and-mortar company.

This data consists of a customer transaction dataset as well as an item feature dataset
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describing transitions spanning from August 2012 to July 2015. Using these datasets,

we designed experiments that estimate the revenue that would have been earned by

the retailer if the prices of the items in the dataset had been chosen by the RPS

algorithm. This was a two-stage process: First, we used predictive modeling to build

a counterfactual model of weekly demand based on historical data. Then, using our

predictive model as a "ground truth" model, or a stand-in for the true demand, we

simulated the performance of the RPS heuristic over the selling horizon, allowing it

to price the items in the historical dataset based on their feature information.

The rest of the chapter is organized as follows: The rest of this introductory sec-

tion gives an overview of the relevant empirical literature on demand estimation and

data-driven optimization in fashion retail. In Section 3.2, we introduce the pricing

problem faced by Oracle Retail by describing in full detail the kinds of business con-

straints that are commonly faced by their clients in fashion retail. Section 3.3 then

discusses the current solution approach used by Oracle Retail in their price optimiza-

tion products for fashion retailers, followed by our solution approach, which adapts

the RPS algorithm developed in Chapter 2 in order to satisfy business constraints

on pricing and inventory clearance. Finally, Section 3.4 presents numerical experi-

ments that use historical data from a single fashion retailer in order to validate our

algorithms. These experiments allow us to compare RPS' performance with current

practice.

3.1.1 Literature Review

This work is very closely related to the academic literature that applies price opti-

mization to revenue management practice in retail. For detailed overviews of this

literature, we refer the reader to Talluri and Van Ryzin (2005), Elmaghraby and Ke-

skinocak (2003) and Bitran and Rene (2003), and highlight here several papers that

relate specifically to fashion retail. These include Caro and Gallien (2012), Smith and

Achabal (1998), and Mantrala and Rao (2001), who develop and field test markdown

pricing decision support tools for retailers, and Ferreira et al. (2015), who develop and

also field test a feature-based pricing tool for the flash sales retailer Rue La La. All of
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these decision support tools operate in two main stages: First, a demand forecasting

model is calibrated, using historical data as in Caro and Gallien (2012), Smith and

Achabal (1998) and Ferreira et al. (2015), or the predictions of human experts as in

Mantrala and Rao (2001). Then, a price optimization problem is solved based on this

demand model. Although the pricing decision tool developed in this work also sepa-

rates demand model estimation and markdown price optimization into two different

stages, a key difference is that we treat the pre-markdown phase as an opportunity for

price optimization. Prior to the markdown phase, learning and earning takes place

on the fly.

Our work is thus also closely related to the literature on dynamic learning and

pricing, particularly when inventory is limited. Notably, Besbes and Zeevi (2012)

and Wang et al. (2011) look at the setting where demand is Poisson, with parame-

ters that are unknown and have to be learned over time. Meanwhile, Badanidiyuru

et al. (2014) and Ferreira et al. (2017) look at Multi-armed Bandit formulations of the

pricing problem, where prices are selected from some discrete set rather than from

continuous intervals. The algorithms proposed in these works have price experimen-

tation structures that are designed to balance between the exploration-exploitation

tradeoff inherent in this class of dynamic learning and pricing problems. Further, they

tackle the computational complexity caused by the fixed inventory constraint by using

certainty equivalent approximations of demand. Our pricing algorithm adopts both

of these features, but unlike these papers, which gauge the performance of their algo-

rithms through theoretical regret bounds, our work is practice-driven and validates

our algorithm through numerical simulations on real world data.

The literature on structural demand estimation is also relevant to the method-

ology of our offline numerical experiments. From this literature, Berry et al. (1995)

estimates a multinomial choice model using automobile sales data, Phillips et al.

(2015) estimates a probit choice model using data from the autolending industry,

Veeraraghavan and Vaidyanathan (2011) uses ordinal regression to estimate how the

perceived seat values in stadiums and theaters depend on their locations within the

venue, Vulcano et al. (2010) estimate a multinomial choice model using airline sales
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data, and Fisher et al. (2018) use retail data to estimate a consumer choice model

that captures substitution effects among competing products from different retail-

ers. Vulcano et al. (2010) and Fisher et al. (2018) also use their calibrated demand

models to perform price optimization based on counterfactual revenues predicted by

these models. Of these works, Berry et al. (1995), Phillips et al. (2015) and Fisher

et al. (2018) are especially relevant to our work as they use instrumental variables to

correct for endogeneity in their datasets. Phillips et al. (2015) in particular also use a

Hausman-type variable as an instrumental variable, where the endogenous price is av-

eraged over groups of products to average out the effect of omitted demand variables.

However, a main difference between these works and ours is that the ground truth

demand estimation in our offline simulations combines econometrics methods with

machine learning methods. This allows us to learn the causal relationship between

price and demand while also obtaining a demand model with enhanced predictive

power.

3.2 Objectives and Assumptions

The pricing problem faced by Oracle Retail's clients in fashion retail is as follows:

Every week, an assortment of products with limited inventory is sold at each store.

Each product has its own life cycle, which is defined as the period of time between

the first week in which the product is sold, and the final week in which it can be sold

(after which all remaining units of inventory are taken off the market). The length of

the life cycle is known as the product lifetime, and the life cycles of different products

can be staggered in the sense that product 2's life cycle could begin either before or

after product l's lifecycle.

For each product, its lifecycle begins with a no-touch period, during which price

changes must be kept to a minimum. This is followed by an exploitation period,

during which the algorithm is allowed to change prices for the purposes of learning

the underlying demand model, and optimizing revenue. Finally, the lifecycle ends

with a markdown phase, during which the product must be priced at a discount.
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The lengths of the no-touch, exploitation and markdown phases are determined by

retailers according to their own marketing strategies and cannot be optimized by

Oracle Retail. Typically, the markdown phase is a substantial portion of the product

lifecycle, and can last from between a third to a half of the full lifecycle.

Retailers also faces inventory constraints. The main constraint is that only a fixed

amount of inventory of each product is available at each store, and that replenishment

is not possible even if demands for the product turn out to be higher than anticipated.

Below we give a full list of all the business constraints, including pricing and inventory

constraints, that are faced by the retailer.

1. (Price ladder constraint) Price must at all time periods be selected from a price

ladder, assumed for simplicity to have prices in $1 increments, e.g. $3.99, $5.99,

$7.99.

2. (No-touch constraint) The selling horizon for each product begins with a no-

touch period, during which price experimentation must be kept to a minimum.

The retailer will provide the algorithm with some recommended price Prec, and

may stipulate that there can be no price experimentation at all, or allow price

experimentation to within 10% (or the maximum of this value and $1) of the

recommended price.

3. (Price bound constraint) The no-touch period is followed by an exploitation

period that starts at week Te. This exploitation period is of length roughly

one-third the selling horizon, during which prices must be kept within 20% (or

the maximum of this value and $1) of the recommended price.

4. (Inventory constraint 1) Only a fixed and finite amount of inventory is available

for each product at the start of the selling horizon, with no replenishments.

5. (Inventory constraint 2) All available inventory must be cleared by the end of

the selling horizon.

6. (Markdown constraint 1) The selling horizon for each product ends with a mark-

down period. The markdown period begins at a pre-specified week number Tm
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and cannot be optimized by the algorithm.

7. (Markdown constraint 2) During the markdown period, only a single price can

be charged. This price must always be less than the recommended price, and

at least 30% of the recommended price.

Note that all of these constraints are always feasible except for the second inven-

tory constraint. Since inventory is selected by the retailer (i.e. it is an input and

not a decision variable in our algorithm), it is possible that this constraint may not

always be feasible, e.g. if if the retailer orders excess inventory expecting demand to

be larger than its realized values. We thus treat Inventory constraint 2 as a guideline

rather than a strict constraint, and use the amount of inventory cleared as one of the

metrics for the success of our proposed algorithm.

3.3 Solution Approach: The Random Price Shock

Algorithm

We now present the algorithm that we have designed to tackle the pricing problem

outlined in the previous section. First, we describe the methodology used by Oracle

Retail's current price optimization products, and explain the advantages of our dy-

namic pricing approach. Then we describe our approach, which involves modifying

the Random Price Shock algorithm from Chapter 2 to handle the various business

constraints faced by fashion retailers.

3.3.1 Legacy Pricing Process

The current implementation of Oracle Retail's price optimization products for fashion

retailers mainly focuses on the markdown pricing component of the pricing problem

described in the previous section. To select the markdown prices of different items,

a demand forecasting model is calibrated, and the markdown prices that maximize

counterfactual revenues under this model are selected.

64



The current approach does not dynamically re-update the demand model as new

sales data is observed during the selling season. Instead, it uses historical data prior

to the selling season, along with a standard correction for endogeneity, to compute

a static estimate of the demand-price relationship prior to the start of each selling

season. During the selling season, markdown prices are selected as a function of

this static estimate of the demand-price relationship, and as well as of the remaining

inventory levels.

There are a number of reasons as to why a dynamic pricing approach is preferable

to a static one. First, the static approach used by Oracle Retail ignores data from the

current season. However, fashion retail is highly trend sensitive, and demand patterns

can change significantly from season to season. Performing demand forecasting solely

based on less relevant data from previous seasons is likely at the cost of accuracy. A

second disadvantage to the static approach is that it consumes significant computa-

tional resources; Since the price optimization products offered by Oracle Retail are

cloud-based, and large amounts of historical data have to be stored to perform de-

mand forecasting using the current method, these products can be costly to retailers.

A dynamic pricing approach, on the other hand, can be run using only data from the

current season. The reduction in necessary storage or computational resources would

lead to immediate savings for retailers, making the pricing product more marketable.

In the rest of this section, we adapt the dynamic learning and pricing algorithm

developed in Chapter 2 to a fashion retail context. Unlike Oracle Retail's current

static approach, RPS re-estimates the demand-price relationship on a weekly basis

as more demand data is observed. Although we do not compare RPS with Oracle

Retail's current price optimization strategy, we perform a case study using a single

retailer's data to design and run offline numerical simulations that compare RPS with

the retailer's current practice. We leave comparisons between the RPS algorithm and

Oracle Retail's current price optimization strategy to future work.
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3.3.2 The Random Price Shock Algorithm

In the RPS algorithm and its variants presented in Chapter 2 (Algorithms 1, 2 and 3),

price optimization was straightforward; we simply solved the unconstrained convex

optimization problem maxptE[D(pt)] and projected the solution to some feasible

interval (in the IID and non IID settings) or feasible set (in the price ladder setting).

In our fashion retail setting, however, the fixed inventory and inventory clearance

constraints (inventory constraints 1 and 2 in Section 3.2) couple the pricing decisions

across time. Even when the demand distribution is known, finding the optimal prices

involves solving a dynamic program that is computationally complex and does not

have an explicit solution.

Instead of solving this DP, we have proposed a heuristic that looks at a certainty

equivalent approximation of the pricing problem. The idea behind this approximation

is to replace future demand realizations with the expected demands, thus relaxing

the requirement that the inventory constraints are satisfied almost surely to the case

where they are only satisfied in expectation. This relaxation technique was proposed

by Gallego and van Ryzin (1994), who showed in their setting that the value of the

deterministic program is an upper bound on the original DP, and further, that the

solution to this deterministic program is asymptotically optimal in the sense that the

revenue loss as a fraction of the optimal revenue goes to zero as the number of time

periods goes to infinity.

In our setting, we apply the certainty equivalent approximation technique as fol-

lows: During the exploitation phase, we focus on not exceeding the available inventory,

and choose prices by maximizing revenue subject to the constraint that the sum of

deterministic demands until the end of the selling horizon is at most the available in-

ventory. During the markdown phase, we focus on clearing the remaining inventory,

and choose prices by maximizing revenue subject to the constraint that the sum of

deterministic demands until the end of the selling horizon is at least the remaining

inventory. Denoting the price at period t by pt, the features at period t by xt, the

inventory at period t by Inv(t) and the markdown period length by M, the resulting
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optimization problems are given by (3.1) and (3.2).

Exploitation Phase Optimization Problem:

T

max Eps(bps + cTXs)
T' (3.1)T

subject to 1bps + cTXs Inv(t)
s~t

Markdown Phase Optimization Problem:

t+M-1

max p(bps + cTXs)
s=t (3.2)

t+M-1

subject to )7ibps + cTx ;> Inv(t)
s~t

The solution to (3.2) is given by p min{- 2b TXt}.Thisp* canthen

be projected to the interval [0 precl and projected again to the price ladder to obtain

a feasible markdown price. It is easy to see that an explicit solution to (3.1) can

be found as well by rewriting this optimization problem in terms of new variables.

Let ot = pt - p*,t, where p*, -Txt denotes the optimal price in the absence ofwhe ' 2b

inventory constraints. For any pt, we can check that pt(-bpt + cTxt) - p*,t(-bp*,, +

CTxt) = -bor. Then, rewriting the objective function of (3.1), this gives (3.3). By

the concavity and the symmetry of the objective function of (3.3), we see that the

optimal ots must be the same for all t. Then 6t* = max{0, TeZt=Tec T }, which

gives p* = p*,t + max{0, ITe T x}. This p* can then be projected to the interval

[0. 8prec 1. 2Precl and projected again to the price ladder to obtain a feasible price.

Markdown Phase Reformulated Optimization Problem:

T

max - bZ o:2
s=t(3)

T T (3.3)
subject to b 3 6J Inv(t) - E3cTxS

s=t s=t

The discussion here is summarized in the statement of Algorithm 6. At each time
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period t, Bt items are sold. Since the lifecycles of different items may start at different

points during the season, their exploration and markdown periods may also begin at

different times. Period(j, t) denotes the current period in the sales cycle of item j, with

Period(j, t) = 1 corresponding to the no-touch period, Period(j, t) = 2 corresponding

to the exploration period, and Period(j, t) = 3 corresponding to the markdown period.

During the no-touch period, price is simply set to the recommended price. During

the exploration period, the heuristic computes the greedy price by solving (3.3) and

projecting the price to the intersection of the admissible price range and the price

ladder PL. Since the price ladder is spaced at $1 intervals, a random price shock is

selected from the set {-$1, $0, $1} and added to the greedy price for the purposes

of price experimentation. As with the algorithms proposed in Chapter 2, this price

shock has mean 0 and variance decreasing with time, allowing the price to grow closer

to the greedy price - and hence the optimal price - as the estimates of the demand

coefficients improve with time. Finally, at the start of the markdown period, the

markdown price is computed by solving (3.2), and this price is charged until the end

of Product j's life cycle.

3.4 Experimental Design

To validate Algorithm 6, we conducted numerical experiments based on data from a

single retailer, which was shared with us by Oracle Retail as an example of the kinds

of sales data that are generated by its clients in fashion retail. This retailer has a

chain of brick-and-mortar stores across the US, and the data shared with us comes

from transactions at different stores from August 2012 to July 2015. Purchased items

are in the categories of fashion, furniture and housewares, but for the purposes of this

study, we restrict our attention to fashion items.

The data consists of two main types of datasets:

1. Customer transaction data - This dataset consists of customer transactions

Information on the time of each transaction, the location (i.e. the store, district

and region) and the prices and IDs of the items purchased is included.
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Algorithm 6 Random Price Shock (RPS) heuristic.

input: parameter bounds B [-b, -b]
initialize: choose &I = 0, b1  -bI 1 = 0
for t = 1, ... , Tdo

for items j =1,.. B do
if Period(j, t) = 1 then

set pj,t 4- pjrec
else

if Period(j, t) = 2 then
set t2 - t2 +1

set price pg,t _ -ce2 + max{0Iv(j,t)-,. CtT xj,}

set price pg,t<- Proj(pg,t, PL n [0. 8pj,rec 1. 2pjrec])
generate an independent random variable

1w.p. 1

Ap + -1 w.p. 1

2

0 W. p. 1 - 21/3

set price pt <- pg,t + Apt
else

if Markdown week = 1 then
set p +- min{-ctTxjt InV(j,t)t+M c Tx

set p7<- Proj(p7t, PL n [0 pj,rec - 1])
end if
set pj,t pg

end if
end if
observe demand dt = Dt(pt)

end for
. Po _I Eff, I{Period(j,t)==2}LAp,tdj,t

set 6t+1 <- Proj( _ I{Period(j,t)=-2}Ap2 , , B)

set (dt+1 , t+1) <- arg mina',c' S_ 1 .1(a'cTxj,- (ds- bCp,/))2+ 2+

(a' + c/Txj,t+1)2
end for

69



2. Item feature data - To supplement the transaction data, we had datasets pro-

viding information on each item, such as its class, subclass, and feature infor-

mation. For fashion items, classes include categories of products such as shorts,

t-shirts and dresses. Examples of product features include brand, color, pattern,

neckline and sleeve length. A total of 51 features were included in the dataset,

though not all features had been filled in - either because they were irrelevant

to the class of items, or because of inconsistencies in data entry by the retailer.

In our numerical experiments, we used these historical datasets to first estimate

a ground truth demand model. Then we used our ground truth model to run offline

simulations that compare RPS' performance with current practice. The design of our

offline simulations is described below.

3.4.1 Data Processing

We processed the raw data by first merging the customer transaction data and the

item feature data. Next, we aggregated the sales at the week-district-item grand-

parent level, where an item grandparent combines store keeping units (SKUs) of the

same design, regardless of color or sizing. This method of aggregation is valid as for

the vast majority of the week-district-item grandparent groupings, only one price is

offered for all SKUs, at all stores and on all days within the group. Week-district-item

grandparent groupings for which more than one price was offered were removed from

the dataset.

We then employed several cleaning steps suggested by our collaborators at Oracle

Retail, including removing the first 5% and last 5% of sales for each item grandparent-

region pair to avoid long tail ends in sales. We expanded the feature vector with

additional information, mainly relating to seasonality. In our dataset, the level of

sales seasonality is very significant. Fig. 3-1 shows the aggregate sales for a selected

class of products, normalized from 0 to 1 within each year. Thus we added to the

feature vector a variable recording the month, and indicator variables for holidays

such as Christmas and Black Friday. We also added a variable indicating the number
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of weeks that had elapsed since the first sale of the item grandparent within the

district. Finally, we converted our categorical features into binary features using the

standard method of one-hot encoding.
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3.4.2 Demand Model

For any subclass S of products, because products in the same subclass are similar

to each other, we made a simplifying assumption that they have the same price

sensitivity parameter bs. The heterogeneity of product items is modeled using item-

specific feature. A single demand function was thus used to describe the demand for

all item grandparent i in subclass S, at district d and week w:

D, w= bspd, + fs(xi,d,w) + ,. (3.4)

Here, Pi,d, represents the price of item i offered in district d and week w, and feature

vector Xi,d,w represents the item-specific features and seasonal information. This

function is linear in price and possibly nonlinear in the featuresXi,d,w, and is analogous

to the single product demand function we defined in Eq (2.1).
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3.4.3 Estimation and Endogeneity.

The dataset contains items belonging to 57 classes and 122 subclasses. Throughout

the rest of this section, we focus on four subclasses. Before we discuss the estimation

procedure for the demand model, we introduce the following standard metrics that

we used to measure the accuracy of the estimated model:

1. Mean Absolute Percentage Error (MAPE), given by (1/n) - E 1|c4 - dilldil,

where di,..., d, are the true values and d1 ,..., d, are the predicted values.

2. Median Absolute Percentage Error (MDAPE), which is the median of the set

{|Idi - dil/|dil, i = 1, . .. , n}.

We then used the following framework to train and test our demand model: We

randomly split the dataset into a training set and a testing set in the ratio 70:30.

This split was not chronological, because our objective was to build a ground-truth

demand model that reflects the true demand process as accurately as possible. Note

that the algorithm that we will design in the next chapter is an online algorithm that

has no knowledge of the parameters of the ground-truth model. The ground-truth

model, which is fit to the data in the training set, and then validated on the testing

set data, is simply used to predict the counterfactual demand corresponding to the

prices selected by the algorithm.

We began the demand estimation process by estimating the parameter bs in (3.4)

for each subclass S. Our initial approach was to simply apply ordinary linear regres-

sion (OLS) on the training data. We used standard variable selection techniques and

measured the accuracy of the estimated model on the testing set. However, the first

column of Table 3.1 shows that the coefficients of price in the baseline model were

estimated to be either very close to 0, or positive in the case of Subclass 4. These re-

sults are unrealistic as they imply that demand barely depends on price, or increases

with price. We note that there are certain luxury goods (known as Veblen goods) for

which demand is usually observed to increase with price. These luxury goods include

jewelry and designer fashion items. However, since the seller in the dataset is an

off-price retailer, it seems that a more likely explanation of the baseline model price
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coefficient estimates is price endogeneity caused by unobserved attributes. Namely,

prices were set manually by the retailer based on items attributes such as costs of

production to which we did not have access. Demand could also depend on these

unobserved attributes (for example, demand could depend on quality, which is corre-

lated with the cost of production), causing our baseline OLS model to obtain biased

estimates of price coefficient.

a.

0 10 20 30 40 50
# of weeks

Figure 3-2: Markdown pricing: each trajectory represents the price of one item from
the category.

We thus attempted to correct for endogeneity by using the two-stage least squares

(2SLS) method. Typically, cost-side variables are used as instruments to control for

endogeneity - or, in absence of such information, Hausman-type variables, where the

average of price is taken over other regions, or lagged prices. Since we suspect that

the omitted variables inducing price endogeneity relate to quality and other unob-

served product characteristics, Hausman-type variables rather than lagged prices are

the most appropriate instrument. For each item grandparent-district-week tuple, we

computed the average price of all item grandparents sold in other districts during

the same week, and set this as our instrumental variable. This method of averaging

over prices was used in conjunction with a control-function approach (Phillips et al.,

2015; Petrin and Train, 2010) to correct respectively for endogeneity in data from the
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auto lending industry, and on households' choices of television reception options. By

averaging over prices, we expect to also average out unobserved characteristics, caus-

ing the instrumental variable to be uncorrelated with the demand noise. The average

price is also correlated with the price of each item sold in that week (thus meeting the

second criteria of an instrumental variable), since we have observed that markdown

pricing causes the prices of many items sold within the same season to decrease in

sync with time (see Fig. 3-2). The covariance between our instrumental variable and

the price were 0.23,0.14,0.23,0.17 for Subclasses 1-4, confirming this assumption.

The corrected price coefficient estimates with 2SLS for all four subclasses are given

Table 3.1: Price coefficient estimates (95% confidence interval estimates in parenthe-
ses)

Subclass OLS estimate 2SLS estimate
1 -0.022 -0.278

(-0.028, -0.017) (-0.308, -0.248)
2 -0.009 -0.280

(-0.017, 0.000) (-0.365, -0.195)
3 -0.018 -0.383

(-0.028, -0.008) (-0.599, -0.166)
4 0.028 -0.383

(0.020, 0.037) (-0.634, -0.132)

in the second column of Table 3.1 along with 95% confidence intervals. Running the

Wu-Hausman test gave a p-value of less than 0.05 for all four subclasses, thus reject-

ing the hypothesis that there is no correlation between the price and demand noise,

and supporting our claim that price endogeneity was present in the data for all four

subclasses.

Next, we estimated the function fs(-) in Eq (3.4). Substituting our 2SLS estimates

of the demand elasticity bs from Table 3.1 into Eq (3.4), we trained a function fs

to predict the remaining component of demand. We tested several ways to estimate

fs(-), including modeling it as a linear function, a regression tree, and a random

forest. Table 3.2 compares the demand prediction errors (MAPE and MDAPE) when

fs is modeled as a linear function and as a random forest. We found that using

random forest to predict demand with features gave the best prediction errors.
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Table 3.2: Demand prediction errors using different demand models

(MAPE) (MDAPE)
Subclass Linear Random Forest Linear Random Forest

1 61.5% 57.2% 49.3% 41.9%
2 55.0% 46.2% 45.8% 33.8%
3 56.4% 46.3% 47.5% 31.7%
4 68.2% 52.1% 55.5% 38.7%

3.4.4 Alternative Demand Models.

Recall that we made two key assumptions on our demand model: firstly, within any

given subclass, demand for all products share the same price coefficient; secondly,

demand for each item is independent of the prices of other items. To evaluate the ro-

bustness of these assumptions, we also considered the following candidates for demand

models:

(M1) Demand for item grandparent i has its own price sensitivity parameter and its

own demand function Di = a, + bipi + Ej. This model relaxes the assumption

that items in the same subclass share the same price coefficient, but ignore

item-specific features.

(M2) The same demand function describes all item grandparent-district-week tuples

within the same subclass, but each tuple has its own price elasticity: DjdA=

as+(bsxi,,w)pi,d,csxi,,w +Ei,d,w. This is demand model is analogous to the

one studied in Ban and Keskin (2017).

(M3) The demand for each item grandparent-district-week tuple depends on the prices

of other products sold within that week: DsdW asd + bs bip+

CSXi,d,w + Ei,d,w, where &, is the average price of all item grandparent-district

tuples sold within the week. This model relaxes the assumption that demand

between different items are independent, but ignores nonlinear effect of features.

These alternative demand models were evaluated and compared with the baseline

model defined in Eq (3.4) where the function fs is our random forest estimator.

In Table 3.3, we show the prediction errors of the baseline model and the three
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alternatives M1-M3 for products in Subclass 1. The results indicate that using these

alternative models does not significantly reduce prediction errors. Therefore, we use

the baseline model (3.4) as the counterfactual demand model in our simulations.

Table 3.3: Test set errors of alternate models on Subclass 1

Baseline M1 M2 M3

MAPE 57.2% 56.2% 55.2% 55.4%
MDAPE 41.9% 50.3% 48.4% 48.6%

3.4.5 Selecting Markdown Period Lengths and other Param-

eters

Before we could run our numerical experiments using our algorithm and ground truth

demand model, we had to select appropriate values for parameters such as the starting

inventory and markdown period lengths. Replicating the retail environment was

essential to being able to draw a fair comparison between the RPS heuristic and

current practice. However, a major difficulty we faced in doing so was that the retailer

has only shared transaction and item feature data with Oracle Retail, and not timing

information on the starts of markdown periods, or even timing information on the

start of the lifecycles of the different products. Information on stock out timings and

the total amount of inventory available for each product are also missing from these

datasets, meaning that we do not know whether the existing pricing policy was always

successful in clearing inventory.

To address these challenges, we have worked closely with Oracle Retail to make

a number of simplifying assumptions in our simulations. We have assumed that for

all products, inventory was cleared by the end of the selling horizon, meaning that

the total amount of inventory available for each product is assumed to be the sum

of sales quantities in the historical dataset. Note that this assumption causes us to

underestimate the revenues of the RPS heuristic, as its revenue is increasing in the

amount of available inventory.

Estimating the actual starts and ends of the different products' life cycles was
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trickier; Figures 3-3a-3-3d, which plot the distributions of the first and last weeks of

the observed sales of different products, show that even though products tend to fall

within distinct clusters, there is high variance in the start week within each cluster,

and in the lifetime (defined as the number of weeks between the first and last weeks of

observed sales) from cluster to cluster. In Subclass 1, the two main product clusters

have start weeks that differ by about 20 weeks but similar end weeks. This lack

of correlation between start and end week is unexpected, and suggests a problem

with the dataset. We have thus discarded data from Subclass 1 and restricted our

experiments in the next section to Subclasses 2-4.

For these remaining subclasses, we have demarcated seasons by batching products

and assuming that products in each batch have the same life cycles, and share iden-

tical markdown periods and season end weeks. Products are batched by the month

of the first observed sale, which is consistent with Figures 3-3a-3-3d, since these show

that the difference in start weeks from cluster to cluster is typically at least 4 weeks.

We then estimated the life cycles by looking at product lifetimes. The mean product

lifetime for Class 303 is 21 weeks, with a standard deviation of 6 weeks. Since stock-

outs imply that the product lifetime is an underestimate of the season length, we set

the season length at 30 weeks - roughly within one standard deviation of the mean

product lifetime. Then, we removed products with lifetimes shorter than 10 weeks

and longer than 30 weeks from the dataset to ensure that our season length estimate

is reasonable for products included in the simulations.

Finally, as the exact markdown rules and other parameter settings used by the

retailer are unknown to us and can only be estimated, we have run our simulations

with a variety of inputs: (1) With a no-touch period of length 10 and price exper-

imentation of at most 10% of the recommended price during this period, (2) with

a no-touch period of length 3 and no price experimentation during this period, i.e.

price is set to the recommended price, (3) with a markdown length of 10, and (4)

with a markdown length of 15. Since it is common practice in fashion retail to set a

markdown period length of around a third to a half of the total season length and a

shorter no-touch period, it is likely that the true inputs lie somewhere within these
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Figure 3-3: Kernel density estimation plots showing the distributions of the sales
start and end weeks for different products across all four subclasses
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ranges. Repeating our experiments for a variety of inputs within this range thus

guarantees some measure of robustness.

3.5 Simulation Results

With the set up described above and for all possible combinations of the no-touch

period and markdown settings, we ran 10 iterations of the RPS heuristic and com-

pared the cumulative revenue earned by the heuristic over the time horizon with the

cumulative revenue earned by the retailer' existing pricing policy under the ground

truth demand model. Table 3.4 gives the average revenue gains of the RPS heuristic

over the 10 iterations, with 95% confidence interval estimates in parentheses. Across

the subclasses and parameter settings, revenue gains are on average between 2-7% -

considerably lower than in the unlimited inventory setting studied in Phase 1, as is to

be expected, but still significant. Also as expected, the revenue gains decrease as the

markdown length is increased, and also as the amount of price experimentation al-

lowed during the no-touch period decreases. However, with the exception of Subclass

4 with markdown length 15 and no-touch length 3, this decrease in revenue gains

tends to be slight, suggesting that the RPS heuristic is robust to different retailer

settings.

Next, we looked at the inventory clearance of the RPS heuristic across the different

retailer settings. Table 3.5 reports the mean percentage of inventory left at the end of

the selling horizon, where the average is taken across all products over 10 iterations,

with the 95th percentile and max values of inventory left in parentheses. For all

three subclasses in our simulations, we see that the RPS heuristic successfully clears

all the available inventory for more than 95% of products by the end of the selling

horizon. However, there are outliers for which a significant proportion of the inventory

remains unsold at the end of the selling horizon. We inspected the simulated and

actual sales of these outliers to find out why this was the case, and found that all

of these products are also outliers in the sense that the ground truth demand model

significantly underestimates the actual demand observed in the historical dataset.
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Then, since inventory levels are based on historical demand and simulated demands

are based on our ground truth model, the inventory clearance constraint is infeasible

for these products. As this is a feature of our demand model rather than of our

algorithm, we believe that the 95 percentile values in Table 3.5 are a better indication

of how effective the RPS heuristic is at clearing inventory.

We also looked at the price trajectories selected by the RPS heuristic across dif-

ferent retailer settings. Fig 3-4 gives these price trajectories for a sample of products

from Subclass 2 for all four parameter settings. These plots confirm that the heuristic

adheres to the pricing constraint and markdown constraints described in Section 3.3.

Interestingly, we see that the prices selected by the RPS heuristic tend to increase

rather than decrease during the exploitation period. This suggests that the prices

currently set by the retailer are below the optimal prices.

Finally, recall that in our numerical experiments with synthetic data in Chapter

2 (Section 2.4), we benchmarked the RPS algorithm against other dynamic pricing

algorithms proposed in the literature that do not control for price endogeneity. We

found that the RPS algorithm significantly performs the other algorithms in terms of

its estimated cumulative revenues, as well as in terms of its parameter estimates of the

underlying demand model. A natural question is whether RPS also exhibits superior

performance on our fashion retail dataset, when the demand model is as described

in Section 3.4. We address this question in Appendix B, and show that RPS does

indeed outperform competing dynamic pricing algorithms that do not account for

endogeneity on our fashion retail dataset.

3.6 Conclusion

We have proposed a pricing heuristic that does not assume any knowledge of the

underlying demand distribution and learns this distribution through a combination

of price experimentation and exploitation. Our heuristic is intuitive, computationally

inexpensive to implement, and is applicable to many fashion retail settings as it

incorporates common business constraints such as inventory and markdown pricing
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Figure 3-4: Price trajectories of the RPS heuristic for a sample of 10 products from

Subclass 2
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Table 3.4: Revenue gains relative to current practice (Mean, 95% confidence interval
estimates in parentheses)

No-touch length = 3 No-touch length = 10
Subclass Markdown Markdown Markdown Markdown

length = 10 length = 15 length = 10 length = 15
2 6.74% 6.20% 7.61% 6.89%

(6.68%, (6.00%, (7.52%, (6.53%,
6.85%) 6.37%) 7.69%) 7.13%)

3 1.55% 1.51% 2.57% 2.19%
(1.40%, (1.05%, (2.51%, (1.89%,
1.65%) 1.80%) 2.60%) 2.50%)

4 4.26% 1.51% 7.04% 5.02%
(3.96%, (1.15%, (6.95%, (5.00%,
4.55%) 1.87%) 7.09%) 5.05%)

Table 3.5: Inventory clearance (Mean, 95 percentile and max in parentheses)

No-touch length = 3 No-touch length = 10
Subclass Markdown Markdown Markdown Markdown

length = 10 length = 15 length = 10 length = 15
2 0.34% 0.25% 0.43% 0.26%

(0%,49.6%) (0%,38.0%) (0%,57.2%) (0%,43.6%)
3 0.23% 0.14% 0.30% 0.18%

(0%, 50.7%) (0%,47.0%) (0%,57.9%) (0%,43.5%)
4 0.18% 0.05% 0.16% 0.04%

(0%,55.4%) (0%,40.8%) (0%,49.3%) (0%, 44.6%)

constraints. To gauge its performance, we have run a number of offline numerical

experiments using retail data. The RPS algorithm exhibits revenue gains of around

2-7% over the retailer' existing pricing policy, and seems robust to different retailer

settings such as the length of the markdown and no-touch periods.

Given the promising performance of RPS, Oracle Retail is currently building into

their price optimization products the ability for retailers to use the RPS algorithm

at selected stores for markdown optimization. Retailers will thus be able to easily

pilot the algorithm at particular stores, and to compare the results with the current

approach using A/B testing.

Another business impact of our work is that the offline simulator we have devel-

oped, which builds a ground truth demand model and simulates each selling season
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for a range of business parameters using this ground truth model, will also become

part of Oracle Retail's pricing software. This offline simulator will allow retailers to

estimate the possible improvement in revenues from using the RPS algorithm before

taking the risk of performing a pilot. We anticipate that this will make retailers using

the pricing software more comfortable with performing a pilot, and thus speed up the

adoption of the RPS algorithm.
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Chapter 4

Inventory Allocation with Demand

Learning for Seasonal Goods

We study an inventory allocation problem in a two-echelon (single-warehouse multiple-

retailer) setting with lost sales. At the start of a finite selling season, a fixed amount of

inventory is available at the warehouse, and can be allocated to the retailers over the

course of the selling horizon with the objective of minimizing total expected lost sales

costs and holding costs. We are particularly interested in demand learning in this

context, where the decision maker can use historical demand observations to predict

future demand, and consequently make allocation decisions. We thus model demand

in order to capture learning, and show that our model can describe both demand

forecasting (e.g. ARMA) frameworks, as well as a Bayesian framework. Then, we

pose the questions of (1) how to solve the inventory allocation problem under demand

learning in a computationally tractable way, and (2) how demand learning impacts

effective inventory allocation policies. To address the first question, we adapt the

Lagrangian relaxation-based technique proposed by Marklund and Rosling (2012) for

a backordering, no-learning setting. We show under general assumptions that the

resulting heuristic remains near-optimal in our setting, compared to the original dy-

namic program. Finally, we use this analysis to investigate the relationship between

demand learning and early allocation decisions. We show through a combination of

theoretical and numerical analysis the following intuitive result: Demand learning
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provides an incentive for the decision maker to withhold inventory at the warehouse

rather than allocating it in earlier periods.

4.1 Introduction

Motivated by a real example faced by a large fashion retailer based in the U.S, we

study an inventory allocation problem for seasonal goods in a two echelon, or one-

warehouse multiple-retailer, setting. At the start of each selling season, a fixed amount

of inventory is available at the warehouse, and the decision maker must decide how

to allocate this inventory from the warehouse to the retailers so as to minimize the

total expected lost sales costs and holding costs. It has been widely observed in the

literature on inventory allocation in two echelon systems (Eppen and Schrage, 1981;

Jackson, 1988; Jackson and Muckstadt, 1989) that the warehouse has a strong incen-

tive to make multiple allocations throughout the selling season, rather than allocate

all its inventory to the retailers at the start of the selling season: If some retailers

experience high demands in earlier periods, reserving inventory at the warehouse al-

lows the retailer to rebalance inventory levels by allocating more inventory to these

retailers (and less inventory to retailers who experience low demands) in later periods.

This ability to mitigate demand fluctuations by storing inventory in a central location

is known as the "risk-pooling" effect.

In this work, our chief contribution is to show that there is a second motive for

the decision maker to delay inventory allocations to later periods: Namely, demand

learning. Demand learning generally allows the decision maker to improve her demand

forecasts with time, by observing historical demand and updating her demand beliefs

in response to these observations. Intuitively, we would expect that by reserving

inventory at the warehouse, the decision maker can make more informed allocation

decisions later on in the time horizon, and allocate more inventory to retailers who

have been observed to experience high demands, and less inventory to retailers who

have been observed to experience low demands. In this work, we provide evidence

to support this intuition by showing that we can expect the decision maker's first
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period allocations from the warehouse to the retailers to decrease with the extent of

learning.

To prove this property, we first address the question of how the decision maker can

allocate inventory from the warehouse to the retailers in a computationally tractable

way. Since the allocation problem becomes computationally intractable as soon as

either the number of retailers or time periods grows large, and is also difficult to

study analytically, we propose a heuristic method. Of the many heuristics proposed

in the literature (Federgruen and Zipkin, 1984; Jackson, 1988; McGavin et al., 1993)

for the two echelon inventory allocation problem, we base our work on the heuristic

developed by Marklund and Rosling (2012) for a backordering, independent demand

setting, since optimality bounds exist for this heuristic. The idea behind their method

is that the source of the computational complexity in the allocation problem is that

the fixed warehouse inventory couples the allocation decisions across the retailers. If

each retailer had to pay some ordering cost for each unit of inventory, instead of satis-

fying the fixed warehouse inventory constraint exactly, the allocation problem would

decouple, and each retailer could solve its inventory ordering problem separately.

Thus, following Marklund and Rosling (2012), we propose to relax the fixed in-

ventory constraint to allow for this problem decomposition. We then prove the same

optimality gap as in Marklund and Rosling (2012) between the expected costs of ap-

plying the heuristic, and the optimal value of the original allocation problem. How-

ever, a key difference between our result and theirs, besides the fact that they study

a backordering setting and we study a lost sales setting, is that our result applies

to a setting with correlated demands, which includes demand forecasting settings as

well as settings with Bayesian learning. In Marklund and Rosling (2012), however,

demands at each retailer are assumed to be IID across time.

Then, using the heuristic as a proxy for the exactly optimal solution, we inves-

tigate how the decision maker's allocation policy depends on demand learning. We

formulate a simple, two period demand forecasting model with identical retailers that

parametrizes the extent of demand uncertainty in the second period. We show ana-

lytically, by further approximating our lost sales setting with a perishable inventory
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setting (where no remaining inventory at the retailers can be carried over to the next

period), that the dependence of the first period allocation on the level of uncertainty

is consistent with the property that early allocations should decrease as the amount

of demand learning increases. This allows us to conclude that demand learning com-

plements risk pooling in incentivizing the decision maker to reserve inventory at the

warehouse, and to delay inventory allocations to later periods.

We also separately use the heuristic to prove an additional structural result on

the allocation decisions when the retailers are non-identical. In particular, we look at

a setting with independent but non-identical retailers experiencing truncated normal

demands, and who share the same demand means but different variances. We ask

how the retailer should prioritize among these retailers when allocating inventory. We

show that the decision maker's strategy should on the amount of available warehouse

inventory: When the warehouse inventory is small, the decision maker should favor

a conservative policy, and allocate more inventory to retailers with lower demand

variances, since these retailers have a lower chance of experiencing low demands. On

the other hand, when the warehouse inventory is large, the decision maker should

take a risk on retailers with higher demand variances, and allocate more inventory to

these retailers, since they have a higher chance of experiencing high demands.

The rest of the chapter is organized as follows: The rest of this section gives

a review of the related literature on inventory allocation in two echelon systems,

both in settings with and without demand learning. Section 4.2 then describes our

model and assumptions, and shows how our correlated demand model can capture

demand learning in the sense of both a demand forecasting setting, such as when

retailer demands are generated by ARMA or ARIMA processes, as well as a Bayesian

setting, where retailer demand is given by some parameterized family of distributions,

and where the unknown parameters are distributed according to priors held by the

decision maker.

In Section 4.3, we present our heuristic, adapted from Marklund and Rosling

(2012), that solves the inventory allocation problem in our lost sales, demand learning

setting. We show that the asymptotic optimality bound from Marklund and Rosling
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(2012) continues to hold in our setting under some general assumptions on the prices

and holding costs at the retailers. Then, in Section 4.4, we analyze this heuristic to

understand the structure of the near-optimal allocation policy. We look at how the

decision maker's allocation decisions are affected by demand learning as well as by

non-identical retailers. Finally, in Section 4.5, we present numerical experiments that

validate the structural results in Section 4.4.

4.1.1 Literature Review

The study of inventory allocation in two echelon systems began with Clark and Scarf

(1960), who observed that the complexity of this problem relative to the single retailer

inventory ordering problem stems from the fact that that the retailers' inventory posi-

tions cannot be lowered through transshipments or returns to the warehouse, causing

the optimal allocations at each time to depend not only on the total system stock, but

on the inventory positions at all the retailers. Since the inventory allocation problem

becomes computationally intractable as soon as either the number of retailers or time

periods grows large, a number of papers have proposed effective but computationally

tractable policies that rely on approximations of the original problem. Jackson (1988)

considers a very specific class of policies, called "order-up-to-S" policies, where the

warehouse stocks each retailer (all of whom are assumed to experience ID demand)

up to S every period until it runs out of inventory. He proposes that when the ware-

house runs out of inventory to allocate all the retailers' inventory levels up to S, it

should solve a "run out allocation" problem, and develops approximations to effi-

ciently solve this optimization problem. Jackson and Muckstadt (1989) study a two

period model with backordering. They approximate the cost function by analyzing

the case where the number of retailers tends to infinity, and use this approximation

to develop an efficient optimization procedure. McGavin et al. (1993) and McGavin

et al. (1997), like us, study the lost sales setting, but with only two periods and

identical retailers. They show that the optimal policy takes the form of balancing

policy, and also propose a heuristic, known as the infinite retailer heuristic, which

estimates the first period optimal allocations and second period order-up-to levels by
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approximating their set up with a deterministic setting with infinitely many retailers.

The above papers demonstrate the effectiveness of their proposed heuristics through

numerical simulations. Marklund and Rosling (2012) is the first that we know of that

proves a bound on the optimality gap between the expected cost of their heuristic

and that of the exactly optimal solution. They study a backordering setting with

N non identical retailers, each of whom experiences demand that is IID across time.

They propose relaxing the constraint that the total allocations to the retailers across

the selling horizon is at most the warehouse inventory: Instead of requiring that this

constraint is satisfied almost surely, they relax it so that it only has to be satisfied

in expectation. Then, they show that dualizing this relaxed constraint gives rise to

N separate inventory ordering problems, each of which can be solved in a computa-

tionally tractable way. They prove that the ratio of the optimality gap between the

heuristic and the original problem to the value of the optimal problem is bounded

by O(N), implying that this optimality gap goes to 0 as the number of retailers

grows large. In this work, we adapt the result in Marklund and Rosling (2012) to

our lost sales, correlated demand setting to get the same optimality gap bound of

O(V). The main technical contribution we have made in adapting their proof lies

in showing the convexity of the relaxed optimization problem in the lost sales setting.

We give a sufficient condition on the relationship between prices and holding costs

that guarantees the convexity of this optimization problem, which ensures that their

result holds in our setting.

A closely related stream of literature has also studied the risk pooling phenomenon,

where storing inventory at a centralized location can help mitigate demand shocks

that cause imbalances among retailer inventory positions. Eppen and Schrage (1981)

study a backordering system, and find that backordering costs are lower if the depot

acts as centralized ordering facility. Jackson (1988), mentioned above, finds through

numerical simulations that the cost savings with risk pooling can be up to 70% com-

pared to when inventory is not centralized. Jackson and Muckstadt (1989) analyt-

ically derive results that shed light on two different aspects of risk pooling: First,

risk pooling causes the distribution of inventory to be more balanced across retailers.
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Second, the centralization of inventory guarantees that the order up to levels at the

retailers will be close to being constants.

Another stream of literature that our paper is closely related to is the literature

on inventory allocation in a two echelon setting with demand learning. Many of

these papers are motivated by real examples of allocation decision problems faced

by fashion retail companies, where demand in later periods of a season can only

be learned by observing early sales. Fisher and Raman (1996) study a two period

model where the first period allocation is unconstrained but the total second period

allocations is limited. They approximate the decision maker's optimization problem

in order to solve it in a more computationally tractable way, and test their algorithm

on data from the fashion retail company Sport Obermeyer. In addition, they look at

the special case that demand is bivariate normal, and give a closed form solution of

the optimal first period allocations to the retailers in terms of their demand means

and variances. This is related to our result in Section 4.4, where we compare the

allocations to retailers with different demand variances. However, the result in Fisher

and Raman (1996) does not show how the warehouse should prioritize among retailers

with low and high variances. In this work, we show that the warehouse's strategy

should depend on the amount of available inventory at the warehouse.

Besides Fisher and Raman (1996), Fisher and Rajaram (2000) study the problem

of merchandise testing, i.e. of allocating small amounts of inventory to a small number

of selected retailers before the season starts in order to learn demand. They develop

an algorithm to determine which retailers testing inventory should be allocated to

in order to maximize learning during the testing period, and test their algorithm on

data from a real fashion retailer. Gallien et al. (2017) work with Zara to study the

problem of determining inventory allocations to retailers early in the season. They

propose an algorithm that approximately solves this problem, prove an asymptotic

optimality bound on the proposed algorithm, and run field experiments to validate

its performance. We note that all three of these demand learning papers study two

period models. This shows that many real world settings faced by fashion retailers

can be formulated as two period models, and suggests that the model used in our
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structural analysis in Section 4.4 to a two period setting is not only simpler to analyze,

but also practical.

It is also worth comparing our work with several papers on demand learning for the

single retailer setting, where the focus is also on structural properties of the optimal

allocation. From this stream of literature, Ding et al. (2002) study a two period

newsvendor model where demand learning can take place through Bayesian updates

of unknown parameters based on observed sales data. They compare the optimal

first period allocations when demand is censored (i.e. demand at each retailer can

only be observed up to its inventory position) with the optimal allocations when

demand is fully observable. They analytically derive the intuitive result that when

demand is censored, the decision maker should allocate more inventory in the first

period so as to obtain more accurate demand information. Azoury (1988) and Azoury

and Miller (1984) also study a two period model, though with backordering, and like

us, they compare the optimal first period allocations with and without learning. In

their setting, however, demand learning takes place through Bayesian updates of the

unknown parameters, whereas our structural analysis in Section' 4.4 is based on a

demand forecasting model. They prove that under specific assumptions on demand

(such as the fact that it belongs to a family of distributions that satisfies what is

known as the single crossing property), the first period allocations are greater without

learning (when the parameter is updated) than when it is updated. The intuition

behind this result is that in the learning setting, a parameter update could reveal that

demand is on average lower than anticipated; Then, allocating too much inventory in

the first period puts the decision maker at risk of having a higher inventory position

than is optimal. In this work, we derive a similar structural result that says that the

first period allocations are decreasing with the extent of learning. However, because

we assume a multiple retailer setting with fixed inventory (whereas in Azoury (1988)

and Azoury and Miller (1984) inventory is unlimited), the interpretation of our result

is different. In our case, allocating less inventory when there is learning has to do

with saving inventory for the second period, when demand uncertainty is lower, and

it is clearer which retailers will experience high demands, and which retailers will
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experience low demands.

4.1.2 Notation

Let 1denote a vector of all ones of length n, and letOdenote a vector of all zeros

of length n. We will omit the subscript n when the dimension of these vectors is

evident. For any m-dimensional vector x, let [x]+ := max{O,x} where max is the

elementwise maximum.

4.2 Model

We study an inventory allocation problem for seasonal goods in a one-warehouse

multiple-retailer setting. At the start of the selling season of length T, a fixed amount

of inventory wo is available at the warehouse, while the N retailers have no starting

inventory. At the start of each time period t = 1, 2,..., T, the warehouse can choose

to allocate some amount of inventory a,t > 0 to each retailer i. Let at denote the

N dimensional vector with ith entry ai,t. Transshipments (moving inventory between

retailers) or returning inventory from the retailers to the warehouse are not allowed,

and we assume that there is no additional replenishment to the warehouse during the

season. This implies that the total allocation to all retailers over the selling horizon

satisfiesZ E 1  a, < wo almost surely.

We denote the starting (pre-allocation) inventory position at the warehouse at time

t by wt, and the starting inventory positions at the retailers by the N-dimensional

vector xt. The post-allocation inventory positions at the retailers are denoted by

the N-dimensional vector yt, where yt = xt + at. After the warehouse allocates

inventory to the retailers, each retailer i then sells the product at price pi,t and

correspondingly observes demand Dit. This is an uncensored observation, i.e. the

decision maker's knowledge of demand is not limited by the available inventory at the

retailer. We assume that for each i and t, Di,t is a random variable that is discrete

and bounded by some constant Dm.We also assume that demand is independent

from retailer to retailer. However, for each retailer, we allow the demands Di,t to
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be correlated across time. In particular, the distribution of Di,t can depend on the

history 7Wi,t = {Di, 1 , ... , Di,t_1} as well as other exogenous variables.

We study a lost sales setting with no leadtimes. Any demand that is not met is

lost and not backordered, giving a starting inventory position at the retailers at time

t of xt+1 = [yt - Dt]+. Any demand that is not met by retailer i incurs a per-unit

lost sales cost of pi,, where pi,t is the price of the product and pi,t > 0. Any demand

that remains at retailer i at time t incurs a per-unit holding cost of hit, with hi,t > 0.

We ignore transportation costs.

The decision maker's objective is to minimize the expected discounted costs (for

a given discount factor is a) incurred by the different retailers over the course of the

selling horizon. At time t, given that retailer i has a post allocation inventory position

of yi,t, the cost incurred by this retailer is this is the sum of a lost sales component of

pi,t[Di,t - yi,t]+ and a holding cost component of hi,t[yi,t - Di,t]+. We define the cost

Li,t(yi,t) :=pi,t[Di,t - y,t]+ + hi,t[yi,t - Di,t]+.

The decision maker then determines allocations to the retailers at each time period

based on the warehouse inventory, the history of demand observations, and its belief of

future demand. At each time t, we assume she has full knowledge of the history of past

demand realizationsf {Dis i = 1, ... , N,s = 1, .. , t - 1}, as well as full knowledge of

the distribution of Di,t for i 1, ... , N conditional on these past demand realizations.

However, she does not know the future demand realizations beforehand.

Using the notation defined above, the warehouse's optimization problem at time

t can be formulated with the following dynamic program:

Vt (wt, xt) min Gt(y, Wt, Xt) (4.1)
y;>xt

1Ty<;lTxt+wt

N

Gt(y, wt, xt) Z E[Li,t(y)] + E[Vt+1(wt - 1T(y Xt), [y - Dt])] (4.2)
i=1

Vr+1(woT+1, xT+1) =0. (4.3)
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4.2.1 Demand Models with Learning/Forecasting

Our demand model allows the demands at each retailer to be correlated across time.

Two types of correlated demand models that this framework can capture are (1)

demand forecasting models, such as ARMA or ARIMA models, as well as (2) Bayesian

models, where the decision maker updates her beliefs on the unknown demand model

parameter distributions with time. Examples of these kinds of models are described

below.

Demand forecasting Consider the following AR(1) model: Di,t= aDi,t_1+ E,t

for t = 2, ... , T,i = 1, ... , N, where the demand at each retailer and time period is

the sum of the previous period demand at that retailer, as well as some demand noise.

Then if the decision maker knows the parameter a, as well as the distributions of the

demand noises and the first period demands at the different retailers, the distribution

at any time period conditional on the previous period demands is fully known, and

the model fits our assumptions on demand. In this vein, we can capture other demand

forecasting models as long as the parameters are known to the decision maker.

A Bayesian model Consider the following Bayesian model, where the demands

at each retailer i are known to be IID across time, and are Poisson distributed with

mean 6j. If the decision maker has priors on the parameters {6, i 1,..., N},

she can update the posteriors on these parameters based on the demand realization

history, and thus always knows the distribution of demand at any retailer and time

period conditional on this history. Note that since we have assumed that the retailers

are independent, the parameters {f0,i = 1,..., N} have to be non identical across

retailers.

In Section 4.4, we use a demand forecasting model to investigate the impact of

demand learning on effective inventory allocation policies. Although this model is

different from machine learning and statistical learning models in that the decision

maker is not learning the underlying demand distributions with time, what it has in

common with learning models is that the decision maker can use historical demand

observations to make more accurate predictions of future demand, and consequently
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make more informed allocation decisions.

4.3 Heuristic

The dynamic program (4.1)-(4.3) is difficult to solve explicitly, as it suffers from the

curse of dimensionality, where its state space grows exponentially in N and T. In

this section, we consider a heuristic that is suboptimal but computationally much less

expensive to implement. This heuristic is based on the observation that (4.1)-(4.3)

is weakly coupled, meaning that if the constraint 1 T <lTXt + Wt is relaxed, the

problem decouples into N separate dynamic programs, reducing the computational

complexity to linear in N. The idea is to achieve this problem decomposition by

approximating the original problem with its Lagrangian relaxation. We dualize the

coupling constraint and add an associated Lagrangian term to the objective func-

tion, thus decomposing the problem into N separable optimization problems. This

Lagrangian relaxation technique has been used to approximate weakly coupled opti-

mization problems for a variety of applications. A survey is given in Adelman and

Mersereau (2008). In the literature on inventory allocation and risk pooling, Mark-

lund and Rosling (2012), who also study an inventory allocation problem for single

warehouse multiple retailer setting, but with backordering instead of lost sales, pro-

pose a heuristic based on this technique. They show that this relaxation technique

gives a lower bound on the optimal cost-to-go function, and that the performance of

the heuristic converges to the lower bound as N goes to infinity, meaning that the

heuristic is asymptotically optimal.

Below, we show how Marklund and Rosling (2012)'s approach can be adapted to

our lost sales setting. Our demand model, like theirs, also assumes that the retailers

are independent. However, while Marklund and Rosling (2012) assume that each

retailer's demands are IID across time, we allow the demands experienced by each

retailer to be correlated across time, such as in the demand forecasting and Bayesian

models described in the previous section.
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4.3.1 Algorithm

We start by rewriting (4.1)-(4.3) as a stochastic program as follows:

T N

min E E[E [Li,t (yi,t)|I Ni't]
t=1 i=1

subject to yi xi , + a,t Vi, t, 7i'

xi,t+1 = [yi,t - Di,t]+, Vi, t, 7Wi,t
N T

Zwi,t < o a.s.
i=1 t=1

a ,t > 0 Vi, t, Wi,t .

(P1)

Here, the variables ait, i,t, yit are non-anticipative and are functions of the demand

history hi,t.

Now, to achieve the desired problem decomposition, we will relax the inventory

constraint a, wo by requiring that it is only satisfied in expectation

over all demand realizations, rather than almost surely. This gives the constraint

EN$_ E[ai,t] wo. We will also eliminate the state variables x ,t and yi,t from

the formulation and express the problem in terms of the decision variables a,t. This

can be achieved by using the equations

t-1

xi,t max{0,Z ai, - Di,, VI < U< t - 1}
s=u

yi,t x + ai,.

This gives

T N t--1

min E[E[a1-'Li,t(ai,t + max{0, ai,, - Di,,, V u t - 1})|7i't]])
t=1 i=1 s=u
N T

subject to E[ai,t] < WO
1 t=1

a,t 0 Vi, t, Ni,t.

(P2)
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The relaxed constraint E $ _tET E[ai,t] wo can then be dualized. This gives

the following decomposition:

max - Awo + SUBi(A)

subject to A > 0,

where SUBi(A) is the solution to the single retailer inventory ordering problem

T N t-1

min E[E[a -ILi,t(ai,t + max{0, E as - Di,_ V1 U t - )|A]
t=1 i=1 S=U

T N

+±Aaztl Z E[a,t]
t=1 i=1

subject to ai,t > 0 Vi, t, Ri,t .
(D2)

(D2) is a classical inventory ordering problem, with ordering costs A. When only

a limited amount of inventory is available at the warehouse, A is large, i.e. the

retailers have to pay a large penalty to order inventory. On the other hand, when the

warehouse inventory is large, A is closer to 0. For a given A, the inventory ordering

problem for each retailer can be solved recursively, by searching a (finite) set of

possible allocations. The complexity of this problem grows exponentially in terms of

the length of the selling horizon T. However, since the retailers' subproblems can be

solved independently, it is far more tractable to solve these subproblems in parallel

for a given A than the original allocation problem (P1).

Before we show how to find the optimal A* that maximizes (D1), we discuss the

convexity of the allocation problem (P2). We can show that under some conditions

on the prices and holding costs at the retailers, namely that the price at each retailer

and time period is at most the sum of the price and holding cost at that retailer in the

previous time period, the relaxed optimization problem (P2) is convex. An intuitive

interpretation of this condition is that there is no incentive for any retailer to withhold

inventory for the next period: That is, if a retailer knows in advance that there will

be at least a unit of demand in a particular time period, it is never profitable for
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that retailer to withhold inventory, leave that demand unsatisfied, and instead satisfy

demand in the next period. This convexity result is stated in Lemma 1 and proven

in Appendix C.1.1. We note that a sufficient condition for pi,t + hi,t > aPi,t+1 is that

the prices at each retailer are non-increasing with time. We thus expect that this

condition, and thus the convexity of (P2), holds for many fashion retail applications,

where the practice of markdown pricing means that prices tend to decrease with time.

Lemma 1. Assume that for all t < T, p hi, > aPi,t+1. Then (P2) is a convex

optimization problem.

Given the convexity result in Lemma 1, we can solve for the optimal A, A*, that

maximizes (D1) using the complementary slackness condition that either A* = 0 or

E 1 Ei E[a*,t(A*)] = 0. We know that A* must always always fall within the

range [0 maxj=1 ,...,N,t=1,...,T Pi,t, since for all A such that A > maxi=1 ,...,N,t=1,...,TPi,t,

the optimal allocation policy is simply to not allocate any inventory to any of the

retailers. Then the optimal A, A*, can be found by searching this interval, through

a technique such as bisection, for the A that satisfies the complementary slackness

conditions. We can calculate this A* prior to the start of the selling horizon, and

allocate inventory to the retailers according to this policy, without needing to resolve

for A, until the warehouse runs out of inventory. These steps are summarized in the

following inventory allocation heuristic:

1. Before t = 1, find A* that maximizes (D1). One possible approach is to use

bisection to search the interval [0 maxj=1 ,...,N,t=1,...,T Pi,t] until a A that satisfies

the complementary slackness conditions, A = 0 or t= EN E[ai,t] = 0, is

found.

2. For each retailer, solve (D2) with A set to A*, and calculate the corresponding

optimal allocations a*t(A*),i= 1,. . . , N t = 1, ... , T.

3. For eacht= 1, . . . , T, and retailer i = 1,. . . , N, allocate the minimum of ait (A*)

and the remaining inventory at the warehouse.
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4.3.2 An Optimality Bound

In the backordering setting, and assuming that demand is IID across time, Marklund

and Rosling (2012) show that the cost of implementing the heuristic described in the

previous section is at most O(v ) greater than the optimal value of their original

dynamic program, where N is the number of retailers. We will show that given the

assumptions on demand laid out in Section 4.2, their argument can be adapted to

our lost sales, correlated demand setting to prove an optimality bound of the same

order on our inventory allocation heuristic. This result is stated in Theorem 5 below.

Theorem 5. Assume that the condition for convexity, pi,t +hi, ;> azpi,t+1, is satisfied

for all t such that t < T. Denote the expected cost of our heuristic by UB, and denote

the value of (P1) by OPT. We have the following relationship between UB and OPT:

UB- OPT is O(vNT).

If we assume further that the value of each retailer subproblem (D2) is always

lower bounded by a constant for A = A*, it is easy to see that OPT is lower bounded

by N times this constant. Then, Theorem 5 implies that "OPT is (1+ ).1 The

heuristic would thus be asymptotically optimal in the number of retailers N, in that

its expected costs converge to the value of the original dynamic program (P1) as N

grows large. However, the heuristic is not necessarily asymptotically optimal in the

length of the selling horizon T.

The proof of Theorem 5 is deferred to Appendix C.1.2. The idea behind the proof

is that the value of (D1) is a lower bound on (P1). This follows from the fact that

the convexity of (P2) implies strong duality. Thus the relaxed optimization problem

(P2), whose value is a lower bound on (P1), is equal to its dual (D1). Now the cost of

the heuristic is clearly an upper bound on the optimal value of the problem. Since the

value of (D1) is a lower bound on (P1), the cost of applying the dual policy is greater

than the optimal value of the problem exactly when the sum of the recommended

allocations is greater than its expected value. Since the retailers are independent, the

'The value of each retailer subproblem (D2) is not always lower bounded by a constant for the
optimal A*. For example, if the holding costs hit = 0 and wo > DmaxNT, A* = 0, and the value of
each (D2) would be 0.
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difference between the sum of the recommended allocations and its expected values is

of order VN rather than N, thus allowing us to bound the optimality gap as a factor

of /N.

We would like to make two remarks comparing the analysis of Theorem 5 with the

analysis in Marklund and Rosling (2012). Firstly, in the backordering setting studied

in Marklund and Rosling (2012), the convexity of the relaxed inventory allocation

problem is guaranteed regardless of the assumptions on prices and holding costs.

However, in our lost sales setting, we prove a sufficient condition on prices and holding

costs to guarantee the convexity of (P2). Secondly, our heuristic and optimality

bound, unlike Marklund and Rosling (2012), can be applied to settings with correlated

demand, and hence with demand learning in the forecasting and Bayesian senses

described in Section 4.2.1. However, it is important to note that the optimality

bound 5 is not a regret bound (unlike the optimality bounds on the online learning

algorithms presented in Chapter 2), and that it says nothing about the rate of learning

any underlying demand model parameters.

4.4 Structural Results

The heuristic presented in Section 4.3 allows us to solve the two echelon inventory

allocation problem in a computationally tractable way by expressing this problem in

terms of the simpler single retailer inventory ordering problem. In this section, we will

also use this connection between the two problems to shed light on the structure of

effective inventory management policies. Using our heuristic as a proxy for the exactly

optimal solution, we investigate how the decision maker's inventory management

policies depend on (1) demand learning, and (2) different levels of demand uncertainty

among the retailers.

To address these questions, we limit our analysis in the rest of this work to a two

period setting (T = 2), but continue to allow N to be arbitrary. As discussed in the

literature review in Section 4.1.1, two period models are widely used in the literature

on inventory allocation in two echelon systems with demand learning, including in
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papers that study real settings faced by fashion retailers (Fisher and Raman, 1996;

Fisher and Rajaram, 2000; Gallien et al., 2017). Thus we expect the two period

setting studied in this section to be not only simpler to analyze, but to also be of

practical relevance.

4.4.1 Demand learning

We first investigate the impact of demand learning on the optimal allocation pol-

icy. We assume that the N retailers are identical in that they experience identically

distributed demands, and experience price p and holding cost h in both time peri-

ods. We then model demand learning using the following demand forecasting model:

In the first period, each retailer i experiences demand Di, where {Di, i = 1, 2} are

IID. At the end of the first period, the decision maker observes uncensored demands

{Dii = 1, ... , N}. The demand experienced by retailer i in the second period is then

given by

Di + per for some p > 0 (4.4)

where the demand noises {E, i = 1, . . . , N} are IID and mean 0. The decision maker

thus knows a component of the second period demand beforehand, and can allocate

inventory to the retailers in the second period based on the first period demand obser-

vations. The component of demand that is not learned, pi, has variance proportional

to p2 . p is thus a measure of the amount of learning - as p increases, the second pe-

riod demand forecast accuracy decreases. We are interested in how the first period

allocations to the retailers depend on this parameter p, or, equivalently, on the extent

oflearning.

Unfortunately, it is difficult to analyze the exactly optimal allocation policy, or

even the heuristic allocations, in our lost sales setting. We thus first approximate

the inventory allocation problem (P1) with (P2), which relaxes the fixed inventory

constraint, then make a further approximation that assumes that no inventory that

is left over at the retailers after demand is observed can be carried over from the first

period to the second period. We then analyze the corresponding optimal solution.
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Although Theorem 5 shows that (P2) is a good approximation of (P1) when the

number of retailers N grows large, we have no theoretical bounds on the quality of

the second approximation. Intuitively, however, we expect that it is more reasonable

to assume that inventory at the retailers cannot be carried over when the warehouse

inventory is limited compared to the demands experienced by the retailers. If the

warehouse inventory level is limited, then the inventory positions at the retailers

after demand is observed would be close to zero.

The dynamic program representing this approximation is given below in (P3).

Similar to the analysis in Section 4.3, we can show that the inventory constraint

can be dualized, causing the problem to separate into N independent single-retailer

inventory ordering problems. The dual problem is given below in (D3).

T N t-1

min J3 E[E[ot'Li,t(ai,t + max{O, ai, - Di,,, VI< u t - 1})A]
t=1 i=1 S=U
N T

subject to E3E E[ai,t] wo
i=1 t=1

a 0 Vi, t, tj .

(P3)

max - Awo + SUBi(A) (D3)

subject to A > 0,

where SUBi(A) is the solution to the single retailer inventory ordering problem

T N

min E E[EE[at'Li,t(ai,t)| i']]
t=1 i=1

+ aO Et E E[ai,t] (D2)
t=1 i=1

subject to ai, ;> 0 Vi, t, -,t.

Since the retailers have identically distributed demands, the first period alloca-

tions that optimize (D3) are by symmetry the same across all retailers. This allocation

ai 1(p) depends on p, the standard deviation of the demand forecasting error in the
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second period. In fact, we can show that for sufficiently small warehouse inventory

levels wo, aj(p) is strictly increasing in the parameter p, i.e. the first period allo-

cations are strictly decreasing with the extent of learning. This result is stated in

Theorem 6 below and is proven in Appendix C.1.3.

Theorem 6. For the perishable inventory approximation described above, there exists

some maximum warehouse inventory level wm,, such that for wo < wm, the optimal

first period allocation to each retailer, a (p), is strictly increasing in the parameter

p.

An intuitive explanation of the result in Theorem 6 is that when the decision

maker is able to forecast the second period demand more accurately, she should save

more of the available warehouse inventory for the second period, as she will derive

more value from deploying this inventory in the second period rather than in the first

period. Theorem 6 thus suggests that demand learning has the same effect as risk

pooling in incentivizing the decision maker to reserve inventory at the warehouse, and

to delay inventory allocations to later periods.

4.4.2 Nonidentical retailers

We now look at a different setting with non-identical retailers, and investigate the

impact of different levels of demand uncertainty among the retailers on the inventory

allocation decisions. If the mean demand varies from retailer to retailer, intuition says

that it is generally optimal to allocate more inventory to retailers with higher demand

means. However, the structure of the optimal policy is less clear when retailers have

the same means but different variances. On the one hand, the decision maker could

allocate more inventory to retailers with lower variance demands (i.e. lower demand

uncertainty), as they have a lower chance of experiencing lower demands. On the other

hand, the decision maker could take a risk on retailers with high variance demands,

even though these retailers have a greater chance of experiencing lower demands, as

these retailers also have a greater chance of experiencing higher demands.

To understand how the decision maker should balance between these tradeoffs,
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we analyze a two period setting where the prices and holding costs are the same

across retailers and time periods. Denote this price by p, and this holding cost by

h, and assume further that p > h (this is true of many retail settings, where items

are sold at prices that are high compared to other costs). We model the demands

at the retailers using truncated normal demand distributions that are symmetrical

about their means. For each retailer i, we let demand Di,t have mean 1  and range

[p - b p + b], i.e. the means and ranges are kept constant across retailers. Since

we are interested in isolating the impact of different levels of demand uncertainties

among the retailers, only the variances {o, i = 1, ... , N} corresponding to demands

{D,t, i = 1, ... , N} may be non-identical across retailers.

We once again analyze the allocations chosen by the heuristic (i.e. the optimal

solution to (D1)) rather than the exactly optimal solution. We find that the deci-

sion maker's allocations under the heuristic depend on the starting inventory at the

warehouse. If this is large, then the decision maker should favor a risk taking policy,

and should allocate more inventory to retailers with higher demand variances. How-

ever, if the starting inventory at the warehouse is small, the decision maker should

be more cautious, and should allocate more inventory to retailers with lower demand

variances. This result is stated in Theorem 7, and is proven in Appendix C.1.4

Theorem 7. There exists a warehouse starting inventory level Wmin such that for

Wmin wo,1, the heuristic's first period allocations, denoted by {a*1,i = 1,... ,N}

satisfy ali* < a*, whenever i < o-u. Similarly, the second period order-up-to levels,

denoted by {xi,2 ,i =1, ... ,N} also satisfy x*i < x*, whenever o- < o-j

There also exists a warehouse starting inventory level wmax, wmax > 0, such that

for wo, 1 satisfying 0 < w0 1 < wm,, the heuristic's first period allocations, denoted by

{a 1 ,i = 1,..., N} satisfy a*, > a*,1 whenever o < o-j. Similarly, the second period

order-up-tolevels,denotedby{x,2 ,i 1,...,N} also satisfy x*1 > x*,1 whenever

oi < K-.
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4.5 Numerical Experiments

To verify the structural properties proven in Section 4.4, we ran numerical simulations

on synthetic data. These simulations consider simple settings with two periods, two to

three retailers, and demands that are drawn from either discrete uniform distributions,

or from discretized truncated normal distributions. The exactly optimal first period

allocations (i.e. the allocations that solve (P1)), as well as the heuristic first period

allocations (i.e. the allocations solving (D2) for a given value of the dual variable A)

can be easily solved for these settings by first determining the optimal second period

allocation policy, then recursively computing the expected costs of the first period

allocations and searching over the finite set of demands to determine the optimal

allocation.

4.5.1 Demand learning

We first ran a set of simulations to empirically investigate the impact of demand

learning on the first period allocations. As in Section 4.4.1, we model learning using

the demand forecasting model (4.4). While it is difficult to theoretically analyze this

model for our lost sales setting, we were able to compute the exactly optimal first

period allocations (i.e. the allocations that solve (P1)) using the recursive procedure

described above. This then allowed us to numerically investigate the relationship

between the exactly optimal allocations and the parameter p, which is proportional to

the standard deviation of the second period demand forecasting error, and is therefore

inversely related to the extent of learning.

For these simulations, we fixed the prices at $1, the holding costs at $0.20, and the

starting warehouse inventory at w, 1 = 12, but varied the distributions of demand at

the retailers. First we simulated a setting where for all retailers i, period 1 demand

Di, is drawn from a truncated normal distribution with parameters y, o, a, b, i.e.

Dj is normally distributed according to (p, o) conditional on Di belonging to the

interval [a b]. We discretized this distribution by discretizing the interval [a b] with

stepsize 0.01, and forcing demand to take values from this discretized set. We then
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set - = 1, varied the mean demand y in the set {2, 2.5, 3, 3.5,4}, and for each y set

a =p- 1,b= p+ 1.

Next, we simulated a setting where each retailer i experiences first period demand

that is drawn from a discrete uniform distribution. For a given mean demand P,

period 1 demand Di 1 is drawn from the set {f - 1, P - 1+ 0.01, ... , p + 1 - 0.01, t +

1} with equal probability. Again, we varied the mean demand P within the set

{2,2.5, 3, 3.5,4}. For both sets of simulations, the period 2 demand noise Ej,1 is drawn

from a truncated normal distribution with parameters y = 0, -= 1, a = -1, b = 1.

For each choice of demand distribution, we solved for the optimal allocations given

p {0, 0.2, 0.4, 0.6, 1}. We solved the retailers' optimal allocations as follows: First,

we computed the optimal second period allocations for each retailer corresponding

to each possible tuple of the first period allocation y, and realized demands Di,1 and

Di,2 . Then, using the property that the optimal first period allocations must by

symmetry be the same for both retailers, we recursively computed the expected cost

of each possible first period allocation from the set {0, 0.01,0.02, ... , 6}, and selected

the allocation minimizing this cost.

Figures 4-la and 4-1b plot these exactly optimal first period allocations to the

retailers for different values of the learning parameter p. Figure 4-la corresponds to

the setting where the first period demand is drawn from a discretized truncated normal

distribution, and Figure 4-1b corresponds to the setting where first period demand is

uniformly distributed. For both these settings, and for all values of the mean demand,

we see that the optimal first period allocations are indeed always increasing in p. This

agrees with our finding in Theorem 6 that the first period allocations are decreasing

as the extent of learning increases, which is in turn consistent with the property

that demand learning, like the risk pooling effect, incentivizes reserving inventory at

the warehouse for later periods. However, unlike Theorem 6, which makes several

approximations of the inventory allocation problem (P1) and analyzes the allocation

decisions corresponding to the approximate optimization problem, Figures 4-la and

4-lb give the allocations that exactly solve the inventory allocation problem in its

original form. These results thus suggest that the demand learning effect is a property
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of our original allocation problem, and not just of the approximate problem studied

in Theorem 6.

To gauge the quality of the approximation proposed in Section 4.4.1, we also

looked at the first period allocations under the approximation that inventory that is

left over at the retailers at the end of the first period cannot be carried over to the

next period.

Finally, it is also interesting to note that our plots of the exactly optimal solutions

in Figures 4-la and 4-1b show that for our demand forecasting model, the optimal first

period allocations are not necessarily monotonically increasing in the mean demand

at the retailers. This is contrary to what we would observe if the demands at each

retailer were IID across time periods, and indeed, this effect becomes less pronounced

as p increases from 0 to 1 (i.e. as the periods 1 and 2 demands become less strongly

correlated). Although this result may seem counterintuitive, we interpret it as being

related to the property that demand learning can incentivize saving inventory for the

second period: As the demand means increase, and the warehouse inventory becomes

more limited with respect to demand, the decision maker derives more value from

deploying this limited inventory in the second period, when an improved demand

forecast is available.

4.5.2 Non-identical retailers

We also conducted a second set of simulations on a setting with non-identical retailers

in order to verify Theorem 7. For these simulations, we considered a set up with three

retailers, all of whom experience demand drawn from truncated normal distributions

with parameters y, o-, a, b, i.e. retailer i's demands Di,t are normally distributed

according to N(p, o 2), conditional on Dal belonging to the range [a b]. As in the

simulations on demand learning, we discretized these truncated normal distributions

by discretizing the interval [a b] with stepsize 0.01, and forcing demand to take values

from the discretized set.

For the three different retailers, we kept the demand means and ranges fixed at

p = 2, a = 1, b = 3, but varied the demand variances. For Retailer 1, or the 'low
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Figure 4-1: First period optimal and approximate allocations for fixed starting
warehouse inventory, wo, 1 = 12, prices = $1, holding costs = $0.20, and p =
0,0.2,0.4,0.6,0.8,1. In both the truncated normal and uniform demand settings,
period 2 demand noise eij,1 is drawn from a truncated normal distribution with pa-

rameters y = 0,o = 1,a = -1,.b= 1
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variance retailer', we set - = 0.1. For Retailer 2, or the 'mid variance retailer', we

set o- = 1. Finally, for Retailer 3, or the 'high variance retailer', we set o- = 5.

We then computed the first period heuristic allocations to the different retailers.

Instead of solving for the A that optimizes the dual problem (D1) for some given level

of the starting warehouse inventory wo, we varied A between 0 and price p (since, as

we have observed in Section 4.3, the optimal A always lies within this range), and

solved for the first period allocations that optimize (D2) given this A. This was done

recursively: First, using the well known result that the optimal allocation policy for

the single retailer inventory ordering problem is an order-up-to policy, we computed

the second period order-up-to levels by discretizing the interval [1 3] with a stepsize

of 0.01 (i.e. for each retailer, we searched the set [1, 1.001, 1.002, ... , 3] for the second

period newsvendor levels). We then recursively computed the optimal first period

allocation by once again discretizing the interval [1 3], and selecting the allocation

from this set with the lowest expected cost. By also recursively computing the total

expected allocations across all retailers and time periods, we were able to obtain the

warehouse inventory we corresponding to our chosen A.

Figure 4-2a plots the heuristic's first period allocations to the three retailers when

prices at all retailers are set to $1 and holding costs are set to $0.20, and Figure 4-2b

plots the heuristic's first period allocations to the three retailers when prices at all

retailers are set to $1 and holding costs are set to $0.80. For both configurations of

the price and holding cost, we see that the results directly verify Theorem 7: For

sufficiently small starting warehouse inventory, the first period heuristic allocations

are decreasing in the variance of the retailers. However, when the starting warehouse

inventory is sufficiently large, the first period heuristic allocations are increasing in

the variance of the retailers.

4.6 Conclusion

We have studied a two echelon inventory allocation problem for a lost sales, correlated

demand setting. We have shown that the heuristic developed in Marklund and Rosling
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Figure 4-2: First period allocations under the heuristic in a setting with 3 retailers,
all off whom experience demand drawn from truncated normal distributions with
parameters y, c, a, b (retailer i's demands Di,t are normally distributed according to
N(p, U2 ), conditional on Di,t belonging to the range [a b].) For Retailer 1, the 'low

variance retailer', p = 2, u = 0.1, a = 1, b = 3. For Retailer 2, the 'mid variance

retailer',p = 2, o = 1, a = 1, b = 3, and for Retailer 3, the 'high variance retailer',
p = 2, = 5, a = 1, b = 3.

(2012), which uses a Lagrangian relaxation technique to reduce the computationally

intractable two echelon inventory allocation problem to a set of separate single retailer

inventory ordering problems, can be applied to this setting. Under some general

assumptions on the prices and holding costs, we show that the optimality bound

proven in Marklund and Rosling (2012) also holds for the heuristic in our setting,

implying that the heuristic is asymptotically optimal in the number of retailers N.

Using the heuristic as a proxy for the optimal solution, we study a simple, two-

period demand forecasting model. We prove our main result, which is that under a

further approximation that any inventory remaining at the retailers at the end of the

first period cannot be carried over to the next period, the first period allocations are

strictly decreasing in the variance of the second period forecast. Since the demand

forecasting model captures the reduction in demand uncertainty over time that comes

with learning, this result suggests that demand learning incentivizes the decision

maker to reserve more inventory at the warehouse for later periods. Demand learning

should thus have a similar effect on allocation decisions as risk pooling.

Additionally, we investigate the heuristic allocations when the retailer demands

111



have different levels of uncertainty. We show that the heuristic allocation policy

depends on the available inventory at the warehouse: When the warehouse starting

inventory is small, the decision maker should act more cautiously, and should allocate

more inventory to retailers with low variances. When the warehouse starting inventory

is large, on the other hand, the decision maker should instead favor a "riskier" policy

that allocates more inventory to retailers with high variances.

Much remains to be said on the subject of demand learning in the two echelon

setting. Our analysis is restricted to a stylized forecasting model with known param-

eters, and does not study the case where the parameters of the demand distributions

are unknown and have to be learned over time. Although the heuristic can be om-

bined with statistical learning methods in order to learn such unknown parameters,

it is not clear whether it is possible to prove a non-trivial upper bound on the regret

of this algorithm. Since we have only been able to show that the optimality gap

between the heuristic and the exact solution to the allocation problem is sublinear

in the number of retailers, and not in the length of the selling horizon, proving a

non-trivial regret upper bound in terms of the length of the selling horizon would be

difficult. We leave such questions to future work.
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Chapter 5

Conclusions and Future Directions

This thesis studies three related topics in revenue and supply chain management,

all motivated by constraints unique to fashion retail. Chapters 2 (Dynamic learning

and pricing with model misspecification) and 3 (Feature-based dynamic pricing for

fashion retail: A case study) look at feature-based dynamic learning and pricing prob-

lems. Chapter 4 (Inventory allocation with demand learning for seasonal consumer

goods) studies an inventory allocation problem in a two echelon, i.e. single warehouse

multiple retailer, setting with fixed warehouse inventory. All three of these chap-

ters propose algorithms that are data-driven in that they allow the decision maker

to update her demand beliefs and pricing or allocation decisions based on historical

observations of sales.

However, while all three chapters are interested in demand learning, they take

different perspectives on learning. Our work on dynamic pricing in Chapters 2 and

3 is specifically interested in a setting with parametric demand models, and where

the unknown parameters have to be dynamically re-estimated as new sales data is

observed. The feature-based dynamic pricing algorithms that we proposed are de-

signed to learn these unknown parameters at an optimal rate. In Chapter 2, we also

prove regret bounds that capture this rate of learning. Chapter 4, on the other hand,

takes a more qualitative perspective on demand learning. We are interested in how

demand learning affects the structure of the optimal allocation policy. To answer this

question, we describe learning using a demand forecasting model whose parameters
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are known to the decision maker. The decision maker is thus learning the demand

realizations, rather than the form of demand, with time.

There are a number of broad directions for future research. Even within the

domain of fashion retail, new business models bring technical challenges that require

novel solution techniques. One such model is the omni-channel extension to our work

on inventory allocation, which was discussed in the concluding section of Chapter 4.

This would involve extending our brick-and-mortar store setting to one where the

retailer has an online presence to complement its brick-and-mortar stores.

Another business model that could be interesting from a revenue management

perspective is the online consignment store. As consumers of fashion products become

increasingly eco conscious, there has been a growing interest in options that are more

sustainable than the fast fashion model studied in this thesis. Online consignment

stores, such as San Francisco based TheRealReal and ThredUp, present one such

option by creating a venue where used fashion items can be both bought and sold at

markdowns from the original sales price. As pricing managers at these retailers have

to decide not only the prices at which to sell used items, but also the prices at which

to buy these items, feature-based pricing takes on an added dimension.
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Appendix A

Appendix to Chapter 2 (Dynamic

Learning and Pricing with Model

Misspecification)

A.1 A Different Regret Definition

In the literature on dynamic pricing with demand learning, it is standard to define

regret relative to the clairvoyant who knows the true demand model. Let us refer

to the clairvoyant defined in Section 2.3.1 as the "linear clairvoyant," and define a

second clairvoyant, called the "true clairvoyant," who sets price pt= - (Xt) at each

time period. Then we can define a second notion of regret, Regret2 (T), in terms of

the true clairvoyant:

T T

Regret 2(T) = E E[PtD(pt)] - E[ptD(pt)].
t=1 t=1
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To see how Regret(T) compares to Regret 2(T), we can write

Regret2 (T)

T

=Regret(T) + E[ftD(pt)] - E[p*D(p*)] (A.1)
t=1

=Regret(T)
- - -1 -- 2-

+ T E f(xt) - E f(xt) 1 xtT E
4|b t tt T Xt

- - - - --1 - .. 2-

>---E f (xt) - E f (xt) 1 t xT] E X
4|bl (t tt T xt

using closed form expressions for Pt and p*. This shows that the regret of any admis-

sible pricing policy that assumes a misspecified demand model, relative to the true

clairvoyant, grows linearly in T, and with the extent of model misspecification as cap-

tured by the expectation term in the second line. It reflects the fact that prices chosen

by a seller who assumes a linear demand model may never converge to the optimal

price Pt, because Pt could depend nonlinearly on xt. We have also included additional

numerical experiments using Regret 2 (T) as the benchmark, see Appendix A.2.3.

Throughout the rest of this paper, we mainly focus on Regret(T) rather than

Regret 2(T). Regret(T) is a more interesting performance metric as (A.1) shows that

Regret 2(T) of any admissible pricing policy affine in xt is always 0(T), implying that

it cannot be optimized in terms of T. The term "regret" thus refers to Regret(T) in

the rest of this paper unless stated otherwise.

A.2 Additional Numerical Results

In this section we expand on the numerical results in Section 2.4 by investigating

how our results depend on the parameter settings. Section A.2.1 shows how the

performance of the RPS algorithm depends on the choice of demand function. Section

A.2.2 looks at its dependence on the dimension of the feature vector m, complementing
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Figure A-1: f(x) vs best linear approximation a + c'x for y = 1.02,2

our theoretical results on the RPS algorithm's regret upper bound given in Section 2.3.

A.2.1 Dependence of regret on the demand function

We now investigate how the results of our simulations depend on the demand function.

In the IID setting studied in Section 2.4, the quasilinear demand model is of the form

1
Dt(p)= (I )+ 1 0. 9p + Et,

2 (xt + 7 )

where y = 1.03, while the closest linear approximation is

ft(p) ~ 2.05 - 0.90p - 1.76xt

As y increases, the fit of the closest linear approximation of Dt for xt uniformly

distributed between [-1,1] improves, i.e. E[(f(xt) - a - c'xt) 2 ] decreases. Fig. A-1

illustrates this by comparing the function f with its best linear approximation on the

interval [-1, 1] for two values of -y, y = 1.02 and 2. Since model misspecification wors-

ens as -y decreases, we would expect that the endogeneity effect is more significant for

demand models with smaller values of -. We ran the RPS and one-stage regression

algorithms for -y = 1.02,1.03,1.05, 1.1,1.25,1.5,2.0, keeping the price and parameter

bounds the same as in the IID case numerical example with y = 1.03. Table A.1,
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which gives the estimates of the parameter b at the end of 5000 time periods aver-

aged over 50 iterations, shows that for all y, the RPS algorithm produces unbiased

estimates of the parameter b. The one-stage regression algorithm estimates, on the

other hand, are biased for smaller values of y. As y increases, the one-stage regression

estimates of b improve. This is consistent with the observation that the endogeneity

effect becomes more significant as y decreases; the RPS algorithm, which corrects for

endogeneity, produces unbiased parameter estimates for all -Y, while the one-stage re-

gression algorithm, which does not correct for endogeneity, only accurately estimates

the parameters when the endogeneity effect becomes insignificant. Fig. A-2 plots the

average cumulative regret (over 50 iterations) of the RPS and one-stage regression

algorithms at the end of 5000 time periods for the different values of 7. The RPS

algorithm outperforms the one-stage regression algorithm for y < 2.0, and the im-

provement of RPS relative to one-stage generally increases as y decreases and the

endogeneity effect increases. However, for -y = 2.0, one-stage regression outperforms

RPS algorithm; In the absence of endogeneity, parameters can be estimated more

efficiently using a one-stage rather than a two-stage regression, and RPS loses its

competitive edge.

Table A.1: Estimates of parameter b in Linear Demand Example

y = 1.02 1.03 1.05 1.10 1.25 1.05 2.00s

RPS algo. -0.94 -0.90 -0.91 -0.92 -0.90 -0.91 -0.90
One-stage reg. -0.50 -0.50 -0.50 -0.53 -0.66 -0.77 -0.86

A.2.2 Dependence of regret on the feature vector dimension

m

We conducted numerical experiments in an attempt to investigate the dependence of

the results on m. For simplicity, we looked at a number of different settings without

any model misspecification, with T = 5000 and m varying from 1 to 1001. Unfor-

tunately, almost none of these settings yielded a clear regret trend, and showed the

regret seesawing with increasing m. One possible explanation is that the asymptotic
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Figure A-2: Average regret over 50 iterations of RPS vs one-stage regression algo-
rithms as y is varied

dependence of the results on m only becomes detectable for larger values of m, which

would be computationally infeasible to test.

However, for one of the settings tested, a clear regret trend was observed. Below,

we report the results from this numerical experiment. The demand function is given

by

Dt(p) = 2 - 0.7p + cTxt± - Et.

For each m, the feature vectors xt are drawn IID from the distribution [-1, 1]" , and

c is a vector of length m with the first entry set to 0.9 and all other entries set to

0. Note that ||c|1l is constant for all m, and thus so is -, on which our regret bound

depends (see Eq (A.8) for the full statement of the IID regret bound in terms of all

parameters). We set cmax to c + [0.5,0.5, ... 0.5] andCmin to c - [0.5, 0.5, ... ,0.5],

and let the noise et be normally distributed with mean 0 and variance 0.3. The price

across all periods t is lower bounded by $1.75 and upper bounded by $8.25.

Fig. A-3 plots the regrets of the RPS algorithm for m = 1, 3, 5, 11, 51, 101,

201, 501, 1001, averaged over 10 iterations each. We can see that the regret of

RPS is increasing with m, and that the growth of the regret with m appears to be

O((m + 1)T), in accordance with our regret upper bound. This numerical example

thus supports the idea that the regret of the RPS algorithm does indeed depend on

m, and that there is a gap in terms of m between our lower and upper bounds.
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A.2.3 Regret relative to different clairvoyants

The above numerical experiments benchmark the performance of the RPS algorithm

against the linear clairvoyant, who bases pricing decisions on the closest linear approx-

imation of the true quasilinear demand model. Here we present additional numerical

experiments benchmarking the performance of RPS against the true clairvoyant, who

has full knowledge of the true quasilinear demand model, and sets price Pt= - (x) at2b

each time period. Fig. A-4a plots the results of repeating the IID setting experiments

from Section 2.4; it plots the average regret of the RPS algorithm relative to both

clairvoyants over 200 iterations and 5000 time periods. Similarly, Fig. A-4b plots

the results of repeating the price ladder setting experiments from Section 2.4, and

Fig. A-4c plots the results of repeating the non IID experiments from Section 2.4.

Fig. A-4a confirms the result that the regret of RPS relative to the true clairvoyant

grows linearly with T in the IID setting. On the other hand, Fig. A-4b shows that,

depending on the function f and the distribution of the feature vectors, the regret

of RPS relative to the true clairvoyant need not grow linearly with T in the non IID

setting. We can also observe from Figures A-4a - A-4c that the difference in revenue

earned by the true clairvoyant and the revenue earned by the linear clairvoyant can

vary considerably depending on the demand model and parameters; In the IID and

price ladder settings, the extent of model misspecification is extremely large, while in
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Figure A-4: Average regret over 200 iterations of RPS algorithm relative to two
different clairvoyants in IID and Price ladder IID settings

the non IID setting, the linear clairvoyant achieves nearly as much revenue as the true

clairvoyant. One way the retailer could try to improve the fit of her demand model

in the first two cases is by including higher order terms of xt in the feature vector

and performing polynomial regression; however we note that she faces a tradeoff in

doing so: The regret bound stated in Theorem 1, shows that the regret of RPS is

O((m + 1)v'T), i.e. including more terms of xt in the feature vector could decrease

the regret from model misspecification, but increase the regret due to parameter

estimation errors.
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A.3 Proofs for Theoretical Analysis

Notation. The following notations will be used in this section. We define e :=

(a, cT)T and et :(dT)T. Leti :=(1,xT)T,M E[iiT and Mt :-AI i,.

A.3.1 Proof of Proposition 1

Proof. Proof of Proposition 1. Consider price p' a+- - xt where a, 3,-yare

measurable with respect to history Nt- 1. Since p* a+c xt we have

E[p*D(p*) - p'D(p') Nt-1] =E [p*(bp* + f(xt)) - p'(bp' + f(xt)) Nt-i

=E [p*(bp±* + a + cTxt) - p(bp'± +a+ cTXt) |_1]

- E [(p- p')(a + cTxt - f (xt)) WI-1]

=E [p*(bp* - 2bp*) - p'(bp' - 2bp*)|Ni

- [(p* - p')(a + cTx- f(xt)) |Ni_]

= - bE [(p -p')2

- E[(pt- p')(a + cTxt- f(xt)) Nt_1]

To finish the proof, we shall prove that E [(p- p')(a+cTx- f(xt)) |NIt-1]= 0.

By definition, a, c is the optimal solution of the following least squares problem

By first order conditions, we have

E [a+ CTxt - f(xt)] = 0, E [xt (a+ cTxt - f(xt))] = 0.

Since xt is independent of the history Wt_1, we have

E [a + cTXt - f (Xt) t 1 ] = 0, E [xt (a+ cTxt - f (xt)) I Nti1] = 0.
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Therefore,

E[(p* - p')(a + CTXt - f (Xt)) t-]

a+-c TXt +a -YT Xt )(a + CTXt f (Xt))IH -
2b ±2/3

a aTE [( T f (xt)) | t 1

+E - -)E [xt(a+CTXt-_ f (xt)) Ijl

whichimpliesthat * - p')(a + cTxt - f (xt)) | Wt_1] = 0.

the law of total expectation, we prove the theorem.

Then, applying

D

A.3.2 Proof of Theorem 1

Proof. Proof. Recall that the expected regret over the selling horizon is defined as

T T

Expected Regret(T)= EE[p*D(p*)] - ZE[ptD(p)].
t=1

(A.2)
t=1

First, let Q be a positive definite matrix such that M = Q2 (Q must exist since

M is positive definite). Then, let us define the event At as follows:

At = t{Mis invertible and ||QM-lQ||2 < 2}.

We can write the regret as
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T

SE [p* Dt(p*) - pt Dt(pt)]
t=1

- E[p*Dt(p*)
ttz1

T

- pt D(pt)|At ] -P [At] + E [p*Dt(p*) - ptDt(pt)|A'] - P [AC]

E [p*Dt (pt*) - pt Dt(pt)
t=1

|At] - P[At] + 2 P[ A]
2b

T

t=1

(+ + a)2 (3Amin(M)(t - 1)
+ 2(m+1)expI- +b \24Amin(M)|Vf2 8(m+1) '

where the second inequality follows from the definition of p* and our assumptions

on the boundedness of the true parameters a, b, c, and the final inequality follows by

bounding P(AC) by Lemma 3, where V := E[(Q-liiTQ-1 _ 1)2]. Since the second

addend in the final line is O(e-t), it is left to show that the first addend is O( 1/t).

We decompose it as follows:

T TXE[p*Dt(p) - ptDt(pt)lAt] P[At =- E[p*Dt(p) - p>tDt(p~t) At] -IP[At
t=1 t=1

T

+EE [pu Dt (p',t)

T

+ EE [pg,tDt (pg,t)
t=1

- p,,tDt(p,t)|At] -P[At]

- ptD (pt) jAt] - P[At].

Since pg,t = Proj(pu",, [,p + 6 t, pt - 6t1]) and the optimal price Pt E [P Pl], we have

T T T 62 62 T
E [p,Dt (pt) - pg,tDt(pg,t)IAt] [At] b2 -P[At] 2 °

t=1 t=1 t=1

In addition, pt= pg,t + Apt, where Apt is generated independently from pt, xt and
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the history t- 1 with variance 6' 62 So

TE E [pg,t Dt(pg,t) - pt Dt(pt) I|At ] -P [At]

S E pg,t D(pg,t) - (pg,t + Apt)D (p,t + Apt)| At] - P [At]
t=1

T

S EApt(-2bpg,t - f(xt)) - b(Apt ) 2 |At] -P[At]
t=1
T

t=1

b62 1 Ib62 V T
5-
t-1 4 ft 2

To finish the proof, we want to show that E[p*Dt(p*) - pgDt(p,)|At] - P[At]

0(1//t). In the proof of Proposition 1, we show that

E[p*Dt(p*) - p'Dt (p')NI_ 1] - -bE [(p-* - p')2

for any p'= - +xt with a, 3,ymeasurable with respect to the history Ni1.

Since the event At depends on the history Rt-1 and is independent of xt, this

gives

E[p*Dt(p*) - p", t (pIt P[At] -bE[(p*- pg,t)2 At]- [At],

where pu,t = - xt is the greedy price given the estimates at, bft,6t, and p*
a+ Txt is the optimal price of the following linear model

Dt(p) = a + bp+ cTx +v, vp E [pt ],

with vt= f(xt) - a - cTxt + Et.
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By the definition of p'g and p*, we have

E[(p,-pt)2 At] - P[At] =E

<2E[

a + cTXt

2b

(
+2E

a+c TXt

2b

a\c 

2bt

(a+)2E b |At -P[A,]
bbt

+ PE [((a + cCt a 7t j2At - P[At],

at+-T \2
at + C Xt

a+CTXt2

2bt /

At]- P[At]

A].P[At]

where the second line follows from the inequality (x + y) 2 < 2x2 + 2y2 , and the third

line follows from the fact that the true parameters a, c satisfy |a a and |c||1 <,

as well as from the fact that bt E [-b, -b].

Now, for demand parameter ', let h be the function h(b')= . The gradient of

h, denoted by Vh, is given by Vh(b') -, and we have |Vh(b')1 2 = -!K . Then

by the Mean Value Theorem, we have

E - |At- P[At] < E[(b -bt2At] . P[At]

< E[(b - 6t) 2]. (A.3)

By Lemma 2, we immediately have E[(bt - b) 2 ]= O(1/v t7). Now we will bound

the error in the estimates of a and c, namely E[((e - et )it) 2 |At]. Note that et is

measurable with history 7t-1 and x4 is independent of Wt-1, so

E[((e - et)Tit) 2 |At] =E [(e - et)T E[t~iT IAt ,7 Wt1](e - et)]

=E [(e - et) TM(e - et)|At] = E [|ie - et||2 |At],

where ||yllA := lyTAy for any positive definite matrix A.

By the definition of Algorithm 1, assuming that Mt is invertible, et - e can be
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written as

et - e = Proj(M -- (b b) + Es) (A.4)

Then we have

E[((e - et )Tt)2 |] = E[ljet - e 1 At] -P[At]

E[Ilet - e 12At] -P[At] + E[4(eTit) 2 + 4(etTkt) 2 ] I P[AT 2

E [||et - e 121At ] -P[ At| + 16 -2P2 xp[

<E[llet - e2 At] -P[At] (A.5)

-2 2 3Amin 8(m1)
+ 16 2 Pnax - 2(m + 1) exp 2 4 Amin(M) I 2 + ( + 1)

(A.6)

The third line follows from the assumption that the true parameter e C E. In the

last step, we bound P(AC) by Lemma 3, where V:= E[(Q- liTQ-1 - 1)2]. Since Eq

(A.6) is O(e-t), it is left to show that Eq (A.5) is O( 1/t).

We write Eq (A.5) as

E[Ijet - e| |1 At] -P[At]

E|M-in-1Q iRs(ps(b - bt) + us)

E ||QM --1Q-1 ||Q -|| -1

1
Amin(M)

< E 8
- Amin(M)

<E 8
Amin(M)

12 At P[At]

-t) + v) 12 | At P[At]

E=i Csps(b - t) 2 + || |Xvs1  At P[At]
t - 1 t - 1

Rs_ sps (b -- t) 2

( = - 1 2

(m + 1)Pmax(b -t)2

+ ~ S2

t-

+ 8| =1 xsus 112
t --

S 8 (M + 1)p2 E[(b - 1t)2] + E[|| Rs vs 1] .
Amin (M)ym ( PmaxL - 1(t- 1)2E 8is=12 1
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The first inequality holds by Eq (A.4) and the assumption that the true parameter

e E E. The second inequality holds from the submultiplicative property of the

spectral norm. By the definition of Q, we have |Q- 1|2 =1/ Amn(M). The third

inequality uses the definition of event At and the fact ||x + yl 2||Ix12 + 2||y 2 .

The fourth inequality simply uses the definition of conditional expectation. The fifth

inequality uses the assumptions that |Ixt| I 1 and p < pmax

It has already been established using Lemma 2 that E[(b - t) 2 ] is O(1/l), so

the first term of Eq (A.7) is 0(1/l). For the second term, note that (Rs, v) is

independent of (iR, v,,) for s f s'. Furthermore, by the first order condition of

the least squares estimator, we have E[vt] = 0 and E[xtut] = 0. So for each s,

E[isv, I = E[iuv,] = 0. Thus,

1-1 1

( -12E[||II vl2 t E) E[IlIRSvol2(t - 1)2E[ St/S (t- 1)2 s=1k'2

1 E[Ilis(f(xt) - a - cx+t)l2

-(t- 1)2s=

<(n + 1) 3(f2+4b2p2±2 + U2)
t - 1

where the last step uses the fact that (x+y+z) 2 < 3(x 2 +y 2 + z 2 ) and |IslIl2  m+1.

Therefore, by Eq (A.7), E[Ile-et|12 ] 0(1/fl)+0((m+1)/t) = 0(1/l) as desired.

Dependence on m, b and other parameters By combining constant factors,

the expected regret of RPS algorithm over N periods can be bounded by

_2__2_+_)_(_2_+___+__2 _ 2 m+ 1

0 ( b2 Aax+1)(f 2 +U2 P'"(1+pmA (M)/T) + 0((m + 1) log T),
b 4 2+oa Amin (M) )V

(A.8)

where the pre-factor in the first big 0 notation only contains an absolute constant. D

A.3.3 Proof of Theorem 2

Proof. Proof. We will prove that the lower bound of regret is Q(v T) even if the

model is correctly specified. Suppose there is no model misspecification, i.e. the
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demand function is given by

Dt(p) = a + bp + cTxt + Et.

We assume feature vector xt is i.i.d. and sampled uniformly from [-1/2, 1 / 2 ]', and

demand noise Et is i.i.d. normal with variance 1. By the first order condition, the

optimal price that any non-anticipating pricing policy can charge at period t is p* =

(a + cTxt) 2b).

By Lemma 4, we can assume without loss of generality that the seller uses a

linear pricing strategy r at period t given by pt = St + (Ut)Txt, where St and Ut are

measurable with respect to the history 7 -t- = -(xi, ei,..., Xt_ 1 , et_1). Denote the

regret incurred by the seller at the end of T periods as Regret(T). By Proposition 1,

we have

Regret(T)= -bE[(p - p*)2]

- -bE[(St + (Ut)Txt- -S* (U*)TXt) 2

- -b E[(St- S*)2 ] E[(Ut,kxt,k - UZxt,k) 2

k=1)

S-b E[(St - S*)2] + E [U,k-U*)2] , (A.9)
k=1

where S* -a/(2b), U* = -c/(2b), the third line follows since E[xt] 0 and

xt (xt,,..., xt,m) has independent entries for our particular choice of xt, and the

12last line is because each entry of xthas variance n

Now we use the Vari Trees inequality (Gill and Levit, 1995), a Bayesian version of

the Crimer-Rao inequality, to lower bound the regret of any admissible policy. The

proof below is a generalization of the proof of Theorem 1 in Keskin and Zeevi (2014).

Suppose the parameters 0 = (a, b, c) belong to compact sets 0 = A x B x C, where

A = [-a, a], B = [-b, -b], C = {c' Rm : 7 1 C'k <5}.We can construct a prior

distribution on 0 with density function A which is positive on the interior and 0 on
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the boundary of 6. We finish the proof by showing for any pricing policy that

EA [Regreto(T)] = j (V),

where Regreto(T) is the regret associated with a particular (unknown) parameter 6,

and EA[-] is the expectation operator on parameter 6 under distribution A. The above

result immediately implies that there exists some parameter 6 with regret Q(V) for

any pricing policy, namely

max {Regreto(T)} ;> E\ [Regreto(T)] (I)

Let ft(Ht 6) be the joint probability density function of history

Ht = (x1,, piI D1,-- xt, ptI, Dt)

under parameter 6 and a particular pricing policy ps =gr(H,_1 ,x). By our assump-

tion that xt is uniform and ct is normal, we have

ft(H 6) = i 1#(Dj - a - bp - cTxy),

where # is the density function of the standard normal distribution.

information matrix of 6 given history Ht is

XJT

It(6) Eo Vo log ft(Ht 6) • (Vo log ft(Ht 6 ))T= Eo [ x±[XT:

j=1

The Fisher

iI
Pi I

2

(A.10)

Define function g(6) = [a/(2b),1, c/(2b)]T and function S(6) = -a/(2b) = S*.

Applying the multivariate Van Trees inequality to St, which is an estimate of S(6)

based on history Ht_ 1, gives

- S(6)211> E [g(6)TVS(6)] 2
E[Eo[(St S())2]] > E [g () T () 1

Eg6Tt_1 (6)g(6)] + !(A)I
(A.11)
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where i(A) is the Fisher information of 0 given prior A. We have

1 a a
2b' 2b2' W b

By Eq (A.10) and pj = -(a + cTx)/(2b), one can show that

T

9(O)It-1 (O)g(6)
j=1

< Eo (p -p )2 = Regreto(T)
j=1

Substituting the equations above into Eq (A.11), we get

E,[E[(St - S(O)) 2 ]] kAL4b'~J
Ex[Regret(T)] + i(A)

(A.12)

Similarly, for each k =1, ... , m, by letting Uk(O) = U* = -ck/(2b) and applying Van

Trees inequality, we get

EA [Eo [(Ut, - Uk(O)) 2 11 > Ex[Regrt~(.) )
-EA[Regreto(T)] + i(A)'

(A.13)

Combining (A.9), (A.12), (A.13), and summing over t = 1, ... , T, we have

T ((~a En\ E ]
f (EA 2)2 + A[ t1EA [Regret(T)] ;> Eb (E[egret E [b)2

1 ~EA[Regreto(T)] + I(A)

Q(mT)

E\[Regret(T)] + I(A)

Note that 1(A) is a constant independent of T. Consequently, we have

EA[Regreto(T)] VQ(T)- (A) Q(T)2

D

A.3.4 Proof of Theorem 3.

Proof. Proof. In the following, let p* := _ a+c'xt . We can decompose the regret into

the loss due to imperfect knowledge of the true demand model, and the loss due to
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price experimentation, namely

T

Regret (T)= ZE[p Dt (p*') E [pt Dt (pt)]
t=1

T

- [3Ep* Dt (p*) E [pg,t D(p,)+ E[pg,t Dt (pg,t)- E [pt Dt(pt)1
t=~1

The loss from price experimentation is upper bounded by

T T

E[pg,tDt (pg,t)]- E[pt Dt(pt)] b E[Ap'2t
t=1 t=1

T

-b 3 E[ qit - qi,)(git1 - qi, )t-1/3]
t=1

<3b 2 T 2/3.

where the last line uses the assumption that qj - qi_1 < for i 1, ... , N - 1.

The loss from parameter estimation is upper bounded by

E[p*Dt(p*)] - E[pg,tDt(pg,t)]
t=1

=E [(p*- (p*- p*.)Dt(p* - (p* - p*.)] - E[pg,tDt(pg,t)]

<K E [\pt -- Pt + p', - Ptg )
<K(E[\p* -- pt*\]1 + E [\p* -p,\)

<2KE[Ip *,- pt,gi|.

The first line, (A.14), follows from the fact that

E[p*Dt(p*)] = E[(p*,+ (p *- * + *(p -

(A.14)

(A.15)

= - (p* - p*u)Dt(p*u - (p* - p,

by the symmetry of the function p - E[pDt(p)] around its maximizer p = p*,.

The second line, (A.15), follows from the mean value theorem since E[pDt(p)] is a
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differentiable function of p. By the mean value theorem, we have, for any Pi, P2 E

{qi,..•, N}, that

mx dpD(p) <2b+E[p1Dt(pi)] - E[p 2D(p2 )1 Max I|p..) d | 2-bIpmax + i,
pE{qj1,...,9u}l dp

thus (A.15) follows by setting K = 2 bjpmax+f. Finally, the third line follows from the

triangle inequality, and the last line follows from the fact that |p*,, - p* P',U - Pt,g|

since p* = arg mingE(q 1 ,---,q

It remains to bound E[\pu-pt,f|. Since E[\p*,u -pt,g| Ep- pt,l 2 , w can

then bound E[lp*,-- ptg2] using the same argument made in the proof of Theorem

1, giving an upper bound of

8 m+1
Amin((m+ 1)paxE[(b- ) 2 + O( )

Lemma 2 can be applied to bound the term E[(b - bt)2]. Then, using the identity

X/ y + y+ z V/x + V/± + / for x, y, z > 0, we can bound E[lp* - pt,g|] with

4 v/2-pax(f +bPma) Vm + 1 m+1

o6/Amin(M) t- 1

Dependence on m, b, b and other parameters By combining constant factors,

the expected regret of the RPS algorithm over T periods can be bounded by

O (|blpmax + f) prna + +bPma) v/m +1T2/3 +O (m+1)T)
mv Amin(M)

where the pre-factor in the first big 0 notation only contains an absolute constant.

A.3.5 Proof of Proposition 2

Proof. Proof. Consider the optimization problem

D

max EE[p*D (p*)|{x1,. . ., xt}] = maxl (- )(b(-'+ xi)+f().
a,,Yt a,±,y 2# 2X

133



It is easy to see that for any optimal solution (a*, , (a*b, b,7*b) is another

optimal solution. Thus, setting 3= b, we have the equivalent optimization problem

T

maxZ(a + yxt) (2 f(xt) - (a +-y'xt)).
t=1

Finally, note that

T T

arg max (ae + 7xt)(2f(xt) -- (a + -yTxt)) -argmin (f (Xt) - (a + yXt)) 2,
t=1 t=1

1:which proves Proposition 2.

A.3.6 Proof of Theorem 4.

Proof. Proof. We decompose the regret as

T

Regret (T)= - E [pt*D (j)] E[pt D(pt)j
t=1
T

= E[p*D(p*)]- E[p,tD(p,,)]

+ E[p,D(p,)] - E[pg,tD(pg,t)] + E[pg,tD(p,t)]- E[pt D(pt)].

Following the proof of the regret bound in the IID setting, the quantity in the final

line is upper bounded by

T T W 1 3
2 E bo_ = 2 < -b6 2T 2/3 .

t=1 t=1rlre a evn rd

To bound the difference between the oracle's revenue and the revenue earned by

the greedy prices, we let yt = Dt - bpt = f(xt) + Et. Let y' = Dt - [tpt.

et = (at, ct) and let e, = (a,, c,) denote the parameters of the clairvoyant's demand

model conditional on the realization {:r1,...,xt}. Let E. denote the expectation
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conditional on a realization {x1 , .. ., xt}, namely

E[] = E[- xt fort 1...T].

By rewriting the demands and prices in terms of yt and y' we have

E[p*D(p*)] - E[p ,Di(p",t)]= E[Ex[(etTit- -_eT 2
t=1I t=1 (e

+ I E[Ex[(P) 2 (b 2 - b)].

1
+ E[Ex [(y - yt) (et Tt- exTit)]]12|b|

1
+ b E[Ex[ytp"_,(b - b)]].

(A.16)

(A.17)

(A.18)

(A.19)

First, we will bound (A.16). Define Mt = Im+1 + Z, 1:,sK.

expression for the estimator et at period t is (M)-1 (tS- YsR).

The closed form

Expanding the

expressions for et in (A.16), we see that most of the terms in the expansion are

telescoping, giving

(A.20)
T T

Ex(tTit - yI 2 T~it ~- y2] = E [(y')2R1M;lt]ZEx [(etT t (ei~ Tt-E x
t=1 t=1

+ E[llex -- e1 ||2 - (ex - eT+1)T MT(ex - eT+1)1

(A.21)

+ Ex[(e1Tii) 2 + (exTiT+1) 21 (A.22)
T

- >1Ex[(eT+l ti+1)
2 T+1M-l

- (eT+1 TT+1)2 _ (eXTRi) 2 .

(A.23)

Since ei = (I + R1T)- - 0 = 0, Ilex - ei112 Ie 2 . Then since Mt is positive

semi-definite for all t, (A.21) is upper bounded by ||ex1|2 < 2 + e2. Since ei = 0 and

XT+1 can be set to 0, (A.22) is 0. The final line is upper bounded by 0.
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Finally, to bound Eq (A.20), we can write

T T

E.[(y') 2 [M, -- E.[(f (xt) + Et + (b- bt)pt)2 kTM7-it]
t=1t=

T

E(2o2 + 2f+ 4b 2P2 ax)iTM-lit.

t=1

The second line follows from the fact that et is independent of the other terms and

that it is mean 0 and variance o.2 . We also use the boundedness of f, bt and pt.

Finally, using the identity

xT + xxT)lx- det(E)
det (m+ XXT)

for any matrixE, we have

T

(20.2 +2f 2 + 4b2 P ax) ST M- 1it <(262 + 2f2+ 4b2P2 ax) 1
t=1

m+1

(2o.2 + 2f'+ 4b 2P2ax)> l

det(Mt1)
det(M )

og( + Ak),

k=1

where the As are the eigenvalues ofT_1 tiT. The sum of the As is at most

T -maxt ||it|| 2 , which in turn is at most V/m + 1T. Thus the last line is O((m + 1)•

log(T(m + 1))). Then (A.16) does not dominate the regret bound.

Now we will bound Eq (A.17). Using the definition p - et= *-t and the fact,t2bt

that Ibt| ;> b gives

Ex[(p"g)2(b2 - 6 <)] < E [(et Tit)2(b2 _

1< Ex[((Et[t - ext)2 + (e xTt) 2)E(b 2  b ])]-b

< I((2b 2)Ex[(e tTt-_ exTkt) 2 1±+(a + ) 2 Ex[b 2 -_62 (A.24)

The second line follows from the identity (x+ y) 2  2X2+2y 2 . The third line follows

from the fact that b2 + -b 22 due to the assumptions on b and the projection step
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in the algorithm, as well as from the assumptions on e,. Now, to bound E,[(etrit -

exTit) 2 ] in Eq (A.24), note that we have

T T

Ex[(e t- exTit) 2 ] Ex [(exTit - yt)2 _ (et r _ yt)2].
t=1 t=1

(A.25)

This is because

T

SEx[(eicte
= Ex[(etTRitT

T

=: Ex[(et Tie
t= E[

T

t=1

- yt)2 _ (exTit- Yt) 2]

- exTit)2 ] + Ex[(exTit - yt)K(et - ex)]

- exTkt) 2 ] + Ex[(exTit - yt)RT (et - ex)]

- exTit)2

where the second line follows from the fact that yt = f(xt) + et and Ex[ct] = 0, et

independent of xt, e, et, and the final line follows from the first order conditions of

the minimization problem Eq (2.10), as given by Eq (2.11). Eq (A.25) thus implies

that ET Ex[(et it - exTit)2 ] is O((m + 1) log(T(m + 1)).

To bound Ex[b2 - 2] in Eq (A.24), we can write

Ex[b- b2 ] = Ex[(b - bt)(b + &)]

< 2bEx[Ib - bt|]

<26 E[( [- b)2 ]

/f2 + .2 + 2 2 1< 8b 6 Mxt1/3'

where the second line follows from our assumed bounds on b and the projection step

in the algorithm, the third line follows from Jensen's inequality since the function

x - x2 is convex, and the final line follows from Lemma 2. Then, ET 1 Ex([b2

62]) < f ++PaT2/3
t 1-3b aT , which dominates theO0((mn+1Ilog(T(m+ 1)) term
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Et_1 Ex[(etrit- exTii) 2 ], and implies that Eq (A.17) is O(T 2 / 3 ).

Similar ideas can be used to bound Eq (A.18) and (A.19). For Eq (A.18), using

the identity y' - yt = (b - bt)pt, we have

T T

Ex[(y'- yt)(et it - exTit)] 2bpmax E [ e it - exTitl
t=1 t=1

T2bpmax \/Ex[(et Tit - exTii2

2bpmaxvT Ex[(et Tit- exTit) 2 .

The first line follows from our assumption on b, and that b and pt are projections

onto bounded sets. The second line follows from using Jensen's inequality again, and

the final step follows from the Cauchy-Schwarz theorem. Then, applying Eq (A.25)

again, we see that Eq (A.18) is O( /(m +1)T log(T(m + 1))).

Finally, each term of Eq (A.19) can be written as

Ex[ytp,, (bt- b)]= Ex[f (xt)pg,(bt - b)]

<-Ex[(eiRt) (bt - b)]
-2bX

=bEx[(e tit -- eTit)( b- b) + (eTit)( bt b)]

b(2bE[|eit - efiitl + (d + )E[|bt - bl]).

The second line follows from the definition of yt and the fact that Elct] = 0 and ct

is independent from pu and bt. The final line follows from our assumption on b,

and that 6 and pt are projections onto bounded sets. We have already shown that

z_-1E[|etit -eTit|] is O((m+1log(T(m+1)), and that f_1 E[|b-b|] is O(T 2 / 3 ).

Then Eq (A.19) is 0(T 2/ 3 ), which implies that the RPS algorithm is O(T 2/ 3 ) as well,

thus concluding the proof.

Dependence on m, a, b, a and other parameters By combining constant fac-
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tors, the expected regret of the RPS algorithm over T periods can be bounded by

o b62 + + ( + nax + )b + T2/3
b + b )

+ O (v\/(m +I 1T log (T (m + 1)) + (mn + 1) log(T(mn + 1)))

where the pre-factor in the first big 0 notation only contains an absolute constant.

ED

A.3.7 Lemmas

Lemma 2 (Bound on be). E[(bt - b)2 ] can be bounded as follows:

• When Algorithm 1 is applied to the IID setting, for t > 4, we have

E[(bt - b)2 ] < 12. 2 2 ax

62 fit

* When Algorithm 2 is applied to the price ladder setting, for t > 2, we have

f~2  or p
E[(bt - b) 2 4. 4 .62

62 t2/3

• When Algorithm 3 is applied to the non IID setting, for t > 4 we have

f2 ± + a
E[(bt - b) 2 ] < 12. 62Pax

62 t2/3

Proof. Proof. Define the constant ai such that

( in the IID setting,
j4

ai = in the price ladder setting,
6

1 i h o I setting.

We will first consider the IID and non IID settings, where prices are drawn

from continuous price intervals at each time period. Using the definitions of bt in
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t--1 AsD,
Algorithms 1 and 3, bt = Proj(b', B), where b'= ApD. Since the true parametert t jzt-1Ap2
b E B, we have

E [(bt - b)2] <E [(b" - b)2]

psDs-bS=)2~

z1p(f(xs) + cs + bpg,s + bAps) - b
8=1 )2

ZiiAps (f (xs) + cs + bpg,s)

t-1j A p (f (xs) + Es + bpg,s)

In the last equality, we used the fact that Aps = s-

Note that Aps's for all s are mutually independent, independent of xs, and have

mean 0, so

2~

SAps(f(xt) + es + bpg,s)
=E ES 3  ) t-1 b2Es-2p

s1 4
-E 2p(f (xs) + ES +bpg,S)2

1 2  
s-2ai )2 22,-_ ± 3Ap (f(xS +E + b2 -

<12 J.2 2A 2
<12 - """ . +

-- 2 62 ma -1 S2a1

We used the fact that (x + y + z) 2 < 3(x 2 + y 2 + z 2 ). In the last step, we used the

definition that Ap = -s-2 and the assumption that f(xs), b, p,s are bounded.
S 4

Now consider the price ladder setting. Using the definitions of bt in Algorithm

2, bt - Proj(b", B), whereb"= b Zsu ApsD _   Since the true parameter
ts=1(qis ~~-i )(qis+1 -qjs I" a
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t-1 6 -2ail
s=1 48
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b E B, we have

E[(b -- b) 2 ] E[(b" - b) 2]

=t E1*_ Aps Ds
SB -I(qij - q )(qjs qi)s-2 b)]

= EI Aps(f (x.) + E, + bpg,s + bAps)-
-E -= b)2

-_1 (qj, - qis,) (qjs,« - qi, )s -2cei

E[ Aps (f (xs) + Es + bpg,s)
E -E -

E -_=1(qj, - qjsI) (qji,, - qis)s-2ail

The last line follows from the fact that E[Ap2Ipg,t = qij = (q, -q 1 )(qjs 1 qi,)s-2ai.

As before, APs's for all s are mutually independent, independent of xs, and have

mean 0, so

B[( '+t1Aps(f (xt) + es + bpg,s) (A.27)
[ -_Z8 i=(q 8 - qj_ 1 )(qji 8 - qi,)s- 2 i

=E _ p2(f(xs) + ES +bpg,s) 2

E(Z - (qj8 - qi,)(qise - qis)s-2ai)2

-1 3 Ap(f(XS)2 + 62 + b2p2,
<E S -S )

(t 1(q - qi 1 )(qi - -2)2

f2 +2 + I<3 . E t a+ Pa

-E S=(qj, - qis,)(qis, - qj,)s-2ce

<3 -2 nax . 1 . (A.28)

We used the fact that (X+ y + z) 2 < 3(X2+ y 2 + z 2 ). The second to last step uses the

definition that E[Ap pg,t qj ] (qj - qi,_ 1 )(qis -- qs)s- 2 1, and the assumption

that f(xs), b, pg,s are bounded. The last step uses the assumption that qi - qj 1 >6

for i = 1, . .. , N + 1.
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Now for the ID, non ID and price ladder settings,

t1J ya dy =- (t1-21 1)
Y=1 I- 2a,

and we have for t > 4 that

1
tlI1 

2  < 2(1 - 2c1)t 2 a1-1

ES-_ s-2ai -
(A.29)

Substituting (A.29) into (A.26) and (A.28) respectively, we prove the lemma in the

IID, price ladder and non IID settings.

Lemma 3 (Bound on ||QM;-lQ||2). Let M = E[jiT], V = E[(Q-likTQ-1 - 1)2]

and Mt = __ Et-i . For any t > 2, Mt is invertible and |QMQ|22with

probability at least

Proof. Proof. For any s 1,...,t-1, we have E[I-Q-liikQ-1) = 0, where I is the

identity matrix. In addition, for an arbitrary matrix A, it holds that ||All2 ||AllF,

so by |I| 1, we have

AQ-ax(I-- QMQ < i Q 1 2

HQ1H2_HiV[ SXRl2Q
HIQ- 1 1211VM S 112IIQI2

1 1
< -2(m+1)-

m.r in (M) VAmin(M)

2(m + 1)

Amin(M)

Note that we used the submultiplicative property of the spectral norm. Since {i}

are independent and identically distributed, we apply the matrix Bernstein bound
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(Lemma 5) with a = (t - 1)/2 to yield

P Amax ( t1 I -i >) 2

(m±1)exp (t - 1)V||2+2(m + 1)t/(3Amin(M))f

( 3Amin(M)(t - 1)
=(m±1)exp( 24Amin(M)V2 +8(m + 1))

By an identical argument, we also have

P Amax -. Q >

(m + 1) exp 3Amin(M)(t 1)
24Amin(M)|V 2 + 8(m + 1)f

Thus we have

P[l|I - QIMtQ' 11 2 > 2 1
-P[max{Amax(I - Q MtQ-1 ), Amax(QMtQ-- >

(A.30)

(A.31)<2(m + 1) exp 24A min ) (t 1) 1)- .

We can write Q--MtQ- 1 = I+ (Q 1 MtQ-1 - I), then by Weyl's inequality,

Amin(Q MtQ- 1) Amin(I) + Amin(QMtQ 1 - I)

1 - IQ-MtQ -  2 - ||2

By Eq (A.31), with probability at least

1 - 2(m + 1) exp

we have Amin(Q-'MtQ- 1) > 1/2. S

3Amin(M)(t - 1)
24Amin(M)||V||2 + 8(m + 1) '

ince Q--1 MtQ 1 = Q-S1 SQ 1 is positive
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semidefinite, Amin(QIMtQ- 1) > 0 implies that it is invertible. Then

= 1
Amin(Q- 1MtQ- 1) <2.

This proves the lemma. El

Lemma 4 (Optimal Policy Structure for Linear Demand). Suppose the true demand

function is linear, given by

Dt(p) = a + bp+ cTXt + 6.

Then, it is optimal for the seller to use a linear pricing policy of the form pt =

St + (Ut)Txt, where St and Ut are measurable with respect to t-_1.

Proof. Proof. Suppose the seller uses a pricing policy -r(t-_1, xt) = rt(xt) at period

t, where function t() is measurable with respect to t and could be nonlinear. We

denote by Z[-] the conditional expectation operator E[. I t-1]. Let S and U be the

optimal solution of the following least squares problem:

max [ (7rt (t) - s - uTXt 2
sER,uER"

Clearly, S and U are measurable with respect to 7-t 1. By the first order condition,

the optimal solution (S, U) satisfies

E[7rt(xt) - S - UTxt] = 0, S [Xt (7rt(Xt) - S - UT xt)]= 0. (A.32)

Now, let us compare the conditional expected revenue of price 7rt(xt) and price
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S + UTxt. We have

Z [7t(xt)Dt(-rt(xt)) - (S + UTXt )Dt(S + UTxt)]

-E [rt(xt) - (a + b7t(xt) + cTxt) - (S + UTxt)(a + b - (S + UTXt) + CTXt

=bZ [(7t(t))2 - (S + UTXt) 2 + [(a + CTxt)(7rt(Xt) - S - UTxt)] (A.33)

-bZ [(wrt(xt))2 - (S + UTxt)2]

-b {Z [(7rt(t) -S - UTXt)2] + 2Z [(S + UTXt)(7rt (Xt) - S - UTXt)] (A.34)

-bE [(Wrt(t) - S - UTXt) 2]<0.

The second term of Eq (A.33) and the second term of Eq (A.34) are both zero because

of the first order condition Eq (A.32). In the last step, recall that the price sensitivity

parameter b < 0.

By taking the expectation over history 7Ht-, we have

E [7rt(xt)Dt(7rt(xt)) - (S + UTxt)Dt(S + UTxt)] 0,

so if pt = grt(xt) is a nonlinear pricing policy, it is dominated by a linear pricing policy

Pt = S+ UTxt.

Lemma 5 (Matrix Bernstein bound, Tropp (2012)). Consider a finite sequenceXk

of independent, random, self-adjoint matrices with dimension d. Assume that each

random matrix satisfies

E[Xk ]= 0 and A.max (Xk) < R almost surely,

then for all t > 0,

P Amax( Xk) d t dexp -t2 /3 where or 2 | [X2]
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Appendix B

Appendix to Chapter 3

(Feature-based Dynamic Pricing for

Fashion Retail: A Case Study)

In this Appendix, we bridge the gap between the synthetic numerical simulations

in Section 2.4 of Chapter 2 and the experiments on real world fashion retail data

in Section 3.5 of Chapter 3. Using the fashion retail dataset and ground truth de-

mand model introduced in Chapter 3, we compare the estimated revenues earned

by RPS with the following dynamic pricing algorithms that we benchmarked RPS'

performance against in Section 2.4:

• Greedy algorithm: The greedy algorithm (Algorithm 4) operates by estimating

the demand parameters at each time period using linear regression, then setting

the price to the optimal price assuming that the estimated parameters are the

true parameters. This algorithm has been shown to be asymptotically optimal

by Qiang and Bayati (2016) in a linear demand model setting with features, and

with the availability of an incumbent price, but in general is known to suffer

from incomplete learning, i.e., insufficient exploration in price Keskin and Zeevi

(2014).

• One-stage regression: This algorithm introduces randomized price shocks to
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force price exploration, but uses a one-stage regression instead of a two-step re-

gression as in RPS to learn the parameters. A full description of the one-stage

regression algorithm (Algorithm 5) is given below. The one-stage regression

algorithm is analogous to the class of semi-myopic algorithms introduced by

Keskin and Zeevi (2014), which use (deterministic) price perturbations to guar-

antee sufficient exploration. However, Algorithm 5 does not consider the price

endogeneity effect caused by model misspecification in the estimation process.

The variant of RPS that we benchmark against competing dynamic pricing algo-

rithms is as follows: It implements batch pricing, and simultaneously sets prices for

all It items within each subclass at the start of every week t. It selects prices from

a price ladder, denoted by {qi,.. . , qN }. It ignores all the other fixed inventory and

markdown pricing constraints listed in Section 3.3, but assumes that for each item

grandparent-district-week tuple, the price charged is restricted to within 20% of the

historical price charged by the retailer. This constraint functions as a proxy for the

markdown pricing constraint while allowing us to adhere to the modeling framework

of Chapter 2.

The algorithm statement of this batch-pricing variant of RPS is given in Algorithm

7. The pseudocodes for the one-stage regression and greedy analogues of Algorithm

7 are omitted, as the one-stage regression analogue simply replaces the two-step re-

gression procedure with a one-step regression, and the greedy analogue simply sets

price pt - pg,t, and uses a one-step regression.

We can now use our ground truth demand model from Section 3.4 of Chapter

3 to benchmark the RPS algorithm against the greedy and one-stage regression al-

gorithms. For each subclass, we run all three algorithms from the start to the end

of the respective selling horizon. During the first two weeks, the algorithms operate

by setting the price of each item as the sum of the historical price chosen by the

retailer and a random component, until sufficiently many demand observations have

been collected to uniquely determine the parameter cs. To estimate the counterfac-

tual demand that would have resulted from RPS choosing a particular price, we first

calculate the corresponding expected demand using our linear-random forest hybrid
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Algorithm 7 Random Price Shock (RPS) algorithm with batch updating.

input: parameter bounds B = [-b, -b]
initialize: choose &I = 0, 1 =- -Ib, 1 = 0
for t = 1, ... , T do

for items j = ,...,It do
set i-I1 +... + It1 +j
set S- S U{i}
given Xt, set unconstrained greedy price: p",t -- (de± Xt)/(2bt)

find it = argminlE{1,...,Nt} Gl - p,t andset constrained greedy price:

Pg,t +- qit
generate an independent random variable

qlt ~ qlt-1 w.p. /3
(qlt,-qit ,)- 1

Apt +- 9+1 - q, W.p. qs_

0 w.p. 1 - t-1/3

set price pt +- pg,t + Apt
observe demand dt = Dt(pt)

end for
set bt+1 <- Proj =1  B)

setS 1 t t
set (dt+1 It+1) = arg mina,c 1 (a' +c'TXs- (ds -- sps

2 +

C TXt+1)
2

end for
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model, then add this expected demand to the prediction error of the random forest

model, which we assume to be the demand noise.

Fig. B-1 gives the cumulative revenue, averaged over 100 iterations, of all three

algorithms for each of the four subclasses. For reference, the actual revenues earned

by the retailer as well as the projected revenue of the retailer in our estimated demand

model, are also indicated, though of course, we cannot draw a fair comparison between

the retailer's revenue and the revenue of RPS as the retailer's pricing scheme was

subject to additional constraints that RPS did not take into account.

Comparing the revenue of RPS with those of the greedy and one-stage regression

algorithms, however, we see that RPS clearly outperforms the other two algorithms.

Table B.2 lists the summary statistics over 100 iterations of the cumulative revenue

earned by RPS at the end of 35 weeks relative to those of the greedy and one-stage

regression algorithms. The results show that the average revenue earned by RPS is

between 7-20% higher than the average revenue earned by the greedy algorithm, and

between 3-20% higher than the revenue earned by the one-stage regression algorithm.

Further, the 95% confidence intervals in Table B.2 shows that RPS outperforms one-

stage regression and the greedy algorithm with high probability.

The difference in revenues comes from the biased parameter estimates produced

by the greedy and one-stage regression algorithms. Looking at Table B.1, we see that

these two algorithms significantly underestimate the price sensitivity parameter b,

while RPS alone estimates b accurately. This is consistent with our expectation that

price endogeneity is present due to model misspecification: all the tested algorithms

assume that demand is a linear function in features, while the true demand function

is estimated from random forest, which can be highly nonlinear in features. Thus,

our RPS algorithm successfully learns the demand elasticity even in the presence of

endogeneity. In addition, we suspect that price endogeneity is also caused by the

fact that the prices charged by our algorithms were restricted to within 20% of the

historical prices charged by the retailer. These historical prices, as we have discussed

in Section 3.4 of Chapter 3, are likely to be correlated with demand noise.

Finally, we compare the revenue of RPS to the best possible (clairvoyant) revenue
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- Best Best
-- PS -- RPS

-V- Greedy --Vm- Greedy
1 step reg -- 1step reg
Actual Actual

- Counterfactual Counterfactual

o 5 10 15 20 25 30 35 0 10 20 30 40 50 60 70 80
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- Best - Best
-0- RPS -0- RPS
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--A- I step reg -.A- 1 step reg
- Actual Actual

---- Counterfactual ---- Counterfactual

ta V

0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70
Time (weeks) Time (weeks)

(c) Subclass 3 (d) Subclass 4

Figure B-1: Average revenue over 100 iterations of different algorithms

given full knowledge of the demand function, see Fig. B-i and Table B.2. We find

that the linear function estimated by the RPS algorithm in fact provides a good ap-

proximation for the true nonlinear demand function, as the revenue earned by RPS is

very close to the clairvoyant revenue for all four subclasses. While this result might

at first seem to be at odds with the demand prediction errors of 30-40% reported in

Section 3.4 of Chapter 3, we note that demand prediction errors measure absolute dif-

ferences between the estimated and actual demand. On the other hand, since demand

is the sum of expected demand and a noise component, a price that deviates from the

optimal linear price (which only optimizes revenue assuming a linear approximation

of expected demand) may actually increase revenues relative to this optimal price.
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Table B.1: Estimates of parameter b (with

Subclass True Value RPS
1 -0.278 -0.279

(-0.306,-0.254)
2 -0.280 -0.276

(-0.369,-0.179)
3 -0.383 -0.377

(-0.489,-0.233)
4 -0.383 -0.375

(-0.461,-0.296)

95% confidence

Greedy
-0.085
(-0.085,-0.085)
-0.100
(-0.100,-0.100)
-0.128
(-0.128,-0.128)
-0.149
(-0.153,-0.142)

interval)

One-stage reg
-0.119
(-0.133,-0.107)
-0.100
(-0.101,-0.100)
-0.122
(-0.136,-0.100)
-0.131
(-0.131,-0.131)

Table B.2: Comparison of estimated revenues earned by various algorithms (with 95%
confidence interval)

Subclass RPS vs Greedy RPS vs One-stage RPS vs Clairvoy-
reg ant

1 7.91% 3.32% -0.85%
(7.84%, 8.00%) (2.50%, 4.62%) (-0.92%, -0.78%)

2 6.98% 6.97% -3.53%
(3.03%,8.33%)
21.23%
(21.23%, 22.27%)
21.04%
(19.19%, 21.59%)

(2.92%,8.31%)
20.30%
(17.62%, 21.32%)
15.28%
(13.56%, 17.35%)
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(-7.09%,
-3.18%
(-4.74%,
-1.77%
(-3.26%,

-2.31%)

-2.35%)

-1.31%)



Appendix C

Appendix to Chapter 4 (Inventory

Allocation with Demand Learning for

Seasonal Consumer Goods)

C.1 Proofs for theoretical analysis

C.1.1 Proof of Lemma 1

Proof. Since we have assumed that the demands Di,t are discrete and bounded for all

i, t, (P2) is a deterministic problem with finitely many constraints. These constraints

are affine in ait and therefore convex. It remains to show that the objective function of

(P2) is convex. We will show that this is true given the assumption pi,t+hi, ;> api,t+1.

Given a demand realization Di,t, define Lt(ai,t) := at-lhi,t[ait + xi,t - Di,t]+ +

at-1pi,t[Di,t - ait - xi,t]+ and define Li,o(ai,o) := 0 for each i. We will prove that

Z i/, is convex, which is sufficient to prove the theorem. First, we will expand

155



the expression for Li,t(aj,t) as follows:

L,t(ai,t) = at-hit[ait, + xi,t - Di,t]+ + at- 1pj,t[Dit - ait - xi,t]+

t
a e~tl maxO, E 3~ - D,jV< u <t}

S=U

+ at-Pit maxI{, D

t

= atlhi,t max{,

+ a Pt-ip,t max{Di,t -

t-1

- ait - max{0, Zas - Di,, VI<u t- 1}}
S=u

ais- Di,,VI <u <ti

t-1

ait, max{0, a ,s - Di,s, V1 i u < t - 1}}
S=u

t-1

at-1pit max{, Eais - D,, V1iut- 1}.

(C.1)

(C.2)
s=U

Note that the sum of the two addends in (C.1) is convex, since the pointwise maximum

of convex functions is convex, and a, hi,t, pt > 0. We will now show by induction that

t-1 t-1

-at-pi,t max{0,E as - Di,,, V1 < U < t - 1} + L, (ai,)
s=U

(C.3)
8=1

isconvex.Thiswillprovethat i, as the sum of convex functions, is convex

in {a,, s = 1, .... , t - 1}. For t = 0, (C.3) is 0 and therefore clearly convex. Suppose

now that (C.3) is convex for some 1 t < T. We will show that it must be convex
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for t + 1 as well. By using the same expansion in (C.1) we have

t t

- atpit+1 max{0, Eai,,- Di,,, VI u t} + E (a)
s=u

t

- atpit+l max{0, ais, - Dis,, V1 u < t}
s=u

t-1

+ at-lhi, max{0, Eai, - Di,8, VI< u t}
S=U

s=1

t-1

+ a-pi, max{Dt- a,, max{0, ai,s - Di ,, V1 < t- 1}}
S=U

t-1 t-1

- atlpi,t max{0, 3a, - Di,s, VI < t - 1}} + L3,s(as).
s=u s=1

By the induction hypothesis, the term in the final line is convex. The sum of the

remaining terms is equal to

t-1

-atpit+1max{, ~t- Dia,t - D, + 13a2 ,s- Di,, VI < <t}
8=U

t-1

+ at-'hi,, max{0, ai,s - Di,s, 1 < u < t}
S=U

t-1

+ at- Pit max{0, D ,t - a,t, max{0, 3a, - Di,, V1 <u t- 1}
8=U

=aft-'(hi,t - api,t+1)(ai,t - Di,t)
t-1

+ at-1(hi,t - api,t+1, +pi,t) max{0, D - a,t, max{ a, - Di,, VI < u t- 1}}.
S=U

The first addend in the final line is linear and therefore convex. The term max{O,..., }
in the second addend is also convex as it is the pointwise maximum of convex func-

tions. Finally, since we have assumed h,t + pi,t > api,t+1, the second addend in the

final line is convex, proving the induction hypothesis and completing the proof. D
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C.1.2 Proof of Theorem 5

Proof. Let LB denote the value of the dual (D1). Since our heuristic allocates in-

ventory according to the solution of (D1), {a,,(A*)}, until the warehouse runs out of

inventory, UB is only different from LB when EN 1  ai,t > w. If the warehouse

runs out of inventory, the heuristic incurs additional lost sales costs not accounted for

in the dual problem. Denoting Pma := max{pi,t, i = 1, ... , N, t = 1,..., T}, we have

UB
N T

<LB + pmaxE[[Z - wo]+
i=1 t=1
N T N

<LB+pmaxE[[Z a(A*) - E[
i=1 t=1 i=1

N T N

<LB+ pmaxE[ (A*) - E[
i=1 t=1 i=1

N T

< LB + pmax Var[ a,(A*)].
i=1 t=1

T

aS(A*)]]+
t=1

T

a=
t=1

(C.4)

The second line follows because we have strong duality between (P2) and its dual

(D1), implying that the primal feasibility constraint

T N

E[S1 a*,t(A*)] < wo
t=1 i=1

is satisfied for the optimal allocation policy {at (A*), i = 1, .. ,N,t = 1, ... T}. The

final line follows from Jensen's inequality, which applies because of the convexity of

the square function.

We will now bound Var[EN 1EI a (A*)]. We will do so using a different ar-

gument from Marklund and Rosling (2012), since the latter assumes that demand

is independent from time period to time period. We show that even without this

assumption, a bound of the same order in terms of N can be achieved, and that our
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bound is in fact an improvement in terms of T. We have

N T N T

Var[ a (A*)]= Var[E at (A*)
i=1 t=1 i=1 t=1

N

S DaxT2

=DaNT
2

The equality in the first line follows from the assumption that the retailers expe-

rience independent demands. Since the allocations a are solutions to a decou-

pled optimization problem, they are independent. The inequality in the second line

follows from Popoviciu's inequality on variances, using the assumption that Dit is

known to be upper bounded by Dmaxfor each i, t. Then the optimal a must satisfy

0 <at(A*) Dma.

The second addend in (C.4) is thus O(v/N), which proves the theorem.

C.1.3 Proof of Theorem 6

Proof. Given dual variable A, the optimal time 2 allocation to each retailer is the

solution to the minimization problem

min Aai,2 + pE[[Di, 1 + pei - ai,2 ]+] + hE[[a,,2 - (Di, 2 + pi)]+].
ai,2 s.t. ai,2>0

It is easy to see that this is a convex optimization problem, and that the optimal

a, is given by a,2 = Di, + pFf h(--), where F represents the inverse CDF of

the demand noise ce. This expression is independent of the first period allocation

decision a, 1 . The optimal time 1 allocation to each retailer is then the solution to

the minimization problem

min Aai, 1 +pE[[Di, 1 - ai,1]+] + hE[[ai,1 - Di,1]+
aj,1 s.t. ai,1>0
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Again, this is clearly a convex optimization problem, and the optimal a is given by

the newsvendor level a = F 1 (P ), whereF represents the inverse CDF of the

first period demand at retailer i.

For a given A, the total expected allocation across retailers and time periods is

thus given by
N p-A p-A

SFL ( ) + E[Di] + pF- (± ),
p+ h p+ h

and for each p, the corresponding dual variable A*(p) that solves (D3) must satisfy

p-AED 1 l p -(A woF-1 p-A )+ E[Di]+pF-( = ,
Dj(p + h p +h N

by complementary slackness, and the fact that we have assumed that the retailers are

identical. Now set wma= NE[Dj,]. For wo< wm, since Di, 1 > 0, A*(p) must be

sufficiently large for all p such that

Fe-( p-A() < 0.
p + h

(Since ei is symmetrical about its mean, 0, this implies that A*(p) must be sufficiently

large that (p - A*(p))/(p+h) < 1/2). Now for fixed p, suppose we increase p by some

Ap. For any A such that A > A*(p)

D0 <F1 ( ) < F-,,1 ( )I-- D +,1 - D +,1

and

0 > pF-( p(p) > (p + Ap)F(- A ),
p+h p+h

where both inequalities follow from the fact that when A > A*(p), (p-A)/(p+h) < 1/2.

Thus

F1 (p-A ) + E[Di] + (p +,Ap)F-1( -) 2i p+h p +h N

and we must have A*(p) > A*(p+ Ap). Since the optimal first period allocation a*, (p)

is given by af1 (p) = F- (P- 2 )), it is strictly decreasing in A, and hence strictly
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increasing in p.

C.1.4 Proof of Theorem 7

Proof. For a given starting warehouse inventory level w 0,1, let the associated dual

variable be A. Each retailer i's subproblem D2 gives the following explicit and implicit

forms for the optimal allocation to retailer i in each period:

In the second period, we must solve the optimization problem

min Aai, 2 +pE[[Di, 2 - ai,2 - [ai, - Di, 1]+]+] + hE[[ai,2 +[ai, - Di,1]+ - Di,2]+
ai,2,ai,2;>0

If we equivalently write it as

min Aai, 2 + pE[[Di, 1 - ai, 1]+] + pE[[Di, 2 - ai,2 - [ai, - Di,11+ +] (C.5)
ai,2,ai,2 >0

+ hE[[ai,2 + [ai,1 - Di,1]+ - Di,2]+

we see that this reformulated optimization problem is jointly convex in a,1 and ai,2

as follows: the first term in the summand is linear in ai,2, the final term in the

summand (associated with holding costs) is convex since it is the composition of a

convex increasing function and a convex function, and the sum of the second and

third terms (associated with lost sales) can be expanded as

V2 (ai, 1 , Di, 1) =pE[[Di, 1 - ai,1+] + pE[[Di, 2 - ai,2 - [ai, - Di,1]++

=pE[[Di,1 - aj1]+] + pE[max{Di,2 - ai,2 , [ai, 1 - Di,1]+1

- pE[[ai,1 - Di,11]

=pE[max{Di,2 - ai,2 , a, 1 - Di, 1, 0}] - (Di, 1 - a,)

This is the sum of the pointwise maximum of affine functions, which is convex, and

an affine function, which is also convex. Thus the reformulated optimization problem

(C.6) is jointly convex in a,1 and ai,2.

We can then differentiate the objective function with respect to ai,2, and get the
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first order condition

(h + A)P[Di, 2 - [ai, - Di,1]+ < ai,2 ] =(p - A)P[Di, 2 - [ai, - Di,1]+ > ai,2]

a 2 = max{Fi-1( p ), [ai, - Di,1]+1', p + h

- [ai, - Di,1]+. (C.6)

Here Fi denotes the CDF of retailer i's demand, and Fi-1 denotes the inverse CDF

of this demand. Then by the convexity of the period 2 allocation problem in ai,2

(convexity in a, 1 will be used later), the period 2 optimal order up to level is thus

Fi-'((p - A)/(p + h)).

The first period allocation is then the solution to the optimization problem

min Aai, 1 + hE[[ai,1 - Di, 1]+] + V2 (a2 ,i,D, 1) .
ai,1

Using the well known property that ir(x) = ming(yx)<o f(y, x) is convex given that

f, g are jointly convex in x, y, we know that V2 is convex in a,1 . Then the objective

function of the first period optimization problem, as the sum of convex functions, is

convex in ai, 1 , and any solution of the first order conditions will be a global optimum.

Using the expression for the period 2 optimal order up to level, Fi-'((p - A)/(p+h)),

we can expand V2 and write

min Aai, 1 + pE[[Di, 1 - ai,1 ]] + hE[[ai,1 - Di, 1]+] + AE[[F'( -)- [ai, - Di,1]+]+]
ai, 1 p + h

+ pE[[Di,2- max{Fi-1( A), [ai, - Di,1]+h"+]
p + h

+ hE[[max{Fi-1( p ), [ai) - Di,1]+} - Di,2]+p + h
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which is equivalently

min Aai,1 + pE[[Di,1 - ai,1]+] + hEllai, - Di,1]+1 + AE[Di, 2 - lai, - Di,1]+ai,

+ (p - A)E[[Di,2 - max{FN ( ), [ai, - Di,1]++
p + h

+ (h + A)E[[max-F ( ), [ai, - Di,1]+} - Di,2 1+1. (C.7)
p + h

Now supposeWmin is the minimum inventory level such that for wo,1 > Wmin, A = 0.

Such anWminexists since demand at all the retailers is almost surely upper bounded by

the parameter b. Then if A = 0, the second period order-up-to level is Fi-1 (p/(p+h)).

Since we have assumed that p > h, we have p/(p + h) < 1/2. Then, since demand

follows the truncated normal distribution, for i > j, we have P[Di,t > d] > P[Dj,, > d]

when d > y, implying that the second period order-up-to level is increasing in i.

As for the optimal first period allocation when A = 0, suppose we know that

a* < Fi-(p/(p+ h)). Then, differentiating the objective function of (C.7) evaluated

on any a, 1 < Fi 1 (p/(p + h)) gives

A - pP[Do,i > ao,i] + hP[Do,i < ao,i].

Then the left derivative of (C.7) is 0 when a*,i = Fi-1 (p/(p + h)). By the differen-

tiability of (C.7), the derivative of (C.7) is also 0 when a*, = Fi-1(p/(p + h)), and

by the convexity of (C.7), the optimal first period allocation is F;-4 (p/(p + h)), i.e.

the same as the second period order-up-to level. This implies that the optimal first

period allocation is also increasing in i.

To analyze the case when the starting warehouse inventory wo, 1 is small, and A

is large, we will construct wmax by noting that demand is truncated normal, which

implies that there exists some tma, 0 < tmax < 1/2 such that the demand probability

density functions fi(t) is increasing in i for all t < tmax. Then set wmax as the starting

warehouse inventory that corresponds to dual variable A = p - (p+ h)Fi(tmax/2). For

wo, wo,1 < max, the associated dual variable A satisfies A > p - (p + h)Fi(tmax/2).

For such wo,1 that satisfies wo,1< wmax, since the associated A satisfies A > p-(p+
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h)Fi(tmax/2) > (p- h)/2, we have (p- A)/(p+ h) < 1/2 and thus, Fj-1((p- A)/(p+ h))

is strictly decreasing in i by our assumption that demand is truncated normal, which

implies that for i > j, P[Di,t > d] < IP[Dj,t] > d] when d < p.

We now complete the proof by showing that the optimal first period allocation

a, 1 is also decreasing in i for w0,1 that satisfies w0 1< wma. We do so by writing the

first order conditions of (C.7):

p - A =(p + h - A)P[Dji, < ai,]

+ (p - A)P[Di,1 < ai, - Fi-( )
p + h

+ (h - p + 2A)P[Dj, 1 + D 2 ,i : aiI D ,1 aj,1 ]

- Fi-)( )P[Di, _ a, 1 - F(( -A)] (C.8)
p +h p +h

We claim that 2Fi§((p - A)/(p+ h)) is an upper bound on the optimal a,1 when

Wo < Wmax. Suppose instead that a, 1 > 2F((p - A)/(p+ h)). Then the right hand

side of (C.8) is at least

(p+ h - A)IP[D, 1 2F-'( )
p + h

+ (p - A)P[D <,1 FM( )] + (h - p + 2A)P[D, 1p F- ( )p +h p+ h

2(p + h - A)P[D 1 Fi-( A)] + (p - A)P[Di , 1 F( A)]p +h p+ h

+ (h - p + 2A)P[D, 1 5 FI-( p-
p + h

=P[Di~ 1 Fi-'( PA)](2p + 3h - A)

p-P-hp+h+p+2h- A)

>p -A.

The last line follows from the fact that wo,j < wmax implies that the associated

dual variable A satisfies A > (p - h)/2, and the third line follows from our assumption
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of truncated normal demand that is symmetrical about the mean, which implies that

P[D, 1 < 2Fl( p-A)] =P[Di, < Fi-1( )]
p+h p+h

<2P[Di,F1 ( Fi-( A),
p + h

when (p - A)/(p+h) < 1/2. Thus the right hand side of (C.8) is strictly greater than

the left hand side, leading to a contradiction.

For each a, 1 such that a, 1 < 2Fi- 1 ((p - A)/(p + h)), we will show that each of

the summands on the right hand side of (C.8) is strictly increasing in both a, 1 and i.

This will imply that the heuristic first period allocations a i are strictly decreasing

in i, proving the theorem.

Consider the first summand of (C.8). Since A < p, this term is strictly increasing

in a, 1. Further, since a, 1 < 2Fi-1 ((p - A)/(p + h)) < tmax, by our definition of tmax,

the summand is strictly increasing in a,1 .

Now consider the second summand of (C.8). Again, since A < p, this term is

increasing in aj, 1. And since a, 1 - Fi-((p- A)/(p+h)) < 2F- 1((p- A)/(p+h)) < tmax,

this summand is also increasing in a,1 .

Finally, consider the third summand of (C.8). We have set wo,j such that the as-

sociated dual variable A satisfies A > (p-h)/2. Thus the coefficient of the probability

term, h - p + 2A, is positive, and the summand is increasing in a, 1. We can write the

probability term as

P[D,1 + D2, < a,1 I Di,1 < a,1 -- F;-'( p-A)]P[Di,l < a_ , - Fi-( A)]

p +h p+ h/IP'D, 1 +D2-- a~ ~1a1phKp-
=ja f j afi (t)fi(s - t)dtds.

a a

For t such that a t s - a, and s such that s < ai,, we also have a < t <

a,1 < 2F- 1((p - A)/(p+h)) < tmax. Thus fi(t) is increasing in i for each t within the

bounds of the integral. Similarly, for each t and s within the bounds of the integral,
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we have a < s - t < s - a. By the same argument, fi(s - t) is increasing in i. Thus

the probability term in the third summand of (C.8) is increasing in i, proving the

claim and the theorem.
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