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ABSTRACT

It is well known that human beings preferentially adopt beliefs that are consistent
with what they already know (1). At its best, this process helps knowledge cumulate, and
at its worst facilitates motivated reasoning and pseudoscience. Recent research in social
contagion shows that the tendency to treat new information in light of what is already
known creates interdependence in the diffusion patterns of simultaneously diffusing
beliefs, and that this is sufficient to generate societal polarization and competing
worldviews (2-8). This paper explains the mechanisms by which interdependence
between beliefs can lead to fundamentally different patterns of adoption than would have
occurred under traditional assumptions of independent diffusion. First, when beliefs
facilitate one another's adoption, they spread to more individuals than any could have
reached spreading on its own. Secondly, as individuals become more alike, they increase
their likelihood of exchanging beliefs in the future, and of forming around themselves a
faction of likeminded peers. These mechanisms explain why the most popular beliefs
tend to be related to one another, and how polarization may spontaneously emerge in
homogeneous and well-connected populations. Simulations in this paper make a direct
comparison between interdependent and independent diffusion, explaining why the
mechanisms of interdependent diffusion reverse many predictions of standard
(independent) diffusion models. For example, while independently diffusing beliefs can
make a population more homogenous, interdependent diffusion leads the same population
to polarize. While the most successful independent beliefs are those with central network
positions, interdependent beliefs become popular by facilitating the diffusion of related
beliefs.
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Beliefs about the world (i.e. ideas and information) spread from person to person
through a process of social contagion. A large body of research has documented how
personal relationships and social network structures lead some beliefs to diffuse widely
while others receive limited attention (9-14). More recent research explores how
relationships between beliefs can affect their diffusion (2-8). This literature is motivated
by the idea that individuals are more likely to adopt beliefs that are consistent with those
they have acquired in the past. By adopting one belief, individuals can become
susceptible to adopting another related belief (and vice versa) such that the processes of
each belief's diffusion through the population become interdependent. Simulation models
indicate that interdependent diffusion can generate previously unrecognized
consequences of social contagion, for example the spontaneous polarization of opinions
in political discourse (2), or the emergence of political issue alignment (3,8).

While the emerging focus on belief interaction has expanded our understanding of
the potential outcomes of social contagion, room for theoretical clarity remains. In
particular, the literature on interdependent diffusion has yet to articulate the mechanisms
by which individuals' preferences for consistency aggregate to cause outcomes at the
scale of society. Instead, many of these works test the consequences of an assumed belief
structure on the shape of diffusion (2, 5, 6). These models do not address how such belief
structures come to exist, or to be shared by members of the population (itself a diffusion
process). In these models, polarization and heterogeneity of belief adoption are strongly
dependent upon the assumed belief structure, and so the effect of belief interactions in the
diffusion process is difficult to assess (15). Other models demonstrate how certain
collections of beliefs can become popular when individuals imitate similar neighbors, or
intentionally distinguish themselves from an out-group (3, 8). However, in these models,
beliefs interact primarily through their role as attributes the population uses to sort itself
into groups, rather than through the adopter's assessment of their internal consistency. As
a result, none of these works describe the behavioral mechanisms by which belief
interaction shapes social contagion, and do so in a way that is clear enough to test
empirically.

In what follows, I illustrate two mechanisms by which a preference for internal
consistency leads to polarization and the emergence of competing worldviews. First,
"reciprocal facilitation" allows sets of closely related beliefs to snowball through a
population, while other equally-plausible sets languish. Secondly, "agreement cascades"
make individuals who share beliefs more likely to exchange beliefs in the future, such
that diffusion tends to amplify within-faction similarity more rapidly than across-faction
similarity.

I use a simplified model of belief interaction, with no exogenous assumptions
about belief compatibility, to reveal every link in the ladder of aggregation between belief
interaction within an individual to outcomes at the scale of society. Step-by-step
examples reveal how an individual's decision-making process shapes the likelihood of
exchange with particular social network neighbors, and the likelihood that particular
beliefs will be exchanged. Simulations then explain how these patterns of interpersonal
exchange create heterogeneity in the rate at which particular beliefs spread, and the rate
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at which particular pairs of individuals become similar to one another. I then show how
heterogeneous rates of diffusion and increasing similarity shape polarization and the
emergence of shared worldviews. I directly compare the case of interdependent diffusion
with what would have been expected had the same beliefs diffused independently of one
another, in order to highlight how the mechanisms of interdependent diffusion modify
what we expect from traditional models of independent diffusion. I explore consequences
arising first from the interaction between beliefs as they spread, and secondly from the
interaction between individuals as they share beliefs.

Results:

To focus this paper, I look specifically at beliefs about the world, rather than
beliefs in a value or ideal, as illustrated in Fig. 1. I represent an individual's beliefs using
a "semantic network" model borrowed from the cognitive science literature (16-18), and
consistent with other formal models of belief formation (19). Nodes in a semantic
network represent concepts such as people, locations or activities. A semantic network
edge represents the belief that two concepts are connected in some way. This
formalization allows beliefs to interact (e.g. beliefs about a place interact via their
connection to the node representing that place) without having to pre-specify which
beliefs are compatible with one another (e.g. that belief i is compatible withj, but not k).
Because we don't need to assume exogenous compatibility relationships, belief structures
emerge naturally through the diffusion process, and any systematic variation in the
popularity of beliefs can be attributed to the diffusion process rather than to the choice of
belief structure (15).

When an individual is exposed to a new belief by her neighbor in the social
network, she decides whether or not to adopt it by seeing how it relates to beliefs in her
existing semantic network. She is likely to adopt a belief connecting two concepts that
are already close together in her semantic network, as it seems consistent with the beliefs
she already holds (16, 19). Conversely, she is unlikely to adopt a belief that two distant
concepts are connected, as doing so would dramatically reshape her belief structure. The
simplest representation of this assumption is that a simulated individual will adopt any
belief that her neighbors possess, as long as the existing distance in her semantic network
is below a threshold. To make the simulation easy to follow, I use a threshold of 2 links
distance, such that a belief will be adopted if it closes a triangle in the adopter's semantic
network (20).

In the simulation presented in this paper, each individual is seeded with an equal
number of beliefs drawn randomly from a complete semantic network (20, 21).
Individuals are given enough beliefs that each individual's semantic network is initially
sparse, while maintaining good coverage of the set of all beliefs in the population as a
whole. Random seeding eliminates any correlation between sets of beliefs and particular
locations in the social network, or any correlation between the popularity of a belief and
the popularity of the beliefs it is connected to. Random seeding also ensures that the
simulation starts without polarization or systematic variation in belief popularity. I
simulate adoption as binary, permanent, and deterministic, as these simplifications make
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belief interactions clearly observable and repeatable. I place individuals in a random,
connected social network to remove any possibility that the network structure may
contribute to polarization (11, 13). See the 'Methods' section for more details.

1. Beliefs take the form of connections between
concepts

- Art was stolen in the Burglary
- The Burglary happened at the Casino

- Daniel was at the Casino

2. Beliefs form a semantic network unique to
each individual

Art Burglr

0

It~en Daniel - Casino

3. Individuals share their beliefs with one another

Daniel
committed the

Ga 
burglary

GinajW J Ken

4. Individuals adopt a candidate belief if it has
'support' in their existing semantic network

Art Burglary.

0 Daniel -casino

t Ken 
D 1

5. A belief has 'support' if there is already a short
path between the concepts it connects in the
receiver's semantic network

Path Length

Daniel-> Casino 1

Daniel-> Burglary 2

Daniel -> Art 3

Fig. 1. Beliefs as edges in an individual's semantic network.

I begin by following the diffusion of a focal belief through the social network.
The focal belief is able to spread when the prior beliefs of an exposed individual make
him susceptible to the focal belief (i.e. in this simplified model the focal belief "closes a
triangle" in his semantic network). Continuing to spread to other neighbors in the social
network, the focal belief may then reciprocate that facilitation by creating conditions of
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susceptibility to the beliefs which had previously supported its diffusion, and repeat the
cycle. Fig. 2A illustrates this mechanism of "reciprocal facilitation", in which
simultaneously-diffusing beliefs alternately create susceptibility to one another, and
together are adopted by more individuals than any one belief could have been by
diffusing on its own.

A B
step Juliet Ken Lisa Diffusant 0

00

0 A b C0

C D E E10

1 CA D B CB

elsewhere) -- Interdependent Diffusion

-0- Independent Diffusion

0. -0- InepnenDfuso

0 D

C D E D

0 2 4 6 8
C E D Time Step

Fig. 2. The effect ofreciprocal facilitation on diffusion and belief
clustering. (A) Juliet and Lisa are strangers, but talk regularly with Ken.
No diffusion occurs in step 0,asno individual could close atriangle in
their semantic network by adopting aneighbor's belief In step 1, Ken
acquires belief BD from an external source. BD facilitates Ken's adoption
of belief AD instep 2, making him abridge for ADto diffuse to Lisa in step
3. Instep 4,AD reciprocates by facilitating Lisa's adoption of BD. (B) The
average percentages of adopters (solid lines) and susceptible individuals
(dashed lines) is shownfor acomparison between interdependent diffusion
(black triangles) and independent diffusion (green circles) in asimulation
offorty individuals. (C) The density of connections between the 1000most
popular beliefs is measured as the clustering coefficient of all beliefs that
make up the sample. (D) Clusters are counted as the maximum number of
separable components in the aggregate semantic network when the least
popular beliefs are progressively removed (21).

The first effect of reciprocal facilitation is toallow the average numbers of
susceptible and adopting individuals to grow simultaneously, as shown by the logistic
growth curves in Fig. 2B (black triangles). In contrast, independent beliefs that diffuse
from the same starting conditions may only be adopted by the fraction that are originally
susceptible (green circles). Put another way, to explain the same level of final adoption,
models of independent diffusion must assume significantly more initial susceptibility to
each belief.
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It would be reasonable to make such an assumption about initial susceptibility
were it not for the second effect of reciprocal facilitation. Reciprocal facilitation does not
support the diffusion of all beliefs to the same degree, but preferentially amplifies those
that are connected to other widely adopted beliefs. A belief that is supported by many
popular beliefs will have many opportunities to diffuse, and then to facilitate the adoption
of other closely related beliefs. Conversely, a belief that is connected only to unpopular
supporting beliefs will have trouble reaching even the few individuals who are
susceptible to adopting it. As a consequence, the most popular beliefs consolidate into
fewer and fewer clusters, as shown in Fig. 2C and D, respectively. These clusters are
densely connected islands of popular beliefs that are only linked to one another by less
widely adopted beliefs, each residing in a particular (but a priori unpredictable) area in
the semantic space.

The clusters of popular beliefs generated by this simulation are consistent with
previous models of issue alignment. The simulation presented here suggests that
alignment occurs not because the most popular beliefs develop relationships with one
another, but because the most popular beliefs bring popularity to their neighbors. In
contrast, for an independent diffusion model to explain this correlated variation in belief
popularity, it must pre-specify which sets of related beliefs are likely to become popular,
rather than letting these sets emerge endogenously from the diffusion process itself.

To explain the second mechanism of interdependent diffusion, I focus on the
developing semantic networks of individuals. When two individuals exchange beliefs,
they become more similar to one another. Because their existing belief sets influence the
way they respond to new beliefs, shared beliefs make the two individuals more likely to
adopt (or reject) the same new beliefs in the future, independent of any preference to
align or distinguish themselves from one another. Similar individuals expand one
another's access to beliefs that the two may adopt in common, and filter each other's
exposure to beliefs that would set them apart from one another. In contrast, individuals
who adopt differing beliefs are likely to diverge further as they become susceptible to
beliefs in different parts of the semantic space. Fig. 3A illustrates this "agreement
cascade" mechanism, in which the similarity between individuals is reinforced by
common adoption and exchange.
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Fig. 3. The effect of agreement cascades on the formation of factions.
(A) Mike and Otis are strangers, but know Nina. Initially, all possess
beliefs AD and DE, withfour beliefs among each pair ofindividuals, giving
a Jaccard similarity of 2. In step 1, Nina and Otis adopt BE and BDfrom
one another, becoming perfectly similar and decreasing their similarity
with Mike to 3. In step 2, all are exposed to AB and CD by an external
source. Nina and Otis adopt AB alike, but Mike differentiates himself
further by adopting CD. (B) The Jaccard similarity of the 10% most and
least similar pairs of individuals (solid and dotted lines, respectively) is
compared between interdependent diffusion (black triangles) and what
would be expected by chance had independent beliefs diffused to the same
extent (blue squares). (C) Factions are identified by hierarchical
clustering, interpreted as mapping individuals to a landscape whose height
represents the similarity between each pair of individuals. Each "peak"
indicates afaction. (D) Prominence is the difference between the maximum
similarity within a faction and the average similarity to the next closest
faction, or the height of the peak compared to the surrounding landscape,
using the same units as Jaccard Similarity (21).

As simulated individuals do not forget their beliefs, diffusion will raise the
average similarity of the population purely by chance. However, Fig. 3B shows that
agreement cascades drive the most similar pairs of individuals (solid lines) to become yet
more similar to one another, and prevent the least similar pairs (dotted lines) from
acquiring even the similarity they might gain by chance adoption of the same beliefs.
This leads to the spontaneous emergence of social factions: groups whose members are
more similar to one another on average than they are to individuals outside of the faction.
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Polarization is characterized by a clear distinction between factions, and high
similarity within them. The tendency of agreement cascades to generate polarization is
illustrated by Fig. 3C and D. The simulation's random starting conditions exhibit a large
number of low-prominence factions. If beliefs diffused independently of one another
(blue squares), we would expect that increases in the average similarity between
individuals would lead factions to blend together and lose distinctiveness, as individuals
in separate factions came to share more beliefs in common. Instead, while the agreement
cascade mechanism (black triangles) increases similarity more quickly than expected by
chance, it does so primarily by amplifying the similarity within factions, increasing their
prominence and distinctiveness. While traditional models of social contagion would
predict that the diffusion of beliefs would help to solve the problem of polarization, when
beliefs interdepend, the opposite is true.

Discussion:

When dense clusters of popular beliefs are observed empirically (3, 22), it is easy
to suppose that they represent internally-consistent worldviews that spread because they
make sense as a whole, or represent some underlying truth about the world. Implicit in
such a supposition is the idea that other combinations of beliefs would not make sense
together, and as a result, alternate worldviews could not become popular. This simulation
demonstrates that with the most basic assumptions about belief interdependence, clusters
of popular beliefs may emerge even in settings where all beliefs are equally compatible
with one another and all beliefs are equally "true". In contrast to the above supposition,
large groups of people may come to share a particular set of interconnected beliefs, and
reject others to which they had equal initial exposure, without any external reference for
which beliefs are adopted and which are discarded.

It is not surprising to see factions develop when a social network is formed from
relatively isolated communities (13), or to see polarization grow when individuals choose
to associate with people like themselves (10). What is surprising is that when beliefs
interact, factions may emerge even in a random, fixed social network (4), without any
conscious imitation or desire for differentiation (3, 8), and without exogenous structures
of beliefs to which agents may be attracted or repelled (2,5,6). This simulation shows that
polarization is an expected and understandable consequence of agreement cascades
occurring in the diffusion process itself.

The mechanisms identified here generalize to a broader class of problems
involving interdependent diffusion, and have consequences for social policy
development. For example, reciprocal facilitation may amplify the dynamics of
coinfection between diseases such as TB and HIV, which reinforce susceptibility to one
another. If so, targeting treatment to break the feedback between the two diseases may be
a high-leverage intervention strategy. As a second example, the agreement cascade
mechanism suggests that organizations working to de-escalate a conflict need to do more
than just make social connections between rival groups, as any social network can
support polarization. They must also establish a shared understanding to serve as a basis
for further reconciliation.
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I have explored two mechanisms which distinguish interdependent diffusion from
independent diffusion: reciprocal facilitation, and agreement cascades. These
mechanisms shape diffusion dynamics in sociologically relevant ways: by driving
polarization and leading to the emergence of shared worldviews. I show that these
dynamics are a fundamental consequence of interdependent diffusion itself, and are not
dependent upon external belief structures, heterogeneous preferences, or social network
communities. The mechanisms elaborated here predict observable outcomes at the
individual, dyad, faction and population levels, allowing the theory of interdependent
diffusion to be empirically tested. The mechanisms help generalize the theory to new
contexts, make new sociological predictions, and support social policy development.

Methods:

Simulation Details: In the simulation presented in Figs. 2B-D, and 3B-D, the
social network is a connected Erdos-Renyi (Gnm)random graph with 40 agents total, and
in which agents have an average of 4 neighbors. There are 30 concepts (nodes) available
in the semantic network, yielding 435 possible beliefs (edges). Each agent is initialized
with 25 beliefs (edges) selected randomly from the 435 available. These values ensure
good coverage of beliefs in the population, while individual semantic networks are
initially sparse. The measures for mean diffusion and number of susceptible individuals
are averaged over all beliefs in the simulation, and the presented results are an average of
4500 simulations. In each step, individuals are selected in random order, and update their
beliefs by incorporating into their semantic networks any belief (edge) their neighbors
possess that closes a triangle in their existing semantic networks.

Clustering of the most popular beliefs: Reciprocal facilitation leads the most
popular beliefs to be more clustered than independent diffusion would predict. Fig. 4
shows that any threshold for the most popular beliefs between ~5% and ~40% will yield a
qualitatively similar difference between the independent and interdependent diffusion
cases. The simulations presented in the paper use a threshold value of 10%, to show that
the effect on clustering persists to very high popularity thresholds.

0.8 Interdependent Diffusion
0.8 -0- Independent Diffusion

U 4 Difference
0.6 -

0 20 40 60 80 100

Top N %of Beliefs

Fig. 4. The average clustering coefficient of asample of the N% most
popular beliefs grows with Nfor interacting beliefs (black triangles), and
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when beliefs diffuse independently (green circles). Grey diamonds show

the difference between the two cases.

Number of belief clusters: Fig. 2D plots the maximum number of separable
components that the aggregate semantic network can be broken into when the least
popular beliefs are progressively removed. In their study of belief clustering revealed in
social media data, Houghton et al. (22) identify k-clique communities for varying levels
of k and filter threshold. In order to ensure that the clustering identified in this paper is
conceptually equivalent to that identified in the empirical study, I use a conservative
version of the same technique. Identifying the number of separable components in the
semantic network is equivalent to identifying the number of 2-clique communities. As
every n-clique community is a subset of an (n-1)-clique community, if more than one 2-
clique community is present, we have confidence that these are meaningfully separable,
and not a function of the choice of k.

Similarity between individuals: The Jaccard similarity between two individuals
is the number of beliefs they have in common divided by the total number of beliefs held
by at least one individual in the pair. Agreement cascades drive the most similar
individuals to be more alike than we should expect given the same number of beliefs
adopted by chance. Fig. 5 shows that this effect only gets stronger as we look at smaller
percentiles of the population. Figure 3B uses the top and bottom 10% of comparisons, to
include a meaningful sample of comparisons. With a 40-agent simulation, this gives 78
pairs of individuals in each decile.

0.6 -

E 0.2 -

0.0-

0 20 40 60 80 100

Top N % of Most Similar Individuals
0.6.

-*- Interdependent Diffusion

-04 - Expected in Independent Diffusion
U 4- - Difference

CE0.2

0.0-

0 20 40 60 80 100

Bottom N % Most Similar Individuals

Fig. 5. This figure shows the Jaccard similarity between each pair of

individuals for all pairs above (or below) a threshold Nth percentile.

Curves represent the difference (grey diamonds) between interdependent
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diffusion (black triangles) and what would be expected given the same
belief distribution under independent diffusion (blue squares).

Comparison case for the agreement cascade mechanism: As diffusion occurs,
both the numerator and denominator of the Jaccard similarity measure grow, and both
must saturate when each member of the compared pair has adopted all beliefs. This
means that regardless of which beliefs the individuals adopt, as they adopt more beliefs,
individuals become more similar to one another purely by chance. Fig. 3B-D aims to
demonstrate the effect of agreement cascades in organizing factions, without the
component that is due to the gross number of adoptions. The best comparison case is
therefore what we would expect to see had independently diffusing beliefs reached the
same level of adoption. This comparison is created by shuffling beliefs between
individuals, so that the distribution of adoptions is equal between the interdependent
diffusion case and the comparison case.

Number and Prominence of Factions: A faction is a group of individuals who
are more similar to one another on average than they are to individuals outside of the
faction. Fig. 3C-D uses measures of polarization that aggregate from local features of the
relationships between individuals, rather than partitioning the entire population into
groups. Doing so allows for the potential absence of factions, and for the possibility that
some individuals in the population may not be a member of any faction at all. The
number of factions is measured by counting the pairs of individuals who are more similar
to one another than they are to any other individual. To illustrate, if individuals were
mapped to an n-dimensional landscape, where the height of the landscape was the
similarity between individuals, these pairs would represent local maxima. The
prominence of each faction is the difference between the similarity of most similar
individuals in the cluster and the average similarity to the next closest cluster, or how far
down the landscape you have to go from one peak before you can start climbing the next
closest peak.

The landscape is constructed using a hierarchical clustering algorithm, which
progressively groups individuals or sub-clusters that are most similar to one another on
average. (Alternate algorithms are shown in the supplement to give qualitatively similar
results.) Fig. 6 shows a dendrogram illustrating hierarchical clustering on a 20-agent
simulation (dendrograms typically plot height as increasing difference, or decreasing
similarity). The number of factions is the number of pairs of individuals who are more
similar to one another than to any other individual (highlighted in bold black). The
prominence of each faction is the difference between the height of the peak and the
closest link in the dendrogram that would connect it to another peak (red T-shapes). The
remaining population may have its own underlying form, with some individuals more
connected than others, but not organized into recognizable groups.
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0.2

0.4

Lt 0.6

U

U 0.8

Agent ID, [Factions]

Fig. 6. The number andprominence offactions. In this illustrative example,
there are five peaks (dark-shaded pairs), indicating five factions (marked
with brackets); two ofwhich havefour members ((9, 14, 6, 11) and (15, 18,
5, 13}), two have three members (4, 3, 17} and (8, 1, 7}) and one has two
members ((10, 16}). There arefour individuals (12, 2, 19 and 0) who do not
participate in anyfaction.
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Appendices to

Why meaning matters for belief diffusion in social networks

James P. Houghton

Appendices include:

A. Non-biasing Formalization of Belief Interaction
B. Additional Simulation Details and Explanation of Measures
C. Sensitivity and Robustness Tests
D. Simplified Model Code

Figs. S1 toS13
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A: Non-biasing Formalization of Belief Interaction

When we use models to study the effect of diffusion on the emergence of factions
or polarization, it's important that the assumed decision logic relating current beliefs to
future adoptions not be informative of the shape of factions or the beliefs around which
the population polarizes. This isn't to say that in the real world there is no shared decision
logic, or that the shared decision logic has no influence over what beliefs are most likely
or what clusters form in the population. The problem is that if the observed pattern of
belief clustering is predictable from the decision logic, then the simulation is unable to
identify whether clustering is shaped by social contagion, or is merely a result of the
decision logic. A simulation in which clustering is a product of either the decision logic
or the diffusion process is indeterminate for questions about which creates clustering.

An interdependence matrix which maps the presence of belief A to the likelihood
of adopting belief B will always be informative of the final configuration (or trivial). We
can demonstrate this with an extremely simple deterministic model, with no diffusion at
all. This model is in the style of Friedkin et al.(2), but omits all social influence,
stochasticity, and continuous levels of belief. Simplifying the model this way lets us see
intuitively why the interdependence matrix is problematic for our purpose in a way that is
less obvious when the various complicating factors are in place. When stochasticity,
social influence, etc. are present, the problem doesn't go away, it is just masked by the
complexity of the model.

In this simplified interdependence-matrix belief adoption model:

1. Each agent is exposed to all beliefs in every timestep (making this an individual
learning model, not a social learning model)

2. Having a belief 'A' either contributes (+) to an agent's likelihood of adopting
belief 'B', or takes away from it (-)

3. Not having belief 'A' has no direct influence on an agent's likelihood of adopting
belief 'B'

4. Belief adoption is binary and permanent
5. Agents adopt a belief if the majority of their current beliefs suggest they should.

(Other thresholds are of course possible.)

To show that the matrix of influence is informative, I'll use a population of 64
individuals, each with a unique combination of six beliefs, denoted A-F. The top center
chart in Fig. S illustrates this starting condition. Each column represents an individual
(0-63), each row represents a belief (A-F). I darken the corresponding square to show that
an individual has adopted a particular belief. To the right-hand side of the adoption plot, I
show a histogram of the total number of individuals adopting each belief. In the initial
condition, all beliefs have been adopted by 32 individuals.

I randomly draw two matrices of influence in the style of Friedkin et al., Logic 1
and Logic 2, plotted on the left-hand side of Fig. S1, with equal weights for + (red) and -
(blue). In each matrix, if an individual already has belief A, then the influence of that
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belief on the adoption of belief B is found in Column A, Row B. In Logic 1, this
influence is positive, and in Logic 2, this influence is negative.

Now, for each individual, I use the starting belief set to calculate the net influence
on each as-yet-unadopted belief. If the candidate belief gets a majority of + votes from
the existing belief set, then the candidate belief is adopted. (This assumes that each
individual has equal access to all candidate beliefs at all times, removing the influence of
social contagion altogether.) I repeat the process until the individual has converged on a
stable combination of beliefs. That is, no new beliefs are added. I repeat the process,
again from the starting condition, for each logic, displaying the results in the second and
third row of the figure.

Start with one individual in every possible belief combination
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Logic 1 8 stable belief combinations after adopting beliefs according to Logic 1
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Current Individual Adoption

Fig. S. With an interdependence-matrix style belief structure, are the
extent offactionalism or differences in the level of belief adoption due to
social contagion, or can they be explainedjust with the beliefstructure?

Any model of social learning with binary and permanent belief adoption and a
finite number of beliefs will show some form of belief consolidation, and an increase in
mean similarity between individuals. We expect to see that from our maximally-
differentiated initial conditions, some groups of stable belief combinations should
emerge. In the second and third adoption plots, I group individuals according to their
stable sets of beliefs, indicating the groups with a red divider.

The two Friedkin-style logics, despite being drawn randomly, yield very different
stable combinations of beliefs. In Logic 1, there are 8 different stable combinations, and
in Logic 2, there are 34. In a diffusion model, we would expect to see a lot more
consolidation of beliefs, and clustering of individuals, using Logic 1 rather than Logic 2,
regardless of the network structure. Moreover, the two different logics strongly influence
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which beliefs we should expect to be widely diffused in the population, and which we
expect to see only because of their presence in the initial conditions. Logic 1 suggests
strong new adoption (shown in red) of beliefs A, B, D, and E. Logic 2 shows that only
belief D is widely adopted, with belief A having no new diffusion at all.

In the real world, it may well be that the natural logic which ties some beliefs
together will strongly influence the shape of social clustering and the extent of diffusion
of particular beliefs. In our simulation, however, this influence makes it extremely
difficult to identify clustering and amplification of beliefs that is genuinely due to a social
process. In this paper, I have suggested an alternative formulation, in which beliefs are
formalized as edges in a semantic network, and the adoption rule is that beliefs are
adopted if they close a triangle in an individual's semantic network.

In Fig. S2, I repeat the above analysis with this new formulation. Again there are
six beliefs, representing all of the possible edges in a semantic network with concepts P,
Q, R and S. Again, each of 64 individuals is initialized with a unique combination of
beliefs, and has access to all six beliefs. Each individual adopts new beliefs that are
consistent with the triangle-closing decision rule, and I plot the stable belief combinations
after each individual has individually converged. As there is only one decision rule, there
can be only one outcome for grouping the sets of stable beliefs.

Start with one individual in every possible belief combination
P0
PRMum

a PS lmmoss "=iesE

u r4 M..uuL 01 2 8(

Adoption
15 stable belief combinations after adopting beliefs according to triangle closing rule

lvPS: INmULi~PEEEEEEEEEEEEEEEEEE
Ii\OR OR.1.EEEEEEEEEEEEEEEEEEU

S . ....... m .m ....... u uu mu u

0 16 324864
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Fig. S2. With the semantic network representation of belief structure, we
have confidence that any variance in adoption patterns, or differences in
social clustering, are due to the interaction of the belief structure with the
diffusion process.

With this formalization, we know exactly how the decision rule for adoption
influences the number of possible stable states; and most importantly, these states are
symmetric with respect to the individual beliefs. The histogram to the right of the second
row of S2 shows that each belief has an equal number of new adoptions, and that we
should not expect any beliefs to preferentially diffuse as a result of the decision rule
itself.

In this paper I have shown that some beliefs do indeed diffuse much more widely
than others, and that the population clusters into a subset of the possible stable states.
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Because the decision rule does not influence which of the beliefs diffuse most widely, or
suggest variation in the number of social clusters we can expect, we have confidence that
the results are genuinely due to the interaction of the belief structure with the diffusion
process.
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B. Additional Simulation Details and Explanation of Measures

Comparison cases for the reciprocal facilitation mechanism

In Fig. 2 I compared interdependent diffusion (with reciprocal facilitation between
beliefs) with a case in which beliefs diffused independently from one another, in which
the susceptibility to each belief is fixed from the start of the simulation (no facilitation
between beliefs). A third case is also plausible, in which the diffusion of one belief
precedes the diffusion of the second, and may facilitate its adoption (in a "forwards"
direction, chronologically) but not vice versa. Fig. S3 adds sequential diffusion with
forward facilitation to the charts from Fig. 2.

Averaged over all beliefs in the simulation, each allowed to diffuse one after
another, we see that forward facilitation allows average susceptibility to rise somewhat
above the independent case. With sequential diffusion and forward facilitation, the
number and density of clusters lean towards the result we saw with simultaneous
diffusion and reciprocal facilitation. However, the results of forward facilitation are more
qualitatively similar to the independent case than the dramatic outcomes under
simultaneous diffusion. This suggests that it is truly the interactive nature of reciprocal
facilitation that generates the results we see.
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Fig. S3. Sequential diffusion with forward facilitation suggests the same
direction of result as simultaneous diffusion with reciprocal facilitation,
but represents a qualitatively different phenomenon.
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C. Sensitivity and Robustness Tests

The model in this paper distills its representation of interdependent diffusion to
the absolute minimum structure needed to explain reciprocal facilitation and agreement
cascades. While this is appropriate for its purpose, we need to have confidence that the
results are not an artifact of the simplifications. When we relax the simplifications that
are not part of the sociological theory being advanced, we should still arrive at the same
conclusion. When we move away from the structural components of the theory, we
should see that the behavioral components attenuate appropriately.

For example, to create the behavior-over-time graphs in Figs. 2 and 3, I seeded
each agent with a small number of beliefs (25 seeds each) randomly selected from a finite
set of all possible beliefs (435 possible beliefs). In the real world, we don't know how
many beliefs there are, or what fraction are acquired independently of social diffusion. To
test the robustness of the model to changes in the number of seeds, we should vary the
number of beliefs individuals start with and see if the reciprocal facilitation and
agreement cascade mechanisms are still active. If so, do they lead to the same
conclusions about clustering of beliefs and social polarization?

Sensitivity to the number of starting beliefs

The reciprocal facilitation mechanism is active when susceptibility and adoption
evolve together. For adoption to happen, an individual must be simultaneously
susceptible to a belief and exposed to it. If the simulation starts with too few beliefs, these
factors will cooccur too infrequently for meaningful diffusion, whether beliefs diffuse
simultaneously or individually.

Fig. S4A shows how the ultimate number of individuals susceptible to a belief
(dashed lines) and final adoption of beliefs (solid lines) varies with the number of starting
beliefs per agent. (All other parameters are as they were in the simulations presented in
the main body of the paper.) At the start of the simulation (light blue stars) adoption is by
definition proportional to the number of beliefs we seed. The initial number of
susceptible individuals is dependent upon the chance that two facilitating beliefs create an
open triangle that the candidate belief may close. Increasing from low seeding densities,
the average frequency of susceptibility to a belief grows faster than linearly with the
number of seeds, and saturates as it approaches 100%.

After the simultaneous diffusion of beliefs (black triangles), susceptibility and
adoption have both grown, and with more than 75 ~ 100 seed beliefs (ceteris paribus) the
simulation saturates with full adoption of all beliefs. This saturation is an artifact of the
finite belief universe we stipulate in the model, and influences some of the behavior we
will see at higher seed densities as we perform our sensitivity tests.

Fig. S4B shows the same outcome as S4A, except that beliefs diffuse
independently from the initial condition. This is the case in which reciprocal facilitation
is "switched off', the comparison case I use in the main body of the paper. In this case,
the frequency of susceptibility is fixed at what is provided by the initial belief seeds. With
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enough starting beliefs, however, this susceptibility also saturates at 100%, and the initial
adoption is such that diffusion (green circles) reaches nearly all susceptible individuals.

Fig. S4C shows the difference between the simulation condition and the
comparison condition. We can interpret this as the component of diffusion which is due
to the reciprocal facilitation mechanism. When agents start with very few beliefs, the two
cases are similar in their poor diffusion. After moderate increases to the number of seed
beliefs, reciprocal facilitation is able to increase the level of diffusion in excess of what is
possible without belief interaction. When agents have many starting beliefs, adoption in
either case saturates at 100%, and so reciprocal facilitation makes little difference.

Varying the number of starting beliefs here shows that we don't expect reciprocal
facilitation to have a large impact when contagion is weak, or when susceptibility is so
strong that beliefs will diffuse even without facilitation. However, the nontrivial diffusion
processes most likely to be of interest to sociologists will occur in the middle range, in
which the mechanism is active.

How do the outcome measures change with the number of starting beliefs? Fig.
S4D shows how the clustering of the top 10% of beliefs varies with the initial number of
beliefs. As we expect, the clustering of the most popular beliefs increases as the
reciprocal facilitation mechanism becomes active. Why does it decrease when starting
beliefs are densely seeded? As adoption saturates near 100%, there is less difference
between the most popular beliefs and the least popular beliefs, until at full saturation all
beliefs are equally popular. At this point, the most popular 10% is just a random sample
of the full set of beliefs, and the clustering of that sample returns to what we expect due
to chance.

In Fig. S4E, we see the same process occurring in the independent diffusion case.
Though not shown in the diagram, when the initial number of beliefs is high enough that
diffusion saturates at 100%, the clustering coefficient must be that due to randomness.
Because the diffusion saturates at much higher numbers of starting beliefs, the curve
peaks further to the right. In Fig. S4F, we see the difference between the two curves.
Interestingly, with sufficiently many starting beliefs, the reciprocal facilitation case
exhibits less clustering than the no facilitation case. This reversal is purely an artifact of
saturation, and occurs because our simulation has a finite number of beliefs. In discussion
of Fig. S5, we'll explore what happens as we increase the number of concepts in the
semantic network, and the number of beliefs an agent may choose between.

In Fig. S4G, H, and I, we see that the reciprocal facilitation mechanism
encourages the formation of a small number of clusters when seeded with many fewer
beliefs than we would predict if beliefs did not interact. When diffusion is complete, we
see by definition a single large cluster in both cases. The fact that the curve for reciprocal
facilitation approaches a single cluster smoothly, and with relatively fewer seed beliefs, is
significant. When diffusion is independent, the number of clusters is driven by chance
even for very densely seeded semantic networks (the curve in H does not bend downward
until the simulation shows over 80% average adoption). In contrast, the reciprocal
facilitation mechanism begins pruning and merging smaller clusters at relatively low
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levels of average adoption. As there is no natural expectation for the number of clusters
we should expect, Fig. S41 shows the ratio of the two cases, rather than the difference.
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diffusion without any facilitation for B, E, and H; and the case in which
beliefs are shuffled between agents for K, N and Q. The rightmost column
gives a comparison of the first two columns, representing the impact of
reciprocal facilitation and agreement cascades. When a measure has
clearly defined upper and lower bounds (Percent, Clustering Coefficient,
Jaccard Similarity! Prominence) I give the difference between the cases.
When the measure does not have a natural scale, I show the ratio, to give a
better sense ofwhether the comparison shows a large distinction or a small
one.

As in Fig. 3 in the main body of the paper, I randomize the beliefs of individuals
to serve as a comparison case for the remaining measures. Shuffling the beliefs that
individuals possess gives a more conservative comparison for these measures, because so
much of the similarity between individuals is driven by the average number of beliefs
they have adopted. As the diffusion of beliefs under the independent diffusion case used
in plots B, E, and H is so much lower than the reciprocal facilitation case, if we were to
use this for comparison, we would not be able to separate the true effect of belief
interaction on interpersonal similarity from the generic effect of diffusion.

At very low densities of seed beliefs, individuals have very little in common.
With very high densities of seed beliefs, they have very little to differentiate themselves.
In between, what they share is a function of how they exchange beliefs - the mechanism I
describe as agreement cascades. In Figs. S4J, K, and L, we see that the primary effect of
this mechanism is to shift the S-shaped similarity curve leftwards. That is, the most
similar individuals are able to achieve their similarity not because of the number of
beliefs they possess, but because of coordination among which beliefs they possess.

Figs. S4M, N, and 0 count the number of factions in the population, with the last
plot again showing the ratio rather than the difference between cases, as there is no
natural expectation for the number of factions we should expect. At very low levels of
starting beliefs, the randomized case can generate slightly more factions than the
simulated case, as small amounts of diffusion in the simulated case occur between
already similar individuals, increasing their similarity further. This tends to amplify the
existing clusters, but not to create more of them. When beliefs are randomized, the
number of clusters is still determined by chance, but there is more heterogeneity in the
number of beliefs each individual has, and so more opportunity for peaks to emerge by
chance.

Plots S4P, Q, and R highlight the average prominence of the revealed factions.
With low numbers of starting beliefs, the number and prominence of factions is due to
chance. When there are high numbers of starting beliefs, and the diffusion begins to
saturate, factions fade and the heterogeneity between individuals shrinks as all
individuals adopt all beliefs. In between, chance acts to smooth the landscape and
decrease the number and prominence of factions, while the agreement cascade amplifies
them.
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Sensitivity to the size of the semantic network

The curves in the rightmost column of Figs. S4 (C, F, I, L, 0 and R) provide a useful
way to compare the impact of changes to various parameters in the simulation. Fig. S5A
shows that when we increase the number of concepts in the semantic network, the
maximal effect of reciprocal facilitation also grows. However, the maximum occurs with
a larger number of seed beliefs; as with more concepts, any two beliefs are less likely to
create an open triangle (and consequent opportunity for diffusion) in the larger semantic
network. If we were to make comparisons across semantic network sizes with a fixed
number of starting beliefs, we might observe either an increase or decrease in the effect
of reciprocal facilitation, depending upon the point we chose. For the rest of the
sensitivity tests, I will show the full comparison curves between the simultaneous and
independent diffusion cases.

The effect of a larger semantic network size is much the same on the other
measures. The fact that clustering of the top 10% of beliefs is comparable between a
semantic network of 20 concepts and 190 beliefs and a semantic network with 80
concepts and 3160 beliefs gives confidence that the effect will persist at even larger
scales. With a larger semantic network, a larger number of clusters is possible in the
semantic space under random conditions, and so the ratio between the two cases can be
greater.

When the semantic network is larger, the effect of agreement cascades on faction
prominence declines somewhat, as there is a larger stock of beliefs to differentiate
individuals from one another, increasing the denominator in the calculation of Jaccard
similarity. A simulation in which individuals forgot about beliefs that were not socially or
semantically reinforced, we should expect this trend to reverse.
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Sensitivity to Semantic Network Size
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Fig. S5. The magnitude of the effect ofreciprocalfacilitation and agreement
cascades is moderately influenced by the number of concepts in the semantic
network.

Sensitivity to the size of the social network

The size of the social network has little effect on reciprocal facilitation's
contribution to belief diffusion. However, with more agents in the social network, we are
better able to identify the 10% most popular beliefs, and so the randomizing effect of
belief saturation is minimized. This generates the rightward shift we observe for large
social networks for the curves in Figs. S6B and C; although the sociological relevance of
this shift is debatable.

A larger social network has more opportunities for the formation of local factions.
In the individual diffusion case without reciprocal facilitation, the population is still
formed into something of an amorphous mass, and so the ratio of the number of factions
in the simultaneous diffusion case grows with the size of the population.

26

C
0

S0
--

0
a)~.0
LILI

a) LI..



Sensitivity to Social Network Size
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Fig. S6. The effect of reciprocal facilitation is generally insensitive to the
size of the population. Larger populations provide opportunities for the

development of more localfactions.

Sensitivity to the shape of the social network

In the main body of the paper, I conducted simulations on a random social
network to minimize the effect that social network structure would have on the formation
of factions. Fig. S7 reintroduces social network structure with the Barabasi-Albert, Watts-
Strogatz (p=.02), and connected caveman graphs. Social network degree is held fixed (or
as close as possible for B-A) along with network size.

Adding network structure serves to limit the extent of diffusion, with a larger
retarding effect on independent diffusion than simultaneous diffusion. This increases the
observed impact of the reciprocal facilitation mechanism on diffusion for cases with more
seed beliefs.

Just as reciprocal facilitation has little impact on the extent of diffusion when
initial susceptibility is high enough to saturate diffusion on its own, we expect that when
the social network already has built in communities there will be less room for the
agreement cascade mechanism to make a difference in the observed number of factions.
Fig. S7E shows this to be the case. The number of factions present in the connected
caveman graph is greater than in any of the other network structures, under both
simultaneous and independent diffusion. With so many clusters present even under
independent diffusion, the relative impact of agreement cascades is minimized.
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Figs. S7D and F show that when communities are identifiable in the social
network, the impact of agreement cascades on faction distinctiveness is amplified. We
see a more skewed similarity distribution, and greater prominence in the resulting
factions.
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Fig. S7. The presence of communities in the network structure generates
its own factions under either simultaneous or independent diffusion.
Communities accentuate the impact of agreement cascades on faction
prominence.

Sensitivity to the average number of neighbors in the social network

The primary impact of having more social connections is having more exposure to
beliefs. When you have more beliefs to choose from at the start of the simulation, the
relative importance of reciprocal facilitation for the final extent of diffusion declines. As
with communities in the structured social networks in Fig. S8, having fewer social
network connections amplifies the impact of agreement cascades on the prominence of
clusters and the similarity of the most similar individuals.
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Sensitivity to Mean Number of Social Neighbors
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Fig. S8. Understanding how the results of the simulation depend on the
average number of neighbors each agent is connected to in the social
network.

Sensitivity to the adoption decision rule

In this paper, I simplified individuals' adoption decision rules to say that
individuals adopted a belief if it closed a triangle in their semantic networks, as long as at
least one of their neighbors has also adopted - that is, they are exposed to the
information. In contrast, threshold models of diffusion ignore the semantic dimension
altogether, and pay attention instead to the fraction of an individual's neighbors who have
adopted the belief. These two dimensions form a space in which we can define more
complex decision rules. Fig. S9A shows the triangle closing decision rule as a region
occupying the full height of the decision space, for a certain maximum semantic network
distance. S9B shows the threshold model as occupying the full width of the space above a
given threshold. S9C shows one way we could combine the two rules while maintaining a
binary decision rule.
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Fig. S9. A polygon-closing rule can be combined with a threshold rulefor
a rule based upon both social and semantic considerations.

Naturally, if the space was full, this would correspond to the case in which an
agent would always adopt a belief they were exposed to, regardless of the semantic or
social conditions under which it is presented. Under this condition we would see no
difference between simultaneous or independent diffusion by definition, as we have
entirely removed the interaction between beliefs. In Fig. S10, we progressively approach
this condition from the left, by increasing the distance in the semantic network that a
belief may span and be adopted, from a path length of 2 through 30, encompassing all
beliefs that have any existing path in the semantic network. When individuals use
semantic information in a less discriminating way, the clustering of beliefs naturally
approaches the always-adopt condition.
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Fig. S10. When we increase the semantic network distance that a new
belief may span, the behavior of the simulation approaches that under the
always-adopt decision rule.

Contrary to our expectation, Figs. S1D, E and F show very little response to the
less discriminating decision rule. Fig. S I helps to explain why. When individuals
become more relaxed about using semantic information to discriminate between beliefs,
we see that the extent of diffusion changes dramatically under the individual diffusion
case, but hardly at all under the simultaneous diffusion case. This is because reciprocal
facilitation makes it easier to fill in the intermediate triangle that it would take to close a
square, and so the ability to close a square makes less of a difference, similarly for larger
polygons.
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Fig. Si. Less discriminating decision rules increase the mean extent of
diffusion under individual diffusion by increasing the fixedfrequency of
susceptibility to each belief They have little impact on the simultaneous
diffusion case, because reciprocal facilitation allows susceptibility to
evolve throughout the simulation, and so the initial level of susceptibility
is less important.

As the righthand column of Fig. S10 is based upon the simultaneous diffusion
case alone (with beliefs shuffled to make the comparison case) and there is little
difference in the adoption patterns for different path lengths in the decision rule, we also
see little change in the factionalism measures.

So far, individuals have only been able to adopt beliefs where there are existing
paths in their semantic networks. Now I will add to the individual's decision rule the
ability to adopt a belief if it closes a triangle in their semantic network, or if the fraction
of their neighbors who have adopted the belief is greater than some threshold. When the
threshold is 1, we see the original behavior. When the threshold is less than 1, individuals
now have the potential to adopt beliefs that are not connected to their existing semantic
networks in any way. Fig. S12 shows that as we reduce the threshold, the final extent of
diffusion shifts under both simultaneous and sequential adoption, as we expect.
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Fig. S]2. Threshold adoption increases the mean extent of diffusion for a
given set of seeds, under either simultaneous or independent diffusion.

Fig. S13 shows that when the threshold is high (0.99, 0.8), the introduction of
threshold adoption allows the adoption of beliefs that are not connected to the existing
semantic network; while the dynamics are still primarily driven by reciprocal facilitation
and agreement cascades. The ability to adopt unconnected beliefs increases the
importance of both reciprocal facilitation and agreement cascades, with the maximum
impact of the mechanisms occurring with fewer seed beliefs. The increase in the impact
on diffusion is a straightforward conclusion, as anything that supports the diffusion of a
belief will lead to greater levels of adoption, which will be amplified by reciprocal
facilitation. The impact on agreement cascades is to increase the ability of similar
individuals to become yet more similar, as those whose neighbors all agree in their
adoption of a belief will be able to adopt that belief as well.

As the threshold is lowered (0.6), diffusion is driven more by social
considerations than semantic consistency. As we should expect, when beliefs are more
likely to be adopted because they exceed the social threshold for adoption than because
they are consistent with the agent's semantic network, adoption patterns start to look
more like what we would see under threshold diffusion. The importance of reciprocal
facilitation and agreement cascades declines. As we saw with the less discriminating
decision rules in Fig. S10, when agents are less driven by a desire for internal consistency
in their semantic networks, the dynamics that emerge from the interdependence between
beliefs are less observable.
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Fig. S13. When threshold adoption acts to allow access to beliefs whose
diffusion is still primarily dependent upon consistency with individuals'
semantic networks, it accentuates the effect of reciprocal facilitation and
agreement cascades on belief clustering and social factionalism. When
threshold adoption is the dominant mode of diffusion, reciprocal
facilitation and agreement cascades become less relevant.
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D: Simplified Model Code

The following (Python 3) code is sufficient to simulate the social contagion of
interdependent beliefs, using the semantic network representation of beliefs and the
triangle-closing adoption rule. I also include code to measure semantic network
clustering, and social factionalism. A full listing of all code necessary to generate the
figures in this paper, and faster ways of conducting the simulation and measures, is
available at: https://github.com/JamesPHoughton/interdependent-diffusion.

The following code formalizes this paper's theory of the social contagion of
interdependent beliefs. Lines 4-7 define the parameters for the simulation. Lines 9-27
initialize the social network, assign beliefs to agents, and cache a list of the beliefs
present in the network. Lines 29-38 represent the decision rule that each agent uses to
decide whether to adopt a belief. Lines 40-50 perform the simulation itself.
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1. import networkx as nx
2. import numpy as np

3.

4. nagents = 40 # number of agents in the population

5. deg = 4 # number of neighbors each agent has, on average

6. nconcepts= 30 # number of nodes in the complete belief space

7. nbeliefs= 25 # number of starting beliefs given to each individual

8.

9. # create a randomly connected social network
10. # if it isn't connected, try again

11. connected = False
12. while not connected:

13. g = nx.gnm randomgraph(n=nagents, m=int(nagents*deg/2))
14. connected= nx.isconnected(g)

15.

16. # give agents their initial beliefs
17. nx.setnodeattributes(

18. g,
19. name='M', # set node attribute 'M (for 'mind')

20. # create a semantic network with a different random set of beliefs
21. # for each agent, and assign to nodes in the social network

22. values={agent: nx.gnm_randomgraph(nconcepts, nbeliefs) for agent in g}

23.)

24.

25. # capture a list of all the beliefs in the population
26. beliefs = np.unique([tuple(sorted(belief)) for agent in g
27. for belief in g.node[agent][M].edges(], axis=0)
28.
29. # define a rule for whether an agent adopts a candidate belief

30. def adopt(g, agent, edge):

31. try: # there may be no path between the nodes

32. length = nx.shortestpathlength(g.node[agent]['M'], *edge)

33. except (nx.NetworkXNoPath, nx.NodeNotFound):

34. length = 1000 # assume that length is very large

35.

36. exposure = np.mean([edge in g.node[neighbor]['M'].edges()
37. for neighbor in g[agent]])

38. return length == 2 and exposure > 0 # triangle closing decision rule
39.

40. # perform the simulation
41. n-steps = 10
42. for step in range(nsteps):

43. # cycle through agents in random order
44. for ego in np.random.permutation(g):

45. # cycle through all possible beliefs in random order

46. for edge in np.random.permutation(beliefs):

47. # check whether the selected agent adopts the selected belief
48. if adopt(g, ego, edge):

49. # add the belief to the agent's semantic network
50. g.node[ego]['M'].addedgesfrom([edge])
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The following code computes the various measures used in Figs. 2 and 3 in this
paper.

1. import scipy.cluster.hierarchy as sch

2. from scipy.spatial.distance import squareform

3.

4. # Measure the number of adopters of each belief

5. diffusion = dict() # keys will be tuples of the belief

6. for edge in beliefs:

7. # count the agents with the belief in their semantic network
8. diffusion[tuple(edge)] = np.sum([edge in g.node[agent]['M'].edges()
9. for agent in g])
10.

11. # Measure the clustering coeff. of all beliefs above qth percentile

12. q = 90

13. # find index of qth percentile belief
14. thresh = int(np.ceil(len(diffusion)*(q/100)))
15. # rank beliefs from least to most popular

16. edges = sorted(diffusion, key=diffusion.get)

17. # create a subgraph with only the beliefs above threshold
18. subgraph = nx.from-edgelist(edges[thresh:])
19. # measure clustering of the subgraph

20. beliefclustering = nx.averageclustering(subgraph)
21.

22. # Measure the number of separable clusters in aggregate semantic network
23. # identify unique values for extent of diffusion
24. levels = set(diffusion.values()
25. num-components = []
26. for level in levels:
27. # identify the edges that are above the level

28. edges = [belief for (belief, adopters) in diffusion.items()
29. if adopters > level]

30. # create a subgraph with only the beliefs above
31. subgraph = nx.from-edgelist(edges)
32. # count the number of components in the subgraph
33. numcomponents.append(nx.numberconnected-components(subgraph))

34. # find the maximum number of components discovered
35. numsemanticclusters = np.max(numcomponents)

36.

37. # Measure jaccard similarity between each pair of individuals
38. jaccards = dict()
39. # for each pair of agents in the simulation

40. for a, b in itertools.combinations(g.nodes, r=2):
41. # identify the edges of each agent
42. aedges = set(g.node[a]['M'].edges()
43. bedges = set(g.node[b]['M'].edges()
44. # jaccard similarity is the intersection divided by the union
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45. intersect = len(a_edges.intersection(bedges))
46. union = len(aedges.union(bedges))
47. jaccards[(a, b)] = intersect/union
48.

49. # Measure the mean of similarities above qth percentile
50. # Find out what index represents the qth percentile individual
51. thresh = int(np.ceil(len(jaccards)*(q/100)))
52. # Average over all similarities above the qth percentile
53. meaninterpersonal_similarity = np.mean(sorted(jaccards)[thresh:])
54.

55. # identify factions
56. # distance measure is used by hierarchical clustering (HC)
57. distances = 1-np.array(list(jaccards.values())
58. # HC on the average distance btw sub-clusters

59. link = sch.linkage(distances, method='average')
60. # a peak is anywhere the HC pairs two individuals
61. peaks = np.argwhere(link[:,3]==2).flatten()
62. n_peaks = len(peaks)
63.

64. # calculate the prominence of all factions
65. if len(peaks) > 1:
66. # calculate matrix of distances between all agents
67. sf = squareform(sch.cophenet(link))
68. prominences = []
69. # look at each peak
70. for node, height in link[peaks,1:3]:
71. distances = []
72. for othernode in link[peaks,1]:
73. # compare to each alternate peak
74. if node == othernode:
75. continue
76. # extract cophanetic distance between peaks
77. distance = sf[int(node), int(othernode)]
78. distances.append(distance)

79. #prominence is the smallest cophanetic distance
80. #net the distance between the nodes making up
81. #the current peak
82. prominences.append(min(distances)-height)

83. meanprominence = np.mean(prominences)
84. else:

85. # if there is only one peak, cophanetic distance
86. # to nearest peak is equal to height -> net 0
87. meanprominence = 0
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