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i.

ABSTRACT

Two of the phenomena associated with a high freguency
gas discharge due to the presence of a magnetic field are energy
resonance and reduction of diffusion to the walls of the dis-
charge tube., Both of these effects can be observed simultaneously
when the electric and magnetic fields are transverse to each other.
The diffusion phenomenon can be studied alone when the two fields
are parallel to one another.

The trajectory of a free electron in a magnetic field
is a cylindrical helix. The motion parallel to the field is un-~
affected while that perpendicular is caused to be circular., It is
that latter that is responsible for both the diffusion and the
energy effects. The radius of curvature of the path of motion,
which is small for large values of the field, reduces the diffusion
current of electrons in the direction perpendicular to the field.
With an electric field perpendicular to the magnetic field, the
latter causes the electron td spiral more nearly in phase with ‘the
former. ‘At resonance, when the angular frequency of magnetic
rotation @ = EE is equal to w, the angular frequency of the elec-
tric field, the electron is essentially in a d.c. field. The
resonance character of the energy can be best seen by the kinetic

theory calculation of U, the average energy gain of a single
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electron between each collision, u, expressed in volts is given

by:
2,2 2 2 27
eE2 2 l%(m + mb) + (o - mb)
U T T2 2 Op T 2 2 2 ’
(% + o) LR

where E is the r.m.s. value of the electric field and zé the
frequency of collision between the electron and the gas molecules.
The kinetic theory of a single electron also shows that
the diffusion coefficient D and hence the diffusion current in the
perpendicular direction, is reduced to a new value Dm by the

megrietic field,

D

D = ————
l+m§/2/§

m

When the above is introduced into the soluticn of the diffusion

equation for parallel plates, we get:

>
i
SNl

where'Zg is the rate of production of electrons per electron,/\ the

characteristic diffusion length of the parallel plates and L the
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separation between them, /\m is an effective diffusion length.
From the random walk theory, we can calculate the number
of collisions required by an electron to diffuse to the walls.
When this is equated to the number required to raise an electron
to ionizing energy, we can obtain a simple breakdown equation for
"Heg", helium mixed with the vapor pressure of mercury at room

temperature. For this gas 7/0:3 const x pressure.

1+ mz/i%

E =E
"ol FAAHA AP

where Em is the breakdown field for a given value of the transverse
magnetic field while E is the breakdown field without the magnetic
field. This equation agrees with experiment and shows the resonance
character of breakdown at low pressures where the values of Em
become a minimum when 010’4"5 w. The diffusion effect is best demon-
strated at higher values of ®, because the breakdown field levels
off to an asymptotic value E°4Vl + ae/i% .

A second method of analyzing the breakdown phenomenon is
to solve for the distribution of electrons as a function of velocity
from the Boltzmann transport equation. This is done by expanding
this equation in spherical harmonics and Fourier series each to the
zero and first order components to get a second order diffefential

equation of f_ , the distribution function, in terms of the velocity.

O)
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In the process of expansion it is possible to show that the
diffusion current is not a simple vector but is best described by
a diffusion tensor when the magnetic field is present. This tensor
is in its simplest form when one of the coordinate axes is in the
direction of the magnetic field., If B is taken along the Z axis,

then the diffusion tensor Dij’ (i,j=x,v,2z) is given by:

D D C%/I/c
ij 2,2 2,2 0
1 1+ r_nb/?z 1+ (:)b/'yc
-D mb/?% D 0
1+ mﬁ o1+ (3123/;)2
0 0 D
where
o0 o0
_ Ly . _dr_
= f 3 370 f dv .
0 0

D is the ordinary diffusion coefficient and & is the mean
free path of an electron. The diffusion equation becomes more

general and takes the form:
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where n is the density of electrons per unit volume. The solution

of this eguation leads to the following:

Ae is an effective diffusion length defined by the above equation.
It can be expressed in any coordinates and is particularly simple

for a cylindrical cavity

2 2
1 _ (2,405 1 T
= ( ) + (),
Ai’ R l+a>f,/z/§ L

where R is the radius of the cylinder and L the height parallel to
the magnetic field.

The solution of the diffusion equation is introduced
into the differential equation for fo. This enables us to solve
for f. whiech is then used to obtain a transcendental breakdown

0

equation in terms of the effective parameters EeAé’ Ee/p and u; .

?(Ee e? Ee/P.’ ui) =0 .



' Ee is an effective d.c. field expressed in terms of the

actual r.m.s. value of the high frequency field E as follows:

Eez___E_,_
Vl + ai/i%
E

E = —= forE”BorforB=0

for E_| B

u, is an effective ionization potential which for "Heg"

i
is defined by the value of the electron energy at which fo = 0.

The way in which u, is obtained is by extrapolating the solution

i

of fO in the inelastic region by its tangent at u = W the first
excitation potential of helium. This is also expressed in terms
of EéAe and Ee/p. Consequently the final breakdown equation is

still a transcendental one:
Vot _

This equation is plotted as a single graph of Ee/\e as
a function of Ee/p. The resultant curve represents all the

breakdown voltages of "Heg" in a uniform electric field with and

~without a magnetic field, at all frequencies and pressures within

the limits of the theory, and for all shaped cavities. The value
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of/\a fof the latter is obtained from the solution of the diffusion
equation.

The theory can be extended to non-uniform fields for
rectangular and cylindrical cavities. It has béen done for the
latter and the solution was used to study the diffusion effect of
the magnetic field alone when parallel to the electric field.

The transcendental breakdown eguation can be reduced to
the ones obtained by the kinetic theory of a single electron by
making the approximation that the elastic collision termé at low
pressures can be neglected and u; is assumed to be independent of
the magnetic field, This simplified theory agrees well with
experiment for a flat cylindrical cavity despite the fact u;
does depend on the magnetic field and is reduced by it for a given
pressure. The answer is that the flat cavity is only an appr&xi—
mation to parallel plates with the magnetic field present. /\e
must then be corrected for magnetic distortion. The two correc-
tions for u, and/ﬂe very nearly cancel each other and hénce account
for the agreement of the theory which corrected for neither.

The thesis shows all the theoretical results in form
of graphs which are compared with the results obtained experimentally.
A disgram of the experimental apparatus together with a complete
description and procedure for obtaining measurements are also

ineluded,
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I, INTRODUCTION .

Historical Background

The problem of breakdown of gases by a high frequency
electric field in the presence of a magnetic field originated
with the investigation of ionospheric propagation. The first
leboratory experiment was done by E. W, B. Gilll who produced
breakdown of air at very low pressures in a glass tube suspended
between two plates. He produced a discharge with and withéut
a magnetic field and then compared the relative values of electric
field required to breakdown the gas. His magnetic field was
18 gauss which corresponded to the equality of the cyclotfon or
gyromagnetic frequency of the electron and the radio frequency at
6 meters wavelength. Up to 1/10 mm of pressure no effect was
observed, at 1/50 mm the breakdown field was reduced by a factor
of 5 and at 1/100 mm by a factor of 4O.

Later in 1938, Townsend and Gill2 performed a more
complete set of experiments on air. They produced a discharge
in a pyrex sphere 13 cm in diameter located between the plates of
a condenser which was part of a high frequency circuit. Measure~
ments of current through the discharge were made in a secondary
circuit. The measurements were made at two frequencies of about 30

and 50 mc and at pressures ranging from 120 microns down to 2.5.
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A Helmholtz coil supplied a variable magnetic field perpendicular
to the electric field. Measurements of breakdown field and the
least maintaining field after breakdown as a function of the
magnetic field were made. Breakdown was determined by the
appearance of a faint glow. The value of the field was read
from the current meter which was calibrated by an independent
determination of the field between the plates. The absolute
accuracy of this calibration was édmittedly questionable. A
second set of experiments on pure nitrogen and helium was made

by A. E. Brown’

on the same apparatus.

From a qualitative point of view the experiments were
successful, since they observed the fundamental resonance
phenomenon expected. From a quantitative view, this ﬁas not
the case, since Townsend did not draw satisfactory theoretical
curves to match the experimental ones.

There are a number of criticisms to be made of

Townsend's investigations. On the experimental side, the observa-

tion of breakdown by the appearance of a faint glow, the use of

a glass oontainer, and the means used to measure the value of the
electric field all contributed to poor accuracy in determining the
breakdown field. The choice of a spherical geometry for the
container was an unhappy one, since the diffusion equetion in a
magnetic field is unmanageable. Theoretically, the single electron

approach was good except for the fact that no attempt was made to
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solve the diffusion equation although Townsend recognized the
importance of diffusion. He merely made calculations from energy
considerations alone and supplemented the.diffusion correction,
Comparison of breakdown between the magnetic and non-magnetic

case was made only at resonance., The complete range of values

of the magnetic field was not analyzed. The final criticism of
the theory was that it was not related to the physics of the
particular gas except for the collision frequency. The excitation
and ionization potentials and probabilities were not mentioned,

Nevertheless the theory did predict the results qualitatively.

Present Treatment of the Problem

In the intervening years from 1938 to the present, both
the experimental and theoretical tools necessary to solve high
frequency problems were improved. The microwave equipment and
techniques developed during the war provided more accurate means
of measuring fields in a cavity.4 The use of helium mixed with

mercury vapor”

provided the simplest possible gas for theoretical
anaiysis. With the introduction of the diffusion equation into
the breakdown theory by Herlin6 the single electron analysis to
the magnetic problem was possible., This theory will be developed
in this thesis.

A second and a more satisfactory theoretical approach

to the high frequency breakdown problem is the distribution
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theory of electrons., The original work of expanding the Boltzmann
transport equation into‘spherical harmonic components was done by
Lorentz.7 This was then extended by Morse, Allis and Lamar8
properly including the collision terms. The magnetic term was
later introduced by Allis and Allen.9 The application to high
frequencies was not made until Margenaulo extended the theory by
the use of Fourier harmonics in the expansion. The development
for the solution of the breakdown problem was not complete until
the introduction of the diffusion equation. All these elements
were combined for the non-magnetic case to obtain a solution for
the breakdown of helium by microwaves.5 The distribution theory
is extended in this thesis to include the magnetié term and is
applied to the calculation of the breakdown field in helium as

a function of the magnetic field,
OQutline

The treatment of breakdowm in a magnetic field is first
approached from the simplest considerations, namely the behavior
of a single electron., This is the topic of Section II. The
dynamics of a single electron are analyzed. By averaging simple
distributions of the electrons in space, phase with the electric
field and time between collision the statistical behavior of the
electron is studied. From this we obtain the energy gain of the

electrons between collisions and the diffusion properties of an
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assembly. A diffusion tensor is justified and applied in
deriving a diffusion equation with the magnetic term ineluded.
These results are used to calculate breakdown fields which are
compared with experiment.

In Section III we expand the Bolizmann transport
equation in spherical harmonics and Fourier components neglecting
all but the zero and first order terms in the expansion. A
detailed development of the diffusion tensor is carried out
and thé nature of the diffusion current is demonstrated. A
differential equation for fo the distribution of electrons as
a function of velocity is derived. This is used in obtaining the
equation of breakdown of helium. It is a transcendental equation
relating breakdown electric field, pressure, frequency and the
magnetic field. By a simple approximation this equation is
redﬁced fo the one derived by the single electron theory., The
differential equation is extended to include inelastic collisions
and is used to calculate an effective ionization potential., A
single curve of effective quantities is drawn for helium repre-
senting the breakdown voltage of both magnetic and non-magnetic
high frequency discharge within all appropriate ranges of pressure,
frequency and magnetic field,

| The theory is made more general in Section IV by solving
the breakdown problem for the non uniform electric field. This is

used in calculating the diffusion effect of the magnetic field
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F alone when it is parallel to the electric field. The calculations
; make extensive use of effective diffusion lengths and the genéral

breakdown curve of Section III.

Section V is devoted to the calculation of the break-
down field in.transverse electric and magnetic fields from the
distribution theory. The single effective voltage curve is
again used, but it is cofrected for diffusion distortion by the
magnetic field. The correlation between these results, those of
the simple theory of the single electron and the experimental
curves are justified,

The experimental apparatus and the procedure used for
making breakdown measurements are described in detail in Section VI.

Finally in Section VII, the conclusion, a survey of
the accomplishments of this investigation is made. Evaluation of
the results 1s discussed and new problems along lines similar

to those used in this thesis or an extension of them are suggested.




II, THEORY OF THE AVERAGE FREE ELECTRON

In a gas discharge which contains a large number of
electrons, we can choose a particular group of them which is
representative of all on the average. To do this, consider any
electron during the interval between two successive collisions
while in motion under the simultaneous action of an electric and
a magnetic field. At the start of the collision, the electron of
a particular velocity has an arbitrary direction with the electric
field, equally probable over the complete sphere of solid sngles.
Its phase with the electric field at the start may be anywhere
from 0 to 360°, Its free path which is curvi-linear may have any
length from 0 to @@, Instead of the free path, it is more con-
fenient here to speak about the collision interval t. The longer
intervals are less probable and the probability factor is given
by e-zét, where Zé is the collision frequency or the inverse of
the average time of collision.

In general, the above quantities related to the motion
of an electron are randomly distributed as describéd above. Hence
any quantity which measures the characteristic behavior of the
electron must be a statistical average over the four quantities:
direcfion, bhase, collision time and yelocity. The first two are
random quantities while the velocity and the collision time are

distributed. Not all of these quantities need be averaged for some



applications; one or two may be ignored depending on the sitvation.
Without going into any more details, we shall apply the above
averaging process to a number of specific cases and amplify upon

the method as we proceed.

Fnerey Gain between Collisions

Transverse Fields

The most difficult situation for our investigations is
the one in which the electric and magnetic fields are perpendicular
fo each other. The parallel case can be treated as a simple
superposifion of the electric and magnetic fields acting independently.
First it is necessary to set up the equation of motion
of tne electron in the given fields. To do this, let us take the
electric field in the direction of the X-axis and the magnetic

field along the Z-axis as shown in Fig, II-l. Both fields are

assumed to be uniform.

Fig. II-1. Orientation of

transverse electric i

and magnetic fields. ; Y
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From the general vector equation of the foree on an

electron, i.e.

- -> -
F=n d—z = -¢E - ev X3B , (2-1)

we get the component equations

3t - - 2 eEocos wt - ery s

dv

m -d—tx = eBv_, (2-2)
dvz

m It =0,

@ T > l’- . -
where E = J.XEX =1 2 Eocos wt , Eo being the r.m.s. value of
the electric field.
Eliminating v, from the first two equations of (2-2), we

obtain a single second degree equation in Voo

2
E—VE + e—ZBZ- v, = JZ—eEo ® sin wt (2-3)
2 7 2 x ¢

dt”
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The solution to this equation is:

' f2-eEOca
v_= A cos ot +B sin @t - —>5— 5 sinot . (2-4)
x n(w” - o) _

A and B are arbitrary constants and @, = %3' represents

the angular gyromagnetic or "cyclotron" frequency.

By substituting the value of vy in the first of the

equations (2-2), a similar solution for vy is obtained:

/2 g,

v. =A sinmt -B cos ot + cos at . (2-5
The solution for v, is simply
v, = constant . (2-6)
The constants A and B are evaluated by setting v, = Vox?
v =v_ _and v =v__ at the initial time t . The complete solu-
v oy z oz o
tion is then expressed in terms of t, the time at the end of the
collision.
ﬁ. eEo(nb
Ve T Voy CO5 cnbt - voy sin mbt + 5 5= CO8 a)to sin o.)bt
n(e” - af)

2 ean)
+ > [31n (oto cos gt - sin co(to + t)]
m(w™ - )
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JE-eE ]
_ - T o ‘o

vy = vox sin cnbt + v cos cnbt + m(mz ) mﬁ) sin cnto sin enbt.

J?E ek a%
+ — > oo [cos m(t + t) - cos mt cos a)bt] (2-7)

n(e” - wb)

v = °

z 0z

v s Vv __and v__ represent the components of a particular
ox’ oy 0z
value of the electron velocity Vo t the time interval between -
collisions and to the random time between cycles of the alternating
electric field. These are the quantities that we must average.
In order to compute the average energy gained by an
electron from the electric field between collisions, we shall

calculate the average energy at the end of the collision and com—

pare it with its initial value., The average energy in volts is

given by:
: | >
-_mov. _m _
u_ze-z ( +Vy_+‘V) (28)
The expression for v2 after simplification has the
@ form:
;é .5 242 eEo

=V, + m[{vox(mb - @) cos mbt cos gt - movoy

+'voy .»sin mbt(mb cos awt + w sin cot)} cos wb
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+ {wvox - vox(co cos ot cos wt + @ sin @t sin wt)
+ voy(ea sin ot cos wt - cos gt sin (ot)} sin co‘bo]

2.2
+ 2 E° 1l -2 cos ot cos cot} 2 cosgmt + a)2sin2' 1
2 2 COS “J (% o s
)

2
12 (6 - ¢

+ [mi coszm('bo +t) + o sinza)('to + t)}

+ (m2‘_ mi) cos mbt sin wt sin 20)1:0 - Zm)b sin mbt sin cot]
(2-9)

Thus, we see that Eg. (2-9) has to be averaged only over
to and t. TFor the pi'esent, we shall only consider to. This is
to be averaged equally over a complete cycle of the electric field

or cnto over an angle of 27 radians. The values are listed below:

Poaig
—_ _ 1 _
cos mto = o cos wtod(a)to) =0
0
‘ 2T )
: _ 1 . —
sin ot = o J sin a)tod(coto) =0 (2-10)
0
2T
P S 2 -1
cos“wt == J cos artod(coto) =3
0
2
. 2 -1 2 1
sin &J‘bo =57 sin cotod(mto) =5.

0



Similarly

————————

>coszm(to + 1) = sin%m(to + 1) =

N

Finally

———

sin 2@¢0 =0.

When we substitute the values of (2-10) in Eq. (2-9),

we gets
Z_p, R e
v =v + [l - ¢cos GBt cos wt
° 2,2 27
/ m (@ - ab)
462E2
-~ "o b sin mbt cos—wht o (2-11)
= 2 A W
2, 2 2
n“ (0 - ab)

The bar above the terms containing t indicate that they

are to be averaged over this variable., Previously we said that

.-.yt
the distribution in t was exponential and had the form e ¢, where

lé was the collision frequency corresponding to a given value of
v, of the velocity. To average any function f£(t) we must do the

following:
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£(t) = —2 =V |e ©e(t)at . (2-12)

Before we proceed with averaging the terms in (2-11), we

shall first simplify them as follows:

cos mbt cos am'“~% [cos(w - &%)t + cos(w + wb)ﬁj

(2-13)

sin 75t sin wt —'% [cos(w - a5)t -~ cos{o + mb)ﬁ] .

Thus, we see that we only have to evaluate the average

of a cosine function. The integral has the form:

Y] ) o0
JI e-axcos(bx)dx - [;—ax (- a cos gx + S sin bx) :]
0 a +b 0
a .
= —_, (2-14)
a2 + b2
Then
b v
"t |
jfcgs(m + o)t dt=— < (2-15)

0 'DE + (6)i-mb)2 .
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Substituting this expression in (2-12) and subsequently

in (2-11), we obtaln the desired average value of vz. The value

for the average enercy u = nv /2e then becomeS'

‘, 2 2
mnye eEo z— + o + Qb

—— (2-16)

T T e O e a) it (o) Vet (“'u"é

/, P -b."t:

\

The energy gain between collisions u, is evidently the
second term on the right-hand side of Eq. (2-16). This expression
can be 51mpllf1ed by expanding the denominator and dividing by the

mamerator, We ggép obtain

(2-17)

2
5 _Vi(mzf mﬁ) + (of - enﬁ)

@ = .
mo 2 2 2
voto +a

The above value for u_ has been obtaingd for a given
value of the veloecity and no averaging'QVEr the velocity was
pgrformed. In general,‘Zé is a function of the veloeity and u'e
must be averaged. Here we shall take the velocity as that of the

average electron and take the corresponding value of 72.
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Physical Interpretation

Before we proceed to plot ue graphically in terms of
the proper variables, let us discuss the physical picture
suggested by the mathematics. In making our plot, we shall
compare u_ with the steady state energy u in an alternating
field of angular frequency @ when no collisions occur and no

magnetic field is present (15 =05 @ = 0):

eE2
0
2 *

u = (2-18)
mo
If we compare this to Eq. (2-17), we see that the
two have the same form if we write:
2
ek .
- 90 2 _ _2 2
Ye = 720 O =V, T @y (2-19)
S A

where @, is called an effective frequency. The physical meaning

of this frequency becomes apparent when we consider some simple

examples such as a d.c. field, for which Wy = Zg. The effect of

collisions is then to produce a phase cﬁange of the electron

relative to the electric field just as if thefe were an alternating

field present. Similarly, when no magnetic field is applied, but
2

only the electric field, o, = Ilc + m2 represents a higher fre-

quency on the average due to collisions. However, when the magnetic
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field is also applied transverse to the electric field the situna-
tion becomes a little more complicated.,

To analyze the last case, let us first consider the
motion of an electron in a uniform magnetic field alone. The
motion is along a cylindrical helix whose axis is parallel to the
mdgnetic field. In a plane perpendicular, the component of
motion is circular with an angular frequency of O, - If we now
superimpose an alternating electrié\figld parallel to the plane
of the circular motion we have our transverse field. The motion
of the electron is no longer a simple circle in the reference
plane, but neveftheless it still spirals thru 360° at the
average rate determined by the magnetic field. The result of
this spiraling is to throw the electron more nearly in phase with
the electric field on the average. When the magnetic field is
increased, so that mb.= w, the electron is effectively in a d.c.
field except for the collisions. For a5j>-qb the electron is
again thrown out of phase with the electric field. For extremely
ldrge values of thé magnetic field, the eleetron spins very rapidly
such that the effective phase variation, hence a)ez ®, F7 w.
Another effective quantity is @ s which is essgntially the equi-
valent alternating freguency corresponding to w without the
magnetic field, |

Figure II-2 shows u, as a function of the magnetic field,

expressed by @ s in terms of u . The family of curves is for
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( ENERGY PER COLLISION)

Ue
To

o

w 2w 3w
CYCLOTRON FREQUENCY wp,—

Fig. I1-2. The energy gain per collision of an electron in uniform

transverse electric and magnetic fields.
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different values of‘)g. Since u, is proportional to the inverse
square of_we, the curves shown are in accord with the physical
reasoning of the precedéﬁf/paragraph. The energy gaiﬁ increases
with magnetic fieid to & maximum near resonance, i.e., where
@, = O Beymd this point, there is a reduction in u, which for
.large values of @y falls below the initial value at @, = 0. The
resonance effect is more pronounced for smaller values of 12,
or lower pressures for a given gas. At larger values of zﬁ’ the
rise in 1:;.e becomes less significant until such a value is reached
that no maximum exists. This corresponds to m = 22/73-. Thus,
when‘wg ;rfgr@>there is no maximum at all, but a steady decline
in U This is a relatively high pressure region, where the
collision frequency is sufficiently large to produce, on the
average, a greater number of phase reversals than that which the
magnetic field can overcome.

‘The graph of u, has been given for a fixed value of
the random velociﬁy v for which 7é is constant.. In general,
fof an assembly of electrons in a gas, thé veloeity is distributed
over all values and hence 1% is a function of wvelocity. To
determine the average value of u y we must integrate over all
velocities. This requires that we know bothizg and the distribu-
tion of’electrons as functions of the velocity. Certain exceptional
cases‘are those gases forAwhich the collision cross-section is

inversely proportional to velocity and hence lé = constant,
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at a given pressure, indepemdently of the wveloecity. Under such

conditions, U is similarly independent, ~Helium and hydrogen are

" gases for which this holds reasonably well and quantitative

applications of the preceding formulas are possible. For other
gases, a suitable value of Zé may be chosen and assumed to be
fiked for a given pressure. Here, however, the results are merely

gaod for a qualitative, or at least, a semi-quantitative analysis.

Breakdown

Qualitative Descrintion

The reason behind the previous mathematical development
was to illustrate the manner in which energy considerations affect
the breakdown of gases. If we had an infinite medium in which a
uniform electric fleld produced a dischargebin the presence of a
transverse uniform magnetic field, we woula have the ideal situa-
tion for the problem at hand., Under such conditions, there
would be no diffusion loss of electrons with the attendant loss
of energy. Practically all the energy loss of electrons would
be to inelastic collisions. The removal process for electrons
would be due to attachment and recombination. These, of course,
are low energy phenomena and would_represent only a smail loss of

energy.
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- The praocess of the above discharge would be one in

which an electron would gain, on the average, the energy u,

.during each collision, until its kinetic energy was equal to or

greater than an excitatioﬁ or.iénizing‘energy of the gas molecules.
Eventually the electron would lose its energy during an inelastic
collision, If we considered the statistical history of a large
number of electroﬁs, we would arrive at the conclusion that there
is an average energy at which the electrons lose substantially

all their energy by excitation and ionization. Also at a fixed
pressure, the average collision rate would be constant. ‘With the
ionizing and excitation probabilities being also invariant, the
logical assumption is that u, remains constant, indepeﬁdent of the

magnetic and electric fields, at the point of breakdown.
u_=wu = constant ,
eo

or

eE2 E2

e
m o [
B = = constant . (2-20)
m()% + &i) mQ;% + a?) '

The subscripts m and o are used to denote the appropriate
quantities when the magnetic field is ineluded or is non-existent.

Thus we can express the breakdown field Em relative to the field Eo




for the non-magnetic case as a function of the magnetic field

when the_pressuré and the alternating frequency w are fixed.

(2-21)

We shall make a quantitative use of>Eq.‘(2~21) in the
next section. For the present, it is sufficient to note that
this equation implies that Em is proportional teo the inverse
square of the quantity u_ plotted in Fig. II-2, This permits a
qualitative analysis of the experimental results obtained by producing
breakdown in a relatively large cylindrical cavity, approximately
3 inches in diameter and 2 inches high, Although the removal
process is still by diffusion and not by recombination, the energy
conSiderationé‘permit a fair comparison between the magnetic and
the non-magnetic cases because the relative energy loss due to
diffusion as a function of the magnetic field plays an increasingly
smaller role. The curves of Fig. II-3 show the breakdown field
as a function of the magnetic field for air,

As expected, the reduction in breakdown field is greater
at lower pressures. At higher pressures, there is no reduction
but only an inerease which becomes less and less apparent as the
pressure increases, Thus at very high pressures, the curve is flat

because the large value of the collision frequency completely masks
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the effect ofvthe magnetic field., The first dip shown in Fig,
II-3 occurs at 4 mm, which for air corresponds to about 20 x 109
collisioﬁs/sec 6r the order magnitude as o 220 x 109. This

is a general criterién which holds for all gases, i.e., the
resonance phenomenon begins to appear when Vc:.‘S @ s For 7{34( W,
the effecﬁ is large as can be seen when p = 0.5 mm. The reduction
in the breakdown field is from 350 volts/cm‘to about 40 volts/cm,
almost a factor of 10, The minimum of each curve occurs nearly
at B = 1100 gauss, corresponding to the value calculated Wwhen

O =@, Beyond the resonance-value, the curves rise steeply as
expected, in some cases beyond the initial value Eo' The rice,
nevertheless, does not seem as steep as one would have anticipated
from the previous plot of u,.

The experiment was performed with helium in a 3% x 2
cavity. The curves which are shown in Fig. II-/ show the same
general character as those of air except that the reduction in
breakdown field is greater for the same pressure, i.e,, for air
at 1 mm it is a factor of 4 and for helium a factor of 12. This

is primarily due to the smaller collision cross-section for helium,

Semi-Quantitative Analysis

In the preceding section, we hinted that the relative
rise in the breakdown field at large values of the magnetic field

was not as large as one might have expected. This was even more
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apparent for helium than for air. Perhaps/ the best way in which
to see this is to use Eg. (2-21) to calcuiate the breakdown field
~ in terms of the magnetic field and compare the result with the
experimental curves, For helium this is quite simple since we
are not far from the truth when we say that Vc = cp where ¢ is a
constant. This approximation has been successfully used by
MacDonald and Brow'n5 in '_bheir studies of helium., The situation
for air is more,comi)lex since the above approximation is not -
true. The best one can do is to make a guess at ‘the value of c
and recognize the limitations of its application,

One of the simplest methods is to use the curves of
Fig, II-3 and the condition thatz/i = 30)2 when there is no
maximum in the resonance curves. It appears that this occurs

when p&4 7 mn. Upon substituting the value of ©w = 20 x 109, we

find that 7/05‘-4 5x lng. This value agrees fairly well by a
second estimate which makes use of the collision probability
curves of oxygen and ni‘l',rogen.ll The average value of Pc% 38
for air, Assuming an average energy of the electron to be
Ea‘.’aui/B, we use the value of 5 volts., The result is that the
mean value of 'Vc is that given above. With this information

- we 6btainéd two sets of curves at 0.5 mm and 1.0 mm. These are
plotted in Fig. II-5 and compared with the corresponding experi-

mental curves,

The significant facts to be gained from this comparison
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is that although the agreement is far from satisfactory quantitatively
the fﬁndamental physical phenomena of the energy resonance is well
substantiated by our rough analysis. Furthermore, since air is

such a complex gas, the theory is fairly good because the orders

of magnitude are reasonable., The second observation to be made

is that the separation between the two curves is substantial for
large values of B, This effect becomes even more noticeable for
helium as illustrated in Fig, II1-6. These curves were obtained

by using the value of Zé = 2.37 x 109p calculated from Brode's

2

curve ~ of Pé for helium,

The éxpected agreement for He should have been betiter
except that we have neglected an important factor in ouf calcula-~
tions, namely diffusion. The experiment was conducted in as
large a cavity és possible, but still small relative to the ideal
infinite medium. Hence the loss of energy due to diffusion cannot
be neglected particularly for helium where this loss is comparable

to'the inelastic losses. We shall look further into this problem

and account for the apparent discrepancy when we discuss diffusion.
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Diffusion

Diffusion Tensor

Diffusion can be defined as a net flow of particles from

a region of high to one of lower concentration. Thus diffusion

always accompanies a density gradient in an assembly of particles.
The existence of a concentration gradient of charged particles oc-
curs because the electrons and the positive ions are absorbed at
the walls, reducing the doncentration there essentially to zero.
One can derive an expression for the particle current
density vector F in terms of the concentration gradientWn, The

following equation is the result.

F= - DVn . (2-22)

The above equation states thatFis proportional to the gradient
of the density n and is in the same direction. The proportionality
cdnsfant D, called the coefficient of diffusion, is defined by
the above equation. The implication here is that D is a scalar
quantity. However, when there is a magnetic field present, the
flow can be anisotropic, i.e., a component of flow can arise due
to the presence of a gradient in a direction perpendicular to it,

The cecefficient D is no longer a simple quantity, but in general

a tensor. Equation (2-22) then becomes:
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a.7 on dn 2o
r.— lx(Dxx ax + ny y + sz az)

on on 9n -
+ Dy_y ay + Dyz az) (2-23)

on . p 21

= on n
+1,(0 gy 0y 22 9z

2 Vzx 5x © P
Later in the development of the theory, we shall study
in greater detail the character of the diffusion tensor. For the
present, we shall merely demonstrate by elementary means that a
component of flow does exist perpendicular to the magnet<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>