
Verification of Correctness Properties of Programs

that Read Input Files

by

Deokhwan Kim

B.S., Seoul National University (2005)

OF TECHNOLOGY

OCT 0 3 2019

UIBRARIES
ARCHIVES

M.S., Seoul National University (2007)
S.M., Massachusetts Institute of Technology (2011)

Submitted to the Department ofElectrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2019

@ Massachusetts Institute of Technology 2019. All rights reserved.

Signature redacted
Author . .

Department of Electrical Engineering and Computer Science

Signature redacted-, August 30, 2019

C ertified by
Martin C. Rinard

Professor of Electrical Engineering and Computer Science

Thesis Supervisor

Signature redacted
A ccepted by

1 {f U Leslie A. Kolodziejski
Professor of Electrical Engineering and Computer Science

Chair, Department Committee on Graduate Students

2

Verification of Correctness Properties of Programs that

Read Input Files

by

Deokhwan Kim

Submitted to the Department of Electrical Engineering and Computer Science

on August 30, 2019, in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy in Computer Science and Engineering

Abstract

This thesis presents new techniques for verifying correctness properties of programs

that process input files. These techniques apply to programs written in standard

programming languages such as C and focus on relationships that must hold between

program execution points, the current location of file position indicator of the open

input file, and the contents of the input file. The thesis presents a specification

language that developers can use to express these relationships and insert them into

the program as assertions involving the file position indicator and file contents at

different program points. It also presents a program verification system that verifies,
for all possible input files and all possible input file contents, that the assertions

hold in all program executions. The soundness of the verification system has been

proved, based on the formal definition of the syntax and semantics of the specification

language. The system synthesized verification conditions from the specifications for a

PNG image viewer and a JPEG image converter, and successfully verified all of them.

Thesis Supervisor: Martin C. Rinard
Title: Professor of Electrical Engineering and Computer Science

3

4

Acknowledgments

I would like to thank my advisor, Martin Rinard. He provided me with tremendous

support and encouragement throughout my extended PhD studies. I was really lucky

to study under his great supervision for a long time. His insight, understanding and

patience were all there whenever I needed them. It was also a really great opportunity

and pleasure to be able to closely observe his bravery and skill in persuading others of

his opinion on research and life, especially when it was contrary to popular belief.

I received a lot of help and advice from my thesis committee members, Armando

Solar-Lezama and Arvind. Starting with a very early version of the thesis, they read

a number of drafts carefully and provided valuable feedback on them. That helped

me to improve my thesis in many ways.

I am so grateful to my former advisor, Kwangkeun Yi, for guiding me into this

interesting field of computer science. He also had a great effect on my way of thinking

and my attitude to research.

I want to say thank you to all the former and current members of Martin's group.

Thanks to them, I had a good time at MIT. It was a blessing that I could work and

hang out with them. In particular, I have spent most of my time at MIT in our office,

Room 32-G730. The quality of both of my research and life heavily depended on my

office mates. For the first half of my MIT years, my office mates were Michael Carbin,

Sasa Misailovic, and Fan Long. Michael showed me how to collaborate with others

in research and effectively distribute tasks to achieve best results. Sasa was not only

highly motivated all the time but also continually motivated me. Fan's expertise on

LLVM was a great help to me many times. I was lucky to spend the second half of my

degree course with Sara Achour and Jiasi Shen. Sara let me see what it is like to fully

concentrate on a chosen task. Jiasi kindly and patiently answered all my questions

and helped me a lot in preparing for my thesis defense. Besides those office mates,

Stelios Sidiroglou-Douskos gave me a lot of advice on troubles that I underwent as a

graduate student, and his jokes were a tonic for my life. Michael Gordon showed me

how to collaborate well with colleagues in the industrial world as well as the academic

5

world. Phillip Stanley-Marbell patiently introduced me to his research topics, so that I

could understand them even though I was a layman in the topics. Jeff Perkins readily

made himself available whenever I needed his help. Eric Lahtinen always treated me

in a friendly way, showing his great smile. I am also grateful to the other members for

making the enjoyable working environment: Jos6 Cambronero, Jirgen Cito, Thurston

Dang, Anthony Eden, Jordan Eikenberry, Austin Gadient, Vijay Ganesh, Shivam

Handa, Fereshte Khani, Youry Khmelevsky, Christopher Musco, Paolo Piselli, Zichao

Qi, Julia Rubin, Malavika Samak, Yichen Yang, Adam Yedidia, Karen Zee, Damien

Zufferey, and others. In retrospect, all the members of our group have certainly been

a positive influence on me. I hope I exerted a favorable influence on them, too.

I sincerely appreciate the assistance of all administrative staff of MIT. In particular,

I would like to thank Mary McDavitt for making every effort for me to just concentrate

on my studies. Thankfully, Janet Fischer managed my last-minute submission of

documents with patience.

Finally, I would like to express my heartfelt thanks to my parents, Indong Kim

and Choonja Kim, and siblings, Hunhae Kim and Kyounghui Kim. It is their endless

love and support that makes all things possible.

6

Contents

1 Introduction 13

1.1 M otivating Example . 15

1.1.1 Program . 15

1.1.2 Correctness Properties . 17

1.1.3 Verification . 20

1.2 Parser Generators . 22

1.3 Contributions . 23

1.4 Structure . 24

2 Portable Network Graphics 25

2.1 The PNG Format . 25

2.2 A PNG Image Viewer . 26

2.3 Input Specification . 32

2.4 Verification . 34

3 Core Language 51

3.1 Syntax . 51

3.2 Dynamic Semantics . 52

3.2.1 Semantic Domains . 52

3.2.2 Semantics of Expressions . 53

3.2.3 Semantics of Statements . 53

3.2.4 Semantics of Programs . 62

7

4 Specification Language 65

4.1 Syntax 65

4.2 Sem antics . 66

5 Predicate Transformer Semantics 71

5.1 Predicate Transformer Semantics 71

5.2 P roperties . 84

5.3 A lias Axiom s . 90

5.3.1 Alias A nalysis . 90

5.3.2 A lias Axiom s . 91

6 JPEG File Interchange Format 95

6.1 The JFIF Form at . 95

6.2 A Resilient JPEG Image Converter 97

6.3 Input Specification . 105

6.4 Verification . 107

7 Implementation 109

8 Related Work 111

9 Conclusion 115

8

R111

List of Figures

1-1 An example file format.. 15

1-2 An example program. 16

1-3 The structure of the verification system. 20

2-1 The structure of a typical PNG image file. 26

2-2 The common structure of PNG chunks. 26

2-3 A (simplified) code snippet from an image viewer for PNG files (1/2). 27

2-4 A (simplified) code snippet from an image viewer for PNG files (2/2). 29

3-1 The syntax of an imperative language. 52

3-2 The semantic domains. 53

3-3 The semantics of arithmetic expressions. 54

3-4 The semantics of Boolean expressions. 54

3-5 The semantics of a sequence of statements. 54

3-6 The semantics of environment/memory-related statements. 56

3-7 The semantics of file-related statements. 58

3-8 The semantics of an if statement . 60

3-9 The semantics of a while statement. 61

4-1 The syntax of a specification language. 66

4-2 The semantics of Term. 67

4-3 The semantics of Mems. 68

4-4 The semantics of FilePos.. 68

4-5 The semantics of FileCont.. 68

9

4-6 The semantics of Formula. 69

5-1 The MustAlias axioms. 91

5-2 The NoAlias axioms. 93

6-1 The layout of a typical JFIF image file. 96

6-2 The common structure of JFIF marker segments. 97

6-3 A (simplified) code snippet for an image converter from the JFIF format

to the PGM format (1/2). 98

6-4 A (simplified) code snippet for an image converter from the JFIF format

to the PGM format (2/2). 99

10

List of Tables

5.1 Predicate transformer semantics (1/2). 72

5.2 Predicate transformer semantics (2/2). 73

7.1 Verification Tim es. 110

11

12

Chapter 1

Introduction

Essentially all programs process inputs. Many programs read inputs from files and

must process the contents of the files properly to produce the correct output. Despite

the ubiquity of input file processing code, there is currently no standard, widely

accepted methodology for developing or structuring this kind of code. Indeed, most

input processing code is manually developed for the specific input files at hand.

Unsurprisingly, given the complexity of the input files that modern software systems

must process, the input file processing code is a prominent and increasingly troublesome

source of errors and security vulnerabilities in modern software systems [31, 40, 42].

Program verification provides one longstanding answer to the problem of incorrect

programs. Program verification has been the focus of intensive research for multiple

decades [24, 45]. The field has now progressed to the point where researchers are able

to verify programs that implement significant functionality. For example, the verified

CompCert compiler for C is one prominent and visible milestone in the development

of the field [29].

Interestingly enough, however, despite the importance of file processing code and

despite the sustained resources and research effort invested into program verification,

there has been very little research into verifying programs that process input files.

Indeed, the verified CompCert compiler mentioned above had an unverified parser

- the verified part of the compiler only started after the program text had been

converted to internal data structures. And interestingly enough, some errors have

13

been reported in the unverified front-end part of CompCert [46]. These facts highlight

the lack of research in this area and the potential for software errors in file reading

code to undermine the integrity of an otherwise fully verified system.

This thesis presents new techniques for verifying correctness properties of programs

that process input files. These techniques apply to programs written in standard

programming languages such as C and focus on relationships that must hold between

program execution points, the current location of file position indicator of the open

input file, and the contents of the input file. The thesis presents a specification

language that developers can use to express these relationships and insert them into

the program as assertions involving the file position indicator and file contents at

different program points. It also presents a program verification system that verifies,

for all possible input files and all possible input file contents, that the assertions hold

in all program executions.

I note that many input files have complicated formats and that the distinction

between valid files that conform to the format and corrupted files that do not conform

to the format is important for many developers. I emphasize that the presented

techniques do not explicitly take any file format information into account and do

not explicitly differentiate between valid and corrupt files. They instead verify that

the assertions hold for arbitrary file contents, whether valid or not. This property

supports the verification of programs that apply sophisticated recovery techniques

when encountering corrupted files. Indeed, such recovery techniques, which often

attempt to maximize the amount of data in the file that the program processes, can

be quite complex, difficult to test, and difficult to get right, and therefore the source

of many obscure errors and security vulnerabilities [33. I therefore see the presented

techniques as particularly appropriate for ensuring important correctness properties

of these programs, which attempt to process the input file as resiliently as possible.

14

I - opt I R IMMIM P OP1011 01, NORM, R RMTTW WWWWRITROP

non-FE1 6 . . . non-FF16 FF16 Length Data
(optional) (1 byte) (2 bytes) (Length bytes)

Input Unit

Figure 1-1: An example file format.

1.1 Motivating Example

I next present a motivating example that highlights several key characteristics of the

approach and the properties that it aims to verify. The example program reads a

file with format summarized in Figure 1-1. Specifically, the file comprises a sequence

of input units. Each input unit consists of an optional sequence of non-FF1 6 bytes

followed by a FF 1 6 byte. The next two bytes are a length field that specify the length

of a data field, which immediately follows the length field. This format contains two

features that are designed to enable the program to navigate the input file:

" Delimiters: The FF16 marker is a delimiter that enables the program to locate

the start of the input unit.

• Lengths: The length field specifies the length of the data field and enables the

program to be sure that it reads the entire data field.

Because they are so useful, delimiters and length fields are both common features of

input files. They can be especially important for helping programs resiliently process

partially corrupted files - the FF 16 delimiter can help a program find the start of

the next input unit and successfully process that input unit even when a previous

input unit is corrupted; the length field can enable the program to skip an appropriate

number of bytes if it encounters an error in the middle of processing a data field.

1.1.1 Program

Figure 1-2 on page 16 presents an example program that reads files in this format.

The program is written in C and uses the following two file operations:

15

1 uint8_t ff;
2 uint16_t length;
3 uint8_t *data;

4 ssize_t nbytes;

5 for (;;) {
6 for (;;) {
7 nbytes = read(fd, &ff, sizeof(ff));
8 if (nbytes != sizeof(ff)) goto EXIT;
9 if (ff == OxFF) break;
10 }

11 START:
12 ASSERT(GETCONTENT(fd, GET_POS(fd, "CURRENT") - 1) == OxFF);

13 nbytes = read(fd, &length, sizeof(length));
14 if (nbytes != sizeof(length)) goto EXIT;
15 length = ntohs(length);

16 if ((data= malloc(length)) != NULL) {
17 nbytes= read(fd, data, length);
18 if (nbytes == length) {
19 // process data.
20 free(data);
21 } else if (0 <= nbytes && nbytes < length) {
22 free(data);
23 if (lseek(fd, length - nbytes, SEEKCUR) == -1) goto EXIT;
24 }else { // nbytes == -1
25 free(data);
26 goto EXIT;
27 }
28 } else {
29 if (lseek(fd, length - nbytes, SEEKCUR) == -1) goto EXIT;
30 }

31 ASSERT(GETPOS(fd, "CURRENT) == GET_POS(fd, "START") + 2 +
32 (GETCONTENT(fd, GETPOS(fd, "START")) * 256 +
33 GETCONTENT(fd, GETPOS(fd, "START") + 1)));
34 }

35 EXIT:
36 ...

Figure 1-2: An example program.

16

" Read: The read(fd, buf , len) operation attempts to read len bytes from

the open file f d into the buffer buf. It returns the number of bytes actually read

or 0 if f d is at the end of the file. The file position indicator is increased by the

number of bytes actually read. If an error occurs during reading, -1 is returned.

" Lseek: The lseek(fd, len, SEEKCUR) operation sets the file position indi-

cator to the current file position indicator plus len. If successful, it returns the

new file position indicator. Otherwise it returns -1.

The outer loop (lines 5-34) iterates over the input units. This is a common coding

pattern in many input file processing programs [33] - even though the file is ostensibly

a stream of bytes, the program interprets the stream of bytes as a sequence of input

units and contains an outer loop that iterates over the input units.

The first inner loop (lines 6-10) skips the non-FF 1 6 bytes at the start of the next

input unit, leaving the file position indicator referencing the first byte of the length field.

The program then reads the length field (line 13) and invokes ntohs to convert the

input bytes in the length field into a number in the program (line 15). The following

block of code (lines 16-30) uses the read system call to read the bytes in the data

field into the data variable in the program.

In general, the program attempts to process the input file resiliently by skipping

over problematic input units and proceeding on to the next iteration of the loop

to process the next input unit when possible. If the program encounters an error

from which it cannot recover, it exits the outer loop and proceeds along with the

computation. Examples of errors from which it cannot recover include an inability to

read potential delimiter bytes (line 8), an inability to read the length field (line 14),

or an inability to skip over the appropriate number of data field bytes if something

goes wrong when attempting to read the data field (lines 23 and 29).

1.1.2 Correctness Properties

I identify two correctness properties: 1) at the program point before the program reads

the length field (line 12), the byte just before the current file position indicator has

17

value FFE16 and 2) the difference between the file position indicators before the program

reads the length field (line 12) and after attempting to read the data field (line 31)

is two bytes (the size of the length field) plus the number of bytes specified by the

length field.

The program expresses both of these correctness properties as assertions embedded

in the program. The first ASSERT statement (line 12) ensures that the program

correctly skips any non-FF 16 bytes before the FF16 delimiter, leaving the file position

indicator correctly referencing the the length field starting with the next byte in the

file after the FF16 delimiter.

12 ASSERT(GETCONTENT(fd, GETPOS(fd, "CURRENT") - 1) == OxFF);

The second ASSERT statement (lines 31-33) ensures that the current file position

indicator equals the file position indicator from line 12 (labeled with START) plus 2

(the number of bytes in the length field) plus the length of the data field.

31 ASSERT(GETPOS(fd, "CURRENT) == GETPOS(fd, "START") + 2 +

32 (GETCONTENT(fd, GETPOS(fd, "START")) * 256 +

33 GETCONTENT(fd, GETPOS(fd, "START") + 1)));

The assertions use the GETPOS(fd, label) construct to reference the file position

indicator for the open file f d at program point label. Here label CURRENT references

the current program point. In general, assertions may be executed multiple times, in

which case the referenced file position indicator is the value from the most recently

executed program point with the corresponding label. The assertions also use the

GETCONTENT(fd, offset) construct, which denotes the byte content of the open

file fd at offset of fset.

These two assertions capture the kind of correctness properties that often occur

in programs that process input files and the kind of properties that the techniques

presented in this thesis are designed to verify - the first involves the contents of

the input file at a point in the file defined relative to the file position indicator at a

18

M P M I't 11 qmlw 4"IRP"PPRA"PIPM 1W " 11M 1 RM 0 1114-

specific program point; the second involves a relationship between the file position

indicators at two program points as defined, in part, by the contents of the input file

(again at a point in the file defined relative to the file position indicator at a specific

program point).

Verifying these properties is especially important for ensuring that programs

process corrupted files properly or properly handle rare events such as the file read

operation returning fewer bytes than requested. While testing can often help validate

that the program correctly processes common case input files that conform to the

file format, programs often contain defects that are triggered by overlooked cases or

corrupt input files. One class of defects can be caused, for example, by a developer

simply assuming that a delimiter occurs at the current file position instead of writing

code to search for the delimiter. Verifying the first assertion can ensures that the

example program does not have this defect.

Another common class of defects can be caused by a failure to advance the file

position indicator to the end of an input unit when the program encounters an

unexpected condition while reading an input unit. In this case the program can

become desynchronized with the file and may start to process the next input unit from

the wrong location in the file. An examination of the code in lines 16-30 highlights how

complex handling correctly every case can become. Even though the code only reads

the data field, it must consider and correctly handle multiple uncommon error cases:

• Failed Memory Allocation. If the data field is too large, the memory al-

location on line 16 may fail. In this case the program uses 1seek to skip the

data field before executing the next loop iteration to process the next (possibly

shorter) input unit (lines 28-29).

• Partial Read. The read operation on line 17 may read only part of the data

field. In this case the program skips the remaining bytes in the data field before

executing the next loop iteration to process the next input unit (lines 21-23).

• Failed Read. The read operation on line 17 may fail outright. In this case the

program aborts processing the file and does not attempt to recover (lines 24-26).

19

Alt-Ergo

C Source Code AST VC Why Why3
with Specifications CIL VCGen Translator Platform VC3

AliasAnalysis Z3

Figure 1-3: The structure of the verification system.

Overlooking any one of these cases or failing to correctly code the recovery code for

one of these cases can cause the program to become desynchronized with the input

file and process subsequent input units incorrectly.

Note that in the example the loop that finds the delimiter at the start of the next

input unit does not eliminate the problem of the program becoming desynchronized

with the input file - if the read operation leaves the file position indicator in the

middle of the data field, the program may incorrectly mistake an FFE1 6 byte in the

data field as the delimiter indicating the start of the next input unit. Verifying the

second assertion ensures that the example program does not have this kind of defect

because it correctly reads or skips all bytes in the data field, leaving the file position

indicator referencing the byte after the last byte in the input unit.

1.1.3 Verification

Figure 1-3 presents a block diagram of the structure of the presented verification

system. The system works with C code augmented with specifications inserted inline at

appropriate program points. Specifications take the form of C macros, which expand

into CIL attributes [38]. The system uses the CIL front end to obtain an abstract

syntax tree (AST) for the program. Because the specifications are expressed as CIL

attributes, they are parsed by the CIL front end and inserted into the abstract syntax

tree that the CIL front end generates. The system next runs an extended version

of the GOLF alias analysis algorithm [16] to derive loop invariants that characterize

potential aliasing relationships in the program. The verification condition generator

takes the abstract syntax tree (including specifications) and the aliasing information.

20

NNIMM P111110P RRI R"M IMMM", -

It then uses a precondition analysis to propagate the specifications against the flow

of control to obtain appropriate verification conditions, which it discharges using the

Why3 platform [18], which deploys multiple reasoning systems and decision procedures

to discharge the verification conditions.

A key aspect of the system is how it reasons about the file contents and the

file position indicator. To support the kind of accurate reasoning required to verify

the target specifications, the system represents the file contents symbolically and

accurately, including taking information from conditionals into account when accumu-

lating information about the file contents. For example, a common pattern in many

programs that read files is to check the contents of certain file bytes against flag values

identified in the file format specification (for example, line 9 in Figure 1-2 on page 16).

Precisely tracking the values of these file bytes across the program, as established by

the conditionals that read these bytes, is necessary to verify specifications (such as

line 12 in Figure 1-2 on page 16) that check specific values of specific file bytes.

The expressions in the conditions identify the positions of specific bytes within

a given file as offsets from the file position indicator at an identified program point.

This value of this file position indicator is the value from the last time the program

executed the identified program point. The expressions that denote offsets can use

constants, program variables, and the contents of specific bytes within the file, and

sums over these quantities.

To support scalable verification, the system separates out two specific file read

cases. When the file read operation reads a compile-time constant number of bytes,

the system generates expressions that separately represent the value of each read

byte. Such file read operations typically read flags or delimiters, which often contain

specific values that the program checks. Representing the bytes separately facilitates

the kind of precise reasoning required to verify that the checks appropriately satisfy

the specification.

When a file read operation reads a number of bytes that cannot be statically

determined, the system generates a single expression that summarizes the values of

all read bytes. The rationale is that such reads typically correspond to loading data

21

fields (as opposed to flags, delimiters, or other formatting information) whose specific

values are not relevant to the specification. This approach precisely but efficiently

handles this case.

1.2 Parser Generators

Correctly processing input files (specifically, parsing computer programs) was identified

as a problem decades ago, soon after programming language designers started producing

the first high-level languages [26, 28, 41]. Indeed, parsing research was a focal

point of computer science for several decades [3, 22] and is still an active area

of research [20, 27, 30, 39]. This research has produced a range of sophisticated

techniques for correctly parsing complex inputs. Packaging these techniques into

parser generators automates their application and makes it possible to automatically

convert a specification of the input file format into a parser that can correctly process

all files that conform to the file format [1, 9, 12].

Given the decades of research that have gone into this effort and the many parser

generators that this research has produced, one may reasonably ask why developers still

overwhelmingly write input processing code by hand given the widespread availability

of parser generators and the significant advantages they claim to deliver. I identify

several reasons why this may be the case.

First, parser generators take a specification of what a valid input looks like and

generate a program that processes valid inputs. Because the question of how to handle

invalid inputs typically lies outside the scope of the specification language, the parser

generator usually applies a default error handling strategy. The most common error

handling strategy is to simply reject the input and abandon the parsing effort.

But many input processing programs must apply much more sophisticated strategies

that involve using domain-specific information to recover from corrupted or unexpected

inputs. Parser generators provide no satisfactory way to incorporate this domain-

specific information and therefore do not satisfy the needs of developers building

software for processing files. In this situation developers fall back onto writing file

22

processing software in standard programming languages, which enable developers

to apply custom domain-specific error recovery strategies that attempt to resiliently

process their inputs.

Second, parser generators complicate the build process and environment. They

inject a new language and language processor (the parser generator) into the build

process. Because parser generators are much less widely used than standard pro-

gramming language implementations, they tend to have more problems, are not as

well documented or supported, and it can be difficult to find developers who can use

the parser generator effectively. All of these issues argue against the use of parser

generators in large software systems, once again leaving developers writing input

processing code in standard programming languages.

The significant practical drawbacks that the history of parser generators has

surfaced, the demonstrated unwillingness of developers to use parser generators, and

the known problems associated with developing input processing code in standard

programming languages all motivate the need for techniques (such as those presented

in this thesis) that help developers produce correct input processing code written in

standard programming languages.

1.3 Contributions

This thesis makes the following contributions:

" Specification Language. The thesis presents a specification language that

enables developers to specify the following correctness properties for programs

that process files:

-A program has consumed the correct number of bytes between two different

program points.

-A program has checked that file contents have correct values, such as file

signatures and delimiters, at the corresponding program points.

" Verification System. The thesis presents a program verification system that

23

verifies, for all possible input files, that those correctness properties hold in all

possible program executions.

1.4 Structure

The remainder of the thesis is structured as follows. Chapter 2 presents a detailed

example that illustrates how to specify correctness properties for a PNG image viewer

using the proposed specification language and how the verification system checks that

they hold for all input files and program executions. Chapter 3 defines an imperative

programming language that supports file I/O operations and byte-wise operations such

as endianness conversions. Based on the programming language, Chapter 4 formally

defines the syntax and semantics of the proposed specification language. Chapter 5

explains how the verification system works in terms of predicate transformer semantics

and proves the soundness of the verification process of input specifications. Chapter 6

gives another example that shows how the proposed system can be used to verify

programs that process delimiter-based file formats, such as the JPEG File Interchange

Format (JFIF), as well as length-based file formats. Chapter 7 discusses about the

implementation of the proposed system and evaluates its practical aspects. Chapter 8

presents related work and the thesis concludes with Chapter 9.

24

Chapter 2

Portable Network Graphics

This chapter presents a detailed example that illustrates how the proposed program-

ming system can help a developer when he or she wants to write an image viewer for

PNG files in an error-resilient way. The example shows what challenges the proposed

system has come across in the process of verifying that the developer's implementation

meets its input specification and how it could cope with them.

2.1 The PNG Format

PNG (Portable Network Graphics) [2] is a file format for raster graphics images that

supports lossless data compression. In 2013, the PNG format was reported to be the

most widely-used lossless image file format used in the Internet [21].

Figure 2-1 on page 26 shows the structure of a typical PNG image file. The file

format starts with an 8-byte signature, which is used for a file to identify itself as

the PNG image file format. The signature is followed by a series of blocks, which the

PNG standard refers to as chunks. The first chunk is called IHDR, which specifies

the dimensions, bit depth, and color type of the contained image. The PLTE chunk

contains the colormap information for the image data and is present only if the image's

color type is palette. The IDAT chunks contain the actual (compressed) image data

and must appear consecutively. A PNG file ends with an IEND chunk.

All the chunks have a common structure shown in Figure 2-2 on page 26. Each

25

PNG Signature IHDR Chunk PLTE Chunk IDAT Chunk 1 - - - IDAT Chunk n IEND Chunk

Figure 2-1: The structure of a typical PNG image file.

Length (4 bytes) Type (4 bytes) Data (Length bytes) CRC (4 bytes)

Figure 2-2: The common structure of PNG chunks.

chunk consists of 4 fields: Length (4 bytes), Type (4 bytes), Data (Length bytes), and

CRC (4 bytes). The Length field is a 4-byte unsigned integer in network byte order

and specifies the size of the chunk's Data field in bytes. The Type field determines

the type of the chunk and is a sequence of 4 ASCII letters, such as "IHDR", "PLTE",

"IDAT", and "IEND". The Data field contains information proper to the type of the

chunk. When the Length field of a chunk is zero (for example, the IEND chunk),

its Data field is omitted. Every chunk ends with a 4-byte CRC (Cyclic Redundancy

Check) value that has been calculated over the Type and Data fields.

2.2 A PNG Image Viewer

Figures 2-3 and 2-4 on pages 27 and 29 present code snippets from an image viewer for

PNG files that was written as resiliently as possible. Figure 2-3 shows the first part of

the viewer, which attempts to read 8 bytes and checks if they match the PNG signature

in order to confirm that the input file is a PNG-formatted image (lines 10-18).

10 if ((nbytes= read(fd, signature, sizeof(signature))) sizeof(signature)) {

11 exit(1); I/O ERROR OR NOT WELL-FORMED

12 }

13 if (signature[O] != '\x89' || signature[l] '\x50' ||

14 signature[2] '\x4E' || signature[3] '\x47' ||

15 signature[4] '\xOD' |1 signature[5] '\xOA' 11

16 signature[6] '\xlA' || signature[7] '\xOA') {

17 exit(1); //NOT WELL-FORMED

18 }

26

uint8_t signature[8];

uint32_t length; //the Length field (4 bytes)

uint8_t type[4]; //the Type field (4 bytes)
uint8_t *data; //the Data field (Length bytes)

uint32_t crc; //the CRC field (4 bytes)

ssize_t nbytes;

FILESTART:

if ((nbytes= read(fd, signature, sizeof(signature)))

exit(1); //I/0 ERROR OR NOT WELL-FORMED
}
if (signature[O] '\x89' || signature[l] '\x50'

signature[2] '\x4E' Il signature[3] '\x47'

signature[4] '\xOD' 11 signature[5] '\xOA'

signature[6] '\xlA' || signature[7] != '\xOA')

exit(1); // NOT WELL-FORMED

!sizeof(signature)) {

||
||
||
{

}

ASSERT(GET_POS(fd, "CURRENT") == GETPOS(fd, "FILE_START") + 8 &&

GETCONTENT(fd,

GETCONTENT(fd,

GETCONTENT(fd,
GETCONTENT(fd,
GETCONTENT(fd,
GETCONTENT(fd,
GETCONTENT(fd,

GETCONTENT(fd,

GET_POS(fd,

GETPOS(fd,
GETPOS(fd,
GETPOS(fd,
GETPOS(fd,
GETPOS(fd,
GETPOS(fd,
GETPOS(fd,

"CURRENT")

"CURRENT")
"CURRENT")
"CURRENT")
"CURRENT")
"CURRENT")
"CURRENT")

"CURRENT")

8)

7)
6)

5)

== Ox89 &&

0x50
Ox4E

0x47

&&
&&
&&

- 4) == OxOD &&

- 3) == OxOA &&

- 2) == Ox1A &&

- 1) == OxOA);

Figure 2-3: A (simplified) code snippet from an image viewer for PNG files (1/2).

27

1

2
3
4
5

6
7

8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

The POSIX read(fd, buf, n) system call tries to read n number of bytes from the

file referenced by the file descriptor fd into the buffer buf, and returns the number of

bytes that it has actually read or -1 to indicate that an error has occurred during its

execution. More specifically, there are three cases where the read() call here cannot

read as many bytes as specified in the argument:

• The file descriptor is not associated with an open file or an I/O error (e.g.,

hardware failure) has occurred, where the read function returns -1.

" The file descriptor has already reached the end of the image file, where the read

function returns 0. This indicates that the file is empty and not well-formed.

• The file descriptor has not reached the end of the image file yet but the number

of bytes left is less than the requested amount. This indicates that the image

file ends prematurely and therefore is not well-formed. The read function reads

all the bytes left and returns the count, which is greater than zero and less than

the number of bytes specified in the argument.

For all these cases, the viewer terminates with a failure exit code, displaying some

error messages (not shown here) as appropriate.

Once the viewer has read the PNG signature successfully, it processes each chunk

in a loop because all the chunks share the same structure (Figure 2-4 on page 29).

Each iteration of the loop starts by making an attempt to read the Length field of

4 bytes into the length variable. As in the PNG signature, the read call may not be

able to read as many bytes as specified in the argument. However, the image file is not

always ill-formed when the read function returns 0. Rather, if the previous iteration

has handled the IEND chunk, the return value 0 indicates that all parts of the image

file have been successfully consumed. In all cases where the read function could not

read the specified number of bytes, the viewer breaks out of the loop, setting some

28

1 for (;;) {
2 CHUNKSTART:;

3 // the Length field (4 bytes)

4 if ((nbytes = read(fd, &length, sizeof(length))) != sizeof(length)) {
5 if (nbytes == 0) break; // EOF

6 break; I/O ERROR OR NOT WELL-FORMED
7 }
8 length = ntohl(length);

9 // the Type field (4 bytes)

10 if ((nbytes= read(fd, type, sizeof(type))) != sizeof(type))

11 break; I/O ERROR OR NOT WELL-FORMED

12 //the Data field (Length bytes)

13 if ((data = malloc(length)) == NULL) {
14 off_t offset = lseek(fd, length + 4, SEEK_CUR);

15 if (offset == -1) break; // I/O ERROR

16 ASSERT(GETPOS(fd, "CURRENT") ==
17 GETPOS(fd, "CHUNKSTART") + 4 + 4 +
18 (GET_CONTENT(fd, GETPOS(fd, "CHUNKSTART")) * 16777216 +
19 GETCONTENT(fd, GETPOS(fd, "CHUNKSTART") + 1) * 65536 +
20 GETCONTENT(fd, GETPOS(fd, "CHUNKSTART") + 2) * 256 +
21 GETCONTENT(fd, GETPOS(fd, "CHUNKSTART") + 3)) + 4);
22 continue; //TOLERATE NOT ENOUGH MEMORY
23 }
24 if ((nbytes = read(fd, data, length)) != length) {
25 free(data); break; I/O ERROR OR NOT WELL-FORMED
26 }

27 // the CRC field (4 bytes)

28 if ((nbytes = read(fd, &crc, sizeof(crc))) != sizeof(crc)) {
29 free(data); break; I/O ERROR OR NOT WELL-FORMED

30 }
31 crc = ntohl(crc);

32 ASSERT(GETPOS(fd, "CURRENT") ==
33 GET_POS(fd, "CHUNKSTART") + 4 + 4 +
34 (GETCONTENT(fd, GET_POS(fd, "CHUNKSTART")) * 16777216 +
35 GETCONTENT(fd, GET_POS(fd, "CHUNK_START") + 1) * 65536 +
36 GETCONTENT(fd, GET_POS(fd, "CHUNK_START") + 2) * 256 +
37 GETCONTENT(fd, GET_POS(fd, "CHUNK_START") + 3)) + 4);

38 //process data.

39 ...
40 }

Figure 2-4: A (simplified) code snippet from an image viewer for PNG files (2/2).

29

flags (not shown here) as appropriate (lines 4-7).

4 if ((nbytes = read(fd, &length, sizeof(length))) != sizeof(length)) {

5 if (nbytes == 0) break; // EOF

6 break; //I/O ERROR OR NOT WELL-FORMED

7 }

On the other hand, when the read call could read the exact number of bytes requested,

the viewer invokes the ntohl function to convert the length variable from network

byte order to host byte order (line 8).

8 length = ntohl(length);

Next, the viewer attempts to read 4 bytes for the Type field. Unlike the read call

for the Length field, the return value 0 from this read call (or the premature end-of-file)

means that the mandatory Type and CRC fields are missing and that the image file

is not syntactically well-formed. Therefore, the viewer terminates the execution of

the loop in all cases where the read function failed to read the requested number of

bytes (lines 10-11).

10 if ((nbytes= read(fd, type, sizeof(type))) != sizeof(type))

11 break; I/O ERROR OR NOT WELL-FORMED

The viewer makes an effort to process the Data field in an error-resilient manner.

Because the Data field is of variable length, the viewer dynamically allocates a memory

block of size specified in the Length field via the malloc function (line 13).

13 if ((data = malloc(length)) == NULL) {

Dynamic allocation fails if there is not enough free memory, and then the malloc

function returns NULL. In that case, a naive (and common) approach is to blindly

stop the whole process (e.g., by terminating the program with an error message),

30

wasting all the efforts that have been made so far, even though the previous chunks

of the image file have been processed successfully and the following chunks may be

shorter than the current one. In contrast, this image viewer skips to the next chunk

by adjusting the offset of the file descriptor accordingly, and continues to process the

remaining chunks of the image file (lines 14-22): the 1seek(fd, offset, SEEKCUR)

function moves the file descriptor fd from its current position by the offset amount.

14 off_t offset = lseek(fd, length + 4, SEEK_CUR);

15 if (offset == -1) break; // I/O ERROR

16 ASSERT(GETPOS(fd, "CURRENT") ==

17 GETPOS(fd, "CHUNKSTART") + 4 + 4 +

18 (GET_CONTENT(fd, GETPOS(fd, "CHUNKSTART")) * 16777216 +

19 GETCONTENT(fd, GETPOS(fd, "CHUNKSTART") + 1) * 65536 +

20 GETCONTENT(fd, GETPOS(fd, "CHUNKSTART") + 2) * 256 +

21 GETCONTENT(fd, GETPOS(fd, "CHUNKSTART") + 3)) + 4);

22 continue; //TOLERATE NOT ENOUGH MEMORY

For this strategy to work, a developer must specify the exact number of bytes to

skip so that the next iteration of the loop starts at the beginning of the next chunk.

Otherwise, the viewer would completely misread the rest of the image file and there

would be no good point in continuing the execution of the program. Specifically, the

viewer has to skip both of the Data and CRC fields to take the file descriptor to the

next chunk of the PNG image file. While the CRC field is a fixed-length field, the size

of the Data field is determined by the Length field, which is stored in the file itself.

Thus, the amount to skip is not specified by a constant but by an expression involving

the length variable, which the result of endianness conversion was stored into.

Once the memory allocation is successful, the image viewer processes the Data

and succeeding CRC fields similarly to the Type field: it tries to read an appropriate

number of bytes and checks how many bytes have actually been read. However, in case

of errors, the program also deallocates the memory space for the Data field because it

is a local resource to the current iteration.

31

2.3 Input Specification

If the image viewer has been correctly written according to the PNG specification, it

is supposed to have observed the 8-byte PNG signature when the program execution

reaches the main loop. Also, the file position indicator should be 8-byte away from

the beginning of the input file so that the viewer is ready for reading the first byte of

the first chunk. The proposed system provides a specification language that enables

a developer to specify 1) how many bytes a program has to consume between two

program execution points and 2) what byte values are supposed to be observed at

specific offsets in an input file. In the specification language, the above property could

be specified as follows, just before entering the main loop (lines 20-28 in Figure 2-3

on page 27):

20 ASSERT(GETPOS(fd, "CURRENT") == GETPOS(fd, "FILESTART") + 8 &&

21 GETCONTENT(fd, GETPOS(fd, "CURRENT") - 8) == Ox89 &&

22 GETCONTENT(fd, GETPOS(fd, "CURRENT") - 7) == Ox50 &&

23 GETCONTENT(fd, GETPOS(fd, "CURRENT") - 6) == Ox4E &&

24 GET.CONTENT(fd, GETPOS(fd, "CURRENT") - 5) == 0x47 &&

25 GET.CONTENT(fd, GETPOS(fd, "CURRENT") - 4) == OxOD &&

26 GETCONTENT(fd, GETPOS(fd, "CURRENT") - 3) == OxOA &&

27 GET.CONTENT(fd, GET_POS(fd, "CURRENT") - 2) == Ox1A &&

28 GETCONTENT(fd, GETPOS(fd, "CURRENT") - 1) == Ox0A);

The first line of the assertion specifies that the current file position indicator, denoted

byGET_POS(fd, "CURRENT"), should be 8-bytes away from the file position indicator

at file opening time, denoted by GETPOS(fd, "FILESTART"). FILESTARTisa

C label attached to a program point where a file has just been opened (line 8 in

Figure 2-3 on page 27). Also, the developer specifies that the previous 8 bytes from

the current file position should be identical to the PNG signature (lines 21-28). This

requires the image viewer to check whether the image file contains the correct PNG

signature or not, as shown at lines 13-16 in Figure 2-3 on page 27. GETCONTENT(fd,

offset) denotes the byte value at offset in the file referenced by the file descriptor fd.

32

When the current chunk is syntactically well-formed, there are two scenarios with

the main loop where the image viewer can finish with the current chunk and proceed

to the next one: 1) the viewer managed to execute all system calls (or their wrappers),

such as malloc, without any runtime error, and then the program execution reached

the end of the current iteration or 2) the program execution suffered some runtime

errors, but the viewer decided to tolerate them and could take appropriate actions

such as relocating the file descriptor.

For both of those two cases, it should be guaranteed that the program has consumed

all the bytes of the current chunk and is ready for reading the next chunk with the

start of the next iteration. Otherwise, the program has been mistakenly written in

a way that does not conform to the specification of the file format or take a correct

action to recover from errors.

In this example, the developer specified that the image viewer is designed to

guarantee that, whenever it manages to reach the end of each iteration, it has read all

the bytes of the current chunk (lines 16-21 and 32-37).

16 ASSERT(GETPOS(fd, "CURRENT") ==

17 GETPOS(fd, "CHUNKSTART") + 4 + 4 +

18 (GET_CONTENT(fd, GETPOS(fd, "CHUNKSTART")) * 16777216 +

19 GETCONTENT(fd, GETPOS(fd, "CHUNKSTART") + 1) * 65536 +

20 GETCONTENT(fd, GETPOS(fd, "CHUNKSTART") + 2) * 256 +

21 GETCONTENT(fd, GETPOS(fd, "CHUNKSTART") + 3)) + 4);

32 ASSERT(GETPOS(fd, "CURRENT") ==

33 GETPOS(fd, "CHUNKSTART") + 4 + 4 +

34 (GETCONTENT(fd, GETPOS(fd, "CHUNKSTART")) * 16777216 +

35 GETCONTENT(fd, GETPOS(fd, "CHUNKSTART") + 1) * 65536 +

36 GETCONTENT(fd, GETPOS(fd, "CHUNK_START") + 2) * 256 +

37 GETCONTENT(fd, GETPOS(fd, "CHUNK_START") + 3)) + 4);

Specifically, the current file position indicators at lines 16 and 32, denoted by

GETPOS(fd, "CURRENT"), should be different from the file position indicator at

the start of the current iteration (labeled as CHUNKSTART at line 2 in Figure 2-4

33

on page 29), denoted by GETPOS(fd, "CHUNK_START "), by 4 (Length) + 4 (Type)

+ |Datal + 4 (CRC). |Datal denotes the variable size of the Data field, which is

an integer value obtained by interpreting the Length field of the current chunk in

big-endian byte order. The Length field is located at the beginning of the current

chunk, whose position is expressed as GETPOS(fd, "CHUNKSTART"). Therefore, the

n-th byte of the Length field can be found at GETPOS(fd, "CHUNKSTART")+n, and

is multiplied by 2248n because the most significant byte is stored first in big-endian

format (lines 18-21 and 34-37).

2.4 Verification

This example illustrates three challenges, among others, that the proposed system has

to cope with to verify that the developer's implementation meets its input specification.

First, the input specifications are relational in two different dimensions. They

stipulate not only how the constituent parts of a program state should be relatedat a

given program point, but also what relationship a program state at a program point

should have with program states at different program points.

20 ASSERT(GET_POS(fd, "CURRENT") == GETPOS(fd, "FILESTART") + 8 &&

21 GETCONTENT(fd, GETPOS(fd, "CURRENT") - 8) == Ox89 &&

22 GETCONTENT(fd, GETPOS(fd, "CURRENT") - 7) == Ox50 &&

23 GETCONTENT(fd, GETPOS(fd, "CURRENT") - 6) == Ox4E &&

24 GETCONTENT(fd, GETPOS(fd, "CURRENT") - 5) == Ox47 &&

25 GETCONTENT(fd, GETPOS(fd, "CURRENT") - 4) == OxOD &&

26 GETCONTENT(fd, GETPOS(fd, "CURRENT") - 3) == OxOA &&

27 GETCONTENT(fd, GETPOS(fd, "CURRENT") - 2) == Ox1A &&

28 GETCONTENT(fd, GETPOS(fd, "CURRENT") - 1) == OxOA);

For example, the above specification involves GETPOS(f d, "CURRENT") and GET_POS(

f d, "FILESTART"), which are the states of the file position indicator at two different

program execution points CURRENT and FILESTART. The conventional value analyses,

which compute the intervals of each variable's possible values at each program point,

34

are not suitable for tracking such sophisticated relationships among program states at

different program points [13, 15].

Second, the program consists of a big loop that repeats an indefinite number of

times. The loop terminates only when the end of the image file has been reached or

an irrecoverable error occurs. In other words, the loop does not have any terminating

conditions that can impose an upper bound on how many times it will be executed.

Thus, it is inappropriate to apply conventional approaches that attempt to reach

some fixed points or compute underapproximation by iterating a fixed number of

times [32]. On the other hand, if we introduce some coarse approximation to guarantee

the termination of our analyses, there is always some chance that we cannot confirm

the validity of specifications just because of the granularity of the approximation.

Finally, this kind of program almost always involves byte-wise operations because

it deals with a binary file format. In our example, the read function reads the contents

of a file by units of bytes, and the ntohl function converts an integer value from

network byte order to host byte order. Previous techniques that treat fixed-width

machine integers as mathematical integers usually model the behaviors of those low-

level operations approximately. For instance, the return value of a ntohl call would be

simply modeled as a top element, which denotes any arbitrary integer value, regardless

of its input argument. Considering the pervasiveness of those operations in our target

applications, such approximation can become too conservative.

To deal with these three challenges, the proposed system starts by transforming

an input specification that depends on program states at different program points into

one that depends only on the current program state. Specifically, a new ghost variable

is introduced for each GETPOS(fd, "t") that appears in the input specification. Then

an assignment statement is inserted to initialize the ghost variable to the file position

of file descriptor fd at program point £, and the GETPOS(fd, "f") part in the input

specification is substituted with a reference to the corresponding ghost variable. For

instance, this transformation rewrites the specification on lines 32-37 in Figure 2-4 on

page 29 as follows:

35

+

ASSERT(GETPOS(fd, "CURRENT") ==

GETPOS(fd, "CHUNKSTART") + 4 + 4 +

(GETCONTENT(fd, GET_POS(fd, "CHUNKSTART")) * 16777216 +

GETCONTENT(fd, GETPOS(fd, "CHUNKSTART") + 1) * 65536 +

GETCONTENT(fd, GETPOS(fd, "CHUNKSTART") + 2) * 256 +

GETCONTENT(fd, GET_POS(fd, "CHUNKSTART") + 3)) + 4);

__ghostGETPOSfdCHUNKSTART + 4 + 4 +

(GETCONTENT(fd, __ghostGETPOSfdCHUNKSTART_) * 167772

GETCONTENT(fd, __ghostGETPOSfdCHUNKSTART_ + 1) * 65

GETCONTENT(fd, __ghostGETPOSfdCHUNKSTART_ + 2) * 25

GETCONTENT(fd, __ghostGETPOSfdCHUNKSTART_ + 3)) + 4

and puts an assignment statement _ghost__GET_POS_f d_CHUNKSTART_ = GET_POS(

f d, "CURRENT") below line 2 in Figure 2-4 on page 29.

CHUNKSTART:

+ _ghost__GETPOSfdCHUNKSTART_ = GET_POS(fd, "CURRENT");

Now the specification just involves the ghost variable, the current file position

GETPOS(fd, "CURRENT"), and the file contents GET_CONTENT(fd, ...), which all

refer to the current program state only.

The proposed system propagates the transformed input specification backwards

against the control flow and figures out what condition at each program point should

be satisfied to guarantee the specification. When a new condition is propagated into a

program point, the system checks if the old condition there implies the new condition.

If so, the new condition is not propagated further. Otherwise, the logical conjunction

of the old and new conditions is stored at the program point and propagated backwards

again. After the system finishes figuring out what condition at each program point

should be met, it checks if the resulting condition at the start of the program can be

proved to be a tautology, which means that every possible execution of the program

correctly meets the specification.

For our example, the analysis translates the (transformed) input specification

36

16 +

536 +

6 +

above into the following Q32 condition that should be satisfied before entering line 32:

32 ASSERT(GETPOS(fd, "CURRENT") ==

33 __ghost_GETPOSfdCHUNKSTART + 4 + 4 +

34 (GETCONTENT(fd, __ghost_GET_POSfdCHUNKSTART_) * 16777216 +

35 GETCONTENT(fd, __ghostGET_POSfdCHUNKSTART_ + 1) * 65536 +

36 GETCONTENT(fd, __ghost_GET_POSfdCHUNKSTART_ + 2) * 256 +

37 GETCONTENT(fd, __ghost_GET_POSfdCHUNKSTART_ + 3)) + 4);

P(fd) = _ghost_GET_POS_fd_CHUNKSTART_ + 4 + 4 +

(C(fd, _ghostGET_POS_fd_CHUNKSTART_) x 224+

C(f d, _ghostGET_POS_f d_CHUNKSTART_ + 1) x 216 + (Q32)

C(f d, _ghostGET_POS_f d_CHUNKSTART_ + 2) x 28 +

C(f d, _ghost _GET_POS_f d_CHUNKSTART_ + 3)) + 4

P(fd) stands for the current file position of the fd file descriptor. C(fd, offset) de-

notes the byte value at offset from the start of a file referenced by the file descrip-

tor fd. All together, condition Q32 asserts that the current file position indicator

of the f d file descriptor (P(f d)) should be located at 4 + 4 + (the size of the

Data field) + 4 away from the _ghostGET_POS_fd_CHUNKSTART_ ghost variable,

which remembers the file position of the fd file descriptor at label CHUNKSTART.

The variable size of the Data field is an integer value obtained by interpreting

a 4-byte big-endian integer at offset _ghostGET_POS_fd_CHUNKSTART_ of file fd:

C(f d, _ghost _GET_POS_f d_CHUNKSTART) x 22 4 +C(fd, _ghostGET_POS_fd_CHUNKSTART_

+1) x 216 + - - + C(f d, _ghostGET_POS_f d_CHUNKSTART_ + 3).

The assignment statement on line 31 does not make any change on condition Q32

because the crc variable does not occur in condition Q32. Therefore, condition Q31 is

exactly the same as condition Q32. This reflects the fact that the value of the CRC

field is not concerned with the syntactic structure of PNG files because the field takes

a fixed number of bytes. Even when a checksum error is detected in a chunk, we may

still be able to successfully process the remaining chunks of the PNG file and get a

37

better partial result.

31 crc = ntohl(crc);

P(fd) = _ghostGETPOS_f d_CHUNKSTART_ + 4 + 4 +

(C(fd, _ghost_GETPOS_fd_CHUNKSTART_) x 224

C(fd, _ghostGETPOS_fd_CHUNKSTART_ + 1) x 216 + (Q31)

C(fd, _ghostGETPOS_fd_CHUNKSTART_ + 2) x 28 +

C(f d, _ghost _GETPOS_f d_CHUNKSTART_ + 3)) + 4

Condition Q31 is propagated into both the then branch and the implicit else branch

of the if block on lines 28-30.

28

29

30

if ((nbytes = read(fd, &crc, sizeof(crc))) != sizeof(crc)) {

free(data); break; I/O ERROR OR NOT WELL-FORMED

}

The last statement of the then branch is break, which transfers the control to the

statement following the enclosing loop. There is no control flow between the previous

program point of the break statement and its next program point, and the analysis

does not propagate condition Q31 across the break statement. As a result, the

condition that should be satisfied at the beginning of the then branch to guarantee

the input specification is just "true." On the other hand, condition Q31 should be met

at the beginning of the implicit else branch, which has an empty body. Line 28 is a

C idiom that calls the read function to read a specified number of bytes from a file

and checks its, return value in a single line, which is semantically equivalent to the

following two separate statements:

nbytes = read(fd, &crc, sizeof(crc));

if (nbytes != sizeof(crc)) {

The crc variable is declared as a 4-byte unsigned integer, so sizeof (crc) in the if

condition always returns 4. Therefore, the conditions at the start of the then and else

38

I 11MININ Rpm I -

branches are guarded by the path condition of the if statement, nbytes z 4, and

combined conjunctively to guarantee the specification regardless of which branch will

be taken:

(nbytes # 4 -- true) A (-,(nbytes # 4) - Q31) (Q28a)

The read call converts condition Q28a into the following Q28b condition:

Q28a[4/nbytes][P{fd - P(fd) + 4}/ ']

[M{crc 4 C(fd,-P(fd))}{crc + 1 - C(fd,P(fd) + 1) ... {crc + 3 s C(f d,P(f d) + 3)} / M] A

Q28a [3 / nbytes][P{f d P(f d) + 3} / 7'

[M{crc a C(fd,P(fd))}{crc + 1 s C(f d,P(f d) + 1)}{crc + 2 - C(f d,P(f d) + 2)} / M] A

Q2a [2 / nbytes][P{f d P(f d) + 2} / 7]

[M{crc - C(f d, P(f d))}{crc + 1 - C(f d, P(f d) + 1)}} /M] A

Q 2sa(1 /nbytes][P{f d P(f d) + 1} /'][M{crc - C(f d, P(f d))} / M] A

Q2saK[-1/ nbytes][P{f d P(f d) + 4} / P]

[M{crc - C(f d, P(f d))}{crc + 1 - C(f d,P(f d) + 1)} {crc + 3 4 C(f d, P(f d) + 3)} / MI A

Q2sa[-1 /nbytes][P{f d P(f d) + 3} / P]

[M{crc - C(f d, P(f d))}{crc + 1 - C(f d,P(f d) + 1)}{crc + 2 - C(f d,P(f d) + 2)} / M] A

Q28a[-1 / nbytes][P{f d ' P(f d) + 2} / P]

[M{crc - C(f d, P(f d))}{crc + 1 - C(f d, P(f d) + 1)} /M] A

Q2a[-1 / nbytes][P{f d P(f d) + 1}/ P][M{crc - C(f d, P(f d))} / M] A

Q2Sa[0 / nbytes] A Q28a [-1/nbytes)

(Q28b)

Note that, although the crc variable is a non-pointer variable in the source code, it

is modeled as a pointer to a 4-byte unsigned integer in the generated condition. We

need to consider the address of the crc variable because its address is taken at line 28

by the C address-of operator (&).

In case of an external I/O error (e.g., hardware failure), the read system call

may immediately return -1, which will in turn be assigned to the nbytes variable,

without changing anything. This case is handled by the last line of condition Q28b:

Q 28a[-1/nbytes], which is a condition obtained by substituting -1 for all nbytes

occurrences in condition Q28a-

If the current file position is at or after the end-of-file, the read call just returns

0, which is assigned to the nbytes variable. This case is handled by the last line of

39

condition Q28b: Q28a[0/nbytes].

Even when the read call has read some bytes successfully, it may still read less

than the specified sizeof (crc) number of bytes (or 4 bytes): there are not enough

bytes left in the file or some I/O error has occurred in the middle of reading. To

cover all cases where the read call has actually consumed some bytes, the condition

has a clause for each possible number of bytes read. Note that we can enumerate

all possible numbers of bytes read because the specified number of bytes to read is

a constant in this read call: sizeof (crc). The first seven lines of condition Q28

consider how the read call updates a program state when it has consumed i bytes

and completes successfully. The nbytes variable is set to i, the number of bytes

actually read, and the file position associated with the fd file descriptor is moved

forward by i: [i/nbytes] and [P{f d - P(f d) + i}/P] where P{f d + P(f d) + i}

denotes the file position state P with its entry for the f d file descriptor increased by

i. The file contents are read into the memory region pointed to by the crc variable:

[M{crc - C(f d, P(f d))} ... {crc+ (i - 1) '- C(fd,-P(fd) + (i - 1))}/M] where

M- {crc + j - C(f d, P(f d) + j)}denotes the memory state M with its memory

location crc + j changed to the byte value at offset P(f d)+ jof file f d. The eighth to

fourteenth lines deal with the case where an I/O error occurs after successfully reading

some bytes. The read call updates the memory and file position states just as when it

completes successfully, but returns -1 regardless of the number of bytes actually read.

For read calls that read a fixed number of bytes, I have chosen to have a clause

for each possible number of bytes read to handle the involved memory locations

individually. Otherwise, the first seven lines of condition Q28b could be expressed more

briefly, as follows:

4

AQ 28a[m/nbyt es][P{f d P(f d) + m}/P][M{(crc, m) - C(f d, P(f d), m)}/M]
m=1

M{(crc,m) - C(fd,P(fd),m)} denotes a modified memory state of M whose

memory block of size m starting at address crc, instead of a single memory location,

has been mapped to the same m number of byte values starting at the current file

40

position P(fd). My observation is that read calls that read a fixed number of bytes

are usually meant to read the fields of binary file formats that contain metadata

information rather than pure data. Such metadata fields tend to be relatively small

and are very often the targets of byte-wise processing. As an example, the signature

field of PNG files consists of 8 bytes, and, as shown in Figure 2-3 on page 27 (and

below), the image viewer checks if the field contains the valid PNG signature at the

level of bytes:

10 if ((nbytes= read(fd, signature, sizeof(signature))) sizeof(signature)) {

11 exit(1); I/O ERROR OR NOT WELL-FORMED

12 }

13 if (signature[0] '\x89' || signature[l] '\x50' ||

14 signature[2] '\x4E' || signature[3] '\x47' ||

15 signature[4] '\xOD' 11 signature[5] '\xOA' I|

16 signature[6] != '\x1A' 1 signature[7] '\xOA') {

17 exit(1); //NOT WELL-FORMED

18 }

The condition part of the if statement are translated into the following logical formula

that involves reading individual memory locations:

M(signature) # 137 V M(signature + 1) # 80 V M(signature + 7) # 10

M(addr) denotes the single byte value at address addr of the current memory state M.

Such byte-wise operations can be handled more conveniently when we have a separate

clause for each number of bytes read rather than the concise representation that collec-

tively updates memory blocks. For instance, the M {signature + 8 4 C(f d, P(f d) +

8)}(signature +1) term can be reduced more easily into M(signature +1) because

we certainly know that the memory locations signature + 1 and signature +8 do

not overlap each other. By contrast, we cannot reduce the M{(signature,8) -+

C(f d, P(f d),8)}(signature + 1) term further or need more complicated decision pro-

cedures that know how and when to expand such terms into the form of having a

41

clause for each number of bytes read.

Back to our running example, the if block on lines 24-26 transforms condition Q28b

into condition Q24b below, as did the if block on lines 28-30:

24

25

26

Line 24 is semantically equivalent to the following two statements:

nbytes = read(fd, data, length);

if (nbytes != length) {

The if part, along with the body part (line 25), yields the following condition:

(nbytes # E'O(M(length + i) x (28)i) - true) A
(Q24a)

(-(nbytes Z Ef'0 (M (length+ i) x (2 8)i)) -+ Q28b)

As with the crc variable, the length variable is modeled as a pointer to a 4-byte

unsigned integer in the generated condition because we need to consider both of its

address and content. The C address-of operator (&) at line 4 takes the address of the

length variable.

4 if ((nbytes = read(fd, &length, sizeof(length))) != sizeof(length)) {

In other words, the lookup of the length variable in the source code is modeled as

pointer dereferencing in the generated condition. Also, for this example, I assume

that the target machine is little-endian, so the least significant byte is stored at

the lowest memory address and the most significant byte at the highest memory

address. Therefore, the lookup of the length variable in the source code is expressed

as E= 0(M(length+ i) x (28)i) in condition Q24a.

This read(f d, data, length) call is different from the previous read(f d, &crc,

sizeof (crc)) call in that the exact number of bytes requested and therefore the

42

if ((nbytes = read(fd, data, length)) != length) {

free(data); break; I/O ERROR OR NOT WELL-FORMED

}

possible range of the number of bytes actually read cannot be statically determined.

The length variable contains the size of the Data field, which is obtained by reading

the Length field of the PNG image file during runtime.

My observation is that read calls that read an indefinite number of bytes are

mainly meant to read the pure data fields of binary file formats. Such fields do not

contain information that determines the syntactic structure of binary files, such as

the length of other fields and field delimiters, and are redundant for checking if a

program meets its input specification. Moreover, they are usually the longest fields of

binary file formats. For instance, the maximum length of the Data field of PNG files

is 2 - 1, so it is infeasible to conservatively enumerate all possibilities.

Therefore, I use universal quantification over the number of bytes actually read

and a construct M{(a, s) - C(f,p, s)}, which denotes the updating of a memory

block of size s starting at address a, instead of a single memory location, to the same

number of byte values starting at position p of file f. For instance, M{(data, m) -

C(f d, P(f d), m)} in condition Q24b below denotes the memory state M with its memory

locations at addresses from data to data + m changed to the byte values at offsets

from P(fd) to P(fd) + m of file f d.

Specifically, the first two lines of condition Q24b below consider how a program

state is updated by the read call when it has consumed a positive number of bytes

and completes successfully by returning the number of bytes actually read. The

whole clause is universally quantified over m, which is the number of bytes actually

read. The variable nbytes and the file position state P are updated similarly to

the previous read calls: [m /nbytes] and [P{fd - P(f d) + m} /P]. On the other

hand, unlike the previous read calls, this call records the updating of the memory

state M in granularity of memory blocks rather than individual memory locations:

[A{data, m) - C(f d, P(f d), m)} / M]. The third and fourth lines consider the case

where the read call returns -1 because an I/O error has occurred after consuming

some bytes. The last line of condition Q24b deals with those cases where an end-of-file

43

condition or an external I/O error occurs immediately.

(V1 < m < E Z o(M(length + i) x (28)i) .

Q24 a[m/nbytes][P{fd -4 P(fd)+ m} /P][M{(data, m) -+ C(fd,P(fd),m)}/ M]) A

(VI < m 0 (M(length + i) x (28)).

Q24a[-1/nbytes][P{ffd - P(fd) +m}/P][M{(data, m) -+ C(fd,P(fd),m)} / M]) A

Q24a[0/nbytes) A Q24a[-1 /nbytes]

(Q24b)

Line 13 is a C idiom that calls the malloc function to dynamically allocate memory

and checks its return value at the same line:

13 if ((data = malloc(length)) == NULL) {

The single line is semantically equivalent to the following two separate statements:

data = malloc(length);

if (data == NULL) {

The if part, along with the body part (lines 14-23), produces the following condi-

tion Q13a:

off_t offset = lseek(fd, length + 4, SEEKCUR);

if (offset == -1) break; // I/O ERROR

ASSERT(GET_POS(fd, "CURRENT") ==

GETPOS(fd, "CHUNKSTART") + 4 + 4 +

(GET_CONTENT(fd, GET_POS(fd, "CHUNKSTART")

GETCONTENT(fd, GETPOS(fd, "CHUNKSTART")

GETCONTENT(fd, GETPOS(fd, "CHUNKSTART")

GETCONTENT(fd, GETPOS(fd, "CHUNKSTART")

continue; // TOLERATE NOT ENOUGH MEMORY

)* 16777216 +

+ 1) * 65536 +

+ 2) * 256 +

+ 3)) + 4);

(data = 0 -+ true) A (-(data = 0) -+ Q24b) (Q13a)

The continue statement at line 22 passes control to the end of the enclosing loop

body. Like the break statement, there is no control flow from the previous program

44

14

15

16

17

18

19

20

21

22

23 }

point of the continue statement to its next program point. Therefore, condition Q24b

is not propagated across the continue statement: data = 0 a true.

The malloc part, in turn, converts condition Q13a into condition Q13b as follows:

Vdata: Q13a (Q13b)

The malloc function cannot allocate the requested bytes of memory and returns

NULL if there is not enough memory or the requested size is zero. 1 On success, the

malloc function returns a non-null pointer to the beginning of newly allocated memory

block. Condition Q13b asserts that condition Qi3a should be satisfied regardless of

the allocated memory address, which is stored in the data variable. This is an

over-approximation because the malloc function allocates memory so that the newly

allocated memory block does not overlap any previously allocated ones.

The if block on lines 10-11 derives condition Qiob from condition Qi3b in a similar

way to the if block on lines 28-30:

10

11

if ((nbytes read(fd, type, sizeof(type))) != sizeof(type))

break; /I/O ERROR OR NOT WELL-FORMED

(nbytes # 4 -+ true) A (-(nbytes # 4) - Qi3b) (Q10a)

Strictly speaking, the behavior of the malloc function is implementation-defined when the
requested memory size is zero. The C and POSIX standards allow it to return either a null pointer or
a special non-null pointer for implementation reasons. Either choice makes no difference, for purpose
of verification, so I just presumed that the malloc function would return NULL for a zero argument.

45

Qion [4 / nbytes][P{f d -+ P(f d) + 4} / P]

[M{type -+ C(f d, P(f d))}{type + 1 - C(f d, P(f d) + 1)} ... {type + 3 -+ C(f d, P(f d) + 3)} / M] A

Qioa[3 / nbytes][P{f d - P(f d) + 3} / P]

[M{type - C(f d, P(f d))}{type + 1 > C(f d, P(f d) + 1)}{type + 2 > C(f d, P(f d) + 2)} /.M] A

Qio [2 / nbytes][P{f d P(f d) + 2} / P]

[M{type > C(f d, P(f d))}{type + 1 - C(f d, P(f d) + 1)}} / M] A

Qioa[1 / nbytes][P{f d P(f d) + 1} / P][M{type > C(f d,IP(f d))} / M] A

Q10[-1 /nbytes][P{f d > P(f d) + 4}/]

[M{type - C(f d, P(f d))}{type + 1 - C(f d, P(f d) + 1)} ... {type + 3 > C(f d, P(f d) + 3)} / M] A

Qion [-1 / nbytes][P{f d > P(f d) + 3} /P]

[M{type > C(f d,P(f d))}{type + 1 > C(f d, P(f d) + 1)}{t ype + 2 > C(f d, P(f d) + 2)} / M] A

Q1oa[-1 / nbytes][P{f d 4 P(f d) + 2} / P]

[M{type > C(f d, P(f d))}{type + 1 > C(f d, P(f d) + 1)} / M] A

Qioa [-1 / nbytes][P{f d > P(f d) + 1} / P][M{type - C(f d, P(f d))} /M] A

Qioa[O /nbytes] A Q1a[-1 / nbytes]

(Q10b)

On little-endian machines, the ntohl statement on line 8 returns its argument

with the byte order reversed and results in the following Q8 condition 2

8 length = ntohl(length);

Q10b[M{length + 0 ntohl(E _o(M (length + i) x (28))) (2 8)0 mod 28}/M

[M {length + 1 - ntohl(3 (M (length+ i) x (28))) (2 8)1 mod 28 1/M]

[M{length + 2 - ntohl(3 -(M(length+i)x(28)i)) (8)2mod 28}/M]

[M{length + 3 - ntohl(E3(M (length+i)x(2 8)i)) (28)3 mod 28 11M]

The value of the length variable is loaded from the memory and then fed into the

2 1f our target machine were big-endian, the ntohl function would return its argument as it is, so
the statement would be handled as a plain assignment from its argument to a variable that receives
its return value:

Qiob[M{length + 0 > ntohI(E:U (M(length + i) x (28)3-i)) (28)3 mod 28}/M]
[M{length + 1 - ntohI(Efl ((M (length + i) x (28)3-)) + (28)2 mod 28 }/M]

[M{length + 2 - ntohl(Ef 0(M (length + i) x (2')3-))+ (28)1 mod 28 }/M]

[M{length±+ 3 - ntohl(E3 U(M (length + i) x (28)'-'))+ (28)(mod 28 }/M]

where
ntohl(x) = x

46

ntohl function: ntohl(E3_O(M(length + i) x (2 8)i)). The ntohl function models the

behavior of the ntohl system call in terms of mathematical integer operations and is

defined as follows:

3

ntohl(x)= (x+ (28) mod 28 x 28)3-i)
i=O

The least significant byte of the result of the ntohl function is stored first into the

memory, with the most significant byte stored last.

The if block on line 4-7 receives condition Q8 and yields the following Q4

condition in the same way as the other if blocks:

4 if ((nbytes = read(fd, &length, sizeof(length))) sizeof(length)) {

5 if (nbytes == 0) break; // EOF

6 break; I/O ERROR OR NOT WELL-FORMED

7 }

(nbytes # 4 - true) A (-(nbytes # 4) Q8) Q4a)

Q 4a[4/nbytes][P{fd 4 P(fd) +4} /]

[M{length - C(fd,P(fd))}{length+ 1 - C(fd,P(fd) + 1)} .{. length + 3 - C(f d, P(f d) + 3)} /M] A

Q4a[3 / nbytes][P{f d - P(f d) + 3} / P]

[M{length - C(f d, P(f d))}{length + 1 - C(f d, P(f d) + 1)}{length + 2 - C(f d, P(f d) + 2)} / M] A

Q4a[2 /nbytes][P{f d - P(fd) + 2} / P]

[M{length - C(f d, P(f d))}{length + 1 - C(f d, P(f d) + 1)}} / M] A

Q 4a[1/ nbyt es][P{f d 4 P(f d) + 1} / P][M{length - C(f d, P(f d))}/ M A

Q4a1 / nbyt e s][P{f d 4 P(f d) + 4} / P]

[M {length - C(f d, P(f d))}{length + 1 4 C(f d, P(f d) + 1)} {length + 3 - C(f d, P(f d) + 3)} / M] A

Q4a[-1 /nbytes][P{fd - P(f d) + 3} / P]

[M{length - C(f d, P(f d))}{length + 1 - C(f d, P(f d) + 1)}{length + 2 - C(f d, P(f d) + 2)} / M] A

Q4a[-1 /nbytes][P{f d - P(fd) + 2} / P]

[M{length -4 C(f d, P(f d))}{length + 1 - C(f d, P(f d) + 1)} /M] A

Q4a [-1 / nbytes][P{f d -+ P(f d) + 1} / P][M{length + C(f d, P(f d))} /M] A

Q4 [0 / nbytes] A Q4a [-1 / nbytes]

(Q4b)

Now that we have arrived below line 2, the next statement to deal with is the

47

_ghost__GET_POS_fd_CHUNKSTART_ = GETPOS(fd, "CURRENT") assignment state-

ment, which we inserted there at the beginning of the analysis to reduce the input

specification involving different program states to one involving a single program state.

CHUNKSTART:

_ghost__GET_POSfdCHUNKSTART_ = GETPOS(fd, "CURRENT");

The effect of the assignment statement is to replace the _ghost__GET_POS_f d_CHUNKSTART

ghost variable with the current file position:

Q4 b[P(fd)/_ghost__GET_POS_fd_CHUNKSTART_] (Q2)

My observation is that, because the specification relates program states at the

beginning and the end of each iteration, it has already incorporated into itself enough

information to resolve many of its parts when it is propagated up to the beginning of

the loop. The missing information is primarily concerned with memory states that

are invariantly established at the beginning of each iteration (possibly by operations

outside the loop). For example, we need to know that the length and crc variables do

not refer to the same object so that the read statement into the crc variable (line 28

in Figure 2-4 on page 29) does not overwrite the value stored in the length variable.

28 if ((nbytes = read(fd, &crc, sizeof(crc))) != sizeof(crc)) {

The relationship between the length and crc variables can be discovered outside the

loop, at lines 2-5 in Figure 2-3 on page 27, where they are declared.

2 uint32_t length; /the Length field (4 bytes)

3 uint8_t type[4]; /the Type field (4 bytes)

4 uint8_t *data; //the Data field (Length bytes)

5 uint32_t crc; //the CRC field (4 bytes)

To obtain such missing information, the system uses an alias analysis rather

than always requiring a developer to manually provide a loop invariant or waiting

48

for the specification being propagated up to the start of the program. For each

pair of memory locations appearing in the generated condition, the system inquires

of an alias analysis whether they may point to the same object in memory. For

instance, M{crc-4 C(f d,P(f d))}(length) is simplified into M(length) when the

alias analysis figures out that the memory locations crc and length never overlap.

After the simplification based on the alias information, the system checks if the

old condition stored at the program point, which is "true" at this moment, implies

the new simplified condition. To do so, the simplified condition is fed into Why3, a

platform for deductive program verification [18]. For this example, Why3 successfully

proved the validity of the simplified condition with its theories of integers and maps,

using the Z3 SMT solver as its external prover. Therefore, the simplified condition

does not need to be propagated further.

Once the system calculates what condition at each program point should be satisfied

to guarantee the input specification, it checks the validity of the resulting condition at

the start of the program. For this example, the resulting condition is "true" because

the input specification has already been resolved before being propagated up to the

start of the program.

In this way, the proposed system successfully verified all the specifications in

Figures 2-3 and 2-4 on pages 27 and 29, and therefore confirmed that:

* The image viewer has examined whether the image file contains the correct PNG

signature, as the PNG standard requires.

" At the end of each iteration of the main loop, the program has consumed all the

bytes of the current chunk and is ready to read the next chunk with the start of

the next iteration.

49

50

Chapter 3

Core Language

This chapter presents the syntax and semantics of a programming language that, in

subsequent chapters, I will use to formally define a specification language and show the

soundness of the verification process of input specifications written in the specification

language. In addition to the standard constructs of imperative languages, the language

supports file I/O operations and byte-wise operations such as endianness conversion,

which are almost always used in writing parsers for binary-file formats.

3.1 Syntax

Figure 3-1 on page 52 presents the syntax of an imperative language with variables,

arithmetic expressions, Boolean expressions, assignments, memory read/write, endian-

ness conversion, file read/seek, conditional branches, loops, and sequential composition.

A program is a sequence of statements.

Label. Every program point has a unique label f E Label. For a statement S,

before(S) and after(S) denote the labels (or program points) before and after the

statement S, respectively. For a sequence Q = Si; ... ;S., before(Q) and after(Q)

are defined as the before label of the first statement Si and the after label of the last

statement S,: before(Q) = before(S) and after(Q) = after(S,). Note that after(Si) is

the same as before(S+i) in a sequence Si; ... ;S, because they denote the identical

51

n E Int

x E Var

E AExpr::= n | x I -E I E1 + E2 |E1 - E2 | - - -
B EBExpr::= E 2 Ei = E2 £ E < E2 I Ei <= E2 |

!B B1 && B2 |B1 1 B2

S E Stmt ::=skip I x := E I
x :=load(E1 , E2) | store(Ei, E2) I X: hton(E, n)|
x :=read(E1 , E2, E3) | x := seek(E1, E2)I
if B then Qi else Q2 I while (I) B Q

Q E Seq ::=Si; .. ; S
Pgm ::=Q

Figure 3-1: The syntax of an imperative language. Nonterminal symbol I represents
an optional loop invariant and is defined in Figure 4-1 on page 66.

program point. labels(S) (resp., labels(Q)) is defined as the set of all labels within a

statement S (resp., a sequence Q), inclusive of its before and after labels.

3.2 Dynamic Semantics

This section provides the formal semantics of the core language. I first define the

semantic domains of the language, and then present the meanings of its expressions

and statements in terms of the semantic domains.

3.2.1 Semantic Domains

Figure 3-2 on page 53 presents the semantic domains of the core language. A labeled

program state (f, o-) E LState is a pair of an instruction pointer £ and a program

state o-. An instruction pointer f E Label is the before label of the statement to be

executed next. A program state - = (p, p, #, n) E State consists of 1) an environment p,

2) a memory p, 3) a file position mapping #, and 4) a file contents mapping i. An

environment p E Env is a finite mapping from variables to values. A memory P E Mem

receives an address as its argument and returns a byte value stored at the address. A

file position mapping # E FilePos records the current file position associated with each

52

LState = Label x State

o E State = Env x Mem x FilePos x FileCont

p E Env = Var *Val

p C Mem = Addr -+ Byte

SE FilePos = FileDesc Pos

, E FileCont = FileDesc-- Pos -+ Byte

o, s,v E Val = Int a E Addr = Int f c FileDesc = Int p E Pos = Int b E Bool

Figure 3-2: The semantic domains.

file descriptor, and a file contents mapping , E FileCont keeps track of a byte value

stored at each position of a file. Values, addresses, file descriptors, and file positions

are modeled as integers. In this and the following chapters, I describe all of them by

a universal set Int for readability. The real implementation allocates an appropriate

number of bytes to each of them as per the target machine architecture, and reflects

the exact semantics of byte-level operations in the C programming language.

3.2.2 Semantics of Expressions

Figures 3-3 and 3-4 on page 54 present the semantics of arithmetic and Boolean

expressions in the language, respectively. The relation p H E = v denotes that

evaluating the arithmetic expression E under the environment p yields the integer

value v, and follows the standard semantics of arithmetic expressions. Similarly, the

relation p H B - b means that the Boolean expression B, which are composed of the

standard comparison operators on integers (e.g. =, !=, <, <=, ...) and the standard

Boolean operators (e.g. !, &&, I,...), evaluates to the Boolean value b under the

environment p.

3.2.3 Semantics of Statements

Statement Sequences. Figure 3-5 on page 54 presents the transition relation

between a labeled program state and its resulting labeled program state by a one-step

53

p & x * p(x)
p H E v

p - -E -v

p I E1 v1 p H E2 * v 2

p H E1 + E2 V1 +V 2

pHE1 *v1 pH£E2 ' V 2

p H E1 - E2 - V1 - V 2

Figure 3-3: The semantics of arithmetic expressions.

p H E1 > vi p £ E2 * V 2
p E1 vi p H E 2 * v 2

p E1 != E2 =- vi z v 2

p H E1 * v1, pH E2 V* V2

p H E1 < E2 v1 < V 2

p H B1 b1 p

p H E1 = v1 p £ E2 * V 2

p H E1 <= E2 - v1 < V 2

H B2 # b2

p H B1 && B2 , b1 A b2

p B >b

p F! B -,b

p H B1 * b1 p H B 2 -> b2
p H B1I I B2=- b1 V b2

Figure 3-4: The semantics of Boolean expressions.

e = before(Si)

Figure 3-5: The semantics of a sequence of statements.

54

p & n =4 n

p H Ei = E2 -V 1 = V 2

(Y, o-) -([Si]*stmt (f', /-')

(V, o-) -([Si; -.-. ; S"]|:-se (W' 0')

execution of a program (or a sequence of statements). The transition relation (f, a)

-S1; ... ; SJ>seq (f',a' ')denotes that the current labeled state (f, a) is reduced to

the new labeled state (', -') after a one-step execution of the Si statement denoted

by the current instruction pointer f. Figures 3-6, 3-7, and 3-8 on pages 56 and 60-61

present a one-step execution of each statement.

Environment/Memory-Related Statements. Figure 3-6 on page 56 presents

the transition relation of a one-step execution of environment/memory-related state-

ments. In each transition relation, the instruction pointers f and f' are the labels for

the program points before and after the statement being considered, respectively.

The rules for skip and assignment statements follow the standard semantics of

these constructs (SKIP and ASSIGN).

SKIP

(f, a) f skip I->stmt (e', a)

ASSIGN

p - E -=> v

(f, (p, y, #, r,)) x :=E -->Istmt (f', (p[x v], y, #,))

The x = load(E1 , E2) statement interprets a memory region of E 2 bytes pointed

to by E1 in accordance with the endianness of the machine and assigns the resulting

integer value to the variable x. For this presentation, I assume that the target machine

is little-endian, so the least significant byte is stored at the lowest memory address

and the most significant byte at the highest memory address (LOAD).

LOAD
s-i

p H E1 -> a p H E2 -> s s > 0 v = (p(a + i) x(28))
i=O

(£, (p, y, #, r,)) = x :=load (E1, E2) 1->stmt (Y', (p[z `4 V], y, #, rl))

The load operation can be understood as the generalization of dereferencing pointers

to unsigned integers of variable sizes in the C language.

The store(E1 , E2, E3) statement stores the lowest E3 bytes of the nonnegative

55

In each transition relation, f and f' are the labels for the program points before
and after the relevant statement S, respectively: £ = before(S) and f' = after(S).

SKIP

(f, o-) - skip }>stmt (f', 9)

ASSIGN
p F E -> v

(C,(p,pq#,bi)) , x :=FE >stmt (', (p[x - v], /, #, r,))

s-1
S >0 v =Z1(pu(a +i) x)i

i=O

(, (pj, d, K)) { x :=)load (Eli, E2) -Stmt (f', (p [x - v], P, #, K))

STORE

p F E3 s> S s > 0

p = pi[a - v mod 2 8][a + 1 - (v/28) mod 28] ... [a + (s - 1) (v/(28)'- 1) mod 28]

HTON

p H E -> a n > 0 v (p(a + i) x (28)n-1-i)
i=0

3 ,-6)) - x i ht on (E, n) ->stmt (r', l (p[x a v a, p, #, n))

Figure 3-6: The semantics of environment /memory-related statements.

56

LOAD

p F- E1 => a p F- E2 -> s

p F- E1 > v v > 0 p F E2 => a

(£, (p, y, 0, K)) -{[store (E1, E2, E3D ->stmt (f', (P, P', #, K))

integer value E 1 into a memory region starting at address E2 in the little-endian

format. The i-th least-significant byte of a nonnegative integer value v is obtained by

evaluating the "(v/(2 8)i- 1) mod 28" expression (STORE).

STORE

pKE1>v v>0 pHE2 # a pHE3 ='s s>0

y p [a -a4 v mod 28][a + 1 a (v/28) mod 281 - -- [a + (s - 1) 4 (v/(28)s-1) mod 28]

(f, (p, y, #, r)) =j store (E, E2 , E3)] -tmt (', (p, P', ,))

Similar to the load statement, the x = hton(E, n) statement interprets a mem-

ory region of n bytes pointed to by E and sets the variable x to the resulting integer

value. The hton statement, however, interprets the memory region in accordance

with big-endianness rather than little-endianness (i.e. the endianness of the target

machine). In other words, the byte at the lowest memory address is interpreted as the

most significant one (HTON).

HTON
n-1

p H E ' a n > 0 v = (p(a + i x

i=O

(,(p, y, #, rz)) --{ x :=hton (E , n) }-> stmt (f', (p[x - v], y, #, r,))

The hton statement has been introduced so that the POSIX byte order functions,

such as htoni and ntohl, which convert unsigned integer values between host byte

order and network byte order, can be simulated. Those functions are commonly used

in programs dealing with binary file formats.

File-Related Statements. Figure 3-7 on page 58 presents the transition relation

of file read/seek statements. For each transition relation, the instruction pointers £

and f' are the labels for the program points before and after the statement being

considered, respectively. These read and seek functions are carefully modeled on the

POSIX read and iseek functions.

The x := read(E 1 , E2 , E 3) statement attempts to read E3 bytes from the file E1

into the memory pointed to by E2 and assigns the number of bytes actually read to

the variable x. The read statement also moves the file position of the file E1 by the

57

In each transition relation, f and f' are the labels for the program points before
and after the relevant statement S, respectively: f = before(S) and f' = after(S).

READ-i
p K Ei f p H E2 e a p F E3 , s 0 < s' <s

P p[a r '(f)(#(f))][a + 1 -4 iz(f)(#(f) + 1)] ... [a + (s' - 1) - i(f)Q((f) + (s' - 1))]
(f, (p, p, #,,)) - x:= read(E1, E2, E3) ->Stmt (f', (p[- s'], P', [f 4 (f) + s'], V))

READ-2
p H Ei f p V E2 * a p F- E3 - s 0 < s' s

p' = p[a - "r(f)(#(f))][a + 1 - i(f)(#(f) + 1)] ... [a + (s' - 1) - /(f)(#(f) + (s' - 1))]
(f, (p, y, #, r)) x:= read (Ei, E2, E3) lostmt (f', (p [x -1], p', #[f-+ #(f) + s'],))

SEEK-1
p H Ei > f p V E2 e o o(f) o> 0

(C,(p, y, #,)) A x = seek (Ei, E2) ->stmt (f', (p[x - #(f)+ o], , #[f - #(f) + o], K))

SEEK-2
(C, (p, ,)) Al X = seek (Ei , E2) }->stmt (', (p[xz- -1], p, ,))

Figure 3-7: The semantics of file-related statements.

58

number of bytes read (READ-1).

READ-I

p F- Ei f p F- E2 a p H E3 = s 0 < s' <s

P p[a 4 i'(f)(#(f))][a + 1 -4 ,'(f)(#(f) + 1)] ... [a + (s' - 1) -+ iz(f)(#(f) + (s' - 1))]

(f, (p, p, #, r)) -(x := read (E1 , E2 , E3) -'stmt (f', (p[X ` s'], P', #[f - #(f) + s'], K))

The number s' of bytes actually read into the memory can be arbitrary because no

assumptions are made about the sizes of files. In particular, the read statement can

read zero bytes and set the variable x to zero to indicate that the file has already

reached the end-of-file.

On the other hand, the read statement may fail nondeterministically due to some

external errors (e.g. a physical I/O error) and assigns -1 to the variable, even after

the read statement has read some bytes successfully (READ-2).

READ-2

p H E 1 f p H E2 ' a p E 3- s E3 0 < s' s

P p[a -4 i'(f)(#(f))][a + 1 -4 ,z(f)(#(f) + 1)] ... [a + (s' - 1) - K(f)(#(f) + (s' - 1))]

(£, (p, y, #,)) -|{ x := read (E1, E2, E3) -'5stmt (f', (p[x ̀ -1], P', 4[f ` 4(f) + s'), r))

The x := seek(Ei, E 2) statement advances the file position of the file E1 by the

offset E2 (SEEK-1).

SEEK-1

p F- Ei f p K E2 : o #(f) + o > 0

(f, (p, y, #, K) -[x = seek (E1, E2) Iostmt (f', (p[X ̀ #(f) + o], p, [f 4 #(f)± o], K))

Like the POSIX iseek function, the file position is allowed to be set beyond the end

of the file but cannot be negative. Note that the seek function returns the current

file position when the offset E2 is zero.

If the resulting file position ends up being negative or some other error occurs (e.g.

the device associated with the file does not support the seek operation), the variable x

is set to -1 with the file position intact (SEEK-2).

SEEK-2

(f, (p, y, , ,)) - x seek(E1, E2) Iostmt (', (p[Xz- -i],p,,))

59

In each transition relation, S denotes the whole if statement in question.

IF-1
f = before(S) p K B = true

(f, (p, y, ,s))-(if B then Q1 else Q2 >'stmt (before(Q1), (p, y, , ,))

IF-2

S=before(S) p H B ->false

(, (p, p, #,)) =f if B then Q1 else Q2 ->stmt (before(Q 2), (p,

IF-3
f E labels(Qi) \ {after(Qi)} (f, -) -{{ Qi -=>seq (f', o-')

(f, o-) A if B then Qi else Q2 -Stmt (C', 0')

IF-4
f = after(Qi)

a) q if B then Qi else Q2 ->stmt (after(S), o-)

Figure 3-8: The semantics of an if statement.

If Statements. Figure 3-8 presents the transition relation of if statements. In

each transition relation, the S statement is a shorthand for the whole if state-

ment in question. When the current instruction pointer f is at the beginning of an

if B then Qi else Q2 statement, it jumps to the statement sequence Q1 or Q2, de-

pending on whether the value of the Boolean expression B is true or false (IF-1 and IF-2).

IF-1

f = before(S) p K B => true

(f, (p, p, #,)) 4 if B then Qi else Q2 Stmt (before(Q), (p, y, #, K))

IF-2

f = before(S) p H B -> false

(f, (p, y, #,)) q if B then Qi else Q2 ->stmt (before(Q2), p, P, #, '))

While the current instruction pointer f stays within either branch of an if statement,

the branch is executed one-step at a time until the instruction pointer reaches the

60

P, #, K))

In each transition relation, S denotes the whole while statement in question.

WHILE-i

f = before(S) p H B -> true

(f, (p, p, #,)) q while (I) B Q >stmt (before(Q), (p, P, #, K)

WHILE-2

t = before(S) p H B -> false

(f, (p, y, #,)) A while (I) B Q }->stmt (after(S), p, y,#,

WHILE-3

f E |abels(Q) \ {after(Q)} (V, C) -(Q ->seq (, o-')
(, o-) -while (I) B Q }->stmt (el,))

WHILE-4

f = after(Q)

(, a) -(while (I) B Q stmt (before(S), a)

Figure 3-9: The semantics of a while statement.

end of the branch (IF-3).

IF-3

C labels(Qi) \ {after(Qi)} (f, G-) --J Qi }->Seq (f', 0')

(f, o-) if B then Q1 else Q2 J-Stmt (f', u")

After either branch has been executed to the end, the instruction pointer jumps to

the program point after the whole if statement (IF-4).

IF-4

f = after(Qi)

(, a) -(if B then Qi else Q2 }->stmt (after(S), a)

While Statements. Figure 3-9 presents the transition relation of while statements.

In each transition relation, the S statement is a shorthand for the whole while

statement in question. When the current instruction pointer f is at the beginning of

a while (I) B Q statement, it enters the loop body Q or exits by jumping to the

program point after the whole while statement, depending on whether the value of

61

1

the Boolean expression B is true or false (WHILE-1 and WHILE-2). The optional loop

invariant I is used when generating verification conditions in Chapter 5.

WHILE-I

f = before(S) p F- B => true

(f, (p, p, #, K)) = while (I) B Q }->stmt (before(Q), (p, y, , r))

WHILE-2

f = before(S) p F- B - false

(f, (p, y, #, r,)) while (I) B Q W->stmt (after(S), (p, y, ,))

While the current instruction pointer f stays within the loop body Q, the loop body

is executed one-step at a time until the instruction pointer reaches the end of the loop

body (WHILE-3).

WHILE-3

Sc la bels(Q) \ {after(Q)} (C, U) =f Q W->seq (f', o')

(f, a)or while (I) B Q stmt (C', 0))

After the loop body has been executed to the end, the instruction pointer jumps back

to the beginning of the while loop (WHILE-4).

WHILE-4

f = after(Q)

(f, o-) = while (I) B Q >stmt (before(S), a)

3.2.4 Semantics of Programs

The semantics Q E P(Trace) of a program Q is defined as a set of maximal traces

of the program's execution:

Q= {(f 1 , o 1) -.. (C, o-) E LState+

(VI < i < m : (2, o) -[Q i-seq (fi+1, ui+1)) A (m, on) E Fin} u

{(1, 1) -.. E LState'' I Vi > 1 : (Vi, o-) =[Q ->seq (4+1, O-i+1)}

62

where Fin is a set of final program states:

Fin = {(f, o-) -,I (', o-') E LState : (f, o-) =- Q }-seq (f', -')}

and LState+ (resp., LState') is a non-empty finite (resp., countably infinite) sequence

of labeled program states.

63

64

Chapter 4

Specification Language

This chapter formally presents the syntax and semantics of a specification language

that makes it possible for a developer to specify the relationship between a program

and its input file format. By the specification language, a developer can specify 1) how

many bytes a program is supposed to consume between two program points and

2) what byte values need to be observed at specific offsets in an input file.

4.1 Syntax

I use a form of first-order logic as a language for specifying the relationship between a

program and its input file format, and its syntax is given in Figure 4-1 on page 66.

As is usually the case with first-order logic, the terms of the specification language

are made up of constants (i.e. n, [, #, and K), variables (i.e. x, M, P, and C), and

functions applied to them. Note that p, , andrnare used here to represent symbols

that uniquely identify each element of Mem, FilePos, and FileCont, repectively. The

set of predicate symbols consists of the standard comparison operators (i.e.=, -, <,

...). As shorthand for logical connectives, I will also use the following notation:

def
F1 V F2 = ,(, / ,F2)

defF, -+ F2 2

65

TE Term ::=n| xj|-T|T1+T2 |T1-T2 |... I

M(T) I M(T1 , T2) I P(T) I C(T1 , T2)

ME Mems ::= I|MIM{T1 eT2}|M{(T1,T 2)-> T3}IM{T1,T2)-> C(T3,T4 ,T2)}

P c FilePoss : < P I P{T1 - T2}

C E FileConts : I C

F, I E Formula ::=true I false Ti = T2 Ti < T2 |

,F I F1 A F2 | Vx: F I VM : F I VP: F | VC: F

Figure 4-1: The syntax of a specification language.

4.2 Semantics

Figure 4-2 on page 67 presents the semantics of terms in the specification language,

which is defined over the semantic domains in Section 3.2.1. The denotation T]Term

of a term T is a function mapping a program state a E State to an integer. The

definitions for an integer constant n, an integer variable x, and unary/binary arithmetic

operations follow the standard semantics of those terms. The M(T) term means the

single byte value at address T of a memory denoted by M. The M(T1 , T2) term

interprets a memory region of T2 bytes in little-endian order, starting at address T1 of

a memory denoted by M. The P(T) term obtains the current position in file T from

a file position mapping denoted by P. The C(T1 , T2) term denotes the byte value at

offset T2 from the start of file T1 .

Figure 4-3 on page 68 presents the semantics of memory-related constants, variables,

and functions. Given M E Mem, its denotation [M]Mem is defined as a function from

a program state to a memory. Constant p always denotes a specific memory of the Mem

domain identified by p. On the other hand, the denotation M]Memof variable M is

the memory component of a program state given as an argument. The M{T1 - T2}

function stands for the same memory as M except that the former has value T2 at

address T1 . The M{(T1 , T2) -> T3 } function is used to express concisely that the

66

-Term E Term -+ State -± Int

nlTerm(a) = n

XTerm((P, A, 4, rl) -- P(X)

-TTerm(0) = -TTerm(u)

Ti + T2 Term() = [TlTerm(U) + [T2 Term(g)

Ti - T2 Term() = T1]erm() - [T2]1Term(7)
M (T) Term (9) = ([M Mem(O'))([T Term(U))

JT2 Term(U) -1

MNI(T 1 , T2) Term() = E3(1AIlMem(g))(Til rerm(a) + i) x (28)i

i P(T)Term(0-) = (PlPosa (Term(9

EC(T1, T2)&erm(0') = ([C Cont)(T1 Term (9)) ([T2 Term(o))

Figure 4-2: The semantics of Term.

values of a memory region of T2 bytes starting at address Ti have been obtained

by storing the lowest bytes of value T3 in the little-endian format. Similarly, the

M{(T1, T2) 4 C(T, T4, T2)} function indicates that the T2-bytes data from offset T4

of file T3 have been read into a memory region pointed to by T1.

Figures 4-4 and 4-5 on page 68 give the semantics of file position-related and file

contents-related constructs, respectively. The denotation [Ppos of a file position-

related construct P is a function that associates a program state to a file position

mapping. Constant 4 stands for an element of FilePos uniquely identified by 4 itself.

In contrast, the P variable denotes a file position mapping which is a component of a

program state given as an argument. The Pf{T1 -+ T2 } function means a file position

mapping where the file position indicator of file T 1 has been set to the integer value T2 .

The denotation iCfcont of a file contents-related construct C is defined similarly.

Figure 4-6 on page 69 presents the semantics of formulas in the specification

language. The denotation [F Formof a logical formula F is the set of program states

that satisfy the formula F. The semantics [Formfor formulas that involve the standard

comparison operators reuse the semantics iTerm of terms in Figure 4-2 on page 67.

The definitions for the logical connectives, , and A, and the universal quantifier over

variables x, M, P, and C follow their standard semantics.

67

-Mem E Mems -+ State -+ Mem

HpMem(U) = P

ffM] Mem((p0, K)) = P

[M{T i T2}IMem(o-) = (fMlMem(o-))[[TlTerm(o-) + [T2]Term(-)]

[M{(T1, T2) 4 T3}JJMem((P, P, #, r) as o) =
p[a -+ v mod 28 [a + 1 (v/28) mod 28] ... [a + (s - 1) |-+ (v/(25)s- 1) mod 28]

where a = [TTerm(-), s = T2Term(o-), and v = [T3Term(-)

fM{(T1 , T2)e C(T3 , T4 , T2)}]Mem((P, , ,) as o) =

p[a w r(f)(p)][a + 1 + (f)(p + 1)] -.-.- [a + (s - 1) er(f)(p + (s -1)
where a = [TilTerm(o-), s = [T2]Term(o-), f = [T3jTerm(o'), P = [T4]Term(0-)

Figure 4-3: The semantics of Mems.

Hp os(E FilePos --+ State - FilePos

HPos(o)=

Pos ((p, P, 0, ,))=

P{ i-+ T2 }Pos()= ([P]Pos(U))[[T1]Term(U) H4 fT2ITerm()]

Figure 4-4: The semantics of FilePos,.

HCont E FileCont -4 State -+ FileCont

DItPos(O-)= K
C Po((p, y" , ,))= K

Figure 4-5: The semantics of FileCont,.

68

-F Form EFormula -* p(State)

itrue Form

ifalse Form

iTi = T2] Form

iT 1 T21 Form

-F]Form

[F1 A F2 Form

V: F Form

VM: F]]Form

ifVP F]Form

iVC :FForm

State

0

{U' I iTerm(0-) = T2]]Term(U)}

f9 It[T1Term(o-) < T2Term(U)}

State \ [F]Form

[Fil]Formn [F2]Form

{9 | 0 E iF[V / XForm for all v E Int}
{f | I E [F[p / M]Form for all p E Mem}

{ I C E F[#/P]]Form for all 0 E FilePos}

{U | a E CF[, /C] orm for all r E FileCont}

Figure 4-6: The semantics of Formula.

Notation. If a program state U is included in the denotation JFFormof a logical for-

mula F, the program state o is a model of the formula F, which is designated by T - F:

a -- F = a E F Form

69

70

Chapter 5

Predicate Transformer Semantics

This chapter defines the predicate transformer semantics of program statements in the

core language. A predicate transformer is a function mapping a postcondition of a

program statement to its corresponding precondition. Most notably, in our predicate

transformer semantics, each instance of a load/store/read statement in a program

is given a predicate transformer of different levels of granularity, depending on what

kinds of arguments it is called with.

5.1 Predicate Transformer Semantics

Tables 5.1 and 5.2 on pages 72-73 present the predicate transformer semantics of

the core language. Given a sequence Q of statements, a program point £ E labels(Q),

and a logical formula F, the predicate transformer precond(Q, (f, F)) returns a set of

pairs of the preceding program points of the program point f and their associated

conditions that logically imply the formula F at the program point f. More formally,

the predicate transformer precond is a binary relation between 1) a set of tuples of

statement sequences, program points, and logical formulas and 2) a power set of a set

of pairs of program points and logical formulas:

precond E (Seq x (Label x Formula)) x P(Label x Formula)

71

Table 5.1: Predicate transformer semantics (1/2).

Program Q Label f precond(Q, (f, F))

skip

x :=E

x load (E, n)

x: load (Ei, E2)

x: hton(E, n)

store(Ei,E2 ,n)

store (E1,E2 ,E:)

-1

x := read (Ei, E2, n)

x = read (Ei, E2, Ej)

x= seek(E1, E2)

{after(Q)} {(before(Q), F)}

{after(Q)} {(before(Q), F[E/x])}

{after(Q)} {(before(Q), F[(M (E + 0) x (28)" + M (E + 1) x (28)1 + - - + M (E + (n - 1)) x (28)n-1) / X])

{after(Q)} {(before(Q), F[M (E1 , E2) / X])}

{after(Q)} {(before(Q), F[(M (E + 0) x (28)n-1 + M(E + 1) x (28)n-2 + + M(E + (n - 1)) x (28)") / X])}

{after(Q)} {(before(Q),
F[M{E 2 - Ei mod 28}{E2 + 1 - (E1/2 8) mod 28} ... {E2 + (n - 1) - (E1/(2 8)') mod28}/M])}

{after(Q)} {(before(Q),F[M{(E 2, E:) E1} / M])}

{(before(Q),
F[n / x][P{E -> P(E1) + n} / P]

[M{E 2 -> C(E1, P(E1))}{E 2 + 1 - C(E 1, P(E 1))--{E2+ (n - 1) - C(E 1, P(E 1) + (n - 1))} /M] A

{after(Q)} F[-1 / x][P{E1 i P(E1) + n} / P]
[M{E2 H C(Ei, P(E1))}{E 2 + 1* C(E1, P(E1) + 1)} {E2+ (n - 1) - C(Ei, P(E 1) + (n - 1))}/M] A

(A _ F[m / x][P{E1 - P(E1) + m} / P][M{(E 2, m) - C(E 1, P(E1), m)} / M]) A
(A n 1 F[-1 / x][P{E1 i P(E1) + m} / P][M{(E 2 , m) - C(E1, P(E1), m)} / M]) A
F[0 / x] A F[-1 / x])}

{(before(Q),

{after(Q)} (VI < m < E:: F[m / x][P{E1 - P(E1) + m} / P][M{(E 2 , m) 4 C(E 1, P(E1), m)}/ M]) A
(Vi < m < E -j F[-1 / x][P{E1 - P(E1) + m}/ P][M{(E 2 , m) - C(Ei,P(E), m)} /M]) A
F[0 / x] A F[-I / x])}

{after(Q)} (b efo re (Q),
(-P(E)±+E2 > 0-4 F[P(El) +E 2 / x] [P{ E -4P(El)±+E2 / P]) AF[- I/ x])

Table 5.2: Predicate transformer semantics (2/2).

Program Q Label f precond(Q, (f, F))

if B then Qi else Q2

if B then Qi else Q2

if B then Qi else Q2

while (I) B Qi

while (I) B Qi

{after(Q)} {(after(Q1), F), (after(Q 2), F)}

labels(Qi) {(before(Q), B -4 F)} if f = before(Q 1),

precond(Qi, (e, F)) otherwise

labels(Q2) {(before(Q),-,B 4F)} if f = before(Q2),

precond(Q 2, (f, F)) otherwise

{after(Q)} {(before(Q), I A VV : (I A -B -+ F)), (after(Q1), I)}
where V is the set of assigned variables in Qi (including M, P, and C)

f{before(Q), I A VV : (I A B -> F)), (after(Q1), I)}
labels(Q1) where V is the set of assigned variables in Qi (including M, P, and C)

precond(Qi, (f, F))

Si ; -. -; S. {after(Si)} precond(Si, (f, F))

--A

if f = before(Q1),

otherwise

mome

I will write (,F') C precond(Q, (f, F)) if there exists a set LF E '(Label x Formula)

such that ((Q, (f, F)), LF) E precond and (', F') E LF. Roughly speaking, (, F') E

precond(Q, (, F)) means that, whenever the logical formula F' holds of a program

state at the program point f', the logical formula F will hold if the program execution

reaches the program point £ afterwards.

Skip Statements. If a logical formula F holds before a skip statement, the for-

mula F obviously holds after the statement. skip statements do not make any change

to program states.

precond (skip, (f, F)) = {(', F)}

where f = after(skip) and f' = before(skip)

Assignment Statements. Any logical formula F that was true for the right-hand

side E of an assignment = E holds for the variable x after the assignment.

precond(x E, (£, F))= {(f', F[E/x])}

where f = after(x = E)and f' = before(x = E)

Load Statements. For load statements that read a fixed number of bytes from

memory, the predicate transformer precond(x := load(E, n), (f, F)) substitutes all

occurrences of the variable x in the logical formula F with a term M(E +0) x (28)°+

M(E + 1) x (28)1+ - - - + M(E + (n - 1)) x (28)"~1 that denotes a value obtained by

interpreting a memory region of n bytes pointed to by E in the little-endian format.

As explained in Section 4.2, the M(E + 0), M(E + 1), .. ,M(E + (n - 1)) terms

mean the single byte values at addresses E + 0, E + 1,..., E + (n - 1) of memory M,

respectively. Note that the expanded term M(E + 0) x (28)° + M(E + 1) x (28)1+

74

.. + M(E + (n - 1)) x (28)-1 is of fixed length because n is a constant.

precond(x := load (E, n), (f, F)) =

{',F[(M (E + 0) x (2 8)0 + M (E + 1) x (2 8)1 + --- + M (E + (n - 1)) x (2")"-1) / X])}

where f = after(x := load(E, n)) and f' = before(x := load(E, n))

For load statements that read a variable number of bytes, the predicate trans-

former precond(x := load(Ei, E2), (C, F)) substitutes all occurrences of the variable x

in the logical formula F with an abstract term M(E1 , E2) that denotes a value ob-

tained by interpreting a memory region of E2bytes pointed to by E1 in the little-endian

format. The abstract M(E1 , E2) term cannot be expanded into a more fine-grained

form that involves the single byte-valued M(E+0), M(E+ 1),... terms, unlike load

statements that read a fixed number of bytes. Term E2may evaluate to different values

during runtime, so the length of the expanded form cannot be statically determined

in general.

precond(x := load(E1 , E2), (f, F)) {(f', F[A4(E1 , E2) / X])}

where f = after(x := load(Ei, E2)) and f'= before (x load(E1 , E2))

HTON Statements. The predicate transformer precond(x = hton(E, n), (f, F))

substitutes all occurrences of the variable x in the logical formula F with a term M((E+

0) x (28)"1 + M(E + 1) x (28)n-2 + - M+ M(E + (n - 1)) x (28)0 that denotes a

value obtained by interpreting a memory region of n bytes pointed to by E in the

big-endian format. The definition of precond(x := hton(E, n), (f, F)) is similar to

that of precond(x := load(E, n), (f, F)) because both statements interpret a memory

region of n bytes pointed to by E and set the variable x to the resulting value. However,

the hton statement interprets the memory region in accordance with big-endianness

75

while the load statement interprets it in accordance with little-endianness.

precond(x := ht on(E, n), (f, F)) =

{(£',F[(M (E + 0) x (28)n-1 + M(E + 1) x (28)n-2 +---+M(E+(n- 1)) x (28)1) / XD

where £ = after(x := hton(E, n)) and f' = before(x := hton(E, n))

Store Statements. For store statements that store a fixed number of bytes into

memory, the predicate transformer precond(store(El, E2, n), (f, F)) substitutes all

occurrences of memory M in the logical formula F with a new memory where its

memory region starting at address E2 is updated with the lowest n bytes of the

nonnegative integer value El. Roughly speaking, if a logical formula F is true for a

memory that has a nonnegative integer value El at a memory location E2, the formula

still holds after a store(EI, E2 , n) statement.

precond(store (El1 , E2, n), (, F)) =

{(', F[M{LE2+ i 4 (E1/(28)') mod 2}=,. -/M}

where f = after(store(E 1 , E2, n)) and '= before(store(El1 , E2, n))

The predicate transformer precond(store (EI,2, E 3), (f, F)), where the store

statement stores a variable number of bytes into memory, substitutes all occurrences

of memory M in the logical formula F with an abstract term M{(E 2 , E3) - E1I

that means a new memory where its memory region starting at address E2 is updated

with the lowest E3 bytes of the nonnegative integer value El. Roughly speaking,

if the logical formula F holds for a memory that stores the lowest E3 bytes of

the nonnegative integer value E1 at the memory location E2, the F formula still

holds after the store(E1 , E2, E3) statement. precond(store(Ei, E2, E3), (f, F))

is to precond(store (E1 , E2, n), (f, F)) what precond(x := load(EL, E2), (f, F)) is

76

to precond(x := load(E, n), (f, F)).

precond(store (E1, E2, E3), (f, F)) = {(f', F[M{(E2, E3) -+ E1 / M])}

where f = after(store (E1, E2, E3)) and f' = before(store(E1, E2, E3))

For file-related statements, as we will see below, the precond transformer produces

more complex formulas than other statements. There is always a chance that file-

related statements are partially performed or fail completely by external factors, such

physical I/O errors and premature end-of-file. The complexity of the resulting formulas

for file-related statements reflects the nondeterminism inherent in those statements.

Read Statements. For read statements that attempt to read a fixed number of

bytes from a file, the predicate transformer precond(x := read(E1 , E2, n), (f, F))

yields a logical conjunction of six clauses, each of which corresponds to one of the

possible results of the read statement:

1. The read function has successfully finished by 1) reading the specified number n

of bytes from the file E1 into the memory pointed to by E2, 2) moving the

file position of the file E1 appropriately, and 3) returning the number n of

bytes actually read. The return value has been assigned to the variable x. The

corresponding clause is obtained by substituting the variable x with the return

value n, as with assignment statements, and increasing the current file position

of the file E1 by the n bytes actually read. All occurrences of memory M are

also substituted with a new memory where each location of a memory region

starting at address E2 is updated with the corresponding byte value at the

current file position of the file E1.

F[n / x][P{E1 + P(E1) + n} / P][M{E2 + i a C(E, P(Ei+ i))}i=o,...n-I / M]

2. The read function has read the specified number n of bytes and moved the

file position appropriately, but then failed due to an external I/O error. The

77

occurrence of error is notified to the caller of the read function by the return

value -1. So the variable x in the logical formula F is substituted by -1 instead

of the number of bytes read. Memory M and file position P are substituted in

the same way as in the preceding case.

F[-1 / x][P{E1 - P(E1)+n} / P][M{fE2+ i - C(E1, P (E1) +i)}i=o,...,n-_1 / M]

3. The read function did not suffer from any external I/O errors, but has read

less than the specified number of bytes because the file turned out to be shorter

than expected. In other words, the premature end-of-file error has occurred. For

each possible number m of bytes read, the variable x and file position P in the

logical formula F are handled as in the previous cases by substituting all their

occurrences with the appropriately updated terms. However, in contrast to the

previous cases, the predicate transformer precond(x := read(E 1 , E2, n), (f, F))

substitutes all occurrences of memory M with an abstract term M{(E 2, m) -

C(E 1, P(E1), m)}, which, as explained in Section 4.2, denotes that the m-bytes

data from the current file position P(E1) of file Ei have been read into a memory

region pointed to by E2. Note that I could use the expanded form M{E2 +i

C(E 1 , P(E)+i)}-,. rn-iin place of the abstract form. However, I have observed

that, when this case happens, a developer hardly cares about the byte-level

contents just read from the file and that the fine granularity of the expanded form

is not advantageous. So I decided to employ the more abstract (and therefore

more economical) form. If it turns out later that there exist some cases where a

developer wants to check if some specific bytes has been observed immediately

before the premature end-of-file error, the abstract term can just be replaced

with its expanded form.

n-1

AF[m / x][P{E1 P(E1) + m} / P][M{(E 2 , m) - C(E 1, P(E1), m)} /M]
4 r=1

4. The read function has failed due to anexternal1/0error after itread some

78

(but not all) of the specified number of bytes. For this case, the predicate

transformer precond(x := read(E 1 , E2, n), (£, F) yields a similar logical clause

to that of Case 3 except that the return value, which the variable x is substituted

by, is -1.

AF[-1 / x][P{E - P(E1)+ m}/ P][M{(E2 , m) 4 C(E1 , P(E1),m)}/ M]

5. The file has already reached the end-of-file. In this case, the read statement

immediately returns zero without attempting to read any bytes and is equivalent

to just assigning zero to the variable x.

F[O / x]

6. Due to a preexisting external I/O error, the read statement has failed without

consuming any bytes and just returned -1.

F[-1/x]

Altogether,

precond(x :=read(E1 , E2, n), (, F)) =

F[n / x][P{E1 - P(E 1) + n}/ P][M{E2 + i ` C(E1,P(E1) + i)}i=o,...,n-1 / M] A

F[-1 /][P{E1 +P(Ei) + n} / P][M{E2 + i C(Ei, P(Ei) + i)}i=o,...,n-1 / M] A

n, (ANF[m /x][P{E1 - P(E1) + m} /P][M{(E 2 , m) - C(Ei, P(E1), m)}/ M]) A

(An= 1 F[-1 / x][P{E -* P(E1) + m} / P][M{(E2 ,m) C(E1 ,P(E1),m)}/M])A

F[0 / x] A F[-1 / x]

where f = after(read(E1, E2, n)) and f' = before(read(E1, E2, n))

In contrast, the predicate transformer precond(x := read(E1 , E2, E3), (f, F)),

where E3 is not a constant, produces a logical conjunction of four clauses instead of six.

I have observed that read statements whose number of bytes to read is not specified as

79

a constant are mostly meant to read the pure data fields of binary file formats. Such

fields do not contain information that determines the syntactic structure of binary files,

such as the length of fields and field delimiters, and the byte-level contents of those fields

are redundant for verifying that a program meets its input specification. Therefore,

the predicate transformer precond(x := read(E1, E2, E3), (f, F)) is defined so that it

yields fewer clauses than the predicate transformer precond (x := read (E 1 , E2, n), (, F)):

1. The read function has successfully finished by reading some bytes from the file E1

into the memory pointed to by E2 and moving the file position of the file El

accordingly. Also, the number m of bytes actually read, which the read function

returns, has been assigned to the variable x. Note that the read statement may

read less than the specified number E3 of bytes because there may be not enough

bytes left in the file. This can be understood as the combination of cases 1 and

3 for read statements that read a fixed number of bytes. The corresponding

clause is obtained by substituting the variable x with the number m of bytes

actually read. The current file position of the file E1 is also increased by m

bytes. All occurrences of memory M are substituted with a new memory that

remembers its m-bytes memory region starting at address E2 has been filled

with the m-bytes contents from the current file position P(E1) of the file E1.

VI < m K E3 : F[m /x][P{E -* P(E1)+m} /P][M{(E 2 , m) e C(Ei, P(E1), m)}/ M]

2. The read function has successfully read some bytes and moved the file position

accordingly, but then come across some external I/O error. So memory .M and

file position P are substituted in the same way as in the preceding case, while

the variable x in the logical formula F is substituted by the error return value -1.

This can be understood as the combination of cases 2 and 4 for read statements

that read a fixed number of bytes.

VI < m < E3 : F[-1 / x][P{E1 - P(E1)+m} / P][M{(E2, m) 4 C(E1, P(E1), m)} / M]

3. The read function has just returned zero without attempting to read any bytes

80

because it already reached the end-of-file.

F[O / x]

4. The read function has not consumed any bytes and just returned the error

code -1 because of a preexisting external I/O error.

F[-1 / x]

Altogether,

precond(x := read(E1, E2, E3), (f, F))

(V < m < E3 :F[m/x][P{E1 - P(E1) + m}/P][M{(E2,m) - C(E1,P(E1),m)}/ M]) A

(Vi < m < E3 F[-I / x][P{E 1 - P(EI)-+ m} / P][M{(E2 , m) - C(Ei,P(E1), m)} / M]) A

F[0 / x] A F[-1[/]

where f = after(read(E1, E2, E3)) and f'= before(read(E 1 , E2, E3))

Seek Statements. For seek statements that move the file position of the file E1 by

the offset E2, the predicate transformer precond(x := seek(E1 , E2), (f, F)) produces

a logical conjunction of two clauses, each of which corresponds to one of two possible

results of the seek statement:

1. The seek statement has successfully advanced the file position of the file E1 by

the specified offset E2. We obtain the corresponding clause by substituting the

variable x with the resulting file position P(E1) + E2. The current file position

of the file E1 is also increased by the given offset E2. Note that the resulting file

position must be nonnegative, as explained in Section 3.2.3. So the whole clause

is conditioned by the resulting file position being nonnegative.

P(E1) + E2;> 0 3 F[P(EI) + E2/ x][P{E1 P(EI) + E2} / P]

81

2. The seek statement has failed and just set the variable x to -1 because it resulted

in a negative file position or some external error occurred.

F[-1/x]

Altogether,

precond(x := seek(Ei, E2), (f, F))

{(', (P(E1) + E2 > 0 - F[P(E1) + E2 / x][P{E1 -+ P(E1) + E2 }/ P]) A F[-1 / x])}

where e = after(x := seek(E 1 , E2)) and f' = before(x = seek(E1 , E 2))

If Statements. The predicate transformer precond(if B then Q1 else Q2, (f, F))

transforms the logical formula F differently, depending on the current program point f,

because an if statement contains a multiple number of program points in it. When

program execution reaches the after label of the whole if statement, the immediately

previous program execution point may be either of the after labels of the then and else

branches. Therefore, the predicate transformer precond(if B then Q1 else Q2, (f, F))

propagates the logical formula F into both branches Q1 and Q2 when the program

point f is the after label of the if statement.

precond(if B then Qi else Q2, (,F))= {(after(Q1), F), (after(Q2), F)}

where f = after(if B then Qi else Q2)

When the program point f is within the then branch Q1 of the if statement, the

predicate transformer precond(if B then Qi else Q2, (f, F)) depends on whether

the program point f is the before label of the then branch Q1. If so, the predicate

transformer guards the logical formula F with the condition part B of the if statement.

82

Otherwise, the predicate transformer is defined recursively as precond(Q1, (f, F)).

precond(if B then Qi else Q2, (f, F)) {(before(Q), B -> F)} if f = before(Q1),

precond(Q1, (f, F)) otherwise

where Ei labels(Qi)

For cases where the program point f is within the else branch Q2 of the if statement,

the predicate transformer precond(if B then Qi else Q2, (, F) is similarly defined,

except that the logical formula F is guarded with the negation of the condition part B

of the if statement.

precond(if B then Qi else Q2, (f, F)) ={(before(Q),-B - F)} if f = before(Q 2),

precond(Q 2 , (, F)) otherwise

where f E labels(Q 2)

While Statements. The predicate transformer precond(while (I) B Q1, (, F))

transforms the logical formula F differently, depending on whether the current program

point f is within the loop body Q1. Program execution reaches the after label of the

whole while statement when its condition part B evaluates to false possibly after

repeating the loop body. Therefore, the negation of the condition part B along with

the loop invariant I has to be able to establish the logical formula F2 at the beginning

of the while statement, regardless of the values of variables that are modified in the

loop body Q1. Also, the loop invariant I must hold at the beginning of the loop and

be re-established at the end of the loop body Qi after each iteration.

precond(while (I) B Qi, (, F)) = {(before(Q), I A VV : (I A -,B - F)), (after(Q 1), I)}

where C = after(while (I) B Q) and

V is the set of assigned variables in Q1 (including M, P, and C)

83

When the program point f is within the loop body Q1 of the while statement,

the predicate transformer precond(while (I) B Qi, (f, F)) depends on whether the

program point f is the before label of the loop body Q1. If so, the conjunction of the

loop invariant I and the condition part B of the while statement must be able to

establish the logical formula F at the beginning of the loop. As with the previous

case, the loop invariant I has to be established before entering the loop and after

executing the loop body. If the program point f is not the before label, the predicate

transformer is defined recursively as precond(Q1, (f, F)).

precond(while (I) B Q1, (f, F)) =

{{(before(Q), I A VV : (I A B - F)), (after(Q1), I)} if f = before(Q1),

precond(Q 1, (, F)) otherwise

where f c labels(Qi) and

V is the set of assigned variables in Qi (including M, 'P, and C)

Statement Sequences. For a statement sequence Si; - - ; S, the predicate trans-

former precond(Si; -. ; S, (, F)) is defined recursively as the predicate transformer

precond(Si, (, F)), where Si is a statement that immediately precedes the program

point C.

precond(Si; ... ; S, (f, F)) = precond(Si, (f, F)) where f = after(Si)

5.2 Properties

Conceptually, the predicate transformer precond is sound because, when it maps a

postcondition F2 to a precondition F1 for a statement Q, a program state o-2 yielded

by a one-step execution of the statement Q under a program state 1 that satisfies

the precondition F 1 is guaranteed to satisfy the postcondition F2. This concept is

formalized as follows:

Theorem 5.2.1 (Soundness). If (1, o-1) -- Q -se (f2, 02) and (1, F1) E precond (Q,

84

(f2, F 2)), then o- 1 N F1 implies U2 N F2 .

Proof. This proof proceeds by induction on the rules of (f1, -1) -[Q >seq (V2, U 2).

• Case (f1, 1) A skipJ seq (2, (2). o1 = u2 by the dynamics semantics of skip

statements, and F1 = F2 because precond (skip, (2, F2)) = {1, F2)}. Therefore,

-1 |- F1 implies o-2 F2 .

" Case (f1, a-) q x :=£E -seq (2 , O2). Let o-1 = (p, y, #) and p F- E v.

-2 = (p[x-+ v], y, #, r) by the dynamic semantics of assignment statements, and

F1 = F2[E / x] because precond (x E, (2,F2)) {(f, F2 [E /])}. Therefore,

a- & F1 implies-2 |- F2 .

" Case (1,o 1) [[:= load(E, n) seq (62 ,0- 2). Let o-1 = (p, p,#, /) and

pF- E = a. o 2 = (p[x- YE-_-(pa(a + i) x (2))], , ,s) by the dynamic

semantics of load statements, and F1 = F2[El_1(M(E + i) x (28)i) / x] because

precond (z := load (E, n), (f2, F2)) = (f1, F2[Eo (M(E + i') x (28))R

Therefore, o 1 | F1 implies o-2 = F2 .

" Case (£ 1,o) =j x load(E1 , E2) =>seq (e 2, a 2). Let o-1

pF- E1 = a, and p FE2 S s. o 2 = (p[x E- o (pZ(a + i) x (2)) r

by the dynamic semantics of load statements, and F1 = F2[M(E1 , E2) /X]

because precond(x := load(E, n), (2 ,F2)) {(fl 1, F2[A4(E 1, E2) / x])}. There-

fore, a1 | F1 implies o-2 & F2 .

" Case (f1, o-1) x := hton(E, n) ->eq (62 , (2). Let a1 = (py, , K) and

pF- E a. o 2 (p[x -+ E'(p(a + i) x (2 ')- -1)] p, #, ')by the dynamic se-

mantics of load statements, and F1 = F2 [E-_ (M(E+i) x (28)"1) / x] because

precond(x = load(E, n), (62,F2))= {(21, F2[E _ (M(E+i) x (28)-1-i) / X])

Therefore, a1 | F1 implies a2 = F2 .

" Case (K1,a 1) =[store(E 1, E2, n)]I-seq (62, 0 2). Let o-1 = (p, y, #, r)
p F- E =- v, and p F- E2 => a. o-2 = (p, o[a+i -+ (v/(28)') mod 28]j=o,...,_1), #,)

by the dynamic semantics of store statements, and F1 = F2[M{E2 + i -+

85

(E1/(28)i) mod 28} =o,...,n-i / M] because precond(store (El, E2 , n), (f2,F2)) =

{(£ 1 ,F2[M{E 2 + (E1/(28)i) mod 2"}j=o,...,n-i / M])}. Therefore, o F1

implies-2 |- F2 .

•Case (f1, i) -(store(E1 ,£2, E3) }=seq (£2,u 2). Let o1 = (p, ,

p V E1 = v, p E2 #> a, and p E3 -> s. 0-2 = (p, p[a + i -+(v/(2 8)') mod

2.8]-=O,...,S_1, #,) by the dynamic semantics of store statements, and F 1 =

F2[M{{(E2, E3) E 1 }/ M] because precond (store (E 1 , E2, E3), (f 2 , F2)) =

{(1, F2[M{(E2, E3)-* E1} / M])}. Therefore, ai |- F1 implies 02 |= F2 .

*Case (1 ,o 1) -{ : read(E1, E2, n)]->seq (f2 ,0 2). Let o-1 = (p, y, 0),

p - E1 i f, p F E 2 = a, and 0 ; s' < n. o-2 = (p[x - s'], p[a + I

f()]....s'-1, #[f (f)+s'),) or (p[-+ -1],p[a~+ ' (f)(#(f)+

)],.i- f # f - 5(f)+ s'], K) by the dynamic semantics of read statements,

and

F2 [O / x] A

(A n-1 F2 [m / x][P{E1 - P(E1) + m} /P][M{(E 2 , m) - C(E 1, P(E1 m)}/ M) A

F= F2[n/x][P{E1 - P(E1) + n}/ P][M{E2 + i - C(E1 , P(E1)+i)}+=o.nA/M] A

F2 [-1 / x] A

(A~i- F 2[-1 / x][P{E1 i P(E1) + m}/P][M{(E2 , m) e C(Ei,P(E1), m)} /,M]) A
F2 [-1 / x][P{E1 - P(E1) + n} / P][M{E 2 + i 4 C(Ei, P(E1)+i)}=o,..,n/ M]

because

Sprecond(x := read(E 1 , E2, n), (f 2 ,F2))=

F 2 [O/x] A

(A=1 F2[m / x][P{E1 - P(E1) + m} / P][M{(E 2 , m) - C(Ei, P(E1), m)}/ M]) A

F2[n / x][P{E1 - P(E1) + n} / P] [M{E2 + i - C(E1, P(E1) + i)}j=o,...,n-i M] A

F2 [-1 / x] A

(A F2 [-1 / x][P{E1 i P(E1) + m} / P][M{(E 2 , m) - C(E 1j, P(E1), m)} / M]) A

F2[-1 / x] [P{ E1 -P(E1) + n} / P] [M{fE2 + i - C(E1, P(E1) + i)}i=O,...,n_ i / M]

Therefore, 1 F 1 implieso2 |= F2 .

•Case (1, o1)a- x := read (E1 , E2, E3) 'eq (f2 , C2). Let 1 = (p, y, 4, r),

86

p F- E f, p F- E2 4 a, p F- E3 s, and 0 < s' < s. o 2 = (p[x -

s'], p[a+i i (f)(#(f)+i)]j=o,...,s-1, #[f 4 O(f)+s'], K) or (p[x 4 -1], p[a+i e

r(f)(0#(f) + i)]i=o,...,s'-1, [f b(f) + s'], r) by the dynamic semantics of read

statements, and

F2 [0/x] A

F1 (V1 m <E:,: F2[m /][P{E1 - P(E1) + m}j / P][M{(E2, m) - C(E1, P(E1),Tm)} / M]) A

F2 [-1 / x] A

(VI mF< E: F2 [-1/ z][P{E1 ' P(E1) + m} /P][M{(E 2,m) - C(E1 P(E1),m)}/ M])

because

precond(x read(Ei, E2, E3), (V2 , F2))

I Kfil
F2 [0/x] A

(VI m <E-: F2[m/x][P{E1p- ' P(E) + m} /P][M {(E2 , m) 4 C(E1,P(E1), m)} / M]) A

F2[-1 / x] A

(VI m <E:: F2 [-1 /x][P{E1 -+ P(E1) + m} /P][M{(E 2 , m) -+ C(E1,P(E1), m)} /AM])

Therefore, 1 | F1 implies2 |- F2 .

•Case (e1 , o 1) x seek(Ei, E2)]h>seq (2 , 2). Let o-1 = (p, p, #, K), pF

Ei = f, and p F- E2 # o.

I(px p(f)+ o], P, [f-4 OW#(f) + o],)
o-2

where 0(f) + o > 0,

by the dynamic semantics of seek statements, and F1 = (P(E1) + E2 2 0 -

F2[P(E) + E2 / x][P{E1 - P(E1) + E2 }/ P]) A F2[-1 / x]

precond(x := seek(E1 , E2), (£2, F2)) = {(£ 1, (P(E 1) + E2 > 0 -+ F2[P(El) +

E2 / x][P{E -+ P(E1) + E21 / P]) A F2[-1 / x])}. Therefore, -1 | F1 implies

0-2 |- F2 -

* Case (f1 , o-1) [if B then Q1 else Q2 |-seq (£2, -2) where £1

before(if B then Q1 else Q2) and £2 = before(Q1). Let o-1 = (p, y, #, N).

p F- B true andU2 = (p, p,#, ,) by the dynamic semantics of if statements.

87

I.

because

F 1 = B - F2 because precond(if B then Q1 else Q2, (2 , F2))= {{CiB-+

F2)}. Therefore, ai F1 impliesT 2 = F2.

" Case (£1,oi) =j if B then Q1 elseQ2 l->seq (62,U2) where £1 =

before(if B then Q1 else Q2) and £2 = before(Q 2). Let o-1 = (p, y, #, K).

p - B = false andU2 = (p, y, , ,) by the dynamic semantics of if statements.

F1 = -,B - F2 because precond(if B then Qi else Q2, (£2, F2)) ={(1 , --,B-

F2)}. Therefore, ai o F1 implies U2 - F2 .

* Case (£1 , - 1) = if B then Q1 else Q2 seq (£2 ,- 2) where £1 = after(Qi)

and £2 = after(if B then Qi else Q2). Let r = (, y, 0#,). o-2 = (p, y, d, K)

by the dynamic semantics of if statements, and F1 = F2 because

precond(if B then Qi else Q2, (£2, F2)) = {(1, F2)}. Therefore, a1 o F1 im-

plies U2 t= F2 .

" Case (£1 , o-1) = if B then Qi else Q2 seq (2,0-2) where £1 = labels(Qi)\

{after(Qj)}. (1 ,a) -[Qi l#seq (62, a2) by the dynamic semantics of if state-

ments, and F1 E precond(Q, (£2, F2)) because precond(if B then Q1 else Q2,

(2, F 2)) = precond(Q, (62, F2)). By induction hypothesis, a1 |- F1 implies

a 2 & F 2 -

• Case (£ 1, 1) -[while (I) B Qi }-seq (£2 , 0-2) where £1 =

before(while (I) B Q1) and £2 = before(Q1). Let 1 = (p, y,#, K). p H

B -true andar2 = (p, y, , ,) by the dynamic semantics of while statements.

F 1 = I A VV (I A B -+ F2) because precond(while (I) B Q1, (£2, F2)) =

{(£1, I A VV (I A B -+ F2)), (after(Q 1), I)}. Therefore, o-1 = F1 implies

-2 & F 2 -

• Case (£ 1,o 1) -11 while (I) B Qi }-seq (£2 , -2) where £1 =

before(while (I)B Q) and£2 =after(while (I) B Q). Let 1 = (p, y, , K).

p F- B => false and a2 = (p, y, #, K) by the dynamic semantics of while state-

ments. F1 = IAVV : (IA-,B -+ F2) because precond(while (I) B Q1, (£2,F2)) =

88

{(f 1, I A VV : (I A -,B -+ F2)), (after(Q1), I)}. Therefore, o-1 F1 implies

o-2 =F2.

• Case (fl, o-1) = while (I) B Qi >se (f 2 , U 2) where £ = labels(Q1)\

{after(Q 1)}. (1i,o 1) q Q1 }Seq (6 2,0 2) by the dynamic semantics of while

statements, and F1 E precond(Q1 , (£ 2,F2)) because precond(while (I) B Qi,

(f2 ,F2)) = precond(Q1 , (2 ,F2)). By induction hypothesis, o-1 - F1 implies

U-2 |-F2 -

• Case (l 1 , o-) = while (I) B Qi J seq (62,0 2) where f1 = after(Q1) and

f2 = before(while (I) B Qi). Vacuously true because F1 : (£ 1,F1) E

precond(while (I) B Q1, (2, F2)).

" Case (l1 , o1) = Si ; -.. ; Sn ->seq (2, 0-2) where f1 = before(Si). (L1,co-) [
Si]h-seq (2 , 2) by the dynamic semantics of a sequence of statements, and F1

precond(Si, (f2, F2)) because precond(S1 ; ... ; S,, (f 2 , F2))= {(1, precond(S,

(K 2,F2)))}. By induction hypothesis, o- 1 & F1 implies o-2 |- F2 .

The above soundness concept of the precond predicate transformer over a single

step of execution is extended into multiple steps of execution, which makes it possible

to check the validity of the specification at the remotely preceding program points

as well as the immediate preceding one. Let a binary relation precond#(Q) on a

set '(Label x Formula) be defined as follows:

precond#(Q)= {(LF, U precond(Q, (f, F))) I LF E P(Label x Formula)}
(f,F)CLF

Assume that a program state o1 at a program point £1 in a program Q evaluates to

a program stateo2 at a program point f2 after multiple steps of execution. If the

original program state -1 satisfies all preconditions at the program point 1 included

in the reflexive transitive closure precond*(Q) of the binary relation precond#(Q), then

89

the resulting program state o-2 is guaranteed to satisfy the postcondition F2 at the

program point f2. Formally,

Corollary 5.2.2. If (1 , Oi) - Q seq (2, 0 2) and V({(2 , F2)}, LF) E precond*(Q)

V(£ 1, F 1) E LF : a1 F1, then U2 |= F2 .

5.3 Alias Axioms

This section formally presents how to incorporate the information from an alias analysis

into verification conditions. The proposed system uses an alias analysis to relieve a

developer of manually supplying loop invariants and to accelerate verification by not

waiting for verification conditions to be propagated up to the start of a program.

5.3.1 Alias Analysis

For a given program Q and an initial program state ao, an alias analysis is assumed to

provide a function alias' °that can determine whether two memory blocks are aliased

at each program point:

alias ° E Label -+ (AExpr x AExpr) - (AExpr x AExpr) -+ (must, no, may}

The alias' °takes a program point and two memory blocks, each of which is represented

by its base address expression and size expression, and returns must, no, or may as

appropriate. The must response means that the two memory blocks are guaranteed to

start at the same memory location and be of size 1 at the given program point.

Definition 5.3.1. If alias" (f, (E1, E2), (E3 , E4)) = must, then (before(Q),ao) =

[Q se (f, (p, p, #, K)) A p FE 1 => ai A p - E2 4 S2 A p - E3 =* a3 A pF 4 4 s4

implies ai= a3 As2 = S4 = 1.

The no response means that the two memory blocks are non-overlapping memory

ranges at the given program point.

90

MUST-1

alias °(£, (T1 , 1), (T3, 1)) must

' M{T1I T 2 }(T3)= T2

MUST-2

alias °(f, (T1 , 1), (T3 , T4)) = must

[' M{T1 - T 2 }(T3 ,T4) =T2

MUST-3 MUST-4

alias" (f, (TI, T2), (T4, 1)) = must alias" (f, (TI, T2), (T4 , T)) = must

F M{(T1 , T2)- eT3 }(T4) = T3 mod 28 IM{(T1 , T2) - T3 }(T4, T5) =T3 mod 28

MUST-5

alias" (f, (T1, T2), (T 6, 1)) = must

Fi M{(T1, T2) " C(T3,T 4,T 5)}(T6) = C(T3,T 4)

MUST-6

alias" (f, (T1, T2), (T, T7)) = must

f M{(T1 , T2) C(T3 ,T4 ,T5)}(T 6 ,T7) = C(T3 ,T4)

Figure 5-1: The MustAlias axioms.

Definition 5.3.2. If alias" (f, (E1 , E2), (E3, E4)) = no, then (before(Q), 0) 4Q}*seq

(f, (p, y, #, r)) A p h E1 a1 E a p 2 2 A p F- E3 a3 A p F- E4 s4 implies

S2 > 0 A S4 > 0 A (ai + S2 < a3 V a 3 + s4 < ai).

The may response is returned when the alias analysis cannot determine the relation

of the two memory blocks precisely.

5.3.2 Alias Axioms

The aliasing information is used to simplify verification conditions. Figure 5-1 presents

how the must response from an alias analysis can be used to simplify memory-related

terms. The M{T1 - T2}(T 3) and M{T1 - T2 }(T 3 , T4) terms can be reduced into T2

when the alias analysis determines that T1 and T3 denote the same memory address

and that T4 , which denotes the size of the memory block to read, is 1 (MUST-I

and MUST-2). The M{(T1 , T2) - T3 }(T4) and M{(T1 , T2) > T3}(T4 , T) terms can

also be reduced into the lowest byte of T3 , i.e. T3 mod 28, when the alias analysis

establishes that T 1 and T4 denote the same memory address and that the memory

91

block (T4 , T) is of size 1 (MUST-3 and MUST-4). Note that, as explained in Section 4.2,

the M{(T1, T2) + T3 } term expresses that the values of a memory region of T2 bytes

starting at address Ti have been obtained by storing the lowest bytes of value T3 in the

little-endian format. Similarly, the M{(T1 , T2) - C(T3, T4, T5)}(T 6) and M{(T1 , T2) -+

C(T3, T4 , T)}(T, T7) terms are able to be reduced into C(T3, T4) when the alias analysis

determines that T1 and T6 denote the same address and that the memory block (T6 , T7)

is of size 1 (MUST-5 and MUST-6). As explained in Section 4.2, the M{T1 , T2) -+

C(T3 , T4,T5)} term indicates that the T2-bytes data from the offset T4 of the file T3

have been read into a memory region pointed to by T1 , and the C(T3, T4) term denotes

the byte value at the offset T4 from the start of the file T3 .

Figure 5-2 on page 93 presents how the memory-related terms can be reduced when

the alias analysis returns no. The MI{T1 - T2 }(T3) term can be simplified into M(T3)

when the alias analysis determines that those two addresses T1 and T3 are guaranteed

to be distinct (NO-1). Obviously, the 1-byte memory write {T 1 T2 } to the address T1

does not make any effect on the 1-byte memory read from the address T3 when T1 and

T3 are different from each other. It is possible to reduce the M{T1 -s T2}(T3, T4) term

to M(T3, T4) when that the address T1 is guaranteed not to be included in the memory

block (T3 ,T4) (NO-2). Similarly, the M{(T1, T2) - T3 }(T4) term can be simplified

into M(T4) when the memory block (T1,T 2) does not contain the address T4 (NO-3).

Generally, the M{(T1 , T2) - T3 }(T4 , T) term can be reduced to M(T4 , T5) when the

alias analysis establishes that the memory blocks (T1 , T2) and (T4, T5) do not overlap

at all (NO-4). In similar ways, the M{(T1 , T2) -+ C(T3 , T4, T)}(T 6) and M{(T 1, T2) +

C(T 3, T4 , T)}(T 6, T) terms can be simplified into M(T6) and M(T6 , T) respectively

when the involved memory blocks are guaranteed not to alias (NO-5 and NO-6).

92

NO-1i

alias" (f, (T, 1), (T3, 1)) = no

Ff M{T1 - T2 }(T3) = M(T)

NO-3

alias" (f, (T1, T2), (T4 , 1)) = no

F- M{(T1, T2) - T3}(T4) = M(T4)

NO-2
aIias" (f, (T1, 1), (T3 , T4)) = no

FA' M{T 1 T2 }(T3 ,T4) = A(T3 ,T4)

NO-4

aIias °(f, (T1, T2), (T4, T5)) = no

f AI{(T 1, T2) e T3 }(T4 ,T5) = M(T4 ,T5)

NO-5

alias °(f, (T1, T2), (T6, 1)) = no

FL M{(T1, T2) - C(T3 ,T 4 ,T5)}(T 6) = M(T6)

NO-6

aIias °(f, (T1, T2), (T6, T7)) = no

FL M{(T1, T2) 4 C(T3 , T 4 ,T5)}(T 6,T7) = M(T6 ,T7)

Figure 5-2: The NoAlias axioms.

93

94

Chapter 6

JPEG File Interchange Format

This chapter presents another example that shows how the proposed programming sys-

tem can be used to develop an image converter for JPEG image files in an error-resilient

way. Each input unit of the JPEG file format starts with a delimiter, so it is possible

to handle some invalid input units by discarding bytes until finding the next delimiter.

6.1 The JFIF Format

The JPEG standard provides a commonly used method for lossy compression for

digital photographic images. JPEG is an acronym for the Joint Photographic Experts

Group, which created the standard. The standard defines how an image is compressed

into a stream of bytes and decompressed back, but does not specify a file format to

store that stream in.

The JPEG File Interchange Format (JFIF) specifies a file format in which JPEG-

compressed images can be stored. Along with the Exchangeable image file format

(Exif), JFIF is the most common file format for storing and transmitting photographic

images on the Internet [35]. It is what people generally mean when they refer to "a

JPEG file," and usually has a filename extension of . jpg or .jpeg.

A JFIF file is partitioned by markers, which consist of 2 bytes. The first byte

of each marker always has the value FF1 6 , and the second byte specifies the type

of the marker. Some markers stand alone, but most are immediately followed by a

95

SOI1L APPO DQT SOFO DHT SOS Scan Data -- - SOS Scan Data EOI

Figure 6-1: The layout of a typical JFIF image file.

big-endian 2-byte integer that specifies the length of the following parameter bytes

plus the 2 bytes used to represent the length field itself. A marker and its associated

set of parameters comprise a marker segment.

Figure 6-1 presents the layout of a typical JFIF image file, which starts with the

SOI (Start of Image) marker (i.e. FF16 D8 16). The APPO (Application Data) marker

segment immediately follows the SOI marker. The null-terminated string "JFIF" is

included in the APPO marker segment and identifies the file as the JFIF image file

format. The JFIF APPO marker segment also provides information beyond what

is specified in the JPEG standard: the JFIF version number, the X and Y pixel

densities, the pixel aspect ratio, and an optional thumbnail image. The DQT (Define

Quantization Table) marker segment provides the quantization tables, which are arrays

of 64 elements, used in the image file. A JPEG image is compressed in data units,

which are 8 x 8 sized blocks of samples of one color component. The discrete cosine

transform (DCT), which is one of the processes of JPEG encoding, expresses the values

of a data unit in terms of an 8 x 8 array of coefficients of cosine functions oscillating at

different frequencies. Then, for better compression, the quantization process converts

some of those coefficients to zeros by dividing the array of coefficients by a quantization

table element by element. The SOFO (Start of Frame) marker segment indicates that

the image data is encoded in the baseline DCT mode and specifies the dimensions

of the image and the sampling factor and quantization table identifier for each color

component. The DHT (Define Huffman Table) marker segment defines the Huffman

tables used in the image. Entropy coding, the last step of JPEG encoding, encodes

the quantized DCT coefficients using Huffman coding while eliminating runs of zero

values. The SOS (Start of Scan) marker segment specifies which Huffman tables are

used for each color component. It is followed by the compressed scan data. To detect

the end of the compressed data, the next marker has to be searched for because the

compressed data itself does not contain length information. The JPEG compression

96

FF16 Marker Type Length , Parameters
(1 byte) (1 byte) (2 bytes)I (Length - 2 bytes)

Figure 6-2: The common structure of JFIF marker segments.

algorithm is carefully designed so that it will rarely yield the byte value FF1 6 , which is

the first byte of every marker. When the byte value FF1 6 is required in the compressed

data, it is suffixed with the byte 0016 and encoded as the 2-byte sequence FF1 6 0016.

Because the value0016 does not occur as the second byte of any marker, it is easy to

search for the next marker that follows the compressed scan data. A JFIF image file

must end with the EI (End of Image) marker (i.e. FF1 6 D9 1).

6.2 A Resilient JPEG Image Converter

Figures 6-3 and 6-4 on pages 98-99 present code snippets from an image converter

that changes the JFIF image format into the portable anymap format (PNM).

The image converter processes each marker segment in a big loop because all

the JFIF marker segments share the common structure shown in Figure 6-2. Every

marker consists of 2 bytes: an FF16 byte and a marker type byte which is neither 0016

nor FF1 6. The JPEG standard allows any marker to be optionally preceded by any

number of fill bytes that have the value FF 16 .

Each iteration of the loop starts by attempting to read a single byte into the

marker f f variable (lines 7-8 in Figure 6-3 on page 98).

7

8

uint8_t markerff;

nbytes = read(fd, &markerff, sizeof(markerff));

The single-byte read call may not be able to read any byte because of a premature

end-of-file or an external I/O error. In that case, the converter sets some flags (not

shown here) appropriately and breaks out of the outermost loop (lines 9-10).

9

10

if (nbytes != sizeof(markerff))

goto OUTOFLOOP; // EOF OR I/O ERROR

97

1 for (;;) {
2 uint8_t markertype;

3 // Read until FF not followed by 00 or FF is found.

4 for (;;) {
5 // Read until FF is found.
6 for (;;) {
7 uint8_t markerff;
8 nbytes = read(fd, &markerff, sizeof(marker_ff));
9 if (nbytes != sizeof(markerff))
10 goto OUTOFLOOP; // EOF OR I/O ERROR
11 if (marker-ff == OxFF) break;
12 continue; //TOLERATE NOT WELL-FORMED
13 }

14 nbytes = read(fd, &marker-type, sizeof(marker-type));
15 if (nbytes != sizeof(marker-type))
16 goto OUT_OF_LOOP; // EOF OR I/O ERROR
17 while (marktype == OxFF) { // FILL BYTE
18 nbytes = read(fd, &markertype, sizeof(marker_type));
19 if (nbytes != sizeof(markertype))
20 goto OUTOFLOOP; EOF OR I/0 ERROR
21 }
22 if (markertype != OxOO) break;
23 continue; //TOLERATE NOT WELL-FORMED
24 }

25 ASSERT(GETCONTENT(fd, GETPOS(fd, "CURRENT") - 2) == OxFF &&
26 GETCONTENT(fd, GETPOS(fd, "CURRENT") - 1) OxOO &&
27 GETCONTENT(fd, GETPOS(fd, "CURRENT") - 1) !=OxFF);

Figure 6-3: A (simplified) code snippet for an image converter from the JFIF format

to the PGM format (1/2).

98

28 switch (marker-type) {
29 case OxDA: { // SOS: Start of Scan
30 uint16_t length; uint8_t *params = NULL;
31 uint8_t *data = NULL; size_t data-cap = 0, datasize = 0;
32 ...
33 SOSLENSTART:
34 nbytes = read(fd, &length, sizeof(length));
35 if (nbytes != sizeof(length)) goto SOS_END;
36 length = ntohs(length);
37 if (length < sizeof(length)) goto SOSEND;
38 if ((params = malloc(length - sizeof(length))) == NULL) {
39 if (lseek(fd, length - sizeof(length), SEEKCUR) == -1)
40 goto OUT_OF_LOOP;
41 ASSERT(GETPOS(fd, "CURRENT") == GETPOS(fd, "SOSLENSTART") +
42 GETCONTENT(fd, GETPOS(fd, "SOSLENSTART")) * 256 +
43 GETCONTENT(fd, GETPOS(fd, "SOSLENSTART") + 1));
44 goto SOS_END;
45 }
46 nbytes = read(fd, params, length - sizeof(length));
47 if (nbytes != length - sizeof(length)) goto SOS_END;
48 ASSERT(GETPOS(fd, "CURRENT") == GET_POS(fd, "SOSLEN_START") +
49 GETCONTENT(fd, GET_POS(fd, "SOS_LENSTART")) * 256 +
50 GETCONTENT(fd, GET_POS(fd, "SOS_LENSTART") + 1));

51 for (;;) {
52 if (datacap== data-size) {
53 datacap= data-cap == 0 ? 512 : datacap * 2;
54 if ((data= realloc(data, datacap)) == NULL) goto SOS_END;
55 }
56 nbytes = read(fd, &byte, sizeof(byte));
57 if (nbytes != sizeof(byte)) goto SOSEND;
58 if (byte != OxFF) *(data + datasize++) = byte;
59 else {
60 nbytes = read(fd, &next_byte, sizeof(nextbyte));
61 if (nbytes != sizeof(nextbyte)) goto SOSEND;
62 if (next-byte != OxOO) {
63 if (lseek(fd, -2, SEEK_CUR) == -1) goto OUTOFLOOP;
64 break;
65 } else *(data + data_size++) = byte;
66 }
67 }
68 ASSERT(GETCONTENT(fd, GET_POS(fd, "CURRENT")) == OxFF &&
69 GETCONTENT(fd, GET_POS(fd, "CURRENT") + 1) != OxOO);
70 ...
71 SOSEND:
72 free(data); free(params);
73 break;
74 }
75 ...
76 }
77 }
78 OUTOFLOOP: ...

Figure 6-4: A (simplified) code snippet for an image converter from the JFIF format
to the PGM format (2/2).

99

If the read call has read a non-FF1 6 value, it indicates that the JFIF image file is

not well-formed. Rather than breaking out of the loop, the image converter discards

the invalid byte and continues to process the rest of the image file (line 12), which

enables the converter to successfully handle illegally-formed JIF image files that are

interspersed with some invalid bytes. Only when the FFE1 6 byte has been read, the

image converter proceeds to read the second byte (line 11).

11

12

if (markerff == OxFF) break;

continue; //TOLERATE NOT WELL-FORMED

The converter makes the second call to the read function to read the second byte

into the markertype variable (line 14).

14 nbytes = read(fd, &marker-type, sizeof(markertype));

If the read call fails to read any byte, the converter breaks out of the outermost loop,

as it did with the previous read call (lines 15-16).

15

16

if (nbytes != sizeof(markertype))

goto OUTOFLOOP; // EOF OR I/O ERROR

If the value FFi has been read once again, the first FFE1 6 byte is a fill byte and

the second and current FF 1 6 byte may be the start of a marker. Therefore, the

image converter keeps reading a single byte in a nested loop until it reads a non-FF1 6

byte (lines 17-21).

17 while (mark-type == OxFF) { /FILL BYTE

18 nbytes = read(fd, &marker-type, sizeof(marker_type));

19 if (nbytes != sizeof(marker-type))

20 goto OUTOFLOOP; EOF OR I/O ERROR

21 }

On the other hand, if the second byte read is0016, the JIF image file is not well-formed.

100

The JPEG compression method is designed so that the 2-byte sequence FF1 6 0016

may appear only within the compressed scan data that immediately follows the SOS

marker segment. The converter discards both bytes of the invalid byte sequence and

resiliently restarts by searching again for the first byte (FF1 6) of a marker (line 23).

The next stage of parsing, which depends on each type of marker, happens only after

the converter has found a byte FF1 6 that is followed by a marker type byte which is

neither FF1 6 nor 0016 (line 22).

22

23

if (markertype != x00) break;

continue; //TOLERATE NOT WELL-FORMED

The next step of parsing starts by dispatching the control of execution to different

parts of code, depending on the marker type byte (line 28 in Figure 6-4 on page 99).

28 switch (markertype) {

For the SOS marker segment, the image converter first makes an attempt to read

the Length field of 2 bytes into the length variable (lines 29-34).

29 case OxDA: { // SOS: Start of Scan

30 uint16_t length; uint8_t *params = NULL;

31 uint8_t *data = NULL; size_t data-cap = 0, datasize = 0;

32 ...

33 SOSLENSTART:

34 nbytes = read(fd, &length, sizeof(length));

If the read function cannot read the specified number of bytes because of a premature

end-of-file condition or a physical I/O error, the converter jumps to the end of the

current case statement, which is labeled SOSEND, and will break out of the outermost

loop at the next iteration (line 35).

35 if (nbytes != sizeof(length)) goto SOS_END;

101

Otherwise, the image converter calls the ntohs function to change the length variable

from network byte order to host byte order (line 36).

36 length = ntohs(length);

Because the Length field includes the length of itself, the result value in the length

variable must be greater than or equal to 2 (i.e. sizeof (length)) (line 37).

37 if (length < sizeof(length)) goto SOSEND;

Next, because the Parameters field is of variable length, the converter invokes the

malloc function to dynamically allocate a memory block of size specified by means

of the Length field (line 38). The malloc function returns NULL if the requested

allocation cannot be fulfilled. In that case, the image converter skips the Parameters

field by adjusting the file position indicator accordingly (lines 39-44). Note that the

scan data that follows the SOS marker segment will be automatically skipped by the

outermost loop because each of its iteration starts by searching for the next marker.

38 if ((params = malloc(length - sizeof(length))) == NULL) {

39 if (lseek(fd, length - sizeof(length), SEEKCUR) == -1)

40 goto OUTOFLOOP;

41 ASSERT(GETPOS(fd, "CURRENT") == GETPOS(fd, "SOSLENSTART") +

42 GETCONTENT(fd, GET_POS(fd, "SOSLENSTART")) * 256 +

43 GETCONTENT(fd, GET_POS(fd, "SOSLENSTART") + 1));

44 goto SOS_END;

45 }

When the malloc call is successful, the image converter proceeds to read the

Parameters field into the allocated buffer (line 46).

46 nbytes = read(fd, params, length - sizeof(length));

If the read call cannot read the specified number of bytes, the converter jumps to the

102

I

end of the current case statement, which is labeled SOSEND, like the previous read

call (line 47).

if (nbytes != length - sizeof(length)) goto SOSEND;

If the read call successfully reads the specified number of bytes (and the program

has been implemented correctly in conformity with the JFIF specification), it means

that the converter has just read all the bytes of the SOS marker segment and is ready

for reading the following compressed scan data.

Because the compressed scan data does not have length information within it, the

image converter reads bytes one by one in a nested loop and checks if it has come

across the beginning of a new marker. For the same reason, the data storage, where

the scan data is stored into, is expanded as needed (lines 52-55).

52 if (datacap== data-size) {

53 data_cap= datacap == 0 ? 512 : data-cap * 2;

54 if ((data= realloc(data, datacap)) == NULL) goto SOS_END;

55 }

The converter attempts to read a single byte after allocating enough memory space

(lines 56-57).

nbytes = read(fd, &byte, sizeof(byte));

if (nbytes != sizeof(byte)) goto SOSEND;

If the byte read is not FF1 6 , it belongs to the scan data and is appended to the data

storage.

58 if (byte != OxFF) *(data + datasize++) = byte;

On the other hand, if the byte read is FF1 6 , it may be the first byte of a new marker.

To fully grasp the situation, the converter makes an attempt to read the next byte

103

47

56

57

into the nextbyte variable (lines 59-61).

else {

nbytes = read(fd, &nextbyte, sizeof(nextbyte));

if (nbytes != sizeof(nextbyte)) goto SOS_END;

If the second byte is non-zero, the two bytes really mark the beginning of a new

marker. In that case, the converter relocates the file position indicator and breaks

out of the inner loop so that the next iteration of the outermost loop starts at the

beginning of the next marker (line 62-64).

62

63

64

if (nextbyte != Ox00) {

if (lseek(fd, -2, SEEK_CUR) == -1) goto OUTOFLOOP;

break;

If the two bytes comprise a byte sequence FF1 6 0016, the first byte FF1 6 is added to

the end of the data storage but the second byte 0016 is discarded. Note that the

byte value FF1 6 is encoded as the 2-byte sequence FF1 6 0016 in the compressed scan

data (line 65).

65 } else *(data + datasize++) = byte;

When the image converter breaks out of the inner loop by detecting a new marker,

it has successfully read all the bytes of the SOS marker segment and the following scan

data. The converter proceeds to decode the compressed data in the data storage with

information obtained from the other marker segments, such as the Huffman tables from

the DHT marker segment and the quantization tables from the DQT marker segment.

Similarly to the SOS marker segment, the other marker segments (not shown here)

are processed as resiliently as possible.

104

59

60

61

6.3 Input Specification

After the inner loop that searches for a new JFIF marker (lines 3-24 in Figure 6-3

on page 98), the developer specified that the current file position indicator should

be placed immediately after a 2-byte sequence whose first byte is FF1 6 and whose

second byte is not either 0016 or FF1 6 . In other words, it should be guaranteed that

the image converter has found the 2-byte beginning of a JFIF marker segment and

is ready for reading the Parameters field of the marker segment. In the specification

language, the property is specified as follows (lines 25-27):

25 ASSERT(GETCONTENT(fd, GET_POS(fd, "CURRENT") - 2) == OxFF &&

26 GETCONTENT(fd, GETPOS(fd, "CURRENT") - 1) !=OxOO &&

27 GETCONTENT(fd, GETPOS(fd, "CURRENT") - 1) OxFF);

The first line of the assertion specifies that the byte value FF1 6 is supposed to be

observed at offset -2 from the current file position indicator, denoted by GETPOS(fd,

"CURRENT") - 2. The second and third lines require that the byte just before the

current file position, denoted by GETPOS(fd, "CURRENT") - 1, should be neither

0016 nor FF16 .

The image converter strives to handle the Parameter field in a resilient way. If

the dynamic allocation for the Parameter field fails, the converter attempts to pass

over the current marker segment and go on the next one (lines 38-45 in Figure 6-4 on

page 99).

38 if ((params = malloc(length - sizeof(length))) == NULL) {

39 if (lseek(fd, length - sizeof(length), SEEKCUR) == -1)

40 goto OUT_OF_LOOP;

41 ASSERT(GET_POS(fd, "CURRENT") == GETPOS(fd, "SOSLENSTART") +

42 GETCONTENT(fd, GETPOS(fd, "SOSLENSTART")) * 256 +

43 GETCONTENT(fd, GETPOS(fd, "SOSLENSTART") + 1));

44 goto SOSEND;

45 }

105

For this strategy to work, the developer needs to give the lseek function the exact

number of bytes to skip so that it skips to the end of the Parameters field. Because

the size of the Parameters field is dynamically determined by the Length field, the

amount to skip is specified by an arithmetic expression involving the length variable,

which the result of endianness conversion was stored into (line 39). To ensure the

correctness of the arithmetic expression, the developer specified that the current file

position indicator should be at the end of the Parameter field (and therefore the end of

the SOS marker segment) after the lseek call (lines 41-43). Specifically, the current

file position indicator at line 41, denoted by GET_POS(fd, "CURRENT"), should be

different from the file position indicator at the beginning of the Length field, denoted

by GET_POS(fd, "SOSLENSTART"), by the total size of the Length and Parameters

fields, which is obtained by interpreting the Length field of the current marker segment

in big-endian byte order. SOSLENSTART is a C label attached to a program point

where the file position indicator is located between the marker type field and the

Length field (line 33 in Figure 6-4 on page 99). Therefore, the n-th byte of the Length

field is found at GETPOS(fd, "SOSLENSTART ") + n, and is multiplied by 28-

because the most significant byte comes first in big-endian format.

On the other hand, if the dynamic allocation for the Parameter field succeeds and

the image converter successfully reads the specified number of bytes into the allocated

buffer (and the program has been implemented correctly in conformity with the JFIF

specification), it means that the converter has just read all the bytes of the SOS marker

segment and is ready for reading the following compressed scan data (lines 46-50).

The property was explicitly specified using the same assertion as above: the current file

position should be away from the file position at the program point SOSLENSTART

by a big-endian integer value in the Length field (line 48-50).

46 nbytes = read(fd, params, length - sizeof(length));

47 if (nbytes != length - sizeof(length)) goto SOS_END;

48 ASSERT(GETPOS(fd, "CURRENT") == GETPOS(fd, "SOS_LENSTART") +

49 GETCONTENT(fd, GETPOS(fd, "SOS_LENSTART")) * 256 +

50 GETCONTENT(fd, GETPOS(fd, "SOS_LENSTART") + 1));

106

_ _

Lastly, after the nested loop that reads the compressed scan data, the developer

specified that the loop completes normally only when the current file position indicator

is located at the start of a byte sequence whose first byte is FF1 6 and whose second

byte is not 0016 (lines 68-69). In other words, the file position indicator must be

placed just after the end of the compressed scan data at that moment.

68

69

ASSERT(GETCONTENT(fd, GETPOS(fd, "CURRENT")) == OxFF &&

GETCONTENT(fd, GETPOS(fd, "CURRENT") + 1) != Ox00);

The developer have added the similar input specifications for all the other marker

segments, although they are not shown in Figure 6-4 on page 99.

6.4 Verification

As with the PNG image viewer in Chapter 2, the proposed system successfully

synthesized verification conditions from the specifications for the JPEG image converter,

verified all of them, and therefore confirmed that:

* The image converter has been written resiliently and correctly by starting with

searching for a JFIF marker and skipping fill bytes.

* Even in the event of errors, the converter consumes all the bytes of each marker

segment so that it can continue to read the following marker segments or scan

data from the correct file position.

* The program accurately detects the end of the compressed scan data by searching

for a byte sequence whose first byte is FF1 6 and whose second byte is not 0016.

107

108

Chapter 7

Implementation

I have implemented a prototype of the proposed system to evaluate its practical aspects.

The prototype is written in the OCaml language and targets programs written in the

C language. The C Intermediate Language (CIL) program analysis infrastructure [38]

is used to parse a C program and to perform a backward data-flow analysis that

figures out what condition at each program point should be satisfied to guarantee the

input specifications in the program. The data-flow analysis propagates verification

conditions backwards against the control flow of a program, as illustrated in Section 2.4.

Whenever a condition is propagated into a program point, the system decides whether

to propagate the condition further by checking if the old condition stored at the

program point implies the new condition. To do so, the system translates verification

conditions into WhyML and feeds the result into the Why3 platform [18]. Why3 is a

platform for deductive program verification and provides a unified front-end to multiple

third-party theorem provers, such as Alt-Ergo [11], CVC3 [8], and Z3 [37], by means of

a series of transformations that handle the differences among the input syntax and logic

of those theorem provers. Although it turned out that Z3 was sufficient for verifying

all of our case study programs, this architecture will facilitate employing other decision

procedures as necessary. To precisely model the semantics of byte-wise operations

on multi-byte fields, such as length fields and field delimiters, I extended an alias

analysis [16] in an array-index-sensitive way. I have observed that such fields are usually

read into small fixed-sized arrays and that those arrays are mainly indexed by constants.

109

Table 7.1: Verification Times.

Application Lines of Code Input Specifications Verification Time

JPEG Converter 704 22 4m 26s
PNG Viewer 346 6 im 45s

They are scalably and effectively handled by an array-index-sensitive pointer analysis.

Table 7.1 presents a summary of the specification and verification results for the

two applications shown in Chapters 2 and 6. Column 1 identifies the applications and

Column 2 presents their sizes in terms of source lines of code. For the PNG viewer,

I needed to add specifications at 6 locations because the PNG file format is very

regular. All the fields of a PNG image file share the same structure, which is shown

in Figure 2-2 on page 26, and are therefore processed in the same code region of the

PNG viewer. On the other hand, each field of a JPEG image file has its own structure,

depending on its marker type, and is handled differently by the JPEG converter. As

a result, I needed to specify each of them separately at 22 locations. The system

successfully synthesized verification conditions from all the specifications and verified

them within 5 minutes, when the Z3 decision procedure was given a 1-second timeout.

110

Chapter 8

Related Work

Parser Generators for Binary Formats. Researchers have been studying ap-

proaches for specifying a precise grammar for a binary data format and using a parser

generator to automatically synthesize a correct parser for the format [6, 7, 19, 34].

Fisher and Gruber [19], for instance, presented the PADS system that provides a

declarative data description language in which a developer can describe the physical

layout of a binary data stream and specify the expected semantic properties of its

fields. The language provides a range of base types for describing atomic data, such

as integers and strings, and a range of structured types for describing compound

data, such as record-like structures, unions, and arrays. Each of those types can be

associated with a predicate that specifies the semantic properties that it must satisfy.

From a PADS description, the system produces a C library that includes a function

for parsing the described file format into its in-memory representation along with a

parse descriptor. The parse descriptor records the locations and kinds of errors that

occurred during parsing.

Recently, Bangert and Zeldovich [7] have investigated an approach to generate

a packet parser from a protocol grammar. Their tool, which is named Nail, uses a

single grammar to define both of the external and in-memory representations of a

binary data format. To establish a semantic bijection between those representations,

Nail does not support semantic actions. As a result, Nail can synthesize a generator

for the data format as well as its parser. By allowing a developer to provide stream

111

transformations that are called during parsing and output generation, Nail can support

protocol features that are challenging to handle in other tools, such as size and offset

fields, checksums, and compressed data.

While these works have focused on how to use a parser generator and its domain-

specific language to synthesize a correct parser from an input specification, I am more

concerned with how to verify that a developer has implemented a parser correctly and

reliably in his or her favorite programming language. Also, while the works have usually

put a focus on parsing valid input and detecting errors, I am more interested in how to

recover from those errors once they are detected. Specifically, this thesis presents error

recovery strategies that make good use of the inherent resilience of input data and

shows how to check if the error recovery strategies have been implemented reliably.

File Format Inference. Driscoll, Burton, and Reps [17] have developed a tool

called PCCA (Producer-Consumer Conformance Analyzer), which determines whether

two programs in a producer/consumer relationship are compatible. From the inter-

procedural control-flow graph of each program, PCCA infers a variant of a pushdown

automaton, called a visibly pushdown automaton [4], that conservatively models

the language that the program produces or consumes. Because a visibly pushdown

automaton recognizes a restricted form of a context-free language that is closed under

complementation and intersection, PCCA can determine if the language that the pro-

ducer program generates is a subset of the language that the consumer program accepts.

The technique used in PCCA cannot be used to verify those correctness properties

that this thesis aims at because PCCA over-approximately infers the file format

that a program can handle. Also, it will be awkward, if possible, to represent a

binary file format, especially its length fields, by a context-free language. Generally,

context-sensitive features are still out of scope even for state-of-the-art format inference

systems [10, 14, 25].

Pointer Analysis. I have used an alias analysis to relieve a developer of manually

providing loop invariants on memory states at the beginning of a loop. The pointer

112

analysis analyzes arrays whose sizes are determined at compile time in an array-index-

sensitive fashion. This makes it possible to model the semantics of byte-wise operations

precisely, which is indispensable for verifying programs involving those operations.

Most published works [5, 16, 23, 36, 43, 44] do not distinguish array elements and

collapse them into one object for scalability. My observation is that those arrays

are usually used for reading the fields of binary file formats that contain metadata

information, such as the length of other fields and field delimiters, and relatively small.

Arrays whose sizes are determined during runtime, such as dynamically allocated ones,

are analyzed in an array-index-insensitive fashion, as do most other works.

113

114

Chapter 9

Conclusion

Many programs read inputs from files and must process the contents of the files

properly to produce the correct output. Unfortunately, due to the complexity of the

input files that modern software systems must deal with, the input file processing

code has continued to be an annoying source of errors and security vulnerabilities in

modern software systems.

This thesis presents new techniques for verifying correctness properties of those

programs that handle input files. These techniques apply to programs written in

standard programming languages and make it possible to verify that the programs

establish the correct relationships among program execution points, the current

locations of file position indicators, and the contents of the input files. The thesis

presents a specification language that developers can use to specify these relationships

involving the file position indicator and file contents at different program points. It

also presents a program verification system that verifies that, for all possible input files,

the specified relationships are established in all program executions. The syntax and

semantics of the specification language is formally defined, and the soundness of the

verification system has been shown. The system successfully synthesized verification

conditions from the specifications for a PNG image viewer and a JPEG image converter,

and managed to verify all of them.

115

116

Bibliography

[1] GNU Bison. https://www.gnu.org/software/bison.

[2] Mark Adler, Thomas Boutell, John Bowler, Christian Brunschen, Adam M.
Costello, Lee Daniel Crocker, Andreas Dilger, Oliver Fromme, Jean-loup Gailly,
Chris Herborth, Alex Jakulin, Neal Kettler, Tom Lane, Alexander Lehmann,
Chris Lilley, Dave Martindale, Owen Mortensen, Keith S. Pickens, Robert P.
Poole; Glenn Randers-Pehrson, Greg Roelofs, Willem van Schaik, Guy Schalnat,
Paul Schmidt, Michael Stokes, Tim Wegner, and Jeremy Wohl. Portable Network
Graphics (PNG) Sepcification, second edition, 2003.

[3] Alfred V. Aho and Jeffrey D. Ullman. The Theory of Parsing, Translation, and

Compiling. Prentice-Hall, 1972.

[4] Rajeev Alur and P. Madhusudan. Adding nesting structure to words. Journal of
the ACM, 56(3), 2009.

[5] Lars Ole Andersen. Program Analysis and Specialization for the C Programming
Language. PhD thesis, University of Copenhagen, 2001.

[6] Godmar Back. DataScript - a specification and scripting language for binary
data. In Proceedings of Generative Programming and Component Engineering

(GPCE), 2002.

[7] Julian Bangert and Nickolai Zeldovich. Nail: A practical tool for parsing and
generating data formats. In Proceedings of Operating Systems Design and Imple-
mentation (OSDI), 2014.

[8] Clark Barrett and Cesare Tinelli. CVC3. In Proceedings of Computer Aided

Verification (CAV), 2007.

[9] Stephen C. Johnson. Yacc: Yet Another Compiler-Compiler. Technical Report
No. 32, AT&T Bell Laboratories, 1975.

[10] Juan Caballero, Heng Yin, Zhenkai Liang, and Dawn Song. Polyglot: Auto-
matic extraction of protocol message format using dynamic binary analysis. In
Proceedings of Computer and Communications Security (CCS), 2007.

[11] Sylvain Conchon, Albin Coquereau, Mohamed Iguernlala, and Alain Mebsout.

Alt-Ergo 2.2. In Proceedings of Satisfiability Modulo Theories (SMT), 2018.

117

[12] Robert Paul Corbett. Static Semantics and Compiler Error Recovery. PhD thesis,
University of California, Berkeley, 1985.

[131 Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice
model for static analysis of programs by construction or approximation of fixpoints.
In Proceedings of Principles of Programming Languages (POPL), 1977.

[14] Weidong Cui, Marcus Peinado, Karl Chen, Helen J. Wang, and Luiz Irun-
Briz. Tupni: Automatic reverse engineering of input formats. In Proceedings of
Computer and Communications Security (CCS), 2008.

[15] Pascal Cuoq, Boris Yakobowski, Matthieu Lemerre, Andr6 Maroneze, Valentin
Perrelle, and Virgile Prevosto. Frama-C's value analysis plugin-in, aluminium-
20160501 edition, 2016.

[16] Manuvir Das, Ben Liblit, Manuel Fihndrich, and Jakob Rehof. Estimating the
impact of scalable pointer analysis on optimization. In Proceedings of Static
Analysis Symposium (SAS), 2001.

[17] Evan Driscoll, Amanda Burton, and Thomas Reps. Checking conformance of a
producer and a consumer. In Proceedings of Foundations of Software Engineering
(FSE), 2011.

[18] Jean-Christophe Filliitre and Andrei Paskevich. Why3 - where programs meet
provers. In Proceedings of European Symposium on Programming (ESOP), 2013.

[19] Kathleen Fisher and Robert Gruber. PADS: A domain-specific language for
processing ad hoc data. In Proceedings of Programming Language Design and
Implementation (PLDI), 2005.

[20] Paul Gazzillo and Robert Grimm. SuperC: Parsing all of C by taming the pre-
processor. In Proceedings of Programming Language Design and Implementation
(PLDI), 2012.

[21] Matthias Gelbmann. The PNG image file format is now more popular than
GIF. https://w3techs.com/blog/entry/thepngimagefile-format-is_
nowmorepopularthangif,2013.

[22] Dick Grune and Ceriel J. H. Jacobs. Parsing Techniques. Springer, 2008.

[23] Michael Hind. Pointer analysis: Haven't we solved this problem yet? In
Proceedings of Program Analysis for Software Tools and Engineering (PASTE),
2001.

[24] C. A. R. Hoare. An axiomatic basis for computer programming. Communications
of the ACM, 12(10), 1969.

[25] Matthias H6schele and Andreas Zeller. Mining input grammars with AUTO-
GRAM. In Proceedings of International Conference on Software Engineering
Companion (ICSE-C), 2017.

118

[26] Edgar T. Irons. A syntax directed compiler for ALGOL 60. Communications of
the ACM, 4(1), 1961.

[27] Chinawat Isradisaikul and Andrew C. Myers. Finding counterexamples from pars-
ing conflicts. In Proceedings of Programming Language Design and Implementation
(PLDI), 2015.

[28] Donald E. Knuth. On the translation of languages from left to right. Information
and Control, 8(6), 1965.

[29] Xavier Leroy. Formal verification of a realistic compiler. Communications of the
ACM, 52(7), 2009.

[30] Alan Leung, John Sarracino, and Sorin Lerner. Interactive parser synthesis by
example. In Proceedings of Programming Language Design and Implementation
(PLDI), 2015.

[31] Fan Long, Vijay Ganesh, Michael Carbin, Stelios Sidiroglou, and Martin Rinard.
Automatic input rectification. In Proceedings of International Conference on
Software Engineering (ICSE), 2012.

[32] Fan Long, Stelios Sidiroglou-Douskos, Deokhwan Kim, and Martin Rinard. Sound
input filter generation for integer overflow errors. In Proceedings of Principles of
Programming Languages (POPL), 2014.

[33] Fan Long, Stelios Sidiroglou-Douskos, and Martin Rinard. Automatic runtime
error repair and containment via recovery shepherding. In Proceedings of Pro-
gramming Language Design and Implementation (PLDI), 2014.

[34] Peter J. McCann and Satish Chandra. Packet Types: Abstract specification of
network protocol messages. In Proceedings of SIGCOMM, 2000.

[35] John Miano. Compressed Image File Formats: JPEG, PNG, GIF, XBM, BMP.
Addison-Wesley Professional, 1999.

[36] Ana Milanova, Atanas Rountev, and Ryder G. Barbara. Parameterized ob-
ject sensitivity for points-to analysis for Java. ACM Transactions on Software
Engineering and Methodology, 14(1), 2005.

[37] Leonardo de Moura and Nikolaj Bjorner. Z3: An efficient SMT solver. In
Proceedings of Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), 2008.

[38] George C. Necula, Scott McPeark, Shree P. Rahul, and Westley Weimer. CIL:
Intermediate language and tools for analysis and transformation of C programs.
In Proceedings of Compiler Construction (CC), 2002.

[39] Terence Parr, Sam Harwell, and Kathleen Fishe. Adaptive LL(*) parsing: The
power of dynamic analysis. In Proceedings of Object-oriented Programming,
Systems, Languages, and Applications (OOPSLA), 2014.

119

[40] Martin Rinard. Living in the comfort zone. In Proceedings of Object-oriented
Programming, Systems, Languages, and Applications (OOPSLA), 2007.

[41] Klaus Samuelson and Friedrich L. Bauer. Sequential formula translation. Com-
munications of the ACM, 3(2), 1960.

[42] Stelios Sidiroglou-Douskos, Eric Lahtinen, Nathan Rittenhous, Paolo Piselli, Fan
Long, Deokhwan Kim, and Martin Rinard. Targeted automatic integer overflow
discovery using goal-directed conditional branch enforcement. In Proceedings
of Architectural Support for Programming Languages and Operating Systems
(ASPLOS), 2015.

[43] Yannis Smaragdakis, Martin Bravenboer, and Ondiej Lhotik. Pick your con-
texts well: Understanding object-sensitivity. In Proceedings of Principles of
Programming Languages (POPL), 2011.

[44] Bjarne Steensgaard. Points-to analysis in almost linear time. In Proceedings of
Principles of Programming Languages (POPL), 1996.

[45] Robert W. Floyd. Assigning meanings to programs. In Proceedings of Symposia
in Applied Mathematics (PSAM), 1967.

[46] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. Finding and understanding
bugs in C compilers. In Proceedings of Programming Language Design and
Implementation (PLDI), 2011.

120

