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Abstract

According to the latest world's top 500 supercomputers list, ~90% of the top High
Performance Computing (HPC) systems are based on commodity hardware clusters,
which are typically designed for performance rather than reliability. The Mean Time
Between Failures (MTBF) for some current petascale systems has been reported to be
several days, while studies estimate it may be less than 60 minutes for future exascale
systems. One of the largest studies on HPC system failures showed that more than 50%
of failures were due to hardware, and that failure rates grew with system size. Hence,
running extended workloads on such systems is becoming more challenging as system
sizes grow. In this work, we design and implement a lightweight fault tolerance
framework to improve the sustainability of running workloads on HPC clusters. The
framework mainly includes a fault prediction component and a remedy component.

The fault prediction component is implemented using a parallel algorithm that
proactively predicts hardware issues with no overhead. This allows remedial actions to be
taken before failures impact workloads. The algorithm uses machine learning applied to
supercomputer system logs. We test it on actual logs from systems from Sandia National
Laboratories (SNL). The massive logs come from three supercomputers and consist of
~750 million logs (~86 GB data). The algorithm is also tested online on our test cluster.
We demonstrate the algorithm's high accuracy and performance in predicting cluster
nodes with potential issues.

The remedy component is implemented using the Linux container technology.
Container technology has proven its success in the microservices domain. We adapt it
towards HPC workloads to make use of its resilience potential. By running workloads

3



inside containers, we are able to migrate workloads from nodes predicted to have
hardware issues, to healthy nodes while workloads are running. This does not introduce
any major interruption or performance overhead to the workload, nor require application
modification. We test with multiple real HPC applications that use the Message Passing
Interface (MPI) standard. Tests are performed on various cluster platforms using different
MPI types. Results demonstrate successful migration of HPC workloads, while
maintaining integrity of results produced.

Thesis Supervisor: John R. Williams

Title: Professor of Civil and Environmental Engineering

4



5



(The Arabic texts included are prayers thanking God, my parents, and my wife)

Acknowledgments

It is an understatement to say that pursuing a PhD at MIT is challenging. I am grateful

to the many who helped throughout this journey. First, I am grateful to God, the most

gracious, the most merciful, for his countless blessings and for giving me the opportunity

to pursue my PhD at the best engineering school in the world. I am grateful for the

patience and guidance he has bestowed upon me to succeed in this journey. It is a dream

to be part of this magnificent institute, and with his grace, I am beyond humbled to be a

part of it.

I would like to thank my advisor Professor John R. Williams. Without his continuous

support and encouragement, this journey would have been impossible to complete. I

appreciate the valuable guidance he provided me whenever I needed it, and the flexibility

he gave me to experiment and pursue new research ideas. I am truly grateful for his

mentorship and the opportunities he has given me. I am also appreciative and thankful to

all of my committee members. I thank Professor Saurabh Amin for kindly serving as my

committee's chair. His insightful suggestions and recommendations always helped me

improve the quality of my writings and work, be it from our very first proposal meeting

discussions, and until our final committee meeting. I would like to thank Christopher Hill,

whom I now consider a friend and a colleague in our domain of work in HPC. I

6



appreciate his invitations to attend research-related HPC conferences, which I enjoyed

attending along with his company. I also appreciate his guidance and bringing my

attention to related research that is taking place in other local universities. His review of

the thesis's first draft was beyond thorough and helped improve the quality of the work. I

am thankful to Dr. Abel Sanchez, whom I think is one of the kindest academics I have

met on campus. I have learned a lot from the classes he taught at MIT along with

Professor Williams. I was academically exposed to practical examples in machine

learning and classification problems, which inspired part of my research. The classes

were also helpful in learning valuable soft skills, such as documenting and presenting

research work through videos, which I ended up utilizing as part of this work.

I would like to thank my dear parents, Othman Sindi and Najwa Rafie, and my

siblings. Even though we were thousands of miles apart, their perpetual encouragement,

prayers, loving, and caring is what has gotten me through challenging times during my

studies. I pray God to bless them and reward them for all what they have provided me.

This journey would have not been tolerable without my loving wife, Nada Alamro,

being by my side. Thank you for being there when I needed it, and for your sincere love

and caring throughout the past few years. I pray God to bless you and bring comfort to

you as you have brought it upon me.

I would like to thank Saudi Aramco for all of the support they have been providing

me throughout my work with them for the past 20 years, and for their scholarship to

pursue my PhD. I specifically would like to thank Saudi Aramco Fellow Dr. Ali Dogru.

7



Dr. Dogru always made sure to ask about me whenever he was visiting Cambridge. The

delightful meetings we had together during his visits were always encouraging and

supportive. He has been a mentor and a father figure to me, and I am forever grateful to

him.

My technical research would have not been easily done without the generous support

I have received from various research entities. I would like to thank the Sandia National

Laboratories (SNL) and Dr. Adam Oliner for providing the HPC systems data, which was

crucial to this research. It is not easy to come across such data, and I am very grateful for

their support and efforts in providing it. I would like to thank Imperial College London,

especially Dr. Tim Greaves, for their support with the Fluidity CFD code. Dr. Greaves

went beyond expectations in providing me a specific Fluidity build for MPICH and

creating an installation repository just for me, which was not publically available at that

time. I would like to thank the team supporting the OPM Flow simulator, especially Dr.

Arne Morten Kvarving, Dr. Alf Birger Rustad, and Dr. Markus Blatt. At the time of

testing, the Red Hat version of the OPM Flow application was not MPI enabled, and the

gentlemen helped providing me a new build repository that supported MPI. I would also

like to thank Amazon and Schlumberger for providing me research grants and allowing

me to use their computational platforms and software as part of my research.

I truly appreciate our CEE and CCE administrative staff, especially Kiley Clapper,

Max Martelli, Kathleen Briana, Sarah Smith, and Kate Nelson for all of their support.

Lastly and mostly, I would like to thank all of my friends and colleagues in MIT's

Geonumerics group, CCES, Saudi Aramco Dhahran, and ASC Cambridge, there are too

many of them to list.

8



Contents

C hapter 1 Introduction .......................................................................... . 16

1.1 Problem Background and Literature Review .................................................... . 16

1.2 Scope of W ork ........................................................................................................ 24

1.3 Contributions........................................................................................................... 31

1.4 D issertation Outline ........................................................................................ . 32

Chapter 2 Fault Prediction Component ............................................... 34

2.1 The D ata.................................................................................................................. 34

2.2TheA lgorithm ......................................................................................................... 37

2.2.1A lgorithm Overview .................................................................................. . 37

2.2.2 M achine Learning M odel of the A lgorithm ............................................... . 44

2.2.3 Training Data for M achine Learning .......................................................... . 45

2.2.4 A lgorithm Sum m ary .................................................................................. . 47

2.3 Results and D iscussion ..................................................................................... . 48

2.4 Sum m ary ................................................................................................................. 58

9



Chapter 3 R em edy Com ponent ............................................................. 61

3.1 Overview of Proposed Remedy Environment ................................................... 62

3.2 System Design ........................................................................................................ 63

3.2.1 Hardware Cluster Setup .............................................................................. 63

3.2.2 Software Setup ............................................................................................. 64

3.2.3 Container Setup.......................................................................................... 67

3.2.4 Network Setup ............................................................................................. 68

3.2.5 Summary of System Design........................................................................ 69

3.3 Selected HPC Applications for Testing .............................................................. 70

3.4Testingand Results ................................................................................................. 72

3.4.1 Container Performance Benchmarks ........................................................... 73

3.4.2 Container M igration Testing....................................................................... 86

3.4.3ResultsIntegrity Check.............................................................................. 91

3.4.4 Container Demo Videos.............................................................................. 96

3.5 Challenges and Solutions.................................................................................... 99

3 .6 S u m m ary ............................................................................................................... 10 5

Chapter 4 Framework Integration and Testing .................................... 106

4.1 Overall View of Integrated Framework ................................................................ 106

4.2 Integration with the HPC Resource M anager ....................................................... 108

4.3FullCycleTesting of Framework ......................................................................... 113

4 .4 S u m m ary ............................................................................................................... 117

C hapter 5 Conclusions and Future W ork .............................................. 118

5.1 Summary and Conclusions ................................................................................... 118

5.2 Future W ork .......................................................................................................... 120

Bibliography .............................................................................................. 122

10



List of Figures

Figure 1.1: Summary comparison of fault prediction method to previous related work.. 28

Figure 1.2: Summary comparison of remedy method to previous related work .......... 30

Figure 2.1: Example Linux syslog message showing date, time, node name, and log

m e ssag e ............................................................................................................................. 3 6

Figure 2.2: Parallel processing architecture based on Spark framework..................... 40

Figure 2.3: Using Bayes theorem to calculate probabilities of nodes being good or bad. 46

Figure 2.4: Example log line manually tagged by SNL with EXTFS to indicate potential

d isk issu e ........................................................................................................................... 4 6

Figure 2.5: Pseudo-code summarizing parallel algorithm to predict nodes with hardware

issu e s ................................................................................................................................. 4 8

Figure 2.6: Confusion matrix for classification results................................................ 53

Figure 2.7: Confusion matrix for classification results................................................ 53

Figure 2.8: Example log line containing insignificant text token of a disk sector number

........................................................................................................................................... 5 4

11



Figure 2.9: Confusion matrix for classification results................................................ 55

Figure 2.10: Parallel algorithm performance on multiple cores when processing

sup ercom puter logs ........................................................................................................... 57

Figure 2.11: Parallel algorithm scalability on multiple cores when processing

sup ercom puter logs ........................................................................................................... 58

Figure 3.1: Summary of system design architecture..................................................... 70

Figure 3.2: Point-to-point MPI benchmarks for IG network ...................................... 75

Figure 3.3: Point-to-point MPI benchmarks for 1OG network ..................................... 76

Figure 3.4: Point-to-point MPI benchmarks for 25G network ..................................... 77

Figure 3.5: Collective MPI benchmarks for IG network ............................................. 78

Figure 3.6: Collective MPI benchmarks for lOG network ........................................... 79

Figure 3.7: Collective MPI benchmarks for 25G network ........................................... 80

Figure 3.8: Benchmarks on m4.2xlarge instances ....................................................... 83

Figure 3.9: Benchmarks on c5.9xlarge instances.......................................................... 84

Figure 3.10: Benchmarks on m4.16xlarge and i3.metal instances ............................... 85

Figure 3.11: Overview of container migration test...................................................... 87

Figure 3.12: Container migration steps....................................................................... 89

Figure 3.13: Results integrity check for the Palabos simulation .................................. 93

Figure 3.14: Results integrity check for the ECLIPSE simulator................................ 93

Figure 3.15: Results integrity check for the Fluidity simulation .................................. 94

Figure 3.16: Md5sum integrity check for gif files produced by the Palabos simulation.. 95

Figure 3.17: Md5sum integrity check for ParaView pvtu files produced by the Fluidity

sim u latio n .......................................................................................................................... 9 5

12



Figure 4.1: Full cycle of overall framework environment.............................................. 108

Figure 4.2: Overall TORQUE resource manager setup with containers ........................ 111

Figure 4.3: Prologue script for TORQUE resource manager to generate containers host

file ................................................................................................................................... 1 12

Figure 4.4: Example TORQUE script to launch MPI job on containers ........................ 112

Figure 4.5: Summary of monitoring daemon performed tasks ....................................... 114

13



List of Tables

Table 2.1: Breakdown of system log sizes.................................................................. . 37

Table 2.2: Number of parallel RDD partitions created and sizes ................................ 41

Table 2.3: Reduced error logs after removing redundancy.......................................... 42

Table 2.4: Effect of RDD repartitioning on algorithm's performance .......................... 43

Table 2.5: Prediction results for nodes with memory issues ....................................... 50

Table 2.6: Prediction results for nodes with disk issues .............................................. 50

Table 2.7: Newly discovered categories of hardware issues ........................................ 51

Table 2.8: Tuned Linux and Spark system parameters................................................ 56

Table 3.1: Summary of tested HPC applications ......................................................... 71

Table 3.2: Input models used for application testing ................................................... 82

Table 3.3: Average container migration times (using standard gpt2 disks) ................ 90

14



Table 3.4: Average container migration times (using enhanced iol disks).................. 90

Table 3.5: Video links for container dem os................................................................. 96

Table 4.1: Examples of injected logs to simulate hardware error precursor .................. 115

Table 4.2: Video demos for framework full cycle tests.................................................. 116

15



Chapter 1

Introduction

1.1 Problem Background and Literature Review

High Performance Computing (HPC) supercomputers are used in many domains and

industries. For example, such systems are heavily used in the oil and gas industry for

performing reservoir simulations and seismic studies. The healthy operation of these

systems in fields like the oil and gas industry is crucial to having a smooth workflow

during the process of oil exploration and production. Such systems, however, are

typically built of commodity hardware that is designed for performance rather than

reliability. According to the latest June 2019 world's top 500 supercomputers list, 90.6%

of the world's top supercomputers are based on commodity hardware HPC clusters [1].

Today's most powerful HPC supercomputers are running in petascale computing power

with thousands of compute nodes consisting of several millions of compute processing
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cores [2]. The Mean Time Between Failures (MTBF) for some of these petascale systems

has been reported to be several days [3], while studies estimate the MTBF for future

exascale systems to be less than 60 minutes [4], [5]. One of the largest studies conducted

on HPC system failures was done on data collected for 9 years from more than 22

production HPC systems installed at Los Alamos National Lab (LANL) [6]. The study

showed that more than 50% of the failures were due to hardware (e.g. memory, disk, and

CPU failures) and that failure rates grew with system size. Hence, running sustainable

workloads on such systems is becoming more challenging as the size of the HPC system

grows. As exascale systems will become reality in the next few years, the need for better

fault tolerance methods in HPC systems is becoming more crucial than ever.

The current de facto standard method to tolerate HPC workload failures is the

application checkpoint-restart (CR) mechanism. In this scenario, the application

periodically saves its state (i.e. checkpoint) in case a failure occurs, and once a failure

occurs, the application can be restarted from its last checkpoint. The Berkeley Lab

Checkpoint/Restart (BLCR) library [7] is popularly used to provide such mechanism for

MPI-based applications [8], which requires installing additional Linux kernel modules on

the system. In general, CR can have several limitations when it comes to large-scale HPC

workloads. CR can have an impact on the performance and scalability of the application.

It can introduce an undesirable overhead due to the needed writing and reading of data to

storage systems to save and retrieve the checkpoint data. High CR overheads ultimately

may lead to lowering the parallel efficiency of the workload as compute processors can

spend more time doing the checkpoint process, rather than actually doing the workload's

computation. Several studies showed that for a petascale system, the CR overhead could
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be more than 50% of the total application execution time [9]-[11]. Other studies also

estimate that future exascale systems could have a MTBF that is even smaller than the

time required to complete a CR process [12]. The CR files can also consume significant

storage space, which is undesirable for computer centers with limited storage or imposed

disk usage quota per user. The CR mechanism is also more of a reactive fault tolerance

method rather than a proactive one, meaning it will remedy the fault after the fact that

your workload had failed due to a system failure, which leads to the interruption of your

workload.

Other studies [13] have attempted to do proactive fault detection locally on HPC

cluster nodes using third-party tools like the Intelligent Platform Management Interface

(IPMI) tool [14], which also has its own limitations. In order for IPMI to work, the HPC

node requires having an additional piece of hardware installed, called the baseboard

management controller (BMC) chip, which provides the monitoring intelligence to the

IPMI tool. The IPMI software will also need to be set up on each node individually as it

is not a native standard tool in the operating system. Such mechanism used to

continuously monitor the health of nodes may also introduce an undesirable overhead on

the system, as the fault probing procedure is performed locally on each node.

Studies such as [15], [16] have also attempted to do fault detection by analyzing

system health logs serially with less emphasis on having a time-efficient approach to do

the analyzation. As mentioned previously, the MTBF for future exascale systems is

estimated to be less than one hour. Hence, the use of serial algorithms to analyze massive

system logs will not be efficient timewise as we are restricted with a relatively small

MTBF value. Also to reduce the latency of obtaining results when doing online detection
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on live supercomputer systems, study [16] used a sliding bounded history approach to

limit the amount of log history information being processed, hence this could lead to an

undesirable omitting or overlooking of some valuable data when analyzing the system

health logs as a whole. Study [17], which is also related to [16], reported that their log

analysis detection algorithm had a precision of 75% only. In addition, they only reported

the precision of the algorithm when run on a limited amount of data that was collected for

only a short period of three weeks from one system (8.3 million logs out of hundreds of

millions). The frequency of running the detection algorithm was also limited to every 15

minutes, which could be insufficient if applied to a large system with a small MTBF.

Other studies [13], [18] used third-party tools such as Ganglia [19] and Nagios [20] to

monitor system resources to detect system problems. However, such approaches also

have their own challenges. The periodic polling done to monitor the system's health by

local monitoring agents such as the Ganglia daemons can have an impact on the

performance and scalability of the application in a large-scale HPC environment. Having

these monitoring agents continuously running on the compute nodes can consume some

of the system's compute and network resources instead of having them fully dedicated

towards the HPC workload running on the system [21], [22]. Also monitoring tools such

as Nagios can have limited analysis capabilities (e.g. simple pattern matching) and are

infamous for being difficult to set up and maintain.

Another study [23] tried predicting failures based on data mainly from systems

running the Windows operating system, which is not a popular operating system in the

HPC domain. As illustrated in the latest June 2019 world's top 500 supercomputers list,

none of the world's top systems are running on Windows [1]. In addition, the average
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accuracy of the prediction methods reported was less than 80%. Methods used in the

study such as the Hidden Markov Model (HMM) are also known for their undesired

computational complexity, especially as the size of the data being processed grows larger.

High computational costs during predictions are undesirable because we are restricted

with small MTBF values for large systems, hence we cannot afford to use a mechanism

that is time demanding during the prediction process.

Other studies like [24], [25] were limited in targeting only one specific type of

failures, hard disks, and their prediction was based on analyzing data collected from a

third-party tool called SMART [26]. In [24], they used a binning process to limit the

amount of data being processed which can lead to some loss of information in the data

being analyzed. In [25], they also used a sliding window approach, similar to [16], to

limit the amount of data being processed when doing predictions, which may also lead to

overlooking valuable data as a whole when predicting the likelihood of a failure. The

study used the Support Vector Machine (SVM) approach to do the predictions, and in

their best case, only 73% accuracy was achieved in predictions.

Study [27] tried predicting disk failures in a disk storage system. The predictions

were based on analyzing kernel-level event logs that were collected from the storage

system. The study used a Naive Bayes approach to do the predictions and they were able

to predict all bad disks with only one false positive. However, the storage system being

analyzed was small in size (only seventeen storage nodes) and the dataset used for testing

was oversimplified and very small (only four failures in entire data). This study also

targeted storage systems only and not complete HPC systems. The logs analyzed also

seemed to be storage-vendor specific and not standard.
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Another approach that has been studied to tolerate failures in HPC environments is

the use of virtual machine (VM) technologies and their migration capabilities. Studies

have previously investigated the use of VMs to migrate workloads from an unhealthy

machine to another as a proactive fault tolerance measure [13], [28]. However, VMs have

their own challenges in terms of the performance overhead they introduce. Traditional

out of the box VM technologies can introduce a resource and performance overhead due

to the virtual emulation of devices (e.g. network adapter) through a hypervisor. Some

earlier studies showed that the network latency with VMs can be more than twice in some

cases compared to a native system [29], [30]. Nevertheless, VM technologies have been

evolving over time and efforts to improve their performance continue. Huang et al. [31]

proposed a prototype I/O bypass mechanism to reduce the IO overhead involved with

VMs. Another more recent I/O bypass method is the single root input/output

virtualization (SR-IOV) specification [32]. Liu [33] evaluated the performance of SR-

IOV on 10 Gigabit networks and still reported a network latency overhead of around 41%

comparing to native performance. The study also reported that SR-IOV introduced a 46%

CPU utilization overhead on the system it ran on. Jose et al. [34] evaluated the

performance of the Ohio State University (OSU) Micro-Benchmarks [35] with SR-IOV

over InfiniBand [36], where collective benchmarks did not perform well, while point-to-

point benchmarks were acceptable. Musleh et al. [37] later attempted to improve the

performance of SR-IOV over InfiniBand by performing none trivial experimental tuning

of network interrupts. The SR-IOV technology also currently still has its own challenges.

SR-IOV is limited to having a hardware/software environment that supports this feature

[38]. Another limitation is that SR-IOV can affect the capability of VM migration, which
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is one of the main desirable features of VMs. For example, the current Red Hat

Enterprise Linux (RHEL) 7 documentation clearly states that VM migration is not

supported when SR-IOV is enabled [39]. Nevertheless, research attempts are currently

ongoing to enable VM migration with SR-IOV, however such functionality it is still not

mainstream and could require custom modifications to hypervisors or the use of custom

Linux kernel modules and additional nonstandard third-party libraries [40], [41].

Another type of migration that has been studied in the domain of HPC is the process-

level migration. In this case, the actual MPI processes are targeted for migration, rather

than migrating a VM that contains them. Reber [42] attempted to use the Checkpoint-

Restore in Userspace (CRIU) tool [43] to perform parallel process migration, however,

they were not successful in migrating parallel MPI processes and were only able to

migrate the serial none parallel version of their application. Another tool targeted to

checkpoint and migrate MPI processes is the Distributed MultiThreaded CheckPointing

(DMTCP) package [44]. The tool requires launching an additional coordinator process on

one of the hosts involved in the computational environment. The application binaries will

also have to be started through the tool's proxy launching script, which may add an

overhead for the running application, especially if the application involves system calls.

In addition, the tool does not work with graphical applications using X-Windows

extensions like OpenGL, and currently cannot checkpoint graphical xterm terminals.

The current emerging alternative to using VMs is the container technology.

Throughout the past recent years, several studies have looked into adopting containers

into HPC environments. Jacobsen et al. [45] did some early work in deploying Docker-

based containers in HPC environments. As a result, they implemented a system called
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Shifter, which enables launching user-defined images of containers. Kurtzer et al. [46]

developed a type of containers called Singularity with HPC in mind. Its implementation

mitigates security implications that are present in other container types such as Docker. A

few studies have also compared the performance of containers to those of VMs and

native systems. Soltesz et al. [47] and Felter et al. [48] reported that the performance of

containers was close to native and always outperformed the VMs, especially with I/O

intensive and latency-sensitive workloads. Xavier et al. [49] compared the performance

of three container types (LXC, Docker, and Singularity) to a native system and reported

that Singularity performed the best. Ruiz et al. [50] evaluated the performance of the

NPB benchmarks [51] in an LXC container environment over a 10 Gigabit network. They

reported a performance overhead of up to 30% on some of the network intense runs.

Their container network setup, however, was using the bridged networking scheme. This

is different from the host-routed networking scheme used in this work, which relatively

has a lower overhead. Zacharov et al. [52] even looked into evaluating the performance

of Nvidia Docker containers when running scientific workloads on Nvidia general-

purpose graphics processing units (GPGPUs). The performance overhead comparing

container to native was less than 4% in the worst-case scenario. More recent studies from

Ohio State University's Network-Based Computing (NBC) Laboratory have also looked

into using containers in HPC [53]-[55]. This included performing various benchmarks

and investigating methods to improve the performance of HPC applications on container-

based environments. These studies were mainly performed in an InfiniBand environment

using the MVAPICH MPI library.



Compared to the well-explored domain of VM migration, container migration is a

young research topic that has not been extensively explored yet, especially in the scope of

HPC. A few studies, however, have attempted to perform container migration in Linux

environments. Pickartz et al. [56] implemented a prototype libvert-based custom Linux

driver to enable container migration with the help of the CRIU tool. However, the study

did not seem to test migration with a real application, but rather with an artificially

induced memory load on the system. Another study proposed a mechanism to migrate

Docker containers based on a logging and replay method [57]. They used a nonstandard

tool called ReVirt [58] to accomplish this. The migrated application, however, was a

standalone web application and not HPC related. A more recent study looked into

migrating containers using the CRIU tool [59]. However, the migrated container didn't

have a real application running in it either, but rather only had a simple run of a serial

Linux tool called memhog [60], which just allocates memory on a system.

1.2 Scope of Work

Based on our literature analysis in the previous section, we believe that proactive fault

tolerance methods for HPC systems need to be improved in terms of fault prediction

accuracy, performance (i.e. time needed to do fault prediction), and overhead reduction

on the HPC workload running on the system. Hence, our proposed fault tolerance

framework differs from previous work as it aims to overcome the limitations discussed in

the literature review section.

In this work, we design and implement a lightweight fault tolerance framework for

HPC systems with the aim to improve the sustainability of running workloads on HPC
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clusters. The framework consists mainly of two components. The first is a fault

prediction component, which proactively predicts hardware issues in the HPC system.

The second is a remedy component, which takes remedial actions towards the HPC

workloads running on the affected system.

The fault prediction component is implemented using a fast and accurate parallel

algorithm that proactively predicts hardware failures in HPC systems with no overhead.

Such predictions can alert system users and allow them to take remedial actions before

failures impact workloads. The algorithm uses a machine learning approach for

predictions when applied to supercomputer system logs. We test the algorithm on actual

logs obtained from HPC systems from Sandia National Laboratories (SNL). The massive

logs are generated by three supercomputers and consist of -750 million logs, which equal

-86 GB of text data. The algorithm is also tested online on our test cluster. We

demonstrate our algorithm's high accuracy and performance in predicting cluster

compute nodes with potential issues.

The work done to implement the fault prediction component of our fault tolerance

framework differs in several aspects from the related work discussed in the literature

review section. We designed the fault prediction algorithm to run externally from the

nodes and it uses Linux's native syslog service as its data source for log probing, hence

no performance overhead is imposed locally on any of the compute nodes of the HPC

system.

The algorithm is also designed to run in parallel in a time-efficient manner, which is

significantly less than the estimated MTBF of future exascale systems. It also uses the

Naive Bayes method, which is known to have a low linear computational complexity. In
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addition to the algorithm being computationally efficient, this efficiency does not

compromise the accuracy of the predictions as we target to achieve an accuracy greater

than 95% when it comes to detecting true positives along with having low false positives

and false negatives. The algorithm is also able to process massive supercomputer system

logs entirely without having to sample or omit any valuable data.

Our work also involves analyzing a significant amount of real failures from Linux

HPC supercomputers used in national labs and does not involve any artificial data or data

from uncommon operating systems. The capabilities of our algorithm are also

demonstrated on the complete data collected over a substantial period averaging around a

year's long of data collection. Figure 1.1 shows a pictorial summary comparing how our

fault prediction work differs from previous work discussed in the literature review section.

The second component of our fault tolerance framework is the remedy component. It

is implemented using the Linux container technology. The container technology has

proven its success in the microservices domain (e.g. webservers) as a scalable and

lightweight technology used in data centers such as Google's. In our work, we adapt the

container technology towards HPC workloads to make use of its resilience potential. By

running HPC workloads inside containers, we are capable of migrating these workloads

from compute nodes anticipating hardware problems, to healthy spare compute nodes

while the workload is running. The migration process is orchestrated with CRIU. The

container environment does not introduce any major interruption or performance

overhead to the running workload. It does not require any application modification either.

We test the remedy component with various real HPC applications that are MPI-based.

Tests are performed on clusters with different hardware node specs, network
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interconnects, and MPI implementations. Results demonstrate successful migration of

HPC workloads inside containers with minimal interruption, while maintaining the

integrity of the results produced.

We have prepared and shared several annotated YouTube videos to demonstrate the

container migration of the various HPC workloads tested. This includes standard

computational workloads, as well as workloads that produce in-situ visualization during

the migration. To the best of our knowledge, we believe such video demonstration

involving CRIU container migration of real HPC workloads is a first.

In addition to the container migration testing, this work performs comprehensive

benchmarks comparing the performance of the container environment to the native

system. The benchmarks are performed using various real HPC applications. Benchmark

results show that running such applications inside containers provides a performance

almost identical to the native system with negligible overhead.

27



This Work

Fault Prediction Method:

. Fault prediction algorithm runs externally from compute nodes with no overhead.

. Parallel algorithm with linear computational complexity (Naive Bayes method) doing
predictions in a time significantly less than estimated MTBF (i.e. < 60 seconds).

. Algorithm tested on ~750 million real system logs.

.Prediction accuracy on massive size data logs > 95%.

.Algorithm analyzes entire data without having to sample or omit any data.

.Data analyzed covers substantial collection period averaging ~1year.

Previous Related Work

Fault Prediction Method:

. Methods use local probing of compute nodes and third party agents causing overhead.

. Serial methods or methods with higher computational complexity, with less emphasis
on a time-efficient approach to comply with challenging MTBF.

. Tests done on significantly smaller amounts of log data (a few million in best case).

. Prediction accuracy on medium size data logs ~70-80%, and >95% on small
oversimplified data logs.

. Uses data sampling methods that may lead to omitting or overlooking valuable data.

. Data analyzed covers shorter collection periods.

Figure 1.1: Summary comparison of fault prediction method to previous related work
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The work done to implement the remedy component of our fault tolerance

framework differs in several aspects from the related work discussed in the literature

review section. All of the container migration related work we came across was done

using serial or artificial workloads. To the best of our knowledge, we believe this work is

the first in the HPC domain to demonstrate successful migration of distributed MPI-based

real HPC workloads using CRIU and containers. We use real HPC applications from

different domains to test the container migration and performance. Most of the related

work, with either VMs or containers, used generic benchmarks such as the High

Performance LINPACK (HPL) [61] or the NAS Parallel Benchmarks (NPB) [51], which

are still valuable tests, but not truly reflective of real HPC applications. In addition, most

of the related work focus their study and solution on a single implementation of MPI (e.g.

MVAPICH), a single type of interconnect (e.g. InfiniBand), or a single type of machine

specs (e.g. fixed memory size). However in this work, we cover a broader scope of study.

We test our container environment with three of the popularly used MPI implementations,

MPICH [62], Open MPI [63], and Intel MPI [64]. We test three different interconnects

which include, 1, 10, and 25 Gigabit Ethernet networks. We also test on four different

machine types that vary in specs (e.g. different memory architectures, memory sizes, and

CPU cores). Figure 1.2 shows a pictorial summary comparing how our remedy

component work differs from previous work discussed in the literature review section.
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This Work

Remedy Method:

. First work in the HPC domain to do successful migration of distributed MPI-based real
HPC workloads using CRIU and containers.

. First work in the HPC domain providing video demonstrations of container migration.

. Method does not require modification of application binary executable.

. Uses various real HPC applications for performance benchmarks and migration tests.

. Container environment tested on a wide range of computational platforms having
different MPI, interconnect, and machine spec types.

Previous Related Work

Remedy Method:

. No previous work demonstrating successful container migration of real HPC
workloads. Related work attempts were done using serial or artificial workloads.

. No previous video demonstrations.

. Methods usually require relinking binary executable with third party library, or
requires running executable through a proxy launcher.

. Most performance benchmarks used are generic, mainly HPL or NPB.

. Tests typically done on a single platform with a specific MPI and interconnect type.

Figure 1.2: Summary comparison of remedy method to previous related work
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1.3 Contributions

The main contributions of this work can be summarized as follows:

1) We provide a proactive fault tolerance method for HPC systems that is

improved in terms of fault prediction accuracy, performance (i.e. time needed

to do fault prediction), and overhead reduction on workload compared to

previous related work.

2) The use of the container technology in the HPC domain as a fault tolerance

mechanism is a field that has not been thoroughly explored yet. To the best of

our knowledge, we believe this work is the first in this domain to demonstrate

successful migration of MPI-based real HPC workloads using CRIU and

containers.

3) We implement a code fix to the open-source CRIU library to enable successful

migration of containers having NFS mounts inside of them.

4) We prepare and share several annotated YouTube videos to demonstrate the

container migration of the various HPC workloads tested. This includes

standard computational workloads, as well as workloads that produce in-situ

visualization during the migration. To the best of our knowledge, we believe

such video demonstration is also a first in the HPC domain.

5) Related work benchmarking containers mainly use generic HPC benchmarks

(e.g. HPL and NPB) on a single system. In this work, we do comprehensive

benchmarks using various real scientific HPC applications on a wide range of

computational platforms. The benchmarks provide results comparing the

performance on containers compared to the native system and quantify the

overhead involved.

6) As the use of containers in HPC is a relatively young topic, we believe that the

challenges we faced with the wide range of tests performed, and the solutions

adopted, are all valuable experiences to share with the HPC community.
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1.4 Dissertation Outline

In Chapter 2, we go over the implementation of the fault prediction component of the

fault tolerance framework. We start by discussing the specifics of the data being analyzed,

followed by the details of the prediction algorithm. We discuss the machine learning

algorithm, as well as the training data used. We also provide pseudo code to summarize

the algorithm's functionality. We share the results obtained with the algorithm and

discuss them in terms of accuracy, performance, and scalability. Finally, a summary and

conclusion is presented.

In Chapter 3, we go over the proposed remedy environment that will be used once

faults are predicted on a system. We start with an overview of the environment, followed

by the system design details of the implementation. This includes the setup details of the

hardware, software, containers, and network. We also present the various HPC

applications that are being tested with the environment. After that, we discuss the tests

performed and the results obtained. We also discuss the challenges faced during the

testing and the solutions that were adopted to overcome them. A summary and conclusion

is presented at the end.

In Chapter 4, we go over the integration of the fault prediction component, the

remedy component, the HPC resource manager, and our custom monitoring daemon,

which all ultimately compose the full HPC fault tolerance framework. We first present an

overview of the fully integrated framework. Next, we discuss our method to integrate the

HPC resource manager into the container environment. We follow by discussing our tests

and demonstrating the framework's successful full functionality. We conclude with a

summary afterwards.
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Finally, Chapter 5 concludes the overall work and summarizes our main contributions.

We also discuss future research directions for testing our framework on other

computationalplatforms.
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Chapter 2

Fault Prediction Component

In this chapter, we discuss the implementation details of the fault prediction

component of the framework. First, we present the details of the analyzed data. Next, we

discuss the details of the prediction algorithm. The machine learning algorithm is

presented, and the preparation of the training data is discussed as well. We summarize the

algorithm with pseudo code afterwards. Results obtained with the algorithm are then

discussed. Finally, a summary and conclusion is presented.

2.1 The Data

Our work targets HPC systems running the Linux operating system, as it is currently

the most widely used operating system for HPC systems. The latest June 2019 list of the

world's top 500 supercomputers shows that 100% of the systems are running on Linux

[1]. The main data source that HPC system administrators consider looking at to
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investigate health issues with an HPC system is the Linux system logs. The Linux

operating system by default collects these system logs locally on each node of an HPC

cluster in a text format. Such operation is considered native and standard for the Linux

operating system to perform. This makes it a desirable source of data as there is no added

overhead for collecting the data locally on the nodes, unlike non-native third-party

methods discussed previously in the literature review section. These system logs are

insightful to monitor issues related to the system, which could help in predicting

hardware failures. The system health data logs collected locally from nodes are typically

forwarded and aggregated in a repository for archiving purposes in data centers. Linux's

standard 'syslog' logging daemon provides a lightweight out of the box functionality to

forward such logs to a central archival repository [65]. The log forwarding is usually

done through the node's general Ethernet network. This does not interfere with the

workload taking place on the cluster since the workload is usually running on a separate

high bandwidth network such as an InfiniBand network. These logs are typically

collected in HPC centers for security purposes as they contain details of activities taking

place on the system.

The collected system logs follow the open-source syslog Berkeley Software

Distribution (BSD) protocol standard used by Linux [66]. This means that logs within a

certain Linux distribution would have a standard and similar structure in terms of content.

Figure 2.1 shows an example line of such logs where it contains information such as the

date and time of when the log was generated, name of node that generated the log, and

the actual log message.
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2015.11.12.07:52:29 node123 kernel: EXT3-fs error (device sda3) in ext3_dirty_inode: 10 failure

Figure 2.1: Example Linux syslog message showing date, time, node name, and log message

Obtaining such system logs for research purposes can be very challenging. HPC

systems are mainly used by national labs or industrial entities. These logs usually contain

sensitive data such as user names, IP addresses, and other security-related data. This

makes it difficult for HPC centers to publically share the data. Centers would typically

have to anonymize the data before sharing it. This can be a tedious and time-consuming

process, which centers may be unwilling to go through. In addition, HPC centers usually

would like to publically show the positive side of the systems they own, for example,

how powerful or stable the systems are, and where they rank among the world's top

supercomputers. Hence, centers can be reluctant to sharing system failure data as it could

affect the global image of these prestigious systems. HPC hardware vendors may also be

hesitant to share failure data, as it is a bad advertisement for their hardware products. We

tried to contact personnel from some US national labs to acquire such data. Personnel

from two national labs were contacted, Los Alamos National Labs (LANL) and Sandia

National Labs (SNL). We chose to contact these two entities as they had a history of

providing HPC related data for researches. LANL confirmed that they collect and have

such data logs from their systems, however unfortunately they no longer release such

collections of data for a number of reasons they did not want to go into. As for SNL, we

were able to get anonymized system logs from three of their former supercomputers.

The data provided by SNL was collected from three supercomputers, Thunderbird,

Spirit, and Liberty. Data obtained from the supercomputers consisted of -750 million
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logs and equal to ~86 GB of text data. The collection period for these logs varied among

the three supercomputers and consisted of several hundred days of log collection for each,

with an average of around 372 days of log collection. Just to have a relative perspective

of how large this data is, the size of the entire recent English language Wikipedia data is

around 127 GB [67]. We counted the number of raw system logs from each of the three

SNL supercomputers and Table 2.1 shows the approximate size breakdown for each.

Supercomputer Name Total Log Size (GB) Number of Raw Log Lines
Thunderbird 27 211,212,192

Spirit 34 272,298,969
Liberty 25 265,569,231

Table 2.1: Breakdown of system log sizes

2.2 The Algorithm

In this section, the implementation of the fault prediction algorithm is presented. First,

an overview of the algorithm is described, followed by a section presenting the machine

learning model of the algorithm. After that, we describe the training data used with the

machine learning approach. Finally, we provide a summary of the algorithm's steps.

2.2.1 Algorithm Overview

The next step after obtaining the system logs was to develop an algorithm to automate

predicting nodes with faulty hardware as a proactive measure. With an estimated MTBF

of less than one hour for future exascale systems, we wanted to design an algorithm that

can process massive system logs consisting of hundreds of millions of lines of logs in

only a matter of a few minutes or less. With that in mind, we planned to develop a
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parallel algorithm that runs on a multi-processor platform in order to process this large

amount of data in a timely manner. Some exascale plans refer to designing systems in

two different scenarios, a slim node, and a fat node scenario [11], [68]. In both cases, the

system will provide a total of a billion computing cores. With slim nodes, the system

would have 1,000,000 nodes, each having 1000 cores. In the fat node scenario, the

system would have 100,000 nodes, each having 10,000 cores. We can get a rough

estimate of the size of system logs produced by such a massive system based on the

average amount of logs produced per day per node by the supercomputers at SNL. If we

went with the worst-case scenario in terms of the number of nodes (i.e. slim nodes setup),

this gave us an estimate of around 60 GB of system logs data produced per day for such

an exascale system. With this in mind, we targeted that our algorithm should be able to

process similar amounts of data in a matter of a few minutes or less.

We decided to use the open-source Apache Spark framework as our development

framework for the algorithm [69]. Spark provides utilities to write programs that can run

in parallel on a local multi-core system, and even on a distributed clustered system. It is

also currently being used by large enterprise entities such as Amazon and Yahoo. The

framework gives you the flexibility to write your code in several options of programming

languages including Scala, Java, and Python and provides APIs for all of these languages

to access the parallel functions available in Spark. It also provides the capability of

loading big data and having it processed fast in-memory once it is loaded. This was a

very desirable feature for us as it supported our need to process tens of gigabytes of

supercomputer system logs data in a scalable and parallel fashion. As Spark provides

APIs for several programming languages, we have chosen Scala as our language of
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implementation [70]. This choice was made because the Spark parallel functions beneath

the hood were also implemented in Scala, hence using Scala gave the best performance

out of the three programming language options. We also discussed this choice with the

inventor of Spark, MIT's Professor Matei Zaharia, who also confirmed that Scala is the

recommended language to be used with Spark for performance.

In order to have a better understanding of how our algorithm works, we briefly

introduce some of the parallel processing concepts that we utilize from the Spark

framework. The main data element which enables parallelism in Spark is called a resilient

distributed dataset (RDD) [71]. We can think of an RDD as a collection of partitions of

our original dataset in which each partition can be operated on in parallel by a computer's

processing core. This is a similar concept to the MapReduce model used in big data

processing [72], in which we have a map step that splits a dataset into smaller parts and

works on them, then we have a reduce step that collects and combines the solutions from

the smaller parts to produce a result. However in the case of RDDs, most of the

processing of these partitions can be done in-memory. This can improve the performance

of the algorithm significantly compared to models like MapReduce, where processing the

data can involve slower frequent accessing of data from disk. Another concept that Spark

uses for parallel processing is the concept of a driver and worker. A driver can be thought

of as your main program that is responsible for scheduling tasks on the workers to

process the partitions of your dataset, and collecting the results of those tasks. The

workers, on the other hand, are the executors of those scheduled tasks, which we can

think of as the multiple computing cores working in parallel. Figure 2.2 illustrates the

concept of RDDs and the driver/worker model with the Spark framework.
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Figure 2.2: Parallel processing architecture based on Spark framework

The algorithm starts by loading the syslog data for one of the three supercomputers

from disk, and then decomposes it into smaller partitions using the Spark library. This is

the first step needed in order to be able to process the large log file in parallel by multiple

computer cores. The number of partitions calculated by Spark mainly depends on the size

of the original data file. The number of partitions is not necessarily a one-to-one mapping

with the number of parallel processing cores available. Instead, the number of partitions

is an integer multiple of the number of processing cores available. This results in an

oversubscription of tasks on the processing cores, which usually leads to a better

performance and cores' utilization since a single task typically does not fully utilize an

entire processing core on its own. Table 2.2 shows the number of partitions initially
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calculated for the three supercomputer log files, where each partition is on average

roughly 32 MB in size.

Supercomputer Name Total Log Size (GB) # RDD Partitions Size of Each Partition (MB)
Thunderbird 27 828 32.61

Spirit 34 1,018 33.40
Liberty 25 769 32.51

Table 2.2: Number of parallel RDD partitions created and sizes

The structure of each log line follows a tabular format consisting of columns. Hence,

once the log dataset has been transformed into parallel RDD partitions, the algorithm then

transforms each line of logs into a comma-separated values (CSV) structure, which is

also done in parallel. The CSV structure gives us more flexibility later on to manipulate

the data.

We notice that the content of such supercomputer logs can have a significant amount

of redundancy in it by nature. For example, if a compute node was having a hard disk

issue and was producing a log message similar to that in Figure 2.1, each time the node

tries to access that troubled disk, the same message can be reported in the logs repeatedly.

As we have shown in Table 2.1, the number of logs for each supercomputer was quite

significant and averaging to around a quarter of a billion logs per supercomputer. With

this in mind, the algorithm next tries to reduce the dimensionality of the data by removing

the redundancy in it. We use a concept borrowed from the databases world and the

Structured Query Language (SQL) language to accomplish this. The SQL language

provides a "distinct" statement, which is typically used to return distinct values from a

database table. Our algorithm applies a similar distinct concept but to an RDD structure

that we preprocess in a tuple format containing the node name and the logs. This enables
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us to remove the redundant error entries from the log files in a parallel fashion. By

removing the redundancy, this improves the overall processing time of the data, and

reduces the memory footprint on the processing cores. We were amazed that this step of

the algorithm reduced the size of the datasets dramatically with an average of around 86%

reduction in log size. Table 2.3 shows the results of applying the reduction step of the

algorithm to the datasets from the three supercomputers.

Supercomputer Name # Raw Log Lines # Reduced Error Log Lines Reduction %
Thunderbird 211,212,192 52,452,811 75

Spirit 272,298,969 34,453,762 87
Liberty 265,569,231 11,589,710 96

Table 2.3: Reduced error logs after removing redundancy

To improve the performance even further, the algorithm also tunes the number of

RDD partitions that Spark originally created and reduces it depending on the percentage

of log reduction. For example, in the case of Thunderbird, only 25% of the data remained

after the reduction, hence the algorithm reduces the number of RDD partitions generated

by Spark to 25% as well, resulting in 207 partitions instead of the original 828. The

repartitioning improved the average overall runtime of the algorithm by around 34%

when running on 16 computing cores as shown in Table 2.4. Having too many partitions

for a reduced amount of data could cause a communication overhead and not enough

amount of work for the processes working on the partitions, hence our repartitioning

technique helps improve the performance as the data is reduced.
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Elapsed Time with Elapsed Time with Performance
Supercomputer Name Original Partitioning Tuned Partitioning Improvement

(seconds) (seconds) %
Thunderbird 66 47 40

Spirit 71 54 31
Liberty 41 31 32

Table 2.4: Effect of RDD repartitioning on algorithm's performance

Looking at the content of the raw logs, we can also see that the order of logs coming

from the different nodes of a cluster is scattered, meaning that logs from different nodes

will be interleaved between each other. The next step that the algorithm perfons is to

scan the hundreds of millions of interleaved log lines and group the logs coming from

each specific node together. This process is done in parallel and produces tuple objects

containing a node name and a list of all its logs. At this stage, we have a reduced

preprocessed data structure containing each node's name and the logs associated with it.

Compute nodes that compose a cluster typically have identical or similar specs in

terms of hardware and software installed on them, hence they tend to produce very

similar syslog system logs. In addition, as we have previously shown in Figure 2.1,

system logs provided by the Linux syslog standard are descriptive of the events taking

place and can have meaningful word semantics as they are meant to be read by system

administrators. The vocabulary used in the logs in terms of errors is also somehow

limited. With this in mind, the algorithm tries to predict the faultiness of nodes using the

statistical characteristics of the logs. We use a machine learning approach to do the

predictions, which is covered in more details in the following section.
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2.2.2 Machine Learning Model of the Algorithm

The algorithm uses a Naive Bayes (NB) classifier model with a Bernoulli setup to

predict node failures [73]. The model is considered a supervised machine learning

approach to do predictions. This means we train the model by exposing it to some

previous precursor failure/non-failure data from one of the HPC systems provided by

SNL, then the model tries to predict if nodes in other HPC system logs would have

failures or not. In the domain of machine learning, this is considered a classification

problem that has a discrete number of outcomes. In this case, it is a binary outcome of

either "0" meaning that the node was predicted as not faulty, or "1" meaning the node

was predicted as a faulty node. This is similar to the concept of using NB classifiers for

spam detection in emails [74]. As an analogy, we can think of the content of an email to

be classified as spam or not to be equivalent to the content of logs coming from a specific

node in the HPC system, which needs to be classified as faulty or not. The classification

of the text "document" is then done based on its words content. The training data

containing previous precursor failures/non-failures from HPC systems will ultimately

build two sets of vocabulary for us, one for faulty nodes and one for normal nodes. The

Bernoulli model of the NB classifier will use a binary mechanism (0 or 1) to flag the

absence or presence of words in a document in one of the two sets of vocabulary we have.

The Bernoulli model does not care about how frequently a word occurs in a document, it

just cares if the word occurred or not. This also explicitly models the absence of words in

a document. This is different from the typical NB classifier used in classification

problems, usually referred to as the Multinomial NB model, where the frequency of word

occurrences is taken into account [73]. The decision to use the Bernoulli model instead of
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the Multinomial model for the NB classifier was influenced after testing both models,

where the Bernoulli model produced more accurate results with less false positives. Also

since we reduced the data by removing the redundancy in it, using the Multinomial NB

model, which depends on word frequencies to do predictions, might not be suitable to use

on data that has been intentionally reduced by removing redundant words from it.

The NB classifier relies on the simple concept of conditional probability. It tells us

the probability that a hypothesis is true if some event has happened [75]. In our case,

given logs of a specific node to be classified, it assigns to this node probabilities for the

two possible classes, good or bad node. Using Bayes' theorem, the probability can be

calculated as in Figure 2.3. The NB classifier has linear complexity requiring a single

pass over the data for training and testing. This is a desired characteristic that makes it a

commonly used classification method due to its performance efficiency compared to

other classifier methods, which may be iterative in nature and more expensive when it

comes to computational complexity [73].

2.2.3 Training Data for Machine Learning

As SNL has provided us with logs of three of their supercomputers, we chose a

portion of the logs from the Thunderbird supercomputer to be the basis of our training

data for the machine learning algorithm. We chose this supercomputer because it was the

largest from the three in terms of the number of nodes, hence it had relatively more

hardware failures compared to the other two and provided richer training data. A previous

study was done by SNL to categorize the types of errors found in these logs [15]. The

process involved manually adding tag labels to errors found in the logs using visual

inspection and simple Linux shell scripting. We use these tags to extract the training data
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we need for our machine learning algorithm. The training data needs to include logs from

nodes that had failures (i.e. bad nodes) and logs from nodes that did not have failures (i.e.

good nodes). For the bad nodes, we picked training data covering two types of common

hardware failures, disk and memory. SNL labeled logs containing potential disk issues

with the label "EXTFS", while logs containing potential memory issues were labeled

with the label "ECC". Figure 2.4 shows an example of such log lines tagged with the

label "EXTFS" indicating a potential disk issue. The training data was around 10% of

Thunderbird's node data.

- What is the probability that a node's given logs D belong to a class C?

- i.e. What is P(CID)? (a posterior probability computed by Bayes Theorem)

- C can be one of two classes, "b" for bad node, or "g" for good node.

P(CID) = P(D IC) P(C) (denominator is fixed, P(D) * 0)
P(D)

- With some manipulations of probabilities, we can find the fixed denominator to be:

P(D) = P(D I C = "b") P(C = "b") + P(D I C = "g") P(C="g")

- The terms P(C = "b") and P(C = "g") are called "class prior" probabilities which are easily found from the
training data. They are the fractions of the bad and good nodes from the total number of nodes in the training data.

- The remaining conditional probability terms can be calculated also based on the training data as follows:

P(D I C = "b") = li P(wi | C = "b"), P(D I C = "g") = ~1H P(wi I C = "g")

- The term P(wi C) is the probability that the i' word of a new given document occurs in a document from class
C's training data.

Figure 2.3: Using Bayes theorem to calculate probabilities of nodes being good or bad

2015.11.12.07:52:29 EXTFS node123 kernel: EXT3-fs error (device sda3) in ext3_dirty_inode: 10 failure

Figure 2.4: Example log line manually tagged by SNL with EXTFS to indicate potential disk issue

Preparing the training data was a complex task on its own due to the massiveness of

the data and the fact that the raw logs are interleaved and not grouped by nodes. This
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required us to write another aiding program in Spark to produce the training data. As a

result, we were able to produce a text file containing training data for bad nodes and

another for good nodes. Each line entry in the training data corresponds to data coming

from one specific node with redundancy removed.

Since the training data are logs containing mainly English words, we also had to

normalize this data. This required stemming the data by removing punctuations (e.g. full

stops and commas), brackets, standalone digits, and stop words (e.g. "is" and "are"). We

used the Apache Lucene English Analyzer library to perform the normalization [76]. This

process to normalize the data is also applied to the test data for consistency.

Furthermore, machine learning algorithms typically expect to take their input training

data in a numerical format, however, the training data are logs containing mainly English

words. Hence, we had to convert these English words into digits using a hashing function.

The produced hashed results can then finally be used to train the model.

We next test the algorithm to predict node failures in the remaining never seen system

logs of the three supercomputer systems. Ultimately in a live system, once the potentially

faulty nodes are identified, the algorithm is to report these nodes to the resource manager

software running on the cluster. The resource manager then flags them as potentially

faulty nodes and takes them out of the resources pool to be further investigated by the

system administrators.

2.2.4 Algorithm Summary

Figure 2.5 provides pseudo-code that summarizes the overall parallel algorithm to

predict nodes with hardware issues in supercomputer system logs, as it was described in

details in the previous sections of Chapter 2.
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Algorithm: Parallel Faulty-Node Prediction Algorithm Based on Spark

Training data input: Preprocessed training data from the Thunderbird supercomputer
Testing data input: Supercomputer Linux syslog system data file (aggregated from all cluster nodes)
Output: List of highly likely nodes having potential for hardware failures

Training Part
load training data files and convert into RDD trainingdata stored in-memory

for all RDD partitions in trainingdata do inparalld (onmulti-cores)

normalize the training data by stemming it
hash the normalized training data to convert it from words to numerical digits
train the Naive Bayes Bernoulli model using the training data and produce the NBBernoulli model

end for

Prediction Part
load syslog data file and convert it into RDD rawlogs stored in-memory
calculate # of produced RDD partitions rdd partitions
set tabular schema headers identifying columns in raw-logs

for all RDD partitions in rawlogs do in parallel (onmulti-cores)

apply CSV formatting for rawlogs
save in-memory CSV formatted node name and logs in RDD csvlogs

for all RDD partitions in csvlogs do in parallel
apply dimensionality reduction to remove redundancy and save in reducedlogs

end for

tune # of rdd_partitions based on the percentage of log reduction

for all RDD tuned partitions in reducedlogs do in parallel
group scattered node logs by node name and save in groupedlogs

end for

for all RDD node partitions in groupedlogs do in parallel
normalize the logs by stemming them
hash the normalized logs to convert them from words to numerical digits and save it in testdata

end for

for all RDD node partitions in testdata do in parallel
predict node failures in test data using the NB Bernoulli model and save results in predictedjaultynodes

end for

end for

report predicted faulty nodes to cluster workload manager through APIs for faulty nodes bookkeeping

Figure 2.5: Pseudo-code summarizing parallel algorithm to predict nodes with hardware issues

2.3 Results and Discussion

In the section, we will discuss the results obtained from applying our fault prediction

algorithm to the logs from SNL. We focus on three aspects, accuracy, performance, and

scalability of the algorithm.

SNL's previous study [15] focused on correctly characterizing and quantifying errors

found in these logs by manually labeling the errors through visual inspection and simple

scripts. As a result of this great effort, SNL provided tag labeled logs as a baseline for
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comparison. We use these tags to help us determine the accuracy of our algorithm when it

comes to predicting faulty nodes. The algorithm does not read these tags when it is

predicting faulty nodes. We compare the algorithm's results to those that were produced

by the manual tagging done by SNL.

We identified the unique nodes that were manually tagged by SNL for two common

hardware issues (i.e. disk and memory), then compared it to those reported by our

algorithm. As explained previously, the training data we used to build our machine

learning NB prediction model was based on logs from the Thunderbird supercomputer.

With this in mind, we first tested the NB model with data from the two other

supercomputers, Spirit and Liberty. In addition, as we only used a small portion of the

overall logs from Thunderbird to build our training data (~10%), we tested the NB model

using the remaining logs from Thunderbird as well. By looking at results in Table 2.5

and Table 2.6, we see that the algorithm was able to predict all the troubled nodes that

were manually tagged by SNL. In addition, it flagged 6 new nodes with potential faulty

memory, and 13 new nodes with potential faulty disks, which were missed by SNL's

tagging. Looking further at the logs of the 19 newly discovered nodes, 16 of them were

true positives with legitimate errors, highlighted in italics in Table 2.5 and Table 2.6,

while only 3 nodes, highlighted in bold in Table 2.6, were false positives.

It is also important to note that in the case of the 3 false positives, the logs of those

nodes contained logs that could be mistaken as hardware disk errors, but they were

actually not. For example, in the case of node liberty2p, the logs were showing an

input/output (1/0) error due to a software file locking issue on a user's home directory on

an external storage system. Such an error looks very similar to a local hardware disk issue
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as both could generate I/O errors. This observation gave us even more confidence in our

machine learning algorithm, as those false positives could justifiably be confused as local

hardware failures even by an unexperienced human system administrator analyzing the

logs visually.

Supercomputer # of Nodes with # of Nodes with NewlyPredicted
Supecmper Faulty Memory Faulty Memory N ded
Name (Manually Tagged) (Algorithm Predicted) Nodes

Thunderbird 81 84 cn624,dn261,
Thunerbrd 8 84badmini

Spirit 0 2 sn105, sn138
Liberty 0 1 libertyip

Table 2.5: Prediction results for nodes with memory issues

Supercomputer # of Nodes with # of Nodes with Newly Predicted
Name Faulty Disks Faulty Disks Nodes

(Manually Tagged) (Algorithm Predicted)

Thunderbird 82 85 bn122,an1002,

sn105, sn111,
Spirit 9 14 sn216, shpnfs,

sadmin2
1n156, n30, In72,

Liberty 0 5liberty2p, ladmin2

Table 2.6: Prediction results for nodes with disk issues

In addition, even though our training data only contained logs of issues from two

common categories (memory and disk), the machine learning algorithm successfully

learned from such patterns and discovered new never before seen categories. This

included 6 new faulty nodes with 3 new categories of hardware issues (power supply,

processor, and management controller battery issues) as illustrated in Table 2.7, which

were all true positives.
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# of Nodes with # of Nodes with # of Nodes with Newly Predicted
Faulty Power Supply Faulty Processor Faulty MC Battery Nodes
(Algorithm Predicted) (Algorithm Predicted) (Algorithm Predicted)

PS: badmin2,
eadmin1, eadmin2

3 1 2 Processor: bn697
MC Battery: cn600,
dn539

Table 2.7: Newly discovered categories of hardware issues

Overall, the algorithm was run on ~750 million logs collected from more than 5000

nodes. The algorithm predicted 197 nodes as potentially having hardware issues. Out of

the 197 nodes, 172 nodes (true positives) matched all those manually tagged by SNL. In

addition, the algorithm was successful in identifying 22 newly discovered nodes not

tagged by SNL, which were all true positives. Only 3 nodes out of the 197 predicted were

false positives. In machine learning classification problems, a confusion matrix is

commonly used to describe the accuracy of the classification model [77]. From the

confusion matrix, we can calculate the overall error rate of the prediction algorithm and

its accuracy. Figure 2.6 shows the confusion matrix and the calculated overall error rate

and accuracy for our results.

Furthermore, we wanted to see how the process of normalizing the data affected the

accuracy of the algorithm. With this in mind, we ran the same experiment again but

without normalizing the data, Figure 2.7 shows the results that were obtained. The

number of false positives didn't change significantly compared to the run with the

normalized data, 3 nodes vs. 6 nodes, however we noticed that a significant amount of

bad nodes, 119 nodes, were missed and were incorrectly classified as good nodes. Having

such a large number of false negative nodes can indeed affect the stability of the

workload running in an HPC environment, as these troublesome nodes would go without
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being noticed. Hence, our data normalization process technique was crucial in improving

the accuracy of the prediction and reducing the data complexity. We believe that

normalizing the data removes many text tokens from the logs that are insignificant for the

prediction process. The presence of such text tokens also negatively affects the accuracy

of the prediction as we have seen in our results. For example, as part of the normalizing

process, we stem text tokens containing standalone digits found in the logs. Due to the

nature of these system logs, we have seen that there is a great amount of such

insignificant standalone digits in the logs. For instance, if a node had a potential disk

issue, you could get a log similar to that in Figure 2.8. In this case, the log contains a

standalone digit token "27156729" which represents a sector number in the potentially

troubled disk. These sector numbers can be unique from one log to another, and having

millions of these logs coming from different nodes may generate millions of unique disk

sector numbers, which are insignificant to the predictions. This complicates the

prediction process as these tokens cause the training and test data to grow with no need,

and evidently affect the prediction's accuracy.
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Predicted Class

Figure 2.6: Confusion matrix for classification results

(NB Bernoulli model with data normalization)

Bad Nodes Good Nodes Total
Bad Nodes 75 119 194
Good Nodes 6 4972 4978
Total 81 5091 5172

Predicted Class

V)W,
(U

75 bad nodes correctly classified as bad nodes.
4972 good nodes correctly classified as good nodes.
119 bad nodes incorrectly classified as good nodes.
6 good nodes incorrectly classified as bad nodes.

sum of misclassified nodes (119 + 6)
Overall error rate = * 100 = * 100 = 2.42%

totalnodes 5172

Accuracy = (100 - error) = (100 - 2.42) = 97.58%

Figure 2.7: Confusion matrix for classification results

(NB Bernoulli model without data normalization)
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WA

U Bad Nodes Good Nodes Total
Bad Nodes 194 0 194
Good Nodes 3 4975 4978
Total 197 4975 5172

194 bad nodes correctly classified as bad nodes.
4975 good nodes correctly classified as good nodes.
0 bad nodes incorrectly classified as good nodes.
3 good nodes incorrectly classified as bad nodes.

sum of misclassified nodes (0 + 3)
Overall error rate = * 100 = * 100 = 0.06%

totalnodes 5172

Accuracy = (100 - error) = (100 - 0.06) = 99.94%



2015.12.07.04:00:03 node123 kernel: end-request: 1/O error, dev sda, sector 27156729

Figure 2.8: Example log line containing insignificant text token of a disk sector number

In addition, the decision to use the Bernoulli model instead of the Multinomial model

for the NB classifier was influenced after testing both models with our algorithm. We

observed that the Bernoulli model produced more accurate results with less false

positives. The Bernoulli model takes into account if a text token is present or not in the

document being classified, without taking into account how frequent that text token

occurs in the document. The Multinomial model, on the other hand, takes into account

the frequency of text token occurrences when classifying the documents. Figure 2.6 and

Figure 2.9 compare the results obtained and their accuracy for both Bernoulli and

Multinomial models when used with the NB classifier. The results show that the

Multinomial model produced far more false positives compared to the Bernoulli model,

773 vs. 3, while the number of true positives was the same for both models. This large

number of false positives reduced the prediction accuracy with a noticeable 15% drop in

accuracy. Having such a large number of good nodes flagged incorrectly as bad nodes

can affect the workflow of the HPC environment. This can be very disruptive to the HPC

system administrators that are monitoring the health of these systems and a waste of time

and effort to investigate such a large number of false red flags. We believe that our

approach of combining the Bernoulli model of the NB classifier along with our methods

of preprocessing the data in terms of reduction, normalization, and grouping, has led to

having a high prediction accuracy, even when processing massive amounts of data.
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Predicted Class

Bad Nodes Good Nodes Total
Bad Nodes 194 0 194

. Good Nodes 773 4205 4978
Total 967 4205 5172

194 bad nodes correctly classified as bad nodes.
4205 good nodes correctly classified as good nodes.
0 bad nodes incorrectly classified as good nodes.
773 good nodes incorrectly classified as bad nodes.

sum of misclassified nodes (0 + 773)
Overall error rate = talnds* 100 = 512*100 = 14.95%

total nodes 5172

Accuracy = (100 - error) = (100 - 14.95) = 85.05%

Figure 2.9: Confusion matrix for classification results

(NB Multinomial model with data normalization)

Next, we share the performance and scalability results of the parallel algorithm when

running on 1 core and up to 16 cores. We ran the algorithm on an AWS Memory

Optimized node of instance type "r3.8xlarge" [78]. The node had 16 computing cores,

244 GB of memory, and a solid-state disk (SSD) of size 320 GB that stored the

supercomputer logs. The Linux operating system used was the 64-bit Red Hat Enterprise

Linux (RHEL) 7 distribution.

Initially when we ran the algorithm using the default standard settings of the Linux

operating system and Spark, the runs failed with errors coming from both Linux and

Spark. The runs were performed using a normal Linux system user (none root). The

Linux errors were related to exceeding the allowable memory usage and the maximum

number of open files for a normal user. The Spark errors were related to running out of

space when writing temporary scratch files on disk. Investigating this further, we had to
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tune some of the default Linux and Spark system settings in order for the system to be

capable of handling the large system log files we were processing. From the Linux

operating system side, we had to tune the memlock and nofile system settings. The

memlock parameter specifies how much memory the system user can lock into their

address space, while the nofile parameter can be used to increase the maximum number

of open file descriptors for the user [79]. The default values for those Linux system

parameters were too low and had to be tuned to resolve the limitation issue. From the

Spark system side, we had to adjust the "spark.local.dir" parameter that is used to point to

the temporary directory used for scratch space in Spark. Instead of using the default /tmp

directory, which was limited in space, we pointed that parameter to a larger directory on

an SSD disk in order to accommodate more data without running out of space. Also to

tune the performance of Spark even further, we adjusted the "spark.driver.maxResultSize"

parameter from its default value of 1 gigabyte to 20 gigabytes. This increased the total

size of results collected from all partitions being processed, which helped improve the

performance when running the algorithm [80]. Table 2.8 shows a summary of the system

parameters we tuned, in order for the algorithm to run with the large amount of data

being processed.

Parameter Tuned Value
memlock unlimited

nofile 63536

spark.local.dir /home/tmp
(20GB SSD partition)

spark.driver.maxResultSize 20g

Table 2.8: Tuned Linux and Spark system parameters

Figure 2.10 and Figure 2.11 show the performance and scalability results of the

parallel algorithm after tuning the parameters. Figure 2.10 shows that the elapsed time for
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processing the logs is directly proportional to the size of the supercomputer log files

mentioned previously in Table 2.1. When running on 16 cores, the average elapsed time

to do the full prediction cycle was only 44 seconds. Figure 2.11 shows the scalability

results of the algorithm when processing the three supercomputer logs, which illustrates a

similar behavior for all three. The scalability was close to linear with the smaller number

of cores, and then it deviates as we go up to 16 cores. We believe the scalability is

affected by several factors. This includes the increased communication and scheduling

overhead that the Spark library will have as we increase the number of cores, the size of

the log file being analyzed, and the redundancy of the data in the logs. Comparing these

scalability results to similar scalability results published by Databricks, a leading

company providing commercial support for Spark that was founded by the inventor of

Spark, our scalability results look very similar to those published by Databricks [81].
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Figure 2.10: Parallel algorithm performance on multiple cores when processing supercomputer logs
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Figure 2.11: Parallel algorithm scalability on multiple cores when processing supercomputer logs

2.4 Summary

In this chapter, we have proposed and demonstrated a fast and accurate parallel

algorithm that proactively predicts hardware issues in HPC systems. With such proactive

predictions, we can alert users of the systems and allow them to take remedial actions

before the failures impact workloads running on the system. The algorithm uses a

supervised machine learning approach based on the Naive Bayes Bernoulli classifier

model. It predicts hardware failures based on the statistical characteristics of the Linux

system logs produced by the HPC systems.

Our objectives when developing the prediction algorithm were to be able to predict

hardware failures with a high level of accuracy, to be able to perform the prediction in a

time significantly less than the estimated MTBF for future exascale systems, and to

perform the prediction without affecting the system's performance. We have shown how
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these objectives were met when testing the algorithm on ~750 million real system logs

from three SNL supercomputer systems.

The algorithm demonstrated a high level of accuracy with only 3 nodes incorrectly

classified out of more than 5000. The algorithm was successful in predicting all troubled

nodes that were previously manually identified by SNL. In addition, it was capable of

predicting new troubled nodes that were not previously flagged by SNL. Furthermore, as

the algorithm uses a supervised machine learning approach for the predictions, it was

capable of predicting new categories of hardware failures that it was not exposed to in the

training data. As for performance, the algorithm was capable of processing the data

entirely and producing the prediction results in a desirable time. It performed the full

prediction cycle in less than one minute for each of the three different supercomputer logs,

with an average run time of only 44 seconds when running on a machine with 16

computing cores. Since we designed the algorithm to run externally from the compute

nodes, no performance overhead will be imposed locally on the nodes running HPC

workloads. In addition, since the algorithm uses Linux's natively generated logs as its

data source, there is no additional overhead introduced on the system to generate and

collect the data. This is unlike related studies discussed, where the data analyzed is

generated by third-party tools and local agents, which consume system resources and

impose a local overhead on the compute nodes.

We believe that our algorithm was able to achieve this high level of accuracy and

performance, even when applied to massive amounts of data, due to the successful

combination of techniques we used. Our approach of combining the Bernoulli model of

the NB classifier along with our methods of preprocessing the data in terms of reduction,

59



normalization, and grouping has led to the desired high prediction accuracy. Performance

wise, the decision to base the algorithm on the linear complexity NB model contributed

to the algorithm's desired performance. Furthermore, our choice of using the Apache

Spark framework for implementation facilitated achieving the desired performance due to

the parallel in-memory processing capabilities. In addition, the tuning we performed for

the Linux and Spark system parameters helped improve the performance of the algorithm

further. Finally, our technique of repartitioning the data after reduction and adjusting its

default number of partitions boosted the performance of the algorithm even further.
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Chapter 3 t
Remedy Component

In Chapter 2 of this work, we have discussed our implementation of a fault prediction

algorithm for HPC systems. In this chapter, we will go over the proposed remedy

environment to use once such faults are identified on a system. We start with an overview

of the environment, followed by the system design details of the implementation. This

includes the setup details of the hardware, software, containers, and network. We also

present the various HPC applications that were chosen for testing with the environment.

After that, we discuss the testing details and results obtained. We also discuss the

challenges faced during the testing and the solutions that were adopted to overcome them.

Finally, a summary and conclusion is presented.

* Work from this chapter has been accepted in the IEEE High Performance Extreme Computing conference
(HPEC '19) for publication. The publication was also competitively selected as Best Paper Finalist.
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3.1 Overview of Proposed Remedy Environment

The method used to design the remedy environment is based on running the HPC

workloads inside Linux containers. Container technology has proven its success in the

microservices domain as a scalable and lightweight technology used in data centers. In

our work, we adapt the container technology towards HPC workloads to make use of its

migration capabilities, which can be thought of as a resilience mechanism. By running

inside containers, we are capable of migrating the HPC workloads from compute nodes

anticipating hardware problems, to healthy spare compute nodes while the workload is

running. Migration is performed using the CRIU tool with no application modification.

The container environment does not introduce any major interruption or performance

overhead to the running workload. We also provide application benchmark results

comparing the performance of the container environment to the native system.

The container environment is tested with various real HPC applications that are based

on the MPI standard. The applications tested come from both academia (open-source)

and the industry (closed-source). When choosing the test applications, we selected ones

written in various programming languages that are commonly used in HPC applications

(e.g. C++, C, and Fortran). The applications also vary in terms of their runtime results.

Some produce in-situ live visualizations of the results as an HPC simulation is being

migrated, while some just produce the typical time-stepping text output to the terminal.

Verifying the integrity of the results produced by the migrated workloads is also

addressed in this study. The applications chosen produce various types of output data

files (text and binary), which are then used for post-processing to verify the integrity of

results. We test the applications with different hardware node types as well as different
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network interconnect types (e.g. 1, 10, and 25 Gigabit Ethernet networks). The MPI

applications are tested with a various number of processing cores ranging from 4 and up

to 144 cores running on multiple nodes. In addition, we test the migration with three of

the commonly used MPI implementations, MPICH, Open MPI, and Intel MPI.

3.2 System Design

In this section, we will go over the details of the system design of the HPC remedy

environment. This will include the setup of the clusters' hardware, software, containers,

and network.

3.2.1 Hardware Cluster Setup

The cluster test environment was set up using the Amazon Web Services (AWS)

infrastructure [82]. We believe that our container environment setup should also work

with traditional Linux clusters that are not AWS based. By using AWS however, it gave

us the option to set up test clusters with various node specs in terms of the number of

processing cores, system memory, and different network interconnect speeds. For our

testing, we chose four types of node instances that varied in terms of specs [83]. The

lower spec nodes were of type m4.2xlarge (4 physical cores each, 32 GB RAM, 1 Gig

network). The medium spec nodes were of type c5.9xlarge (18 physical cores each, 72

GB RAM, 10 Gig network). As for the higher spec nodes, we tested using two types,

m4.16xlarge (32 physical cores each, 256 GB RAM, 25 Gig network) and i3.metal (36

physical cores, 512 GB RAM, 25 Gig network). All instance types, except for i3.metal,

use AWS's hardware virtual machine (HVM) technology to launch the instances. The

i3.metal instances however are AWS's newer bare metal instances. They provide
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applications running on them with direct access to the resources of the underlying server

(e.g. processor and memory resources) in a non-virtualized environment. We specifically

chose instances that are both HVM based and bare metal based to make sure that the

container migration testing would work with both types of environments (virtualized and

non-virtualized).

For all instances, we disable the CPU's hyper-threading mode, CPU's c-states power

saving mode, and CPU's turbo boost mode [84]. These CPU features are commonly

disabled in HPC environments as they can affect the performance/consistency of the HPC

applications running on the system.

All instances access a shared network storage using Amazon's Elastic File System

(EFS), which provides a volume of persistent storage that is mounted on the cluster

instances [85]. The shared storage volume is mounted on the instances through the

Network File System versions 4.1 (NFSv4.1) protocol [86]. This shared storage holds all

the input data for the HPC applications as well as the produced results from running the

HPC applications.

3.2.2 Software Setup

In this section, we will discuss the software setup of the environment in terms of the

operating system and container technology used, as well as the system tools used for

launching and maintaining the containers on the system.

Container technology has been gaining a lot of attention in the past few years due to

its low overhead on the system it runs on, and its capability to provide a performance that

is almost identical to a native system. Containers are more lightweight on the system

compared to traditional VM technologies. A container running on a node will share the
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same operating system kernel and common files without replicating the operating system.

This makes it less memory and space demanding compared to traditional VMs.

Containers also do not rely on a hypervisor to access the underlying system resources. On

the other hand, traditional VMs use hypervisors that can introduce a resource and

performance overhead due to the virtual emulation of devices through a hypervisor. Such

device emulation can affect the performance of the application running on the system.

For example, the emulation of a network card in a VM can affect the communication

latency between different instances, which could be a deal breaker for latency-sensitive

HPC applications. Container technology also provides a convenient way to package an

application and its dependencies for ease of deployment.

Looking at the different types of container technologies currently available, there are

mainly two common types of containers, application containers and system containers

[87], [88]. Application containers typically host individual applications inside a container

and are popularly used to host microservices such as webservers. The resources of the

underlying server where these containers are hosted (e.g. memory, processors, etc.) can

then be partitioned among the multiple application containers running on the system. The

most popular example of this type of containers is Docker, which was initially released in

2013 as an open-source project [89]. System containers, on the other hand, tend to

encapsulate the entire underlying server environment inside a container. This is similar to

the concept of having a VM, however there is no hypervisor overhead involved. A good

example of this type of containers is the OpenVZ containers, which is a mature

implementation initially released in 2005 as an open-source project [90].
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We decided to use system containers to set up our environment and chose OpenVZ

containers. We believe that system containers are more suitable towards an HPC

environment as a single container can behave as a full HPC compute node, encapsulating

all resources of the underlying system. OpenVZ also provided out of the box container

features such as assigning IP addresses to containers, secure shell (ssh) connections, and

NFS shared file system mounting, which are all crucial features to any HPC environment.

In addition, we use the CRJ tool to facilitate the container migrations. CRIU is an

open-source project that provides a checkpoint/restart functionality for Linux based

applications and processes. The project was initially released in 2012. The CRIU tool can

be used to capture the states of CPU, memory, disk, and network of a process or a

hierarchy of processes. Such functionality of CRIU can also be applied to containers as

containers are considered Linux processes themselves. We also use Parallels' "prlctl"

command line tool to provision and manage the containers [91]. In addition, the AWS

Command Line Interface (CLI) package [92] is used for the network management of the

instances. Finally, the "vzpkg" tool [93] is used to install any extra system packages

needed inside the containers.

The OpenVZ version that we targeted for testing was 7.0.7. The kernel provided by

OpenVZ is a variation based on Red Hat Enterprise Linux (RHEL) 7.4 kernel 3.10.0-693.

The OpenVZ variation however has patches that support the container functionally and

its management. To our understanding, the patches applied to the kernel are currently not

mainstream in the Linux kernel. The CRIU version used was version 3.4.0.41-1, while

the "prlctl" container management tool used was version 7.0.148-1. The AWS CLI

package used was version 1.15.61. The "vzpkg" tool used was version 7.0.57-2.
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It is also important to note that the only officially supported method to install

OpenVZ is through their ISO installation image. This created a challenge for us as our

testing environment was set up on the AWS platform, and there was no official way to

install an AWS instance with an ISO image. After discussing this with the OpenVZ

community, it was brought to our attention that there is a commercially supported version

of OpenVZ, called Virtuozzo, which AWS currently provides instances for. Due to the

limitation of not being able to install via ISO image on AWS, we ended up setting our

environment using the equivalent Virtuozzo 7.0.7 image provided by AWS. The concept

of OpenVZ to Virtuozzo is similar to the concept of the CentOS Linux to RHEL, where

OpenVZ and CentOS are the open-source projects that are the basis for their commercial

distributions, while Virtuozzo and RHEL are the commercial distributions that are

bundled with enterprise support to the users. Technically, the kernel and software

versions for both the open-source and commercial variations appeared identical to us.

3.2.3 Container Setup

HPC applications typically would fully utilize the underlying compute node they are

running on. With this in mind, our setup consisted of launching a single container on each

node instance, and that single container would then have full access to the resources of

the underlying server it runs on (e.g. memory, processors, etc.). The launching of the

containers was orchestrated using the "prlctl" container management tool. By default, the

launched containers do not have access restrictions in terms of how many processing

cores to use from the underlying machine. However when it comes to memory, we had to

specify the amount of memory we wanted to allocate for the container when it was being

launched. As we were testing with different types of instances that had different specs,
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we set the containers to use the majority of the memory available depending on the

instance type, while leaving a sufficient amount of memory for the underlying operating

system just as a precaution measure. For example, on the i3.metal instances, the

containers were launched with 500 GB of RAM out of the 512 GB available.

The "prlctl" container management tool was also used to write scripts to automate

launching the containers with specific settings. This included setting the container's

operating system template, name, IP address, users, DNS, NFS mounts, ssh keys, default

bash shell environment variables, default bash shell limits, and the netfilter firewall

settings. The container template used was the CentOS 7 template. In addition, we used

the "vzpkg" tool to automate installing any extra packages we needed inside the container

(e.g. MPI libraries, third-party packages needed by the HPC applications being tested,

etc.).

For each of the HPC applications we were testing, a separate container installation

image was created. Each container image only included the software packages and

application binaries needed for that specific HPC application. This kept the containers

minimal in size.

3.2.4 Network Setup

For every node instance in the cluster, four IP addresses were allocated. The native

instance was assigned 2 IPs, a public and a private one. The container running on the

native instance was also assigned 2 IPs, a public and a private one. The public IPs are

used to access the native instance and the container by the ssh protocol from any remote

terminal. The private IPs are used for local communication between the instances or

between the containers. The lIPs of the native system are associated with the instance's
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primary network interface, while the IPs of the container are associated with the

instance's secondary network interface. By having this setting, the IPs of the containers

can be treated as floating IP addresses, meaning that if a container is migrated from one

physical machine to another, then the IP addresses associated with the container can also

be migrated along with the container. This concept of having a floating IP address was

crucial in order for the HPC applications to be successfully migrated through containers.

By default, the assigned IP addresses in the AWS platform are not static. This means

if you reboot or stop an instance, then there is no guarantee that the instance will come

back having the same IP address once it is up again. In typical HPC environments, the

cluster nodes usually would have static IPs associated with them that do not change upon

reboots. Luckily, the AWS platform provides what is called Elastic IP addresses, which

are static IPs that do not change if an instance was rebooted or stopped [94]. For our

setup, all IPs were set to be static. Having static IPs made it more convenient for us when

doing our benchmarking and container migration testing. The details of how the

containers' IPs were setup is similar to what is found in this reference [95].

Finally, the container network is set up in a host-routed mode [96]. This means that

the native node acts as a local router to any packets going through the container. This

type of networking mode for containers usually provides better latency performance

compared to other modes, such as the bridged networking mode [97].

3.2.5 Summary of System Design

Figure 3.1 gives a pictorial summary of the system design architecture for the

container-based test environment.
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Figure 3.1: Summary of system design architecture

3.3 Selected HPC Applications for Testing

In this section, we briefly go over the HPC applications chosen for the container

migration testing and performance benchmarks. We chose six HPC applications that are

all MPI based. They cover various domains and are implemented in different

programming languages. The applications tested were the Ohio State University (OSU)

Micro-Benchmarks [35], Palabos [98], Flow [99], Fluidity [100], GalaxSee [101], and the

ECLIPSE* industry-reference reservoir simulator by Schlumberger [102]. Table 3.1

summarizes these applications.
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Application Main Developers Language Domain
OSU MPI benchmark for network

Micro-BenchmarksOhioStateUniversity C bandwidth and latency

Palabos Academic: University of Geneva C++ CFD/Complex Physics using
- Industry: FlowKit CFD lattice Boltzmann method

Flow Open Porous Media Initiative C++ Reservoir simulation
(Oil companies + Academia)

- CFD solving Navier-Stokes
Fortran, - Geophysical fluid dynamics

Fluidity ImperialCollegeLondon C++ - Ocean Modelling
- Adaptive unstructured mesh

- Shodor Education Foundation

GalaxSee - National Center for C++ N-body galaxies simulation
Supercomputing Applications

- George Mason University
Industry-reference reservoir

ECLIPSE Schlumberger (commercial) Fortran simulator

Table 3.1: Summary of tested HPC applications

The OSU Micro-Benchmarks suite is a set of MPI benchmarks used to test the

bandwidth and latency performance of MPI functions on HPC networks. It is open-source

and the suite includes various tests for the common MPI operations. For our benchmarks,

we focused on testing a few of the point-to-point MPI benchmarks as well as a few of the

collective MPI benchmarks. This application is the only one out of the six we tested that

is not actually a scientific HPC application, but rather a network benchmark. It allowed

us to compare that container's network performance to that of the native system. OSU

micro-benchmarks version 5.3.2 was used for testing.

Palabos is an open-source computational fluid dynamics (CFD) solver that is based

on the lattice Boltzmann method. It provides a variety of CFD simulation test models that

can be used for benchmarking. Palabos version v2.OrO was used for testing.

Flow is an open-source fully-implicit reservoir simulator. It can be used to run

industry-standard oil reservoir simulation models. It provides a limited number of
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simulation test models. The project is currently maintained by the Open Porous Media

(OPM) initiative. Flow version 2018.04-0 was used for testing.

Fluidity is an open-source multiphase CFD solver. It supports adaptive unstructured

meshes and is capable of numerically solving the Navier-Stokes equation. It provides a

wide range of simulation test models, which include ocean modeling and geophysical

fluid dynamics. It is mainly maintained by the University of Imperial College London.

Fluidity version 4.1.15 was used for testing.

GalaxSee is a simple open-source application that performs the N-body galaxies

simulation and visualization. It allows you to provide parameters for your simulation

such as the number of stars in the galaxy to simulate, star mass, and the simulation period.

GalaxSee version MPI 0.9 was used for testing.

The ECLIPSE simulator is a commercial closed-source reservoir simulator developed

by Schlumberger. It is considered the industry-reference reservoir simulator in the oil and

gas industry. It provides various synthetic reservoir models for testing. ECLIPSE

simulator version 2017.2 was used for testing.

3.4 Testing and Results

In this section, we will go over the details of the two types of tests performed in the

HPC container environment. This includes container benchmark tests, and container

migration tests. We will also go over the integrity check of the results produced from the

migrated workloads. In addition, we will provide references for videos demonstrating the

container migration tests using real HPC workloads.
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3.4.1 Container Performance Benchmarks

The first type of tests conducted was to benchmark the HPC applications on the

container environment and compare the performance to the native system. A native

system is a cluster of instances with no containers running on them. A container

environment would be the same cluster of instances, however on each instance we would

launch a single container that encapsulates the entire underlying native system. The

native instances and the containers have their own distinct IP addresses. The mpirun

launcher is then used to start the MPI jobs. When launching an MPI job on the native

instances, the MPI hostfile will have the IP addresses of the native instances. Similarly,

when launching on the containers, the MPI hostfile will have the IP addresses of the

containers. Once the MPI jobs are completed, we record the elapsed time of execution for

both the native and container environments. Each benchmark is run four times and

timings are averaged. We also calculate the overhead introduced from running on

containers. All application benchmarks were performed using the MPICH MPI library

version 3.0-3.0.4-10, except for the ECLIPSE simulator benchmark where we used the

Intel MPI library version 5.0.2.044. Intel MPI was the supported library for the binary

executable of the ECLIPSE simulator.

The first application tested was the OSU Micro-Benchmarks. For the point-to-point

MPI benchmarks, we tested the osulatency and osubw benchmarks, which report the

network's latency and bandwidth respectively. For the collective MPI benchmarks, we

tested osu-allgather and osuallreduce. These are two of the commonly used collective

MPI operations in HPC applications, and they report the latency of the collective

operations. Each benchmark was performed on a pair of instances of the same type. In the
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case of the point-to-point benchmarks, one processor from each instance participated in

the benchmark. For the collective benchmarks, all available processing cores on each

instance were used. As our instances varied in network specs, the tests were performed on

all three network types available, which included 1, 10, and 25 Gigabit networks. Figure

3.2, Figure 3.3, and Figure 3.4 show the point-to-point MPI benchmarks for the three

network types. Figure 3.5, Figure 3.6, and Figure 3.7 show the collective MPI

benchmarks for the three network types.

In the case of the 1 Gigabit network, the bandwidth of the container and native system

were almost identical. With the 10 Gigabit network, there was a slight bandwidth

reduction on the containers, while on the 25 Gigabit network there was a more noticeable

reduction in bandwidth. Nevertheless, the overall average bandwidth overhead was only

around 3.9 % when using the container environment. As for latency, there was a slight

overhead when using the containers for most of the tests, with both point-to-point and

collective benchmarks. Overall, the average latency overhead was around 6.8 % when

using the container environment. We do not fully understand why the 25 Gigabit network

behaved a bit differently than the others, but we believe this might be related to the need

for more appropriate network tuning for 25 Gigabit networks from the Linux side (e.g.

kernel parameters, etc.).
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Figure 3.2: Point-to-point MPI benchmarks for 1G network
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Figure 3.4: Point-to-point MPI benchmarks for 25G network
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Figure 3.5: Collective MPI benchmarks for IG network
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Figure 3.6: Collective MPI benchmarks for 1OG network
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Such slight performance overhead with containers was to be expected. We believe

that the difference in performance was due to the way the network routing is done. The

container's network is run in a host-routed mode. In this case, the native node acts as a

router to the packets passing through the container. Hence, the container's traffic will

have to go through that one extra step of routing, which contributes to the slight overhead

we are seeing with the containers.

Next, we proceeded with testing the remaining HPC applications. The benchmarks

were performed on the various instance types with MPI job sizes ranging from running

on 4 processing cores, and up to 144 cores. The input models we used for each

application varied depending on the number of processing cores we were running on. For

example, when testing the Fluidity application, we used a moderately sized model

"tephrasettling" when benchmarking on 4 cores, however when benchmarking on 144

cores, we used a significantly larger model "tides-in-theMediterraneanSea" so that the

problem size will not be too small when running on a larger number of cores. Also, note

that for the ECLIPSE simulator and Flow applications, we were only able to test on up to

8 processing cores. For the ECLIPSE simulator, the commercial license we had was

limited to only 8 parallel processes. For Flow, the test models provided with the

application were limited in size (e.g. Nome model was the largest) and problem sizes

were too small to be run on more than 8 cores. Table 3.2 summarizes the input models

used for all the runs.

Figure 3.8, Figure 3.9, and Figure 3.10 show the average elapsed times for the HPC

application runs and compare the performance of the container and native environments.

Even though we previously saw a slight overhead in latency and bandwidth when using
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containers with the OSU Micro-Benchmarks, the performance overhead when testing

with real scientific HPC application was very negligible and close to native performance.

The average performance overhead when running on containers was only 0.034%. In the

worst case, the maximum overhead observed was around 0.9%. Overall, the performance

on the container environment was acceptable for all the HPC applications tested and was

almost identical to the perform-ance of the native environment.

AWS Instance Type Applicaton Model # Nodes Cores
m4.2xlarge Fluidity tephra settling 1 4
m4.2xlarge Fluidity watercollapse 2 8
c5.9xlarge Fluidity water-collapse 1 18
c5.9xlarge Fluidity backwardfacing_step_3d 2 36

m4.16xlarge Fluidity tidesintheMediterraneanSea 4 128
i3.metal Fluidity tides in theMediterraneanSea 4 144

m4.2xlarge Palabos rayleighTaylor2D_2000x600 1 4

m4.2xlarge Palabos rayleighTaylor2D_2000x600 2 8

c5.9xlarge Palabos rayleighTaylor2D 2000x600 1 1 18
c5.9xlarge Palabos rayleighTaylor2D 4000x1200 1 2 36

m4.16xlarge Palabos rayleighTaylor2D 8000x2400 4 128
i3.metal Palabos rayleighTaylor2D 8000x2400 4 144

m4.2xlarge GalaxSee #stars: 8000, mass: 10, time: 10000 1 4
m4.2xlarge GalaxSee #stars: 8000, mass: 10, time: 10000 2 8
c5.9xlarge GalaxSee #stars: 18000, mass: 10, time: 10000 1 18
c5.9xlarge GalaxSee #stars: 36000, mass: 10, time: 10000 2 36

m4.16xlarge GalaxSee #stars: 38400, mass: 10, time: 1000 4 128

i3.metal GalaxSee #stars: 43200, mass: 10, time: 1000 4 144

m4.2xlarge Flow SPE9 1 4

m4.2xlarge Flow Norne 2 8

m4.2xlarge ECLIPSE ONEMI1_4 1 4

m4.2xlarge ECLIPSE ONEMI18 2 8

Table 3.2: Input models used for application testing
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Figure 3.8: Benchmarks on m4.2xlarge instances
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Native vs. Container Peformance - c5.9xlarge (1 node, 18 Cores)
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Figure 3.9: Benchmarks on c5.9xlarge instances
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3.4.2 Container Migration Testing

The second type of tests conducted was to test migrating containers while an MPI-

based HPC application was running inside of them. As we strived to accomplish this goal,

we were faced with various technical challenges that had to be addressed before

succeeding. In this section, we only highlight the testing and results obtained after

resolving all the challenges, while we dedicate section 3.5 of this chapter to go over the

details of the challenges faced and solutions adopted during testing. We next discuss the

migration mechanism, followed by a discussion about the migration timings for the

different applications tested.

Our goal was to launch a distributed MPI application inside containers that are hosted

on several native machines, then try to successfully migrate one of the containers from

one native machine to another (i.e. spare machine) while the MPI job was running. Figure

3.11 gives an overview of the task we were trying to accomplish. We used the "prlctl"

tool as our interface to control the states of the container. The "prlctl" tool uses the CRIU

library to manipulate the container's state. The AWS CLI tool was also used to migrate

the container's floating IP address between machines.
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Figure 3.11: Overview of container migration test
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Overall, the migration steps can be described as follows. First, the container is put in

a "suspend" state as MPI processes are running inside of it. This will cause the MPI job

to freeze temporarily. The MPI processes on the other participating HPC nodes will still

be alive, but waiting for the suspended container to come back. As part of the suspension

process, CRIU takes a dump of the container's state and stores it locally on the native

machine. Next, the container's floating IP address is migrated to the spare node. We

automate the IP migration by writing a custom script influenced by Sabat's [103], which

utilizes the AWS CLI tool for automation. After that, the container is put in a "migrate"

state, which will copy the dumped container's state to the spare machine we are

migrating to. Finally, the container is put in a "resume" state on the spare machine. This

restores the container's state and unfreezes it. At this point, the MPI job resumes from the

same state before it temporarily froze and progresses. The migration and resuming are

done as user root. The HPC application's input data, as well as the output produced by

the run, all reside on a shared NFS storage system, so there is no need to copy any of that

data between the machines involved with the migration. We automate the entire

migration process with a custom script. Figure 3.12 summarizes the migration steps.
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Figure 3.12: Container migration steps

In addition to performing the migration tests, we also observed the time it takes to

complete the container migration for the various HPC applications being tested. Table 3.3

shows the average migration times that we obtained initially. The overall average

migration time was 34 seconds. Looking at the timings, the migration time was

influenced by the size of application binaries and dependent libraries stored inside the

container. In the case of Palabos, GalaxSee, and the ECLIPSE simulator, the application

binaries and dependent libraries were stored on a shared NFS storage and not inside the

container, thus making the container's size relatively smaller. However in the case of

Fluidity and Flow, the installation of the applications was performed using Linux's RPM

packages. This method ends up installing the application binaries and their dependencies

inside the container, thus increasing the size of the container.

We also noticed that the migration time did not change much whether we were using

the 1, 10, or 25 Gigabit network. This was initially puzzling to us as we were expecting

that faster network speeds would speed up the copying of the migration data from one
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machine to another. It seemed to us later that the bottleneck was not the network speed,

but rather the read/write speeds of the local disks storing the container migration dumped

data. The AWS instances by default use a General Purpose SSD (gpt2) local disk that has

a limited throughput. The results obtained in Table 3.3 were done using the standard gpt2

disks. AWS also provides higher throughput disks called Provisioned IOPS SSD (iol)

disks. We tested the migration with the iol disks as well and the migration times

improved as illustrated in Table 3.4. Using the enhanced disks reduced the migration

times by around 35%. With that, the improved overall average container migration time

was now 22 seconds instead of 34 seconds.

Application Migration Time (seconds)
Fluidity 50

Flow 35
Palabos 30

GalaxSee 29
ECLIPSE 26

Table 3.3: Average container migration times (using standard gpt2 disks)

Application Migration Time (seconds)
Fluidity 33

Flow 23
Palabos 19

GalaxSee 19
ECLIPSE 17

Table 3.4: Average container migration times (using enhanced iol disks)

Another attempt to improve the migration time even further was to try to store the

container data in a shared NFS storage instead of it being on the machine's local disk. We

hoped that this approach would eliminate the time spent on copying the container data

over the network during migration. With OpenVZ, the data of the container is stored as a

single-image file on a local disk partition called "/vz". We attempted to have a single
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shared "/vz" partition for all containers which was mounted from a shared NFS storage.

However, this caused the containers to fail to even startup. At the time of our testing, it

turned out that OpenVZ did not support hosting single-image container files through an

NFS shared storage. Their user guide clearly states that the "/vz" partition needs to be on

a local EXT4 file system [104]. With that in mind, we did not pursue the NFS approach

any further.

3.4.3 Results Integrity Check

As part of the container migration testing, it was crucial for us to check the integrity

of the results produced by the HPC applications once the migration was completed and

the MPI job has progressed and finalized. We wanted to make sure that the migration was

not causing any data corruption to the results produced, especially that the types of data

produced varied by the application.

The different HPC applications being tested produced several types of output files.

For example, Fluidity produced binary files (e.g. .vtu and .pvtu files) for post-processing

with ParaView [105]. Palabos also produced binary files for post-processing with

ParaView (e.g. .vtk files) as well as GIF image files. The ECLIPSE simulator and Flow

produced text files (e.g. .log and .prt files) as well as binary output files for post-

processing (e.g. .unsmry and .egrid files). GalaxSee did not generate any output files,

however it produced an in-situ animated visualization of the simulation. Our approach to

verifying the integrity of the results was as follows. For each application, we do a full run

on the container environment without any container migration and we save the

application results. Next, we do the same run but trigger a container migration at a

random time step during the run. We take note at which time step in the run we triggered
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the container migration. Once the migration is done, we let the run complete and save the

results produced. Finally, we do a side-by-side comparison of the results produced with

and without container migration.

To compare the application results, we used several comparison methods. For

applications that produced data files that can be post-processed, we visually compared

results using the appropriate post-processing tools (e.g. ParaView, etc.). For applications

that produced text files, we compared the end results reported in the files. We used tools

such as WinMerge and vimdiff to do a side-by-side comparison of the files [106]. We

also used the md5sum tool [107] to do a checksum comparison on binary files produced

(e.g. .gif, .pvtu, etc.). For the GalaxSee application, we did a visual comparison of the

animated results since the application did not generate any output files for comparison.

Next, we share some examples demonstrating the data integrity checks. Figure 3.13 is

from a Palabos run for a simulation of the Rayleigh Taylor instability. The container

migration was triggered randomly at time step 2400 during the simulation. We compare

the results produced with and without container migration at time step 2400, at time step

3000 after the migration completed and the simulation has progressed a bit, and lastly at

the final time step. From the visual results, we can see that both results were the same

with no corruption in the data produced. Figure 3.14 shows a side-by-side comparison for

the log text files produced by a run for the ECLIPSE simulator, with and without

container migration. Both runs finished at the same final time step 231 and produced

identical results. Figure 3.15 is from a Fluidity run for a simulation of tephra, volcanic

ash particles, settling through a water tank. The container migration was triggered

randomly at time step 100. We compare the results produced with and without container
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migration at time step 100, at time step 125 after the migration completed and the

simulation has progressed, and lastly at the final time step. Again, both post-processed

results looked the same. Figure 3.16 and Figure 3.17 show an md5sum comparison check

of the binary files produced by Palabos (.gif files) and Fluidity (.pvtu ParaView files)

respectively. The checksums were identical for the files produced with and without

migration. For all HPC applications tested, we did not have any discrepancy issues with

the results. All the runs with and without container migration produced consistent results.

Results Integrity Check After Container Migration at Timestep 2400 (Palabos HPC Simulator)

Without Container Migration With Container Migration

Timestep -4 Timestep 2>00

Timesten 3000 Timesten 3000
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Figure 3.13: Results integrity check for the Palabos simulation

Figure 3.14: Results integrity check for the ECLIPSE simulator
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Figure 3.16: Md5sum integrity check for gif files produced by the Palabos simulation
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Figure 3.17: Md5sum integrity check for ParaView pvtu files produced by the Fluidity simulation
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3.4.4 Container Demo Videos

In this section, we share several YouTube videos demonstrating the successful

container migration for some of the HPC applications we tested. We describe the details

of each individual test and reference the links for the videos. The videos are visually

annotated so that the viewer can have a clear understanding of the test scenarios.

The test environment is the same as illustrated in Figure 3.11. The general scenario of

the demo tests is as follows. The MPI job is initially launched on two containers that are

hosted on two different native machines. While the job is running, one of the containers

is migrated to a spare machine. During migration, the MPI job temporarily freezes with

minimal interruption. Once the migration is completed, the MPI job resumes. During the

test, the Linux "top" command is run inside each container to monitor the state of the

MPI processes. On the native machines, we use the Linux "wall" command to run the

"prlctl" tool every one second to list the containers and their states on each native

machine. This helps visually catching the transition states of the containers as they are

being migrated. There are some slight variations of the test scenarios for the different

applications, which we will address next as we describe the videos. Table 3.5 provides

the YouTube link references for the video demos.

Application Demo Video Link

Palabos https://youtu.be/lv73E2Ao3Mk

ECLIPSE https://youtu.be/5tz6JP2UgTk

GalaxSee https://youtu.be/NIT7nJ-yENc

Flow https://youtu.be/KNTVHQnMVHU

Table 3.5: Video links for container demos
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The first video demonstrates the container migration for the Palabos application [108].

The demo shows the application being launched on two containers with two MPI

processes on each. The run is for a 2D simulation of the Rayleigh Taylor instability. As

the application is running, we can see the results and time stepping on the launch terminal

after the application is started with the mpirun launcher. The run also shows a 2D in-situ

visualization of the simulation results as it is running. The container migration for

container "sindi-ctl" is then triggered at a random time step, in this case it was after time

step 2400. During the migration, we can see the state of the container changing from

"running" to "suspended" on the native machine it was initially launched on. We can see

that the MPI job freezes temporarily and the terminal displaying the time stepping results

also freezes. Similarly, the 2D visualization of the simulation temporarily freezes. Once

the container is migrated successfully to the spare machine, the state of the container

changes back to "running" and the time stepping and 2D visualization of the MPI job

resumes and progresses from the same point before it froze. The overall migration time

was around 35 seconds.

The second video demonstrates the container migration for the ECLIPSE simulator

application [109]. We were curious to see how the MPIjob behaves if the container was

to be migrated more than once. In this scenario, we migrate the container back and forth

in a ping-pong fashion between two native machines. We migrated the containers back

and forth six times with no issues. The video however only shows an example by

migrating back and forth once. The job is launched on two containers, with four MPI

processes each. The simulation is run using the "PARALLEL_15000CELLS" test model.

The first container migration is triggered during a random time step, in this case it was
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after time step 36. During migration, the time stepping output to the terminal freezes.

Once the migration to the spare machine is completed, we can see the simulation

continuing at time step 37 and progressing. Next, the container is migrated again, this

time from the spare machine back to the original machine where it was initially running

on. The second migration is triggered after time step 70, and once it is completed, the

application resumes at time step 71 and progresses. The average time of both migrations

was 28.7 seconds.

The third video demonstrates the container migration for the GalaxSee application

[110]. In this scenario, we try to swap two containers simultaneously, "sindictl" and

"sindi-ct2", from two different native machines while an MPI job is running inside of

them. We did this test because we were curious to see how the native machine would

behave as it was getting ready to pack and migrate the data of one of the containers, and

at the same time, it was also getting ready to receive the data of another container being

migrated into it. The demo shows the application being launched on two containers with

four MPI processes on each. The simulation is done for eight thousand stars and an in-

situ visualization is displayed during the simulation. During the swap, the visualization

temporarily freezes, then resumes from the same visual image stage before it froze and

progresses. Looking at Table 3.3, the migration time we reported previously for GalaxSee

was 29 seconds. However, in this case it was a bit higher and around 38.5 seconds. We

believe this is due to the simultaneous migrations taking place as the data of the migrated

containers are being copied at the same time between the two native machines involved.

The last video demo is for the Flow application [111]. This test is different from the

others as it does not involve container migration, but rather further tests the container's
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suspend and resume capabilities. In this scenario, we launch an MPI job on two

containers with four MPI processes each. Next, we suspend all the containers involved in

the job, in this case the job freezes after time step 6. Once all containers are suspended,

we power off the two native machines hosting the two containers and then power them on

again. This can be seen in the video as we issue the "reboot" command on both native

machines. Once both machines are up again, we resume both containers. The MPI job

then resumes successfully at time step 7 and progresses. The demo shows that the

container's resilience capabilities are not only limited to migrations. The ability to

suspend an entire MPI job then resuming it can be useful for HPC centers. For example,

this might be useful in events such as scheduled system downtime maintenance, or

perhaps when doing system patching and upgrades.

3.5 Challenges and Solutions

We were faced with various technical challenges throughout our testing when using

containers in an HPC environment. In this section, we will go over the challenges

encountered and the solutions adopted. Some of the challenges affected the container's

migration, while some affected the container's functionality and performance.

The first issue faced was during the testing of the multiple MPI libraries we were

evaluating with the container environment. Three types of commonly used MPI libraries

were targeted, MPICH, Intel MPI, and Open MPI. We were very keen to test MPICH

with our environment since MPICH, and its derivatives, is considered the most widely

used implementation of MPI in the world according to its website [62]. We believed that

getting MPICH to work was crucial as it is the baseline for several other MPI
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implementations such as MVAPICH, IBM MPI, Cray MPI, Microsoft MPI, and Intel

MPI. Testing Open MPI was also important to us since it is a popular implementation in

the HPC domain and is not a derivate of MPICH.

The testing with MPICH and Intel MPI was trouble-free. We did not have any

technical issues with them in terms of launching MPI jobs on the containers, or when it

came to migrating the containers. On the other hand, we faced a few challenges with

Open MPI. We used Open MPI version 1.10.7, which was the current during our time of

testing. Initially, the basic launching of an MPI job to run inside the containers was

failing. The MPI jobs would fail to start and gave the error "tcp_peersendblocking:

sendO to > socket 9 failed: Broken pipe". Investigating this further, Open MPI appeared

not to support virtual IP interfaces. In this case, OpenVZ uses such interfaces inside the

containers for the network communication (i.e. venetO and venet0:0 interfaces). This

limitation was documented on the Open MPI frequently asked questions (FAQ) page at

the time of our study [112]. The FAQ pages mention that this might get fixed in future

releases. It also references a trouble ticket that addresses this issue [113]. At the time of

our study, that ticket was still in open state and not resolved.

Even though we faced this limitation with Open MPI, we applied a hack to the Open

MPI source code that would enable us to run MPI jobs on the OpenVZ containers, which

can be found in this reference [114]. It is a workaround and is not in the Open MPI

production code, hence there is no guarantee for its proper functionality or stability.

However after applying the hack, we were able to run MPI jobs successfully to

completion on the containers.
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Another challenge we had with Open MPI was related to the connection timeout

behavior of its MPI daemons. During the container migration testing, the MPI processes

in the migrated container are suspended, and as a result, the entire MPI job freezes

temporarily until the migration completes and the job resumes. During this suspension

phase, we wanted to see what kind of tolerance the remaining active MPI processes

would have before they timeout and die. To test this tolerance, we did some tests where

we intentionally suspend a container for more than thirty minutes while the MPI

processes running on it freeze, and then we migrate and resume the container. The MPI

jobs had no issues when doing this test with MPICH or Intel MPI, even with the

prolonged suspension time. However, with Open MPI it was a different case. With Open

MPI, we were successful in migrating the containers as long as the migration time was

around one minute. In the test case where the migration time exceeded one minute (e.g.

around one minute and thirty seconds), the MPI daemons/processes TCP network

connection seemed to timeout and die before the migration completed, which caused the

MPI job to fail. The error produced was the following "ORTE has lost communication

with its daemon located on node. This is usually due to either a failure of the TCP

network connection to the node, or possibly an internal failure of the daemon itself. We

cannot recover from this failure, and therefore will terminate the job". Investigating this

further, the Open MPI FAQ page suggested adjusting several Linux kernel parameters to

change the default tolerance behavior of the TCP connection timeouts [115]. We tried

adjusting these Linux kernel parameters to increase the timeout behavior (e.g.

tcpsyn-retries and tcp-keepalive time parameters), however this did not seem to have

an effect on the Open MPI daemons and they still timed out. We also came across a
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similar issue that was reported previously in the Open MPI online forum. At the time of

our study and according to one of the lead run-time environment developers for Open

MPI, the model to adjust the TCP connection timeout behavior for the MPI daemons was

currently not supported, but might be added in future releases [116]. Having this in mind,

we decided not to investigate this issue further as it seemed to be only specific to Open

MPI. It is also worth noting that adjusting the Linux kernel parameters to increase the

timeout behavior was effective with MPICH and Intel MPI, unlike Open MPI.

A different and more challenging issue encountered was related to having a shared

NFS storage mounted inside the containers. This shared storage is crucial to the

functionality of the HPC applications as it is the central location storing the input/output

data for the applications. Initially, when we attempted to migrate a container with an

active NFS mount, the migration process immediately hanged and the migration

eventually failed. The hanging was taking place in the first step of the migration process,

which is suspending the container. The suspend operation would hang until it timed out

and then gave an error message stating that the container suspension had failed.

Investigating this further, we were able to pinpoint that the issue was related to the CRIU

library. To be more specific, CRIU was hanging during the execution of the code in one

of its files "nfs-ports-allow.sh". Debugging that code further, we found that the code was

hanging in the "nfs serverports"function. Thefunctiontries to run the Linux "rpcinfo"

tool to remotely query NFS ports on the shared storage system mounted inside the

containers, which was causing the hanging and failure of migration. We implemented a

simple fix to CRIU's original code to overcome this issue. This involved disabling the

"nfs serverports" function causing the hanging, and instead of relying on the "rpcinfo"
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tool, we replaced that code with a variable that references the appropriate standard NFS

port numbers. For example, in our case the storage mounts were using the NFSv4.1

protocol, so the standard corresponding port number was port 2049. After applying this

fix to the CRIU code, we were able to successfully migrate the containers with no issues.

Another problem we had in regards to container migration was specific only to the

ECLIPSE simulator application. Initially when attempting to migrate a container with the

ECLIPSE simulator running in it, the migration would fail in its first stage while

suspending the container. Investigating this further, it was clear to us that the issue was

with the CRIU library. Logs were showing the message "remote posix locks on NFS are

not supported yet". Apparently, CRIU currently has a limitation of not being able to

suspend processes that use file locks on a shared storage system [117]. Some parallel

applications may place such file locks on some of their generated output files while the

application is running. Investigating the output files produced by the ECLIPSE simulator,

it was indeed the case. The simulation run was producing a database file with the file

extension ".dbprtx" which had a file lock applied to it. Looking at the release notes of the

ECLIPSE simulator, it mentions that producing this file is optional and that it might

cause issues on shared file systems that do not support file locking (e.g. Lustre file

system) [118]. The solution to this was to prevent the generation of this optional file

during the simulation run. This was achieved by setting the keyword "MESSSRVC" to

off in the input model file for the ECLIPSE simulator. After applying this fix, we were

able to successfully migrate the containers with no issues.

The final issue encountered was concerning the performance of the applications on

the containers. The performance issue only surfaced when we were benchmarking on the

103



instances that had 10 and 25 Gigabit networks. For some of the runs, the benchmarks on

the containers were more than 20% slower compared to the native system. Investigating

this further, it turned out to be a network tuning issue. One of the network parameters that

can affect the network's performance is the Maximum Transmission Unit (MTU). The

MTU is the size of the largest allowed packet that can be transmitted over the network.

Having larger MTU means you can transfer more data in an individual network packet

being transmitted. As a result, this can improve network performance and latency. When

launching instances with 10 and 25 Gigabit networks, the default MTU setting for their

network interfaces was set to a value of 1500 bytes. This value is usually more suitable

for 1 Gigabit networks. Hence, we had to manually change the default MTU value from

1500 to 9000 (usually referred to as jumbo frames) in order to take advantage of the

enhanced networking provided by the underlying system. This was also the

recommendation we later found in AWS's documentation for local node communication

in a cluster [119]. We used the Linux "ip link" tool to change the MTU value of the

network interfaces. It is very important to note that it was not sufficient to only change

the MTU on the interfaces of the native system, but it was also crucial to change it on the

network interfaces inside the containers as well (e.g. venetO interface). Even though the

container's network is run in a host-routed mode, we noticed that changing the MTU only

on the interfaces of the native system enhanced the performance for the native runs only,

while the performance on the container runs was noticeably slower. However, once we

applied the change to the network interfaces on both the native and container

environments, the performance improved and results became consistent.
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3.6 Summary

In this chapter, we went over the remedy component of our fault tolerance framework.

This included the design and testing details of a remedy environment that utilizes the

Linux container technology. We presented our successful experiences in using CRIU

container migration as a means to improve the resilience of running HPC workloads on

commodity clusters, which are commonly prone to hardware failures. We have tested the

container's migration capabilities using various real scientific HPC applications that are

based on the MPI standard. Results show that we can successfully migrate containers

with HPC workloads between different physical machines with minimal interruption,

without application modification, and without any data corruption to the produced results.

To the best of our knowledge, we believe such successful demonstration of CRIU

container migration using real HPC application is a first in the HPC domain. We have

also conducted a broad range of performance benchmarks on containers using real HPC

applications. This covers benchmarking using three network interconnect types and four

different machine types varying in specs. Results show that the performance on

containers was close to native. With this remedy environment design and obtained results,

we have shown that the container technology can be a feasible resilience mechanism for

workloads running on commodity HPC clusters.
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Chapter 4

Framework Integration and Testing

In Chapters 2 and 3 of this work, we have discussed the implementation of the fault

prediction component and remedy component, respectively, of our fault tolerance

framework. In this chapter, we will go over the integration of these two components

along with an HPC resource manager and a custom monitoring daemon, which all

ultimately compose our full HPC fault tolerance framework. We present an overview of

the fully integrated framework, and then discuss how the HPC resource manager was

integrated. We follow that by sharing tests to demonstrate the framework's successful full

functionality. Finally, a summary is presented.

4.1 Overall View of Integrated Framework

The overall fault tolerance framework will be the result of integrating our fault

prediction component and remedy component along with an HPC resource manager and a

106



custom monitoring daemon. The following scenario summarizes a full operational cycle

of how the framework will work. First, a user submits an MPI workload to run on an

HPC cluster requiring several hours or days to complete. The workload is submitted to

the cluster using a typical HPC resource manager. The workload is then prone to failure if

one of the compute nodes was to have a hardware issue. While the workload is running,

the framework's fault prediction component is continuously on the look for compute

nodes that could potentially fail soon. The prediction component is capable of processing

massive amounts of online node logs as they are being produced live from the HPC

system. The fault predictions are done in an appropriate time that is significantly less than

the system's MTBF. Once the prediction component identifies a node with potential

problems, it will report the node to the cluster's resource manager to offline it from the

resources pool and maintain the bookkeeping of the node's status. As the offlined node

still has an active workload running on it, the remedy component next migrates the

workload from the faulty node to a healthy spare node. This involves minor interruption

to the workload during migration, but the workload continues normally on the healthy

node once migrated. Finally, the faulty node is now free from any active workload and

ready for maintenance. A full cycle of the overall framework environment is summarized

in Figure 4.1 with steps.

107



O User submits wo
to run on HPC cl

Not
to

Successful
completion of

workload

Parallel workload
kload distributed
uster to cluster

-+n

0

Resource manager Live node logs
archive

fy resource manager
offline node4 from

resource pool

node4 predicted to fail
Fault prediction

Migrate container with workload component

nodel Workload
continues Trigger

node normally migration

node5 (spare) node4(faulty)

node5 emd
Faulty node powered coment
off for maintenance component

Maintenance

Figure 4.1: Full cycle of overall framework environment

4.2 Integration with the HPC Resource Manager

One of the critical components of an HPC environment is the workload resource

manager. A resource manager is a software component usually used to schedule the

execution of HPC workloads on an HPC cluster through a queueing system. It is also

used to do the bookkeeping of the nodes in a cluster in terms of their status and health.

There are several implementations of such resource managers, some are open-source,

while others are commercial providing professional support. Common examples of HPC

resource managers include TORQUE [120], PBS [121], SLURM [122], and UGE [123].

They all provide similar functionalities, but might have different command syntax to

accomplish the tasks.
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For our test environment, we used the open-source implementation of TORQUE

(version 6.0.1) as the HPC resource manager. It is based on the original Open Portable

Batch System (Open PBS) project developed by NASA [124], however with additional

extended functionalities to provide better scalability. A typical configuration of this

resource manager would involve a server, scheduler, and client daemons to be set up. On

the master cluster node where jobs would be launched, the pbs_server and pbssched

daemons are set up. The pbsserver is the master daemon monitoring and controlling all

compute nodes of the cluster. The pbssched the basic default scheduler daemon for the

queueing system. There are more sophisticated scheduler implementations to use, such as

the commercial Moab scheduler [125], however for our testing purposes, the default

scheduler was sufficient. Finally, the pbs-mom is the client daemon running on each

compute node, which reports its status to the pbsserver.

In integrating our container environment with the resource manager, we wanted to

minimize any changes to the typical resource manager setup you would have on a

standard cluster. As described previously, every physical node in our cluster has a pre-

running container set up on it, which encapsulates the entire node resources. The physical

node has an IP address distinct from the IP address of the container running on it. The IP

of the container is a floating IP address that moves with the container as it is being

migrated. The pbsserver maintains a node list of IP addresses or hostnames of the

compute entities it is managing. Our initial thought was to populate the pbs-server node

list with the IPs of the containers instead of the typical setup where it would contain the

IPs of the physical compute nodes. This would easily allow submitting workloads

directly to the containers through the resource manager. However, such setup would then
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complicate the bookkeeping done by the resource manager to maintain the node's status

and health. This is because the resource manager will no longer be managing physical

machines, but rather virtual container entities, which do not have a physical health status.

With that in mind, we decided to keep the TORQUE system setup identical to what you

would find on a non-container environment, where the pbsserver node list will contain

the IPs of the physical compute nodes. The container integration with the resource

manager is instead done dynamically when the workload is being submitted.

Submitting a workload through an HPC resource managing system typically requires

preparing a launching script, which is then submitted to the job queueing system.

Different resource managers can have different syntax options to use inside these

launching scripts. The resource manager also provides several built-in environment

variables accessible inside the launching script, which can be used to aid in launching the

MPI job on the cluster (e.g. variable containing total number of compute cores job will

use, etc.). Our approach to integrating the container environment with the resource

manager was done using some of those environment variables provided by the system.

In TORQUE, the environment variable PBSNODEFILE is automatically generated

inside your launch script once the jobs are submitted through the resource manager. This

variable points to a temporary file containing the IPs or hostnames of the physical

compute nodes assigned to your job, which is then used as the hostfile that the mpirun

command uses to launch the MPI job on the assigned nodes. Instead of using the

PBSNODEFILE to launch the job, we wrote a custom script that uses the content of that

file to probe the physical nodes and retrieve the IPs of the containers currently running on

those physical nodes. The script then constructs a new hostfile having the IPs of the
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containers. The new hostfile is named container-hosts and is automatically placed in the

same directory from which the job was submitted. The new hostfile is then used to launch

the MPI job with the mpirun launcher. With this approach, we are able to launch jobs on

the containers directly, and at the same time, the pbsserver is still doing the health and

status bookkeeping of the physical compute nodes running the containers.

This approach to integrate the containers with the resource manager also enables us to

make such integration almost transparent to the end users of the cluster. TORQUE allows

the resource manager administrators to automatically execute a preparation script before

any job is launched on the system. This type of script is referred to as a prologue script in

the TORQUE system. We utilize prologue to launch our custom script that generates the

containerhosts file having the IPs of the containers. With this technique, the only minor

change that the end users will have to do in their launching scripts is to reference the

container-hosts file instead of the default PBSNODEFILE when launching the job with

the mpirun launcher. The users will use the standard TORQUE qsub command to submit

the job to the resource manager. Figure 4.2 illustrates the overall setup of the TORQUE

resource manager with containers. Figure 4.3 shows the prologue script used. Figure 4.4

shows a sample TORQUE submission script that will launch the jobs on the containers.

User submits MPI Prologue handles

job using qsub PBS Server distributing MPI job Containw

command (managing physical nodes) on containers (MP1 Process)

PBS Scheduler PBS Mom
(running on physical node)

Cluster master node launching job Physical compute nodes
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Figure 4.2: Overall TORQUE resource manager setup with containers



Figure 4.3: Prologue script for TORQUE resource manager to generate containers host file

#!/bin/sh

#PBS -N palabosjob

#PBS -l nodes=2:ppn=4,walltime=00:15:00

#PBS -q batch

#PBS -o palabosout

#PBS -e palaboserr

#PBS -V

#PBS -X

#Change working directory to where workload was launched from

cd $PBSOWORKDIR

#Launch MPI job on containers

mpirun -enable-x -np $PBSNP -hostfile ./containerhosts ./rayleighTaylor2D.exe

Figure 4.4: Example TORQUE script to launch MPI job on containers
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#!/bin/bash

#Change working directory to where the workload was launched from

cd $PBS_0_WORKDIR

#Remove any existing old host files

rm -f containerhosts

#Generate new host file with container IPs

for node in 'cat $PBSNODEFILE I uniq';

do

export ctjip='ssh $node "prlcti list -a -o ip I grep -v IPADDR xargs"'

echo "$ct-ip:$PBSNUMPPN" >> containerhosts

done

#Change permission of new host file for user to access

chmod 666 containerhosts



4.3 Full Cycle Testing of Framework

In this section, we describe the test environment used to demonstrate the overall

functionality of the framework. The test scenario performed is similar to the steps

illustrated previously in Figure 4.1. We also provide video examples demonstrating a full

cycle test of the framework's fault prediction and remedy functionality using real

applications and the TORQUE resource manager.

A full cycle test starts by a user submitting an MPI job to the container-based test

cluster. The submission is done through the cluster's resource manager using the standard

qsub command. The job is then observed while it is running and being managed by the

resource manager. As the job runs, the Linux system logs from all nodes in our test

environment are gathered live to the logs' central archival repository. At the time of

testing, there were more than one million text logs already gathered in the central logs

archival repository, as nodes have been forwarding their live logs for a while. Next, a

hardware precursor error is simulated on one of the compute nodes that the job is

currently running on. This is done by injecting a single real precursor log into the online

live system logs using the Linux echo command. Table 4.1 shows several examples of

such logs that we gathered and used for testing. Some of the test logs came from SNL,

while others came from examples we gathered online from the web [126]-[134]. As we

inject the log, the fault prediction component of the framework is continuously

monitoring the live logs of the system while the MPI job is running. The fault prediction

component next detects that a node has a potential hardware issue and alerts the resource

manager. The resource manager then puts the affected node offline from the active

resources pool. This also alerts the remedy component to take action. The remedy
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component will then trigger the migration of the container running on the affected node

and have it migrated to a healthy spare node. The workload continues progressing

normally after being migrated. Finally, the affected node is free from any workload

running on it and can be taken down for maintenance.

We implement a monitoring daemon that encapsulates the framework's functionality

entirely. The monitoring daemon is run on a single standalone node. For convenience, we

run it on the master node of the cluster where the resource manager server is running and

where the live central logs of the cluster are accessible. It is set up to run as Linux cron

scheduled job [135], where it is scheduled to run every 60 seconds. Once a failure

precursor log is injected into the live system logs, the monitoring daemon was capable of

predicting the troubled node within the 60 seconds timeframe it was scheduled to run on.

Overall, the tasks performed by the monitoring daemon can be summarized in a

chronological order as in Figure 4.5.

1. Run fault prediction algorithm on live stream of cluster's system logs every 60 seconds.

2. Notify resource manager about predicted faulty nodes.

3. For every identified node that is still active in the resource pool:

o Offline node from current resource pool with timestamp.

o Attach a note to the offlined node in the resource manager bookkeeping system, which

references the potential troublesome system logs.

o Notify remedy component and trigger migration of container from affected node to

healthy spare node.

o Email incident details to system administrator for record keeping and to have affected

node down for maintenance.

Figure 4.5: Summary of monitoring daemon performed tasks
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Hardware Log
Category

Memory device status is non-critical Memory device location: DIMM1_A Possible

memory module event cause:Single bit warning error rate exceeded

Memory device status is critical Memory device location: DIMM1_B Possible

memory module event cause:Single bit error logging disabled

Memory MC2 Error: : SNP error during data copyback

Memory MC1 Error: Parity error during data load

Memory MC4 Error (node 1): DRAM ECC error detected on the NB

Memory Data Cache Error: during Lilinefill from L2

Memory Instruction Cache Error: Parity error during data load

Memory Bus Unit Error: GEN parity/ECC error during data access from L2

Memory Northbridge Error (node 1, core 0): L3 ECC data cache error

bus error 'generic participation, request timed out generic error mem transaction

generic access, level generic'

Memory Northbridge Error (node 1): DRAM ECC error detected on the NB

Disk in start-transaction: Journal has aborted

Disk in ext3_dirty_inode: 10 failure

Disk ext3_journal-start-sb: Detected aborted journal

Disk in ext3_reserveinode_write: 10 failure

Disk ext3_get_inodebloc: unable to read inode block

Processor sensor detected a failure value Sensor location: PROC_2 Chassis

CPU location: Main System Chassis Previous state was: Unknown Processor sensor

status:Presence detected,1ERR

CPU NMI: IOCK error (debug interrupt?) for reason 60 on CPU 0.

Power Power supply detected a failure Sensor location: PS 1 Status Chassis location:
Main System Chassis Previous state was: OK (Normal) Power Supply type: AC

Supply Power Supply state: Presence detected, Failure detected, AC lost

Fan sensor detected a failure value Sensor location: FAN 4A RPM Chassis location:
Fan

Main System Chassis Previous state was: Unknown Fan sensor value (in RPM): 0

Voltage sensor detected a failure value Sensor location: ROMB Battery Chassis

Battery location: Main System Chassis Previous state was: OK (Normal) Discrete voltage

state: Bad

Table 4.1: Examples of injected logs to simulate hardware error precursor
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Finally, we provide two video examples demonstrating a full cycle test of the

framework's functionality. The YouTube links for the video demos can be found in Table

4.2. The first video uses the Palabos application [136], while the second one uses the

Fluidity application [137]. In both videos, the application is launched on two containers

with four MPI processes on each. Several commands of the TORQUE resource manager

can be seen used to submit the application and check the status of the job and resources.

The application is submitted using the qsub command, followed by checking its running

status using the qstat command. After that, the "pbsnodes -l" is used to list any nodes in

the system that are offlined or down, and at this point none exist. As the application is

running, we can see a hardware precursor error artificially being injected, using the Linux

echo command, into the live system logs. Shortly and within a 60 seconds timeframe, we

see the MPI job temporarily freezing as the monitoring daemon has predicted that the

affected node could fail soon, and then triggered the migration of the container from the

affected node to a healthy spare node. Once migrated, the MPI job continues progressing

successfully. Finally, the "pbsnodes -1" command is used again to list any nodes that are

in an offline or down state, and at this point we see that the troubled node was

automatically offlined by the monitoring daemon and has been taken off the active

resources pool.

Table 4.2: Video demos for framework full cycle tests
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Palabos - Full Cycle Demo https://voutu.be/KW60Ju6wWac

Fluidity - Full Cycle Demo https://voutu.be/DCtFhxve5Hc



4.4 Summary

In this chapter, we presented how the HPC fault tolerance framework was fully

integrated and tested. The integration of the fault prediction component, the remedy

component, the TORQUE resource manager, and our custom monitoring daemon all

compose the overall framework. An overview of how a full operational cycle of the

framework was also presented. We then discussed how TORQUE's prologue was used to

integrate the resource manager with the container-based environment. With this setup, the

resource manager was successful in distributing the launched MPI jobs on the containers,

and at the same time, it could still do the bookkeeping of the status and health of the

physical nodes hosting the containers. After that, we discussed the steps involved to do a

full cycle test of the framework. This included submitting a real HPC job through the

resource manager, then artificially injecting various hardware precursor errors into the

live logs of a participating node to simulate hardware issues. In all test cases, the

monitoring daemon was capable of predicting the troubled node within a 60 seconds

timeframe once the precursor errors were injected. The active workload running on the

troubled node was also successfully migrated to a spare node and progressed normally.

Finally, we provided two example YouTube videos successfully demonstrating the steps

of a full cycle test of the framework, which used real HPC applications and the cluster's

resource manager.
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Chapter 5

Conclusions and Future Work

5.1 Summary and Conclusions

In this work, we designed and implemented a lightweight fault tolerance framework

for HPC workloads. The framework serves to improve the resilience of running HPC

workloads on commodity HPC clusters that are frequently prone to hardware issues. The

main contributions of this work can be summarized as follows.

First, a fault prediction component was implemented to proactively predict hardware

issues on compute nodes of a cluster. This is done by using our own developed parallel

algorithm that uses a machine learning approach to analyze system logs of an HPC

system. The algorithm was tested on massive amounts of real data, -750 million logs,

obtained from three supercomputers from SNL. In addition, the algorithm was also tested

online on our live test cluster. Compared to previous related work, our fault prediction
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algorithm provides improved results in terms of fault prediction accuracy, performance

(i.e. time needed to do fault prediction), and overhead reduction on the underlying system.

Second, a remedy component was implemented to sustain the HPC workloads

running on the affected system once faults are predicted. This was done by adapting the

Linux container technology into an HPC environment in order to make use of its

migration capabilities. A code modification to the open-source CRIU library was also

contributed to enable the successful migration of containers having NFS mounts. By

using our container-based HPC environment, we were able to migrate actively running

HPC workloads from machines having potential hardware problems, to healthy spare

machines without affecting the running workload. The environment was tested

successfully using five real HPC applications with three different implementations of the

MPI library (MPICH, Intel MPI, and Open MPI). The environment did not impose any

significant interruption or overhead to the HPC workload running on the system, nor did

it require any modifications to the application. To the best of our knowledge, we believe

this work is the first in the HPC domain to demonstrate successful migration of MPI-

based real HPC workloads using CRIU and containers.

Third, we prepared and shared several annotated YouTube videos demonstrating the

successful container migration of the various HPC workloads tested, as well as videos

demonstrating the full operational cycle of our framework's functionality. This included

testing standard computational workloads, as well as workloads that produced in-situ

visualizations during the migration. To the best of our knowledge, we believe such video

demonstration is also a first in the HPC domain.
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Fourth, we performed comprehensive performance benchmarks on containers using

various real scientific HPC applications. The benchmarks were performed on a wide

range of computational platforms, and they compared the performance of containers to

the native system. Previous related work benchmarking containers mainly use generic

HPC benchmarks (e.g. HPL and NPB) and use a single computational platform for

benchmarking.

Finally, as the use of containers in HPC is a relatively young topic, we believe that

the challenges we faced with the wide range of tests performed, and the solutions adopted,

are all valuable experiences to share with the HPC community.

5.2 Future Work

For future work, we plan to look into performing container migration for HPC

workloads that use other container types such as Singularity and Docker. We also plan to

investigate container migration in HPC environments having InfiniBand networks.

InfiniBand is a popularly used interconnect type in HPC environments, which we think is

crucial to be tested with container migration as well. We believe that InfiniBand will

have its own unique challenges when it comes to container migration. However, the use

of technologies such as IP over InfiniBand (IPoIB) [138] might help facilitate

accomplishing such task. Also in an InfiniBand environment, we will have to test

migration using the MVAPICH MPI library [139], as it is the most popularly used MPI

implementation for such environments. Studies such as [52] were also able to run

workloads on GPGPUs using containers, so it would also be interesting to look, into the

possibility of container migration when GPGPUs are involved, or when other accelerator
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devices such as Intel Xeon Phi [140] are used. We will also be interested to look into

methods to reduce or eliminate the container migration time for HPC workloads. This

includes methods such as using shared file systems to host the container's data, or using

live migrations techniques that could help hide interruptions during migration.
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