
Making Fast Informative Queries
with

Learned Propagations
by

Yewen Pu
B.A., University of California Berkeley (2012)

M.S., Massachusetts Institute of Technology (2015)
Submitted to the Department of Electrical Engineering and Computer

Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
September 2019

c○ Massachusetts Institute of Technology 2019. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

August 30, 2019
Certified by. .

Armando Solar-Lezama
Associate Professor of Computer Science and Engineering

Thesis Supervisor
Certified by. .

Leslie Pack Kaelbling
Professor of Computer Science and Engineering

Thesis Supervisor
Accepted by .

Leslie A. Kolodziejski
Professor of Electrical Engineering and Computer Science

Chair, Department Committee on Graduate Students

2

Making Fast Informative Queries

with

Learned Propagations

by

Yewen Pu

Submitted to the Department of Electrical Engineering and Computer Science
on August 30, 2019, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

In an informative querying problem, one achieves a certain objective by issuing a
series of queries to an oracle and receives a series of observations in return. It is
a challenging task because the queries need to account for the uncertainties of the
oracle, while being informative to the objective at hand. While successful algorithms
have been developed for a range of querying tasks, these algorithms can be slow to
compute and in some cases, intractable. A common Achilles’s heel of these prior works
is their reliance on the computation over the space of oracle functions itself during
inference time. As a result, when the space of oracle functions becomes complex,
these approaches become computationally infeasible.

In this thesis, we explore an alternative approach to informative query selection.
Rather than computing over the space of oracle functions, we learn a propagation
function that, given a set of past observations, predicts future queries’ outcomes
directly. We show that by leveraging the propagation function, one can perform a
range of informative querying tasks that were previously intractable. To this end,
we prescribe a general method of informative querying with learned propagation:
In meta-learning time, a propagation function is trained to learn the relationships
between observations, and at inference time, a task specific acquisition function is
constructed to leverage the propagation in making informative queries.

Thesis Supervisor: Armando Solar-Lezama
Title: Associate Professor of Computer Science and Engineering

Thesis Supervisor: Leslie Pack Kaelbling
Title: Professor of Computer Science and Engineering

3

4

Acknowledgments

To You :

Thank you, the reader, for being here. This thesis is dedicated to you.

Personal Thanks :

Thanks to my co-authors and collaborators whom have shown me what it looks like

to struggle against difficult problems and sharing their unique and philosophical ways

of framing and tackling these problems. I will wield these wisdoms responsibly.

Thanks to Armando for being very patient with me of 4 years not publishing

anything (LOL) and still supported me. Without this support I would have never get

to do the research that I believed in, and this thesis will not be possible.

Thanks to Leslie for taking me in when I was a clueless student and teaching me

the important lesson of description over prescription, i.e. “You cannot solve a problem

that you have not first formally defined”.

Thanks to Josh Tenenbaum for being on my thesis committee and convincing me

that ℎ𝑢𝑚𝑎𝑛𝑠 > 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑟𝑠 and showing me how to entertain an audience.

Thanks to my friends who gave me their valuable times, catch phrases, and memes.

Graduate school would have been very lonely otherwise.

Thanks to twitch chat, POGGERS.

Thanks to my parents, Xi Wen and Hongtu Pu for being patient with my extended

years of education and not making actual money (haha).

Thanks to Meng Sun, for showing me how to make strong points, endless critiques

that helped me grow and mature, and showing me the meaning of a e s t h e t i c.

You are truly my best friend.

5

6

Contents

1 20 Questions 15

2 Introduction 21

2.1 Propagating Directly . 22

2.2 Informative Queries with Propagation 24

2.2.1 An Example Application: Preference Elicitation 24

2.2.2 Other Applications . 26

3 Related Works 27

3.1 Prior Works that Uses Induction . 27

3.1.1 Boundary Based Active Learning 28

3.1.2 Version Space Algebra . 28

3.1.3 CEGIS . 28

3.2 Prior Works that Assumes Generation Processes 29

3.2.1 Coreset Selection . 30

3.2.2 Gaussian Process . 31

4 Preliminaries 33

5 Making Informative Queries 37

5.1 The Observation Process . 37

5.2 The Informative Querying Problem 38

5.3 Acquisition Function . 39

5.4 Applications of Informative Queries 40

7

5.4.1 Active Diagnostics . 40

5.4.2 Representative Subset Selection 41

5.4.3 Bayesian Optimization . 43

6 Propagation 45

6.1 Propagation Probability . 45

6.2 Propagation Function . 46

6.2.1 Approximating the Propagation Probability 47

6.2.2 Training the Propagation Function 50

6.2.3 Encoding the Propagation Function 51

6.3 Propagator . 54

7 Informative Queries with Propagation 57

7.1 Active Diagnostics . 58

7.2 Representative Subset Selection . 60

7.3 Bayesian Optimization . 62

8 Case Studies 63

8.1 Active Diagnostics . 63

8.1.1 BattleShip Variant . 64

8.1.2 Sushi Preference Elicitation 67

8.1.3 Network Fault Localization 69

8.2 Representative Subset Selection . 71

8.2.1 Representative Subset for Total Orderings 72

8.2.2 DFA Synthesis . 73

8.2.3 Programmatic Drawing Synthesis 75

8.3 Bayesian Optimization . 77

9 Conclusion 79

8

List of Figures

1-1 Table of animals and attributes, ’x’ means I answer yes, otherwise no 16

1-2 A Decision Tree on how the short 20 Question game can be played.

Go left on every decision node (circle) if the answer is yes, otherwise

go right. 17

2-1 The propagation function . 22

2-2 Induction, Deduction, Transduction 23

2-3 Modeling propagation directly can more easily learn simple patterns.

In the first task, the answer is clearly 5, and in the second task, the

answer is clearly no. Both answers can be deduced without solving for

a consistent oracle hypothesis. 23

2-4 The learned propagation function propagating pairwise comparisons . 25

3-1 In boundary based active learning, one query for the unlabelled point

closest to the current decision boundary. 28

3-2 In version space algebra, or committee based active learning, one seeks

an query whose result would be maximally disagreeable among the cur-

rent set of consistent models. Here, the task is to solve for a rectangle

whose interior contains only green points, and the rectangles drawn

here represents the set of currently valid rectangles. The question-

marked input is the most disagreeable, as half the rectangles contain

it and the other half do not. 29

9

3-3 To select a subset of examples, CEGIS first solves for a consistent

program (here, a rectangle where only the green examples lay inside

of) from the current subset (circles with dark boarders), and add an

example that contradicts the current program (the green example with

the cross on it). 30

3-4 By assuming the observations are piece-wise linear and only keeping

the end-points, coreset selection picks a subset of observations that can

be used to re-construct the original observations 30

3-5 By assuming the observations are jointly gaussian, GP can compute

the predictive posterior distribution, which is used to select the next

query . 31

5-1 Function 𝐹 (·, 𝜃) changes a parameter 𝑥 into a random variable 𝑌𝑥 due

to the uncertainty induced by 𝜃 ∼ 𝑃 (Θ) 38

5-2 Successive Querying With Acquisition Function 39

5-3 Successive Querying with CEGIS . 42

6-1 Given 𝑚 past observations, what is the distribution on a future ob-

servation 𝑌𝑥? Note the two random variables in this model is Θ and

𝑌𝑥 . 46

6-2 Given past observations 𝑜 and a new query input 𝑥, the propagation

function approximate the propagation probability 47

6-3 Training 𝑄𝜔 via stochastic optimization by sampling 𝜃, �̄�, 𝑥 50

6-4 A computation of 𝑄𝜔 under the indexable 𝑋, multi-class 𝑌 setting,

where 𝑀 = 8 and 𝑜 = {(𝑥1, 3), (𝑥4, 1), (𝑥7, 1)} 52

6-5 A factorized computation of 𝑄𝜔 under the indexable 𝑋, multi-class 𝑌

setting, where 𝑀 = 8 and 𝑜 = {(𝑥1, 3), (𝑥4, 1), (𝑥7, 1)} 53

10

6-6 A transformer style encoding: 𝐸𝑥 denotes the encoder for the query,

𝐸𝑜 the encoder for an observation, 𝐶 denote a communication module

that pools information from other items together, 𝑎𝑔𝑔 is a generic set-

invariant aggregator (max or mean), and the final prediction module

𝑃 output the predicted mean and std(or co-variance in case of multi-

dimensional gaussian) . 54

6-7 A propagator consists of a propagation function 𝑄𝜔 and a support set 𝑜 55

7-1 Informative Query Selection with Propagation 57

8-1 Belief space of observations on a particular board at various numbers of

observations. Intensity indicates the probability of a coordinate being

a hit, and colored dots indicates past observations: green for “hit” and

red for “miss” . 65

8-2 Comparison of our algorithm oc against the 2 baselines. Accuracies

are averaged over 1000 randomly generated boards 66

8-3 Comparison of our algorithm oc against the 2 baselines. Accuracies

are averaged over 1000 randomly generated boards with 10% chance

of observation error . 66

8-4 Comparison of our algorithm oc against the 2 baselines when using a

constraint solver for hypothesis delivery. Accuracies are averaged over

100 randomly generated boards. Only the single-hidden-layer propa-

gation network is considered here. 67

8-5 Kendall correlation as a function of number of queries averaged across

2500 testing examples . 69

8-6 Kendall correlation as a function of number of queries averaged across

2500 testing examples, where each query has a 10% chance of error . 70

8-7 The network without any failure . 70

8-8 Accuracy of link failure diagnosis averaged across 1400 random instances 71

11

8-9 Our approach discovers representative subsets 85% of the times while

sampling 2× the optimal subset size. Measured on 500 datasets drawn

from randomly sampled total orderings 73

8-10 Chosen subsets on a particular dataset all. A subset is representative

if it contains all adjacent pair-wise ordering 73

8-11 Time performance on DFA synthesis. our approach nearly matches

the crafted heuristic h1, which constructs a suffix-tree over the entire

dataset 𝑜, and out-performs all other baselines. 74

8-12 Given a 32x32 canvas where each pixel is an input-output example (i.e.

the entire canvas is 𝑜𝑏𝑖𝑔), we use a learned propagator iteratively select

the least-likely example to construct a representative subset (𝑜𝑟𝑒𝑝𝑟),

which is then fed into the solver . 76

8-13 Given the selected pixels, the learned propagator predicts the rest . . 76

8-14 Time performance on programmatic drawing synthesis. our approach

with propagation is best in average time, and achieves similar stability

as full and h1+cegis with much fewer samples. 77

8-15 The oracle function consists of two mirroring parts, where the second

part is identical to the first part except for an added sinusoidal noises 78

8-16 By using a learned propagator, the agent can make better posterior

predictions on the function values, leading to better queryings for the

optimal point . 78

12

List of Tables

1.1 I first generated the tables then screenshoted them into figures 15

13

14

Chapter 1

20 Questions

When people ask me what I do for research, I tend to start with “Have you heard the

game called 20 questions?”. Indeed, it is a good idea to start this thesis by considering

the game of 20 Questions. Doing so, we can intuitively understand the underlying

principles of this thesis work: making fast and informative queries.

The Rules of 20 Questions

The rule of 20 Questions is simple, I think of a secret object (for instance, a turtle),

and you have to guess its identity by asking a series of yes/no questions (for instance,

does it fly?) to which I can only answer yes or no. The goal is for you to correctly

guess the secret object with as few questions as possible, up to 20 questions. Despite

the enormous number of objects one can think of, when played against a real person,

they usually can divine the hidden object with a series of well-chosen questions, with

an average game-length of about few minutes. Let’s go over a small game.

Table 1.1: I first generated the tables then screenshoted them into figures

15

Figure 1-1: Table of animals and attributes, ’x’ means I answer yes, otherwise no

A Small Game of 20 Questions

Rather than thinking of an arbitrary secret object, I am going to limit myself to the

set of following animals: octopus, duck, seal, snake, turtle, jellyfish, sloth, monkey,

armadillo, earth worm, dragonfly, cricket. And, instead of allowing you ask any

arbitrary questions about these animals, I am limiting myself to only answering a

very small number of specific questions, with their response recorded in Figure 1-1

Given this particular set of animals and their attributes, what would be the best

strategy for you to figure out which animal I have in mind? Specifically, since every

game must have a first question, what would be the best first question to ask? It

turns out that the globally optimal first question is actually quite difficult [14], but

a good strategy in practice is to divide the set of possible objects in half with every

question [15, 4] as much as possible. With that in mind, the first question you should

ask is "does it swim?" Because precisely half the animals listed here can swim, this

first question cut the set of possible animals in half, irrespective of my answer of yes

or no. Continuing with this line of logic, you can arrive at the following decision-tree

1-2. To play the game thus amounts to following the branches of the decision tree,

going left whenever I answer yes, and going right whenever I answer no. As you can

see, one can arrive at the correct animal with at most 4 questions.

16

Figure 1-2: A Decision Tree on how the short 20 Question game can be played. Go
left on every decision node (circle) if the answer is yes, otherwise go right.

17

A Naive Algorithm For Playing 20 Questions

The game-tree given in Figure 1-2 was created by yours truly painstakingly by hand.

Could we automate the game-playing process with an algorithm? More precisely,

given a set of past question-answer pairs (for instance, {(𝑠𝑤𝑖𝑚?, 𝑦𝑒𝑠), (𝑐𝑙𝑖𝑚𝑏?, 𝑛𝑜)}),

the algorithm must decide what is the next-best question to ask, from the set of

remaining questions (for instance, {> 4 𝑙𝑒𝑔𝑠, ℎ𝑎𝑖𝑟, 𝑓 𝑙𝑦, 𝑠ℎ𝑒𝑙𝑙, 𝑠𝑙𝑜𝑤}). Hopefully you

already have in mind a working algorithm, I will just confirm it quickly:

Generalised Binary Search A naive solution to the problem of 20 questions is

generalised binary search [15]. This algorithm works by evenly dividing up the set of

remaining animals. Let the set of remaining animals be 𝐷. Then, for every question

𝑞, we check if this question most evenly split 𝐷 in half, by counting the number of

animals which 𝑞 would result in a ’yes’, and subtract it with the number of animals

which would result in a ’no’. When the difference is small, the question 𝑞 is good.

While this is a perfectly valid algorithm, it becomes inefficient if the set of animals

𝐷 becomes large. As the algorithm needs to count the number of ’yes’ elements from

the set, the run-time of this algorithm will grow linearly with the size of 𝐷. While this

may not be a problem for this particular game with only 12 animals, the problems of

interest in this thesis often contain combinatorially many items (for instance, 1023),

which renders this naive algorithm intractable.

18

Making Fast Queries in 20 Questions by Propagation

One salient property of the aforementioned naive algorithm is that the time it spends

thinking up the next query is proportional to the number of remaining elements in 𝐷.

In particular, it would spend the most time asking the first question, and gradually

speed up as the number of remaining elements in 𝐷 diminishes. In contrast, human

rarely spend any time on the first question: “does it swim?” is intuitively a very good

first question, and we barely spend any time coming up with it. Because we have

good prior knowledge that, of all the well-known animals, roughly half can swim, we

do not have to explicitly count all the animals that could swim, unlike the algorithm.

Our prior knowledge also aids us in querying the right questions beyond the first

one. Consider a particular point during a 20 Questions game where it is already

established that the animal can breath in water, and your friend Julio asks “Does it

have feathers?”. You would probably be upset, because clearly an animal that can

breath in water cannot be a bird, which is the only kind of animal that has feathers.

A human player would ask question they are most uncertain about, one that cannot

be readily deduced by previous answers. Most importantly, this reasoning process

can happen without explicitly enumerating over all the possible animals.

Querying with Propagation Rather than reasoning over the set of animals via

enumeration, the prior knowledge of different kinds of animals and the interactions of

their attributes allows the human player to propagate information of past question-

answer pairs to outcomes of future questions directly. Thus, if one is to emulate how

human is able to make fast informative queries, it may be a good idea to build models

that can directly propagate past observations to future queries.

In conclusion, the ability to propagate past observations to future observations

plays an important role in making fast, informative queries. This ability stems from

prior knowledge on how observations interacts with each other. This thesis is an

attempt of realizing this intuition, by first learning a propagation function on how

observations interact, then using the propagation to make informative queries.

19

20

Chapter 2

Introduction

This thesis addresses the problem of making informative queries, where an agent inter-

actively queries for observations from an oracle such that these observations optimize

a certain objective. For example, in the game of 20 questions, the agent interactively

queries the oracle to deduce the identity of the hidden object. Informative querying is

a challenging task because conditioned on the observations collected so-far, the agent

needs to query for a new observation that maximizes the objective while under the

uncertainty of the oracle.

Informative querying problems have a range of applications, including active di-

agnostics [8, 3, 9, 12, 18], coreset selection [5, 10, 1, 6], and bayesian optimisation

[20]. While successful algorithms have been developed for these domains, these al-

gorithms are either slow to compute or they make specific assumptions about the

oracle function. A common Achilles’s heel of these prior approaches is their reliance

on reasoning over the uncertainties over the space of oracles. For instance, in the

naive algorithm outlined for 20 questions, this amounts to explicitly counting over

the space of possible items to select the best question to ask. As a result, when the

space of oracles becomes sufficiently large and complex (for instance, of combinatorial

complexity), these approaches become intractable to compute.

In this thesis, we explore an alternative approach to informative query selection

with propagation. A propagation is a function that maps outcomes of past observa-

tions to outcomes of future queries directly, bypassing the expensive reasoning step

21

Figure 2-1: The propagation function

over the space of oracles. For instance, in 20 questions, given the observation that

the animal can breath under water, one can use propagation to answer if it is likely to

have feathers (the answer is no), and in turn decide that the question about feathers

is a bad question. We show that by propagating past observations to future outcomes,

one can solve a range of informative querying applications that were intractable.

2.1 Propagating Directly

How might one model the propagation function that maps outcomes of past observa-

tions to future observations? Let the set of past observations be 𝑜 = {(𝑥1, 𝑦1) · · · (𝑥𝑚, 𝑦𝑚)},

where 𝑥𝑖 denotes a query, 𝑦𝑖 denotes an outcome, and (𝑥𝑖, 𝑦𝑖) together denotes an ob-

servation, the propagation function will take these past observations and predict the

outcome on a future query 𝑥 (see Figure 2-1). Typically, propagation is computed

by first performing an induction step, where one fits a hypothesis class 𝐹 that is

consistent with the past observations, followed by a deduction step that applies the

learned hypothesis 𝐹 to the new query point 𝑥 to predict its outcome: 𝑦 = 𝐹 (𝑥). 1

Rather than performing a pair of induction and deduction, the process of trans-

duction[7] seeks to predict the future outcome directly. In this work, the propagation

function is learned in meta-learning time and modeled with a neural network. Fig-

ure 2-2 compares the differences between induction, deduction, and transduction in

the context of computing propagation.

1for ease of understanding, 𝐹 is a single deterministic function for now

22

Figure 2-2: Induction, Deduction, Transduction

As one can see, rather than going “up” and “down” by performing induction fol-

lowed by deduction, transduction goes “across” directly. Although both approaches

can compute the same propagation function, modeling propagation with transduc-

tion has the distinctive advantage of allowing the learning model (a neural network,

for instance) to pick up low-level patterns (Figure 2-3) that exists naturally between

observations. Additionally, propagating the observation directly saves time as the

induction step is often expensive, involving fitting a parameterized model.

Figure 2-3: Modeling propagation directly can more easily learn simple patterns. In

the first task, the answer is clearly 5, and in the second task, the answer is clearly

no. Both answers can be deduced without solving for a consistent oracle hypothesis.

23

In this work, the propagation function is trained with meta-learning. In meta-

learning time, we sample an oracle function from the hypothesis space, and perform

mock queries to the sampled oracle to obtain a dataset of past observations and future

observation, and a neural-network is trained to predict the outcome of the future

observation conditioned on the past observations. In a sense, rather than performing

computation over the hypothesis space at inference time, we perform sampling of the

hypothesis space at training time, and the learned propagation distills the information

as a pattern matching mechanism, amortizing the computation at inference time.

2.2 Informative Queries with Propagation

With a learned propagation function, one can perform informative queries in a range

of applications by defining a selection criteria (an acquisition function) over the space

of queries. Given a query, the querying agent first predicts its outcome by calling the

propagation function, then, depending on the result of propagation, rank this query

against other queries and selecting the best query to ask. Here, we will briefly explain

one applications that can be solved with a learned propagation, preference elicitation.

2.2.1 An Example Application: Preference Elicitation

Preference elicitation, like 20 questions, is a problem of active diagnostics, where the

agent issues a series of queries with the goal of diagnosing, or inferring, the identity

of the oracle. Unlike 20 questions where the oracle is a single undisclosed item, in

preference elicitation, the oracle is a hidden preference of multiple items. We use

the sushi preference dataset [11], which records preferences among 10 kinds of sushi

of 5000 surveyed Japanese residents. The agent is to discover the hidden preference

(i.e. one of 10! permutations of 10 sushis) by asking the person a series of binary

comparison questions (i.e. “do you like tuna more than shrimp?”).

Propagation The neural-network propagation function takes in a set of past ob-

servations (pairwise comparison queries with answers) and predicts the answers to fu-

24

ture pairwise comparison queries. Figure 2-4 shows the learned propagation network

propagating past observations to future queries. Here, each 𝑖, 𝑗 coordinate denotes

a pairwise query of whether sushi item 𝑖 is more preferable to sushi item 𝑗. Green

dots denote past observations with an outcome of 𝑦𝑒𝑠 (the green dot on 2nd row,

3rd column means 𝑒𝑒𝑙 > 𝑡𝑢𝑛𝑎). Red dots denote past observations with an outcome

of 𝑛𝑜 (the red dot on the 5th row and 1st column means 𝑢𝑟𝑐ℎ𝑖𝑛 < 𝑠ℎ𝑟𝑖𝑚𝑝). And

the shading is the neural network’s prediction on outcomes to future queries, with

brighter indicating a more likelihood of 𝑦𝑒𝑠. By looking at the figure, we note that

The learned propagation function was able to successfully infer the following facts:

∙ anti-symmetry (𝑢𝑟𝑐ℎ𝑖𝑛 < 𝑠ℎ𝑟𝑖𝑚𝑝)
𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑒−−−−−→ (𝑠ℎ𝑟𝑖𝑚𝑝 > 𝑢𝑟𝑐ℎ𝑖𝑛).

∙ transitivity (𝑓𝑎𝑡 𝑡𝑢𝑛𝑎 < 𝑡𝑢𝑛𝑎) ∧ (𝑡𝑢𝑛𝑎 < 𝑠𝑞𝑢𝑖𝑑)
𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑒−−−−−→ (𝑓𝑎𝑡 𝑡𝑢𝑛𝑎 < 𝑠𝑞𝑢𝑖𝑑)

∙ educated guesses The learned propagation function is fairly certain that this

person likes squid more than urchin, 𝑠𝑞𝑢𝑖𝑑 > 𝑢𝑟𝑐ℎ𝑖𝑛, despite the fact that this

inference cannot be made with logical deductions from the observations so far.

Figure 2-4: The learned propagation function propagating pairwise comparisons

Query Selection Given the result of propagation, the agent simply select the pair-

wise query with the highest uncertainty (i.e. the most gray coordinate) to query

25

next. We can show that querying with a learned propagation can out-perform clas-

sical sorting algorithms such as merge-sort and quick-sort, which lack the ability to

make educated guesses unlike the propagation function trained on the sushi dataset.

2.2.2 Other Applications

In addition to preference elicitation, this thesis also addresses the following informa-

tive querying tasks with learned propagation, all with the same flavor of first prop-

agating the outcomes of the queries conditioned on past observations, then selecting

the query with the most ____ outcome. Here is a brief overview:

Active Diagnosis In active diagnosis, the agent interactively query the oracle with

the objective of uncovering the oracle’s identity. We show that the most informative

next query is the one that the propagation function has the most uncertainty.

Representative Subset Selection for Program Synthesis In Program Synthe-

sis, one seek to construct a program that perfectly fits a set of input-output examples

as a symbolic regression task. One challenge of program synthesis is in the encoding

of a large numbers of input-output examples. We can use propagation to select a

coreset of input-output pairs that is sufficient to explain the rest of the input-output

pairs, by iteratively selecting the least likely example.

Bayesian Optimization In bayesian optimization, the agent interactively query

the oracle with the objective of maximizing the outcome while also being frugal with

the number of queries. The query agent uses the learned propagation to predict future

outcomes conditioned on past observations, and select according to the UCB criteria

for the most optimistic query.

Before elaborating on our approaches, we will look at some related works and

explain how this thesis work differs from them.

26

Chapter 3

Related Works

Informative querying problems have been studied extensively, as it naturally arise

in situations where one needs to interact with an unknown oracle function. In this

chapter, we demonstrate how this thesis is a departure from these prior approaches.

This thesis work is best contrasted to prior approaches by two characteristics: The

use of a meta-learned transduction model for computing propagation, and the fact

that we use meta-learning to take advantage of the specific observation relationships,

but do not assume an explicit form of the observation generation process.

3.1 Prior Works that Uses Induction

As stated in the introduction, we model the propagation function as a transduction

process, going from past observations to future observation predictions directly. In

contrast, typical prior approaches takes a induction-deduction approach, where a pa-

rameterised model is fitted to the past observations, then this model is used to infer

the outcome of future queries. While both approaches can compute the same prop-

agation, and in turn, used for query selection, using transduction has the advantage

of being faster to compute by avoiding to fit a parameterised model.

27

Figure 3-1: In boundary based active learning, one query for the unlabelled point
closest to the current decision boundary.

3.1.1 Boundary Based Active Learning

The most well-known instance of informative querying is boundary based active learn-

ing [22]. In this setting, one has a large dataset of unlabelled data, and one wishes to

fit a good decision boundary by iteratively querying for which new data point is to

be labelled. The general approach here is to fit a decision boundary with the labelled

data, and query for the unlabelled point closest to the decision boundary. See Fig-

ure 3-1. This is an instance of induction (fitting a parameterised decision boundary)

and deduction (points that lie closest to the decision boundary) process.

3.1.2 Version Space Algebra

Rather than solving for a single hypothesis from the model class like boundary based

active learning, in version space algebra [13], or by extension, committee based active

learning [19], one maintains a set of models consistent with the observations so-far,

and query for the observation that would maximally reduce the set of current models

(The naive solution to 20 Questions is an instance of this scheme). See Figure 3-2.

3.1.3 CEGIS

In the field of program synthesis, one is often confronted with an overwhelmingly

large set of input-output examples which one needs to synthesize a program that is

28

Figure 3-2: In version space algebra, or committee based active learning, one seeks
an query whose result would be maximally disagreeable among the current set of
consistent models. Here, the task is to solve for a rectangle whose interior contains
only green points, and the rectangles drawn here represents the set of currently valid
rectangles. The question-marked input is the most disagreeable, as half the rectangles
contain it and the other half do not.

consistent to the set. As the synthesizer scales poorly with the number of examples,

one likes to select a subset of examples to run the synthesizer on. Counter Example

Guided Inductive Synthesis (CEGIS) [21] is the most popular algorithm to select

this subset of examples. It works by starting with a random subset of examples, then

iteratively alternates between synthesizing a consistent program, and adding a counter

example that contradicts the current program. See Figure 3-3. Like the boundary-

based active learning approach, CEGIS is a process of induction (first solving for a

consistent program) and deduction (using the program to select a counter-example).

3.2 Prior Works that Assumes Generation Processes

The propagation function is learned by training on samples of observations to learn

the relationships between them. In theory, one can fit to any observation genera-

tion process by selecting an appropriate NN architecture, and training on the set of

observations. In contrast, prior works that models the propagation function usually

assumes a particular forms of observation generation process, which prohibits them

from faithfully model the propagation function when these assumptions are not met.

29

Figure 3-3: To select a subset of examples, CEGIS first solves for a consistent program
(here, a rectangle where only the green examples lay inside of) from the current subset
(circles with dark boarders), and add an example that contradicts the current program
(the green example with the cross on it).

3.2.1 Coreset Selection

In coreset selection, one seek to select a subset of observations, called a coreset, to

represent the original set of observations, which are often too big to be stored. Typical

coreset selection algorithms assume a particular observation generation process, such

as they are piece-wise linear [1, 6], or are generated from a logistic regression model

[5, 10]. See Figure 3-4.

Figure 3-4: By assuming the observations are piece-wise linear and only keeping
the end-points, coreset selection picks a subset of observations that can be used to
re-construct the original observations

30

Figure 3-5: By assuming the observations are jointly gaussian, GP can compute the
predictive posterior distribution, which is used to select the next query

3.2.2 Gaussian Process

Gaussian process (GP) [20] is the go-to algorithm for solving bayesian optimisation

problems. In Gaussian process, one assumes that any subset of observations drawn

from the oracle are jointly gaussian. Using this assumption, GP can compute the

predictive posterior distribution (a form of propagation function on the domain of

real-numbered outcomes), which can be used to select the next query. However, it

maybe the case that the observations are not jointly gaussian where GP will have

troubles modeling the predictive posterior faithfully. See Figure 3-5.

The rest of the thesis will formally define and address these aforementioned ap-

plications, and solve them with a learned propagation.

31

32

Chapter 4

Preliminaries

The required formalism for this thesis is thankfully not at all abstruse. Here is a

quick re-cap of the concepts we’ll be using.

Entropy This thesis deals with making informative queries. One way of measuring

information is through the use of entropy 𝐻. Entropy is a measurement of uncertainty,

the greater the uncertainty, the larger the entropy. Let 𝑋 be a discrete random

variable capable of taking on values 𝑥 with probability 𝑃 (𝑋 = 𝑥), its entropy is given

by the following formula:

𝐻(𝑋) = −
∑︁
𝑥

𝑙𝑜𝑔𝑃 (𝑋 = 𝑥)𝑃 (𝑋 = 𝑥)

For example, if 𝑐𝑜𝑖𝑛1 has 2 sides but it is rigged so that it always lands on head:

𝑃 (𝑐𝑜𝑖𝑛1 = 𝐻𝑒𝑎𝑑) = 1 and 𝑃 (𝑐𝑜𝑖𝑛1 = 𝑇𝑎𝑖𝑙) = 0, its entropy is

𝐻(𝑐𝑜𝑖𝑛1) = −(𝑙𝑜𝑔(1) * 1 + 𝑙𝑜𝑔(0) * 0) = 0

Which coincides with our intuition that there is no uncertainty about this coin. A

𝑐𝑜𝑖𝑛2 that gives head half the time has the following entropy:

𝐻(𝑐𝑜𝑖𝑛2) = −(𝑙𝑜𝑔(
1

2
) * 1

2
+ 𝑙𝑜𝑔(

1

2
) * 1

2
) = −(−1) * (

1

2
+

1

2
) = 1

33

In another word, a fair coin has precisely 1 “bit” of information. With 6 sides instead

of 2 sides, one would expect a fair die to contain more uncertainty. Indeed, a fair

6-sided die has the following entropy:

𝐻(𝑑𝑖𝑒) = −𝑙𝑜𝑔(
1

6
) * 1

6
* 6 ≈ 2.5849

If the random variable 𝑋 is not discrete but continuous, we simply switch the

summation with integration:

𝐻(𝑋) = −
∫︁
𝑥

𝑙𝑜𝑔𝑃 (𝑋 = 𝑥)𝑃 (𝑋 = 𝑥)𝑑𝑥

In this thesis, when a random variable can be left unspecified to be discrete or

continuous, we will discuss it in the continuous setting using integration.

Conditional Entropy Just like how a probability can be made into a conditional

probability, an entropy can be made into a conditional entropy. This can be done in

2 different ways:

If a probability is itself a conditional probability, one can compute its entropy

the same way by using the conditional probability. The entropy of a conditional

distribution 𝑃 (𝑋|𝑌 = 𝑦) is simply:

𝐻(𝑋|𝑌 = 𝑦) = −
∫︁
𝑥

𝑙𝑜𝑔𝑃 (𝑋 = 𝑥|𝑌 = 𝑦)𝑃 (𝑋 = 𝑥|𝑌 = 𝑦)𝑑𝑥

On the other hand, one can compute the so-called “conditional entropy” between

two random variables 𝑋 and 𝑌 as follows:

𝐻(𝑋|𝑌) = E
𝑦∼𝑃 (𝑌)

[𝐻(𝑋|𝑌 = 𝑦)] =

∫︁
𝑦

𝑃 (𝑌 = 𝑦)𝐻(𝑋|𝑌 = 𝑦)𝑑𝑦

That is to say, the entropy of a random variable 𝑋, conditioned on another random

variable 𝑌 , is the expected value of the entropy 𝐻(𝑋|𝑌 = 𝑦) under 𝑃 (𝑌).

34

Mutual Information Mutual information measures how much knowing the out-

come of a random variable reduces the uncertainty of another random variable, and

vice-versa. Given two random variables 𝑋 and 𝑌 , their mutual information is:

𝐼(𝑋, 𝑌) = 𝐻(𝑋)−𝐻(𝑋|𝑌) = 𝐻(𝑌)−𝐻(𝑌 |𝑋)

In other words: Without any knowledge, a random variable 𝑋 has a certain

amount of uncertainty 𝐻(𝑋). However, if we can observe the outcome of 𝑌 , the

uncertainty on 𝑋 is reduced, becoming instead a conditional entropy 𝐻(𝑋|𝑌). The

reduction of entropy between 𝐻(𝑋) and 𝐻(𝑋|𝑌) is the mutual information between

𝑋 and 𝑌 . Note the above relationship is provably symmetrical, i.e. one can compute

the mutual information either by conditioning 𝑋 with 𝑌 or conditioning 𝑌 with 𝑋.

KL divergence KL divergence measures how two distributions 𝑃 and 𝑄 differs:

KL(𝑃 ||𝑄) =

∫︁
𝑥

𝑃 (𝑋 = 𝑥)𝑙𝑜𝑔(
𝑃 (𝑋 = 𝑥)

𝑄(𝑋 = 𝑥)
)𝑑𝑥

The KL divergence between 𝑃 and 𝑄 is 0 if 𝑃 and 𝑄 are identical distributions. Note

that you can re-write the KL divergence as an expectation over 𝑃 (𝑋):

KL(𝑃 ||𝑄) =

∫︁
𝑥

𝑃 (𝑋 = 𝑥)𝑙𝑜𝑔(
𝑃 (𝑋 = 𝑥)

𝑄(𝑋 = 𝑥)
)𝑑𝑥

= E
𝑥∼𝑃 (𝑋)

[𝑙𝑜𝑔(
𝑃 (𝑋 = 𝑥)

𝑄(𝑋 = 𝑥)
)]

= E
𝑥∼𝑃 (𝑋)

[𝑙𝑜𝑔𝑃 (𝑋 = 𝑥)− 𝑙𝑜𝑔𝑄(𝑋 = 𝑥)]

35

36

Chapter 5

Making Informative Queries

We describe the problem of making informative queries in a formal sense, along with

formal definitions of some of its applications that this thesis addresses.

5.1 The Observation Process

We start by explaining the observation process, central to this process are the possi-

ble queries 𝑥 ∈ 𝑋, the possible observation outcomes 𝑦 ∈ 𝑌 , and the oracle function

𝐹 (·, 𝜃) : 𝑋 −→ 𝑌 capable of taking in a query and returning an observation, depend-

ing on which particular oracle 𝜃 ∈ Θ it was parameterized with.

Of the entities mentioned so-far, 𝑋 and 𝑌 are sets, 𝐹 is a deterministic function,

and only 𝜃 is a random variable drawn from a distribution 𝜃 ∼ 𝑃 (Θ). That is to say,

all source of uncertainty in this setting can trace its roots to the unknown identity of

𝜃 we instantiated the oracle function 𝐹 with1. Figure 5-1 shows the interactions of

these entities in a graphical model view: the query 𝑥 which can be simply considered

as a fixed parameter, is turned into a random variable 𝑌𝑥 = 𝐹 (𝑥; Θ) once passing

through the function 𝐹 due to the uncertainty introduced by not knowing which

𝜃 that 𝐹 was parameterized with. We may use 𝐹 (𝑥,Θ) and 𝑌𝑥 interchangeably,

whichever form is more illustrative for the problem at-hand. Note that, while there

are uncertainties over the identity of the oracle function 𝐹 , 𝐹 is still a function in

1in later applications the uncertainty can also come from a noisy channel

37

Figure 5-1: Function 𝐹 (·, 𝜃) changes a parameter 𝑥 into a random variable 𝑌𝑥 due to
the uncertainty induced by 𝜃 ∼ 𝑃 (Θ)

that repeated querying the same input 𝑥 would yield a consistent observations 𝑦:

𝑃 (𝐹 (𝑥,Θ) = 𝑦|𝐹 (𝑥,Θ) = 𝑦) = 1

5.2 The Informative Querying Problem

In an informative querying task, the goal is to return a set of observations by it-

eratively querying an oracle function 𝐹 , while ensuring the resulting observations

optimize a certain objective (for instance, achieving the maximum outcomes). As the

oracle function is unknown a-priori, the querying algorithm must trade-off exploring

and understanding the oracle function with exploiting to maximize some objective.

Let us use 𝑜 to denote the set of observations 𝑜 = {(𝑥1, 𝑦1) . . . (𝑥𝑚, 𝑦𝑚)}. An

informative querying problem is typically solved by Algorithm 1.

Algorithm 1: The Successive Querying Process
1 SUCCESSIVE QUERYING (𝐹,𝑋);

Input : oracle function 𝐹 , input domain 𝑋
Output: collected observations 𝑜

2 𝑜←− {}
3 while not terminate(𝑜) do
4 𝑥 = select(𝑋, 𝑜)
5 𝑦 = 𝐹 (𝑥)
6 𝑜←− 𝑜 ∪ (𝑥, 𝑦)

7 end
8 return 𝑜

Central to the selection process is deciding which query to issue next, conditioned

38

on previous observations (line 4 in Alg 1). For instance, the selection process can be

random, but it would not be informative. Making informative query is often realized

by a well crafted acquisition function.

5.3 Acquisition Function

An acquisition function 𝑎𝑜(𝑥) is a function that is parameterized by past observations

𝑜. It takes in a query point 𝑥, and measures the “goodness” of this query point with

respect to a certain metric (such as improving the best returns so-far or maximizing

information gain).

Once an acquisition function is defined, the informative query is selected on the

condition that the query 𝑥 optimizes (argmin or argmax) the acquisition function.

𝑥𝑞𝑢𝑒𝑟𝑦 = argmax
𝑥∈𝑋

𝑎𝑜(𝑥)

This query is then issued to the oracle function, obtaining an observation 𝑦 in return.

The new observation (𝑥, 𝑦) is then added back into 𝑜 and the process is repeated until

some termination condition is met, usually achieving a certain optimization objective

or reaching a certain budget. The resulting 𝑜 is returned, see Figure 5.3.

Figure 5-2: Successive Querying With Acquisition Function

39

5.4 Applications of Informative Queries

We now discuss three important applications that can be framed as informative query-

ing problems, and highlight the difficulties in their typical solutions.

5.4.1 Active Diagnostics

A well known application of informative query selection is active diagnostics. In

active diagnostics, the goal is to infer the hidden parameter 𝜃 ∈ Θ with as few

observations 𝐹 (𝑥1,Θ) . . . 𝐹 (𝑥𝑛,Θ) as possible, where these observations are made

adaptively. Given past observations 𝑜, one selects the next best query by maximizing

mutual information between the query’s outcome 𝑌𝑥 and the hidden parameter Θ.

Acquisition Function Formally, the acquisition function for active diagnostics is:

𝑎𝑜(𝑥) = 𝐼(Θ, 𝑌𝑥|𝑜)

Using this acquisition function, one can select the most informative query by maxi-

mizing over the query space 𝑥 ∈ 𝑋:

argmax
𝑥

𝐼(Θ, 𝑌𝑥|𝑜)

Typically, the optimal selection is computed by re-writing the definition of mutual

information as a difference of entropy reduction:

argmax
𝑥

𝐻(Θ|𝑜)−𝐻(Θ|𝑌𝑥, 𝑜)

Which is to say, the mutual information between Θ and 𝑌𝑥 can be measured by the

reduction of entropy of Θ given 𝑌𝑥. Note that the first term 𝐻(Θ|𝑜) is constant over

𝑥, thus we can omit it within the argmax𝑥 operator, obtaining:

= argmin
𝑥

𝐻(Θ|𝑌𝑥, 𝑜)

40

However, this acquisition function is difficult to compute because it involves an en-

tropy computation over the space of possible functions Θ, which is intractable in

practice if Θ is sufficiently complex (for instance, of combinatorial complexity).

5.4.2 Representative Subset Selection

In representative examples selection, one starts with a large, existing set of observa-

tions 𝑜𝑏𝑖𝑔. One is also armed with a computationally expensive solver 𝑠𝑜𝑙𝑣𝑒 that can

take a set of observations 𝑜 and infers a satisfying 𝜃 ∈ Θ:

𝜃 = 𝑠𝑜𝑙𝑣𝑒(𝑜) =⇒
⋀︁

(𝑥,𝑦)∈𝑜

𝐹 (𝑥, 𝜃) = 𝑦

The goal is to solve for a 𝜃 that satisfies the big set of observations 𝑜𝑏𝑖𝑔. However, due

to the size of 𝑜𝑏𝑖𝑔, one cannot afford to run the solver on it directly. One can think

of the representative subset selection problem as the opposite of the active diagnostic

problem: In active diagnostic, the challenge is we do not have enough observations to

pin-point the hidden value of 𝜃; In representative subset selection, we have too many

spurious observations that renders the expensive inference process 𝑠𝑜𝑙𝑣𝑒 intractable.

Therefore, one would like to select a representative subset 𝑜𝑟𝑒𝑝𝑟 ⊆ 𝑜𝑏𝑖𝑔 such that:

⋀︁
(𝑥,𝑦)∈𝑜𝑟𝑒𝑝𝑟

𝐹 (𝑥, 𝜃) = 𝑦 =⇒
⋀︁

(𝑥,𝑦)∈𝑜𝑏𝑖𝑔

𝐹 (𝑥, 𝜃) = 𝑦

Which is to say, any 𝜃 that is consistent with 𝑜𝑟𝑒𝑝𝑟 will also be consistent with 𝑜𝑏𝑖𝑔. If

such a representative subset can be found, one can run the solver on the representa-

tive subset 𝑠𝑜𝑙𝑣𝑒(𝑜𝑟𝑒𝑝𝑟), which would still yield a consistent 𝜃 without incurring the

expensive computation cost.

Counter Example Guided Inductive Synthesis (CEGIS) Typically, problem

of representative subset selection is formulated as a informative querying problem with

the CEGIS algorithm: Starting with an empty set of representative examples 𝑜 = {},

the CEGIS algorithm runs the 𝑠𝑜𝑙𝑣𝑒 function on the current set of observations,

41

Figure 5-3: Successive Querying with CEGIS

obtaining a candidate hypothesis 𝜃𝑜 = 𝑠𝑜𝑙𝑣𝑒(𝑜). Then, the algorithm checks whether

𝜃 is consistent with every item in the big set of observations 𝑜𝑏𝑖𝑔: If there is a particular

observation (𝑥, 𝑦) that is inconsistent with 𝜃, i.e. 𝑦 ̸= 𝐹 (𝑥, 𝜃), this counter example is

added to 𝑜. Conveniently, when the CEGIS algorithm terminates, we obtain 𝜃 that

is consistent with 𝑜𝑏𝑖𝑔. The CEGIS algorithm is shown in Figure 5.4.2

Acquisition Function For CEGIS The acquisition function for CEGIS can be

then summarized as:

𝑎𝑜((𝑥, 𝑦)) =

⎧⎪⎨⎪⎩0 if 𝐹 (𝑥, 𝜃𝑜) = 𝑦

1 if 𝐹 (𝑥, 𝜃𝑜) ̸= 𝑦

.

Note that the acquisition function is over observations (𝑥, 𝑦) for the representative

subset problem, as we starts with a set of observations already, there is no need to

query the function 𝐹 for more outcomes.

The drawback of using CEGIS as part of the acquisition function is that one is

still invoking the expensive solver 𝑠𝑜𝑙𝑣𝑒(𝑜) for every counter-example added to 𝑜. So

in case of 𝑜𝑟𝑒𝑝𝑟 needing to be large, CEGIS can be inefficient simply on the basis of

calling the expensive 𝑠𝑜𝑙𝑣𝑒 function many times. Furthermore, the set 𝑜𝑟𝑒𝑝𝑟 returned

by CEGIS is in fact not representative. For instance, the solver may return a 𝜃𝑜 that

is coincidentally consistent with 𝑜𝑏𝑖𝑔 with just a single element in 𝑜.

42

5.4.3 Bayesian Optimization

One of the most prominent applications of informative queries selection is the problem

of bayesian optimization. In bayesian optimization, one wishes to optimize a unknown

and expensive to query function 𝑔(·) : 𝑋 −→ R by selecting the optimal input 𝑥*.

𝑥* = argmax
𝑥

𝑔(𝑥)

The goal is to discover the optimal input 𝑥* with as few queries as possible, since 𝑔

is expensive to query. To apply our formalism, let: 𝑔(·) = 𝐹 (·, 𝜃), where the 𝜃 ∈ Θ

represents uncertainties over the identity of 𝑔.

Bayesian optimization is typically solved with gaussian process (GP). Under the

GP formulation, the informative querying process is realized by the computation of

a predictive posterior, which itself is a gaussian:

𝑃 (𝑌𝑥|𝑜) = 𝒩 (·|𝜇(𝑥, 𝑜),Σ(𝑥, 𝑜)2)

Which is to say, given a set of past observations 𝑜, and a new query point 𝑥, a GP

will compute the mean 𝜇(𝑥, 𝑜) and variance Σ(𝑥, 𝑜)2 of the possible outcomes at 𝑥.

Various acquisition functions that can be constructed from this posterior. The typical

acquisition functions with a predictive posteriors are probability of improvement,

expected improvement, and upper confidence bound. For this thesis, we will consider

only the acquisition function of upper confidence bound (UCB) [2] .

Upper Confidence Bound The UCB acquisition function is:

𝑎𝑜(𝑥) = 𝜇(𝑥, 𝑜) + Σ(𝑥, 𝑜)

Which can be readily computed from the predictive posterior’s 𝜇(𝑥, 𝑜) and 𝜎(𝑥, 𝑜).

The success of GP lies in choosing the right kernel function which will lead to an

accurate predictive posterior estimation. However, it is possible that for a specific

class of functions, the GP assumption that any finite observations of the function

43

forms a multinomial gaussian distribution is too restrictive and prevents one from

exploiting the underlying structures of the bayesian optimization problem at hand.

In this chapter, we formally defined the informative querying problem, and how

they are typically solved by constructing a suitable acquisition function. We also

observed that the typical solutions are either inefficient (in the number of queries) or

slow (in terms of computation time).

44

Chapter 6

Propagation

In this chapter we will formalize the definition of propagation in the most general

sense, explain how it is trained, give some details on its encoding, and explain some

advantages of the particular way the propagation is constructed.

6.1 Propagation Probability

We start by defining the propagation probability. The propagation probability takes

in past observations and infers the outcomes of a future query. Formally, given a set of

past queries 𝑥1 . . . 𝑥𝑚 and their corresponding observations 𝐹 (𝑥1,Θ) = 𝑦1 . . . 𝐹 (𝑥𝑚,Θ) =

𝑦𝑚, we would like to infer the distribution of outcome 𝐹 (·,Θ) on a new query 𝑥. Sim-

ilar to how 𝑌𝑥 is a short-hand for 𝐹 (𝑥,Θ), the observation pair (𝑥𝑖, 𝑦𝑖) is a short-hand

for denoting the specific event that the random variable 𝐹 (𝑥𝑖,Θ) takes on the specific

value 𝑦𝑖. The propagation probability can be written in several ways:

𝑃 (𝑌𝑥|𝑜)

:=𝑃 (𝑌𝑥|{(𝑥1, 𝑦1) . . . (𝑥𝑚, 𝑦𝑚)})

:=𝑃 (𝐹 (𝑥,Θ) = 𝑦|𝐹 (𝑥1,Θ) = 𝑦1 . . . 𝐹 (𝑥𝑚,Θ) = 𝑦𝑚)

45

Figure 6-1: Given 𝑚 past observations, what is the distribution on a future observa-

tion 𝑌𝑥? Note the two random variables in this model is Θ and 𝑌𝑥

The distribution 𝑌𝑥 maybe computed exactly by integrating over Θ:

𝑃 (𝑌𝑥 = 𝑦|𝑜)

=𝑃 (𝐹 (𝑥,Θ) = 𝑦|𝐹 (𝑥1,Θ) = 𝑦1 . . . 𝐹 (𝑥𝑚,Θ) = 𝑦𝑚)

=

∫︁
𝜃

1[𝐹 (𝑥, 𝜃) = 𝑦] 𝑃 (Θ = 𝜃|𝐹 (𝑥1,Θ) = 𝑦1 . . . 𝐹 (𝑥𝑚,Θ) = 𝑦𝑚)𝑑𝜃

Given the past observations 𝑜, we integrate over parameters 𝜃 from the posterior dis-

tribution 𝑃 (Θ = 𝜃|𝐹 (𝑥1,Θ) = 𝑦1 . . . 𝐹 (𝑥𝑚,Θ) = 𝑦𝑚) (induction), and check whether

𝐹 (𝑥, 𝜃) = 𝑦 (deduction). However, when confronted with a complicated space of Θ,

such integral is intractable. Instead, we approximate the propagation probability.

6.2 Propagation Function

Rather than computing the propagation probability 𝑃 (𝑌𝑥|𝑜) exactly, we will approx-

imate it with a propagation function 𝑄𝜔 that is a function approximator with param-

eter 𝜔 (i.e. a neural network). This propagation function would take as input a set

of past observations (𝑥1, 𝑦1) . . . (𝑥𝑚, 𝑦𝑚), an additional query input 𝑥, and compute

an approximate to the propagation probability.

𝑃 (𝑌𝑥|𝑜) ≈ 𝑄(·|𝑥, 𝑜) (6.1)

Figure 6.2 shows the inputs and output of a propagation function:

46

Figure 6-2: Given past observations 𝑜 and a new query input 𝑥, the propagation

function approximate the propagation probability

6.2.1 Approximating the Propagation Probability

To make sure the propagation function faithfully approximate the propagation prob-

ability, we minimize the KL-divergence between the true propagation probability

𝑃 (𝐹 (𝑥, 𝜃) = ·|𝑜) and the approximate propagation function 𝑄(·|𝑥, 𝑜)

argmin
𝜔

KL
𝑦

(𝑃 (𝐹 (𝑥,Θ) = 𝑦|𝑜) || 𝑄(𝑦|𝑥, 𝑜)) (6.2)

Note that the propagation probability 𝑃 (𝐹 (𝑥,Θ) = 𝑦|𝑜) is a conditional probabil-

ity, where a different distribution corresponding to each of its possible conditionals

𝑜, which leads to inefficiencies in approximation1. Therefore, rather than creating a

propagation function for each of its possible conditions, we create a single propaga-

tion function that minimizes the expected KL divergence, under a suitable known

distribution of 𝑜 and future query 𝑥.

Putting everything together, the objective for 𝑄𝜔 is as follows:

argmin
𝜔

Ē
𝑜,𝑥

[KL
𝑦

(𝑃 (𝐹 (𝑥,Θ) = 𝑦|𝑜) || 𝑄𝜔(𝑦|𝑥, 𝑜))] (6.3)

This objective is difficult to directly optimize because we need to sample from

𝑜, which preclude us from sampling the pairs 𝑥𝑖, 𝑦𝑖 independently, because we might

sample certain combinations of 𝑥𝑖, 𝑦𝑖 for which no functions 𝐹 (·, 𝜃) is admissible. In

addition, we also need to compute the KL-divergence over all 𝑦 ∈ 𝑌 .

1If in practice 𝑜 always has less than 10 elements, it is pointless to make 𝑄𝜔 to approximate
instances of 𝑜 having more than 10 elements

47

We will now massage the objective into a form that is tractable with stochastic

optimization. First, we re-write the KL divergence as an expectation:

argmin
𝜔

Ē
𝑜,𝑥

[KL
𝑦

(𝑃 (𝐹 (𝑥,Θ) = 𝑦|𝑜) || 𝑄𝜔(𝑦|𝑥, 𝑜))]

= argmin
𝜔

Ē
𝑜,𝑥

[E
𝑦∼𝑃 (𝐹 (𝑥,Θ)=𝑦|𝑜)

[𝑙𝑜𝑔𝑃 (𝐹 (𝑥,Θ) = 𝑦|𝑥, 𝑜)− 𝑙𝑜𝑔𝑄𝜔(𝑦|𝑥, 𝑜)]]

Note that the term 𝑙𝑜𝑔𝑃 (𝐹 (𝑥,Θ) = 𝑦|𝑜) does not depend on 𝜔, which we can ignore

inside the argmin𝜔 operator, omitting this term we obtain:

= argmin
𝜔

Ē
𝑜,𝑥

[E
𝑦∼𝑃 (𝐹 (𝑥,Θ)=𝑦|𝑜)

[−𝑙𝑜𝑔𝑄𝜔(𝑦|𝑥, 𝑜)]]

= argmax
𝜔

Ē
𝑜,𝑥

[E
𝑦∼𝑃 (𝐹 (𝑥,Θ)=𝑦|𝑜)

[𝑙𝑜𝑔𝑄𝜔(𝑦|𝑥, 𝑜)]]

Next, we re-write the expectation over 𝑦 ∼ 𝑃 (𝐹 (𝑥,Θ) = 𝑦|𝑜) as an integral:

argmax
𝜔

Ē
𝑜,𝑥

[

∫︁
𝑦

𝑃 (𝐹 (𝑥,Θ) = 𝑦|𝑜) 𝑙𝑜𝑔𝑄𝜔(𝑦|𝑥, 𝑜) 𝑑𝑦]

We then create a joint distribution between 𝐹 (𝑥,Θ) and Θ, before integrating it away,

followed by a few re-writes to re-arrange the conditional probabilities:

= argmax
𝜔

Ē
𝑜,𝑥

[

∫︁
𝑦

∫︁
𝜃

𝑃 (𝐹 (𝑥,Θ) = 𝑦,Θ = 𝜃|𝑜) 𝑙𝑜𝑔𝑄𝜔(𝑦|𝑥, 𝑜) 𝑑𝜃 𝑑𝑦]

= argmax
𝜔

Ē
𝑜,𝑥

[

∫︁
𝑦

∫︁
𝜃

𝑃 (𝐹 (𝑥,Θ) = 𝑦,Θ = 𝜃, 𝑜)

𝑃 (𝑜)
𝑙𝑜𝑔𝑄𝜔(𝑦|𝑥, 𝑜) 𝑑𝜃 𝑑𝑦]

= argmax
𝜔

Ē
𝑜,𝑥

[

∫︁
𝑦

∫︁
𝜃

𝑃 (𝐹 (𝑥, 𝜃) = 𝑦, 𝑜|Θ = 𝜃)𝑃 (Θ = 𝜃)

𝑃 (𝑜)
𝑙𝑜𝑔𝑄𝜔(𝑦|𝑥, 𝑜) 𝑑𝜃 𝑑𝑦]

We re-write the expectation under 𝑜 as an integral as well:

= argmax
𝜔

E
𝑥
[

∫︁
𝑜

∫︁
𝑦

∫︁
𝜃

𝑃 (𝑜)
𝑃 (𝐹 (𝑥,Θ) = 𝑦, 𝑜|Θ = 𝜃)𝑃 (Θ = 𝜃)

𝑃 (𝑜)
𝑙𝑜𝑔𝑄𝜔(𝑦|𝑥, 𝑜) 𝑑𝜃 𝑑𝑦 𝑑𝑜]

= argmax
𝜔

E
𝑥
[

∫︁
𝑜

∫︁
𝑦

∫︁
𝜃

𝑃 (𝐹 (𝑥, 𝜃) = 𝑦, 𝑜|Θ = 𝜃)𝑃 (Θ = 𝜃) 𝑙𝑜𝑔𝑄𝜔(𝑦|𝑥, 𝑜) 𝑑𝜃 𝑑𝑦 𝑑𝑜]

48

Note that 𝐹 (𝑥,Θ) and 𝑜 are conditionally independent given Θ = 𝜃:

= argmax
𝜔

E
𝑥
[

∫︁
𝑜

∫︁
𝑦

∫︁
𝜃

𝑃 (𝐹 (𝑥,Θ) = 𝑦|Θ = 𝜃)𝑃 (𝑜|Θ = 𝜃)𝑃 (Θ = 𝜃) 𝑙𝑜𝑔𝑄𝜔(𝑦|𝑥, 𝑜) 𝑑𝜃 𝑑𝑦 𝑑𝑜]

Note that 𝑃 (𝐹 (𝑥,Θ) = 𝑦|Θ = 𝜃) is an indicator function, having a probability of 1

when 𝑦 = 𝐹 (𝑥, 𝜃). Thus, as we integrate over all possible values of y, the only mass

will be on the instance when 𝑦 = 𝐹 (𝑥, 𝜃). This allows us to drop the integral over 𝑦

by substituting the instance of 𝑦 within 𝑄𝜔 with 𝐹 (𝑥, 𝜃):

= argmax
𝜔

E
𝑥
[

∫︁
𝑜

∫︁
𝜃

𝑃 (𝑜|Θ = 𝜃)𝑃 (Θ = 𝜃) 𝑙𝑜𝑔𝑄𝜔(𝐹 (𝑥, 𝜃)|𝑥, 𝑜) 𝑑𝜃 𝑑𝑜]

We rewrite the integration over 𝑜 as two separate integrations, first over all the possible

x values �̄� then over all the possible y values 𝑦, and re-write 𝑜 accordingly.

= argmax
𝜔

E
𝑥
[

∫︁
�̄�

∫︁
𝑦

∫︁
𝜃

𝑃 (𝑜|Θ = 𝜃)𝑃 (Θ = 𝜃) 𝑙𝑜𝑔𝑄𝜔(𝐹 (𝑥, 𝜃)|𝑥, 𝑜) 𝑑𝜃 𝑑�̄� 𝑑𝑦]

= argmax
𝜔

E
𝑥
[

∫︁
�̄�

∫︁
𝑦

∫︁
𝜃

𝑃 (𝑦|�̄�,Θ = 𝜃)𝑃 (�̄�)𝑃 (Θ = 𝜃) 𝑙𝑜𝑔𝑄𝜔(𝐹 (𝑥, 𝜃)|𝑥, 𝑜) 𝑑𝜃 𝑑�̄� 𝑑𝑦]

Similar to how knowing 𝜃 makes 𝑃 (𝐹 (𝑥,Θ) = 𝑦|Θ = 𝜃) an indicator function over

𝐹 (𝑥,Θ), knowing 𝜃 also makes 𝑃 (𝑦|�̄�,Θ = 𝜃) an indicator function over 𝑦: picking

up a mass of 1 only when 𝑦𝑖 = 𝐹 (𝑥𝑖, 𝜃) for every (𝑥𝑖, 𝑦𝑖) ∈ 𝑜 and 0 otherwise. Thus,

we can drop the integration over 𝑦 over the indicator 𝑃 (𝑦|�̄�,Θ = 𝜃):

= argmax
𝜔

E
𝑥
[

∫︁
�̄�

∫︁
𝜃

𝑃 (Θ = 𝜃)𝑃 (�̄�) 𝑙𝑜𝑔𝑄𝜔(𝐹 (𝑥, 𝜃)|𝑥, 𝑜) 𝑑𝜃 𝑑�̄�]

Rewriting all integrations as their corresponding expectations, we finally2 obtain:

argmax
𝜔

E
𝜃,�̄�,𝑥

[𝑙𝑜𝑔𝑄𝜔(𝐹 (𝑥, 𝜃)|𝑥, 𝑜)] (6.4)

2I’d like to thank Kevin Ellis for making this long derivation possible over 6 cups of tea

49

6.2.2 Training the Propagation Function

The above objective can be optimized in a stochastic fashion: First, we sample an

arbitrary parameter 𝜃, a set of queries to be observed �̄�, and a future unobserved query

𝑥. Then, we compute 𝑜 by applying 𝐹 (·, 𝜃) on �̄�, and compute 𝐹 (𝑥, 𝜃). We task the

propagation function 𝑄𝜔 to maximize the log likelihood over the outcome 𝐹 (𝑥, 𝜃),

conditioned on the past observations 𝑜 and the query point 𝑥. See Figure 6.2.2.

Figure 6-3: Training 𝑄𝜔 via stochastic optimization by sampling 𝜃, �̄�, 𝑥

Access to 𝐹 and 𝑃 (Θ) or Samples of 𝑃 (Θ) In the most ideal case, one has

access to both 𝐹 and generator of oracles, or samples of, 𝑃 (Θ) itself. This scenario

tends to arise in simulated settings where one can generate their own data. Having

access to 𝐹 and 𝑃 (Θ) means one can construct a query-able oracle function 𝐹 (·, 𝜃)

which can be queried interactively for any given input 𝑥 for as many times as needed.

What’s remain is to construct an appropriate distribution for for 𝑃 (�̄�) and 𝑃 (𝑥)

so that one can successfully train a propagation function 𝑄𝜔 using the stochastic

optimization scheme outlined earlier. The following scheme has worked well:

∙ let 𝑁 be the maximum number of queries one expects to make at inference time

∙ randomly sample a number 𝑘 ∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚({0 · · ·𝑁 − 1})

∙ sample �̄� as 𝑘 instances of 𝑥𝑖 ∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(𝑋)

∙ sample 𝑥 as 𝑥 ∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(𝑋)

50

One can also skew the distribution of 𝑥, �̄�, 𝑜 to match the distribution that would

happen at inference time, but in practice random sampling works well.

Access to Only Past Observations In practice, one may not have full access to

the full generative process of Θ, but instead, series of observations from prior samples

of 𝐹 (·, 𝜃) ∼ 𝑃 (Θ). This is often the case where the oracle function 𝐹 cannot be

simulated, and one must rely on past-draws of observations for meta-learning.

Specifically, let 𝑜1 · · · 𝑜𝑀 be 𝑀 sets of past observations corresponding to samples

from 𝐹 (·, 𝜃1) · · ·𝐹 (·, 𝜃𝑀). The following sampling scheme works well in practice:

∙ sample at random a set of observations 𝑜𝑗 ∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚({𝑜1 · · · 𝑜𝑀})

∙ sample at random 𝑥 and 𝑦 without replacement (𝑥, 𝑦) ∼ 𝑜𝑗

∙ sample a number 𝑘 ∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 𝑙𝑒𝑛(𝑜𝑗)− 1)

∙ sample 𝑘 items without replacement from 𝑜𝑗 as 𝑜

∙ return 𝑥, 𝑜, 𝑦 as training sample for 𝑄𝜔 directly

The ability to train a propagation function without access to the observation gen-

erating function is a consequence of modeling propagation with transduction, which

obviates the need of compute over the data generation (via induction) process.

6.2.3 Encoding the Propagation Function

So far we have discussed the query space 𝑋, outcome space 𝑌 , observations 𝑜, and

𝑄𝜔 as abstract mathematical objects. In this section, we will detail some encoding

templates for these components that have worked well in practice.

Indexable 𝑋, Multiclass 𝑌 We first explain the simplest architecture for handling

instances where the query space 𝑋 can be indexed3 𝑋 = {𝑥1 · · ·𝑥𝑀}, and a multi-class

outcome space 𝑌 = {1 · · ·𝑁}.
3finite, and not of combinatorial complexity. i.e. about 1000 possible queries

51

We start by appending the outcome space with an additional value 0 to denote

an unobserved outcome 𝑌 = {0, 1 · · ·𝑁}. To encode the observations 𝑜, one can

enumerate for every index 𝑖 and check the outcome of its corresponding query 𝑥𝑖:

Either it is observed, i.e. (𝑥𝑖, 𝑦𝑖) ∈ 𝑜, or it is unobserved, i.e. the outcome of 𝑥𝑖

is unknown 0. We can then concatenate these values together into a single vector

𝑜 = [𝑦1 · · · 𝑦𝑀], where each of the 𝑦𝑖 can be of a value 0, 1 · · ·𝑁

Rather than encoding a future query 𝑥 and passing it into 𝑄𝜔, in the case of an

indexable query space 𝑋, it is feasible to have 𝑄𝜔 outputs all the predicted outcomes

across all future queries 𝑥𝑖 simultaneously 𝑌 = [𝑦1
′ · · · 𝑦𝑀 ′

]. See Figure 6.2.3.

Figure 6-4: A computation of 𝑄𝜔 under the indexable 𝑋, multi-class 𝑌 setting, where

𝑀 = 8 and 𝑜 = {(𝑥1, 3), (𝑥4, 1), (𝑥7, 1)}

𝑄𝜔 in this case can simply be a fully connected MLP, and each predicted outcome

𝑦𝑖
′ is a categorical distribution over 𝑁 items (the output cannot be 0).

Factorized 𝑋 In certain applications, it may be the case that the query space 𝑋

has certain structures that allows the propagation probability to be factorized:

𝑃 (𝑌𝑥|𝑜) = 𝑃 (𝑌𝑥|𝑟𝑒𝑙𝑥(𝑜))

Here, 𝑟𝑒𝑙𝑥 is a function that takes in 𝑜 and returns only the relevant observations

in 𝑜 with respect to the query point 𝑥. For instance, it could be all observations

52

that lies within a certain neighborhood of 𝑥. In this case, one can similarly factorize

the computation of 𝑄𝜔. Figure 6.2.3 shows an instance of a factorizable 𝑄𝜔 in the

indexable 𝑋 multi-class 𝑌 setting:

Figure 6-5: A factorized computation of 𝑄𝜔 under the indexable 𝑋, multi-class 𝑌

setting, where 𝑀 = 8 and 𝑜 = {(𝑥1, 3), (𝑥4, 1), (𝑥7, 1)}

Continuous 𝑋 and 𝑌 We now discuss the case where 𝑋 and 𝑌 are continuous

values. Since 𝑋 and 𝑌 are uncountable, one cannot use the indexable scheme outlined

earlier. Instead, we will encode each observation (𝑥𝑖, 𝑦𝑖) ∈ 𝑜 and the future query 𝑥 as

individual items. Further, we will assume that the output distribution 𝑦 is a gaussian

distribution, and output its corresponding 𝜇𝑥,𝑜 and 𝜎𝑥,𝑜 accordingly.

Figure 6.2.3 shows the encoding scheme for the continuous 𝑋 and 𝑌 setting.

53

Figure 6-6: A transformer style encoding: 𝐸𝑥 denotes the encoder for the query,

𝐸𝑜 the encoder for an observation, 𝐶 denote a communication module that pools

information from other items together, 𝑎𝑔𝑔 is a generic set-invariant aggregator (max

or mean), and the final prediction module 𝑃 output the predicted mean and std(or

co-variance in case of multi-dimensional gaussian)

As one can see, the input query 𝑥 and the observations (𝑥𝑖, 𝑦𝑖) ∈ 𝑜 are allowed

to intermix in several rounds of computations, before being aggregated together, and

a prediction module outputs the predicted mean 𝜇 and standard deviation 𝜎 (or co-

variance matrix, in case of multi-dimensional output) on the predicted value 𝑦. One

can implement this as a transformer neural network or any structures that allows the

exchange of information between the query 𝑥 and other observations 𝑥𝑖, 𝑦𝑖.

6.3 Propagator

A propagator is a learned propagation function 𝑄𝜔 conditioned with a support set of

past observations 𝑜. We write a propagator as follows:

𝑄𝜔(·𝑦|·𝑥, 𝑜)

Here, ·𝑥 and ·𝑦 denote the fact that it is a function over both the future query point

𝑥 and a particular outcome event 𝑦 ∈ 𝑌 . Figure 6-7 depicts the propagator.

54

Figure 6-7: A propagator consists of a propagation function 𝑄𝜔 and a support set 𝑜

Complimentary Parts The most distinctive dichotomy is that the propagator

consists of a parametric function 𝑄𝜔, which is learned during meta-training, and

a collection of non-parametric observations 𝑜, which are collected during inference.

By learning a good propagation function 𝑄𝜔, the propagator can extrapolate future

outcomes accurately given only a few past observations 𝑜. On the other hand, in-

accuracies of 𝑄𝜔 can be alleviated at inference time by providing the propagation

function with a bigger support set of 𝑜. In the worst case, the propagator can always

fail gracefully by devolving into the identify function over observed supports.

55

56

Chapter 7

Informative Queries with Propagation

The learned propagation function 𝑄𝜔 can be applied in a range of informative query-

ing tasks. To recap, in a informative querying task, the goal is to return a set of

observations 𝑜 by interactively querying an oracle function 𝐹 , while ensuring the

resulting observations 𝑜 optimize a certain objective.

Across all tasks, we learn a single propagation function at meta-learning time.

At inference time, we build a task-specific acquisition functions around the learned

propagation function. The generic iterative querying process is shown in Figure 7-1.

Figure 7-1: Informative Query Selection with Propagation

In the beginning of the querying process, the propagator is uninformed, having

an empty set of supports 𝑄𝜔(·𝑦|·𝑥, {}). However, as more queries and observations

are being made, the support 𝑜 grows and the propagator becomes more informed by

being able to extrapolate between the future query 𝑥 and a larger 𝑜.

We now discuss the application of the propagator on querying problems, giving

57

formal proofs that the using the propagator is a faithful approximation to the gold-

standard acquisition function.

7.1 Active Diagnostics

In active diagnostics, the goal is to infer the hidden parameter 𝜃 ∈ Θ with as few

observations 𝐹 (𝑥1,Θ) . . . 𝐹 (𝑥𝑛,Θ) as possible, where these observations are made

adaptively. Constructing the optimal set of queries is intractable. In practice, given

a set of past observations 𝑜, one selects the next best query by maximizing mutual

information between the query’s outcome 𝑌𝑥 and the hidden parameter Θ. Formally,

the gold standard acquisition function of active diagnostics is:

𝑎𝑜(𝑥) = 𝐼(Θ, 𝑌𝑥|𝑜)

Which is to say, given observations 𝑜, select a query 𝑥 such that the mutual informa-

tion between its outcomes, 𝑌𝑥, and the distribution of functions, Θ, is maximized.

In prior works, the optimal selection is computed by re-writing the definition of

mutual information as a difference of entropy reduction:

argmax
𝑥

𝐻(Θ|𝑜)−𝐻(Θ|𝑌𝑥, 𝑜)

Which is to say, the mutual information between Θ and 𝑌𝑥 can be measured by the

reduction of entropy of Θ given 𝑌𝑥. Note that the first term 𝐻(Θ|𝑜) is constant over

𝑥, thus we can omit it within the argmin𝑥 operator, obtaining:

= argmin
𝑥

𝐻(Θ|𝑌𝑥, 𝑜)

However, this acquisition function is difficult to compute because it involves an en-

tropy computation over the space of possible functions Θ, which is intractable in

practice if Θ is sufficiently complex (for instance, of combinatorial complexity).

58

Using the Propagator In this thesis work, we opt for a symmetric, but different

re-write of mutual information:

argmax
𝑥

𝐻(𝑌𝑥|𝑜)−𝐻(𝑌𝑥|Θ, 𝑜)

Which is to say, the mutual information between Θ and 𝑌𝑥 can also be measured by

the reduction of entropy of 𝑌𝑥 given Θ. Let’s focus on the second term:

𝐻(𝑌𝑥|Θ, 𝑜) =

∫︁
𝜃

𝐻(𝑌𝑥|Θ = 𝜃, 𝑜)𝑑𝜃

Note that once given Θ = 𝜃, the outcome 𝑌𝑥 is uniquely 𝐹 (𝑥, 𝜃) which is to say

∀𝜃. 𝐻(𝑌𝑥|Θ = 𝜃, 𝑜) = 0. Therefore 𝐻(𝑌𝑥|Θ, 𝑜) = 0. This observation allows us to

drop the second term in our acquisition function, obtaining:

𝑎𝑜(𝑥) =𝐻(𝑌𝑥|𝑜)

=𝐻(𝑄𝜔(·𝑦|𝑥, 𝑜))

=

⎧⎪⎨⎪⎩−
∑︀

𝑦 𝑄𝜔(𝑦|𝑥, 𝑜)𝑙𝑜𝑔𝑄𝜔(𝑦|𝑥, 𝑜) if discrete Y

1
2

ln(2𝜋𝑒𝜎2
𝑥,𝑜) if continuous Y modeled as a gaussian

As a result, the acquisition process is simply going over all 𝑥 ∈ 𝑋, and select the query

that maximizes the uncertainty of 𝐻(𝑄𝜔(·𝑦|𝑥, 𝑜)), which, if 𝑄𝜔 faithfully approximates

the propagation probability, is provably the optimal 1-step query for maximizing

mutual information. Once a new observation 𝐹 (𝑥,Θ) = 𝑦 is observed, it can be added

back into the set of observations 𝑜′ = 𝑜∪𝐹 (𝑥,Θ) = 𝑦. Thus, we have justified that for

the problem of active diagnostics, one should query the most uncertain query under

the current propagation, which provably approximates the gold standard acquisition

function.

59

7.2 Representative Subset Selection

In representative examples selection, one starts with a large, existing set of observa-

tions 𝑜𝑏𝑖𝑔. One is also armed with a computationally expensive solver 𝑠𝑜𝑙𝑣𝑒 that can

take a set of observations 𝑜 and infers a satisfying 𝜃 ∈ Θ:

𝜃 = 𝑠𝑜𝑙𝑣𝑒(𝑜) =⇒
⋀︁

(𝑥,𝑦)∈𝑜

𝐹 (𝑥, 𝜃) = 𝑦

The typical approach to solve this problem is by using the CEGIS algorithm. In

CEGIS, the acquisition function is computed by first solving the observations collected

so far 𝜃𝑜 = 𝑠𝑜𝑙𝑣𝑒(𝑜) then applying the following acquisition function:

𝑎𝑜((𝑥, 𝑦)) =

⎧⎪⎨⎪⎩0 if 𝐹 (𝑥, 𝜃𝑜) = 𝑦

1 if 𝐹 (𝑥, 𝜃𝑜) ̸= 𝑦

.

The drawback of using CEGIS as part of the acquisition function is that one is still

invoking the expensive solver 𝑠𝑜𝑙𝑣𝑒(𝑜) for every counter-example added to 𝑜. So in

case of 𝑜𝑟𝑒𝑝𝑟 needing to be large, CEGIS can be inefficient simply on the basis of

calling the expensive 𝑠𝑜𝑙𝑣𝑒 function many times. Furthermore, the set 𝑜𝑟𝑒𝑝𝑟 returned

by CEGIS is in fact not representative. For instance, the solver may return a 𝜃𝑜 that

is coincidentally consistent with 𝑜𝑏𝑖𝑔 with just a single element in 𝑜. Having under-

representative sets of example can be a source of instability for the 𝑠𝑜𝑙𝑣𝑒 function.

Using the Propagator Consider the following set of parameters Θ𝑜:

Θ𝑜 = {𝜃 ∈ Θ|
⋀︁

(𝑥′,𝑦′)∈𝑜

𝐹 (𝑥′, 𝜃) = 𝑦′}

Which denotes the set of 𝜃 ∈ Θ that is consistent with every observation (𝑥′, 𝑦′) ∈ 𝑜.

Abusing notation slightly, we use 𝑜(𝜃) to denote the event that 𝜃 is consistent with 𝑜.

60

We consider the following gold standard acquisition function:

argmin
(𝑥,𝑦)

𝑎𝑜(𝑥, 𝑦) = |Θ𝑜∪{(𝑥,𝑦)}|

Which is to say, we seek to add an observation (𝑥, 𝑦) such that, once added, minimizes

the set of still consistent parameters. Performing this operation successively will prune

away the greatest number of inconsistent parameters each turn, until finally, no more

parameters can be pruned, and thus the resulting set 𝑜 is representative. At first

glance it seems like an impossible task: Solving for a single consistent 𝜃𝑜 is already

challenging, let alone count the number of consistent parameters! However, if we

divide the acquisition function by |Θ𝑜|, which is a constant given 𝑜, we obtain:

𝑎𝑜(𝑥, 𝑦) =
|Θ𝑜∪{(𝑥,𝑦)}|
|Θ𝑜|

=
|Θ𝑜∪{(𝑥,𝑦)}|/|Θ|
|Θ𝑜|/|Θ|

=
𝑃 (𝑜(𝜃) ∧ {(𝑥, 𝑦)}(𝜃))

𝑃 (𝑜(𝜃))

=𝑃 ({(𝑥, 𝑦)}(𝜃) | 𝑜(𝜃))

=𝑃 (𝐹 (𝑥, 𝜃) = 𝑦 | 𝑜)

And wait a minute, that is exactly the propagation probability, which one can ap-

proximate well with the propagator. Which is to say, the acquisition function is:

argmin
(𝑥,𝑦)

|Θ𝑜∪{(𝑥,𝑦)}|

= argmin
(𝑥,𝑦)

𝑃 (𝐹 (𝑥, 𝜃) = 𝑦 | 𝑜)

≈ argmin
(𝑥,𝑦)

𝑄𝜔(𝑦|𝑥, 𝑜)

And selecting under this acquisition amounts to picking the least likely example,

provably approximating the gold standard acquisition function.

61

7.3 Bayesian Optimization

The most direct application of the propagator is bayesian optimization: Since the

predictive posterior distribution has exactly the same form as the propagation prob-

ability, we can replace it with a learned propagator within the acquisition function:

Upper Confidence Bound Upper confidence bound explicitly addresses the ex-

ploration exploitation trade-off of understanding the oracle function and maximizing

the returns on the queries. As stated earlier, upper-confidence-bound (UCB) has the

following acquisition function:

𝑎𝑜(𝑥) = 𝜇𝑥,𝑜 + 𝜎𝑥,𝑜

Which we can directly replace with 𝜇𝑄𝜔(𝑥,𝑜) and 𝜎𝑄𝜔(𝑥,𝑜) predicted by the propagator.

62

Chapter 8

Case Studies

In this chapter we show empirical results of using the learned propagator in informa-

tive querying tasks outlined earlier: active diagnostics, representative subset selection,

and bayesian optimisation. All case studies are lifted from my previous publications

[16] and [17] 1, please refer to the original document for more details.

8.1 Active Diagnostics

In this section we evaluate the performance of our active diagnosis algorithm on sev-

eral active diagnosis problems. Here we outline the problems and their characteristics.

Battleship A variant of the classic battleship game, where the goal is to infer the

configurations of all 5 ships on a 10 by 10 board with as few queries to the board as

possible. The hypothesis space consists of approximately 238 different configurations,

and each query is a (x,y) coordinate that results in “hit” or “miss”.

Sushi A problem of preference elicitation, where the goal is to learn the full pref-

erence order of an user on 10 different sushi types. The hypothesis space consists of

10! potential full rankings, and each query is a pair-wise comparison between 2 sushi

types that results in “yes” or “no”.

1so you have some more cool pictures to look at

63

Network We consider a fault localization task on a network of 100 nodes organized

as a tree, where each link has 2% chance of failure. The task is to learn an efficient

scheme for querying pair-wise connectivities to localize the failure with as few queries

as possible. The hypothesis space consists of all 2100 combinations of failures. The

query is a pair-wise connectivity check, restricted to all 99 direct link checks and 300

additional pairs of fixed nodes with measurement equipment.

8.1.1 BattleShip Variant

The task is to infer the locations of all the ships with as few queries as possible. The

board is a 10 by 10 grid, with 5 ships of size 2 × 4, 1 × 5, 1 × 3, 1 × 3, 1 × 3 placed

randomly with arbitrary horizontal or vertical orientations. Adjacent placements are

allowed, but the ships may not overlap with each other. See Figure 8-1 for an example

board. The agent selects the most confusing query and updates its belief with the

resulting observation. Figure 8-1 illustrates the propagated belief space at various

numbers of observations. Note that without any observations, our model predicts

that a ship is more likely to be located near the center of the board; In the case of 22

observations, our model queried a “hit” on the lower left without completely observing

the 1× 5 long ship in the middle of the board.

Once the observations are collected, We consider two kinds of hypothesis delivery

schemes to infer the hidden identity of the oracle function (i.e. the board configuration

of the ships). In the first scheme we deliver the probabilities of all the observations

using the propagator 𝑄𝜔, implicitly inferring the hidden locations of the ships. In the

second scheme we use a constraint solver which solves for a board configuration that

is consistent with the collected observations so-far.

For comparison we consider 2 baseline algorithms: The random sampler rand

samples unseen coordinates at random. The sink algorithm samples unseen coordi-

nates at random, and when it has found a hit, it queries all its neighboring coordinates

until no “hit” coordinates can be found, then resumes random sampling. Both the

random and sink algorithms initially mark all coordinates as “miss” and update them

to “hit” when a hit has been recorded.

64

Figure 8-1: Belief space of observations on a particular board at various numbers
of observations. Intensity indicates the probability of a coordinate being a hit, and
colored dots indicates past observations: green for “hit” and red for “miss”

To evaluate performance under the first hypothesis delivery scheme, we let the

propagator output the maximum likelihood guess for each coordinate. Accuracy is

measured as a fraction of correctly guessed coordinates. Figure 8-2 compares accu-

racy across all coordinates as a function of number of observations; an accuracy of 1.0

means all coordinates are guessed correctly. In this experiment, we consider 3 differ-

ent variant of the propagation function (all of the indexable X, multi-class Y kind):

oc_1 is the single hidden-layer fully-connected model originally described, oc_0 is

the 0-layer neural-network model (logistic regression), and oc_cnn contains a con-

volutional neural-network layer before a fully-connected hidden layer. As we can see,

the random algorithm improves linearly as expected, the sink heuristic performs bet-

ter than random, and our approach OC performs the best, with oc_1 and oc_cnn

performing better than the logistic regression oc_0. Figure 8-3 considers the same

experiment except a 10% observation error is introduced, under this condition all 3

variants of the OC similarly, and more robust to noise than the baseline algorithms.

To evaluate the performance under the second hypothesis delivery scheme, we

65

Figure 8-2: Comparison of our algorithm oc against the 2 baselines. Accuracies are
averaged over 1000 randomly generated boards

Figure 8-3: Comparison of our algorithm oc against the 2 baselines. Accuracies are
averaged over 1000 randomly generated boards with 10% chance of observation error

66

Figure 8-4: Comparison of our algorithm oc against the 2 baselines when using a
constraint solver for hypothesis delivery. Accuracies are averaged over 100 randomly
generated boards. Only the single-hidden-layer propagation network is considered
here.

use a constraint solver to produce a hypothesis in the form of ships’ locations and

orientations, using observations collected by rand, sink and oc as constraints to

the hypothesis. We then measure accuracy by the number of correctly predicted

ship’s locations and orientations: 5 means all 5 ship’s locations and orientations are

correctly produced by the constraint solver given the observations collected. Figure 8-

4 compares number of correctly guessed ships as a function of number of observations.

As we can see our algorithm OC performs the best, followed by sink with random

performing the worst. Note that constraint solvers are known to produce arbitrary

hypotheses that satisfy the constraint in an under constrained system, yet despite

this, OC was able to consistently out perform the baseline algorithms.

8.1.2 Sushi Preference Elicitation

The sushi data set [11] contains 5000 user preferences for 10 kinds of sushi expressed

in full rankings. The dataset also contains feature vectors describing each individual

type of sushi and describing the users, which in this study we omit. Our task is the

following: Given a new user, how to infer the full ranking of this user with as few

67

pair-wise comparison queries as possible? Naively, this is a sorting problem where one

can obtain the full ranking of any permutation of items with 𝑂(𝑛 log 𝑛) comparisons.

However, the preference orderings are not uniformly random: a preference of eel over

tuna may indicate a user’s liking of cooked sushi over raw sushi. We evaluate accuracy

by using the Kendall correlation: a value of 1.0 means all pair-wise orderings of our

prediction and the ground truth agree with each other, and a value of -1.0 indicates

all pair-wise orderings are in disagreement.

There is no related work on this dataset that attempts to discover the full prefer-

ence of a new user based on pair-wise queries to the new user. Thus, for comparison

we consider various in-place sorting algorithms as baseline. Each time a pair-wise

comparison question is made, we take a snapshot of the current array and extract

pair-wise orderings from it.

The 5000 user preferences are split into a 2500 preferences training set and 2500

preferences testing set. In order to train our propagation function to handle novel

permutations not seen during the training set, we augment the training set by a set

of randomly sampled permutations in addition to the 2500 preferences.

For this experiment, we can measure performance directly as Kendall correlation

without delivering an explicit ordering as the hypothesis (If one wishes one can eas-

ily compute a full ordering from all pair-wise orderings). Figure 8-5 compares our

observation collection algorithm oc_0 and oc_1 against various in-place sorting al-

gorithms: BubbleSort bsort, QuickSort qsort, and MergeSort msort. As we can see,

even without any observations OC was able to obtain a Kendall correlation of 0.3,

indicating the underlying distribution for preferences is not uniform; by comparison,

the baseline sorting algorithms make no assumptions on the underlying distribution,

thus starts with a correlation around 0. Our scheme was able to infer the full ranking

of any user in 26 queries, beating the performance of qsort, which takes 40 queries.

We also considered the case where the query has a 10% chance of error, the result

is shown in Figure 8-6. Note the OC algorithm is robust in the presence of noise as

it improves its pair-wise preferences incrementally with each observation (a property

also shared by bsort) whereas deterministic baseline such as qsort and msort sorts

68

Figure 8-5: Kendall correlation as a function of number of queries averaged across
2500 testing examples

the preferences assuming all observations are perfect.

8.1.3 Network Fault Localization

We consider the task of fault localization on a network of nodes organized as a tree.

The network without any failure is shown in Figure 8-7. There are 100 nodes in this

network with 99 direct links, forming a spanning tree. The hypothesis space consists

of failure cases where each direct link has a probability of 2% of failure. The query

is a pair-wise path connectivity check, restricted to all 99 direct link checks and 300

additional pairs of fixed nodes.

For hypothesis delivery, we use the learned propagation function 𝑄𝜔 to output the

probability of failure on the 99 directly connected pairs of nodes. To measure accuracy,

we use the maximum likelihood guess for these pairs and measure the fraction of

correctly diagnosed link failures.

We compare our approach with the naive localization scheme rand that randomly

picks an unobserved direct link and checks if it is disconnected. The random scheme

will always be able to diagnose all the link failures in 99 observations. However,

using propagation can leverage the network structure to learn an efficient querying

69

Figure 8-6: Kendall correlation as a function of number of queries averaged across
2500 testing examples, where each query has a 10% chance of error

Figure 8-7: The network without any failure

70

Figure 8-8: Accuracy of link failure diagnosis averaged across 1400 random instances

scheme by utilizing connectivity queries. Figure 8-8 shows accuracy of using propaga-

tion (labeled oc) against the random algorithm. We see oc outperforms the random

algorithm most of the time, reaching 99.5% accuracy in 60 observations. Using propa-

gation performs worse than the random scheme for less than 10 observations because

the agent using propagator does not query the direct links for the first few obser-

vations: The 300 additional pairs can yield more information without pin-pointing

an exact failure. Using propagation again performs worse than the random scheme

past 80 observations. This is a consequence of the 1-step greedy approach: the agent

maximizes information gain one observation at a time, but the set of observations

selected by the random approach (all direct links) is the optimal set of size 99.

8.2 Representative Subset Selection

The efficacy of using a learned propagator for representative subset selection is evalu-

ated against two criteria: First, the representativeness of our selected subset is explic-

itly measured (the 1st experiment); Then, the time/stability improvement of using

such a subset is measured against strong baselines (the 2nd and 3rd experiment).

71

8.2.1 Representative Subset for Total Orderings

This experiment explicitly measures the representativeness of the subset selected by

our algorithm on the task of ordering synthesis: Given a dataset of pair-wise ordering

relations, 𝑜𝑏𝑖𝑔 = {𝑎 < 𝑏, 𝑎 < 𝑐, 𝑏 < 𝑑, 𝑐 < 𝑑, 𝑑 > 𝑎, 𝑐 > 𝑎}, the task is to synthesize any

total-ordering that is consistent with 𝑜𝑏𝑖𝑔, for instance, (𝑎, 𝑏, 𝑐, 𝑑) or (𝑎, 𝑐, 𝑏, 𝑑) both

are consistent orders with respect to 𝑜𝑏𝑖𝑔. This task is useful because the optimal

representative subset can be constructed as a Hasse diagram by pruning transitive

relations: 𝑜𝑟𝑒𝑝𝑟 = {𝑎 < 𝑏, 𝑎 < 𝑐, 𝑏 < 𝑑, 𝑐 < 𝑑}. Thus, we can measure both the

representativeness and optimality of our selection algorithm based on propagator. In

this experiment, we set 𝑛 = 10 and give our selection algorithm a dataset of size 30%

to 100% of all possible pair-wise orderings. The neural network for the propagation

function is again the indexable X, multi-class Y type.

We test the representativeness of our approach against the following baselines:

cegis, random x(randomly select x percent of dataset)2, and hasse (the optimal

construction). The measurement of average subset size and fraction of representative

subsets is shown in Figure 8-9. As we can see, our approach selects about twice as

many examples as the optimal subset, and 85% of the times our subsets are repre-

sentative. By contrast, cegis and rand35 fails to discover any representative subset,

while rand80 discovers representative subset only 30% of the times despite sampling

80% of the total data. Figure 8-10 visualizes the chosen pair-wise orderings on a par-

ticular dataset all. This dataset specifies a unique total-ordering, which hasse was

able to concisely represent with the minimal representative subset (bottom). our

approach also discovers a representative subset, albeit with a few extra redundant

relations. By contrast, cegis and rand35 fail to discover a representative subset, as

their subsets lack the relationship between elements 7 and 0, which are adjacent in

the total ordering.

2we use 35% because it matches our average subset size

72

Subset sizes and representativeness

Figure 8-9: Our approach discovers representative subsets 85% of the times while
sampling 2× the optimal subset size. Measured on 500 datasets drawn from randomly
sampled total orderings

Chosen Subsets on a Particular Dataset

Figure 8-10: Chosen subsets on a particular dataset all. A subset is representative if
it contains all adjacent pair-wise ordering

8.2.2 DFA Synthesis

This task is to synthesize a deterministic finite-state automaton (DFA) from a set of

accepted and rejected strings. The space of hypothesis contains DFA of 6 states over

a binary alphabet of 0 and 1 with a single accept state. The hypothesis space of total

possible DFAs is of size 612 = 2.18 × 109. 1000 strings of variable length between 5

73

and 10 were provided as the dataset for each synthesis task, the experiment consists

of 400 tasks. We use the factorized propagation architecture for this task, where given

a new example string 𝑠𝑡𝑟, its predicted outcome of accept or reject is conditioned on

only the top 10 closest prefix and suffix matching examples from the subset 𝑜. The

neural network architecture is a simple feed-forward neural network that predicts the

accept/reject label of 𝑠𝑡𝑟 directly.

DFA Synthesis

Figure 8-11: Time performance on DFA synthesis. our approach nearly matches
the crafted heuristic h1, which constructs a suffix-tree over the entire dataset 𝑜, and
out-performs all other baselines.

We measure performance against the following: full (all examples in 𝑜), cegis,rand_x

(initialize CEGIS with a random 𝑥 fraction of data), h1 (a heuristic that construct

74

a suffix-tree over the entire dataset, see supplementary). Figure 8-11 (top,left) shows

the comparison of performances in average time. As we can see, the heuristic sub-

set collection h1 performs best on average, but our approach (querying the least

likely example predicted by the propagator) comes in close. As we can see, ours,

h1, full have similar solve time, which we can infer that our approach and h1 have

found a well-constraining representative subset. This is in stark contrast to cegis

which explodes in solve time with hardly any examples chosen. In terms of stability

(Figure 8-11 (bot)), our approach also closely matches that of the heuristic, whereas

all other algorithms (except full) suffers big variance in total time, likely a result of

performing synthesis on under-representative subsets. Figure 8-11 (top,right) shows

the average number of examples in the collected subset, we see that using a learned

propagator outperforms randomly selected subsets of any size.

8.2.3 Programmatic Drawing Synthesis

We evaluate our approach on 250 randomly sampled 32×32 pixel renderings created

from a diagram drawing function. The program synthesis task is to synthesize a

program that can recover the diagram, where each pixel is an input-output example

(See Figure 8-12). The drawing function has a parameter space of size 1.31 × 1023.

We use a propagator to estimate the probability of a pixel being white conditioned

on the pixels selected so-far (𝑜). We again use the factorized propagation function,

where each pixel prediction depends only on a 7 × 7 sliding window centered on it.

The predicted pixel values from the propagator is shown in Figure 8-13.

We measure performance against the following: full (all examples are added),

cegis, rcegis, acegis (different CEGIS flavours on how the counter examples are

selected: canonical top-left most pixel, random, and a fixed but arbitrary order),

rand+cegis (instantiate CEGIS with a random 20% subset), and h1+cegis (a

heuristic that adds a pixel if any pixel within a 5× 5 window has a different value).

The results are shown in Figure 8-14. As we can see, our approach with a learned

propagation performs best on average, beating all competitors on average time. One

unexpected outcome is that cegis performs very well on this domain: We postulate

75

Programmatic Drawing Synthesis

Figure 8-12: Given a 32x32 canvas where each pixel is an input-output example (i.e.
the entire canvas is 𝑜𝑏𝑖𝑔), we use a learned propagator iteratively select the least-likely
example to construct a representative subset (𝑜𝑟𝑒𝑝𝑟), which is then fed into the solver

Figure 8-13: Given the selected pixels, the learned propagator predicts the rest

that the top-left-most counter-examples chosen by cegis happen to be representative

as they tend to lay on the boundaries of the shapes, which is well suited for the

drawing DSL domain. However, such coincidence is not to be expected in general:

By making the counter example be given at random, or given at a fixed but arbitrary

ordering, rcegis and acegis were unable to pick a representative set of examples and

suffer in overall time. In terms of variance (Figure 8-14 (bot)), our approach was able

to match the variance of full (clear representative) and h1+cegis (also representative

as a 5× 5 sliding window can distinguish squares and lines perfectly). However, our

approach was able to discover representative subsets with a much smaller number of

examples (Figure 8-14 (top, right)). Overall, our approach improves synthesis time

and stability by providing the solver with a representative subset upfront.

76

Programmatic Drawing Synthesis

Figure 8-14: Time performance on programmatic drawing synthesis. our approach
with propagation is best in average time, and achieves similar stability as full and
h1+cegis with much fewer samples.

8.3 Bayesian Optimization

In this preliminary study, we investigate whether a learned propagation model can

perform better than a gaussian process with an uninformed kernel. The task is to

achieve the highest outcome with as few queries as possible. The space of oracle func-

tions consists of continuous, peak-like functions that maps [0, 1] to the real numbers.

Moreover, the function consists of two correlated parts, where the left part [0, 0.5]

consists of straight line peaks numbering between 1 and 3, and the right part [0.5, 1]

is identical to the left part, except with some sinusoidal noise added. See Figure 8-15.

77

Figure 8-15: The oracle function consists of two mirroring parts, where the second
part is identical to the first part except for an added sinusoidal noises

Figure 8-16 shows the comparison of using a gaussian process’ as the predictive

posterior, versus using a learned propagation function (using the continuous X, con-

tinuous Y architecture). Here, the blue line is the ground-truth function, and the red

region denotes the area of 1 standard deviation predicted by either GP (left) or the

learned propagation (right). As one can see, the learned propagation can model the

correlations between the left-half of the function and the right-half, while the unin-

formed GP cannot model this. In a trial of 100 randomly sampled oracle functions, an

upper confidence bound algorithm using the learned propagation achieves the highest

outcome of 0.481, while achieving only 0.386 using GP.

Figure 8-16: By using a learned propagator, the agent can make better posterior
predictions on the function values, leading to better queryings for the optimal point

78

Chapter 9

Conclusion

In conclusion, this thesis attempts to use a learned propagation function to make

informative queries, similar to how human make informative queries by relating past

observations to future queries’ outcomes. We’ve demonstrated that the propagation

function can be readily learned by sampling observation data and forcing a neural

network model to learn the relationships between these observations. Once the prop-

agation function is learned, it can be adapted to form a suitable acquisition function,

which provably approximates gold-standard next-best query. We’ve demonstrated

that the learned propagation has superior performances on various informative query-

ing tasks, either by making better queries, or achieving faster computation time.

Future Works One exciting future work is to amortize away the acquisition func-

tion itself, i.e. have a policy 𝜋𝑜 that can directly select the next-best query. Also

learning the space of observation functions 𝐹 is a fascinating question, i.e. learning

what set of questions one should use as communication channel between the agent

and the oracle: Humans play 20 question so well precisely due to our flexibility in the

kind of questions we get to ask, so let’s learn to induce these questions!

If you’ve reached this far, I want to say: Thank you for reading my PhD thesis! As

a disembodied piece of information embedded into these pages, I’m so happy someone

would take their time and read it. :). Go forth and propagate! I should sleep it’s late

lol . . .

79

80

Bibliography

[1] Pankaj K Agarwal, Sariel Har-Peled, and Kasturi R Varadarajan. Geometric
approximation via coresets. Combinatorial and computational geometry, 52:1–
30, 2005.

[2] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the
multiarmed bandit problem. Machine learning, 47(2-3):235–256, 2002.

[3] Gowtham Bellala, Jason Stanley, Suresh K Bhavnani, and Clayton Scott. A
rank-based approach to active diagnosis. IEEE transactions on pattern analysis
and machine intelligence, 35(9):2078–2090, 2013.

[4] Leo Breiman. Classification and regression trees. Routledge, 2017.

[5] Trevor Campbell and Tamara Broderick. Bayesian coreset construction via
greedy iterative geodesic ascent. arXiv preprint arXiv:1802.01737, 2018.

[6] Gereon Frahling and Christian Sohler. A fast k-means implementation using
coresets. International Journal of Computational Geometry & Applications,
18(06):605–625, 2008.

[7] Alexander Gammerman, Volodya Vovk, and Vladimir Vapnik. Learning by trans-
duction. In Proceedings of the Fourteenth conference on Uncertainty in artificial
intelligence, pages 148–155. Morgan Kaufmann Publishers Inc., 1998.

[8] Daniel Golovin and Andreas Krause. Adaptive submodularity: Theory and ap-
plications in active learning and stochastic optimization. Journal of Artificial
Intelligence Research, 42:427–486, 2011.

[9] Alex Holub, Pietro Perona, and Michael C Burl. Entropy-based active learning
for object recognition. In 2008 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition Workshops, pages 1–8. IEEE, 2008.

[10] Jonathan Huggins, Trevor Campbell, and Tamara Broderick. Coresets for scal-
able bayesian logistic regression. In Advances in Neural Information Processing
Systems, pages 4080–4088, 2016.

[11] Toshihiro Kamishima, Hideto Kazawa, and Shotaro Akaho. A survey and empiri-
cal comparison of object ranking methods. In Preference learning, pages 181–201.
Springer, 2010.

81

[12] Andreas Krause and Carlos Guestrin. Submodularity and its applications in
optimized information gathering. ACM Transactions on Intelligent Systems and
Technology (TIST), 2(4):32, 2011.

[13] Tessa Lau, Steven A Wolfman, Pedro Domingos, and Daniel S Weld. Program-
ming by demonstration using version space algebra. Machine Learning, 53(1-
2):111–156, 2003.

[14] Hyafil Laurent and Ronald L Rivest. Constructing optimal binary decision trees
is np-complete. Information processing letters, 5(1):15–17, 1976.

[15] Robert Nowak. Generalized binary search. In 2008 46th Annual Allerton Confer-
ence on Communication, Control, and Computing, pages 568–574. IEEE, 2008.

[16] Yewen Pu, Leslie P Kaelbling, and Armando Solar-Lezama. Learning to acquire
information. arXiv preprint arXiv:1704.06131, 2017.

[17] Yewen Pu, Zachery Miranda, Armando Solar-Lezama, and Leslie Pack Kael-
bling. Selecting representative examples for program synthesis. arXiv preprint
arXiv:1711.03243, 2017.

[18] Irina Rish, Mark Brodie, Natalia Odintsova, Sheng Ma, and Genady Grabarnik.
Real-time problem determination in distributed systems using active probing. In
2004 IEEE/IFIP Network Operations and Management Symposium (IEEE Cat.
No. 04CH37507), volume 1, pages 133–146. IEEE, 2004.

[19] H Sebastian Seung, Manfred Opper, and Haim Sompolinsky. Query by com-
mittee. In Proceedings of the fifth annual workshop on Computational learning
theory, pages 287–294. ACM, 1992.

[20] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian opti-
mization of machine learning algorithms. In Advances in neural information
processing systems, pages 2951–2959, 2012.

[21] Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Sanjit Seshia, and Vijay
Saraswat. Combinatorial sketching for finite programs. ACM Sigplan Notices,
41(11):404–415, 2006.

[22] Simon Tong and Daphne Koller. Support vector machine active learning with ap-
plications to text classification. Journal of machine learning research, 2(Nov):45–
66, 2001.

82

