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ABSTRACT

The problem of the theoretical interpretation of pro-
ton-proton scattering data is considered. Simplified for-
mulae for the determination of the phase shifts from the
e;perimen?a}‘Cross sections are given, along with the numer-
iéal expaHSidnsbén&%tabiésinebessafy for their use; The
conceptﬁof an "apparent S-wave phase shift”® Sé~is intro-
duced to facilitate the analysis of the experimental data
for P-wave and D-wave anomalies in addition to the S-wave
scaﬁtering. The auxiliary functibns needed in conjunction
with the apparent S-wave phase shift are presented in tabu-
lar and graphicai form.

The phase shifts are determined from the experimental
déta, and afe analyzed in terms of the apparent S-wave phase
shift for P-wave (and/or D-wave) effects wherever the accu-
racy warrants it. It is not unreasonable to expect a detec-
table P-wave anomaly in the scattering for energies above
2 or 3 Mev. However, the Van de Craaff data available at

*

present in the energy range 2.5 to 3.5 Mev give only a un-

°p

certain indication of a repulsive interaction in the
state, and are not inconsistent with no interaction, or a
small attraction in the 3P state. The daté above 4 lMev (up
to 14.5 Mev), taken With'cyclotrqns as sources of high ener-
gy protons, are relatively inaccurate.'they point to a

slightly repulsive >p interaction (or an attractive lD inter-

action), but again are not inconsistent with purely S-wave




seattering,
' The S-wave nuclear sqatteriﬁg is analyzed by means of

the expression:

ucotS'

K= k"“ﬂ-_i L(‘l‘[) = R[ d. + = )'4. [ P/y_,h + ]

@éiqh ié é fﬁhcﬁidn 6f fhe huéleér-ﬁhése_shift S and the
énérgy (throﬁgh‘n , and allows a representatlon as a power
series in the energy (k ). The cpefflclents in the expan-
g%gn hgve a simple physlcalvmeaning: é is thgnproton-proton
Fermi scattering?;ength; h% is the effeetifé.range of the
nuclear force; P measures the campactnéss of thé nuclear po-
tential (1t is negatlve for a square well, positive for a
Yukawa well). The form of K predlcts that the experlmental
gatabwhen plotted against k2 should lie approximately on &

straight 11ne, the 1nnercept of which determlnes the sgcat-

te;lng length a and the slope of which determlnes the effect-
ive range of the interaction. The data below 4 Mev do fall
very closely along a straight line on such aiplot, and deter-
mine the vaiues a -7.67 x 10713 em., r 265x lQ_'lB" cm. ,
\ assumlng P and higher coefficients are zero. |
‘ Kk dE

e 'E and E( SE )q.‘ ‘are evalua-

ted for the energy range zero to 10 Mev., and are used to.

The guantities o~ (

' - discuss the feasibility and usefulness of measurements near

111




the interferéhce'minimum in the 90 degree scatteri;g at 400
Kev. It 1s recommended that careful measurements be made
on the scattering at € = 90 degrees in the energy range
L20 - 450 ¥ev,

An approximate relation betwéén the proton-proton scat-
tering length and the corresponding neutron-proton quantity
is obtained, and used to examine the nypothesis of the

charge-independence of nuclear forces, as determined from

proton-proton scattering and singlet neutren-proton scatter-

ing.

The derivation of the expansion of K by variational

(4)

methods, first done by Schwinger'™ , is extended to obtain

expressions for the coefficients of the 1‘:1‘L and k6 terms in
the expansion., The effects of small changes in the poten-
tial on the variational parameters is considered, in parti-
cular the effects of changes in range and strength of the
interaction.

Numerical results of calculations carried out for the
four usually assumed potentials are presented, along with
formulée allowing one to determine the well parameters
Which will give closest agreement with the experimental

scattering, or, alternatively, the variational parameters

o'

implied by a particular choice of well parameters. It is
Tound that all four potential shapes give equally good fits

to the experimental data, provided the proper range and

strength of interaction are chosen. The well parameters




and variational parameters givinz the best least squares Tit

to the data for a given potential shape are tabulated. The

(1,38)
earlier results of Breit et al. are, in general, con-

firmed, although more recent experimental data have modified
{2nd narrowed down) the numerical values somewhat.

The eiperimental accuracy necessary to distinguish be-
tween the extremeé ih well shapes (the sguare and Yukaws
wells) at 10 Wev is examined. It is found that by careful .
use of existing equipment measurements with the necessary
accuracy could be made; such measurements are recommended.

Tstimates are given for the phase shifts of higher angu-
lar momenta for the four ususl well shapes. The S-state
Coulomb wave functions are discussed in gsome detall in an
appendix, particular emphasis being placed on ths irregular
solution G{r). An exvansion for G(r) in powers of the energy
(kz) in terms of modified Eessel functions of argument

1 ' '

L

is obtained, to terme in k7 inclusive,
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(1) Introductibn

The scattering of protons by protouns is, at present,
one of the important sources of quantitative information
about nuclear forces. The accuracy of proton - proton
secattering experiments is comparatively high, due to the
fact that the energy controi and detection of charged
particles is more precise than for neutral particies (for
exémple, the neutrons in neutron - proton scattering).

The theoretical inﬁerpretation of such scattering experiments
is at once‘easier and moré difficult than the corresponding
analysis of neutron - proton scattering experiments. For
both neutron - proton and proton - proton scattering ét

low energies (below 10 Mev) the deBroglie wavelength of

the nucleons is large compared to the range of nuclear
forces, and the nuclear interaction can be assumed, to a
very good approximdtion, to act only in the S (L= O) state
of the system of two protons. However proton - proton
scéttering is easier because the Pauli exclusion principle

1l
allows the protons to be only in the S state because they

are identical particles (the R = 0 scattering of neutrons

and protons has contributions from both singlet and triplet
states because of the non-identity of the particles). The
interpretation is more difficﬁlt because of the Coulomb
seattering which is present in addition to the nueclear
effects. However, the fact that the Coulomb field compli-
cates the analysis of the experiments is counterbalanced

to some extent by the fact that its presence allows the-
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comparison of the unknown nuclear scattering with the
known Coulomb scattering.

It might be pointed out that while the analysis of the
low energy scattering experiments is simp;ified becausékthe
nucleaf interaction is only in the lS state, the amount of
information about nueclear forces is correspondingly reduced.
No ihformation on the effective triplet interaction is ob-
tained until the energy 1s such that higher angular momenta
contribute appreciably to the scattefing. The lS interaction
between two protons is purely central in nature (the tensor
force does not act in singlet states).

The first guantitative experiments on proton-proton
scattering were done in 1936-39 by Heydenburg, Hafstad, and
Tuve over an energy range from 200 Kev to 900 Eev. Since that
time experiments using Van de Graaff generators as the source
of fast protons have been made over the enefgy range from
200 Kev to 3.5 Mev. Protons from cyclotrons have been used
in the energy range from L ¥ev to 1l4.5 Mev. These experi-
mental data will be discussed in detail in Section 4. No
experimental results are avallable for energies in excess
of 14,5 Vev at present. TIndeed, it will be seen {see Sec-
tions L4 and 5) that the cyclotfon data are very inaccurate
for the most part; and that present information on the lS
inferaction is based predominantly on the data below 4 kev.

The methods of analyzing the experimental data in terms
of phase‘shifts have beén described, and applied bvo the
(1)

data, by Breit and his collaborators. For reference

purposes a brief discussion of the phase shift method of .




analysis, togéther with some elementary considerations of
the qualitative aspects of proton-proton scattering will be
given in Sections 2 and 3.

It has been shown (2) that the low energy data on the
neutron-proton interaction can be anzlyzed profitably by

means of an expansion for the phase shift S in powers of the

q

7 2
=1t"x /2m (% is the energy in the centre of mass

i

energy

v

system, k is the relative wavenumber, m=1/2 is the reduced

mass):

kcot€='—a-l+ ;::rkz—PI*BIchqo- {1.1)

‘The paraméters a, v, I describe the effect of the nuclear

interaction on the scattering. The physical meaning of the
parameter a 1s apparent when one examines the scattering cross
section at zero energy. In genersl the cross section for

S scattering is:

k?*-kzcﬁfzf

2 4T

In the limit of very small k, 0 is seen to approach (using

(1.1)3:

0 = 4w a"

so that the coefficient a is just the Ferml scattering

length (3) evaluated at zero energy. The parameter r is a

measure of the range of the nuclear interaction, while the
coefficient P is the first shape-dependent parameter in the
expansion (1.1). P is a measure of the "tail" of the nuclear

potential: P is negative for a scuare well potential,



positive for a Yukawa potential.

Every assumed type of interaction determines a set of
coefficients a, r, 7, --- . 1In prineiple, the experimental
data can be anslyzed to Tind the dependence of the phase
shift J on energy, the ooeffiéients of the power series
(1.1) thus being determined. In practice, the uncertainties
of»experiment s1low the determination of only a few of the
parameters. 1T the first two terms of (1.1) =2ive an adeguatbe
fit to the experimental data, no information can be obtained
about the detailed shape of ths potential responsible for
the scattering; only the strength and the range of the inter-
éction can be determined. The approximation to k cot S
afforded by the first twc terms of (1.,1) is thesrefore called
the "shape-independent” approximation.

(&)

The series (1.1) was first derived by Schwinger using
varietional methods. The same approach can be applied to
proton-proton scattering. The result, derived by Schwinger
in this way,.involves the expression:

X = wtd L A(n) | (1.2)

27N _
9 i
Here 5 is the phase shift for the S-wave nuclear scattering

(1)

(this quantity is denoted by»Ko by Breit ; a subscript O

jur
65]

will be attached to s wherever there possibility of con=-
fusion with phase shifts for the waves of higher angular
momentum) ; YL:= ez/ﬁv , where v 1s the relative velocity of
the two protons; the slowly varying function'h(‘n ) will be.
defined in Section 5 (formula (5.1)). It is found that K

allows a power series expansion similar to (1.1):




Ay

3.0 Jediwm " Thisis RupedC
=9

Lol o pip 5, ol b 20
( %__. 2K +4¥ -2 = 2K +o.3o<s<56---)
;,(_& /\K MMU&W«»

. M %, R WEWPTY N LET 6"@-‘,(/&%’
S P,V@p,,j:k () C% =2 4% -2 =2K + 0. 30%‘56..;

B/\&IJé - ,MPM MA—U\NY\,_.‘--_



3

3l 5 6 )

' -1 4 1y R

2 =12 f
r=" /I\.!f'e2 = 2,88(15) x 10 cm. is a characteristic

léngth for proton-proton scattering; it is the Bohr radius

of a proton bound to a fixed centre of electrostatic attrac-
tion. The parameters a, T, s P, G are quantities related to
the range,‘depth and detailed shape of the nuclear potential
responsible for the deviations from purely Coulombian’scatter-

ing, in complete analogy to the coefficients of (1l.1).

For large energies the first term in the definition of
X approaches Rkkreoté\ . However, the second term, h (M ),
does not vanish at high energies; rather it increases lééarith-
mically with energy. The fact that (1.3) does not quite re-
duce to (l.1l) even at high energies where the protons can be
considered as essentially "frée" except for the nuclear inter-
action is related to the fact that the Coulomb field has an
"infinite range” i.e. the wavebfunctiOn of the'system does
not approach a plane wave plus a sphe;ical scattered wave
even at very large distances from the scattering centre.

The quantity ¥ defined by (1.2) is closely related to‘
the quantity‘f introduced by Breit, Condon, and Present.(l).
Breit, Condon, and Fresent have shown that retaining only
the leading term in the series (1.3) does not give an
adequate.  fit to the data. This shows that the force between
two protons has a non-vanishing range, since keeping only the
first term of (1.3) is equivalent to assuming zero range for

the proton-proton interaction.

Tandau and Smorodinsky(S)_have given a seml-quantitative




E"ft,‘..v‘ .

derivation for the leading term of (L.3). They made a plot

of ¥ vs. k2 and found that it led to a straight line, but

not of zero slope. They interpreted this correctly to mean
that a range correction has to be included. However, thelr
method of derivation did not enable them to relate the co-
efficient a precisely to the guantum-mechanical properties

of the system, nor determine the preciée form of the range
correction necessary. The advantagze of the Landau-Smorodinsky

approach is that a qualitativevunderstanding of the prdblem

" is readily obtained. An extension of their method to deter-

mine an‘gpproximate relation between the proton-proton sing-
let scatﬁering length a and thevcorresponding neutron-proton
quantity is given in Section 6.

Breit and Bouricius(6 have shown that the experimental
data can also be fitted quite well by a. "boundary condition”
on the 1ogarithmic derivative of the wavefunction at a def-
inite (small) distance. They point out that this is closely
related to the possibility of obtaining an adequate £it to
the data in terms of the "shape-independent” approximation
to the series (1.3). |

lately, several investigators have succeeded in deriving
the expansion (1.3) without the use‘of the variational methods .
Bethe{7).has given a'discuSSioﬁ of the third parameter P,
showing why it is expected to be small comparedrto'unity for
most reasonable well shapes. Chew andfGoldberger(g) have
used the fact that the Coulomb field can be treated as a

small perturbation within the nuclear range to show that the



effective range r, » the well shape parameter P, and higher

coefficients in (1.3) will not differ very much from the"

»cdrresponding parameters in the neutron-proton series (1.1).

 has already been given

A preiiminary discussion of some of the results of this thesis
” (9)

The analyéis of proton-proton scattering data by the
variational method proceeds in three distinet steps:
(1) The experimental cross sections are analyzed to find
the nuclear phase shifts for the various angular momenta
involved in the nuclear scattering. This step 1s common to
all methods oflanalyzing the data.

{2) The S-wave phase shift is used to compute the quantity

K defined in (1.2). ‘Then ¥ is plotted vs. K2 (i.e. vs., energy).

The expansion (1.3) shows that such a plot should e a straight

line at low energies. At higher energies the term quadratic

“in the energy (the term in kh) will start to contribute; the

plot will become curved, and so on. It should be emphasized
that the plot of K vs. k2 involves the S-wave anomaly only.

At higher energies, waves of higher angular momentum will

in general contribute to the observed scattering. The phase
shifts for those wavés must be evaluated separately and put
on a‘differént plot; the presence of these higher phase shifts

2

has nothing to do with the curvature of the XK vs. k~ disgram.

From this latter plot the "experimental™ values of the
coefficients in the power series (1.3) are found, that 1s, as
many of them as the accuracy of the data allows.

(3) The final step of the analysis is the fitting of theoret-

ical potential wells to the observed values of the variational



parameters. If only the first two parameters, e and ra,
are known {the "shape-independent” approximgtion), a well
of any shape can be made to fit the data, just by chbosing
the proper depth and range. If the coefficient Pr03 of the

k4 term is also known, some well shapes will be excluded,

but there still will be a large number of wells which can

be made to fit the data. In general,_theAﬁqre coefficients
that are known, the more the shape of the nuelear potential
is delimited. -

Sections 2 and 3 deal with>the general aspects of the usual
scatteriﬁg-theory and the peculiarities of proton-proton scat-
téring. In Section L4 the techniques of determining phase
shifts from the experimental data are discussed. Convenient
formulas aré developed for such work and applied to the
analysis of existing experimental data. The concept of an
"apparent S-wave phase shift" is intrbduced, and applied to
the problem of analyzing-the experimental data for possible
P-wave and D-wave scattering in addition to the usual S-scat-
tering. Section % considers the determination of the pafa-
meters in the expansion (1.3) from the experimental data, and
examines the sensitivity of X {1.2) to errors in cross section
and energy measurements as a function of energy eand scattering
angle with a view to planning future experiments. It is found
that garefﬁl measurements near the interférence'minimum.in the
scattering at L00 Kev (see Figure (3.3)) would be extremely
valuable. The lLandau-Smorodinsky result is presented in Sec-

tion 6, as well as an extension of it giving a relation be-

vtween_the neutron-proton singlet scatterihg length and the




R —

corresponding proton-proton quantity. The derivation of the
expansion (1.3) by variational methods 1s given in Section 7.
Section & outlines the effect of small changes in the poten-

tial on the variational parameters, while Section 9 deals

‘with the numerical results for the variational parameters for

the four usual choices of potential shape, and the comparison

with experiment. The experimental accuracy necessary at 10

‘¥ev to distingulsh between extremes in well-shapes is elso

discussed in Section 9. Section 10 gives rough estimates of
the vhase shifts for higher angular momenta to be expected

for the four potential shapes considered. The varlous

[
@0

appendices discuss in more detail certain formulae and

nunerical results obtained. In particular, Appendix 4
presents the expansion of the irregular Coulomb wave func-

tion C(r) in nowers of the energy.




(2) Essentials of the phase shift analysis of scattering

For reference purposes it is worthwhile to outline brlefly
the usual treatment of scattering problems as given in ¥ott

(10)

and Massey » and to discués in a general way the peculiari-
ties of proton-proton scattering., The physical problem of

the scattering of a beam of particles incident upon a central
field of force is represented quantum-mechanically by an inci-
dent plane wave plus a scattered wave diverging lrom.the

scattering center. Asymptotically the wave function has the

form:
e | _
¥ o~ " é'-4- 6—(9) | (2.1)

where,the plane wave is incident along the z-axis (and nor-
malized to one particle per unit volume); f(-6) is the
scatterinn amplitude which describes the angu;ar distribution
of the scattering, The differential cross section (the ratio
of the number of'particles scattered into the solid angle “
element Jaﬂaﬁer second to the number of particles incident on

the scattering center per second) is gi ven by:

o (0) 4l = [{@] (2.2)

If the deBroglie wavelength of the incident particles is
large compared to the range of the scattering field of force,
it ie advantageous to decompose the scattering process into
cOmponent processes, each with relative angular moméntum 1.5.
Then the main contribution to the scattering will come from
those collisions which classically are described as head-on

(i.e. zero impact parameter), that is, the L=0 or S-wave

10



collisiong. Waves of higher angular momenta (narticles with

larger impact varameters) will make little or no contribu-

tion to the scattering except at higher enerzies where the
deBroglie wavelength of the particles becomes of the same

order as, or smaller than, the range of the field of force.
' (11)

s

ikz | . .
In the usual way the plane wave e is expanded in

terms of the angular momentum eigerfunctions i.e.

lmg= i 2 (2.);4-1)13(«.@) _&2("). - (2.3)
2=0 o
where £y (W) = [Tlr Jyuy(8) — 2im (kA -LE)

Similarly the complete wavefunction ‘P is written as:

N ¢ - g Ay B (=) ’xk-z}f") (2.4)

where 7Lx0941'1ﬁust be scuare integrable at the origin.

ésymptotically; ]Ll(ﬁ)is writter in the form:

Ky — 4im (Jer — 23 +5,)

Thie defines the phase shift 81 which describes the effect
of the scattering field on the component of the lncident
wave with angular momentum ﬂit . From the above considera-
tions it is expected that 5; will be apprecisble even at
low energies, while 51 will become rapidly negligible asJL
increases, except at'high energies.,

From (2.1) it is seen that asymptotically the difference

of (2,4) and (2.3) (i.e. 4{ - eikz) must represent an out-

11



1

going wave only. This condition determines the constants
Aﬂ. in (2.L); the scattering amplitude f{-®) is:

A

L(e)= ;'Ei(zu ) [f‘s‘—i:( B (e29) (2.5)

If all gg's except govenish, f(6-) is spherically symmet-
rie in the center of mass system. Deviations from the spher-
ical symmetry indicate the presence of scattering by waves of
higher angular momenta.

The problen df the SGattering of protons by protons is

somewhat more complicated than the simple pilcture outlined

above. The first complication which arises is due to the
identical nature of.the partiéles. The obvious modification
which this identity of particles mekes on the scattering
process caﬁ be seen in Figure (2.1). A typical collision
between two protons is shown in the center of mass system,
wherevthe'two particles move iniﬁially with equal and oppo-
site velocities v/2. The two apparently different collisions
shown in Figure (2.1a) and (2.1b) are expérimentally indis-
tinguishable because of the identity of the two particles,
Thus one would expect that the effective cross section in

which either particle is deflected into the solid angle 4l

{1e@(* e [hea* fan

This is the so-called "classical™ result which consists of




(b)

Figure 2.1: Two seemingly different identical particle

collisions that are experimentally indistinguishable.




an incoherenﬁ superposition of the two possible scattering

processes. It will now be shown that an additional term

involving guantum-mechanical interference effects must be
added to the above result.

Protons are identical particles possessing spin‘l/z, and
obeying Ferml-Dirac statistics and Pauli exclusion principle.
Therefore the wave function describing two protons must be

anti-symmetric in the exchange of all their coordinates

{(both spin and space}’i.e; *;%(ql q2) = - *{r (q2 qlf}
the q's denoting all coordinates. *}f can be written as a

product of a space part 4’(rl r,) and a spin part )Lisl Sz)

i.e. “P’: i (rq r2) 'x,(s:L 32). If x,(sl s,) is sym-

metric under the exchange of the spin coordinates of the two
protons, '{)(r1 r2) must be anti-symmetric under the exchange
of the space coordinates of the two protons, and vice versa.

Assuming for a moment that the protons shown in Figure (2.1)
have their spins parallel (i.e. ‘)L(sl 52) is symmetric (the
triplet state)), the space part Qf the wave fﬁnction'mustAbe
anti-symmetric, The appropriate wave function is:

,%’(rl ry) — 1/ (r2 rl),’ The interchange of ry and 1,
changes T into -7 being the relative coordinate in
the center of mass system), and <} into W—€© . Therefore
the proper anti-symmetricsl wave function corresponding to
(2.1) is:

. . N3
$ - A&}_ -z, ! [(r(g)_%(“--.e.)l

N

It should be noted thatvthe_incident wave may be written

13



as 21 sin kz = 2i sin k (z, - 2,), showing that the average
value of ‘+1¢3ncident ig 2, and that the wave represents.one
particle per unit volume in each beam, It follows that the
effective cross section for a collision in which either par-

ticle is deflected into the solid angle d\ﬂ) is:
24l
O'_;(G)A'\l = |%(9)—%(“",e')| & (2.6)

provided the particles are in a triplet state (spins paral-
lel).

Similar considerations for the case in which the protons

are in the singlet state (spins oprosed, space wave funetion

symmetric) leads to the result for the singlet differential

eross section:

gz (8)adl = [ § () +g(w—e)la'aﬂ)b | (217)

With unpolarized protons, on the average the probability

ofvhaving spins parailel (tbriplet state) is three times as

1likely as having spins opposed (singlet state) so that the

statistical spin weights are 3/L and 1/l respectively. Hence
the observed cross section in which both incident and recoil

protons are counted will be:

@ = [% 050 + 4oz (e)] PUVE

R
- 4 @9+ (,*(w—eﬂ} ai

lh\




It is seen that this result which includes the effects of
the Pauli principle differs from the "classical"” result by
the addition of interference terms arising from the coher-
ent superposition of scattering émplitudes. Cne obvious
conclusion of (2.2) which can also be seen from Figure (2.1)
is that the scattering of protons by protons 1is symmetrical

about € = 90 degrees in the center of mass system regard-

‘iess of the details of the actual angular distribution.

’

The cross sections given by (2.6} - (2.8) are the differ-
ential cross sections in the center of mass coordinates in

which the protons move towards each other with velocities

1/2 v each. To transform to the laboratory frame of refer-

ence in which one of the protons is at rest and the other
is incident with the velocity v it is necessary to recéll
that the differentiai scattering cross sections are equal
in the two systems (just because of conservation of parti-

cles).

() dl = 07, (®) by,

where -0 is the scattering angle in the center of mass sys-
tem, @ is the scattering angle in the laboratory system,
end AUl =2TW 2in8 46 , Aly,, =24 @ 4 @

If the particles have equal masses, then @ =%, and it

follows that:

Oy,

N

(@) =4 s ® 0 (28) (2.9)
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Note that because of the recoll of the struck proton no scat-
tering is observed for angles greater than @® = 90 degrees
in the laboratory system of reference, and that, aside from
the cos @ factor, the scattering is now symmetrical about

® = AS'degrees,

The treatment used to obtain the expression (2.5) for the
scattering amplitude was based on the assumption that thé
form (2.1) for the incident plus scattered waves is valid
asymptoticallyi ‘%hat is, the field of force was assumed to
fall off sufficiently rapidly with distance that at large
_separafions the particles could be considered as free. In
the case of collisions between neutrons and protons this
assumption is valid because of the short-range character of
nuclear forces. However, the collislons between protons a8re
complicated by the Coulomb interaction as well as the specif-
ically nuciear interaction., The Coulomb field is not a short '
fange force; the asymptotic form (2.1) is not valid. Gordon 2

has' shown that (2.1) must be replaced by:

il e + i (n-R3)
o o LB 3]

(o) ’Q;[kh_nz.,(ztzu) +T + 263 | (2.10)

where ’n. / y 9o = dvn‘a_ r(1+1TL)

(2.10) shows that the Coulomb field distorts the plane wave
even at infinity. TFor purely Coulomb scattering the solution

corresponding to (2.4) is:

(2.,11)

3 Q . Gp ;" E h)
+=Z (22 1)1 B( 6)_i_j:h

=0
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where OF = arg I” ({+ 1+1iM) are the Coulombian phase
shifts for the partial waves of angular momentum Rfﬁ; and

asymptotically,

. (p AW
Fy (1) ~m(hn 24 nk(zhn)i-o'z (2.12)
The scattering amplitude corresponding to (2.5) can be
Summed directly to yield:

A o e
%(e) zmwzu@cizk 2 o (zad)

‘ whlch gives the classical cross section of Rutherford:

= “+
coe S ’ 2.1
Arﬂ) 2 { k)
(13) . Ch s
Mott has generalized the result {2.14) to the collision

of two identical charged particles obeying Fermi-Dirac statis-

tics:

| te “o
(o) = (stf\r") [m reez

(2.15)
..csamﬁﬁg;dwcgé%<u4(ﬂtﬂgﬂh394i]

This result follows directly from (2.13) in conjunction
with (2.8).

The presence of the short-range nuélear interaction be-
tween the two protons in addition to the Coulomb field will
cause the scattering to deviate from the Mott formula (2 15).
Because the range of the nuclear force will be small com-

pared to the deBroglie wavelength of the protons for'energies




less thaﬁ 10 Mev, only the 1= O'(S-Wave) part of the imnei-
dént plane wave will be changed by the nuclear force. The
waves of higher angular momenta will be unaffected to a good
approximation for'energies below this limit. Thus the asymp-
totic form of such waves will be éiveﬁ by (2.12), while the

=0 term will behave as:

W~ zi$°4&m(kn —'{[L(ﬂzu) + o+ Sa) (2.16)

where So is the phase_shift caused by the specifically

nuclear force. The scattering amplitude turns out to be a
linear superposition of Coulomb and nuclear contributions:
. 2k,

)moc_g_ﬂ, | z+?:*E,Q —-1) (2.17)

é(e) = (z,::

The S-wave nuclear scettering is spherically symmetric.
From (2.6) and {2.7) itvisbseen that the nuclear term in
f(©-) contributes only to the singlet part of the cross sec-
tioh (2.8). Consequently, as was mentioned in Section 1,

proton-proton scattering gives information about the nuclear

proton-proton force only in the singlet,state, as long.as the

nuclear scattering is predominantly S-wave. It 1s necessary
to use relatively high energies where waves’of higher angu-
lar momentum contribute to the scattering to zet any informa-
tion about the triplet interaction. As yet no experimental
data are available which shed any real.light on the triplet

interaction (see Section L) .
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The differential cross section for protbn-proton scat-
tering taking into account the effect of the nuclear field

on the S wave only can be written, in view of (2.8) and (2.17),

. . coa y
: /22 Vet L acte WES <JL)
0‘@9)'-<2m“,1)[ 2 2 2 G cor’ S

- zmS.(oﬂ-Uo"ﬂ’m&?%) N can (§,+Nimert"S) )
b B 1 e’ (2.18)

as

+ A 4&.3'5,
n-

The first term is just the Mottt result (2;15): the second g
‘term is an interference term between the Coulomb and nuclear
effects, while the last term is the purely nuclear contribu-
tion. The only unknown gquantity in (2.18) is the S-wave
nuclear.phase shift S; . This analysis then predicts that
the magnitude‘and the angular distribution of the oﬁserved
rroton~-proton scattering can be fitted by the choice of only
one constant ( So‘) gt each energy. That this is indeed the
~case was first demonstrated by Breit and his collaboratorstl)
fof the experimental data below 2.5 lev.

Formulae generalizing (2.18) to include the effects of
P and D-wave nuclear scattering in addition to the S-wave
contribution have been given by Breit, Condon, and Present(l),

and are given in Appendix 1 for reference purposes.




(3) oualitative considerations of proton-proton scattering

The qualitative behavior of the scattering of protons
by protons will be discussed briefly in this section.
While somewhat irrelevant to the main thread of analysis,
such a discussion was felt worthwhile because it will give
a backzround and perspective upon which to base the examina-
tion of the actual experimental results. In Ssction 2 the
effects of the identity of the protons were examined. It
was found that the cross section waé symmetrical about© =

90 degrees in the center of mass reference system, and that

~the cross section contained specifically Coulombian and

nuclear terms plus interference terms between the two. A
qualitative examination of the cross section given by (2.18),

both as to magnitude and angular dependence,.as a functlon

of energy will follow.

The fact that the nuclear scattering term in r(-©) con-
tributes to the cross section only in the singlet state for
1OW‘energies can be seen in another wey. The Pauli prineciple
effectively prevents two protons with parallel spins from

approaching one another closer tham MN= 'E/mv . Since A is

e

[P

large compared tg the rance of nuclear forces for energies
below 10 }ev, the protons never get close enough together
to have any nuclear interaction, and the triplet contribu-
tion to the scattefing is purely Coulombian.

The Coulomb repulsion also keeps the protons apart even
in the singlet state. Fowever, this is effective only at
gquite low energies. Classically the closest distance of

approach 1is given by a.=ez/Ev,rwhere E. is the energy in the

20
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center of mass system. Due to the wavs nature of the parbi-
cles, the Coulomb field ¢cannot prevent the particles from
coming close tO"ether if their deBroglie wavelenzth 5\

bigger than d. This happens for energles greater than

4
Ec ~ 2:: (about 50 ev, i.e. 100 Fev in the laboratory

system). Tor enerples less than this value the nuclear scat-
tering is completely negligible, and the Wott formula (2.15)
describes the dcatte*lng as to both magnitude and angular
dependence. | |
There ig another energy of interest here, namely, the
‘energy at which the probabllity of finding two protons to-
gether is of the same order of magnitude as in the absence
of the Coulomb fleld. Tor energies above this value, the
nuclear scﬂtterlng will preﬁomlnate greatly over the Coulomb
scattering, except at small = oatterlnﬁ angles (i.e. distant
collisions). Note that, because of the symmetry of the scat-
tering.around 90 degrees, referenceé to small scattering
angles imply angles close to 180 degrees =s well as O degrees.
In betwsen these two energies strong destructive interference
effeqts will appear if the nuclear potentisl is attractive
(as is actually the case), the Coulomb interaction being re-
pulsive. The relative probability of finding two protons to-

gether as compared to the probability of finding two uncharged

particles together in the S-state is given by the Coulomb pene-

. - 2
. 2 2N . 2 2
tration factor ¢ =E‘TT-L-T (see Appendix L), wt eren-:;.—' For C

to be of order 1/2 or greater, T 00 Lev (in the laboratory
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system) . In.consequence, it is expected that the scaﬁter-
ing will be roughly Cpulombian for energies below 100 Kev,
will exhibit marked interference effects in the energy
range 100 Kev tb 800 ¥ev, and will be predominantly nuclear
in character for energies above 800 Kev {except at small
angles). These effects will now be considered in more de-
tail.

| The angular dependence of the cross-section (2.18) is
seen to involve the nuclear phase shift So , and so depends
upon the properties of the nuclear proton-proton force. It
is convenient to deseribe the angular variation in terms of
the ratio@l of the nuclear plus-Coulomb scattering given by
(2.18) to the purely Coulomb scattering given by the kott
formula (2.15). If the nuclear interaction is repulsive,
it will always enhance the Coulomb effect, so thatol-will
always be larger than unity and will have a maximum at-€=
90 degrees (where the Coulomb term has its minimum). The
behavior is more complicated if the nuclear interaction is
attractive (the actual situation). At very low energles,
the nuclear 'sc»atteringvis negligible, and R= 1. At ener-
gies above Ec-v Zmeh/hz , the nuclear interaction will give
rise to destructive interference effects that will make
R < 1 at all angles, with a minimum at € = 9Q degrees.
As the energy is,increased,él will still rgmain less than
unity, but the minimum at 90 degrees will c;ange into a ;
maximuh. With further inecrease in energy,él will stay less
than one for small angles, but will become gréater than unity

for angles near € = 90 degrees as the C_oulomb field becomes
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ineffective in keeping the ﬁrotons apart. In the limit of
high energies the nuclear scattering will predominate at
almost all angles, and ® will be much greater than one for
all angles (except extremely small ones) with a maximum at
© = 90 degrees (fomr example, R ~ 100 at € = 90 degrees
when T ~L Mev). There will, of course, be some small angle
'where the Coulomb scatterine and the nuclear scattering are
of equal magnitude, and destructive interference effects
will appear. Near»thatvangle, ® will be less than unity.
However, this effect is not very pronounced (see Figure (3.2a)).
Typical.cases for moderately lbw and high energies are
sketched in Figures (3.1) and (3.2) respectively. The ratios
®_  are shown in part (a), and the actual cross sectiens in
the center of mass system in part (b) of the figures. The

-1

values of the cross section are in barns (10
low energies (Figure (3.1)) the cross section has only one

| extreme, the minimum at €= 90 degrees. The interference
effects are pronounced even at 250 Kevj the scattering at

90 degrees is reduced to one third of the value predicted

© by the Mott formula (2.15). At higher energies, shown in
Pigure 3.2, the cross section shows a very different charac-
ter., It has three extreme values, a maximum at € = 90 de-
g‘ree‘s, and two minima at € = €, and W-Om : but these are’
not‘Véry pronounced and the region in the middle is relative-
1y flat (as would be expected from S-wave scattering alone).
As the energy increases the nuclear scattering is predomi-
nant; the minima in the cross section move away from 90‘de—

grees more and more; and the cross section becomes more and
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more isotropic except at angles less than {}m and greater
than 1T--€}m where the Coulomb contribution enters signifi-
cantly. The positions of the minima can be found from the

expression (2.18). TFor energies above 1 Mev the result is:

oae ©, 22 —;13-[3 + "“;l"“(aﬂ-‘o +TL45-$¢)] (3.1)

‘This formula can be used to determine an approximate value

for the phase shift So from the angular distribution of the
scattering alone without knowledge of the absolute magnitude

of the cross section. For this purvose it is convenient to

" rewrite (3.1) so as to be able to solve for so direétly:

M(zS,—m'n) ~ (Zaﬂwzém.- 1) (3.2)

Tt should be pointed out that this relation can give only
approximate values for S, gince (1) the minima involved are
rather broad and flat, and it is ¢orrespondingly hard to de-
termine the value of 49ﬁ , (2) the value of So is quite
sensitive to the choice of €& | LRTY ~ 5 in the energy

: m 36, :
range 3 to 10 Mev).

Tn view of formula (3.2) and considerations concerning

the minima in the angular distribution at-€© =@, , and

™T-6y the question arises as to whether or not a more

‘detailed analysis of the angular distribution alone might

allow an accurate determination of the phase shift. In
principle, the interference between the known Coulomb scat-

tering and the unknown nuclear scatteriﬁgAallows such a deter-

2L
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mination. Infpractice,.the accuracy attainablé is relative-
1y poor even with a careful analysis. The reason is that
over most of the angular range the interference phenomena

are not very pronounced. The nuclear part of the cross sec-
tion is practically independent of angle in the center of
mass system, while the Coulomb part varies rapidly with angle.
As a result there 1s, in general, only a very small angular
region where the two are of the same order of magnitude and
.interference effects become pronounced. In fact this region

is just the regzion in the neighborhood of ffm (and - € ) ;

a more detailed analysis of the angular distribution ylelds

1ittle more about the phase shift than does equation (3.2).
4is a conseguence, it is clear that absolute measurements are

necessary in order to determine the phase shifts with any de-

gree of precision, and %o obtain really useful information
£ ?

about the proton-proton nuclear force.

At any fized angle, the ratio GL of observed scattering
to Vott scattering is approximately unity at low energies.
As the energy increases, and the protons interact more close-
1y, the destructive interference between the repulsive Coulomb
field and the attractive nucléar interaction causes GL to de-
crease., With further increase in enercy (above E ~ 800 Kev,
as was seen earlier), the nuclear scattering is relatively
great, and the value afqttmcomes large compared to unity.
The destructive interference effects can be most easily ple-

tured in terms of an Argand dlagram on which a vector repre-

senting the Coulomb part of scattering amplitude (which depends
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on both € and E) and a vector representing the nuclear
part of the scattering amplitude (which depends only on

E) are plotted. The vector representing the total scatter-
ing amplitude will be the vector sum of the two component
vectors. The destructive interference will be most pro-
nounced when the two vectors are approximately equal in
magnitude, but opposite in phase so that thelr vector sum
is a minimum. At any given scattering angle there will be
an energy at which this situation is more or less approxi-
mated. At that energy, the greatest amount of .interference
with occur for that particular angle. The ratio GL will
be less than unity at that point. However, as can be seen

from Figure (3.2), the effect is not pronounced at small

scattering angles. The destructive interference is most
nearly complete at 90 degrees. The value of 0((90 degrees)
is plotted in Figure (3.3) as a function of energy in the
laboratory for the energy region where the destructive inter-
ference effects appear. The value of ‘R (90 degrees) from
(2.18) is:

T L e

®R(a0°) = (1 4’*"’) 7l

The minimum in @ (90 degrees) occurs when sin 8 ~ N
(actually ‘ ~*MN - 0461134- ves)e The value of sin S/n
will increase with energy, both because S will increase

as the nuclear force comes into play more and more, and
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Figure 3.3: Ratio of observed to ott scattering at a
scattering angle of 90 degrees in the center of mass system,

The destructive interference is most pronounced‘near LOO Kev,
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because 11_1 increases as EE; R (90 degrees) will rapid-
- ly become large compared to unity.

It should be pointed out that, while it has been assumed
Here from the beginning that the nuclear proton—prbton inter-
action was attractive, the historical development was quite
the opposite., Experimentally, it was observed that the cross
section had the behavior shown in Figures (3.1), (3.2), and
(3.3). From this, it was found that 80 must be positive,
and hence that the nuclear proton-proton force must be an

attractive one, @t least in the singlet S state. The de-

_7

tailed behavior of 80 with energy led Breit and coworkers(l):

to conclude that the proton-proton force was of the same
“order of magnitude as the singlét neutron-proton interactioﬁ.
The discussion so far has been mainly concerned with the
qualitative aspects 6f the angular distribution of the scat-
tering, It is of interest to examine in passing the total
cross section, as would be observed in a transmission-attenu-
ation eXperiment such as those normally done in neutron-pro-
ton scattering. Such an experiment would be useful if the
nuclear contribution to the total cross section was appreci-
able compared to the Coulomb effect. The first point to be
made is that the differential cross sections given by (2.15)
or (2.18) actually give an infinite result for the total
cross section due to cosech-€¥/2 divergence at small angles
of scattering. This is because the Coulomb field was treatéd

as "unscreened”; that is, it was assumed to be exactly of




the form 1/r even at large distances., Such an unsereened
field produces a slight scattering of protons making even
the most distant collisions, and leads to an infinite total
cross section. Actually, the incident protons are scattered
in hydrogen gas, or a hydrogeneous foil; The boﬁnd electron
- around the target proton shields those protons making dis-
tant collisions from the Coulomb field of the target. This
leads to a cut-off of the cosec & /2 dependence at small
angles and makes the total croés section finite. The efféct
of the electronic screening can be accounted for approximate=~
ly by Writing the screened Coulomb field as:

T (r) = (e?/r) o (F/20)
where aj is takeh as the first Bohr orbit of the electron

2 » Mg being the electron mass, It can be

i.e. ay= ‘Ez/mee
easily.shown that the classical Rutherford cross section

(2,14) is modified by the screening to be:
| 2 \2 | -
0gc (@) =(——-" ) z % (3)
Sc M2 (_"a'-n) e aa % :

where, to avoid confusion, the nuclear reduced mass has
been replaced by M/2 (M = proton mass). (3.4) implies that
for large angles the écattering is the same as in the un-
screened}case, while for angles smaller than the critical
angle '6‘0 o> (2 me/M)Tl the differential cross section is

essentially constant at a value:

28
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Note that this value is independent of energy. The fact that
there is_a nuclear interaction present does not change things
appreciably at small ahgles since the Coulombian effect pre-.
dominates gréatly there. TFigure (3.4) shows the differen-
tial cross séction for proton-proton scattering taking into
account the screening due to the electron in the hydrogen
atom. The figure is greatly exaggerated in scale, The
angle £} is actually extremely small, and the corrﬂspondlng
value of d‘(€} ) extremely large.

With Figure(3.4) in mind, it is possible to discuss the
usefulness of a transmissioﬁ experiment in which the total
cross section is observed, rather than the angular distribu-
tion. The critical quantity by Which the usefulness of such
an experiment can be judged as far as nuclear forces are con-
cerned is the ratio of the contributions to the total cross
section made by the predominantly nuclear scattering as com-
pared to that made by the predominantly Coulomb scattering.

The scattering from €©_ to 90 degrees is almost isotropic

m
(see Figure (3.4L)), and is due to the nuclear interaction.
The scattéring from zero to 4}m varies rapidly with angle,
and is mainly Coulomb scattering. The significant ratio is

then the ratio of O (©) integrated from £}m to 90 degrees
and O (€ ) integrated from zero to €)m. It will be suf-

ficient to consider only a part of the latter integral,

29
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Figure 3.4: Differential cross seection in the center of
mass system, shoiwing schematically the effects of the

screening by the orbital electron,




namely the integral of a~(-©) from zero to ©,. This in-

tegral is approximately given by :

<
2
c =20 | (AY4 040 =4T
Q . "h_g”
For energies where the scattering is still mainly S-wave,
the nuclear contribution will be less than the integral of
A\ ? = (21’1/Mv)2 from zero to 90 degrees (i.e., pub sins =

“and replace 4} by zero).

4N -‘= - (Zjh)4duh€%d£}-:= 31‘(£€§52.

The fatio bfﬁthe nuclear contribution to-the Coulomb con-
tribufion is:

N/c < 2(m/M)2 << 1
This ratio is so very small that, even at energies of the
order of 100 Mev where highér angular momenta {(up to.ﬂ ~ 5,
, or so) contfibute appreciably to the scattering, the nuclear
part of the total cross section will still be small compared
to the Coulomb part. Thus transmission-attenuation experi-
ménts below 100 Mev will certainly yield no information
about_the ﬁroton-proton nuclear force. OFf courge, for cos-
mic ray energies the deBroglie wavelength of the protons
‘will be small compared to the range of the nuglear forde,’

and the nuclear scattering will become constant at the geo-

30

metrie cross section. Then the effect will be mainly nuclear,



and transmission experiments would give information on the
specifically nuclear interaction, The problem would then
‘not be one of elastic scattering alone, but would involve

meson production and so on.
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(L) Determination of the phase shifts from the experimental

cross sections

The techniQues of determining phase shifts from the experi-

mental data have been described in detail by Breit, Thaxton
and Eisenbud(l), and in other papérS'by Breit and collabora-
tors. The essential formulae are tabulated in Appendix l,\\
including the formulae for the analjsis including £.== 1 and
‘L = 2 nuclear phase shifts., It will suffice to describe a
somewhat simpler formula for the phase sﬁift than has been
given previously, and to tabulate the few auxiliary formu-
‘lae necessary for its use. Also to be described is a rapid
method for analyzing the effects of waves of higher angular
momenta which is valid if the corresponding phase shifts are
small,
t If waves of higher angular momemnta do not contribute
appreciably to:the nuclear scattering, the differential
cross section is given by (2.18). The form (2.18) is in-
convenient for evaluating So because the interference term
involves So‘in a complicated way. Breit writes (2.18) in
the alternative form given by (Al.10). A still simpler form

is:

o) = o] 4+ (s - smesrw)) | w1
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where O is given by (2.15), 0) and ¢ are known functions
of © and E defj,ned.by formulae (Al.11) and (Al.12). Rapid-
1y convergent expansions for q and sin®W in powers of E-l
(E =energy in laboratory system) can be found from their
analytic definitions. Such expansions are tabulated in
Table (Al.l) for scattering angles from 4O to GO degrees‘
(center of mass angles). The expansions for Ty (&) are
also'given in Table (Al.l). The corresponding equation for

813 is readily seen to be:

25, = i ("‘;“‘*’_‘t(‘z'ﬁ) - w (ha2)

where &= o(e)/ 0"M(e) is the ratio of observed scatter-
ing to that predicted by the Mott formula (2.15) (see éectibn
3). The use of (4.2) in conjunction with the expansions for
g and sinuolgiven in Table (Al.l) gives a rapid and simple
means of determining the S-wave phase shift from the experi-
 meﬁta1 cross section. A formula for 2 £0 closely related to
(L.2) hag been given recently by Gritchfield.(lh)

It is found that for angles less than 40 degrees the ex-
pansions for q and sinW do not converge sufficiently rapid-
ly to be convenient. For these angles @, defined by (A1.15),
and tan®) yield useful expansions. The relation between Q
and g is:

g = Q cos W

Thus (4.2) is replaced by:
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g_go = A 1(4—%\“’ _Qmm'(a-i)) - w (L.3)

In table (41.2) the expansions for Q, tanw , and O‘M(G)
are given for angles from 16 to 4O degrees.

It should be noted that (h.2) or (4.3) leads to certain
}ambiguities as to the sign and magnitude of 2 $0+w (due to
the fact that an angle is not uniquely determined by the
value of its sine). The correct valﬁe af'gc,cannot be de-
.termined from;fhe value of the cross section at one angle and
energy. As was pointed out in Section 3, it is necessary to
know the magnitude and angular distribution of the scattering
as a fuhction of energy in order to determine the correct
sign and magnitude of the phase shift, TFor eiample, supposé
\the correct value of So is o . ¥or S-wave scattering alone,
ol would be independent of scattering angle. TNow (4.2) or

(4+3) allows another solution, So = W/2 ~w-oL. However,

W= W(e) so that S; would have the dependence on scat-
tering angle characteristic of W ; hence this solution could
be excluded provided the scattering were known at more than
one angle. TPhysically, the phase shift can be seen to ap-
proach zero very rapidly at zero energy (actually, 8'~ e"zml
for small k (large‘q ), from (1.2) and (1.3)) because the

Coulomb repulsion keeps the protons apart, far outside the



range of the nuclear force., These facts plus the assumption
of a smooth functional dependence on energy allows one to
determine the correct value of SO._

All the necessary machinery for the determination of
S-wave phase shifts from the experimental cfoss sections is
given in Appendix 1.

The analysis of experimenﬁal crossbsections for P-wave
and D-wave phase shifts by means of the formulae (Al.l) and
(Al.5) is cumbersome and invelved. A guick and relatively
easy method for such analysis can be found under the assump-
“tion fhat the higher phase shifts 81 (P-wave), and 82
(D-wave) are very small. Such an assumption igs expected to
be valid for energies below 10 Mev, where the data can al-
most be fitted by a S-wave phase shift SO alone., It is

reasonable therefore to introduce the concept of an ”aggarent

S-wave phase shift" Saa defined as follows: The experimen-
tal cross section at a given energy E and angle & is a func-

tion of the phase shifts So, -Sl, Sz,.....

e (B, §, 55, )

The apparent S-wave phase shift S is defined by setting

a
all the higher phase shifts equal to zero and solving for

the resulting "apparent” 8 o°
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o = (E,& 8,0, 0,.--) (h.5)

If the higher phase shifts are actually zero, the apparent
S-wave phase shift will be equal to the true S-wave phase
shift, and will therefore be independent ofAthe scatiering
angle & at any one energy E. If the higher phasé shifts
are not zero but still small, SEivﬁjl be a slowly varying
function of “© at constant energy E. Under the assumption
that Sl’ 82, ...are small, (4.4) can be expanded in a

Taylbr series in the higher phase shifts.
aar] S )a‘) S |
- - + + — + - -

Similarly (L.5) can be expanded in a Taylor series in the

difference between the true and epparent S-wave phase shifts.
=a~(E95 oo...) +( (da—d,)*+---
a . IR I P R A 'b‘,

Fquating the two expansions, and keeping only the linear

terms yields:

3‘ = S, +1¢1 81 h&n,_ S,_-u_-_--- (4.6)
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where

3g)
n(E.8,8) = ——
FalE.S T )

385

The partial derivatives are to be taken at the correct value
of So but at81=82= cee = 0,
At this point the method does not appear to be at all

(4.7)

advantageous since the unknown phase shift 80 enters into
the functions.pn. However, these functions do not devend
very critically upon. 80. The Schwinger expansion (1.3)
allows a rapid interpolation or extrapolation for the phase
shift 30 at an energy E from the measured phase shifts 80
at other energies. Hence 80 = SO'(E) can be found approx=~
imately and used to computie the functions Pn (E, ©, 80) =
Py (E,G) once and for all. The results of these computa-
tions for Py and py, are given in Tables (A2.1) and (42.2)
and Figures (A2.1), (A2.2), (A2.3), (A2.4) of Appendix 2.
The explicit forms of the functions Py and p, are stated
there, as welllas the values of the coefficients in the

)e

If only the S-wave and P-wave phase shifts have to be

=l

Schwinger expansion used to obtain 80 (

taken into account, formula (L.6) shows that for any one
energy E a plot of the apparent phase shift Sa vs. py(€)
should be a straight line with intercept So and slope 81.

If the plot turns out to have some curvature, this can be the
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result of two causes (aside.from experimental inaccuracies):
the phase shift 81 may be too large to allow the linear ap-
xproiimation to be valid, or higher phase shifts (eg. 8;9

may enter significantly. As to the first possibility, es-
timates show that with the best experimental accuracies at-
tainable the linear approximation is valid as long as the
P-wave phase shift is less than 'n.radians (less than 2 or

3 degrees at 10 Mev). If the D-wave phase shift is respon-
sible for the curvature; one can assume a trial'value of Sll
and plot Sa - slpl(e) vs. po(®). The resulting plot
-8hould be a straight line with intercept Sc)and‘SIOPe Slzo
The trial value of SJ_iS then adjusted until the best linear
£it is obtained. |

This analysis‘is not only quite rapid, but it also shows
gquickly whether the data are consistent with a small P-wave‘
anomaly, or whether D-wave effects have to be included also.
In view of the conjecture of Serber(IS) that the exchange
character of the nuclear forces is such as to give no nuclear
force at all in states of odd angular momentum, this feature
of the method may be quite useful.

Another advantage of the method 1s that one does not have
to worry about those Systematic experimental errors which af-
fect all angles of scattering equally (eg. error in pressure
measureﬁent, or eurrent calibration) as far as the values of

S1 or 82

small angles of scattering (which are likely to be less ac-

are concerned. Zxcept for the points at very



curate anthw because of the very rapid variation of the
Coulomb part of the cross section with angle), a small error
of that type will shift all values of the apparent phase
shift by about the same amouht,‘without changing the slope

of the Sa vs. Dy (&) (or Sa - by S 1 ¥S. Py (fi))i

plot appreciably (see discussion later on, and Figure (L.l)).

(16)
Breit, Kittel and Thaxton have pointed out that the

presence of a tensor force in thevBP state COmpliQates the
.analysis of the scattering data, since three P-wave phase
shifts are then required to fit the data, namely S(BPO),
S(BPi) and S(BPZ). However, their formulae show that
to the extent that one can restrict oneself to the terms
linear in the P-wave phase shifts, they enter only in the

combination

31 = 3 (3P) +25(2p) + & $(e) .

3

This is to be expected since the 3PO, 3Pl, P, states have
the statistical weights 1/9, 3/9, 5/9 respectively. The
combination S (4,.8) enters the scattering cross section
in exactly the same way as if no tensor force ezisted-l
Hence the tensor force matters only if the P-wave phase
shifts are large enough that thelr squares cannot be neglec-

ted. In this connection it should be pointed out that the

combination 8& (4.8) could be very small due to cancella-
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tiohs even though the component S‘s are apprecisble in
magnitude, so appreciable, in fact; that the simplified
scheme of analysis given here will not be valid. Thus, in
addition to the two causes of curvature in the Sa_vs. P
plot given above, the possibility of an appreciable tensor
force contribution in the P state must also be included.
There is, of course, no tensor force effect in the D-wave
scattering.

Before examiniﬁg the experimental data in detail, some
discussibn will be made of the effects of systematic errors
in cross sectiocn and energy measurement and their relation
‘to the effects of P-wave and D-wave anomali;s. This will
allow a better understanding‘of the detailed analysis of
the experimental measurements which follows. In addition,
such considerations are of use to the experimentalists direct-
ly. Tnformation telling at what angles the scattering cross
section is sensitive, or insensitive, to the preseﬁoe of P or
D-wave effects, and at what angles érrors in measurement of

0~ and E affect the phase'shifts most, etec. is of value in
the planning of experiments so that a maximum of useful in-
formation cen be obtained with a minimum of effort. |

Tt is necessary to have a means of estimating the effects
of errors in @ a2nd E on the phase shifts sco that reasonable
account can be taken of experimental uncertainties when plots
of Sa.vs. pl(i}) or p2(€¥) are made. TFor this purpose,
tables of O ~( 9 Sa /»bd‘ )E and E{ 9 Sa/ pY -E)r‘ are

given in Appendix 3. These tables extend the earlier tables




(1)
of Breit, Thaxton and Eisenbud to smaller angles and

higher energies (scattering angles from 16 to 90 degrees,
energies from .175 Mev to 10 kiev).

. To facilitate an understanding of the angular depen-
dence of these various efrfects, the first-order changes in
the apparent S-wave phase shift due to errors in cross sec-
,tioﬁ, beam energy, presence of P-wave anomaly. and presence
of D-wave anomaly are shown in Figure (4.1l) for E=5 Hev.
AE (= .01 X ()Sa / o> E)g-) is the change in the apparé
ent S-wave phase shift dvue to a one percent change in beam
energy; Ar (= .01 o { BSa /30“ )AE) is the effect pro-
duced by a one percent change in scattering cross section;
'AP (= pl(é)) is the change in the apparent S-wave phase
shift due to the presence of a P-wave phase shift of one de-
gree; AD (= p2 (€~ )} is the change due to a D-wave phase
shift of one degree. The curves are drawn for & =5 Mev, but
the general behavior is typical of energies in the range 2
Yev o 15 ifev (the upper limit being set at that energy where
the P- and D-wave phase shifts cease to be small).

The first point to be noted is the flat central parﬁ of
the Z&E and A g~curves with the sharp rise at either end.
The flat region in the center is due to thé fact that the
nuclear scattering is predominant at these angles, and being
mostly S-wave écattering is isotropic in the center of mass
system (see Figure (3.,2)). Thus errors in energy and cross

section affect all angles equally as is shown. The sharp
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phase shift as a function ofAscattering_angle at an energy 6f 5 Mev.,



rise at either end is due to the presence of the Coulomb
contribution to the scattering, and its predominance at small
angles. The nuclear scattering becomes a small part of the
total st these angles, and as a result, the sensitivity of
the nuoléar phase shift to errors in E and @ increases rapid-
ly. TIn the example shown, useful measurements much below
20 degrees {center of mass) would be practically impossible
ince they would involve prohibitive accuracy in the cross
section and energy determinations. Systematic errors in
energy and cross section (those that do not depend on angle)
are seen to be unimportant as far as P- or D-wave effects
are concerned for scattering angles greater than 30 degrees
(and less than 150 degrees, although measurements at such
large angles are experimentally unfeasible) since they add a
constant amount to the apparent S-wave phase shift indepen-
dent of angle. However, at angles smaller than 30 degrees,
such systematic errors would introduce angular dependent
changes in Sa’

The qualitative effects of a P-wave anomaly and a D-wave
anomaly are seen to be quite different in their overall angu-
lar dependence. The presence of a P-wave phase shift changes
the apparent S-wave phase shift more and more as the scatter-
ing angle moves away from © = 90 degrees.

The angular dependence of Z&P is essentisally cot” G (seé
equation {A2.4)). On the other heand, A is, for angles

D
from 4O to 90 degrees, very closely given by the second

L2
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Tegendre polynomial Pz(cosib)‘ At scattering angles less
than L0 degrees, l&t)deviates from Pz(cos © ) markedly,
going through anofher‘zero near 20 degrees, and increasing
rapidly (negatively) for still smaller angles.

The angular dependences of AS and l& in the region
from LO to 90 degrees explain why the data of Ralph, ﬁorthlng-
ton =nd Herb(l7) could be Fitted reasonably by either a P- or
a D-wave phase shift (see later on, especially Figures (Loh)
and (4.5)). If one ignores the intercepts of A P and AD
at € = 90 degrees, one sees that from € = LO degrees to
- & = 90 degrees (where their measurements were made) AP
and Zkz)have roughly the same kind of (parabolic) shape, al-
though of different sign. Consequently, the plois of S
pl(éi) and p2(€}) would leave little to choose from as to
which gave a better fit to the data. Ixamination of Figures
(4.4) and (L.5) shows that this is indeed the case. It
should be noted that measurements between 20 and 40 degreeé
where ZSP and Z\ differ radically in shape should discrimi-
nate between these two poss1b111t1es. The lower limit of 20
degrees is set by the increase in uncertainty of S due to
errors in E and @ as waS‘ment;oned earlier.

In brief, measurements at scattefing angles much less
- than 20 degrees become rapidly unproductive because of thé
high accuracy in cross section -and energy necessary to give

ussble velues of phase shifts. The presence of a P-wave

anomaly makes itself felt most strongly at small scattering



angles; the D-wave effects are most pronounced at 90 de-
grees, near 30 degrees and at angles less than 20 degrees,
with null points nearv55 and 20 degrees. Measurements at
angles between 20 and 40 degrees together with measurements
at larger angles can discriminate between P=- and D-wave
anomalies most effectively.

A discussion of the experimental data and the phase
shifts implied by these data will now be given. The data
at higher energies will be examined for P-wave (or D-wave)
effects wherever the accuracy warrants it. The following
~data are available at this time:

(1) Data obtained with Van de Graaff generators (in order of

increasing energy)- :
: (18)

BEKT: Ragan, Kanne, and Taschek have made measurements
in the 200 -~ 300 Kev region. Their high voltage apparatus
was actually a transformer-rectifier device, noﬁ a Van de Graaf
generator. However, for simpliclity their measurements hawe .
been grouped with the those made with electrostatic generators
as.distinct from data obtained with cyclotrons. These meas-
urements were mostly exploratory in character and do not
cleim very high accuracy. The points at © =90 degrees
(center of mass angle) were corrected most carefully for
various sources of experimental error;'therefore these points
were used to determine the phase shifts.
(19)

HHT; The data of Heydenburg, Hafstad and Tuve in the

670 - 870 Kev region were analyzed by Breit, Thaxton and Eisen-

bl



(1)

bud ~'. Later, Creutz(zo) re-analyzed these data obtain-

ing slightly different-results for the phase shifts. Creutz
looked for P-wave effects and found some; however, he inter-
preted them as being spurious. The S-wave phase shifts given
by Creutz will be used here.

HEKPP: The data of.Herb, Ferst, Parkinson and Plain(gl)
were taken with extreme care, and are still the most~accu-
rate data available to-day. Breit, Thaxton and Eisenbud
showed that these data, covering the energy region from
860 Kev to 2.4 Mev, could be interpreted in terms of S-wave
phase éhifts only (i.e. in terms of formula (2.18)). To
show how such a conclusion might be reached on the basis of
the simplified method of analysis for P-wave and D-wave ef-
 fects pfesented here the experimentallvalues of sa.for
E = 2.39 Mev are plotted against pl(o) aﬁd p2(-9-) in Fig-
ure (4.2). The number in degrees beside each point is the
séattering angle in the'center of mass system corresponding
to the particular point. It is seen that, within the experi-
mental uncértainties, the P-wave and D-wave phase shifts are
zero (the slopes of the lines drawn through the points are
zero), confirming the interpretation of BTE. The phase shifts
found by Breit, Thaxton and Eisenbud for these data will be
used in what follows.

BFLSW: More recently, Blair, Freier, Lampl, Sleator, and
Williams(zz} have extended ﬁhe measurements to higher ener-

gies (from 2.4 lev to 3.5 Mev). An analysis of these data
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by Critchfield( showed that they could not be fitted by

S-wave phase shifts only. Furthermore, Critchfield states
that a combination of S-wave and P-wave phase shifts still
does not give good agreement with the experimental data. For
comparlson, a plot of the apparent S-wave phase shift 8

VS, pl(ii) for the data &t 3.53 lMev is shown in Figure (A.B).
A slight downward trend of S with increasing pl seems to
exist,.indlcatlng a small P-wave phase shift of the order

of 0.13 degrees, with a negative sign (repulsive potential
in the °P state) . _Critchfield, by a rather different meth-

- od of enalysis, arrived aﬁ a value of =-2.3 degrees for the
P-wave phase shift at thié energy. In view of Figure (Le3)
such a large negative value of Sl_is rather difficult to
reconcile with the analysis given here.

T+ should be noted that the data represented in Figure
(L.3) do not appear to be incompatible with a zero or slight-
1y positive value for the P-wave phase shift. The experi~
mental errors are large, and it is felt that definite con-
clusions about P-wave effects cannot be drawn from these data.
Ag far as determining 81 is concernéd, the experimental er=-
rors shown in Figure (4.3) could be considered as over-esti-
mates since they include ali experimental errors, whether
they affect all angles equally or not (see earlier discus-
sion). Fowever, the scatter of the points themselves indi-
cates that the errors shown are not gross over-estimates,

and are probably quite reasonable. In conseguence, the
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in the 3P state is indicated.
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possible P-wave effects indicated will be ignored; only the
S-wave phase shifts will be utilized. These S-wave phase
shifts were cémputed'independently of Critchfield; the values
found are in close agreement with those found by him. He
does not quote any error for the phasé shifts. The errors
given in Table (L.l) appear to be reasonable from an exami-
nation of the experimental data.

RWH: The most recent Van de Graaff data are that of
Ralph, Worthington and Herb(l7), taken at the same energies

as that of the Minmnesota group. They state that the data

‘cannot be fitted by a S-wave anomaly only. A plot of Sa

vs. pl(ii) for their data at 3.53 Mev is given in Figure (h.4).

The experimental errors shown exclude errors in pressure and

current measurement (which affect all angles nearly equally),

and are assumed to be reasonable errors as far as the slope
determination is concerned., The two limiting straight lines
drawn on the figure indicate that the P-wave phase shift lies
between -.15’and -.L5 degrees (Ralph, Worthington and Herb
put it at -.30 degrees) i.e. a repulsive potential in the

3P states. Eowever, two additional views can be taken. If
one suspects that the experimental errors have been under-
estimated, only a slight stretching of the errors would make
the points in Figure (L4.4) not inconsistent with a horizon-
tallliﬁe i.é. oure S-wave scattering, with no P-wave effects
at all. On the other hand, from the discussion based on Fig-

ure (4.1}, it is clear thet the data could probably be fitted
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by a D-wave anomaly just as well as by a P-wave anomaly.
The fact that the points in Figure (L.4) lie on a smooth
curve, more closely than on any straight line might imply
such a thing, disregarding for a moment the relatively
large experimental uncertainties. The possibility.a D-wave

effect instead of a P-wave effect is illustrated in Figure

{L.5) where 8!a is plotted vs. p2(€}). The D-wave phase
shift (assuming the P-wave phase shift is zero) is seen to
lie between +.07 and + .24 degrees, and the points fall
along a straight line more clbsely than in the P-wave case.
The data at 2.42, 3.0L, and 3.28 Mev all give slightly bet-
‘ter fits to the D-wave anomaly than to the P-wave. However,
the D-wave phase shifts so determined are abnormally large.
If one assumes that the potentials in the g and;lD are the
same, the theoretical estimates (see Section 10) for 82
aré from 5 to 50 times smaller than the values implied by
these data, depending upon the well shape assumed. In addi-
tion, the energy dependence for 82 (and also for 83} in-
plied by the data is not at all reasonable. ’It‘is uniikely
that the slightly better fit to the D-wave anomaly is signi-
ficant in view of the relatively large experimental uncer-
~tainties and the possibility of unknown systematie errors.
As was indicated earlier, measurements between 20 and LO de-
grees would almost certainly settle this point.
There 1s even reason to guestibn the existence of a P-wave

effect. If one compares the pre-war values of apparent S-wave
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phase shift found by the Wisconsin group at 2.39 Mev (which,
were interpreted in terms of S-wave effects only - see Fig-
ure (L.2)) with the recent values at 2.42 Mev, one sees a
marked difference in trend and a considerable difference in
numerical values at the smaller angles. The overéll sceura-
éy of the present measurements is not significantly greater
than that of the earlier measurements. Because of this dis-
crepaﬁcj at the one point of overlap of‘the two sets of data
and all the other uncertainties involved, it seems unwise to“
draw any definite conclusions about P- or D-wave effects at
this time. Only the values of the S-wave phase shiﬁt from
these data will be used in what follows.

(2) Data obtained with cyclotrons

(23)

MP: May and Powell determined ﬁhe'ratio of observed

scattering to Nott ‘scattering at € = 90 degrees (center of
mass) with 4.2 lMev protons using photographic techniques.
The ratio has an uncertainty of about 6 percent, and is
thérefore of negzligible value to this analysis. The only
reéson for mentioning this experimental point is the fact
that it was used incorrectly by Lubanskl and deJager(zh).
Not only did these authors misstate the most prébable‘value
of the S-wave phase shift implied by these data (it is 52.7
dégrees rather than 54.0) but they also neglected to take.
into account the very large probable error ( + 2. degrees).
Since their analysis depends very critically on this parti-

cular point, their result cannot be considered as valid (al-




though,-by'a combination ofverrofs, it is rather close to
the truth).

g_ff Very reéently, Meagher(zﬁ) has made measurements at
5 Mev using photographic plate detection. A plot of the ap-
parent S-wave phase shift Sa_vs. pl(i}) is given in Figure
(L.6)., The horizontal line is the best fit td the points
near © =90 degrees (center of mass), assuming sl =0, It
is seen that the data allow such a fit, but that a line of
positive slope would provide somewhat better égreement. in
view of the fact that the (more accurate) Van de Graaff data
‘at 3.5 Mev indicate a zero or negative P-wave phase shift,
the slight positive P-wave phase shift indicated here should
bé taken very cautiously. Only the S-wave phase shift, de-
termined from the data near © = 90 degrees, will be used in
what follows. |

(26)

DOP:Dearnley, Oxley and Perry have used the same

technique at 7 Mev. They state that their data are in agree-

ment with a slightly negative P-wave phase shift., Figure (ha7)

shows a plot of Sa VS pl(-e-) which bears out this analysis.
The dotted line represents their values of the P-wave phase
shift (-.22 degrees) and S-wave phase shift. It is seen %o
give a reasonable fit to the experimental points although
the large éxperimental uncertainties allow considerable lee-
way. The accuraey of thé data is too low to draw definite
conclusions about the P-wave phase shift. It will turn out

later that the S-wave phase shift implied by these data is
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very hard to reconcile with the lower energy measurements
quoted above. A redetermination of the scattering at this
energy would be very desirable.

WC: Wilson and Creutz ()

have made measurements at 8
fev in which they determined the ebsolute value of the cross
section at 90 degrees (center of mass), and made relative
measurements at other angles. The accuracy of their absolute
measurement was about ¥ 5 percent. The data at other angles
based on the point at 90 degrees are consistent with S-wave
scattering only, but the accuracy is comparatively poor, and
a detailed analysis is not warranted. The value of.the S-wave
phase shift determined from these data is given in Table (4.1).
W: Wilson(ZS) has made relative measurements of the angu-
lar distribution of scattering at 10 klev. A theoretical

(29)

analyéis of his data has been given by Peierls and Preston
and by Foldy(BO)'with different resﬁlts. Preston aﬁd Peierls
find that the P-wave phase shift is approximately -0.8 deg-
rees, and state that a repulsive square well potential of
range 2.5 x 10 > and depth 10 Mev will give this value
of 81 at an'energy of 10 Mev., TFoldy claims that the data
imply a P-wave phese shift of about -0.4 degrees, in disa-
greement with Préston and Peierls. For comparison purposes,
Figure (L.8) shows a plot of Sa vs. p, (@) under various
féasonable assumptions as to the absolute value of the cross
section. The actual magnitude of 851has no meaning, only

the change with scattering angle is important. Accordingly,
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the differences Sa - Sa(900) are plotted. The errors
indicated are due to statistics only (about 2 percent). It
is seen that the overall variation of 10 percent in the nor-
malizing values for the cross éection at €& =90 degrees
produces a change in the relative position of the points

that is small compared to their statistical uncertainties.
The two dotted lines indicate possible extremes (-0.80 and
-0.12 degrees) in the value of Sl, while the solid 1line,
giving some sort of average fit, implies SJ_—- -0.5 degrees.,.

The analysis given here shows that (1) the data are sufficient-

1y uncertain to make any detailed interpretation doubtful;

(2) the data,‘éssuming no unknown systematic errors, imply

a small repulsive potential in the >p staté or else a small
attractive 1D potential, since, for the ang ular region in
question, a D-wave fit would give just as good agreement as

a P-wave {see earlier discussion); (3) the value of the P-wave
phase shift found here is more in accord with Foldy's value
than that of Preston and Peierls; however, the difference is
within the experimental errors.

WLRWS: Wilson, Lofgren, Richardson, Wright, and Shank-
1and(31) have made measurements at 1lL4.5 Mev, Their measure-
ments were absolute in nature, but relatively inaccurate.
The point at © =90 degrees was determined with more pre-
cision; accordingly it was used to evaluate the S-wave phase
shift, It is seen from Table (4.1) that the uncertainty in

the phase shift is guite large (as is true for most of the



cyclotronAdaté).

The values of the S-wave phase shift for all the experi-

mental data are gathered in Table (4.l1l). For the data of
- (18) 22)
RKT( and BFLSW( the agreement with the phase shifts

given by Bethe(7) is satisfactory. The quantity K defined
by equation (1.2) with its probable error is also given in
the table for each set of experimental data. The analysis
of the experiments in terms of the function K will be taken
up in the next section. Appendix 3 gives the values of the
apparent S-wave phase shift which were used in the figures

of this section, as well as stating how each of the S-wave

phase shifts in Table (4.1) was determined.
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Table 4.1as

Data obtained with Van de Graaff generators

k2 = 1.205 102% B(MEV) cm~2
Energy |S-wave phase 71 h{N,) K Okéfn Source
(MEV) |shift(degrees lO“gm"d
1765 | 5.78 + .35 |.376 .552 | 3,79 +.16 | .213 | RKT
.2002 | 6.80 = .32 |.353 600 | 3.82 +.14 | .241 | RKT
22259 | 7.82 + .30 |.333 64l | 3,87 +£,12 | .272 | RKT
2495 | 9.03 + .30 |.316 686 | 3.83 +,11 | .301 | RKT
2753 |10.06 + .28 |.303 2719 | 3.82 +.09 | .332| RKT
2983 10,96 + .26 |.289 .758 | 3,91 +.09 | .359 | RKT
o321 11.82 + .30 |.279 2787 | 3.93 +.15 | .387 | RKT
670 |24.68 + 40 |.1931 |1.111 | 4.00 +.10 | ,807 | HHT
2776 |27.12 + 40 (,1795 | 1.178 | 4.12 +,08 | .935 | HHT
867 129,32 + 40 |.1697 |1.230 | %.17 +.07 |1.045 | HHT
860 29.28 + 40 |.170% | 1.226 | 4,15 +,03 |1.036 | BKPP
1.200 |35.9% + 4O | 1hlh [ 1,383 | 4.32 +.03 |1.446 | HKPP
1.390 |38.76 + 4O |.13%1 [1.%53 | 4.41 +.03 |1.675 | HKPP
11,830 [4h.02 + .40  [.1169 |1.586 | L4.59 +.02 |2.206 | HKFP
2,105 |46.18 + 40 |.1090 |1.653 | 4.72 +.03 |2.537 | HKPP.
2.392 |48.08 + 40 |.1022 |1.716 | %.85 +.03 |2.883 | nKPR
2.42 48.2% + .50 |[.1016 {1.725 | 4.86 +.05 [2.917 | BFLSW
3.0k 50.95 + .50 ,09065 1.83% | 5.15 +.06 |3.664 | BFLSW
3.27  151.89 + .50 |.087k |1.870 | 5.24 +.06 {3.941 { BFLSW
- 3.53 52.58 +..50 |.0841 |1.907 ‘5;36 +.07 {4,254 | BFLSW
2,42 47.91 + 40 |.1016 {1.725 | 4.90 +.05 |2.917 | RWH
3.0k 50.80 + .30 [.09064] 1.83% | 5.17 £.05 |3.664 | RWH
3.28 51.77 + .40 [.0873 |1.870 | 5.26 +.06 {3.953 | RWH
3.53 V52.2o £ .30 .0841 11.907 | 5.41 +.06 [4.25% RWH
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Table 4.1b: Data obtained with cyclotrons

Ene S-wav ha k2

(;;§§ sh;ft?ngr::s TL () . lOthm'2 souree
b2 52.7 + 2.0 L0771 [ 1.995] 5.83 +.30| 5.06 WP
4,94,07| 54,02 + .60 |.0714 | 2.070( 6.10 +.10| 5.91%.08| M
7.034.06/52.0 + .60 |.0598 | 2,243 | 7.63 +.11| 8.48+,07|DOP
8.0+.1 |52.7 + 2.0 .0559 { 2.31 8.00 +.40| 9.64+.,12| WC
14.5+.7 |52.2 + 3.5  |.0415 | 2.61 | 10.78 +.80|17.5 +.8 |WLRWS




(5) The determination of the variational parameters from

the experimental data

In the definition of K (1.2) the function h(M ) was not

defined. The definition of h(M) is:

r'- ~"l) A (5.1)
A = Ry TN

Here Ra stands for the real part of the logarithmic deriva-

tive of the I - function. The function h{(M ) is shown plot-
‘ted against energy in the laboratory system in Figure (5.1).

Tor more accurate work h(M ) can be written in the form:

= i

2 (5.2)

L(‘n_) = —jfn'ft - 0.57Z4... +

m-.n\(m-+ 2)

where 0.5772... is Euler's constant, and the sum in (5.2)
is plotted as a function of N in Figure (5.2). This sum
is a slowly varying function of energy, and for energies
over 200 Kev enters only as a small correction term. This
formula (5.2) in conjunction with Figﬁre (5.2) gives con-
siderably more accuracy than is necessary considering the
uncertainties in the experimental data.

The values of ¥ (1.2) determined from the experimental
data were given in Table {(4.1). These values are plotted

against k2 (i.e. against energ gy) in Figures (5.3) (Van de Graaff
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Figure 5.3: The experimental values of K as a function of k2 for the Van de Graaff data,

The best shape-independent approximation is shown, along with two parabolic fits to the

data, k? = 1.205 x 10°k ©m (Mev) om~?.




data) and (5.L) (cyclotron data). It is obvious from Fig-
ure {(5.3) that the Van de Graaff data allow an extremely
good straight line fit. The best straight line is drawn in
on the figure. Its parameters, as determined by a least
squares analysis with proper weighting df the data according
to the probable errors given in Table (4.la), are:

-R/a = 3,755 * ,024

(5.3)
-2L 2
%;Rro = 0.382 % ,010 x 10 cm
=1
ro= 2.65 % ,07 x 10 > cm.,
. | . (18) 4
Since the data of Heydenburg, Hafstad and Tuve are comn-

sidered unreliable because of possible systematic errors, it
is of interest to determine the best linear fit to the data
omitting the EHT points. When such a fit is made, the re-
sulting values for the coefficients are:

-R/a = 3.757

%Rro = 0.381 x 10-21’L cm2

These values are seen to be almost exactly the same as those
given in (5.3).:

Having determined the best values of the coefficients
in the expansion (1.3) for the shape-independent approxima-
tion, it is pertinent to ask Jjust how much the data delimit
the shape of the nuclear potential. The seemingly obvious

method to answer this question is to make a least squares
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fit tovthe data with a polynomial of higher order in k2
than the linear approximation; and thus determine higher
coefficients in the expansion which are sensitive to poten-
tial shape. However, the probable errors of the data are
so large that such a determination becomes meaningless.
One must therefore resort to a somewhat less direct method
of approach. For that purpose it was assumed that the terms
in k6 and higher powers of k in (1.3) do not contribute ap-
preciably to the value of K. The one remaining shape-depen-
dent parameter, P, Was then assigned various values and least
squares fits Wﬁre made to the data. Two typical "best fit”
parabblas are shown in Figure (5.3). Thése two parabolas,
with P=+ .22 and -3.5, appear‘to be excluded by the experi-
mental data. The large asyummetry in the values of P for
curves which appear essentially as mirror images of each
other in the P = O (shape independent) curve is due to the
fact that the quantity in the expansion (1.3) which deter-
mines the curvature is Prg R, not P, TFor P negative, the
"besf" value of T is smaller than for P = 0; for P positive,
it is larger than for P = 0. Hence, to give the same valué
of IPrg Rl , P will be much larger for negative P (ro is
smaller) than for positive P'(r0 larger).

The cyclotron data are plotted in Figure (5.4). The
point. of Meagher at 4.9 Mev is reasonably accurate and is

seen to lie fairly close to the extrapoclated best linear fit
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to the Van de Graaff data; it might have been used in the least

squares analysigs above. However, the other points (except




the DOP point at 7 Mev) are rather inaccurate, and it was
felt that until the accuracy of the data obtained with cy-
clotrons is improved, all cyclotron data should be consis-
tently excluded from any least squares analysis. The pecu-
liarities of the DOP point will be examined below.

In epite of 1its relétively poor accuracy, the cyclotron
data can be used in a qualitative way to narrow the limits
on P somewhat. In Figure (5.4), in addition to the best
linear fit to the Van de Graaff data extrapoclated to higher
enerzies, several "best f£it" (to the Van de Graaff data)
‘parabolas are shown for comparison. The data are seen to
exclude any large positive value of P, and perhaps any posi-
tive value of P. They aré also seen to exclude negative
values of P as large (negatively) as 3.5. In fact, except
for the DOP point at 7 Mev, these data seem to exclude nega-
tive P's appreciably greater than 0.5. The DOP point, on the
contrary, implies that negative values of P less (in absolute
value) than 0.5 should be excluded. Such a conclusion is
difficult to reconcile with the other cyclotron data,'in
particular the WLRWS point at 14.5 Kev, and'presents a puz-
zling situation especially with the accuracy claimed for
this measurement. It seems reasonable to ignore the DOP
point in this connection, and to say that the cyclotron data
indicate that appreciable positive values of P are improbable;
and that P lieé most likely in the range + 0.15 to -0.8.

Tor each assumed value of P within a reasonable range




( +.2 to -1.0, as far as the Van de Graaff data alone are
concerned), one gets a npestt value for the scattering length
a and the effective range I, by the least squares fit. The
values of a and ro can deviate around thelr *best" values
somewhat without destroying the fit to the data entirely.
For‘example, foriP=()(shape-independent approximation) the
possible deviations are given in (5.3) by the probable errors
attached to a and ro. One therefore gets an allowed region
on a plot of a vs. P and also on 2 plot of T, vs. F. These
are shown in Figures (5.5) and (5.6) respectively. The arrows
iﬁdicate that the déviations from the most probable value are
correlated i.e. if one picks a scattering length somewhat
smaller (more negative) than the best fit, the corresponding
effective range 1s somewhat larger than the best fit.

Tt will be seen from Figures (5.5) and (5.6) that the
hest values of a and rO depend considerably on the value
assumed for P,' Tn that sense the two term approximation to
the series (1.3) is not really shape independent (Since
p =0 in itself implies & certain shape of potential). The
reason for this behavior is the fact that there are no data
at all at zero energ (unlike neutron-proton scattering where
the best data are at zero energyAand at the negative energy
corresponding to the binding energy of the deuteroﬂ), and
there are only very inadequate data at energies lower than
200 ¥Yev. From that point of view it might have been advan-

tageous to. expand ¥ in a Dower gseries in the energy centered
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around 2 Mev, say, rather than sbout zero energy. The two
term approximation to a series centered around 2 Mev would
really be shape-independent i.e. the coefficients of these
two terms would then not depend upon the shape of the well
{the value of P), However, even though at present the best
data are in the region between one and three kiev, there is
no reason why very good data cannot be taken at lower and
higher energies. If and when this is done, the choice of
2 Mev. as the center point in an expansion of ¥ will be
just as arbitrary (2nd more tedious from a computing point
of viéw) than the zero energy center chosen here;

As an aid to planning future experiments it is of inter-
est to know how sensitive the function X is to errors in
cross section and energy measurements at various scattering
angles and energies. TFor that purpose the quantities
E%E—)d_and d"%—g;)shave been corgputed for the energy range up
to 10 Mev., These derivatives, when multiplied by the rela-
tive error in E and O respectively, give directly the re-
sulfing error in K. The phase shift 8; enters these deri-
vatives. As was done for pl(f}) etc., the linear approxi-
mation to K given in Appendix 2 was used to determine Sg(E)
over the energy range in question. This will not lead %o
appreciable error in the results, The quantities E(%%\rand
o*(aa—%)E are shom in Figures (5.7) and‘(5.8) for various
scattering angles‘(center of mass) as functions of the energy

in the laboratory.
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The curves in both Figures all show & characteristiec
behavior with energy. The curves of E(AE) are very similar
to those of 4'@%—) but with a constant displacement upwards.
At a given ancle, the curve of d‘é%—- decreases with energy
to a minimum, then increases rapidly to infinity at a certain
energy. Above that energy the function decreases in absolute
value from minus infinity, has another minimam, and then in-
creases (negatively) in & regular fashion.

The infinite value of 0‘@%)5( E(%—%a‘,) at a certain energy
does not mean that the value of K 1is infinitely‘sensitive to
‘errors in eross section (energy) at that energy. Rather, it

means that the error in XK will be of the order of the sguare
root of the relative error in cross section (energy). This
can be seen readily when one considers the cross section as
a function of energy and phase shift. At the singularities
in.GéﬂE) the cross section can be shown to be insensitive to
first order changes in thﬂ nhdse shlft depending only upon
second order variations i. e. f"'(AS) - This means that ¢ is
iasensitive to first order variations in K (since K is a
function of 8 and ), and henceAO‘""(AK)z'. In consegusence,
the curves cease to have more than qualitative meaning in
the immediate neighborhood of their singularities. Inves-
tigation shows that fqr the €@ =90 degrees curve the region
of non-valldlty is confined to an energy range of %15 Kev

about the singularity if the relative error in cross section
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is lesg than 10 percent, or £ 10 Kev if the relative error
is less than 5 per cent. Neasurements are not likely to be
made at exactly the energies and angles correspondlng to
these singularities because of the very high accuracy neces-
sary to get useful data. Hence the fact that the curves
are not valid in the immediate neighborhood of these points
is no serious drawback

One 1nterest1ng point is the behavior of d‘%d—.) at scat-
tering angles near 90 degrees at energles around 400 Kev,
This energy range is where the interference between Coulomb
and nﬂclear séattering produces the pronounced minimom in the
scattering (see Figure (3.3)). Exactly at the minimum (400
Kev) the value of "ex-)E at @ =90 degrees becomes infinite.
But on either side.of_the minimum it has a very small abso-
lute value. This means that on either side of the scatter-
ing minimum a very precise value of K could be determined
with reasonable experimental uncertainties. Long ago, Breit,
Thaxton and Eisenbud(l) arrived at what amounts to the same
conclusion from a different point of Vieﬁ, Measurements
exactly at the minimum (or within fiye or ten Kev of it) are
not useful because of the fact that (1) the errors im K will
58 proportional to the square root 6f the relative error in
o (2) tﬁe differential cross section itself 1s extremely
small (a few millibarns per steradian) SO that accuracy of
any sort is very difficult to attain.

Since a very accurate determination of K in the low energy



region seems both poésible and desirable, it is worthwhile

to discuss some of the considerations which enter into the
planning of such an experiment. ¥irst of all, with present
day machines with very good voltage control, it is not too
difficult'to keep the error in the voltage of the beam low
enough so that it does not_influence the value of K éppreci-
ably. A voltage controlled to + 0.1% is adequate for that
purpose (Figure (5.7) shows that the resultant unceftéinty
in ¥ is about X ,005 which is quite small compared to the
errors on the points in Table (h.lD.' Second, it is not pos-
'sible to eliminate certain systematic errors in the calibra-
tion of the yield of the apparatus; in particular, the cali-
bration of the current to much better'than * 1% seems to pre-
'senﬁ great experimental difficulties. This implies that one
should take measurements at energies ¥ not too far removed
from}the energy Emin
to take full advantage of the small values of o 3I</30‘)-E

of the interference minimum, in order

in that region. Third, the scattering cross section at the
ninimum eﬁergy is very small so that one encounters difficul-
ties due to the low counting rate and due toxin-scattering

from angles scattering different from 90 degrees (since the

scattering cross section is much larger at these other angles).

This implies that one should stay away from Emin as much as
possible. Clearly, the points 2 and 3 narrow down the useful
energy region to two strips at somewhat lower and somewhat

higher energy than the interference minimum. There remains

oL
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the choice of going either higher or lower in energy than
Emin‘ It appears that the behavior of the crogs section as

a functionAof angle implies that one should go to energies
somewhat above Emin’ since there the cross section is rather
flat around-O-: 90 degrees, whereas it rises rapidly on both
sides of 90 degrees at energies below Emin' Hence in-scat-
tering ought to be a much less serious effect at the higher
energies, allowing one to use wider slits and corresponding-
1y greater counting rates. In view of all these considera-
tions, the author would like to recommend measurenents of

90 degree scattering in therenergy region 420 - 450 Kew with
an energy definition of_i 0.1% and an overall error in c¢ross
section around #* 1%. 1In view of the fact that no effects

due to waves of higher angular momentum have been found at
considerably larger energies, an angular distribution measure-
ment seems to_be an unnecessary luxury here.

Figure (5.3) shows that a very accurate point around 400
¥ev would narrow down the possible values of the shape-para-
metér P considerably. Turthermore, it would make the varia-
tion of a end rgwith the choice of P much less pronounced;
i.e. the two-term approximation to the series (1.3) would
become much more shape-independent.

Breit, Broyles and Hull(Bg) have given arguments for
accuratebmeasurements iﬁ that same energy region. They claim
that such a measurement, in conjunction with the data at high-

er energies, will allow one to say something quite definite



about the shape of tﬁe well. Their argument depends upon
adjusting the well constznts to fit measurements at 1 and

2 Mev (or 1 and 4 Mev) precisely. In terms of a K vs. k2
plot, the situation envisaged by these authors is illustra-
ted schematically in Figure (5.9a). The two hypothetical
perfect points at one and two Mev, together with a very good
ac¢tual point around 400 Kev, determine the three parameters
of a parabola quite well. However, the author feels that
this is not a realistic approach tovthe actuzl situation.

In reality, the value of X at 400 Kev will soon be known

to much higher accuracy than at one or_ two Mev. The situ-
ation will then be as depicted schematically in Figure
(5.9b). The measurement at 400 Kev will provide a fulcrum,
so to speak; around which a ¥ vs. k2 plot will turn, but
this measurement will not determine the shape of the well

to anything like»the accuracy envisaged by Breit et. al.
Rather one will need to take measurements over a wider range
of energies, at least up to 7 or & kev, before the curva-
ture of the K vs, k2 plot (i.e. the value of P) can be deter-
ﬁined with sufficient accurécy to say sométhing about the
shape of the potential well. Breit et. al. point out that
in order to determine four parameters from the data it is
necessary to have two regions of sensitivity, and recommend
measurements near L00 Kev plus measurements above 10 Lev

for thié purpose. However, the analysis presented here ghows

that to determine even three parameters with any accuracy
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measurements must be taken over an energy range wide enough
to bring out the curvature (or lack of it) in the ¥ vs. kz
plot. In any event, the recommendation made here 1s in
agreement with that made by Breit, Proyles and Eull, even

though the opinions as to detailed interpretation differ

somewhat.



(6) Landau-Smorodinsky result and an approximate relation

between the neutron-proton and the

proton-proton scattering lengths.

Before describing the variational derivation of the ex-
pansion of ¥ (1.3) it is worthwhile because of the qualitative
understanding gained to examine the Landau-Smorodinsky result
for the energy independent approximation to (1.3), and to make
a simple extension of their result in order to relate the
neutron-proton singlet scattering length to the proton-proton
scattering length for the same nuclear poteptial.

Qutside the range of nuclear forces, the wavefunction

of the system of two protons satisfies the Schrodinger eqgua-
tion for a pure Gouloib potential. The partizl wave of zero

angﬁlar momentum satisfies:
[-(e%/ar®) + (/0] @) = & Qx) (6.1)

where Q(r) =7 ‘Po(r); R was defined in connection with the
expansion {(1.3); and k'2 = 2mE/ﬁ2 is the sguare of_the relative
wavenumber. The wave function (P(r) for the region outside

the range of the nuclear force can be written as:
Pir) = c(r) + cotd ®zr) (6.2)

where G(r) and F(r) are the irregular and regular solutions

of the eguation (6.1) describing two charged particles in an
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AS-state under electrostatic interactlion only. They go OVer
into sines and ccéines in the absence of the Coulomb field
(i.e. as R—» 00},

These solutions have been treated by Tost, Wheeler and
Breit(BB) and others, and are considered in some detail in
Appendix L4 where 21 expansion in powers of the energy is ob-
tained for ¢(r) analogous to that deduced by Beckerley(B@)

for F(r). ¥(r) and G(r) are defined in such a way that they

" behave for large r (kZRr >>1) like:

F(r) ~ sin (kr - M 1n 2 kr + d‘o) |
ol } (6.3)
v} ~ cos (kr - T\ln_ 2 kr +0‘“0)

- where M\ and d"o were defined in Section 2. Note that F{r)
is just the function Fo(r) defined by equation (2.12), and
that (P(ri (6.2) is proportional to the wavefunction (2.16).

8 is interpreted as the phase shift in Q(r) caused by the
speoifbically nﬁclear force i.e. the S-wave phase shift used
in the preceding sections.

For small values of r and low energies (kr «< 1 and

r £< R)‘ T(r) and Gl{r) become:

T(r) = C kr 1 +r/2R + ...) '
(6.4)

a(r) 1/c [ 1+ (/R) (n(r/r) + 2¥- 1 +a(N)) ool
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where

¢ = ;1:‘"' | | (6.5)
L -1

is the Coulomb penetration factor, and can be interpreted as
the relstive probability of finding two protons together com-
pared to the probability of finding two uncharged particles
together, other things being equal. h(M) is given by (5.1},
and 'f's 0.5772... is Euler's constant. In the sbsence of the
Coulomb field C2 =1, R =0 ; =znd Fir) and G(r) in (6.4) go
over into the first terms in the expansions of sin (kr) snd
cos (kr), namely kr and 1 respectively.

Iandau and Smorodinsky proceed to match the logarithmic
derivative of the wave function inside the nuclear potential
with the logarithmic derivative of ¢P(r) (6.2) at the boundary

of the nuclear potential, r times the logarithmic derivative

of Q(r) At r=Db (the range of the nuclear force) is:

| ,
f(b)sb%—f—g - (kb)c cots + (o/R) (1n(b +2f+_11l))

(6.6)

5
where terms of order (kb) and (b/R)2 etc. have been neglected.
The logarithmic derivative of the wavefunction inside r = b

is nearly independent of energy for low energies at least,
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since the strength of the nuclear potential is much greater
than the kinetic enerzy outside the range of nuclear forces.
Therefore f({b) inside is approximated by its value fo at E=0.

Putting (6.6) equal to f_, and dividing by b leads to:
2 S '
xC cotd + l/R[ln(b/R) +2¥ + (1N )] o~ fo/b (6.7)

Use is made of the relatlion 2kQR=1, and the singlet proton-

proton scattering length ap is defined by:

a;lz- -fo/b + 1/3[111(}&;) + 2’6‘] (6.8)

The result (6.7) can then be written as:

reiweord ) f (M- 1) wn() = Rlay  (6.9)

-

(6,9) is the result obtained by Landeu and Smorodinsky, and

served as the basis of their anzlysis of the experimental data.

The form (6.9) is seen to be the same as the expansion (1.3)

in the limit of zZero energy.

As was mentioned in Section 1, Landau and Smorodinsky

found that the "constant™” a;l was experimentally very nearly a



1inear function of the energy (see Figure (5.3)), and inter-
preted this correctly as meaning that a range correction was

necessary. They also showed that there will be a stable di-

proton if and only'if the proton-proton scattering length is

positive. The fact that a is actually negative implies that
there cannot be any stable H92 in nature. The beauty of this
argument lies in the fgct that nothing need be assumed about
the nuclear forces except the expefimentally known parasmeter a.

The neutron-proton formula equivalent to (6.7) is:

£/b=k cotd £ - a-Tl

+ ’.ark +l..

so that the neutron-proton scattering length aw is defined by:
X

a}'@l = -r/p © (6.10)
where fN/b is the logarithmic derivative of the zero energy
neutron-proton wave function at I-=t>(fprmally (6.10) can be
obtained from (6.8) by letting R->»o®))., As a very crude ap-
proximation one would expect that the Coulomb field would have
a negligible effect on the wave functlon so that one could
substitute fN for fo in (6.8) to get an approximate relation
between the two scabttering lengths. However, the terms in
ol in (6.8) are first-order effects due to the Coulomb field
ap that it is necessary to include the first order change in
the logarithmic derivative as well.

The firsﬁ order change in the logarithmic derivative

at r=Db due to a change in potential is (see Section 8, in

72
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particular equation (8.3)):

) b ‘
w0 [ 2] = - ) Wi (611)

o

where u(r) is the wave function inside the range of nuclear
forceg in the absence of the Coulomb field, and the (attractive)
potential is changed from W(r) -»W(r) + € W'(r). W(r) --1”"?()
. If the Coulomb potential is switched on in addition to the
nuclear potential, then T;‘-,’(r)qs-b"éf(r) - 1/Rr, that is, € =1/R
and W' (r) = -1/r., It is assumed that the nuclear potential

stays the samé, i.e. the comparison is between scattefing
"lengths for a given nuclear ppteﬁtial in the absence and pres-
ence of the Coulomb‘potentiai. Consequently, the logarithmie

derivative in the proton-proton case is approximately:

.ﬁ_o_(_';). ~ &.ﬂ_(_l.._'_ [,6—_(_") +--- (6.12)
b R o€ b
where the quantltles on the right hand side involve the neut-
ron-proton wavefunction. To evaluate —aaz[-&{—:lexactly one musv
know the wave function for the neutron-proton system inside

the range of nuclear forces. However, one casn obtain a reason-

XA
zb)

expression is exact for a sguare well potential with a depth

able approximation by using u & sin (6.11) (this

such that a%;== 0 i.e. resonance). The result is:



28BN & L a T - G < 09044

where Ci(x) is the cosine integral. Thus the logarithmic

derivative (6.12) is given by:

| a(b) &= - a:i +T‘l—(a.%z‘l')

b (6.13)
The proton—pfoton scattering length &p (6.8) is:
(6.14)

R

+ %[%(%) + o.sso]

~Where aN is the corresponding geutron-proton scattering length
:for the same nublear potential, and b is the "range" of the
nuclear force. s tlmates show that this relation (6;14) is
valid to within about 2.5 percent for the commonly assumed
potenfials which fit the proton-proton scattering data (see
Section 9). The values obtained for éP are low'in absolute
value by about 2.5 percent for the square well, and high in
~absolute value by the same amount for the Yukawa well. TFor
these numerical estimates the value of b was taken to be egual

to the intrinsic range of the potential as defined in reference

(2).




E Bethe(7 has obtéined-a relation quite similar to
(6.14) from somewhat different considerations, based on the
fact that at some distance of the order 1D the logarithmic
derivatives of the proton-proton wave function and the neutb-
ron—prbton wave function are equai.

(8)

C@ew and Goldberger have given a'ﬁore exact reiation
than (6.14), taking into account higher order changes due to
the Coulomb field. *Yhen more accurate estimastes of the scat-b
tering lengths are needed, one must resort to their formula,
or to the results of Section 9. However, (6.14) allows a
rapid cpmparison of scattering lengths and is useful as a.
first approximation.

The fact that an approximation for a accurate to only

P
a few percent is at all useful is connected with the closeness

-1

of the secattering to a wresonance at zero energy" (aP =0).

The value of a. is large comparéd to the range of the forces.

P
Tn consequence, a small change in the force strength iﬁplies
a large change iﬁ the scattering length. Conversely, an er-
ror of a few percent in the comparison of scattering lengths
for proton-proton and neutron-proton (singlet) scattering

implies an error of only a few tenths of a percent in the com-

parigon of the force-strengths..
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(7) The variational principle fbr scattering and the

expansion (1.3)

Since a detailed derivation of the Schwinger variation-
al method for scattering problems has been given in an earlier
paper on neutron-proton scattering(z), it will éuffiee to res-
trict the presentation to the special features which show up
when the method isvapplied to proton-proton scattering. It
will be assumed that there is only S-wave nuclear sdaﬁtering

n saddition to the Coulomb interaction. The guantity of in-

e

terest‘is the nuclear scattefing. Accordingly, the asymptotic
wave function {outside the range of the nuclear force) will be
made up‘of the Coulomb wave functions (6.3) in the linear com-
bination (6.2) with the nuclear phase shift s deseribing the
effect of the nuclear potential. |

The differéntial equation satisfied by the radial wave

‘funection u{r) = r ‘Po(r) is:

_ f&z "”f'*i'T w(x) = W(x)w(n) (7.1)

where “(r) is related to the nuclear potential V{(r) through

W(n) = = Z2Ar() = - BV 72
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M being the maés of the proton. W(r) is assumed to approach
Zero rap1d¢y outside the range b of tne nuclear force. |

In analogy with the uerlvatlon in reference (2) one in-
troduces a Green's function K(r,r') for the left hand side of

(7.1). XK(r,r') satisfies the equation:

[_ & . .i_.] K(aN) = § (rn-w) (7.3)

AN

and is given by:

K(an) = 5= F(rd) G (45) (7.4)

where ¥(r) and G(r) are the Coulomb functions (6.3), and rg¢
means the Smaller of r and r', r, means the greater of r and
r'. The derivation then proceeds just as before with sines
and cosines replaced by f(r) and G(r), respectively. The re-

sult for the variational principle is:

bab=_2e SW(A\u"(&)M J“JNJW(A)u(K) KWW (A) w(n) (7_.5)
s

tJW(A) w( F(x)dx
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(7.5) is stationary with respect to first-order changes in
u(r), as can be shown by direct substitution. ' |

To obtain an expansion of the form (1.3) from (7.5)
it(will be necessary to have expansions of the Coulomb wave
funetions in powersvof kg. As was mentioned in Section 6,
considerable work has been done on these functions. The main
results of Interest are given in Appendix 4. Séveral combina-
tions of Bessel functions arise in these expansions. To be
consistent, the following convention will be adopted: 21l the
auxiliary functions defined below approach unity_at r= 0,
Furt.hermore; in the limit R - o and'rl-b 0 (i.e. in the limit
of neutron-proton scattering) all these functions caﬁ be re-
placed by unity. Since the expansions for F(r) and G(r) must
reduce in that limit to the well-known power series expansions
of sin(kr) and cos(kr), respectively, this gives a simple way
of‘checking‘these_more pomplicaued expansions. The following

auxiliary functions will be needed (see Appendix L)

Ly(x) = nt (z/R)77% 1_(2f7/R") | (7.6)
T = 2 —in C
H (r) én'-l):(r/m K _(2]r/R') (7.7)
2_R

[Li(x) - my(0)]=1 - r/9m-... +
+(r/3R) (log(r/R) +2%)+...
(7.8)

3 r



(35)

Watson,

+cL h(q )

However, the expansions
auxiliary functions are

of r much less than R.

a(ry=ct ,[Hl(r) -

Here In(z) and Kn(z} are modified Bessel functions defined in
In terms of the auxiliary functions (7.6) - (7.8) and

the penetration factor defined in (6.5), the Coulomb wave-

functions F(r) and &(r) can be expanded as follows:

Flr)=C k r [Ll(r) - (l/6)(kr)2 Lz(r) + ] (7.9)

R~

(k)° m(z) + ]4-

(z/R) [Ll(r) - (1/6) (xr)° Lg(r)a-...]

(7.10)

(7.9) obviously reduces to the expansion of sin(kr) in the
limit of'neutron-proton scattering. The first line of equa-
tion (7.10) reduces to the expansion of cos(kr) in the same
limit, while the coefficient of the series in the second line
of (7.10) approaches'zero (the function h{Y ) was defined
earlier, egquation (S.l)). |

The shielding effect of the GQulomb field enters most-
1y through‘the penetration factor C. There is an additional
differential shielding effect which depends upon the distance

r; it appears through the auxiliary functions (7.6) - (7.8).

given in Appendix 4 show that these
quite closely egual to unity for values

This is due to the fact that the Coulomb
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‘potential at these distances varies very rapldly compared
to the deBroglie wavelensth of the protons; hence the po-
tential does not exert anywhere near as large an effect on
the wavefuncetion in that région as one would estimate by
just looking at its absolute value., This behaviour of the
Coulomb'wavefunctions implies that there is very little

diffe;ential shielding of the nuclear potential as long as

its range is small compared to R; i.e. elither all of the
nuclear potential is shielded or none of it, (rather’than,
say, the tail being aeoessible while the main inside part
of the‘potential is shielded.)_
The variational principle (7.5) can be used to obtain
a2 simple expression such as (1.3) for the energy dependence
of the phase shift S . To do this, the wave function u(r)
in (7.5) is replaced by a trizl wave function uo(r) which
is the_correct expression for u(r) at some particular energy,
say ki. Then the error in k cots will be in the terms pro-
portional to the square of the difference in the energies
(i.e. in the qoefficiegt of (k? - k§)2) bécause of the sta-~
tionary property of (7.5). It is most convenient to choose
Uy (r) appropriate to zero energy, and to expand (7.5) in
powers of k2, retaining the first two terms (since the terms
in kLP and higher are in error). This will be the "shape-inde-
rendent” approximation discussed above.

The two indevendent solutions of the equation for a free

rarticle at zero energy are 1 and r. The corresponding solu-



tipns for a particle of-zero energy in & rure Coulomb field
(i.e. solutions of equation (7.1} with k%= 0 andv’w(r)=0)
are Hl(r} and rl,(r). Hence the correct wavefunction (in-
cluding the effect of the nuclear potenticl ) at zero energy

will behave in the "outside" region (beyond the range of the

nuclear forces)} like

H
w

uy(r) ~ Hl(r) - (r/a) L Qo(r) for r»»b (7.11)

The cuantity a defined by this equation is the proton-proton
scgttering length which enters into the expansion (1.3).

2

(7.11) can be obtained from (6.2) in the limit k¥*—» 0. The

zero energy wave functlion uo(r) i1s conveniently written 1in

the form:

u (r)=H (r] - (r/a)l (r) - g(r)

‘ ‘ (7.12)
= g’(r) - z(r)
(o]

The function g(r) defined in this way is unity at the origin
and approaches zero rapidly outside the range of the nuclear

force. u,(r) is then substituted for the correct u(r) into

of
(7.5). The manipulation of the integrals is completely an-
alogous to that givén in reference (2). To terms of order

- .
k® inclusive, the numerator N of (7.5) becomes:

gl



: Y §
- | _
Ng-&éi)-a. +h’:([zk.(n)+z%l)nl.,(u) 3(&)]3@“& (7.13)
while the denominator D reduces to:

D = c"[i -thf":\Ll(A) 3—(")"‘"] E (7.1L)

The combination of (7.13) and (7.14) gives the shape-indepen-

dent approximation:

2% cot § = -n(M) - 2 +
R a

o~

rok? + 0(k¥) (7.15)

‘where the effective range r, for proton-proton scattering is:

: RN : |
To = ﬂ-f [‘Po"(&)-llf(’*):( dn | - (7.0

(7.15) clearly reduces to the first two terms of the expansion
(1.3}, This result was first derived by Schwinger(hl.
The next step is to derive the expressions for the k¥ and

the k® terms in the expansion of K (1.3). Since (7.5) is a

variational expression for k cots y an error of order k¥ in

the trial wave function implies an error of order k8 in the
result for k cots. Hence one can obtain the terms to order
k6 inclusive in the expansion of k cots by the use of a

trial wave function correct to order K2 only. The non-varia-




(7;8)

tional derivation of the expansion (1.3) would lead one
to suspect that a knowledge of the wavefunction to order k2n

gives the coefficients in (1.3). ohly up to the order k2n-h2

whereas actually it gives the coefficients up to order khn+-2.
This statement does not 1mply that these coefficients cannot:
be derived directly from the differential equation without
vafiation ?rinciples.f However, the derivation then involves
integrations by parts which are not always obvious. The |
variational approach makes it perfectly evident that the
corresponding expressions must exist, even'though the de-
tailed derivation is slightly more lengthy.

ﬁnlike the work of reference (2), the integral equation
will not be used to iterate on the wavefunctioi. ;&ther,-use
" will be made of the differential equation directly. The wave-

function u(r) is written as an expansion in £ =

alr) = u (z) + v () + K, (r) (7.17)

where only the first two terms need be considered_in order
to obtain terms up to k6 in the expansion (1.3). Substitu-
tion of (7.17) into the differential equation (7.1) and the
equating of coefficients in k2 leads to the differential
equation for vl(r):

Ax* RA

[- &, 4 —'W’(A)}N‘i(u) = \l,(h.) | (7.18)
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This equation must be solved (usually numerically) subject to
the initial condition vl(0)= 0. The solution is then defined
up to the addition of an arbitrary constant multiple of u(r)

(2)

which can be easily shown to be equivalent to a change of
normalization of the trial wave function and hence without
influenoe_on the final result. It is convenient»to normalize
u(r) {(i.e. vl(r) in this case) and its asymptotic form <P(r)
so that:

§(x)= 0 G(r) +0 cot ® F(r) (7.19)

§x)= @ (x) + x° K(x) « 1+ W () ... (7.20)

3
v (x) & W (r)E dr el (1) - ) 4221 (1) (7.20)

In numerical integration of (7.18) the solution obtained

will, in general, be of the form, asymptotiecally:

gy

-~

2
xl(r)-l' A q,(r)sﬁﬁl(r)+ErLl(r) - iri{r) + r3/6aL,_(r)

8L



Fromv(7.ll) and (7.21) it ie apparent that the following

relations hold:

A=D, 2o = E = v (7.22)
2 a

Since T has previously been determined by use of u (r) in
o
(7.16) =2nd a is known if uo(r) is known, the relations (7.22)
provide a valuable check on the results of the numerical in-
T

given by (7.19) and (7.21) 1s readily obtained by subtracting

tegration for vl(r). The convenient normalization for v

b

?O(r) from the result of the numerical integration.

In analogy to the»derivation of the shape-independent
approximation, the first two terms of {7.17) are substituted
into (7.5) as an approximation to u(r). In the reduction of

{7.5) to the form (1l.3) it is convenlent to define the Punc-

tion z{r) in analogy to g(r) by the equation:
z(r)= X (x) - v (1) | (7.23)

z{0)=0, and z(r) repidly goes to zero outside the range of

nuclear forees. From (7.18) it is easy to show that z(r)

catisfies:
2 |
(2 - )a(r) +a(r)=H(r)v. () (7.24)
-— r)yswWir)v_ (r .
d? Re Zir)+8 g J'l s
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The numerator N of (7.5), after some integrations by parts,

can be written as:

ad

¥o= pw(r)ulr) [u(r) - i(r)] dar (7.25)
0
where J(r)=CCG(r) - z(r) - kgz(r)
- = |
- kLP j’K(r,r')z(r')dr' (7.26)
o

Use of the differentisl equations satisfied by gl(r) and z(r),

together with further integrations by parts, yields:
) ) kS bl

Nc-":é_'“) a7t TA R+

uz"f [ 3 + 309 -5 +2 8+ LT 9F [ dn (7.27)

—&‘J; (A)[g(&) + 2 M(a) + 2800 20 L,(A)] dn

6 . .
up to order k  inclusive.

The denominator D is the square of the integral:

o
S/ Flr)v(rju(r)dr

o

Nilia

D

o |

Intesration by parts leads to:

o
2 [: 3‘j/ F(r) :]
D= C 1 -k -E—- z{r)}dr
o




Tnserting the expansion (7.9) for F(r), 1t is found that to

order k6 inclusive the reciprocal of the denominator is:

| (-]
VD-i' ~ _.1&?[ 4 +zh*£ g(u)n[.,(u) AN —

*® (7.28)
-2h® 3(&)%3 L.(N Ah]

Combination of (7.27) and (7.28) leads to the result:

. h 2
021c cots-l- (n)= --1—+-}-rk -
R a 2
5 6
- P:ciklP + Qril«: *~--- (7.29)

where a is defined by (7.11), r  is given by (7.16), and

Px. = f [301509- K (N3 - Po(w3(9] dx

(7.30)

- — [ Tawme - (9] ax

and

&7

k. { [22, () - 3(=)] 304) an .

f“ [X.T (») - »-,z(u)] ™



e —

Rl

(7.29) is seen to be just the expansion (1.3) for X(1.2),
correct to terms in kélinclusive.

In reference (2) the expansion for k cot S and the vari-
ational parameters a and T, were used to define an "intrin-
sic ‘'range” and a "well-depth parameter" for the nuclear po-
tential. A similar specification could ®e made here for the
proton-proton system. However, the need for two sets of
parameters to deseribe the same nuclear potential, depending
upon whether the Coulomb field ié switqhed on or off, is
seen to be unnecessary and superfluoug. In addition, a range
defined in analogy with thejneutron-proton intrinsic range
would not be an intrinsic property of the nuclear potential
since another length would enter in? namely the character-
istic length R of the Coulomb field. Accordingly, use will
be made of the conventioné of reference (2) as to the speci-
fication of the nuclear potentials. It shéuld be remembered
that a well With well-depth parameter s=1 does not lead to
a zero energy resonance in proton-proton scattering (i.e.
the proton-proton scattering lengfh is not infinite). Rather,
a well Wiv‘ch s=1 would lead to a resonance at zero energy in

the absénce of the Coulomb field.

88




{8) The effsct of small changes in the potential on the

variational parameters

Unlike neutron~-proton scattering, the data in proton-

proton scattering are sufficiently accurate and sufficiently

' easy to interpret (only one phase shift at low energies) so

that the effective range and scattering length are known
with reasonable accuracy (see Section 5). Hence it is édvan-
tageous to make calculations with each potential shape for
only one choice of the intrinsic range b and well-depth param-
eter s, and to £ind a and r, for slightly different choices
of b‘and s by a perturbation calculation.

Thé variational principle (7.5) provides an easy means
of getting the answer., Assume that one knows the wavefunc-
tion u(r) appropriste to a poﬁential W(r). Now consider
scattering due to the modified potential W(r)+ € W'(r) where
€ is a small number. The correct Wavefunction for this modi-
fied potential will differ from u{r) by terms of order €.
Since (7.5) is a variational expression for k cot ) , one will
obtain k cot 8 correct to terms of order € inclusive by sub-
stituting the unperturbed wavefunction u(f) instead of the
correct wavefunction. FHence one can get the first order
change of k cots with a small change in the potential direct-
1y from the unperturbed wavefunction, by a process of quad-
ratures only.

There is one caution to be observed here. The trial

wavefunction which is =oing to be substituted into (75)
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differs from the true wavefunction for two reasons: (1) it

is not correct for the energy in question i.e. it will differ

from the true u(r) in the unperturbed potential by terms of

order an-+2»(2) it is a wavefunction appropriate to the un-
perturbed potential rather than the perturbed potential, i.e.
it differs from the true u(r) by tefms of order € . The er-
ror in k cobs will be of the order of the square of the er=

ror in the trial wavefunction, i.e. it will be of order

2n+2 2 Ln+L 2n 42 2
( k +€ ) =k + 2€k + &

K*B+2 shows that a wave-

The occurence of errors of order
funetiﬁn correct to order kzn'will give the change of the
variational parameters with small changes in the potential
only up to the coefficients of k2n , whereas it will give the
parameters in the unperturbed potential (€= 0) up to the co-
efficlents or K*2V%,

In partieular, the numerical wave functions have‘been
1 (z)

are known in each case). Hence one can get a, ro, P, ¢ for-

calculated up to order k2 inelusive (i.e. uo(r) and v

the unperturbed potential, and da/de , bro/ae ‘for small
changes in the potential. Since the termslwith P and‘Q al-
ready are gulite smali corrections to the value of X, this is
not a serious shortcoming. The calculations of reference (2)
have shoWn»that P, at any rate, is a slowly varying function
of the well-parameters s and b, Accordingly it seems to be

perfectly reasonable to use the unperturbed values of P and
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@ for the perturbed potentials. This procedure will give
much better accuracy than necessary for the interpretation
of the experimental data. |
The result fér the changes in a and r due to a small

change in the potential can be obtalnad in another way.
This mPuhOd has been employed by Breit ! in another con-
nection, and is closely related to the derlvatlon of the
expansion (1.3) by Bethe(7). It is of use in the extension
~of the lLandau-Smorodinsky result made in Section 6 (see
equation (6.11)). The quantity of interest is the logarith-
mic derivative of the radial wave function u(r) at some po-
sition.rl, and its variation with a2 change in the potential,

W(r) =W(r)+ €W (r), The differential equation satisfied

(r) refers to the original potential) is:

by ul(r) (where ulA

[—2% M 'é]? 'w('*)]'*! () =¥y, (A)» (8.1)

while uz(r), the wave function for the altered potential,

satisfies:

):-:,i-z 2&. W(l\) eW'(A):(u,_(A) -‘?-zll,_(&) (8.2)




Wultiplication of (€.1) by us(r), (8.2) by ul(r), integra-

tion from O to rl, and subtraction in the usual way leads

to:
A, A
j wdts —uadlin - - c f WA () dnc

Integration by parts on the left hand side yields:

Ay

] = Fmmin

Or, in the 1limit as € —» 0O,

M
IL"_Q—(—“L— -i‘T't—) = —f‘W"(u.) wH(A) dn (8.3)

where the left hand side is evaluated a% r=r1.
If » > b, then u(r.) — T iven b A9). It
| >> 0 (r.) Pir ), e y (7.19)
should be noted, however, that in evaluating the derivative
with respect to € on the left side of (&.3) it is necessary
to write:

0%k cotd = %k cot § ) +e.§z(c2k cob O) 4 ...

€=0
to account for the change in phase shift produced by €W'(r).
- When (7.19) is substituted into (8.3) on the left side, the

result, correct to zero order in & , is:
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- that:
1 _ 13K
“7‘3(.,({ a:) = %(c; & X$) =5

sinece ROk cot® + h(M) = K. The upper integration 1limit
in (8.,3) can be taken as infinity, since W'{r) is assumed to
vanish rapidly for rl »> b, Therefore the first-order vari-
ation of K (1.2) due to a change W(r)->=u(r) + € W' (r) in

the potentia} is:
()
3E - - R[ W) ) (5.4)
° .

If the expansion (7.17) of u(r) in powers of k2 is in-
serted in (8.4), the result for the first order change in

the coeffidients a and ro is:

o0 )
_L_].'- - 1 2
ae( 5 ) | fW (r)uo(r)dr ,
° 0o (8.5)
dA - - W _
'3_69— = L,f 7 (r)uo(r)vl(r)dr

9

[ — .




Accordingly, the changed coefficients a' and 1§ have the

fornm:

®
at'=a - € a2 ‘{ W'(r)ui(r)dr
(-] (806)

v %
o r, - hef ‘."‘J'(r)uo(r)vl(r)dr

of particular interest are the variations in a and s
due to changes in the well depth parameter s and in the -~
sntrinsic range b of the'huclear: potential. ~W(r) tan be

written. for:each well shape in the standard form:
.. =2 -
w(r) = s Db £{r/b) (8.7)

where f(x) specifies the well shape. A change in the well-

fouhaiatea bt

depth parameter s by an amount A s leads to a perturbed

potential of the form:

w(r) + € W' (r) = wWir) + ‘;S w(r) (8.8)

Tf the small change consiste of a change in the intrinsic

range b by an amount Av, the perturbed potential is:

W) +eW'() = W) - %"—[2‘\«{(&) sl ¢ (%)J

where f'(x) is the derivative of f(x). With equations (8. 5)=

(8.9) the quantities (éa) (3);) (———9 éa—)-"——") can be read-

ily calculated.
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(9) Numerical results for various potential shapes and

comparison with experiment.

The variational parameters and their derivatives with
respect to small changes in the potential have been calcula-
ted for the four usual choices of potential (square, Gaussian,
exponential and Yukawa wells). It should be remarked that,
although the calculations have been performed only for static
potentials, the expansion (1.3) is velid for more general in-
teractions described by Wheeler's velocity-dependent férces(36z
This is apparent in view of the fact that the expressions (7.16),
(7.30), (7.31) for the coefficients involve integrals over
the wave functions only; the potential ¥%(r) does not appear
explicity(Z).

For the sake of convenience, the specification of W(r)

and V(r) given in reference (2) will be repeated here:

. -2
Square well W(r)=s ('IT/2):‘3 b (r<b); W(r)=0 (r>b)

Gaussian well W(r)=s b-2(5.5296) exp [f 2.060L (r/b)%]

-2 (921)
Exponential well W(r)=s b ~ {18.1308) exp( -3.5412 r/Db)

Yukawa well W(r)=s ‘o-2 (3.5605) (b/r) exp(-2.1196 r/b)

Here W{r) is in cmfA if b is given in em. The conversion to
energy units is slightly different from the neutron-proton
case because the reduced mass in the neutron-proton case
differs slightly from the reduced mass in the proton-proton
case {i.e. from % Mp). Since the neuﬁron—proton’maSS—differ-‘

ence is very small, this change in the conversion to energy

units has no praetical significance in the interpretation of




scattering experiments. Below are the expressions for the

potential V(r) in Mev under the assumption that b is measured

13

in units of 10 cm, correct for proton-proton scattering:

-2

Square well V(r)=- s b (102.35) {(r<b); V(r)=0 (r>b)

Gaussian well V(r)=- s b"2 (229.37) exp [}2.060& (r/b)2] (
Exponential well V(r)=- s b'2(752.06) exp(=~3.5412 r/b)

Yukawa well V(r)=- s b-2 (14,7.69) (b/r) exp (-2.1196 r/b)

The conversion factor used was'EZ/MP=Zduh80 X 10—26Mev p:8 cmz.

For the Yukawa well, the equivalent meson mass is/k==818.57b_lme

Tn the calculations the Coulomb potential was assumed 1o
be valid right down to r =0 i.e. equation (7.1) was used,
with W(r) given by (9.1). Present concepts about the nature
of the nucleons themselves makes such an assumption questlon-
able, Deviatiops from the purely Coulomb form of the elec-
tromagnetic interaction most probably occur at distances of
the order of, or smaller than, the range of nuclear forces.
However, the Coulomb field itself produces little‘change in
the variational parameters(7’8) except the scattering length
a (see Séction 6). Consequently, deviations from the Coulomb
1aw at smell distances can be assumed to produce no signi-
ficant changes in the higher coefficients in (1.3), and only
glight modifications in a. In any event, when the actual
form of these deviations is known, the parameters can be
ecorrected accordingly by the methods of Section &.

The results of the calculation are collected in Table

96
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(9.1), The first column of the table specifies the poten-
tlal shape. The second and third columns give the values
of the well parameters s and b for which the calculatlon was

carried out. . The next four columns give the variational

parameters a, T, P, Q. Flnally the last four columns give
s 7/ 3}{ dMg~ .
the derivatives dS & 3L which one

needs to compute the effects of small changes in the well
parameters.,

These numbers can be compared with those obtained by
Eatche;, Arfken and Breit(37) for the Gaussian and Yukawa
well shapes. These authors computed S-wave phase shifts,
then evaluated ¥ (1.3), and made a least squares fit with
" a second-degree polynomial over the energy range up to 10
Yev. The comparison is satisfactory.

They can also be compared with the corresponding param-
eters for neutron-proton scattering. The scattering lengths
differ appreciably, as was shown in Section 6. However, the
higher coefficients agree quite well. For the same values of
s aﬁd b as given in Table (9.1), a comparison with the curves
of reference (2) shows that the effective ranges differ by
6 percent at most (the difference is 0.2 percent for the
Yukawa well, and 5.6 percent for the sguare well). Similar-
1y, the values of P in the two cases differ by 10 percent
at most for all the well shapes considered. This gives &
clear indication that the Coulomb potential can be treated

(&)
as a small perturbation on the higher parameters in (1.3).
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The first thiné to note in the comparison with experi-
ment is the very smzll value of P for all four well shapes.
In view of the fact that the present experimental data are
not in disagreement with values of P anywhere in the raange

+ 0.15 to - 0.8, one can conclude that all four commonly

assumed well shapes give equally good fits to the Van de Graaff

data, the fits being quite excellent compared to the experi-

mental errors. Conversely, the disagreement of the DOP
point at 7 Mev cannot be used as an indication of well shape
since this point is in disagreement no matter which well
shape is assumed. The excellence of the fits to the Van-

de Graaff data is shown in Figure (9.1) where the best
least~squares fits for the square and Yukawa well shapes
(the extremes of the four well shapes) are given along with
the best shape-independent fit.

The present results are in essential agreement with the
results of BTE(I).. However, they disagree with the results
of Hoisington, Share and Breit(38 concerning the exponen-
tial well shape. These authors claim that the exponential

well provides a significantly pcorer fit to the then avail-~

able data than the Yukawa well, They attribute this dif=-

~ference to the longer tail of the exponential well, claiming

that the 1/r singularity at the origin in the Yukawa well
compensates for its tail, Their fit to the data with the
exponential well was made using the well parameters deter-

mined by Rarita and Present(ag) (s =.885, b=3.08 x lO‘chmJ.
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Figure 9.1: TExperimental values of K plotted against k2 for the Van de Graaff data,
with the best weighted least-squares fit to the data for the square and Yukawa well

shapes. Both potential shapes give equally good fits to the data.
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These well parameﬁers give too large {(absolute) values: for
both a (~ =-8,10 x 10-130m.) and ro,(na3i32'x 10-13cm.) so
that a plot of % VS, k2 would lie across the best linear
fit shown in Figure (5.3), passing below the lower energy
points and above the higher energy points of HKPP. But

it just happens that the Rarita-Present well predicts the
same value for the phase shift as determined from the HHT
data at 670 Kev., This point will be seen to lie considera-
bly below the best fit in Figure (5.3). Hoisington, Share
and Breit remark that their comparison may be unfalr since
they choose to fit their theoretical curve-exactly to the
HHET point at 670 Kev. However, they go on to argue that this
really should make no difference since the curvature of the
80 vs. E curve for the exponential well is too great to be
in agreement with the experimental datavno matter at what
energy it was fitted, and that = change in the range of the
potential primarily affects the slope, not the‘eurvature of
such a plot. It is clear that, since the present data do
not discriminate between well shapes, the earlier data
(which covered a narrower energy range) certainly discrimi-
nate even less. With the proper choice of range and depth
(see Table (9.2)), the exponential well gives as good a fit
to the data (either as it was then, or as it is now) as any
of the other usually assumed shapes. The conclusion to be

drawn from the work of Hoisington, Share and Brelt 1s that
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the Rarita-Present exponential well gives a poor fit to the
data, but not that the exponential well per se gives a pooré
er fit than any other well shape. This situation illustrates
the difficulties involved in deciding what is a "good fitv"™

if one does not have a simple functional form such as (1.3)
with which to fit the data.

The results in Teble (%9.1l) are not in the most conveni-
ent form for comparison with experiment since one wishes to
find s and b from the measured a and ro, rather than the
other way around, The quantities in}Table (9.1) are used

as follows:

a=a_+ % (s-s)+ 98 (b-b)+...

ds 0 Y
= KO S - a‘\. - o e a
r=r +._3a_s.(s SO) + Nr(b bo) +

These ecuations can be treated as a pair of linear simul-
taneous equations in two unknowns (s and b), and can be
solved for these unknowns in terms of {a -.ao)vand (r - ro).
The resulting expressions, given below, correspond to the
linear terms in a Taylor series around the computed points.

Square well

s = ,890 = .02712 (a 4+ 7.793) - 05946 (::-0 - 2.639)
_ o 35
b=2,.626 - 04369 (a 4 7.793) 4+ .95716 (r0 - 2.639) (9.35)
Gaugsian well | |
8 = .900 - .02590 (a + 7.780) - .05529 (rO - 2,606) (9 BG)

1
N
.
[6)N
o
(@)}

b=2.5,0 - .04893 (a + 7.780) + .91395 (r,
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Exponential well

s=.900 - .02573 (a + 7.424) - .05056 (r_ = 2.678)
L06333 (a +7.424) + .83354 (rg

b=2,500

1
N
L]
()
g
01

Yukawa well

S =.02, - .02162 (a + 7.651) = .04070 (r_ - 2.676)

° (9.3Y)
b=2.400 - .07051 (a +7.651) +.76353 (r_ ~

|
N
.
(&)
~3
o

-13 cm.,

All lengths in these formulae are in 10
Using the results of the weighted least squéres fitting
to the Van de CGraaff data for arbitrary values of P which
are summarized in Figures (5.5) and (5.6) it is possible to
determine the best values of a and T, for each Wéil shape.
Then use of equations (9.3) allows the determination of the
best well parameters s and b in each case. These results
are given in Table (9.2). The first column of the table
gives the well shape, the second column the value of P for
that well. The third and fourth columns give the correspon-
ding values of a énd ro with their probable errors, while the
next two columns give the implied values of the well param-
eters s and b with their probable errors. The potentials
corresponding to these values of s and b can be found by
reference to equations (9.2). For the Yukawa well the
™meson' mass turns out té be 332 * & electron masses. The
values of b are seen to be determined to with 2.5 percent,

while the values of s are determined to within 0.3 percent.

The results summarized in Table (9.2) are in essential
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