
Runtime Execution Tracing and Alignment with
PANDA

by

Leah Goggin

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Masters of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2019

c○ Massachusetts Institute of Technology 2019. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

August 23, 2019

Certified by. .
Tim Leek

Technical Staff, MIT Lincoln Laboratory
Thesis Supervisor

Accepted by .
Katrina LaCurts

Chair, Master of Engineering Thesis Committee

Runtime Execution Tracing and Alignment with PANDA

by

Leah Goggin

Submitted to the Department of Electrical Engineering and Computer Science
on August 23, 2019, in partial fulfillment of the

requirements for the degree of
Masters of Engineering in Electrical Engineering and Computer Science

Abstract

When a reverse engineer executes a binary multiple times and observes different
behaviors, it is often not obvious what caused the difference, since the two execu-
tions may diverge much earlier for unrelated reasons and the relevant input may be
one among tens of millions. This thesis implements a plugin for the Platform for
Architecture-Neutral Dynamic Analysis (PANDA) which tracks control flow at run-
time at the basic block level, recording a hash of the current location in program
structure at every conditional jump. By considering only control flow history up to
and including the current stack frame, multiple divergences and reconvergences can
be detected. Comparing these hashes across executions allows the engineer to narrow
down branches of interest and request more detailed information from the plugin on
a second pass, during which the precise context of nested functions and control flow
within functions is recorded at the selected moment of divergence. Existing PANDA
tools may then be used to trace the variables relevant to the conditional branch back
to some initial input.

Thesis Supervisor: Tim Leek
Title: Technical Staff, MIT Lincoln Laboratory

2

Acknowledgments

I would like to thank Tim Leek for his time and expertise in supervising this project.

Additionally, thank you to Ray, Andrew, Tiemoko, Professor Brendan Dolan-Gavitt,

and the rest of the past and present PANDA team for their support throughout.

3

Contents

1 Introduction 7

2 Background 10

2.1 QEMU . 10

2.1.1 Basic blocks . 11

2.2 PANDA . 11

3 Execution Indexing 13

3.1 Efficient Program Execution Indexing (EPEI) 14

3.2 Efficient Binary Execution Indexing (EBEI) 17

4 Implementation 19

4.1 State maintained . 19

4.1.1 Control flow structure . 19

4.1.2 Block map . 20

4.2 Arguments . 23

4.3 First pass: Recording control flow hash 24

4.4 Second pass: Recording full control flow structure 24

4.5 Misc. implementation details . 25

4.5.1 Disassembly and jump identification 25

4.5.2 Hashing . 26

4.5.3 mmap region offset . 27

4.6 Optimizations . 28

4

4.6.1 Branch counts . 28

4.6.2 Exec vs. translate . 28

4.6.3 Unconditional jumps . 28

5 Evaluation 29

5.1 Text parsing with toy.c . 29

5.2 Modified BusyBox . 32

6 Conclusion 36

6.1 Future Work . 36

6.1.1 Analysis . 36

6.1.2 Usability . 38

A Code Listings 39

5

List of Figures

2-1 PANDA’s nondeterminism boundary (Dolan-Gavitt et al.) 12

3-1 Formal grammar rules for common source code control structures (Bin

et al.) . 14

3-2 Rule derivation trees for two executions (Bin et al.) 15

3-3 Indexing executions with input “acb” and “ab” (Bin et al.) 16

3-4 The values included in the hash which serves as an execution index . 18

4-1 The control flow structure . 21

4-2 The formatted control flow context displayed to the reverse engineer

on a second pass . 25

5-1 Assembly of consume_record from toy.c 30

5-2 The diff between the hashlogs of two executions of toy.c 31

5-3 The full control context at the moment of divergence between two

executions of toy.c . 31

5-4 The context of the call to consume_record in the assembly of toy.c 32

5-5 The output of busybox ls with a non-“trigger” file present 33

5-6 The output of busybox ls with a “trigger” file present 33

5-7 The diff between the hashlogs of two executions of busybox ls . . . 34

5-8 The full control context at the moment of divergence between two

executions of busybox ls . 34

5-9 The context of the diverging jump in the assembly of busybox 35

6

Chapter 1

Introduction

Typical modern software is complex enough that running it with total visibility of

the instructions being executed, the program’s internal state, the inputs and outputs,

and so forth may not easily offer full insight into what the program is doing. Even

in a case where the reverse engineer has the source code - for example, they may be

looking for the root cause of some undesired behavior in their own code - it is not

always obvious where amid what may be hundreds of millions of executed instructions

and gigabytes of constantly-changing memory things are going wrong.

Software reverse engineering techniques are generally divided into the classes of

static and dynamic analysis. Static analysis does not involve executing the code,

instead focusing on other sorts of analysis. It often involves disassembling and/or de-

compiling the code and inspecting it for characteristics of interest, such as exploitable

errors (unsafe bounds checking, etc.). Dynamic analysis does involve running the

code, often with some sort of instrumentation. It offers visibility of the program’s

runtime state, such as call stacks and intermediate data states.

This thesis introduces a dynamic analysis tool to assist the reverse engineer in

identifying instructions and data of interest. In particular, it locates the points at

which two similar executions of the same code diverge, at which point the reverse

engineer may use other tools to track the intermediate variable causing the divergence

back to some raw input.[10][7] An example use case would be two runs of a malware

binary, where in one run the malware displays some behavior such as sending a packet

7

to a command and control server and in the other it does not, and the engineer wants

to know what the malware “looked for” in order to decide what to do.

A naive solution to this problem is to simply log the program counter of every

single executed instruction, then use some alignment tool such as vimdiff to find

divergence. This technique has several problems. First, logging even a four-byte

program counter for every executed instruction will generate a prohibitively large log

for long executions. Second, this technique has no concept of context. That is, if the

same function is called from multiple different areas of the code, it will still appear

as a sequence of identical executions, making meaningful alignment difficult.

Another solution is Bin et al.’s concept of execution indexing, where every execu-

tion of a given instruction is associated with a unique index expressing not only its

function context, but its context within the control flow inside the function, i.e. its

index in any loops surrounding it and its location within any if/else blocks. Their

concept of an execution index works well as a trace for tracking divergence and re-

convergence. However, their solution requires static analysis on source code. Their

paper is discussed in more detail in Chapter 3.

The tool presented in this thesis attempts to find a middle ground between these

approaches. An index conceptually resembling, although not identical to, the one

developed by Bin et al. is tracked at runtime, generating a trace that can be correlated

between multiple different executions of the same code. No access to source code is

necessary. Because the index is expressed as a hash recorded at every conditional

control flow instruction, the size of the log is kept reasonable.

Implemented as a plugin to the PANDA reverse engineering platform, it works in

two stages: first, the control flow is tracked in two or more executions of the program

in which different behaviors are observed. These traces are compared and divergences

are identified. Next, the locations of these divergences are passed into the plugin for

a second run. This time, the plugin logs the full control flow data structure at the

divergence locations. This ultimately allows the reverse engineer to see not only the

precise instruction at which the executions diverged, but also the full context of that

instruction.

8

Chapter 2 of this thesis describes the tools used, particularly QEMU and PANDA.

Chapter 3 elaborates on the concepts used from Bin et al.’s work and describes

how the execution trace used in this thesis differs from and builds on it.

Chapter 4 describes practical implementation details, including how PANDA is

used to instrument a running binary.

Chapter 5 describes two test cases and discusses results in terms of accuracy and

usability.

Chapter 6 concludes with an assessment of future work to be done in the area.

9

Chapter 2

Background

2.1 QEMU

QEMU is an open-source emulator supporting both full-system and Linux user mode

emulation.[4] It allows Linux, Windows, and macOS hosts to run other OSes, without

requiring the guest OS to be built for the same CPU. QEMU is comprised of sev-

eral subsystems, including machine descriptions and emulated and generic devices.

The subsystem most relevant to this paper is the CPU emulator, which must han-

dle code translation between different architectures and the cacheing of that code,

memory management, and hardware interrupt and exception support, among other

concerns.[4]

The current implementation of the code translation process first converts guest

instructions into Tiny Code Generator (TCG) operations, resembling a simplified,

optimized instruction set. These operations are then converted into host instructions.

This simplifies the addition of new architectures, whether as guests or hosts, because it

is only necessary to implement the translations from the new instruction set to/from

TCG rather than implementing a translation for every combination of supported

architectures.

10

2.1.1 Basic blocks

The TCG documentation defines a basic block as “a list of instructions terminated

by a branch instruction”, that is, an unconditional jump, conditional jump, call, or

return.[4] A basic block is assumed to start either 1. immediately after the end of

the previous basic block (in terms of program counter, not execution order) or 2. at

a set_label instruction. The idea is that once a basic block begins executing, it

will run sequentially to its end, at which point QEMU determines which basic block

(referred to as translated block, or TB) should execute next. It is possible for the

execution of a basic block to be interrupted in the middle, if the block is user code

and some circumstance causing a jump to kernel mode occurs. An example of this

is described at the end of Section 4.1.2. Once translated, basic blocks are cached,

such that ideally every basic block that executes is translated exactly once, even if it

executes many times.

2.2 PANDA

The tool described in this thesis is implemented as a PANDA plugin. PANDA is an

open-source reverse engineering platform built on QEMU and primarily developed by

Lincoln Laboratory and Northeastern University. PANDA offers two major capabili-

ties: recording and replaying executions and allowing the reverse engineer to develop

custom analysis plugins. [5]

The record-and-replay capability is accomplished by storing both an initial snap-

shot of the state of the guest at the start of execution and a log of all nondeterministic

information that crosses an “invisible line” surrounding the CPU and RAM, as in Fig-

ure 2-1. Information coming into the CPU through ports, hardware interrupts and

their parameters, and direct memory accesses by peripheral devices are recorded in

this log. This capability is significant because programs may behave very differently

across runs if their execution is influenced by sources of nondeterminism, which often

originate from input from the network or user. Giving the reverse engineer the capa-

bility to iterate on an identical run of the program allows them to more easily track

11

Figure 2-1: PANDA’s nondeterminism boundary (Dolan-Gavitt et al.)

cause and effect and isolate variables to build up knowledge.

PANDA’s plugin interface lets the reverse engineer add instrumentation at sev-

eral points of interest: at the translation and execution of a particular instruction,

before and/or after the translation and/or execution of every basic block, and at

memory accesses, among others.[5] User-implemented callback functions have access

to information such as the CPU state, the memory, and the contents of the current

basic block, and may write to memory and flush the cache of translated basic blocks.

Plugins are implemented in C/C++.

12

Chapter 3

Execution Indexing

An execution index is a particular point in a program’s execution. It is more spe-

cific than a program counter, since the instruction at a given program counter may

be executed many times. The precise definition of an execution index is somewhat

subjective and context-dependent. Bin et al. note that “it is machine undecidable

to conclude if two execution points in two respective executions correspond to each

other. In practice, programmers often decide the correspondence according to their

understanding of the executions. For example, if the two executions have their in-

puts overlapped, the sub-executions driven by the overlapping input elements should

correspond.”[11]

This chapter first describes Bin et al.’s approach to defining an execution index.

At a high level, they fully describe a location in the program’s control flow graph

using a formal grammar and propose a method of deriving that grammar via static

analysis. The second section describes divergences from this approach chosen to suit

the use case of interest to this thesis. In particular, 1. control flow in this thesis is

considered in terms of assembly rather than source code structures, 2. all analysis is

done at runtime, and 3. the index must be useful and practical in a reverse engineering

context.

13

Figure 3-1: Formal grammar rules for common source code control structures (Bin et
al.)

3.1 Efficient Program Execution Indexing (EPEI)

In Efficient Program Execution Indexing, Bin et. al. propose a formal definition for

an execution index: they require that for two different execution points in the same

program, run on the same input, the indices must not be equal.[11] They then present

an example of such an index. Their key insight is that valid paths through the control

flow graph of a given piece of software can be described by a string generated from

what they call an Execution Description Language (EDL), and the nested rules of

this language at a given point form a suitable execution index. The grammar rules

corresponding to common control flow constructs are shown in Figure 3-1.

Their paper contributes an algorithm for statically analyzing source code in order

to generate the grammar rules of its particular EDL. Their EDLs use lines of source

code as terminal characters and maintain a context stack during runtime to track

which grammar rule should be “active” in parsing encountered code. Dominators and

postdominators of function, loop, and if/else contexts are instrumented with enter

and exit labels before runtime as a cue to push to and pop from this context stack.

Identifying these dominators and postdominators requires static analysis of the source

code prior to runtime.

At the beginning of execution, the execution index would simply be the starting

14

Figure 3-2: Rule derivation trees for two executions (Bin et al.)

rule. As nested contexts (of functions, loops, and if/else statements) are entered and

exited, rules are pushed and popped from the stack. The contents of the stack at any

given moment form the efficient program execution index (EPEI). This is equivalent

to “the path from the root of the derivation tree to the leaf node representing [the

point]”, if the rule expansion is represented with a tree as in Figure 3-2.

The advantage of Bin et al.’s approach is that its stack-centric structure allows for

reconvergence, since there is the possibility of divergent sections of execution being

popped from the stack and returning it to an aligned state. The disadvantage in

a reverse engineering context is that maintaining this rule stack requires knowing

exactly when structures such as loops and if/else blocks are entered and exited, and

Bin et al.’s preprocessing to determine this requires access to source code. The next

section describes this thesis’s approach to defining an index which retains the desirable

qualities of the EPEI, while handling control flow within functions without requiring

access to source code.

Bin et al.’s implementation also includes the concept of anchor points. Anchor

points are user-specified locations at which the running index is reset, allowing the

15

Figure 3-3: Indexing executions with input “acb” and “ab” (Bin et al.)

system to detect sequences of identical execution even if there is some divergence

prior to the beginning of the aligned sequence, i.e. lower on the rule stack. In Figure

3-3, the expansion of the grammar rules into lines of source is shown for the inputs

"acb" and "ab", demonstrating how a “reset” at line 8 (the beginning of a sequence

in which input letters are individually processed) allows for identical derivation trees

to be generated by the identical sub-inputs. Not manually specifying anchor points

means diverging executions can reconverge only upon exit from the context of the

“lowest” divergence, which is a weakness of the stack-based indexing approach.

16

3.2 Efficient Binary Execution Indexing (EBEI)

The Efficient Binary Execution Indexing (EBEI) used in this thesis is an adaptation

of the EPEI by Bin et al., altered to suit three requirements:

1. The index must be generated based on an executable (which may be disassem-

bled), not source code.

2. The index must be collected at runtime rather than relying on prior static

analysis.

3. The index must be practical in a reverse engineering context.

It is not necessary to generate a ruleset/EDL describing the full control flow graph,

as Bin et al. do. For the purposes of the EBEI it is sufficient to note that there is

such a language of paths through the graph. To address the constraints of lacking

source code and doing all analysis at runtime, this thesis tracks paths in terms of

conditional jumps, which may be conceptualized as “rules” which each expand to one

of two options (the taken/not taken cases). Because all other operations, including

calls, rets, and unconditional jumps are deterministic with respect to movements

through the control flow graph, a record of decisions made at conditional jumps is

sufficient to describe a path. An EBEI is, roughly, a hash of conditional jumps and

their decisions; this is described in detail in the Implementation chapter.

However, retaining a hash of all conditional jumps encountered would sacrifice the

possibility of reconvergence. Instead, like the EPEI, the EBEI maintains a stack. The

EBEI’s stack, however, is only of function contexts; it is not aware of intra-function

control flow contexts. Instead, information about conditional branches is stored per

stack frame, and therefore is popped when the stack frame is popped. This means

that the EBEI is calculated only based on branches encountered during

functions up to and including the current stack frame (see Fig. 3-4).

This retains the opportunity for reconvergence (although it may take slightly

longer, since state is popped from the stack less often). For example, say that in

two different executions, main calls function1. Assume that the executions behave

17

Figure 3-4: The values included in the hash which serves as an execution index

identically within main prior to this call, and so the indices are aligned at the moment

function1 is called. If the executions diverge during function1, the indices will also

diverge. However, when function1 is popped from the stack, the indices are reset

to their value from the moment function1 was called. As long as the executions

continue to behave identically, the indices will stay aligned. If the executions diverge

later in main, or in another function it calls, this will be detectable in a second

divergence of the indices.

Another practical advantage of EBEI over EPEI is that is it less resource-intensive

to log. An EBEI is a 32-bit hash, whereas an EPEI may grow very large if many nested

contexts are entered, for example in a tight loop (although Bin et al. introduce several

optimizations to partially mitigate this). Tracking the EBEI requires tracking state

in memory other than a single hash, but this state takes the form of an augmented

stack corresponding to the function stack, and so in practice does not grow linearly

with instruction count.

18

Chapter 4

Implementation

The trace tool is implemented as a PANDA plugin called control. It builds on Bren-

dan Dolan-Gavitt’s callstack_instr plugin, which implements per-address space

call stack tracking, by adding two major capabilities: jump detection and logging the

EBEI hash reflecting a subset of execution history (as described in Chapter 3).

4.1 State maintained

4.1.1 Control flow structure

To aid in generating the index described in Chapter 3, the plugin maintains a data

structure containing the desired control flow state. This takes the form of an aug-

mented stack, diagrammed in 4-1. A vector of stack_entry structs reflects the

function state, with each stack_entry pointing to a vector of Branch structs (among

other fields).

struct stack_entry {

target_ulong pc; // return address

std::vector<Branch> control;

std::size_t hash;

};

19

A Branch struct describes an encounter with a conditional jump, recording the

program counter of the jump, whether or not it was taken, and how many times:

struct Branch{

target_ulong pc;

bool taken;

target_ulong count;

};

stack_entry structs contain a hash reflecting the up-to-and-including-current-

frame control flow state described in the previous chapter. When a new stack_entry

is pushed, its hash field is initialized from the hash of the previous frame. At every

conditional jump encountered, the new branch structure is hashed and XOR’ed with

the .hash field of the current stack_entry (in addition to being appended to the

stack_entry’s vector of branches):

current_stack_entry.hash ^= hashbranch(new_branch);

A stack_entry’s hash may be altered under two other circumstances: if the user

has specified an address range, the hash is reset when that address range is entered

to ensure that divergences prior to that point (likely during setup) are ignored. The

user may also specify an arbitrary point in execution at which the hash should be

reset. These user-controlled resets are roughly analogous to Bin et al’s concept of

anchor points.

4.1.2 Block map

The block map is responsible for maintaining the state necessary to decide whether a

given conditional jump was taken or not. It maps a tuple of (asid, block_start_pc)

to (jump_pc, landing_pc_if_no_jump). In the current implementation only one

asid, and therefore one stack, will be used, but indexing by asid is kept for extensi-

bility.

20

Figure 4-1: The control flow structure

21

The first tuple describes a basic block ending in a conditional jump. The second

tuple expresses 1. the pc of that jump, which will be used to construct a Branch

object, and 2. the pc of the next sequential block, calculated as the address of the

block ending with the jump plus its size. The plugin interacts with this structure

according to the following algorithm:

Algorithm 1 Jump detection algorithm
1: procedure jumpDetect
2: for all 𝑏𝑎𝑠𝑖𝑐_𝑏𝑙𝑜𝑐𝑘 do
3: if 𝑙𝑎𝑠𝑡_𝑏𝑙𝑜𝑐𝑘_𝑗𝑢𝑚𝑝 then
4: 𝑙𝑎𝑠𝑡_𝑏𝑙𝑜𝑐𝑘_𝑗𝑢𝑚𝑝 = 𝑓𝑎𝑙𝑠𝑒
5: lookup (𝑎𝑠𝑖𝑑, 𝑙𝑎𝑠𝑡_𝑠𝑡𝑎𝑟𝑡_𝑝𝑐) → (𝑗𝑢𝑚𝑝_𝑝𝑐, 𝑙𝑎𝑛𝑑𝑖𝑛𝑔_𝑝𝑐_𝑖𝑓_𝑛𝑜_𝑗𝑢𝑚𝑝)
6: 𝑗𝑢𝑚𝑝_𝑡𝑎𝑘𝑒𝑛 = (𝑙𝑎𝑛𝑑𝑖𝑛𝑔_𝑝𝑐_𝑖𝑓_𝑛𝑜_𝑗𝑢𝑚𝑝 ̸= 𝑏𝑙𝑜𝑐𝑘_𝑠𝑡𝑎𝑟𝑡_𝑝𝑐)

7: disas 𝑏𝑎𝑠𝑖𝑐_𝑏𝑙𝑜𝑐𝑘
8: if 𝑏𝑎𝑠𝑖𝑐_𝑏𝑙𝑜𝑐𝑘 ends in cond. jump then
9: 𝑙𝑎𝑠𝑡_𝑏𝑙𝑜𝑐𝑘_𝑗𝑢𝑚𝑝 = 𝑡𝑟𝑢𝑒

10: 𝑙𝑎𝑠𝑡_𝑠𝑡𝑎𝑟𝑡_𝑝𝑐 = 𝑏𝑙𝑜𝑐𝑘_𝑠𝑡𝑎𝑟𝑡_𝑝𝑐
11: if 𝑏𝑎𝑠𝑖𝑐_𝑏𝑙𝑜𝑐𝑘 not in BlockMap then
12: add 𝑏𝑎𝑠𝑖𝑐_𝑏𝑙𝑜𝑐𝑘 to BlockMap: (𝑎𝑠𝑖𝑑, 𝑏𝑙𝑜𝑐𝑘_𝑠𝑡𝑎𝑟𝑡_𝑝𝑐) →

(𝑗𝑢𝑚𝑝_𝑝𝑐, 𝑙𝑎𝑛𝑑𝑖𝑛𝑔_𝑝𝑐_𝑖𝑓_𝑛𝑜_𝑗𝑢𝑚𝑝)

That is, jumps are detected by having the block ending in a jump set a flag,

cache its own start pc, and store a mapping from its start pc to the start pc of the

next sequential block. The next block to execute - which may or may not be the

next sequential block - then performs a lookup in the block map with the cached pc,

yielding the pc of the block that would be next to execute if the conditional jump at

the end of the block corresponding to the cached pc was not taken. It then simply

compares this pc to its own pc. If the values differ, the jump must have been taken.

Under some circumstances, the assumption that the next block to be seen by

after_block_exec after a not-taken conditional jump will begin at the instruction

immediately following the jump instruction will be broken. For example, the first time

a floating point instruction is encountered in a given address space, the kernel will take

control to set a flag noting that floating point hardware is being used by the process

and so floating point state must be cached during context switches. When it returns

control to the user code, it will do so at the floating point instruction. This may result

22

in the first part of a block being “skipped” from after_block_exec’s perspective,

potentially causing a false positive if it happens in the block following a conditional

jump that was not taken. This is mitigated by adding state to before_block_exec

that lets it detect when it is executed twice in a row with no call to after_block_exec

in between, at which point it sets a flag alerting after_block_exec to use the true

block start pc which before_block_exec has cached for it.

4.2 Arguments

The reverse engineer may specify the following values:

∙ make_hashlog: Specifies whether the running hash should be written to a file

at every conditional jump.

∙ asid: Specifies which address space to track, with blocks from all other address

spaces and the kernel being ignored.

∙ print_at: Specifies the conditional jump at which the full control structure

should be logged to a file (intended to be used on a second pass, as explained

below).

∙ start_addr: The beginning of the address range (within the specified asid) of

interest, at which the plugin should reset the hash and start logging.

∙ end_addr: The end of the address range of interest.

∙ log_all_once_seen: Specifies whether all jumps within the specified address

space should be logged once the address range has been entered, i.e. once the

program is executing, whether code from the mmap region should be logged as

well.

∙ force_reset: Allows the user to force a reset of the hash at a particular condi-

tional jump. This is useful if, for example, the executions diverge early in the

23

context of a given function, but the reverse engineer suspects they will recon-

verge but then diverge again in an interesting way later in the same function

context or higher on the stack.

4.3 First pass: Recording control flow hash

In the expected workflow, the first run of the plugin is responsible for generating

a file containing a sequence of hashes. One hash is recorded per conditional jump

encountered (that of the top stack_entry). This hash reflects the current state of

the control flow structure and is updated at every conditional jump.

4.4 Second pass: Recording full control flow struc-

ture

Because exactly one hash is recorded per conditional jump (within the code of inter-

est), a divergence on the nth line of the hash log implies a divergence at the nth jump

encountered within that same chunk of code. The reverse engineer can use tools such

as vimdiff to identify line numbers of interest.

That number is then passed to the plugin as the print_at argument. At the

jump of interest, the full control flow structure is written to a file in a human-readable

format, including both return addresses and branches. An example of this structure

is pictured in Figure 4-2. The return addresses have the same meaning as in a

conventional function stack, i.e. it is the address immediately following the call to

the relevant function. The sequences of branches describe control flow within the

function which returns to the RET ADDR line above them, from the moment that

scope was entered to the moment the next function on the stack was called.

In Figure 4-2, for example, the function which returns to 0x804b56b was entered,

three different branches were encountered, the same branch was taken 98 times and

then not taken once, two more branches were encountered, and then a function was

called (with the return address 0x0804c874). Within this function, one branch was

24

Figure 4-2: The formatted control flow context displayed to the reverse engineer on
a second pass

taken, then another function was called, which also took one branch and called another

function. At the moment the stack was printed, the function at the top of the stack

has not yet encountered any conditional branches. (Note that at any point during

that sequence, a function could have been entered and subsequently returned from

without leaving any record in this structure.)

4.5 Misc. implementation details

4.5.1 Disassembly and jump identification

Basic blocks are disassembled with Capstone and filtered by cs_insn_group into

blocks ending with calls, returns, and jumps.[2][3] As in callstack_instr, instruction

sets must be handled separately to distinguish conditional from unconditional jumps.

25

4.5.2 Hashing

The hash used is the RS hash function, modified by Arash Partow.1[9]. This hash

performs well in dealing with low entropy - it is called on the conditional jump program

counters, which have low entropy among themselves.

1 i n l i n e ta rge t_u long hashpc (ta rge t_u long pc) {
2 char buf [s i z eo f (ta rge t_u long) *2+1] ;
3 i n t l e n g t h = s p r i n t f (buf , "" TARGET_FMT_lx "" , pc) ;
4 char * s t r = buf ;
5 unsigned i n t b = 378551;
6 unsigned i n t a = 63689 ;
7 unsigned i n t hash = 0 ;
8 unsigned i n t i = 0 ;
9

10 f o r (i = 0 ; i < l e n g t h ; ++i) {
11
12 hash = hash * a + (* s t r) ;
13 a = a * b ;
14 s t r++;
15 }
16 return (ta rge t_u long) hash ;
17 }

Listing 4.1: The modified RS hash used to hash branch program counters

This hash function is a helper to hashbranch, below, which generates a hash of an

entire branch structure. It first determines which program counter should be hashed.

This will not be the exact pc of the conditional jump if the jump is in the mmap

region (see lines 4-5 of Listing 4.2 and explanation in Section 4.5.3). The hash of the

program counter is then XOR’ed with a constant value if the branch was taken. The

resulting value is rotated left by one bit and returned.
1https://www.partow.net/programming/hashfunctions/#AvailableHashFunctions

26

1 i n l i n e s t d : : s i z e_t hashbranch (Branch branch) {
2 unsigned long pc_to_hash = (unsigned long) branch . pc ;
3 i f (i s _ l i b c (branch . pc)) {
4 pc_to_hash = branch . pc − l i b c_ba s e ;
5 }
6 t a rge t_u long r e s u l t = hashpc (pc_to_hash) ;
7 i f (branch . taken) r e s u l t ^= 0x9e3779b9 ;
8 return (r e s u l t << 1) | (r e s u l t >> (s i z eo f (ta rge t_u long) *CHAR_BIT−1))

;
9 }

Listing 4.2: The function combining the fields of the Branch structure

The constant 0x9e3779b9, derived from the golden ratio2, is the same “random”

value as is used in the C++ boost::hash_combine function. The result is rotated by

1 to mitigate the possibility of the same branch (i.e. with the same program counter

and taken/not taken value) being XOR’ed twice and canceling itself out.

While some warning signs of collisions are observable in the hash logs (see 5-2),

this approach performs well enough for useful analysis. For larger recordings it may

be necessary to swap in a more heavyweight hash function at the cost of performance.

Hashing in the context of describing control flow is known to be a difficult problem

due to the low entropy in practice among program counters relative to the theoretical

size of the domain.[6]

4.5.3 mmap region offset

If control flow within the mmap region is tracked (by either not specifying an address

range or setting log_all_once_seen to true), ASLR basing libc at different addresses

will cause spurious divergences. To mitigate this, the first address encountered in the

mmap region is saved and all subsequent mmap addresses are hashed relative to it (see

4.2). It is possible for this value to underflow and/or collide with virtual addresses

being used by the user code, but given the nature of the analysis this is not disruptive.

The analysis will be impacted, however, if two or more separate regions of code are

mmapped differently across executions. This is discussed in Future Work.
2http://burtleburtle.net/bob/hash/doobs.html

27

4.6 Optimizations

4.6.1 Branch counts

Rather than potentially appending many identical branches if a tight loop causes a

basic block to be executed repeatedly, a count field is present in the Branch struct.

If the branch about to be appended to the vector is identical to the most recent one

- i.e. the pc and “decision” are the same - the most recent branch’s count field is

incremented instead.

4.6.2 Exec vs. translate

The most expensive operation done by the plugin is disassembling basic blocks in

order to identify blocks ending in conditional jumps. To avoid disassembling a given

block every time it executes, the disassembly is done in after_block_translate

rather than with most of the other plugin code in after_block_exec. A mapping of

block pc to block type (i.e. whether it ends in a call, ret, or jump) is maintained,

in which after_block_exec can perform lookups to determine how to handle the

current block.

4.6.3 Unconditional jumps

Since unconditional jumps are deterministic, it is not necessary to analyze them even

though they impact control flow. At present filtering out unconditional jumps (jmp)

is only implemented for x86. Including unconditional jumps in the analysis does not

break the correctness, since they will simply appear as a jump taken every time and

never cause divergence.

28

Chapter 5

Evaluation

Two test cases are described in this chapter. The first is small and offers easily

interpretable results. The second is larger and demonstrates that the control plugin

is able to filter a large amount of data into a number of “interesting” jumps a human

reverse engineer could reasonably look at closely.

In both cases, first two PANDA recordings are created. These recordings are

of identical binaries running on different inputs which cause different behavior to

be exhibited. These recordings are replayed with the control plugin, generating a

hashlog (file recording EBEIs) for each. The hashlogs are compared using a tool such

as vimdiff. Where divergences are observed, control is re-run and passed the line

number of the divergence, yielding a human-readable record of the control flow state

at the moment of divergence.

5.1 Text parsing with toy.c

toy.c, reproduced in A.2, is a small C test program written by Brendan Dolan-

Gavitt.1 Compiled, it is 396 lines of assembly. It parses a simple binary file, consuming

records that may be one of two types. Type-1 records have a 1 in their type field

and their data is parsed as an integer. Type-2 records have a 2 in their type field

and their data is parsed as a float. Example binaries with record types 1, 2, 1 (A.3)
1https://gist.github.com/moyix/93cd687fde9fb965cfb7d508118d27c1

29

Figure 5-1: Assembly of consume_record from toy.c

and 2, 2, 2 (A.4) are reproduced in the appendix.

The initial check of whether a record is type-1 (seen in line 36 of the source)

compiles to the assembly shown in Figure 5-1.

Two recordings are made of toy.c executing, one with the 121 binary and one

with the 222 binary. First the asidstory plugin is used to learn the asid for toy.c

in each recording. Then the control plugin is run on each recording, generating

a hashlog apiece. (The presence of an existing hashlog is not checked, so the first

hashlog generated must be renamed before generating the second.) The hashlogs are

compared with vimdiff, as shown in Figure 5-2.

This reveals that divergences happened on lines 5 and 12, i.e. the fifth and twelfth

conditional jump encountered by the 121 recording. Note that either recording can

be used during the second pass, but the line numbers passed must correspond to the

line numbers of the divergences in that hashlog - if the 222 recording is used on a

second pass instead, the correct line numbers would be 5 and 13.

The recordings are run again, this time with the print_at argument set to 5. In

principle it is not necessary to run the second pass on both recordings, since they

should always be identical up to the last branch, at which they should diverge. These

commands generate the records seen in Figure 5-3 in controllog_readable.txt.

Sure enough, the recordings are in step until they reach the conditional jump at

30

Figure 5-2: The diff between the hashlogs of two executions of toy.c

Figure 5-3: The full control context at the moment of divergence between two execu-
tions of toy.c

31

Figure 5-4: The context of the call to consume_record in the assembly of toy.c

0x804860a, which is conditional on a check of some value (which on inspection is

indeed the record type) against a constant 1.

This check is made following the retaddr value 0x804870c, i.e. this is the location

to which the current function will return. The address 0x804870c is located in main,

immediately following a call to consume_record, consistent with the hypothesis that

the different record type is the cause of the divergence. The disassembly of this region

is shown in Figure 5-4

Note that by the time consume_record is called, main has already called and

returned from parse_header, parse_record, and several libc functions. They do

not appear in controllog_readable.txt because they have already been popped

from the stack. This is how it is possible for only two branches to appear on the stack

despite the plugin being set to print at the fifth conditional jump encountered - in

this case, jumps encountered in libc are not considered, so the “missing” jumps must

be located in parse_header or parse_record (and some investigation and printing

reveals that this is indeed the case).

5.2 Modified BusyBox

BusyBox is an open-source resource that “combines tiny versions of many com-

mon UNIX utilities into a single small executable”, intended for embedded Linux

applications.[1] As a larger test, a statically-linked, 32-bit BusyBox binary was com-

piled from source, yielding 483,762 lines of assembly. The source code for ls was

slightly modified, with the last line of Listing 5.1 added.

32

Figure 5-5: The output of busybox ls with a non-“trigger” file present

Figure 5-6: The output of busybox ls with a “trigger” file present

1 /* f i n d the l o n g e s t f i l e name , use tha t as the column width */
2 f o r (i = 0 ; dn [i] ; i++) {
3 i n t l e n = calc_name_len (dn [i]−>name) ;
4 i f (column_width < l e n)
5 column_width = l e n ;
6
7 }
8 i f (column_width == 0xa1) p r i n t f ("COMMITTING␣EVIL ! ! ! \ n")

;

Listing 5.1: ls.c

As the column_width, i.e. the length of the longest item name is being calculated,

the code exhibits a “misbehavior” under some specific circumstance - in this test

example, it prints a message if a file whose name is exactly 161 (0xa1) characters

long is present. A recording of this modified BusyBox running ls was run in an

environment where only a length-162 filename was present (see Figure 5-5) and one

where only a length-161 filename was present (see Figure 5-6).

The same procedure as the toy.c test is followed. A log of 6182 hashes is gener-

ated, with 8 divergences present between the two recordings. One of the divergences

is the one shown in Figure 5-7, with the length-161 trigger for the “malicious” code

present on the left and a length-162 non-trigger on the right.

A second pass is done, printing the full structure at the 4664th line. A 184-line

augmented stack is generated, terminating in the sequence shown in 5-8.

The area of the BusyBox code surrounding the jump at 0x81a40f1 is shown in

5-9.

33

Figure 5-7: The diff between the hashlogs of two executions of busybox ls

Figure 5-8: The end of the full control context at the moment of divergence between
two executions of busybox ls

34

Figure 5-9: The context of the diverging jump in the assembly of busybox

It immediately follows a comparison to the constant 0xa1 - the only comparison

to this constant made in the program, a good sign that this is indeed the location

at which the different input causes the divergence of interest. The divergence at

line 4661 is attributable to the for loop (included in the snippet above) taking one

extra iteration to count the longer filename. Note that the two extra jumps are a

repetition of the same sequence of two that precedes the divergence. The remaining

false positives are attributable to earlier processing of the filename, waiting on locks,

and hash collisions - if vimdiff erroneously aligns two hashes due to a collision,

another pseudo-divergence is created later in the file when the true realignment is

found (as a chunk of one log has been shifted relative to the other).

While several false positives are generated, the plugin is successful in narrowing

over 6,000 conditional jumps down to 8, significantly reducing the search space for

the reverse engineer. It imposes a slowdown of about a factor of 2 (from 0.6 to 1.2

seconds to replay the BusyBox recording).

35

Chapter 6

Conclusion

This thesis demonstrates the viability of trace alignment without source code using

PANDA. By defining an execution index that is sensitive to structural context, but

only that contained in the current function and lower on the stack, it is possible

to detect multiple meaningful divergences in execution. This index is logged on a

first pass. Line numbers in this log correspond one-to-one with conditional jumps

encountered by the program, so on a second pass the line number of a divergence

can be passed as an argument and the full context at that point can be logged in a

human-readable way.

6.1 Future Work

6.1.1 Analysis

Structural Indexing

Possible future work would include more precisely implementing the structural index

tracking described by Bin et al. at runtime. This would require correlating basic

blocks to their location in the source code structure, and in turn tracking location

in structures such as loops and if/then blocks at runtime. One possible approach is

enumerating common patterns in how source code control structures are converted to

assembly and maintaining state that would allow the identification of these structures.

36

While it may not be feasible in theory to capture every possible mapping between

source code structure and runtime control flow, in practice optimized code tends

to yield a “restricted subclass” of control flow graphs and so this analysis may be

feasible.[8]

Multithreading

The control plugin does not have a concept of multithreading, i.e. multiple threads of

execution taking place in the same address space. The PANDA API does not currently

offer a way to distinguish different processes running within the same address space

(i.e. generated with clone). Some PANDA plugins, such as callstack_instr, use

heuristics to determine which of multiple processes with the same asid a given basic

block is coming from. Future work could include increasing the robustness of this or

building the functionality into PANDA itself (or QEMU).

Handling mmap and JIT compilation

More detailed treatment of the mmap region is likely to be necessary for useful analysis

of JIT-compiled code. If the number of runtime-determined code regions is small, it

should be reasonably practical for a reverse engineer to make small changes to the

plugin and hardcode in the address ranges. Handling many small chunks of code

being run from the heap is more difficult and may require dropping the pc entirely as

a definitive identifier of a given conditional jump.

Hash selection

Since hash functions have different characteristics and tradeoffs, it would be useful

to let the reverse engineer specify one as an argument, depending on their priorities

(speed, minimizing false reconvergences, etc.).

37

6.1.2 Usability

There are several user-friendliness improvements that could be made to the control

plugin. In particular, several steps of the workflow are currently done manually but

could be automated:

∙ objdump parsing: All interaction with the disassembly of the binary is currently

carried out via the user. Some of this - for example, getting the address range

and checking the line before a return address to learn what function has just

been returned from - could be automated.

∙ Automated interaction with taint analysis: Once the reverse engineer

has identified a conditional jump of interest, a likely next step is to track the

flag influencing that jump back to some raw input. This interaction between

control and other tools may be scriptable.

38

39

Appendix A

Code Listings

1 #inc lude <s t d i o . h>
2 #inc lude <s t d l i b . h>
3 #inc lude <s t d i n t . h>
4
5 #pragma pack (1)
6 #def ine MAGIC 0x4c415641
7
8 enum {
9 TYPEA = 1 ,

10 TYPEB = 2
11 } ;
12
13 typedef s t ruc t {
14 u int32_t magic ; // Magic v a l u e
15 u int32_t r e s e r v e d ; // Rese rved f o r f u t u r e use
16 u int16_t num_recs ; // How many e n t r i e s ?
17 u int16_t f l a g s ; // None used ye t
18 u int32_t t imestamp ; // Unix Time
19 } f i l e_h e a d e r ;
20
21 typedef s t ruc t {
22 char bar [1 6] ;
23 u int32_t type ;
24 union {
25 f l o a t f d a t a ;
26 u int32_t i n t d a t a ;
27 } data ;
28 } f i l e_ e n t r y ;
29
30 void parse_header (FILE * f , f i l e_h e a d e r * hdr) {
31 i f (1 != f r e a d (hdr , s i z eo f (f i l e_h e a d e r) , 1 , f))
32 e x i t (1) ;
33 i f (hdr−>magic != MAGIC)
34 e x i t (1) ;
35 }

Listing A.1: toy.c

40

36
37 f i l e _ e n t r y * pa r s e_reco rd (FILE * f) {
38 f i l e _ e n t r y * r e t = (f i l e_ e n t r y *) ma l l o c (s i z eo f (f i l e _ e n t r y)) ;
39 i f (1 != f r e a d (r e t , s i z eo f (f i l e _ e n t r y) , 1 , f))
40 e x i t (1) ;
41 return r e t ;
42 }
43
44 void consume_record (f i l e_ e n t r y * ent) {
45 p r i n t f (" Ent ry : ␣ bar ␣=␣%s , ␣" , ent−>bar) ;
46 i f (ent−>type == TYPEA) {
47 p r i n t f (" f d a t a ␣=␣%f \n" , ent−>data . f d a t a) ;
48 }
49 e l s e i f (ent−>type == TYPEB) {
50 p r i n t f (" i n t d a t a ␣=␣%u\n" , ent−>data . i n t d a t a) ;
51 }
52 e l s e {
53 p r i n t f ("Unknown␣ type ␣%x\n" , ent−>type) ;
54 e x i t (1) ;
55 }
56 f r e e (ent) ;
57 }
58
59 i n t main (i n t argc , char ** argv) {
60 FILE * f = fopen (a rgv [1] , " rb ") ;
61 f i l e_h e a d e r head ;
62 parse_header (f , &head) ;
63 p r i n t f (" F i l e ␣ t imestamp : ␣%u\n" , head . t imestamp) ;
64 unsigned i ;
65 f o r (i = 0 ; i < head . num_recs ; i++) {
66 f i l e _ e n t r y * ent = par s e_reco rd (f) ;
67 consume_record (ent) ;
68 }
69 return 0 ;
70 }

Listing A.2: toy.c

41

00000000: 4156 414 c 0000 0000 0300 0000 9915 8057 AVALW
00000010: 6865 6 c6c 6 f00 0000 0000 0000 0000 0000 h e l l o
00000020: 0100 0000 4141 4840 676 f 6 f64 6279 6500 AAH@goodbye .
00000030: 0000 0000 0000 0000 0200 0000 2a00 0000 * . . .
00000040: 6575 6c65 7200 0000 0000 0000 0000 0000 e u l e r
00000050: 0100 0000 4141 2d40 0a AA−@.

Listing A.3: testbin121

00000000: 4156 414 c 0000 0000 0300 0000 9915 8057 AVALW
00000010: 6865 6 c6c 6 f00 0000 0000 0000 0000 0000 h e l l o
00000020: 0200 0000 4141 4840 676 f 6 f64 6279 6500 AAH@goodbye .
00000030: 0000 0000 0000 0000 0200 0000 2a00 0000 * . . .
00000040: 6575 6c65 7200 0000 0000 0000 0000 0000 e u l e r
00000050: 0200 0000 4141 2d40 0a AA−@.

Listing A.4: testbin222

42

Bibliography

[1] Busybox: The swiss army knife of embedded linux. https://busybox.net/
about.html.

[2] The capstone disassembly framework. http://www.capstone-engine.org/
documentation.html.

[3] Function capstone_sys::cs_insn_group. https://docs.rs/capstone-sys/0.
2.0/capstone_sys/fn.cs_insn_group.html.

[4] Fabrice Bellard. Qemu, a fast and portable dynamic translator. In Proceedings of
the annual conference on USENIX Annual Technical Conference, ATEC, pages
41–41, Berkely, CA, USA, 2005. USENIX Association.

[5] Brendan Dolan-Gavitt, Josh Hodosh, Patrick Hulin, Tim Leek, and Ryan Whe-
lan. Repeatable reverse engineering with panda. In Proceedings of the 5th Pro-
gram Protection and Reverse Engineering Workshop, PPREW-5, pages 4:1–4:11,
New York, NY, USA, 2015. ACM.

[6] Shuitao Gan, Chao Zhang, Xiaojun Qin, Xuwen Tu, Kang Li, Zhongyu Pei, and
Zuoning Chen. Collafl: Path sensitive fuzzing. IEEE Symposium on Security
and Privacy, 2018.

[7] Noah M. Johnson, Juan Caballero, Kevin Zhijie Chen, Stephen McCamant,
Pongsin Poosankam, Daniel Reynaud, and Dawn Song. Differential slicing: Iden-
tifying causal execution differences for security applications. 2011 IEEE Sympo-
sium on Security and Privacy, 2011.

[8] Ken Kennedy and Linda Zucconi. Applications of a graph grammar for program
control flow analysis. In Proceedings of the 4th ACM SIGACT-SIGPLAN sym-
posium on Principles of programming languages, POPL, pages 72–85, New York,
NY, USA, 1977. ACM.

[9] Robert Sedgewick. Algorithms in C. August 2001.

[10] Ray Wang. A system for dynamic slicing and program visualization. Master’s
thesis, Massachusetts Institute of Technology, 2 2019.

43

 https://busybox.net/about.html
 https://busybox.net/about.html
http://www.capstone-engine.org/documentation.html
http://www.capstone-engine.org/documentation.html
 https://docs.rs/capstone-sys/0.2.0/capstone_sys/fn.cs_insn_group.html
 https://docs.rs/capstone-sys/0.2.0/capstone_sys/fn.cs_insn_group.html

[11] Bin Xin, William N. Sumner, and Xiangyu Zhang. Efficient program execution
indexing. In Proceedings of the 29th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, volume 43 of PLDI, pages 243–248,
New York, NY, USA, 2008. ACM.

44

	Introduction
	Background
	QEMU
	Basic blocks

	PANDA

	Execution Indexing
	Efficient Program Execution Indexing (EPEI)
	Efficient Binary Execution Indexing (EBEI)

	Implementation
	State maintained
	Control flow structure
	Block map

	Arguments
	First pass: Recording control flow hash
	Second pass: Recording full control flow structure
	Misc. implementation details
	Disassembly and jump identification
	Hashing
	mmap region offset

	Optimizations
	Branch counts
	Exec vs. translate
	Unconditional jumps

	Evaluation
	Text parsing with toy.c
	Modified BusyBox

	Conclusion
	Future Work
	Analysis
	Usability

	Code Listings

