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Abstract

The goal of this thesis is to develop a computationally efficient method for analyzing
the unsteady flow past a ducted propulsor with multiple blade rows. The method
models the propulsor in potential flow using a time-marching low order potential
based panel method for ali components. The duct and hub are represented using the
generalized image model, which accounts for the effects of the duct and hub on the
propeller and stator blades exactly, without solving the boundary value problem on
the duct and hub at each time step. The generalized image model essentially accounts
for the modification to the infinite domain Green’s function due to the presence of
the duct. This manifests itself in the modification to the panel influence coefficients
for every propeller, stator, and wake panel. A computationally efficient method is
developed for calculating these images. The generalized image model was originally
developed for steady flows. In order to apply the generalized image model to solve
the unsteady flow problem, a method is devised to account for the vorticity shed by
the duct. This method first solves for the problem where the solution on the propeller
and stators is fully unsteady, but the solution on the duct is quasi-steady. It is then
demonstrated that the fully unsteady solution on the duct can be recovered from the
quasi-steady duct solution. A special procedure is introduced for the flow through
the clearance region between the tip of the propeller and the inner surface of the
duct. Numerical results are shown for the unsteady pressure distributions, forces,
and circulation distributions on the duct, propeller, and stator blades. The method
is also used to predict the flow past a single component ducted propeller in uniform
flow. This shows the method to be consistent with a direct panel method solution for
the steady flow past a ducted propeller.

Thesis Supervisor: Justin E. Kerwin
Title: Professor of Naval Architecture
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Chapter 1

Introduction

Multi-component ducted propulsors are being used increasingly for both ocean vehicle
propulsion and control. A multi-component ducted propulsor consists of a propeller
operating inside of a duct with either one or more rows of stationary blades or an-
other set of rotating blades. Some examples of the varicus types of multi-component
ducted propulsors are shown in Figure 1-1. The applications for these devices range
from the propulsion of large vessels which require highly loaded propellers to that of
small underwater vehicles. Multi-component ducted propulsors can also be applied
as thrusters to help maneuver vessels. Pre-swirl and post-swirl stator vanes are some-
times employed as a means of reducing the rotational losses which occur downstream
from a propeller, thereby improving the propulsive efficiency of the system. Ducts
have been used both to protect the propeller and to increase propulsive efficiency or
to reduce propeller cavitation. Since ducted propellers often require struts in order
to support the duct, using these struts as a set of pre-swirl or post-swirl stator blades
may prove advantageous.

In the design of these propulsors it is often important to examine the unsteady
forces associated with their use. Propulsors are often subjected to severe non-axisym-
metric wakes from the boundary layer of the vehicle, an inclination of the propeller
shaft, or the maneuvering of the vehicle. In the case of multi-component propulsors,
unsteady forces will result from the interaction between the various blade row com-

ponents as well. An important step in this process is the analysis of the unsteady

16



Ducted Propeller with Ducted Propeller with
Pre-Swirl Stator Blades Post-Swirl Stator Blades

Both Pre-Swiri and Contra-otating Ducted
Post-Swirl Stators Propulsor

Figure 1-1: Various types of multi-component ducted propulsors
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potential flow past the propulsor in the presence of a prescribed spatially non-uniform
inflow. When the propulsor in question contains a duct and one or more rows of sta-
tor blades, the analysis of the propulsor in a non-uniform inflow becomes increasingly
complex and computationally expensive. Accurate predictions of the unsteady pres-
sure distributions on the duct, hub, propeller blades, and stator blades are critical
in determining cavitation inception, unsteady boundary layer separation and the hy-

drodynamic performance of the propulsor.

1.1 Previous Research

1.1.1 Steady flow analysis methods for ducted propulsors

Significant progress has been made in predicting the steady flow past ducted pro-
pellers. In most cases the duct and propeller are examined separately, with their
mutual interaction being accounted for by including the induced velocities from each
component on the other in an iterative manner. For these cases the ducted propeller
is usually assumed to operate in a uniform or axisymmetric inflow, and the propeller
is typically treated using an actuator disk, lifting line, or lifting surface method. In
the earliest models, the duct is represented in linear theory by placing ring vortices
and sources on an appropriate mean surface. Among others, Morgan (34], Caster (2],
and Dyne [4] have published works describing these types of models. Later methods
represented the duct in non-linear theory using axisymmetric singularity distribu-
tions on the exact duct surface. Examples of these methods can be found in the
works of Gibson and Lewis [11], Glover and Ryan [12], and Falciao de Campos [5].
Still later models allowed for non-axisymmetric loading on the duct by incorporating
lifting surface theory to represent both the duct and propeller. Such methods are
discussed by Van Houten [39) and Feng and Dong [6]. A more complete review of the
various methods for the analysis of single component ducted propellers in steady flow
is given by Kerwin et. al. [23] which describes a method that uses a vortex-lattice

lifting surface method to model the propeller and a boundary element method (or
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panel method) to model the duct and hub,

Boundary element (panel) methods are currently being used extensively in fluid
dynamics. In these methods, Green’s theorem js applied to the fluid dynamijcs prob-
lem. Singularities are distributed on the surfaces of the bodies in the problem. These
singularities consist of dipoles and sources or vorticity. Panel methods were first ap-
plied by Hess and Smith (14] to solve a steady three-dimensional non-lifting body
problem. They later applied this method to a three-dimeunsional lifting body problem
[13]. Since that time the use of panel methods has flourished with many different
panel methods being developed. A review of different panels methods is given by
Hunt [21], and a review of their application to propellers is given by Hsin [15]. Ker-
win et. al. [23] and Lee (30] developed a low-order, potential based panel method
to analyze marine propellers in 1987. The propeller surface is discretized with flat
quadrilateral panels. An iterative Kutta condition is applied at the trailing edge of
the propeller blades. At about this same time, Kerwin et. al. (23] applied panel
methods to the hydrodynamic analysis of ducted propellers in steady flow. In this
method the surface of the duct and the hub were represented using panels, while
the propeller was represented with a vortex lattice lifting surface method. Validation
of this method through comparison with experimental results was demonstrated by
Hughes et. al. (20]. This method was later extended by Hughes and Kinnas (19] to
include the effects of a single row of evenly spaced pre-swirl stator blades with equal
pitch distributions. In this method the interactions between the propeller and the
duct and the interactions between the stators and the duct are handled in a com-
pletely three-dimensional and non-axisymmetric manner. The interactions between
the propeller and the stators are handled in a three-dimensional but axisymmetric
manner. This method was later extended to account for an inclined inflow and un-
evenly spaced stator blades with unequal pitch distributions [18]. Single component
ducted propellers have also been analyzed in steady flow using a panel method for

the duct and propeller simultaneously using an algorithm developed by Hsin [16].
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1.1.2 Current unsteady flow algorithms for propulsors

Numerical lifting surface methods have been used extensively for the analysis of un-
steady propeller flows. A review of different stcady and unsteady lifting surface
methods as applied to marine propellers has been given by Kerwin [22]. Feng and
Dong [6] presented a method to solve for the unsteady flow past a ducted propeller
using a lifting surface method for both the duct and propeller. In their method
the flow past the duct and propeller were solved separately using an iterative time-
marching scheme. Kinnas and Hsin [25] have developed a time-marching potential
based boundary element method for the analysis of the unsteady flow around extreme
propeller geometries. This method predicts accurately the unsteady blade pressures
and forces for a broad range of reduced frequencies for a single component open pro-
peller. Panel methods have also been used to model the unsteady flow past multiple
bodies by Maskew [32].

A method has also been developed to analyze the unsteady flow past a single com-
ponent ducted propeller using a hybrid panel method / vortex lattice lifting surface
method by Kinnas et. al. [26]. Their method combines a time marching vortex lattice
lifting surface method for the propeller with a potential based panel method for the
duct. In [26] the effects of the duct are accounted for via the generalized images
(described in the next section) of the singularities representing the propeller and its
trailing wake with respect to the duct. In this thesis, methods which use a panel
method to solve the boundary value problem on the combined duct and propeller
surface simultaneously will be referred to as direct panel methods. This is to distin-
guish such methods from the procedure used in this thesis, which use the generalized

iinage model to represent the duct and hub.

1.2 The Generalized Image Model

The generalized image model allows for the propeller and stators to be examined in-
dependently of the duct and hub, with the interactions between the duct and hu’, and

the propeller and stators being accounted for accurately. One method of analyzing the
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unsteady flow past a ducted propulsor is by treating all of the components as a single
body and applying Green’s formula to solve for the potential on all the body surfaces
simultaneously using a time-marching panel method. The duct, hub, propeller, and
stators would have to be paneled, with unsteady vorticity being shed from the trailing
edges of the duct, propeller blades and stator blades. An alternative method is to
model only the propeller and stators using a time-marching panel method, and to
incorporate the duct and hub using the generalized image model. The generalized
image model is analogous to the classical image concept, where the potential flow
past a body near an infinite wall can be modeled by singularities distributed on the
surface of the body, as if the fluid were unbounded, with the presence of the wall
accounted for via the images of these singularities with respect to the wall. The gen-
eralized image idea extends this concept for the case where the wall is allowed to be a
body of any shape, in our application a duct and hub. The generalized image model
essentially accounts for the modification to the infinite domain Green’s function due
to the presence of the duct and hub. This manifests itself in the modification of the
panel to panel influence coefficients which form the left hand side of the system of
linear equations which are solved at each timestep.

The generalized image model was first introduced by Kinnas and Coney [27], 28],
to solve for the optimum circulation distribution for a propeller operating inside of a
duct in uniform flow. In their work, the generalized image model is used to accurately
model the steady flow past a ducted propeller. The duct is modeled using a potential
based panel method. The propeller is represented using lifting line theory, and the
generalized images are calculated directly for each lifting line horseshoe element. For
this steady flow problem, the duct coordinate system rotates along with the propeller,
and the strength of the dipole sheet representing the duct wake is constant along the
wake strips in the streamwise direction. When the modifications to the left hand side
influence coefficients are calculated, the problem of the flow past the duct and hub in
the absence of any inflow, but in the presence of each individual propeller singularity
is solved. When solving these problems it is assumed that the strength of the vorticity

in the duct wake varies only circumferentially and does not change in the streamwise
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direction. This is acceptable for solving the steady flow problem. However, when
these same modified coefficients are applied to the unsteady flow problem, it will
result in a duct wake sheet which has a different strength at each timestep, but whose
strength does not change in the streamwise direction. We have termed this solution
the “quasi-steady duct” solution. This will be abbreviated as the QSD solution. In
the actual unsteady solution, the duct will shed vorticity at each timestep. Therefore,
the dipole sheet repfesenting the duct wake will both change at each timestep and vary
in the streamwise direction. In Chapter 4, 2 method is developed to account for the
vorticity shed by the duct, which allows the generalized image model to be applied
to the unsteady flow problem. This method is first applied to a two dimensional
analog of the three dimensional problem being studied. This consists of two foils: a
“smaller” foil which represents the propeller and a “larger” foil which represents the
duct. The smaller foil sees a steady inflow plus a sinusoidal gust. The larger foil sees
only the steady inflow, but its loading is still unsteady due to its interaction with the
smaller foil. Employing this m«thod is shown to reproduce 1;he results from solving
the full boundary value problem on both foils simultaneously. The procedure is then
extended to three dimensions and incorporated into the solution on the duct.

The mathem=tical justification of the generalized image model was presented by
Kinnas and Coney [24]. In Chapter 2, this mathematical formulation is extended to

justify the use of the generalized image model for unsteady flows.

1.3 Objectives

A disadvantage to using lifting surface methods for the propeller in a ducted propellez
algorithm is that these methods are not able to accurately predict the unsteady pres-
sure distributions near the blade leading edge where the blade thickness effects are
substantial. In addition, for high reduced frequencies, the wavelength of the distur-
bance is much smaller than the blade chord, and therefore, typical lifting-surface grids
are not adequate. Accurate predictions of the unsteady forces and pressures gener-

ated at high reduced frequencies are important for the structural acoustic analysis
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of propulsors. Future ducted propulsor design may incorporate thick blades, multi-
ple blade rows and unusual section shapes and blade planforms as well. Therefore,
the lifting surface representation used in current unsteady ducted propeller analysis
methods needs to be replaced by a full panel representation for all components. This
must be done, however, without causing the related code to require an unreasonable
amount of computer time or memory, so that a large number of configurations can
be examined during the design process.

To this end, this thesis will develop an analysis method for a multi-component
ducted propulsor with two blade rows, which uses a full panel representation for the
duct, hub, propeller, and stators. A time marching solution will be applied for the
propeller and stators, where at each time step the effects of the duct and hub will
be included via the generalized image of each stator and propeller singularity with
respect to the duct and hub. In this way the system of linear equations which must
be solved at each timestep will only be as large as the number of propeller and stator
panels, and will not include the number of panels on the duct and hub. The objective
is to accurately predict the forces and pressure distributions on all the components,
especially those corresponding to high reduced frequencies.

The value of the generalized image for each of the influence coefficients forming
the left hand side of this system of equations for the propeller and stator solution
will have to be computed. For this reason, a computationally efficient method is de-
veloped for calculating these images. The generalized images are computed directly
only at a representative set of panel and control point locations. An interpolation
scheme based on a Chebyshev polynomial expansion is then utilized to evaluate the
generalized image for any arbitrary panel and control point location. This procedure
is discussed in Chapter 3. The propeller and stators will be modeled as one problem.
The interaction between the wake of the upstream component and the blade of the
downstream component is treated by allowing the downstream blade to pass through
the wake without altering the wake geometry. The influence from the upstream wake
panels which touch the blade of the downstream component are set to zero. This

process is described in Section 3.6. A special procedure is introduced to account for
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the effects of the flow through the clearance region between the tip of the propeller
and the inner surface of the duct which is discussed in Chapter 5. Finally, a method
is developed for obtaining the solution on the duct at each timestep after the conclu-
sion of the time-marching solution for the propeller and stator blades. This method
uses the solution on the propeller and stator blades and the “inverse” generalized
images. A separate iterative pressure Kutta condition is then applied to the duct.
This procedure is described in Chapter 4.

The complete method is first used to solve for the flow past a single component
ducted propeller in uniform flow. These results are used to show that the method
is consistent with a direct panel method solution for the steady flow past a ducted
propeller. The same case is used to show that the method is convergent with number
of panels. The results of these tests for convergence and consistency are shown in
Chapter 6. This chapter also shows results for the unsteady pressure distributions,

forces, and circulation distributions on the duct, propeller, and stator blades.
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Chapter 2

Mathematical Formulation

In this chapter the problem of a ducted propulsor operating in a spatially non-uniform
inflow is precisely defined and formulated. All the relevant assumptions made in the
formulation of the problem are listed. Green’s forniula is applied to the appropriate
boundaries in order to obtain the perturbation potential (which will in turn be used to
obtain velocities and pressures) on the surfaces of all the propulsor components. This
is first done by applying Green’s Formula directly to all of the propulsor components
simultaneously and solving the problem as if the propulsor was a single body. The
generalized image model is then incorporated into the formulation, and it is shown
that the problem can be decomposed into separate problems concerning individual
components or groups of components. A discussion is given on the additicnal features
which must be added to the generalized image model when solving an unsteady flow

problem.

2.1 Fundamental Assumptions

The propulsor geometry is assumed to be known, and the propulsor components are
assumed to be rigid surfaces. The propulsor consists of a propeller, duct, hub, and
possibly one or more rows of stator blades. The propeller blades are assumed to be
symmetrically arranged around a common axis and to rotate about that axis with a

constant angular velocity. The duct and hub geometries are assumed to be axisym-
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metric about this same axis, and the hub may include any axisymmetric centerbody.
The stator blade geometries may be unevenly spaced, and each stator blade may have
a different geometry. The fluid is assumed to be unbounded. The presence of any
solid boundaries such as the ship hull are assumed to be accounted for as part of
the inflow and the possible existence of a free surface is ignored. In addition, it is
assumed that cavitation does not occur on any part of the propulsor.

The inflow is assumed to be known and to be inviscid and incompressible. This
inflow represents the wake field behind the vehicle to which the propulsor is attached.
It is assumed that this flow field is the effective wake, which includes the interactions
between the vorticity in the inflow in the absence of the propulsor ( the nominal
wake) and the flow due to the propulsor. The flow field representing the difference
between the resulting total flow and the effective wake inflow can then be treated as
irrotational. This allows the resulting flow to be expressed as the superposition of
the inflow velocity field and the gradient of the perturbation potential.

The stator blades, propeller blades, and duct are all lifting bedies which require
a wake surface to be attached to their trailing edge when solving for the velocity
potential using a boundary element formulation. These wake surfaces are infinitely
thin regions, across which a discontinuity in the dizection of the velocity is allowed
to occur. It is assumed in this thesis that the geometry of these wakes are known
and are constant. The geometry of the wakes could presumably be determined by
solving the steady potential flow problem for the mean flow coupled with a free wake
analysis so that the wakes will be “aligned” with the local mean flow. In applying
the generalized image model, it is only important for the wake of the “imaging” body
(i.e. the duct) to remain constant. The wake geometry for the “imaged” body (i.e.
the propeller and stator blades) may be allowed to change; however, in this work
the wakes for all of the components will be fixed. The geometry of the duct wake is

assumed to be axisymmetric.
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Figure 2-1: Multi-component ducted propulsor operating in a spatially non-uniform
inflow
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2.2 Definition of the Problem

Consider a ducted propulsor operating in the presence of a spatially non-uniform
inflow Uw(zs,7s,0s) as is shown in Figure 2-1. The subscript S refers to the fact
that the inflow is defined with respect to the ship fixed coordinate system. The
propulsor consists of a duct, hub, and propeller as well as one or more rows of stator
blades. The duct and hub are treated as a single body and referred to using the
subscript D. Any axisymmetric centerbody may be modeled as part of the hub. In
the derivation shown in this chapter, the stators blades and propeller blades will be
treated together using the subscript PS. The modeling of the interaction between
the stators and propeller will be discussed in Chapter 3.6.

The solution is formed in terms of the perturbation potential, ¢, on the surface of
each of the propulsor components. For the propeller, the solution will be with respect

to a coordinate system which rotates with the propeller so that ¢ — ¢(zp,yp, zp,t),
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where the subscript P refers to the propeller fixed coordinate system. For the stators,
duct, and hub the solution for ¢ will be with respect to the ship fixed coordinate
system, ¢ — @(zs,ys, zs,t). The difference between these two coordinate systems is
described by Figure 2-1. The value of ¢ at a given location at a given moment in time
is, of course, independent of the coordinate system. However, when differentiating the
perturbation potential in order to obtain the perturbation velocity, V¢, the selected
coordinate system becc.nes important. Since ¢ is determined only on the surfaces of
the propulsor components, it is necessary to differentiate along these surfaces in order
to compute the pressure distribution on the component. Therefore, it is desirable to
express the solution on each component in the coordinate system which is fixed to
the surface of that component.

Since the inflow is spatially non-uniform, the solution for the perturbation po-
tential on the propeller will be unsteady, as the propeller blade will see an unsteady
inflow as it rotates through the variations in the flow. The solution for the potential
on the duct, hub, and stator blades will also be unsteady, but only because of the
interaction of these components with the propeller blades.

If the propeller rotates at a constant angular velocity w, the inflow relative to the

propeller will be time dependent and expressed as:
UP.‘n(wP'»yP)zP,t) = Uw(:ﬂp,?'p,OP—wt)-i-w XX (2.1)

where rp = \/y—f, + 2%, 0p = arctan(zp/yp), and x = (zp,yp,2zp). The total flow at a
point on the surface of the propeller, g(zp,yp, zp,t), may then be expressed in terms

of this local inflow velocity and the perturbation potential:

q(zp,yp,zp,t) = Up, (zp,yp, 2P, t) + Vpd(zp,yp, 2P, t) (2.2)

where Vp is gradient operator with respect to the propeller fixed coordinate system.
The total time dependent velocity on the duct, hub, and stator blades with respect to

the ship fived coordinate system may also be expressed in terms of the perturbation
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potential,
q(zs,ySaz&t) = UW(iUs,ys,Zs) + V5¢(257y5az51t) (2'3)

where Vg is the gradient operator with respect to the ship fixed coordinate system.
For simplicity in defining the inflow, it is assumed that the effective inflow, Uw,
does not vary in the axial direction through the propulsor. This assumption is not
a necessary part of the formulation, but allows the inflow velocity to be defined as a

harmonic function of radial and angular location, rs and §s.

Uw(xs,‘ys, 25) = Ao(rs) + Z A.,,(T‘s) Cos(nos) + E B,,(T‘s) sin(n05) (2.4)
n=1 n=1

2.3 Application of Green’s Formula

This problem could be formulated using the same procedure as used by Hsin [15]
to solve the problem of the open propeller in unsteady flow. Namely, by applying
Green’s formula for ¢(x,t) at any time ¢, we obtain the following integral equation
for the perturbation potential ¢ at every point x on the surfaces of the propulsor

components, Sps and Sp.

imetet) = [ o602 as(e)+ [ senTGeslas(e
- j ( U,,. np)dS(€)
- /S G(x,£)(~Uin - nps) dS(€)
+ / Aduuer(€,t) 3( %8) 45(¢)
b Bdrslet) ) "dS(e) (25)

where:

e Sp is the surface of the duct and hub.
e Wp is the surface of the wake from the duct.

e Spg is the surface of the propeller and stator blades.
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Wps is the surface of the wakes from the propeller and stator blades.

np and npg are the normal vectors to the duct/hub surface and propeller/stator

blade surfaces respectively.

U;. is the local inflow velocity, which will be equal to Up,, on the propeller

blade surface and Uw on all other component surfaces.
A@guc is the jump in the potential across the duct wake.

Ag¢ps is the jump in the potential across propeller and stator blade wake sheets.

Its value is equal to @prop on the propeller wake and @,eac on the stator wake.
G is the infinite domain Green’s function which in three dimensions is given by:

1

G(x,€) = G(&,x) = =€l

(2.6)

where ||x — £|| is the distance be:ween points x and €. G(x,§) corresponds to
the potential at a point x induced by a point source of strength —4 located at

a point §.

The coordinate system used in equation (2.5) is dependent upon the surface on

which ¢ is integrated. This is acceptable since the values for ¢ and the relative

distance between x and £ at a given instant in time are independent of whether the

coordinate system is rotating or stationary. Only the local inflow velocity Uin is

dependent upon the relative motion of the coordinate system which is why this value

is defined differently on the propeller surface.

Equation (2.5) expresses the potential on the propulsor as the superposition of the

potentials induced by a continuous seurce distribution, G, on the propulsor compo-

nent surfaces, and a continuous dipole distribution, g—f—, on the propulsor component

surfaces and wake surfaces. The strength of the source distribution is obtained from

the kinematic boundary condition:

3¢>£
a—ng =Uin(§,t) - m¢ (2.7)
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The strength of the dipole distributior is unknown and equal to the perturbation
potential on the surface of the propulsor or to the jump in potential across the wake
surface. Thcse dipole strengths can be determined by inverting equation (2.5) at each
time step.

In the case of steady flow, the jump in the potential across the propeller, stator and
duct wakes would remain invariant along the mean streamlines in the wake sheets.
In the case where the solution is unsteady, however, the wakes no longer remain
invariant as vorticity will be shed into the wake as the solution varies with time. It
is assumed that the geometry of the wakes remains invariant with time, even for the
unsteady case; however, the dipole strength along the wakes, Adduct and A¢ps will be
convected along the assumed wake model. For the case of the propeller, Agyrop will
be convected downstream with angular velocity w relative to the propeller in order
to ensure that there is no jump in pressure across the wake surface.

A¢P"’°P(r107t) = A¢T (T,t _ 9—0:!1-!) .t > 9 — OT(T)

prop - w

< 6 — 0r(r)

= Ad)g,op(r); t ” (2.8)

where 7 and 8 are the cylindrical coordinates of the propeller wake surface, and fr(r)
is the 8 coordinate of the propeller blade trailing edge at radius r. Since the formula
depends only on the relative angle between the propeller trailing edge and a point
in the propeller wake, it will be valid in either coordinate system. A orop(T) is the
steady flow potential jump across the propeller wake. It is assumed that fort <0
the propulsor operates in the circumferentially averaged inflow, and then begins to

operate in the unsteady inflow at ¢ = 0. The value of the dipole strength, Ad)g'mp(r, t),
at the trailing edge of the blade at any time t, will be given by:

AGT, o(rrt) = ¢F(r,t) — 87(ryt) = Tprop(ry 1) (2.9)

where ¢5(r,t) and ¢7(r,t) are the values of the potential on the upper (suction side)

and lower (pressure side) of the blade trailing edge, respectively at time t. The

31



difference in these potentials is equal to the circulation, I'pop, 2t time ¢ around the
blade section at radius 7. This condition is equivalent to requiring the shed vorticity
from the blade trailing edge to be proportional to the time rate of change of the
circulation around the blade (Kelvin’s law).

The dipole strengths along the wakes behind the stators and duct will be convected
downstream with a velocity based on the mean velocity field. The variance in the
dipole strength along these wakes is due solely to the interaction of the stator blades
and duct with the rotating propeller blades. Therefore, the period of the fluctuation
in dipole strength along these wakes will still be based on the angular velocity of the
propeller. The jump in potential across the stator blade wake surface, Ag,tat, can be

expressed as:

et = D0t ) 02 17220

- DG, (r); t< ”—;,%)(L) (2.10)

where = and r are the axial and radial coordinates of the stator blade wake surfaces,
and z7(r) is the axial coordinate of stator blade trailing edge at radius r. Va(r) is the
mean axial velocity at radius 7. Similarly, the potential jump across the duct wake

surface, Adguct, can be expressed as:

e—z zT—z
Aduuce(2,0,t) = Agh (0,8 - 5522)5 t2 =
T —IT

= AGS,.; t< = (2.11)

where = and @ are the axial and circumferential coordinates in the duct wake, z7 is
the axial location of the duct trailing edge, and V, is the circumferential mean axial
velocity at the duct trailing edge. The value of the dipole strength, Ady,,(,t), at
the trailing edge of the stator blades at any time t, will be given by:

AGLo (r,t) = $5(r,t) = #7(7st) = Turar(r ) (2.12)
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where ¢ (r,t) and ¢7(r,t) are the values of the potential on the upper (suction side)
and lower (pressure side) of the stator blade trailing edge, respectively at time t. The
value of the dipole strength, A¢l .(r,t) at, at the trailing edge of the duct at any
time t, will be given by:

AT (8,t) = 65(0,t) — $7.(8,t) = Tauce(6,¢) (2.13)

where ¢5(0,t) and ¢7(0,t) are the values of the potential on the upper and lower
sides of the duct trailing edge, respectively at time t.

As with the propeller, the difference in these potentials at the trailing edges of
the stator blades and duct are equal to the circulation around the stator blades, T',a,
and duct, T'gyce, respectively. This again satisfy’s Kelvin’s law which requires the shed
vorticity from the trailing edge to be proportional to the time rate of change of the

circulation.

2.4 The Generalized Image Model

Equation (2.5) can be solved numerically by approximating the component and wake
surfaces with panels on which the potential and source distributions are assumed
constant. This procedure is described in detail in [23], [15]. In this section, an
alternative method is formulated to solve for the perturbation potential on the stator
and propeller blade surfaces using the generalized image model. The method used
to obtain the solution for the potential on the duct and hub surface is discussed in
Chapter 4. The generalized image model was first introduced by Kinnas and Coney
[27], [28]. In these works, the generalized image model is used to accurately model
the steady flow past a single component ducted propeller. In order to apply the
generalized image model in the case where the “imaging” body (i.e. the duct) is both
lifting and unsteady, an additional assumption must be made. This is to assume
that when solving for the potential on the surface of the “imaged” bodies (i.e. the

propeller and stator blades), the dipole strength in the wake of the imaging body (i.e.
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the duct wake) can be taken as being invariant along the mean streamlines on the
wake surface. The dipole strength along the duct wake still varies with time and in
the circumferential direction. In mathematical terms, this is equivalent to replacing

the condition specified by equation (2.11) with the following condition:

A@auct(z,0,t) = A¢£uct(0T?t) (2.14)

where 07 is the 8 location at the duct trailing edge which lies on the streamline which
passes through the point of interest on the duct wake. This is expected to have a
small effect on the solution for the potential on the stators and propeller, particularly
at high reduced frequencies. The effect of this assumption on the propeller/stator
solution is discussed in Chapter 4. The correct duct wake strength as specified by
equation (2.11) is recovered from the quasi-steady duct (QSD) solution and used when
determining the solution for the perturbation potential on the duct surface. This is
discussed in detail in Chapter 4.

For the steady problem, the duct coordinate system rotates along with the pro-
peller, and the strength of the dipole sheet representing the vorticity in the duct
wake is constant along streamlines in the duct wake. Therefore, equation (2.14) is
the correct expression for the duct wake strength in steady flow, and no additional
assumption is necessary. The mathematical justification for the generalized image
model in steady flow is given by Kinnas and Coney [24]. The mathematical formule-
tion for the generalized image in unsteady flow is shown below. This formulation is
for the QSD solution on the internal blade row components.

With the assumption discussed above, equation (2.5) becomes:

4mred(x,t) / B(&,t) aG’(x’ﬁ)dﬁ' )+/ ¢(£,t)6G(x, )d.S'(E)
—/SD (x,e)(— in - D) dS(€)
- /. [ G 6)(-Uinnps) dS(€)

v, stz ase)
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+ /w” A¢ps(5,t)a;;n(x’ £) 4s(e) (2.15)

Wps

By introducing the Green’s function G, an alternative way of expressing ¢ can be

established. GG must satisfy the following equations:

V2G(x, &) = —4né(x — £); for x,£ not on the duct surface, Sp (2.16)
9G(x,£) = 0; for x on the duct surface, Sp (2.17)
6nD(x)
VxG(x,&) — 0 as x — o0 (2.18)
VxG(x, £) = finite at the duct trailing edge (2.19)

where § is the generalized delta function. The Green’s function G(x, €) represents the
potential induced at x by a point source of strength —4m, placed at ¢, in the presence
of the duct and hub. This is shown schematically in Figure 2-2. G satisfies the Kutta
condition at the duct trailing edge. By applying Green’s formula to the duct and
hub surface with a point source in the fluid domain at ¢, it follows that G(z,€) must

satisfy the following integral equation:

0G(x', x)
dnp

_ / (28320285 45(x') + 4xG(x, £) (2.20)
Wo Onw

2rG(x',x) = LG’(x’,x) dS(x')

Note that the jump in potential across the duct wake surface, AGP(8), is invariant
along the assumed streamlines in the duct wake. The strength of (AG)P(8) is de-
termined from the application of the Kutta condition at the duct trailing edge. The
geometry of the duct wake Wp is taken to be identical to the geometry assumed when
the complete propulsor is present. The value of G in the fluid domain off the duct

surface can be expressed as:

G(xyﬁ) = G(x,f) + G[(x,f) (2'21)
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Figure 2-2: Potential flow through a duct and hub in the presence of a point source.
The combined flow field due to the source, G, and its generalized image, Gy, with
respect to the duct and hub is shown schematically with the dashed lines. Note that
a Kutta condition is applied at the trailing edge of the duct.

where G is the generalized image of the source G with respect to the duct and hub

and is defined as:

aG(x',x

Gl(xvﬁ) = % [/.;D é(x’,ﬁ)__(__) dS(xl) + /WD(AG)DBG(}{"X)

! 2.22
S ASe)| (2.22)

3nD

G is the modification to the infinite fluid domain Green’s function which accounts
for the presence of the duct and hub. The perturbation potential ¢ in the presence

of the complete propulsor can be expressed as:

¢ = ¢p + éps (2.23)

A proof of equation (2.23) is given in [24]. ¢p is defined as the perturbation potential
outside of the duct and hub in the presence of the inflow velocity field, Uw, but in

the absence of the propeller and stators. From its definition, ¢p can be expressed as
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follows:

4mepp(x) / qSDaG X £ dS(¢) +/ (A¢gp)—5—— 3( %,8) d5(¢)
-/ ! (x,e)(—U.-n-nu)dS(e) (2:24)

where ¢ = 1/2 when x € Sp and € = 1 when x is outside the duct/hub surface Sp. The
value for ¢p on Sp is determined by solving equation (2.24) where x € Sp, (e = 1/2).
Since the propeller geometry is not involved in this expression, ¢p, will not vary
in time. Therefore, the jump in potential across the duct wake used for solving
equation (2.24), A¢p, will be invariant along the assumed wake geometry without
the need for any assumptions. In this case, the conditions set by equations 2.11 and
2.14 are equivalent, and the value of A@p can be set according to equation (2.14).
This will satisfy the Kutta condition at the trailing edge of the duct. The wake
geometry, Wp, is the same as that used when the complete propulsor is present.

The potential éps is defined as follows:

aG(x, 9G(x,¢)

tnebpstxit) = [ Besl&) o R dS(E) + [, Adeslt,), Do dS(O
- /s,,s (x’f)[-(U-n+V¢n>-nps1 ds(¢) (2.25)

where ¢ = 1/2 when x € Sps and € = 1 when x is outside of Sps. The value of
dps on the surface of the propeller and stator blades, Sps, is determined by solving
equation (2.25) when x € Sps,(¢ = 1/2). The geometries for the propeller and
stator blade wakes, Wps are taken to be identical to those assumed in the presence
of the complete propulsor. The Kutta condition is satisfied at the trailing edge of the
propeller and stator blades by setting the jump in potential across the propeller blade
and stator blade wakes, Adpg, according to equations 2.8 and 2.10 respectively.
Equation (2.23) shows that the flow through a ducted propulsor can be decom-

posed into two parts:

¢ The flow through the duct/hub in the presence of the inflow, Uw.
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e The disturbance to this flow resulting from the presence of the internal blade
row components. This disturbance can be examined as the flow past the internal
blades with the presence of the duct and hub accounted for via the modified
inflow, Uw + Vép, and the generalized sources and dipoles distributed on the

blade surfaces.

By using the conditions specified by equations 2.17 and 2.19, The modified dipole

8G

distribution, m;

, can be shown to satisfy the kinematic boundary condition on the
duct and hub surface and the Kutta condition at the trailing edge of the duct. It can
be decomposed as:

9G(x, )

onps(§)

nps(€) - VeG(x, )

_ 9G(x,¢) 9G1(x,§)
= Dnrs(€) Onps(d) ' © P (2:20)

where 8G/0nps is the infinite fluid domain dipole, and dG/0nps is the generalized
image of the dipole with respect to the duct and hub.
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Chapter 3

Numerical Implementation

This chapter describes the numerical implementation of the scheme for obtaining the
solution for the flow past the internal blade row components of a ducted propulsor
using the process formulated in Chapter 2. This process involves many steps. There-
fore, the first section gives an overview of the method to describe how all of these
steps fit together. Then the discrete forms of the equations used to obtain the so-
lution on the propeller are presented. These discrete equations contain coefficients
related to the generalized image of source and dipole distributions with respect to the
duct and hub. The remaining parts of the chapter discuss the numerical computation
of these coefficients and their incorporation into the procedure for determining the
solution on the propeller. The implementation is initially discussed only for a single
component ducted propeller. This will be extended to two rows of internal blades in
Section 3.6. However, the procedure used to obtain and incorporate the generalized
images are identical for both the propeller and stator blades.

The procedure used to numerically compute the value of the generalized image of
a source with respect to the duct and hub directly is first discussed. The properties
of the generalized image are examined and a simplified image is determined which
closely approximates the singular properties of the generalized image. The simplified
image is used to form the image factor, which is a “smoothed out” function of the
generalized image. This is done in order to make the generalized image more suitable

to interpolation. An interpolation scheme based on a Chebyshev polynomial expan-
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sion is then developed to evaluate the generalized image for any arbitrary panel and
control point location. This scheme is then validated by comparing the interpolated
values for the generalized image to those computed directly.

Finally a discussion is given of the incorporation of the stator blades procedure
into the procedure. A separate procedure, described in Chapter 4, is used to obtain

the solution on the duct after the propeller and stator solution has been obtained.

3.1 Overview

When solving the problem of an open propeller in unsteady flow using a potential
based panel method such as the one used in [25], a system of linear equations is
established where the left hand side consists of coefficients equal to the potential
induced by a uniform dipole distribution on one panel at the control point of another
panel, and the right hand side consists of source terms determined by the magnitude
of the inflow velocity normal to each panel. With the application of the generalized
image model, the structure of this system of equations remains the same, except
that the left hand side coefficients are now the influence of a propeller panel with a
uniform dipole distribution in the presence of the duct at the control point of another
panel, and the right hand side is now determined from the velocity field existing
inside of the duct in the specified inflow using source influence coefficients which also
account for the presence of the duct. The modification to each of the dipole influence
coefficients forming the left hand side of the system of equations for unbounded flow,
the generalized images, will have to be computed. In addition, the modifications to the
source influence coefficients used to form the right hand side must also be computed.
Since the number of these coefficients can become quite large, a fast but accurate
method of calculating these images has been developed. This method, described in
Section 3.4, utilizes a Chebyshev polynomial expansion of the image factors in the
region inside the duct and into the duct wake.

The flow around the duct and hub in the absence of any inflow and in the presence

of a single point source is calculated multiple times. Each time the point source
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is moved to a new location, with the locations determined in order to set up an
Chebyshev polynomial expansion. For each solution the “image factors” are computed
at a set of control points inside of the duct which again correspond to the locations
required to establish a Chebyshev polynomial expansion. The image factor is defined
as the ratio of the induced potential due to the duct and hub at a specified field point
with a source at a specified location (the generalized image) divided by the induced
potential from the simplified image of the source with respect to the duct and the
hub. The simplified image consists of two point sources, one located outside the duct
inner surface which models the duct as an infinite wall and the other which is located
inside the hub. By converting the potentials from the generalized images to image
factors, an interpolating function can be set up which is more accurate and uses fewer
terms than attempting to interpolate the generalized image potentials directly. This
is because the image factor is a much smoother function than the potential induced
by the generalized image. In addition, as the source point approaches the duct or hub
surface, the simplified image approaches the generalized image, resulting in the image
factor approaching one. The direct computation of the image factors is discussed in
Section 3.3.

From this expansion, the influence coefficient for a source distribution in the pres-
ence of the duct on any given panel at the control point of another panel can te
computed. From the derivative of the image factor, which is calculated directly from
the Chebyshev polynomial expansion, the influence coefficient from a dipole distribu-
tion on any given panel in the presence of the duct at the control point <f any panel
can be computed as well. This is another advantage of using the series expansion of
the image factor, as if the generalized images were computed directly, the images due
to a source and dipole distribution would have to be computed separately.

The implementation of this procedure consists of the following steps: This proce-

dure is shown schematically in Figure 3-1.

Step 1: Solve for the flow through the duct with the specified inflow but in
the absence of the propeller and stators using a potential based panel

method. The resulting flow field will be steady but non-axisymmetric.
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Step 7. Solve for the potential, pressure, and forces on the duct and hub.

Figure 3-1: Procedure used to obtain the solution for the flow past a multi-component

ducted propulsor incorporating the generrlized image model.
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Step 2:

Step 3:

Step 4:

Step b5:

Step 6:

Solve for the velocity and potential at all of the propeller and stator
control points. Store the potential on the surface of the duct and hub.

This is described in Section 3.5.

Solve for the flow past the duct and hub multiple times with zero inflow
and a single point source located at various positions in the interior flow
region. Solve for the potential induced by the duct and hub, defined
as the generalized image, at a set of field points inside of the duct.
Store the potential distribution on the duct and hub surfaces for each

solution. This is discussed in Section 3.3.1

Calculate the simplified image for the same set of source and field
points. Then calculate the “image factors” for each combination of

source and field points. This procedure is examined in Section 3.3.2.

Compute the coefficients for the Chebyshev polynomial expansion based
on the image factors calculated in Step 3. This is discussed in Sec-

tion 3.4.2.

Evaluate the Chebyshev polynomial expansion to determine the gen-
eralized image for each propeller, stator, and wake panel at all of the
propeller and stator control points. This procedure will be described

in Section 3.4.3.
Solve the propeller and stator problem at each timestep:
o Using the modified influence coefficients which account for the

presence of the duct and hub.

o Taking the inflow as being the flow field in the presence of the duct

and hub in the absence of the propeller and stators from Step 1.

o Adding the potentials at the propeller and stator control points
induced by the duct and hub operating in the absence of the pro-
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peller and stators, calculated in Step 1, to the propeller and stator
potentials.

This step is described in Section 3.2

Step 7: After solving the propeller/stator problem at all timesteps, determine
the potential and pressure distribution on the duct surface from the po-
tentials on the duct stored during Steps 1 and 2. This step is discussed
in Chapter 4

Steps 2 through 4 will only have to be performed once for a given duct and hub
geometry. Different propeller and stator geometries or different inflow conditions may
be examined using the same set of coefficients computed during these steps. This is
advantageous when many different propeller and stator configurations need to be
examined for a given duct and hub. Using the method described above, the most

costly part of the computations will enly be performed once.

3.2 Discrete Formulation on Propeller

The method used to obtain the propeller solution is based on the unsteady panel
method for open propellers developed by Hsin (15]. In (15], a complete description
of the numerical formulation and implementation used for the open propeller case is
given. Only a brief overview of this procedure will be given here, in order to describe
the modifications necessary to incorporate the duct and hub using the generalized
image model.

Recall from equation (2.23) that the solution for the potential on the propeller
can be decomposed as ¢ = ¢p + éps. In the numerical scheme, ¢p and dps will
be obtained separately and then added together to give the total potential on the
propeller. The poteniial éps is obtained using the method based on [15] which is
described in this section. A separate interpolation procedure is used to obtain ¢p
which will be described in Section 3.5.

The potential éps is defined by equation (2.25), which is a Fredholm integral of
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Figure 3-2: The propeller blade and wake discretization.

the second kind with respect to ¢ps over the surface of only the propeller and its
wake. This equation can be solved numerically by discretizing the propeller and wake
surfaces and implementing a time-marching panel method similar to the method used
by Hsin [15). Figure 3-2 shows the panel arrangement for the propeller and wake.
The time domain is also discretized into equal intervals of time, At. The propeller
wake panels start at the trailing edge of the propeller blade and are placed along the
prescribed wake surface at a constant angular spacing which is related to the time
step, Abw = wAL.

Equation (2.25) can be expressed as a linear system of discretized equations which
must be solved to obtain @ps at each time step, n = t/At. The PS subscript has

been omitted in the remaining equations in this section for the sake of clarity. The
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linear system of equations is shown below:

Ng Np Ng M Nw

Z ZGUQSJ n) + Z Z Z |lmA¢lm (31)
=1j=1 k=1m=1 [=1
Ng Np

—ZZle ; ¢ =1,(Np x Ng)
k=1 j=1

where:

) J)’J‘(n) is the solution for the dipole strength at panel j of blade k at time t = nAt.

Np is the number of propeller blades

e N is the number of chordwise panels on the propeller blade
e M is the number of spanwise panels on the propeller blade
o Np = N x M is the total number of panels on the key blade

e Ny is the number of chordwise panels in the propeller wake

The generalized influencs coefficients, af; and bk are defined as the potentials
induced at the control point of panel i by unit (constant) strength dipole and source
distributions, respectively, on panel j of blade k, accounting for the presence of the

duct and the hub. The generalized wake influence coefficients, Wk, are defined in the

~k

saine manner as a,J,

except that the dipole distribution is placed on the I** panel of
the mt* wake strip. The generalized influence coefficients can be decomposed into the
potential induced by the panel directly (in the absence of the duct) and the potential

induced by the duct and hub due to the presence of the panel.

af = a{fj+(a{.‘,.),- (3.2)
I-’?j = (b )I
W:l;m = VVdm (mtm)

The coefficients a¥;, b%; and W}, are simply the unbounded flow influence coefficients

which are the same as the influence coefficients used in the open prepeller analysis
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method developed by Hsin {15]. These coefficients can be calculated based on the
method derived by Newman [36], in which the values of af; and Wi, on each panel
are computed from a closed form sclution of [ g—de for control points in the near
field and are computed using a multipole expansion for control points in the far field.
In the same manner, b¥; on each panel is computed using the analytic closed form
solution or a multipole expansion of [ GdS for control points in the near and far field
respectively. The use of hyperberloidal panels was incorporated into the calculation
of these coefficients by Hsin [15] in order to improve the accuracy for nonplanar panels
resulting in the case of highly skewed propellers.

The coefficient (af;)r represents the generalized image with respect to the duct
and hub of a uniform dipole distribution on panel j of blade k at the control point
of panel i. Similarly, ()} is the generalized image with respect to the duct and hub
of a uniform source distribution on panel j of blade k at the control point of panel
i. (W¥k )1 is the generalized image for a dipole panel in the propeller wake. The
procedure used to obtain these coefficients will be discussed later in this chapter.

The magnitude of the source strength, 5%(n), is defined from equation (2.25) to
be the equal the component of the velocity resulting inside the duct in the absence

of the propeller at the control point of panel j which is normal to panel j.
55(n) = — (Up,(z¥,3%, 25, nAt) + Vp) - Ak (3.3)

where z¥, y* and 2z} are the coordinates of the centroid of panel j on blade k and #* is
the normal vector to that panel. All of these terms are defined in the rotating propeller
coordinate system. As shown by (3.3), the source strength may be decomposed into
the effect from the effective wake inflow in the absence of the duct, Up,,, which is
defined by equation (2.1), and the effect from the velocity induced by the duct in
the absence of the propeller, Vép, which will be determined using an interpolation
procedure discussed in Section 3.5.

The solution is obtained at each time step only for one of the blades, which is called

the key blade. The solution on the other blades is obtained from earlier solutions on
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the key blade. Therefore, the influence from the other blades will be placed on the
right hand side of the system of linear equations. In addition, the strength of the
wake panels (except for the wake panels adjacent to the blade) will be known from
the history of the solution. The influence of these panels should also be placed on the
right hand side. Equation (3.2) can be rewritten as shown below. In these equations,

the superscript 1 has been omitted for all values which refer to the key blade.

Ea,qb,(n) + z TEL T (n) = RHSi(n); i=1,Np : (3.4)

i=1 m=1

where,

Ng N M
RHSi(n) = zzb:; 5 (n) — ZZath&k(n S TRLa(n—1)  (3.5)

k=1 j3=1 k=2 j=1 m=1
Ng M Nw Nw . .
- Z z Z Wt,:mA(ﬁlm(n) - Z z WumA(ﬁ‘"‘("’)
2m=11=1 m=1 =2

TL and TR are the decomposed influence coefficients for the first wake panel in
each strip on which a linear dipole distribution is specified. This is done to reduce
the sensitivity of the solution to the size of the time step. These coefficients are
described in [15]. Equation (3.4) forms a linear system of Np equations for the
unknown potentials q'S,(n) on the key blade. This system of equations is inverted at
each time step n. The right hand side is then updated before solving the system at
the next time step. The procedure continues until a steady state oscillatory solution is
obtained which usually requires several propeller revolutions. The jump in potential
across the propeller wake panels, A¢>, _(n), can be obtained from equations (2. 8)
and (2.9). The circulation at the trailing edge of the blade, ['m(n), is approximated
numerically by:

Tm(n) = 65 (n) — $(n) (3.6)

where ¢ and $r, are the potentials on the upper and lower trailing edge panels,
respectively, for the mth blade strip. This is an extension of Morino’s Kutta condition

in steady flow [35]. This approximation is improved through the use of an unsteady
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iterative pressure Kutta condition whichis discussed in more detail in [15]. A complete
description of the numerical stepwise solution algorithm applied to solve the system
of linear equations formed by equation (3.4) as well as a numerical validation of the

algorithm is given by Hsin [15].

3.3 The Image Factor

In order to solve the system of linear equations formed by equation (3.4), it is nec-
essary to obtain the modifications to the panel influence coefficients which account
for the presence of the duct and hub, (af)r, (b%)r and (W, )r. In the next two
sections, a procedure will be developed for obtaining these generalized images. These
generalized images will be approximated by their far field values. In other words, the
value of the generalized image of a constant unit source or dipole distribution on a
panel will be approximated by the generalized image for a point source or dipole of
unit strength located at the centroid of the panel multiplied by the panel area.
@ = [ %E;i)ds ~ Ajak (3.7)

Gsh = [, Gilx,€)ds ~ A
where:
A; is the area of panel j.
S; represents the surface of panel j.

Gi(x, &) is the generalized image for a point source with respect to the duct and hub
as defined by equation (2.22). x corresponds to the control point on panel z,

and ¢ corresponds to the point of integration on the surface of panel j.

af; is the potential induced at the control point of panel i by the duct and hub in the
presence of a unit strength point divole placed at the centroid of panel j. The

dipole is aligned with, 7;, the normal vector for panel j.

49



I_ij is the potential induced at the control point of panel ¢ by the duct and hub in the

presence a unit strength point source placed at the centroid of panel j.

This approximation should be accurate for most cases, although it mnay have some
effect on the generalized images corresponding to panels adjacent to the duct and hub
(particularly the generalized images which modify the self influence coefficients for

these panels). The possible effects from this approximation on the propeller solution

k
ilm

will be discussed in Chapter 6. The procedure used te calculate ( )1 is the same
as that used for (a¥;); since both of these coefficients refer to panels with a unit dipole
distribution. Therefore, only the procedure for determining (af); and (b%)r will be
detailed in this chapter.

The coefficient b is equivalent to the value Gr(x,¢) defined by equation (2.22),
where X = (z:,i, z:) is the location of the control point on panel i, and § = (z;,y;, z;)
is the location of the point source at the centroid of panel j. The value for the
generalized image of a point dipole with respect to the duct and hub is the derivative
of the generalized image of a point source placed at the same location with respect

to the location of the source.

Tk BE. bk. .
—k _ 3Gj(x,£) _ (abu._ abu“. ab ) "hJ (3-8)

Y= L
Yo Ony Bmfz 3y§‘] T 0z¥

The present method will first compute the generalized source images, G(x,§),
by directly solving equation (2.22). This will be done only for a representative set
of source and control point locations inside the duct and in the duct wake. This
process will be discussed in Section 3.3.1. The generalized images at these points
are then converted to image factors, defined as the ratio of the generalized image
divided by a simplified image, which consists of the potential induced by two point
sources, one located outside the duct inner surface which models the duct as an
infinite wall and the other which is located inside the hub. The simplified image will
be discussed in Section 3.3.2. To find the generalized source images, b};, at other panel
and control point locations, an interpolation scheme is utilized based on a Chebyshev

polynomial expansion of the image factors in the region bounded by the duct and
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hub and their wakes. The generalized dipole images, af;, can then be determined
by differentiating the polynomial expansion of the generalized source image. By
converting the generalized images to image faciors, an interpolating function can be
set up which is more accurate and uses fewer terms than attempting to interpolate the

generalized images directly. The interpolation scheme will be discussed in Section 3.4.

3.3.1 The generalized image

Calculating the generalized image directly involves two steps. The first step is to
solve the discretized form of equation (2.20), which is equivalent to solving for the
potential, G, on the surface of the duct and hub in the absence of an inflow but in
the presence of a point source placed at £. This problem is shown schematically in
Figure 2-2. Equation (2.20) is a Fredholm integral of the second kind with respect
to G over the surface of the duct, hub, and duct wake. This equation can be solved
numerically by discretizing the duct, hub and duct wake surfaces and implementing
a panel method in similar manner as was used for the propeller in Section 3.2. The
panel arrangement for the duct, hub and duct wake is shown in Figure 3-3. Notice
that straight, rectangular panels are used on the both the duct and hub. Since this
problem is solved in the absence of the propeller and in the presence of only a single
point source, it is not necessary to align the panels on the duct, hub with any part of
the propeller or propeller wake. The second step is to use this potential distribution
on the duct, hub and duct wake to calculate the potential, Gr(x,£), induced by the
duct and hub at a field point x. This is equivalent to solving the discretized form of
equation (2.22).

The generalized image in its most general form is a function of all six coordinates
of the source and field points. It can be reduced, however, to a function of five

variables by taking advantage of the axisymmetry of the duct and hub geometry.

Gl(a:ia Yi, z.-|a:_,', Yis ZJ') - Gl(wia Tiy |mj)7'j1 0'), (39)
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Figure 3-3: The duct, hub and duct wake discretization. N=60, M=80, only half the
duct is shown.
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where

9 = 6; — 6; (3.10)

where r; = \/m and r; = \/3_/:2+_Zf are the radial positions of the field and
source points respectively; and 8; = arctan(z;/y;) and §; = arctan(z;/y;) are the
angular positions of the field and source points respectively. These positions are
shown schematically in Figures 3-4 and 3-5. In addition, it turns out that the function

is also symmetrical about 6’ = 0.
Gr(ziymis |25,75,0") = Gr(ziy i, |25, 75 —4') (3.11)

The axisymmetry of the duct and hub geometry allows the generalized image
to be represented by calculating Gy directly for a se$ of sources located only on the
@ = 0 plane inside the duct and in the duct wake. The field points must still be placed
throughout the region inside the duct. However, since the solution is symmetric about
¢’ = 0, G1 can be adequately represented using field points only in the region covering
half of the duct, (i.e. from 6’ = 0° to 180°). The procedure to obtain a representative
set of values for G will solve the duct and hub problem Ns times, where N is the
number of source locations reauired to represent the generalized image. For each
solution, the source will be placed at a different location, §;, with these locations
being distributed over the § = 0 plane inside the duct and in the duct wake. For each
solution, the potential, Gr(x;,§;), induced by the duct and hub will be calculated
at set of Npp field points, x;. The placement and number of the source points, §;,
and the field points, x;, will be discussed when describing the interpolation scheme
in Section 3.4.

The first step in solving for the generalized image is to obtain the potential
(-}’(x,fj) on the duct and hub surface in the presence of a point source located at
§;, where x = (z4,74,04) refers to the position of a point on the duct or hub sur-
face. This will be done by solving equation (2.20) numericaily. Since £; lies in the
9 = 0 plane, G(x,£) will be symmetrical about §; = 0. Therefore, when solving

the discretized form of equation (2.20), it is only necessary to solve for the strengths
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of the panels on half of the duct. Expressing G(x, &) in its discretized form, this is
equivalent to:

G =G (3.12)

n,m!

where G’-;’;'m is the potential on the n** panel of the m,, circumferential strip on
the duct in the presence of a point source at §;. The index m' corresponds to the
circumferential duct strip on the opposite side of the # = 0 plane. In other words,
if the duct is paneled with Mp circumferential strips of panels, the potential will be
computed only on the first Mp/2 strips. The potential on the remaining sirips will
be obtained from symmetry. In this case the circumferential indexes on the opposite

side of the duct are deficed as:
m'=Mp+1-m. (3.13)

Figure 3-3 shows only the panels on the half of the duct on which the solution is
obtained from symmetry. In the actual implementation, the duct grid is rotated so
that a panel is centered over the source at § = 0. This requires the duct potential to
be solved on Mp/2 + 1 strips; however, this simple modification has been left out of
this derivation for clarity. The linear system of equations formed by equation (2.20)

for a single point source at §; is shown below:

Mp/2 Np L Mp/2 Np+Ny ..
Z Z(aim.m + ai.n.m‘)GTLm + Z E (ai,n.m + ai,n,m')G';,;lm (314)
m=1 n=1 m=1 n=Np+1
Mp/2Nwp .. 1
+ Z E (m,n.m + m,n,m’)AG;’n =T = n 1= 1, NDH
m=1 n=1 ”X; - £_1”

where:

Np is the number of chordwise panels on the duct.
Ny is the number of chordwise panels on the hub.
Mp is the number of circumferential panels on both the duct and hub.

Nwp is the number of chordwise panels in the wake of the duct.
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Npr = (Np + Ng) x Mp/2 is the total number of panels on the duct and hub of

unknown strength.

llx; — &;l| is the distance between the point source at €, and the control point of

panel 1.

@inm is the influence coefficient for the potential induced by a unit dipole distribution

on duct/hub panel n,m at the control point of panel ¢

Winm is the influence coefficient for the potential induced by a unit dipole distribu-
tior on the nt* duct wake panel on the m** circumferential duct wake strip at

the control point of panel z.

The coefficients a; 5, ,n and W; ,,m ate obtained by the same procedure used to com-
pute the unbounded flow influence coefficients for the propeller solution described in
Section 3.2. In this case, however, the influence coefficients only have to be calculated
for a single circumferential duct and hub strip. Since the duct and hub geometries
are axisymmetric, all of the other influence coefficients can be determined by rotat-
ing the values for the coefficients computed on a single strip. The value of AGI is

determined by the following equation:
AGE = Gl — Gl (3.15)

where G-’{.m and éfvp,m are the values of G on the upper and lower trailing edge panels,
respectively, for the m*® circumferential duct strip. This is an example of Morino’s
Kutta condition in steady flow [35]. When solving for the generalized image, the duct
is solved as a steady problem. When obtaining the solution for the potential and forces
on the duct, an unsteady iterative pressure Kutta condition will be used. Since there
is no inflow present, there will be no source terms in the equation. Equations (3.15)
form a system of Npy linear equations for the potential Gi_ on the surface of the
duct and hub in the presence of a point source at ;. This system is inverted Ns

times, to obtain Gi_, for each of the Ns source iocations, §;.
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Once the solution for G4, has been obtained for a given source point location, £,
the generalized image, G1(x;, §;), corresponding to that source can be computed at a
set of field points, x;. This consists of solving the discretized form of equation (2.22)

which is shown below.

Mp/z Np } Mp/2 Np+Ny )
Gl(xi)£j) = Z Z(ai‘"'m + a:-',,’m,)Gn,m + Z Z (a:-‘n'm + a;'n'm,)Gn’m
m=1 n=1 m=1 n=Np+1
Mp/2 Nwp _
+ 3 Y (Wam + Wiam)AGE (3.16)
m=1 n=1

where:

!
I,n,m

a is the influence coefficient for the potential induced by a unit dipole distribution

on duct/hub panel n,m at the field point x;

W!, n is the influence coefficient for the potential induced by a unit dipole distribu-

tion on the nt* duct wake panel on the m** circumferential duct wake strip at

the field point x;.

The primes on the influence coefficients correspond to the influence at a field point
i the flow field as opposed to at a panel control point. The coefficients a;, . and

w!

i,n,m

are determined using the same method used to compute a;nm and Wi,
for equation (3.15). After these coefficients are computed, all of the terms on the
right hand side of equation (3.16) are known. Therefore, G1(x;,§;) can be calculated
directly by summing all of the terms on the right hand side of this equation, and
it is not necessary to invert a system of equations. For the solution »n the duct
corresponding to each of the Ng source locations, equation (3.16) will be evaluated
Npp times to obtain the value of G1(x;,€;) at every field point x;. The total number
of generalized images computed directly to represent this function is, therefore, (Vs x
Nrp). Since the field points at which the generalized image is computed are the same
for each source location, the coefficients a},,, and W/, . only have to be computed
once.

Since Gy(x;,&;) is a function of five variables, visualizing the shape of this func-

tion is difficult. It is important to determine the behavior of the generalized image,
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however, in order to create an efficient interpolation procedure. In order to better
understand the properties of the generalized image, its value was examined for the
case where the location of the source point was fixed. This was donc for a multi-
tude of point source locations to produce 2-D plots of the generalized image where
all of the variables except for one are held constant. Examples of these plots are
contained in the remainder of this chapter. Figures 3-4 and 3-5 show schematically
the coordinate system and arrangement of source and field points used to examine
the generalized image. A cylindrical coordinate system is used where the origin is
located on the centerline at the same axial location as the leading edge of the duct.
All lengths are non-dimensionalized with respect to the propeller radius. The the
radius of the duct inner surface at its midchord is 1.0 for the duct used for the exam-
ples shown in this chapter. The chordlength of the duct is also 1.0, and the hub is a
constant radius cylinder of radius 0.25. A complete description of the duct geometry
is given in Table 6.2. The source will be fixed at a location on the # = 0 plane at
¢ = (z4,7i,0:=0). A set of field points is then arranged where all the field point
variables except for one are held constant. This produces the “Theta-Cut,” “R-Cut”
and “X-Cut” arrangements depicted in Figures 3-4 and 3-5.

The convergence of the generalized image with the number of panels on the duct
is shown in Figures 3-6 and 3-7. For this particular geometry, 60 chordwise and
80 circumferential panels were adequate on the duct for convergence, which is the
configuration shown in Figure 3-3. Figures 3-6 and 3-7 show the generalized image
resulting from a point source placed at &;(z;=0.5,r;=0.95,0;=0.0) calculated at a
set of field points inside the duct where radius of the field points is also 0.95. This
represents an extreme case where both the source and field points approach the inner
surface of the duct. In Figure 3-6 the generalized image is examined with respect to
the 8 position of the field point, where the axial and radial locations of the field point
ar: fixed at z; =0.5 and r; = 0.95. Since the generalized image depends only on the
relative angle between the source and field point, this can be viewed as examining the
behavior of the generalized image with respect to angular position of either the source

point, £, or the field point, x. Using the terminology of equation (3.9), the figure

57



.
SN R e

X
J
l‘j ¥

Figure 3-4: Locations of the source and field points used to examine the generalized
image of a point source with respect to a duct and hub. The dashed lines represent
the locations of a series of field points where 6; of the field points is held constant.
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Figure 3-5: Locations of the source and field points used to examine the generalized
image of a point source with respect to a duct and hub. The dashed lines represent
the locations of a series of field points where z; of the field points is held constant.
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Figure 3-6: Convergence of the generalized image with respect to duct/hub paneling.
All variables held constant except for 6; of the field point.

shows a plot of G7(0.5,0.95/0.5,0.95,8'). It can be seen that the generalized image
is symmetrical with respect to # in accordance with equation (3.11). In addition, it
can be seen that the function has a sharp peak as both the source and field points
approach the inner surface of the duct. Figure 3-7 examines the behavior of the
generalized image with respect to the axial location of the field point where r;=0.95
and 0; =0. This also shows the effects of both the source and field points approaching
the duct, although the function appears to vary more sharply with respect to the
angular position of the source and field points. There is actually a singularity in the
generalized image where both the source and field point are located at the same point

on the duct surface.

3.3.2 The simplified image

The spike which occurs in the generalized image as the source and field point approach
the surface of the duct and hub will cause difficulties when developing a multivari-

ate polynomial approximation to the generalized image. For this reason, a simplified
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Figure 3-7: Convergence of the generalized image with respect to duct/hub paneling.
All variables held constant except for z; of the field point.

image, Gsr(x,€), is developed which can be subtracted from the generalized image
or by which the generalized image can be divided in order to eliminate the singular
behavior in this region. The desired properties of the function representing the sim-
plified image are as follows: (1) the function should closely approximate the behavior
of the generalized image in the region of the singularity; (2) the function should be
smooth away from this region; (3) the function should be “simple,” that is, since the
simplified image is created to make the interpolation procedure more efficient, this
function should not be computationally expensive to obtain. Ideally, the simplified
image should consist of the potential from a few point singularities.

A simple function which models the duct and hub as infinite cylinders would seem
to be a good choice for the simplified image. This function would have to satisfy the
boundary condition of zero normal velocity on a cylinder in the presence of a point
source. In two dimensions, the condition of zero normal velocity on a circle of radius
R in the presence of a point source of strength g at radius R, can be satisfied by the

addition of an additional source, also of strength g, located above the source at radius
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Figure 3-8: Two dimensional distribution of singularities satisfying boundary condi-
tion on a circle in the presence of a point source and the resulting streamlines.

R; = R?/R, and a sink of strength 2q located on the circle directly below the source,
as shown in Figure 3-8. Unfortunately, this arrangement can not be extended to three
dimensions to model an infinite cylinder in the presence of a source. In addition, the
sink located on the bottom of the circle will result in a singular behavior in the
simplified image away from the location of the singular region of the generalized
image. Keeping only the source at R;, however, should capture the local behavior of
the generalized image near the singularity and be smooth everywhere else inside the
duct. This is all that is required for the simplified image! In this case the simplified
image models the duct as an infinite wall located midway between the source and
image scurce. Near the singularity, the generalized image should behave locally as
a point source near an infinite wall, so the generalized image should approach the
simplified image in this region. Therefore, the simplified image chosen consists of
two additional point sources placed at the same axial and angular position as the

real source: one placed at radius Ry = R} /Rs representing the duct and the other
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Figure 3-9: The simplified image

placed at radius Ryy = R%/Rs representing the hub, where Rp, Rg and Rs are the
radii of the duct, hub and real source respectively. The simplified image is shown
schematically in Figure 3-9.

The simplified image, Gsr(x, £), with respect to the duct and hub of a point source

at £ = (z;,7;,0;) at a field point, x = (z;,7;,0;), can be expressed as:

1 1

GETTRE] (3.17)

GSI(x1 £) =

where:

2
¢l = (:c_.;,éf-,G,-) and ¢AT = (a:_.,-,%,@_,-) are the locations of point sources used to

represent the duct and hub respectively,

Rp and Ry are the local radii of the duct and hub respectively at the location of

the source,
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Figure 3-10: Comparison of the generalized image and the simplified image vs. 6; of
the field point.

||€F — x|| and [|€#T — x|| refer to the radial distances between the field point and

image sources representing the duct and hub respectively.

The comparison between the generalized and simplified images is shown in Fig-
ures 3-10 through 3-12. The point source is located at the same location as in Fig-
ures 3-6 and 3-7. Figure 3-10 shows a comparison of the two functions with respect to
the relative angle between the source and field point. Figure 3-11 shows the compari-
son as the field point radially approaches the inner surface of the duct directly above
the source. Figure 3-12 compares the function with respect to the axial location of
the filed point. In all three plots it appears that the simplified image exhibits the
same local behavior as the generalized image in the region where both the source
and field point are near the same location on the duct. The next step is to use the
simplified image to define an “image factor” which can be more easily approximated
by a polynomial expansion than the generalized image and from which the general-
ized image can be easily obtained. There are two possibilities for using the simplified

image to remove the singular behavior of the generalized image. A function could be
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Figure 3-11: Comparison of the generalized image and the simplified image vs. r; of
the field point.
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Figure 3-12: Comparison of the generalized image and the simplified image vs. z; of
the field point.
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defined as either the difference between the generalized image and simplified image
(the difference image factor) or as the ratio of the generalized and simplified images
(the ratio image factor). Figures 3-13 through 3-15 show a comparison for these two
possible image factors for the same source and field point arrangements examined by
Figures 3-10 through 3-12. Figures 3-13 through 3-15seem to indicate that the im-
age factor based on the ratio of the images is somewhat more effective at smoothing
out the generalized image than is the image factor based on difference between the
images. After a Chebyshev polynomial expansion was set up for both possible image
factors, it was found that both possibilities require about the same number of terms
in the expansion to adequately represent the generalized image. Although, the ratio
image factor provides a smoother function for interpolation, it must be evaluated to
a higher degree of accuracy than the difference image in order to achieve the same
level of accuracy for the value of the generalized image.

Some small fluctuations appear near ' = 0 in the difference image factor shown
in Figure 3-13. These can be attributed to the “saw-tooth” effect from the constant
strength panels used on the duct. As will be discussed in Section 3.4.2, the points at
which the image factor must be computed directly will be set up in such a way as to
leave a gap of at least half the width of a panel between the duct and hub surfaces
and the location of the source or field point in order to avoid discretization errors.
When computing the image factors from the expansions, however, the image factor
will be determined from extrapolation for points in this gap. Therefore, a trade off
exists between the desire for the gap to be as small as possible to avoid errors from
this extrapolation, and the need to have the gap large enough to avoid errors from
discretization when using a reasonable number of panels to represent the duct and
hub. Attempts to replace the constant strength dipole panels on the chordwise strips
near the top of the duct with linear strength panels had little effect on narrowing the
allowable size of this gap. These attempts applied linear strengths to these panels after
the constant strength panel solution had been obtained. Perhaps better results could
be obtained from a more complete higher order panel method. The small fluctuations

seem to appear only in the circumferential direction. Note that Figures 3-13 through
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Figure 3-13: Comparison of the ratio and difference image factors vs. 6; of the field
point.

3-15 are for an extreme case, with both the source and the field points located about
one-half a panel width from the duct inner surface. The panel discetization on the
duct seems to have a much larger overall effect on the difference image factor than
on the ratio image factor as shown by Figure 3-13.

The singularity is removed almost completely in the axial and radial directions.
There is still, however, some variation in the image factor with respect to the relative
angle between the source and field points, although it is still smoother than the
generalized image itself. In this thesis, the ratio between the generalized image and
the simplified image is used to define the image factor. Therefore, the image factor,
I(x, &), is defined as:

Gi(x,§)

I(x8) = g g (3.18)

The value of Z(x, £) will be computed directly for all possible combinations of the
Ns source points and Npp field points. The coefficients, defined by equation (3.8),
which are used to modify the unbounded flow influence coefficients for a panel with

a unit source distribution when solving for ¢;; on the propeller can be expressed as a
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function of the simplified image and the image factor.

bi; = I(x,£)Gsi1(x,€) (3.19)

By substituting equation (3.19) into equation (3.8) and applying the chain rule ap-
propriately to each term, the modification to the dipole influence coefficients which
account for the presence of the duct and hub can also be expressed in terms of the
simplified image and the image factor.

_ 0Z(x:, ;) 0Gsr(xi, €;) ,

ai; = [(—a—zJ_—’—Gsr(xi:&j) + _E,-’_J-I(xi,ﬁ,-) 2

aI 1S 5 11 G5 o
(_—(a_x;jE_J)GSI(xia £J) + a_c;ia(:’_—éilz(xiafj)) J

BI(x‘-,E_.,-) aGsf(x,-,ﬁj) a . )
+ (TGsz(xhlfj) + Tz(xi,fj) k| -n; (3.20)
The derivatives of the simplified image can be expressed analytically. The image

factor derivatives will be obtained from the differentiating the multivariate Chebyshev

expansion for the image factor which is described in the next section.

3.4 Interpolation Scheme

The image factor of a point source with respect to the duct and hub at a specified
field point can be expressed using a minimum of five variables. In this {orm, the

image factor, Z, is expressed as shown below:
I(xi,&;) = I(8',z4p,74p, Xoy Ry) (3.21)

where z4, and ry, are the axial and radial location of the field point, zs and rs are
the axial and radial location of the source point, and 8’ is the relative angle between
the field and source points. Various methods are available from numerical analysis
for approximating this function. The objectives of the interpolation scheme are to be

computationally efficient, and able to produce both the value of the image factor as
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well as the first derivative of the image factor with respect to each of the source point
coordinates within acceptable accuracy. Since the image factor is continuous and
smooth, it is reasonable to express this function in terms of a multivariate Cheby-
shev polynomial expansion, particularly for the approximation with respect to the
axial and radial locations of both the source and field points. Chebyshev polynomi-
als are generally the most efficient choice for a polynomial expansion of an arbitrary
smooth and continuous function[3]. Expansions in terms of Chebyshev polynomials
are commonly used in numerical analysis as an efficient means for approximating
functions with near minimax accuracy or “equal-ripple” errors. They are particularly
applicable to approximating a function, such as the image factor, where the greatest
variation in the function occurs near the edges of the interpolation region. Multi-
variate Chebyshev polynomial expansions were used successfully by Newman [37] to
accurately approximate the three-dimensional wave-resistance Green function ( the
potential induced from a point source traveling at a constant speed below a free sur-
face ) using a procedure similar to that which will be described here. In [37] a three
variable Chebyshev polynomial expansion was utilized. In order to approximate the
image factor, a five variable expansion will be required. The larger number of vari-
ables will increase the computational cost of the approximation, although it is still
expected to be reasonably efficient and accurate.

The choice of the best approximation scheme for the image factor with respect to
the relative angle, ', between the source and field points is less obvious. It would
appear that a Fourier cosine series could be used in this direction. This would take
advantage of the fact that the image factor is even and periodic with respect to 6.
This was the method that was originally implemented. A FFT was used to obtain
the coefficients of the Fourier series. Due to the sharp variation in the image factor
near §' = 0, however, a large number of terms had to be retained in order for this
series to adequately converge. In order to obtain a more compact series for the image
factor, the interpolation region was subdivided into two separate regions with respect
to 8. One region covers the interval where |§'| < 8,,, where 8, is typically specified

between 15° and 20°, and the other region covers the interval where |6'| > 6,u. This
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subdivision is shown by Figure 3-17. In this way, a denser spacing of interpolation
points can be used in the region where the sharpest variation in the image factor
occurs. The image factor will then be expanded in terms of § which is defined as:

6= (3.22)

04 = 6 if |0’| < Ow
03 =180° — 6" if lall > olub

By defining # in this manner, the image factor will be symmetrical about 84 = 0 in
the first region and symmetrical about g = 0 in the second region. The Chebyshev
polynomial expansion can take advantage of this symmetry by using only the Cheby-
shev polynomials of even order. The resulting expansion for the image factor in a

given region is shown below:

Ny N; Ny N¢ Ng

I(8,2 15,700 Xor Ra) = D0 30 2 D cisumTail 0) T3 (610) Tk (msp) T1' (65) (),

i=0 j=0 k=0 =0 m=0 (3.23)
where T2 (z) is the my, order shifted Chebyshev polynomial and Ty;(z) is the (2i)™"
order Chebyshev polynomial of the first kind. These polynomials will be discussed
in the next section. The normalized variables 8, £4,, 75p, €5 and 7s are functions of
8, z4p, Tsp, X, and R, respectively, which are used to map the points in the duct
coordinates systefn onto a square grid as will be described in Section 3.4.2. N,
N2, N3, Ns and Nj refer to the number of terms retained in the expansion for each

direction.

3.4.1 Chebyshev polynomial interpolation

The use of Chebyshev polynomials to approximate a function is very common, partic-
ularly for the case of single variable functions. Descriptions of this technique can be
found in any basic numerical analysis textbook, and many books have been written
specifically on this topic. A brief review of some of the important properties involved

will be given here. A function f(z) which is regular over the interval -1 < z < 1,
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may be represented by a Chebyshev expansion in the form:

f@) = 3 eaTu(a), (3.24)

n=0

where T,(z) is the n*h order Chebyshev polynomial of the first kind. The coefficients,
cn, will converge exponentially to zero. The Chebyshev polynomials of the first kind
are a family of orthogonal polynomials which are defined over the interval -1 <z <1

by the formula:
Ta(z) = cos(n arccos z) (3.25)

For the current application, it is convenient to use the shifted Chebyshev polynomials,
T?*(z) which are defined over the interval 0 < = < 1, and are related to the Chebyshev

polynomials of the first kind as follows:
T (z) = Ta(2x — 1) (3.26)

The shifted Chebyshev polynomials are simply the Chebyshev polynomials of the first
kind mapped onto the interval 0 < z < 1, and they retain all of the useful properties
of the Chebyshev polynomials of the first kind. If f(z) is an even function, it is more

efficient to form the expansion using only the even order Chebyshev polynomials,

T2n(z), where
Tin(z) = T3(c?). (3.27)

The first several polynomials for both T}*(z) and T5.(z), are shown in Table 3.1. The
remainder of the Chebyshev polynomials can be obtained easily from the following

recursion formula:
Toii(z) =222 — 1)T(z) — Th_y(z) for n > 1. (3.28)

This recursion relation is very useful in evaluating the expansion as will be seen in
Section 3.4.3.

The Chebyshev polynomials have many useful properties. One of the most impor-
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Ty(z) =1 To(z) =1

T (z) =2z —1 Ty(z) = 22% - 1

Ty(z) =8z -8z +1 Ty(z) = 8z* — 8z% + 1

T3 (z) = 3223 — 4822 4 18 — 1 Te(x) = 322° — 48z* + 182 — 1

Table 3.1: First four members of the shifted and second order Chebyshev polynomials.

tant is that their magnitude over the interval on which they are defined is bounded
by 1:
IT2(z)| <1 for 0<z<1 (3.29)

In practice the series expansion shown in equation (3.24) will have to be truncated
after the summation of a finite number of terms. The property specified in equa-
tion (3.29) means that the error resulting from this truncation will be bounded by
the sum of the truncated coefficients. The Chebyshev polynomials also satisfy a
discrete orthogonality relation which is useful in computing the coefficients for the
expansion (see Section 3.4.2 ).

The use of Chebyshev polynomials is typically described for approximating a single
real variable, but the extension to multiple variables is straightforward. A function
f(z,y) which is regular in the domain 0 <z <1,0<y <1 can be expressed in the

form:

(z,y) = Z Z crm T (y) T2 () (3.30)

n=0 m=0

This can be thought of as a single variable Chebyshev expansion in x, where the
Chebyshev coefficients are a function of y, which can themselves be expressed as an

expansion of Chebyshev polynomials.

He9) = 3 4 0)T) (3.31)
where:
ch(y) = X camTr(v) (3.32)

As will be seen in Section 3.4.3, this way of looking at multivariate Chebyshev poly-
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nomials is particularly useful when applying these expansions to the image factor.

3.4.2 Computation of Chebyshev polynomial coefficients

The domain in which the image factor must be computed will be divided into three
regions. A separate multivariate Chebyshev polynomial expansion will then be set
up for evaluating the image factor in each of these regions. Each of these expansions
will be in the form of equation (3.23); however, a different set of coefficients will be
required to define the generalized image in each region. The Chebyshev coefficients
corresponding to each region can be determined from the values of the image factor
which are calculated directly by using the discrete orthogonality relation. In order to
do this, the image factor must be computed directly at a specific set of points. The
selection of these points for each region will first be discussed, and then the method
for computing the coeflicients will be developed.

When calculating the modifications to the propeller influence coefficients needed
to solve equation (3.4), the coefficients @;; and b;; must be obtained for various combi-
nations of panels. These coefficients correspond to the modification to the influence of
a point source or dipole placed at the centroid of panel j at the control point of panel
i to account for the presence of the duct and hub. The panels on which the source
and dipoles are placed, the panel j’s, consist of both the panels on the blade surfaces
and the blade wake surfaces. The panels at which the influence of these sources and
dipoles is computed, however, consists only of the panels on the blade surfaces and
do not include the wake panels. Therefore, the domain for which the image factor
must be computed with respect to the location of the field points, z4, and ry,, need
only cover the region inside of the duct in which blades may be located. For the
case demonstrated here, this region extends from the duct trailing edge, located at
¢ = Xrg, forward to some axial location X;, in front of which no stator or propeller
blades will be located. To allow the same set of coefficients to be applied to many
different propeller and stator geometries during a design procedure, this region should
be made large enough to include all conceivable configurations of propeller and stator

blades. With respect to the relative angular position between the source and field
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points, @', this region is split at §' = 8, into two subregions in order to concentrate
more interpolating points near 8’ = 0 as specified by equation (3.22). The domain for
the source points, X's and Rs, must cover the possible panel locations for both the
blade surface and wake panels. This domain is also split into two subregions. One
region covers the same volume inside the duct specified by the field point domain.
The second region covers the volume aft of the duct trailing edge in which there are
no blade surfaces, but in which panels representing the blade wakes will exist. It must
be decided a priori at what point downstream the propeller wake will be truncated.
The second region will extend downstream to this point (z = Xw). The field points
domain will be subdivided with respect to 8’ only for the case corresponding to the
source point region inside of the duct. This results in total of three five-dimensional
regions in which the expansion of the image factor will be defined. These regions are
shown schematically in Figures 3-16 and 3-17. The resulting three regions are listed
below:

Region A: Both the source points and field points are located inside of the duct,

and the relative angle between the source and field points is less than 8,u.

Xl S Tfp S XTE

ra(zsp) +9 <1 <p(Tsp) — 9
X:1 < Xs £ XrE

rH(Xs)+9g< Rs<rp(Xs)—g
_oaub S 6' S olub (3.33)

Region B: Both the source points and field points are located inside of the duct, and

the relative angle between the source and field points is greater than 4,..

X1 <z5p < XrE

"'H(“’fp) +g<rp < TD(“’IP) -9
X1 < Xs < Xte
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ru(Xs)+g< Rs < rp(Xs)— g

B, < 0' < 360° — fu (3.34)

Region W: The source point is located aft of the duct trailing edge, and field point

is located inside of the duct.

X <zsp < X7E

ra(zsp) + 9 <Tip <TD(Tsp) — 9

Xrg < Xs £ Xw

ra(Xs)+9 < Rs < Rpwake — 9

—180° < 6" < 180° (3.35)

In the above equations, () is the local radius of the hub or hub vortex, rp(z)
is the local radius of the duct inner surface, RpwAKE 18 the radius of the duct wake,
and g is the thickness of the thin gap layer between the interpolation region and the
surface of the duct or hub. It is not possible to compute the solution on the duct and
hub for the case where a source is located directly on the duct or hub surface using
the procedure described in Section 3.3.1. Therefore, it is not possible to compute
the image factor directly for points on the surface of the duct and hub. For this
reason, the interpolation regions are cut off short of these surfaces, leaving a thin
layer of thickness g, which is set to be about 1-2% of the propeller radius, between
the interpolation region and the duct and hub surfaces. If values of the image factor
are required in this layer when computing the modified influence coefficients, they will
be obtained by extrapolation of the values inside the interpolation region. Although
there is no guarantee as to the bounds on the error for these extrapolated values,
they should be acceptable since the layer is thin and the image factor apprnaches a
constant smoothly as the source approaches the duct, as shown in Fig. 3-14.

The shifted Chebyshev polynomials, T*(x) are defined over the interval [0,/], and
the Chebyshev polynomials of the first kind are defined over the interval [-1,1]. There-
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Figure 3-16: Descripiion of the source point locations for the three interpolation
regions. For Regions A and B, the field point is located in the same axial interval as
the source. For Region W, the source is located in the area indicated but the field
point is located inside the duct.
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Figure 3-17: Description of the angular position for the field points in Regions A and

B. The image factor is defined with respect to the relative distance between the field
point and a source placed at § = 0.
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Figure 3-18: The mapping relationship for between the axial and radial location of
a source or field point and a point on the rectangular grid used for the Chebyshev
polynomial interpolation.

fore, the source and field point locations in each regior as specified by equations (3.33)
through (3.35) must be mapped onto the appropriate intervals. This will be done by
mapping each point in the five-dimensional domain specified by (8',xsp, 74p, X5, Rs)
to a point in the five-dimensional rectangular domain specified by (8, £yp,74p, €5, 75),
where £4,, 7p, s and 75 vary from 0 to 1, and § varies from -1 to 1. This mapping
is shown schematically in Figure 3-18 for the axial and radial directions inside the

duct. The appropriate mapping relations for each variable are given below:

zgp — Xi
= = .36
ffp(xfp) XTE _ Xl (3 )
Tt — |ITH(Zfp) +
n1o(2 o7 1) s — [ra(Z4p) + 9] (3.37)

" Trolzsp) — 9] — [ra(zsy) + 9]
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X=X for Xs< X
fs(Xs)={x”'x’ TS = ATE (3.38)

Xs-X7p
Xo—Xos for Xs > Xt

Rs—{ra(Xs)+g -
ns(Xs, Rs) = { St for Xs < Xrs (3.39)

Rs—(ry(Xs)+g]
[RDWAi(E—I;]—[fS'H(Xs)-l-g] for Xs > XrE

afﬁ for Xs S XTE; |0’| S aaub

6(8) = =& for Xs < Xrmi 10'] > Ous (3.40)
%' for Xs > XrE

For each of the three regions, a separate set of Chebyshev coefficients ¢y, cPrim
and c,?;'k,m, must be computed. In order to compute the coefficients for a given region,
the image factor must be computed directly at a specific grid of points using the
procedure described in Section 3.3. In terms of the normalized coordinates, the

required locations in each direction are shown below:

§* = cos (%) for : =0, N, (3.41)

&, = L (cos(ﬂ) + 1) for j =0,N; (3.42)
P2 N,

17’; = l cos(k—"r) +1 for k=0,N; (3'43)
P2 N;

¢ =1 cos(ll)+1 for [ =0, N. (3.44)

s =2\, HIE T '

7]? = l (cos(z-nl) + 1) for m =0, Ng (3°45)

2 Ns

where, (Ny + 1), (N2 + 1), (N3 + 1), (N4 + 1) and (N5 + 1) are the number of
points which are used to represent the image factor with respect to 0', zyp, Tsp, Xs
and Rgs respectively. These values must be decided upon before the coefficients are
computed. An examination of the resulting coefficients will indicate whether these
values are adequate, as will be shown shortly. For the case examined in this chapter,
values of N; = 16, N, = N; = 10 and N; = Ng = 12 were used for all three

regions. The image factor must be obtained directly for all possible combinations of
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the five normalized variables in each region. Therefore, the total number of image
factor values, Z(8,&sp,7¢p)€s,7s), required to compute the coefficients for a given
region will be [(NV; + 1) x (Ny + 1) x (N3 + 1) x (N4 + 1) x (N5 4 1)], which is equal
to 347,633 for the case examined here. The required positions for the sources and field
points in the duct coordinate system can be obtained from equations (3.36)-(3.40).

The values of the image factor with respect to the relative angle between the source
and field points, #’, will be obained by solving directly for the image factor for a source
located at # = 0 and a field point located at § = ¢'. Therefore the total number of
source point locations used to represent each region will be [(Ns+ 1) x (Ns + 1)],
and the total number of field points in each region at which the image factor will be
computed will be [(N; + 1) x (N2 + 1) x (N3 + 1)]. The directly computed values of
the image factor, I(é‘,ffp,n’;,,,ﬁ's,ng‘), are obtained by first inverting the system of
equations (3.15) to obtain the potential on the surface of the duct and hub in the
presence of a point source at a location corresponding to (£, 77 ), and then computing
the image factors using equations (3.16) and (3.18) at a field point corresponding to
(0-",5}",,7)’;‘,). The source point locations will be identical for Regions A and B so
that the image factor may be computed at the field points for both of these regions
using the same duct/hub solution for each source. Therefore, the total number of
times which the boundary value problem of the duct and hub in the presence of a
point source must be solved to compute the coefficients for all three regions is equal
to Ns = 2 x [(Ng 4+ 1) x (N5 + 1)], which is equal to 286 for the case demonstrated
here. A different set of image factors, T4(#", ;,,n';p,g’s,ng'), IB(6, ip,n’jp,ﬁfs,n's")
end IW (8¢, ,7%,,€5,7%), will directly computed to obtain the coefficients in the
three regions, ¢/, P m and c,-‘}'k,m respectively.

After the directly computed image factors are obtained at the specified grid points
in each region, the coefficients corresponding to each region can be computed using the
discrete orthogonality relation of Chebyshev polynomials. This process is described
in detail by Fox and Parker [8]. For the case of a single variable defined on the interval

[~1,1], the coefficients for the expansion shown in equation (3.24) can be obtained
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from the following expression:

== Z " §()Tom(n), (3.46)

n=0

where €y = 1, and €, = 2 for m > 0. The double prime indicates that the first and
last terms in the summation are divided in half. The points z,, are similar to the
required locations specified by equations (3.41) through (3.45), and in this case are

specified as:

T, = cos (%) . (3.47)

The values of the Chebyshev polynomials can be determined from equation (3.25) to
be

nmmw
m\ZTn) = 48)
Tn(zn) cos( N ) (3.48)

The expansion for the image factor will be in terms of five variables and utilize
a combination of both shifted and even order Chebyshev polynomials. When the
method described above is extended to this case, the formula for determining the

coeflicients is as follows:

.. _ ¢ € € ¢ € M nxNy n u—Ny n<Ny n
Cijktm = RN L2 Zule TR0 " T1t" M=o

Toi(61)T; (61,)Te (nfe ) I (€5) T (08 ) Z(6", €7, fin €5, m8T)  (3.49)

The values of the Chebyshev polynomials in this expression can be obtained by
substituting equations (3.26) and (3.27) into equation (3.25). The resulting values

are:

1 ] kK
T5:(6") = cos ( 1{;) T;(ffp) = cos (%) Tk'(nﬁ) = cos ( N;r)

Tr (L) = cos (lf,:r) Tr(n§') = cos (mﬁ”) :

6

(3.50)

Equation (3.49) will have to be evaluated [(N; + 1)(Nz2 + 1)(N + 1)(Ny + 1)(Ns + 1)]

times to obtain the entire set of coefficients for a given region. This process will
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consist of ten nested loops, and will have to be performed three times to obtain the

cB

ijklm

w

and ¢4, These computations required

. . A
coefficients for all three regions, ¢fj4;m,

over twelve hours on a VAX-9000 for the case demonstrated in this chapter. However,
these calculations are well suited for vectorization. In addition, once the coefficients
for a given duct and hub geometry are obtained, they may be used for any propeller
and stator blade geumetries and any inflow condition in connection with the given
duct and hub.

The resulting Chebyshev polynomial expansions will agree exactly at the repre-
sentative points at which the image factor was computed directly. In order for the
expansion to be accurate throughout the interpolation region, the values of N,, N,
N;, N;y and Ng must be large enough to allow the coefficients, ¢;jim to converge suf-
ficiently to zero in each direction [37|. The coeificients must be examined to ensure

that the coefficients at the edge of each interval are below the desired tolerance.

CNyjkim < 6 forall j,k,l,m

CiNakim < 6 forall i,k,l,m
CijNyim < & forall i,5,l,m
CijkNem < 6 forall ¢,7,k,m
cijriny, < 6 forall 7,7,k,! (3.51)

The value of the tolerance § was specified as 1 x 10~® for the cases studied for this
thesis. If one of the conditions specified by equation (3.51) is not met, either the
value for N which corresponds to that direction has to be increased or the domain
must be further subdivided. It was this condition, which resulted in the region for
the field points inside the duct being subdivided with respect to #'. In general, the
most efficient arrangement is a compromise between having many subregions with a
smaller number of coefficients required to represent each subregion, and modeling the
entire domain with a single expansion using a much larger ~umber of coefficients. A
more complete discussion on the error which results using a finite number of terms in

the expansion is provided in [8].
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3.4.3 Efficient evaluation of image factor expansions

In this section, the method is discussed for obtaining the image factors and its deriva-
tives for arbitrary source and field locations from the Chebyshev polynomial expan-
sions. This is required for computing the coefficients, b;; and @;, as specified by
equations (3.19) and (3.20). For the general case of the image factor, Z(x;, §;), corre-
sponding to the modification to the influence of a point source placed at the centroid
of panel j, §; = (Xs, Rs,0s), at the control point of panel 1, x; = (Tfp,Tfp,0p) , the

following quintuple summation musi be evaluated:

Ny N3 Ns Ny Ny

I(0', 2 spr 719y Xy Bs) = 30 0 3 3 cisumToi( )T (€1p) T (msp) T1' (45) T ms)

i=0 j=0 k=0 l=0 m=0 (3.52)
where 6, €tpy Nipy €s and 75 are the normalized forms of 0, xgp, 74p, Xs and Xg
respectively, as specified by equations {3.36) through (3.40}, and ¢’ = 05, — 0s. In
order to avoid confusion with the subscripts used for the Chebyshev coefficients, the
subscripts fp and S are used to refer to the points on panels i and j respectively in
this section. The coeflicients, ¢;;kim, correspond to the set of coefficients computed by
the method developed in Section 3.4.2 for the region containing the source and field
point locations of interest.

The mosi efficient method of evaluating this summation is by taking advantage
of the recursion relation specified by equation (3.28). Both the image factor and its
derivatives can then be evaivated by backwards recursion. For clarity, this will first
be demonstrated for the case of a single variable function expanded using a series
of Chebyshev polynomials. For the single variable case, more complete details on
the methods presented here can be found in [8) and [31]. Consider a function, f(z),

defined in terms of a finite series of shifted Chebyshev polynomials:

fe)= Y euTi(e) 0<o <1 (3.53)

n=0

To evaluate f(x) by backwards recursion it is first necessary to define an array b,.(z)
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where:

bvyz = bny1 =0

bn = (42: - 2)bn+l - bn+2 + Cn (3.54)

For a given value of z, the values of b, are obtained by first computing by, and then
stepping down until by is obtained. The value of the function may then be expressed

as:

For a function, g(z), defined in terms of even order Chebyshev polynomials,

g(z) = i a Ton(z) —-1<z<1, (3.56)

n=0

the procedure is the same, except that the expression for b,(z) is now,
by = (4% — 2)bpt1 — bny2 + @n, (3.57)
and the value of g(x) is expressed as:
g(z) = bo — (2% — 2)b;. (3.58)

The derivatives of equation (3.53) can be obtained by recursively modifying the
coefficients, ¢,. In this manner, d—ﬁ‘:-l, is evaluated using the same procedure used
to evaluate f(z), except that the coefficients ¢, will be replaced by a new set of

coefficients, d,,, which are defined as:

dy = dyy1 =0
dooy = dpy1+4nc, (n=N,N —1,...,2)
do = 2Cn + %dz. (3.59)

A slightly different method is used for finding the derivative of g(z). A separate
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array b!,(z) is defined, which is computed along with the b,(x) array when evaluating
the function. b),(z) is defined by:

! ]
bN = N+1=0

B = (4z? — 2)bl,, — b, — 8bayr. (3.60)

The derivative of g(z) is then expressed as:

dg(z)

i —4gzb, — by + (22 — 1)b;. (3.61)

The extension to five dimensions is easily understood by evaluating the summation
with respect to one variable at a time. In this way, equation (3.52) for a given source
and field point location breaks down into five nested single variable summations. In
this case, the summation will first be evaluated with respect to the radial position of

the source, Rs:
Ny, N2 Ny Ny Ng

:Jkl (Rs) = Z 2 E Z Z Cijktm T (7s) (3.62)

1=0 j=0 k=0 [=0 m=0

Then with respect to Xs

Ny N3 N; N,

;Jk A-'5"1'Rs) ZZ chukl RS)CPI 65) (363)

i=0 j=0 k=0 [=0

Then with respect to 7,

1 N2 N3
c(rpr X5y Rs) = DY Y ci(Xsy Rs) Ty (mys)- (3.64)

1=0 j=0 k=0
Similarly with respect to z¢p,

N N2
F(Zspy Tty X5y Rs) = D > ii(rsps Xs, Bs) T (€5p)- (3.65)

i=0 j=0

Finally, the image factor is evaluated from the one dimensional expansion in terms of
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9" as shown below:

N
I(6',zfpr 740y X5, Rs) = Z F(zspr71pr X5y Rs5)T2i(0). (3.66)

1=0

The innermost summation in each of the previous equations will be evaluated using
the backwards recursion method described by equations (3.54) through (3.58). Equa-
tions (3.62) through (3.65) can be evaluated together in a nested manner as shown

below:

I(0',:cfp,r,«p,Xs, Rs) =

N [ M N, N, Ny
Y- Ta:(6) [' T; (€) {,; Ty (nsp) (Z: T/ (¢s) < > CiikzmT;(WS)>) ” . (3.67)

i=0 m=0

The partial derivatives of the image factor with respect to the normalized source
locations, £s and 7s, can be evaluated by first determining two new sets of coefficients
for each region using equation (3.59). The partial derivatives are then evaluated
in the same manner as described above, but using the “differentiated” coefficients.
The partial derivative with respect to § is evaluated during the last summatior,
equation (3.65), using the method described by equations (3.60) and (3.61). In order
to obtain the partial derivatives with respect to the non-normalized variables, the

chain rule is applied as follows:

0T 0T 0¢s + 0T 9ns

0Xs 0fs0Xs  OnsdXs (3.68)
0T 0T Ons
3R5 - an 6R5 (3'69)
0T 8T 98
% = 2555 (3.70)

The partial derivatives with respect to the cartesian coordinates of the source, §; =

(z;,9j, z;), can then be obtained as follows:

0T a1
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0T 071

cos(8;) + Rs=— o1

E = 3% 59 - sin(0;) (3.72)
0TI 0T 3I
32~ 9Rs sin(f;) — 3 ,cos(t9j) (3.73)

The value of the image factor, Z(x;,£;) is then substituted into equation (3.19) to
obtain the modifications to the source influence coefficients, b;;, used when obtaining

the propeller solution. Both the image factor and its partial derivatives, 5 22 ) g: and

-g—f;, are substituted into equation (3.20) in order to obtain the modiﬁcatlons to the
dipole influence coefficients, @;;.

The image factor must be computed for a source on every blade and blade wake
panel at the control point of every blade panel. Therefore, for a single component
case with Np tlades, Np panels on the key blade and Nw panels in the key blade
wake, equation (3.67) will have to be evaluated (Np x Np x (Np + Nw)) times. This
process can be made more efficient by solving for the image factors at the control
points on all of the blade panels for a source on a single blade or blade wake panel, and
proceeding one source panel at a time. In this manner, the quintuple summation in
equation (3.67) can be broken down into a triple summation for each source location.

This works as follows: For each blade and blade wake panel, a three dimensional set

of coefficients is defined by:

Ny N; Ny Ny Ny

ciiul€sims) =D 2 > cijum Ty (65) T (ns), (3.74)

1=0 j=0 k=0 =0 m=0

where £5 and 75 are the normalized radins and axial location of the panel. These
coefficients are then used to compute the image factor for a source on that panel, at

the control points of all the other panels as follows:

Ni Ni Ny i
I(o-affm Nfpr€ss ns) = Z Z Z c:'jk(fsi WS)T;i(a)Tj.({fP)TI:("fP) (3'75)

i=0 j=0 k=0

where £/, and 7y, are the normalized axial and radial location of the control poit,
and @ is the normalized relative angle between the two panels. In this way, the

quintuple summation shown in equation (3.74) only has to be evaluated (Np + Nw)
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times, and only the triple summation shown in equation (3.75) must be evaluated
(Np x Ng x (Np + Nw)) times.

For a multi-component propulsor, the influence coefficients corresponding to the
influence of the propeller on the stators and the stators on the propeller will be
time dependent, due to the relative motion between these two components. The
image factors corresponding to these coefficients will, therefore, also change with
each timestep. However, for each coefficient only the relative angle between the two
panels involved, #', will change with time, and the radial and axial locations will
remain constant for both the source and field points. It is more efficient, therefore,
to obtain the values for these image factors for all timesteps at the same time. This
is done by further breaking down equation (3.75) for every combination of panels by
defining a one dimensional set of coefficients, ¢, which are defined as follows for each

combination of panels:

N1 N N,

c:"(£fp’ Ntpr€sy7Ms) = Z Z Z c:'jk(fs’ US)TJ"(ffp)Tl:(ﬂfp) (3-76)

i=0 j=0 k=0

The image factor at timestep n, can then be evaluzted using the following one di-

mensional expansion:

N, .
T () 21pr71: X5, Bs) = 3 e (Erpynppr€5,15) i (B(m)) . (3.77)
=0

There is a tradeoff between the computational efficiency and the amount of disk
storage required, however, in that by computing the the propeller on stator influence
coefficients and the stator on propeller influence coefficients using equations (3.76)
and (3.77), these coefficients must be computed for all timesteps bhefore the time-
marching begins. Therefore, a large amount of disk memory is required to store all

of the time dependent coefficients.
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3.4.4 Validation of generalized image interpolation

In order to test the effectiveness of the generalized image interpolation, comparisons
were made between the values of the generalized images calculated directly, using
the procedure described in Section 3.3.1, and those obtained using the interpolation
procedure described in the previous section. These tests were performed for the
generalized images corresponding to both point sources and point dipoles. Tests were
performed for a large variety of source, dipole, and field locations, and only a sampling
of these results are shown here. The arrangement of source and field point locations
is the same as those used to examine the generalized image in Section 3.3.1 and is
shown in Figure 3-5. In the cases shown here, the point source or point dipole is
located at € = (Xs = 0.5,Rs = 0.85,85s = 0.0), and the field points are located
at x = (¢4, = 0.5,74, = 0.85,0,), where 8y, varies from —180° to 180°. The duct
and hub geometries are the same as that used in Section 3.3.1 and are described in
Table 6.2. Figure 3-19 shows the comparison for the generalized image of a point
source. The comparisons for point dipoles oriented in the z, y, and z directions are
shown in Figures 3-20, 3-21 and 3-22 respectively. It can be seen that the interpolation
procedure is able to accurately produce the value of the generalized image for all of

these cases.

3.4.5 Truncation of the Chebyshev polynomial expansions

In order to improve the efficiency of the algorithm for evaluating the Chebyshev
polynomial expansions of the image factor, a procedure is implemented to avoid the
summation of negligible terms in the series. Since the magnitude of the Chebyshev
polynomials is bounded by 1, |Tx(z)| < 1, the magnitude of each term in the expan-
sion is bounded by the magnitude of the coefficient, |cijkim|, corresponding to that
term. Therefore, the efficiency can be improved by avoiding the computation of terms
where |cijkim| is less than a specified tolerance. This is done by adjusting the upper

limits of the summations in equation (3.52). The expansion with the adjusted limits
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Figure 3-19: Comparison of interpolated and directly calculated values of the gener-
alized image of a point source with respect to the duct and hub. All variables are
held constant except for 6; of the field point.

can be written as follows:

M, M§ My M M
(0", zps 75y X5y Rs) = DD 3 > cijamT2i0)T; (€1p) T (ngp)T7 (€5) T (ms)
i=0 j=0 k=0 I=0 m=0
(3.78)
where the new coefficients, My, Mi, My, M{* and M7, are computed to truncate
the expansior. before the inclusion of terms where |c;jxim| is below the specified toler-
ance. A more conservative approach was used by Newman (38}, in which the sum of
the absolute values of all the coefficients is computed in reverse order from large upper
limits. All of the terms in the sum are then eliminated if the sum of the coefficients
is below a specified tolerance. This was done for a two-dimensional expansion, and
it was found that various combinations of terms could be eliminated to produce the
same total maximum truncation error. This procedure is much more difficult in five
dimensions, however, and it was decided to go with the simpler approach. The effect

of the truncation of the expansion on the evaluation of the generalized image of a
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Figure 3-20: Comparison of interpolated and directly calculated values of the gener-
alized image of a point dipole oriented in the axial direction with respect to the duct
and hub. All variables are leld constant except for 6; of the field point.

point source is shown in Figure (3-23) for various values of the truncation tolerance.
The effect of the truncation on the generalized image of a point dipole oriented in the
8 direction, is shown in Figure (3-24). It can be seen that the truncation has a much
greater effect on the generalized image for the dipole, since this value in computed
using the derivative of the image factor. It appears that a truncation level of 1 x 10~4
would be adequate for computing the generalized image for a point source, but that
a truncation level of 1 X 10~° is required to accurately evaluate the generalized image
for a point dipole. The effects of the truncation level on the accuracy of the solution
on the propeller and the computation time required to compute the image factors
will be shown in Chapter 7.

Another possible means of accelerating the evaluation of the image factor expan-
sions is to convert the Chebyshev polynomials to equivalent ordinary polynomials.
The coefficients for the ordinary polynomials can be obtained from the set of Cheby-

shev coefficients computed using the method discussed in Section 3.4.2 by a process
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Figure 3-21: Comparison of interpolated and directly calculated values of the gener-
alized image of a point dipole oriented in the radial direction with respect to the duct
and hub. All variables are held constant except for 4; of the field point.

described in [37]. The recursion formulas used to evaluate ithe Chebyshev polynomi-
als eliminates the ability to vectorize these routines. The evaluation of the ordinary
polynomials, however, is well suited for vectorization. In addition, the number of com-
putations required per coefficient is less for the evaluation of an expansion of ordinary
polynomials. This procedure was not implemented in the current method because the

computer on which the method was developed was not capable of vectorization.

3.5 Calculation of the Duct Potentials and Ve-
locities in the Absence of the Propeller

The solution for the potential on the propeller is decomposed as ¢ = ¢p + dps from
equation (2.23). In Section 3.2 the method used to compute ¢ps was described. This
section will discuss the method used to obtain ¢p. In addition, when solving for ¢ps

the values of the source strengths on the propeller blade panels, &, are obtained from
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Figure 3-22: Comparison of interpolated and directly calculated values of the gener-
alized image of a point dipole oriented in the theta direction with respect to the duct
and hub. All variables are held constant except for 6; of the field point.

equation (3.3) which requires the value of Vép. The method used to obtain V¢p will
also be discussed in this section. Both ¢p and V¢p relate to the solution for the flow
past the duct and hub in the prescribed inflow, Uw(zs,7s,0s), but in the absence
of the propeller and stator blades. Although the inflow is spatially nonuniform, the
solution to ¢p will be steady since the duct and hub geometries are stationary. This

solution is obtained from the discretized form of equation (2.24) which is shown below.

Npy ] Mp Nwp Npu .
Yo aiidh+ D Y WinmlAdp =Y bijopb i=1,Npy (3.79)
j=1 m=1 n=1 j=1

where:
{) is the potential on duct/hub panel j.
Mp is the number of circumferential panels on the duct.

Nwp is the number of chordwise panels in the wake of the duct.
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Figure 3-23: Effect of truncation on the interpolated values of the generalized image
of a point source with respect to the duct and hub. All variables are held constant

except for 6; of the field point.
Npg is the total number of panels on the duct and hub.

a;; is the influence coefficient for the potential induced by a unit dipole distribution

on duct/hub panel j at the control point of panel ¢

b; ; is the influence coefficient for the potential induced by a unit source distribution

on duct/hub panel j at the control point of panel

Wi nm is the influence coefficient for the potential induced by a unit dipole distribu-
tion on the nt* duct wake panel on the m** circumferential duct wake strip at

the control point of panel <.

The procedure used to solve the linear system formed by equation (3.79) is nearly
identical to the method used to solve for G from equation (3.15) in Section 3.3.1. The
solution in this case is not symmetrical about § = 0, however, so it is necessary to
solve for the strengths of the panels on the entire duct. The panel discretization is the

same as used for that problem and is shown in Figure 3-3. The coefficients a;;, b,
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Figure 3-24: Effect of truncation on the interpolated values of the generalized image
of a point dipole oriented in the theta direction with respect to the duct and hub. All
variables are held constant except for 6; of the field point.

and W; . are computed using the same routines used to compute the unbounded
flow influence coefficients for the propeller solution as described in Section 3.2 and
for the generalized image solution as described in Section 3.3.1. As was the case
when computing @, these influence coefficients only have to be computed for a single
chordwise strip on the duct and hub, because the duct and hub geometries are ax-
isymmetric. The source strength, o}, is defined from equation (2.24) to equal to the

negative of the normal component of the inflow at duct/hub panel j.
0'% = —Uw(:l:s,Ts,Os) . ‘fLJ‘ (3.80)

An iterative pressure Kutta condition is applied at the trailing edge of the duct to
obtain the jump in potential across the duct wake, A@F, using a method described
in [23] which is similar to that used to apply the Kutta condition for the propeller
solution. Equation (3.79) forms a system of Npg linear equations which are inverted

to obtain the values of ¢}, on the duct and hub surface.
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After the solution for ¢p is obtained on the surface of the duct and hub, the values
of ¢p are computed at a set of field points inside of the duct and hub, &; = (z;,;,0:),
in order to set up a expansion similar to that used to interpolate the image factor.

These computations use the following discretized equation:

NP“H ) Npy ] Mp Nwp
j=1 j=1 m=1 n=1

where:

[

a; ; is the influence coefficient for the potential induced by a unit dipole distribution

on duct/hub panel j at the field point ;

b ; is the influence coefficient for the potential induced by a unit source distribution

on duct/hub panel j at the field point =;

W/, m is the influence coefficient for the potential induced by a unit dipole distribu-
tion on the nt* duct wake panel on the m*! circumferential duct wake strip at

the field point @;.

The coefficients a'

ij» bi; and W/ _ are determined using the same method used to

compute a; ;, b; ; and Wi, for equation (3.79). After these coe Ticients are computed,
all of the terms on the right hand side of equation (3.81) are known. Therefore, the
values can be obtained at the required field point locations by summing all of the
terms on the right hand side of this equation.

The required axial and radial locations for the field points, z; and r;, are the same
as those required to compute the coefficients for the image factor expansions, zs, and
rsp. Therefore, the axial locations, z;, are specified by equations (3.42) and (3.36),
and the radial locations, 7;, are specified by equations (3.43) and (3.37). The inflow
Uw is specified in terms of a Fourier series as shown in equation (2.4). The solution
for ¢:p will be periodic in 8, and there is no singular behavior requiring that the region
be subdivided in @ as was the case with the image factor. The.efore, it is logical to

expand ¢p in a Fourier series with respect to 8. The field points used to determine

the coefficients of these series will be uniformly spaced in the @ direction over the
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interval from —180° to 180°. The combined Chebyshev polynomial and Fourier series
expansion for ¢p inside of the duct is shown below:

Ny N

op(z,m,0) =35 TH(E)T;(n) .La,,o + }: (cxiji cos(k8) + B sin(ks)) | (3.82)
i=0 j=0

where ¢ and 7 are the normalized forms of x and r respectively, as specified 'y
equations (3.36) and (3.37). The values of N;, IV, and N3 represent the number of
terms used to compute the expansion in the z, r and 6 directions respectively. These
must be set large enough to allow the resulting coeflicients to converge adequately
to zero in each direction. For the inflows and duct/hub geometries examined in this
thesis, N; = 8, N, = 8 and N; = 16 easily satisfied this condition. The value of N3
should be at least as high as the number of harmonics used to define the inflow, Uw,
in equation (2.4). The coefficients, a;jx and f;x are obtained by first applying a Fast
Fourier Transfrom (FFT) algorithm to determine the coefficients for a Fourier series
related to the value of ¢p at cach of the required axial and radial field peint locations.
The procedure described in Section 3.4.2 is then applied to compute aij and Bijk
from these Fourier coefficients. The Fourier series coefficients will converge to zero in
a similar manner to the convergence for the Chebyshev coefficients. Therefore, since
| cos(k8)| < 1 and |sin(k6)| < 1, the method of truncating the expansion described in
Section 3.4.5 can be used to avoid unnecessary computations when oy = 0 or Bijk =
0. In general, it has been found that the coefficients for this series converge much
more quickly than the coefficients for the image factor expansions. The expansion for
ép is then evaluated using the same method used to evaluate the expansion for the
image factor as described in Section 3.4.3.

The gradient, Vép, is defined as follows:
d¢p.  Oép. 0¢p

VQ5D= awi-{- arr+1‘60t (383)

This can be obtained by computing the partial derivatives of ¢p in each direction.

These partial derivatives can be computed directly from the combined Chebyshev
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polynomial, Fourier series expansion. For the partial derivatives with respect to =
and r, the procedure is the same as that used to compute the partial derivatives of
the image factor with respect to X and Rs as described in Section (3.4.3). The
partial derivative with respect to 6 is computed by differentiating the terms of the

Fourier series:

3¢D LI “(€)T*
—g(:7,0) Zj‘_,_jcr (6)T; (n)Z(—a,Jkksm(kG)+ﬂ,J, cos(k8))  (3.84)

The values of ¢p and the components of its gradient, %ﬂl, ng’- and Qggl, are computed
at the control points for all of the propeller and stator blade panels. This computation

is performed at each timestep for the propeller blade panels but only once for the

stator blade panels.

3.6 Implementation for Multi-Component Propul-

SOors

Two methods were studied for modeling the interaction between the blade row compo-
nents when both a propeller and stator blades are present. The first was an extension
of the method used to model the interaction between a propeller and pre-swirl stator
blades by Hughes and Kinnas [19]. In this method, two separate systems of linear
equations are used for the propeller and stator blades with the interaction being ac-
counted for in an iterative manner by modifying the right hand side of each problem.
This process can easily be extended to unsteady flows. The advantage of this method
is that the use of influence coefficients which change at each timestep can be avoided,
since the geometry used within each of the systems of equations is constant. However,
a computationally expensive iterative process must be performed at each timestep.
The second approach obtains the solution on both the propeller and stator blades
by solving a single system of equations. In this way, there is no need to iterate
between solutions and only a single system of equations has to be inverted at each

timestep. However, since the geometries of the propeller and stator blades move
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relative to each other, the coefficients for the influence of the stator blade panels
on the propeller and the influence of the propeller panels on the stator blades will
change at each timestep. On the other hand, the image factors corresponding to
these coefficients can be computed efficiently using equations (3.76) and (3.77). After
performing rough calculations for the computational time required by each method,
it was determined that the second approach, which models the propeller and stators
as one problem, is more efficient, and this method was implemented.

One of the difficulties involved in this formulation concerns how to model the
interaction between the blade of the downstream component and the wake from the
upstream component. For the case of pre-swirl stators, the propeller key blade will
intersect the wake from each stator blade as it rotates behind the stators. This
situation is shown schematically in Figures 3-25 and 3-26. This will be treated by
allowing the downstream blade to pass through the wake without altering the wake
geometry. The influence from the upstream wake panels which touch the blade of
the downstream component are set to zero. Similar methods have been employed to
model the interaction between blade rows for contra-rotating propellers by Maskew
[33] and Yang et. al. [42]. A time dependent function h;n(n) is created which is set
equal to 0 when the I** panel on m*" wake strip intersects one of the component blades
at timestep n and is set equal to 1 otherwise. This procedure is shown schematically
in Figure 3-25.

The stators and propeller are then solved simultaneously using the same procedure
described in Section 3.2. Figure 3-26 shows the panel discretization used for the stator
blades, propeller, and their wakes for the case of a two bladed propeller with three
stator blades. The wake geometry is only shown for one of the stator blades and
the key propeller blade. Fixed wake geometries are used for both the propeller and
stator blades. The spacing of the panels along the propeller wake was discussed in
Section 3.2. The panels along the stator wake will be placed along the prescribed
stator wake surface using constant axial spacing which is related to the time step,
AXw = (Uw)=(r)At, where At is the timestep and (Uw)(r) is the circumferential

average of the axial component of the inflow, Uw, at radius 7. The discrete form of
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Figure 3-25: Interaction between wake of the upstream component and the blade of
the downstream component.
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Figure 3-26: Geometry and panelization of two component ducted propulsor. The
duct and hub are not shown.

equation (2.25) which includes the stator blades is shown in equations (3.85) through
(3.88). Panels indexed from 1 through Np are on the propeller blade surface, and
panels indexed from Np + 1 through Np + Ngsr are on the stator blade surfaces. The
influence coefficients which change with each timestep are underlined.

For the panels on the propeller blades:

Np - Np+Nsr . M
doaydi(n)+ Do ai(n)gi(n) + > TELm(n)
ij=1 Jj=Np+1 m=1
M+Msr _
+ Y. TE(n)Tm(n) = RHSi(n); i=1,Np (3.85)
m=M+1
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where,

Ng Np NB Np -
RHS:(n) = Y. 3 bkak(n) =35 akdi(n)

k=1j=1 k=2 j=1
Ng M Nw M Nw

— Z Z Z 1lmA¢lm TL) Z 3 thmA¢lm(n)
k=2m=1[=1 m—ll 2
Np+Ngp - M+Mst Nwsr - -

+ Z b,-,-(n)&’,- — Z Z I’V,‘[m(n) hlm(n)Ad’lm(n)
Jj= NP+1 m=M+1 I=2

M+Msr

_ Z wn—1)- ¥ 7 n(—=1) (3.86)

m=1 m=M+1_

For the panels on the stator blades the equations will be:

where,

RHS;(n)

where:

Np - Np+Nsr - M
D ai(n)gi(n) + D, @iigi(n) + Z )Tm(n)
Jj=1 j=Np+1 m=1
M+Msr
+ Y. TpTm(n) = RHSi(n); i=Np+1,Np+ Nor (3.87)
m=M+1
Ng Np Ng Np
Y Y n)o"(n > Z ¢"(n)
k=1 j=1 k=2 j=1
Ng M Nw _ . M Nw -
Z Z Z Wzllcm(n)hfm(n)Aqsfm(n) - Z z W,-,m(n.) hlm(n)A¢lm(n)
k=2 m=1 l=1 m=1 [=2 :
Np+Nsr _ M+Msr Nwst -
Z bij&j - Z Z l/VilmAqSlm(n)
j=Np+1 m=M+1 I[=2
M M+Msr
. Im@)lm(n=1) = > TATm(n-1) (3.88)
m=1 m=M+1

Np is the number of propeller blades

M is the number of spanwise panels on the propeller blade

Np is the total number of panels on the key blade

Nw is the number of chordwise panels in the propeller wake
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Nsr is the total number of panels on all of the stator blades.
Mst is the combined number of spanwise panels on all the stator blades.
Nwsr is the number of chordwise panels in the stator blade wake.

The influence coefficients aij, l;ij, Witm, TR, and T,{‘n, are defined in the same manner
used for the single component case for equation (3.4) in Section 3.2. The only dif-
ference in this case is that the underlined coefficients now change at each time step.
The function him(n) is used to “turn off” the wake panels which intersect downstream
blades as discussed earlier, The value for &¥(n) on the propeller blade panels is given
by equation (3.3). The value for 7; on the stator blades is not time dependent and is

computed in a similar manner as shown.below:
%5 = = (Uw(z;,y;,2;) + Vep) - 4 (3.89)

Equations (3.85) and (3.87) are combined to form a linear system of Np + Ngp
equations for the potential ¢ on both the propeller and stator blade surfaces. Thijs
system of equations is inverted at each time step n. The right hand side is then
updated before solving the system at the next time step. The procedure continues
until a steady state oscillatory solution is obtained which usually requires several
propeller revolutions. The valuye for ¢p and V¢, are obtajnéd from the procedure
described in Section 3.5. Th.. ~omplete perturbation potential is then expressed as
ép + . Only the propeller is modeled using a key blade; each stator blade is solved
individually, since the geometries for all the stator blades may not be identical and
each stator blade will see different inflow. The jump in potential across the wake
panels, Ag;,.(n), can be obtained from equations (2.8) and (2.9) for the propeller and
equations (2.10) and (2.12) for the stator blades. The circulation at the trailing edge
of the blade, I' m(n), is determined from the implementation of an iterative pressure
Kutta condition. The circulation is first approximated by Morino’s Kutta condition
as specified by equation (3.6), and a solution for ¢ is obtained from equations (3.85)

and (3.87). This solution is then modified by varying I'm(n) in an iterative manner
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at each time step in order to satisfy the condition that the jump in piessure across
the blade goes to zero at the blade trailing edge. The pressure Kutta condition is
set up separately for the propeller blade and for each stator blade. In other words,
I'm(n) is varied separately on each blade to satisfy the equal pressure condition only
for that blade, and the effect of this variation is computed only on the blade for which
I'm(n) is varied. In this way, the base problems which must be solved to compute the
effect of varying I',,(n) will not be time dependent. In addition, this procedure for
applying the iterative pressure Kutta condition is much more efficient than applying
the condition to all blades simultaneously and will have negligible effects on the

results. The iterative pressure Kutta condition is described in detail in [15].
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Chapter 4

Calculation of Duct Potentials and

Forces

In Chapter 3, the procedure used to compute the solution on the propeller and stator
blades was developed. The generalized image model was implemented to accurately
account for the influence of the duct and hub, without having to solve for the potential
on the duct and hub as part of the solution matrix at each timestep. In this chapter,
it is shown how the solution on the duct and hub can be obtained from: (1) the
solution history of the potential and circulation on the propeller and stator blades,
and (2) the solutions for the potential distribution on the duct and hub computed
when calculating the generalized images directly at a representative set of points.
The potentials on the duct obtained using this method will represent the “quasi-
steady duct” (QSD) solution. In the QSD solution, the vorticity shed at the duct
trailing edge is not convected downstream. This results in a duct wake sheet whose
strength varies circumierentially and changes at each timestep, but is invariant in the
streamwise direction. A method is presented to recover the “fully-unsteady duct”
(FUD) solution from the history of the QSD solution. This method is first developed
for a two-dimensional analog problem and then extended to the problem of a three-
dimensional duct. The procedure used to compute the pressures and forces on the
duct is then developed, including the implementation of an iterative pressure Kutta

condition at the duct trailing edge.
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4.1 Obtaining Duct Potentials from the Propeller
Potentials - The Inverse Generalized Image

If a direct panel method is used to solve for the flow past a ducted propulsor, the
integral equation for the perturbation potential is given by equation (2.5) for the
FUD duct solution and equation (2.15) for the QSD duct solution. In thic section we
will first obtain the QSD duct potential, ¢(x,%)?5P on the duct surface. It will then
be shown how after ¢(x,t)?5? is computed at all timesteps, the fully unsteady duct
perturbation potential, ¢(x,t), can be recovered. It is assumed that the differences
between the QSD and FUD solutions are negligible on the hub surface. This is the
same approximntion as was made for the propeller and will be justified in Section 4.3.4.

When solving for the potential on the propeller and stator blades it is first nec-
essary to solve for the ¢p, which is the perturbation potential on the duct and hub
surface in the presence of the prescribed inflow, U, but in the absence of the pro-
peller and stator blades. The expression for ¢p is given by equation (2.24), and its
value at the control points of all the duct and hub panels, ¢}, is computed in order
to obtain the solution on the propeller and stators using the procedure described
in Section 3.5. This can be used to decompose the the QSD perturbation potential
on the duct and hub surface in a manner similar to the decomposition used for the

propeller.
$°°P = ¢p + ¢p (4.1)

The expression for ¢p can be obtained by subtracting equation (2.24) from equa-
tion (2.15). The resulting equation for ¢p on the surface of the duct and hub is

shown below:

aG(x £) 9G(x,£)

6np5

2doxt) = [ b6 ase)+ [ sen
-/ G(x,e)(—v.-n - nps) dS(€)

+ [, ad0,nTEmE)

Onw,

a5(£)

d5(¢)
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+ [, Bdrs(e,n 2 as(e) (4.2

Wps

The terms shown in the above equation are the same as those uced for equation (2.5)
The perturbation potential on the surface of the propeller and stator blade panels,
#(&,t), is now known from the solution procedure descritzd in Chapter 3. The source
strengths, (—U;, - nps) are also known. The potential ép can be further decomposed
as shown below.

ép = ¢* + ¢° (4.3)

where:

midt) = [ e Las)+ [ ole,nTomt)

+ /WD(Aqu)T(o,t)agf;

+f, onsien =) g(e) (4.4

Ps

9G(x,8) (¢
$) 4s(e)

and,

3G(x,E)

2wdP(x,t) = [ (6.0) 45(6) - [ O0x,&)(~Usn - nps) dS(8)

B\T (g 1 9G(%,¢)
4.
+ [, (AFY(0,0)=5 222 s e) (4.5)
It is possible to solve equations (4.4) and (4.4) numerically by discretizing all of the

component and wake surfaces and applying a panel method similar to that used in

Section 3.2. The discretized form of equation (4.5) is shown below:

Npy Mp Nwp Nps

Y aiidl(n)+ D Y WumlB(n) = 3 bow(n) i=1,Npy (4.6)
k=1

Jj=1 m=1 [=1
where:
NDH is the total number of panels on the duct and hub.

Mp is the number of circumferential panels on the duct.
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Nwp is the number of chordwise panels in the duct wake.

Nps is the total number of panels on all of the stator blades and all of the propeller

blades combined.

a;;j is the influence coefficient for the potential induced by a unit dipole distribution

on duct/hub panel j at the control point of duct/hub panel 2

Wi nm is the influence coefficient for the potential induced by a unit dipole distribu-
tion on the I** duct wake panel on the m®* circumferential duct wake strip at

the control point of duct/hub panel i.

b} is the influence coefficient for the potential induced by a unit source distribution

on propeller/stator panel k at the control point of duct/hub panel i

In the remainder of this section, the subscript k& will refer to the index of panels
representing the propeller and stator blades, and the subscripts i and 7 will refer to
index of panels representing the duct and hub. The value of ox(n) represents the

source strength on panel k and is defined as:
or(n) = —Up, (T, Yk, 2k, RAL) - 7oy, (4.7)

These are different from the source strengths, %, used when solving for d-)ps which
include the duct modifications to the inflow. The influence coefficients b, are now

approximated with their far field values.

. A
i, = [ Gds~ 2k 4.8)
k7 s, [1xi — &l (

where Ay is the area of panel k, S; represents the surface of panel k, and ||x; — &,||
is the distance between the control points of propeller/stator panel k and duct/hub
panel i. The effect of this assumption on the duct solution is expected to be small and

will be examined in Section 6.2.2. Substituting this approximation into equation (4.6)
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gives the following expression:

Npu _ Mp Nwp . Nps Ar
Z ai.j¢jB(n) + Z Z W,-‘,',,.,Aqﬁfi(n) E ( | ) k() t=1,Npg
j=1 m=1 [=1 | X; — Ek”

(4.9)
Equation (4.9) can be further decomnposed as the sum of the effects from the source

distributions on each individual propeller and stator panel.

38 (n) = i (85, £,) (Asou(n)) (4.10)
where,
Npu . Mp Nwp . 1
Z ai-i¢b(xj’€k) + Z E I/Vi,l.mA‘ib k(n) 1= I,NDH (4.11)
i=1 m=1 i=1 [l — &4

The value of ¢*(x;,&,) represents the potential on the surface on the duct and hub
surface in the presence of point source of strength 47 located inside the duct at §,.
This is identical to the problems which had to be solved to directly compute the values
the generalized images! Therefore, the value for ¢*(x;, £, ) is equal to G(x, £) where
X = x; and £ = §,. Representative values of G(x, £) are computed on the complete
duct/hub surface for all the source locations inside of the duct required to set up
the Chebyshev polynomial expansion for the image factor. The values of G(x, &) are
obtained by inverting the system of equations formed by equation (3.15). These same
solutions can now be used to set up another Chebyshev polynomial expansion for the
value of ¢® on the surface of the duct and hub.

Equation (4.4) can be broken down in a similar manner in order to obtain @4.

The discretized form of equation (4.4) is:

Npu Mp Nwp Nps prs

Z a; J¢A n)+2 Z mlnA¢A Z a‘: k¢k Z hA¢h i = ]-aNDH
Jj=1 m=1 [=1

(4.12)
where Nwps is the total number of panels used to form the wakes for all of the

propeller and stator blades. The coefficients a}, and W, represent the influence
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from a unit dipole distribution on blade panel k and wake panel h respectively at
the control point of duct/hub panel i. These will be replaced with their far-field

approximations as follows:

, 0 1 - B 1
bk ™ Py (”xi - ‘Ek“) Ae Wi onn (”xi - €h”) An (£.13)

Equation (4.12) is then broken down to obtain the value of ¢4 corresponding to each

individual blade and wake panel.

Nps Nwps

F(n) = z[as (5 ) (i)} + 3 (3,60 (AnAdn(n))]  (419)

where,

Npu Mp Nwp a 1 .
Z al.‘l¢ (x.‘Hek)-i— y Z thmA¢mk(n) ( ) 1= 17NDH
j=1 m=1 =1 [j2c; — &ell
(4.15)
By comparing equation (4.15) with equation (4.11), it follows that ¢°(x, £) is simply
the derivative of @b(x,&) with respect to the location of the point §.

3¢"(x, £)
Ong

$*(x,§) = (4.16)

Therefore, the value of ¢* can also be obtained from the Chebyshev polynomial expan-
sion for ¢°, by differentiating the expansion using the same procedure used to obtain
the derivatives of the image factor in Section 3.4.3. By combining equations (4.1),
(4.11) and (4.15), an expression can be formed for the complete QSD perturbation
potential, qb?SD(n), on duct/hub panel j as shown below:

Nps _
#°0(n) = ¢b+ 2 (8 (ks, £)6(m) + 85, E)on(m) Ax

Nwps

+ Y (% €n) AnDa(n) (4.17)

h=1

The values ¢*(x;,§) and #*(x;,&,) can be thoughe of ag coefficients which represent
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the potential on duct/hub panel j due to the presence of a point source or point dipole
located at the centroid of propeller/stator panel k respectively. These coefficients are
both determined from the Chebyshev polynomial expansion developed for ¢*. The
potential ¢°(x,€) is actually the sum of the generalized image and the potential
induced directly by a point scurce placed at £ for the case where the field point x

coincides with the surface of the duct.

¢(x,€) = Gi(x,€) + G(x, £) (4.18)

On the surface of the duct. ¢°(x, £) can be expressed as a function of four variables.

&b(x7 £) - q'sb(al, "D"’YS‘) RS) (419)

where Xs and Rs are the axial and radial positions of the source point, £, and ¢’ is
the relative angle between x and £. These variables are the same as those used to
expand the image factor in Chapter 3. The variable sp refers to the chordwise arc
length of a point along the surface of the duct from the duct leading edge as shown
schematically in Figure 4-1. By using this variable instead of the axial and radial
position of x, the function can be expressed in terms of four variables instead of five.
Separate expansions are used for ¢® on the inner and outer surfaces of the duct.
The procedure used to set up the Chebyshev polynomial expansion for ¢ is the
same as the procedure used to set up the expansion for the image factor. Currently
this is performed only for ¢* on the duct. The procedure for ¢* on the hub would
be identical and is left for future development. The resulting Chebyshev polynomial

expansion is shown below:

Ny N Ny N,

(0,30, X5, Rs) =3 3 3 > P Tu(0)T; (3) Ty (é5) T (ns) (4.20)

i=0 j=0 k=0 [=0

where 8, £s and 7, are the normalized forms of ¢', Xs, and Rs respectively as defined
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Figure 4-1: Definition of the variable sp.

in Section 3.4.2. 3 is the normalized form of sp and is defined as follows:

Sp

§ = ——
sp(zrg)’

(4.21)
where sp(zrg) is the arc length along the duct from the leading edge of the duct to
the trailing edge of the duct. The value of sp(zrg) will be different depending on
whether the point is on the inner or outer surface of the duct as shown in Figure 4-1.
As was the case for the image factor, separate expansions are established to rep-
resent ¢° in different regions. In this case a total of six regions are used. The domain
is divided with respect to ' and X in the same manner used to divide the domain
when computing the image factor. Separate expansions are also created to compute
#® on the inner and outer surfaces of the duct. A summary of the resulting regions is
shown below.
Region 1: The source point is located inside of the duct, the field point is on the inner

duct surface, and the relative angle between the source and field point is less than
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0sub .

sp is on the inner duct surface
X1 < Xs < Xre
rH(Xs)+ 9 < Rs <rp(Xs)—g

—0aub S o' S oaub (4‘22)

Region 2: The source point is located inside of the duct, the field point is on the inner
duct surface, and the relative angle between the source and field point is greater than

oaub .

sp is on the inner duct surface
X1 £ X5 < Xrg
r(Xs)+9 < Rs <rp(Xs)—g
Opup < 0' < 360° — 0,4 (4.23)

Region 3: The source point is located aft of the duct trailing edge, the field point is
on the inner duct surface, and the relative angle between the source and field point

is less than 6,,.

sp is on the inner duct surface
Xre < Xs < Xw
rH(Xs)+ 9 < Rs < Rpwike — ¢

_oaub S o' S olub (424)

Region 4: Tke source point is located aft of the duct trailing edge, the field point is
on the inner duct surface, and the relative angle between the source and field point

is greater than 6,,s.

sp is on the inner duct surface
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Xre £ Xs £ Xw
TH(Xs)+ 9 < Rs < Rpwake — ¢

osub S ' S 360° — oaub (425)

Region 5: The source point is located inside of the duct and the field point is on the

outer duct surface.

sp is on the outer duct surface
X1 £ Xs < Xrg
rH(Xs)+ 9 < Rs <rp(Xs)—yg
—180° < ¢’ < 180° (4.26)

Region 6: The source point is located aft of the duct trailing edge and the field point

is on the outer duct surface.

sp is on the outer duct surface
Xre < Xs < Xw
rH(Xs)+ 9 < Rs < Rpwake — ¢

—180° < 6’ < 180° (4.27)

Four regions are used for he inner surface of the duct and only two regions for the
outer surface. This is done hecause ¢ varies much more sharply on the inner duct
surface than on the outer duct surface. On the inner surface, Regions 1-4, ¢ is first
divided by the value of the duct simplified image before computing the coefficients
for the expansion. The expansion is then formed in terms of a function G which is

defined below.

_ (%)
G(x,§) = Goin(x,8)’ (4.28)
where
Gsip(x,£) = & ! (4.29)

GEETAE]
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where £/ is the location of the image source used to represent the inner surface of the
duct as an infinite wall as shown in Figure 3-9. The duct simplified image is the same
as the simplified image, Gy, defined in Section 3.3.2, except that here the potential
induced directly by the source in included, and there is no image source used for
the hub. Ggrp is used to smooth out the singular behavior of q-ﬁ"’ which occurs when
the source approaches a point on the duct inner surface. The idea is the same as
that used to smooth out the generalized image using the image factor. This is only
necessary on the inner surface of the duct, and on the outer surface, Regions 5 and 6,
#® is interpolated directly. The outer surface of the duct sees no singular behavior in
#. In addition, it is possible that the simplified image source might fall close to the
duct outer surface, creating a singularity in G when none exists in @¢® for this case.

A separate set of coefficients are computed for each region using the procedure
set forth in Section 3.4.2. After these coefficients are computed they can be used to
compute the potential on the duct for any propeller and stator configuration or inflow
condition. The coefficients are used both to evaluate ¢® and compute its derivatives
for every propeller. stator, and blade wake panel. This is done using the procedure
described in Section 3.4.3. The coefficients ¢® and ¢° only have to be computed for
the first timestep. Equation (4.17) can then be evaluated using the stored values of
dr(n), ok(n), and Agn(n) to obtain ¢?sp(n) at each timestep.

4.2 Correction of Duct Circulation to Account

for Vortex Shedding

4.2.1 Generalized image model in steady vs. unsteady flow

As discussed at the start of this Chapter, the potentials obtained from equation (4.17)
represent the “quasi-steady duct” solution. Since this equation expresses the solution
on the duct in terms of a szries of different steady solutions at each timestep, no
mechanism exists for convecting the vorticity shed at each timestep into wake of the

duct. When the generalized image model was first introduced by Kinnas and Coney
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[27], it was used to accurately model the steady flow past a ducted propeller. For this
steady problem, the duct coordinate system rotates along with the propeller, and the
strength of the dipole sheet representing the vorticity in the duct wake is constant
along the wake strips in the streamwise direction. Therefore, the generalized image
model may be used without modification.

When the values of G are calculated in order to create the Chebyshev expansions
for both the image factor, Z, and the duct potential, ¢*, the problem of the flow past
the duct and hub in the absence of any inflow, but in the presence of an individual
singularity is solved. When solving these problems it is assumed that the strength of
the vorticity in the duct wake varies only circumferentially and does not change in
the streamwise direction. This is acceptable for solving the steady problem. However,
when these same values are applied to the unsteady problem, it will result in a duct
wake sheet which has a different strength at each timestep, but whose strength does
not change in the streamwise direction. In the actual unsteady solution, the duct
will shed vorticity at each timestep. Therefore, the dipole sheet representing the
duct wake will both change at each timestep and vary in the streamwise direction.
The difference between the quasi-steady duct solution and the fully unsteady duct
solution is shown schematically in Figure 4-3. In this chapter the method developed

to account for this difference will be described.

4.3 Two Dimensional Analog Problem

4.3.1 Formulation

In order to study the problem described above and test various solutions, a two
dimensional problem was developed which is analogous to a propeller operating inside
of a duct in a spatially non-uniform inflow. This problem consists of two foils: a
“smaller” foil which represents the propeller and a “larger” foil which represents the
duct. The propeller foil is subject to the steady inflow plus a sinusoidal gust velocity.
The duct foil is subject only the steady inflow, but its loading will still be unsteady
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Figure 4-2: Geometry of Two Dimensional Foils Used to Examine Unsteady Duct
Wake.
due to its interaction with the propeller foil. The geometry of the two foils which
were used along with part of their wakes is shown in Figure 4-2.

‘This should accurately model the aspects of the ducted propeller problem which

are of interest. In the actuai problem of a ducted propeller operating in a spatially

non-uniform inflow, the progeller blade will see a time-varying velocity as it rotates:

through wake. In the absence of the propeller, however, the duct would see a velocity
field which does not vary with time, and the duct loading is unsteady only because
of its interaction with the propeller blades.

This geometry and inflov; condition is solved using two different methods. The
problem is first solved where the strength of the duct wake is constant in the stream-
wise direction. This strengtl. is allowed to change at each timestep, however, and is
set equal to the difference in she potential on the upper and lower trailing edge panels
of the duct foil. In two dimensions, this is equivalent to placing a point vortex at
the trailing edge of the duct foil (there is also a starting vortex infinitely far down-
stream). This case is called the “quasi-steady duct” solution. In the second case,

which is called the “fully unsteady duct” solution, the strength of the first panel of
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Quasi-Steady Solution

Duct

Figure 4-3: Difference between quasi-steady duct and fully unsteady duct solution for
two dimensional analog problem.

the duct foil wake is set equal to the difference in potential at the trailing edge for
current timestep. This value is then convected downstream producing a duct wake
whose strength both changes at each timestep and varies in the sireamwise direction.
In both cases the smaller (propeller) foil is treated as fully unsteady. The geometry of
the wakes are fixed in time. The difference between these two methods is depicted in
Figure 4-3. The question addressed in the following sections is: Can the fully unsteady

duct solution be recovered from the time history of the quasi-steady duct solution?
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4.3.2 Mathematical Formulation

By applying Greens formula in the usual manner, the velocity potential on the foil

surfaces for the quasi-steady duct case, $?5P, will satisfy the following equation:

0G oG 0G
QsD QSD QSD QSD el
490 = [ goPTlas+ - 42905 ds + 090 [ ST ds
+ [ ;’,ﬁf(m t)— as - [ G(~Vi.-7)dS  (4.30)

yroy Sduu +Sprop

where:

e G is the Greens function, which in two dimensions is equal to In R, where R
is the distance between the point of integration and the point at which the

potential is being evaluated.
e Syuc is the surface of the duct foil.
® Wiy is the surface of the wake of the duct foil.
® Sprop is the surface of the propeller foil.
o W,op is the surface of the wake of the propeller foil.
e 7 is the normal vector.
® A@gyuc is the strength of the duct foil wake.
® Adprop is the strength of the propeller foil wake.

o Vi, is the inflow velocity, which includes a sinusoidal gust velocity on the pro-

peller foil.

Notice that the dipole strength in the duct wake, Adgy.:, varies only with time and
can, therefore, be written outside of the integral over the duct wake surface. However,
the strength of the propeller foil wake, A@,qp, varies with both time and streamwise

location and must be included inside of the integral over the propeller wake.
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Using the same procedure, the potential on the foils for the “fully unsteady duct”

case, ¢, satisfies the equation given below:

b = /s ¢5; ds + ¢3—ds+ / Al )28 a

SP"DP du:t
aG End
+ Adprop(T,t ds — G(-V,, -n)dS 4.31
Worop p op(z )5 on SewcetSprop (- ) ( )

Note that the strength of the duct wake, Adguce(z,t), varies both in time and in
the streamwise direction and must, therefore, be included inside of the integral over
the duct wake surface. By subtracting equation (1) from equation (2), we get the
expression for the term which must be added to the “quasi-steady duct” solution
potentials to give the correct potential distribution for the fully unsteady duct case.
This term will be called ¢BF, since it will eventually be expressed as the summation

of a series of “Base Problem” solutions.

¢BP — ¢ _ ¢QSD (432)

| oG oG
4BP = /S 4TSS f - ¢BP dS / . [Aduuc(a, t) — AT (1)] 5 dS
+ / AGER ( )‘gf ds (4.33)

Two of the terms in the expression for ¢BF are often very small and can usually
be ignored, particularly at higher frequencies and when the propeller is not close to
the duct trailing edge. These terms are the integral of the potential on the propeller
foil surface and the integral over the propeller foil wake sheet. For cases where the
propeller is not close to the trailing edge of the duct, the inclusion of these terms is
not expected to have a significant effect on the overall solution for the potential on
the duct surface. This will be better understood in Section 4.3.4. In addition, the
value of #B% on the propeller should be negligible. The expression for the correction

which must be applied to the duct solution then consists of an integral over only the
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duct foil surface and its wake.

0G oG
P [ PS4 [ [Aduale,t) - A1 ) 545 (434)

This is important when extending this method tc three dimensions since in order to
obtain the correction terms cne must solve an equation only over the surface of duct
without including the propeller geomeiry. When equation (4) is used to obtain ¢B7,
the solution will be called the “full base problem” solution. When equation (5) is

used, it will be called the “partial base problem” solution.

4.3.3 Implementation

The correction poiential , 87, may be obtained by discretizing equation (4) or {5) and
solving for ¢B% at each timestep. This is done after the quasi-steady duct solution on
tke foil is obtained for the given timestep, so that ¢?5P and A¢?5P(t) are known. In
addition, at a given timestep, the correction has already been applied at the previous
timesteps, so that the correct fully unsteady values for the duct foil potential and
wake strength, ¢ and A¢(z, ), are known for all timesteps prior to the current one.
For a given timestep, therefore, the difference between the correct fully unsteady duct
wake strength and the quasi-steady duct wake strength, [Adauc(z,t) — Ad3P(2)],
will be known over the entirz wake surface except for the point right at the trailing
edge of the duct foil. At the trailing edge, however, this value is equal to the jump in
potential at the trailing edge of the duct foil, (¢5* — ¢BF), obtained using equation
(4) or (5). This then breaks down to form a system of linear equations which can
be solved ai each timestep using the same procedure which is used to obtain the
quasi-steady duct solution. The terms which must be solved for at each timestep are
shown schematically in Figure 4-4.

The solution to the correction potential, $2F, can easily be decomposed into the
summation of a series of time independent base problem solutions. The base problem
solutions wili only have to be computed once at the first timestep. These solutions are

then stored and used to modify the quasi-steady duct solution at all of the following
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¢QS Exact Unsteady Solution

T
AdJ(SAL
il

¢B

Known from Quasi-Steady History and
Previous Corrections

Unknown

( For solution involving only the duct foil at at=3.)

Figure 4-4: Modification to quasi-steady duct potential on foil required to produce
fully unsteady duct potential.
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timesteps. This process is shown schematically in Figure 4-5. For the partial base
problem solution, only the duct foil geometry is used. The solution for the potential
on the duct foil is obtained for the case where the inflow velocity and the dipole
strength of the wake panels are both set equal to zero, except for one duct wake panel
which has a strength equal to unity. This is repeated for each duct wake panel. On the
first wake panel, a linear dipole distribution is used which is set equal to the jump in
potential on the duct foil at the trailing edge at the left edge of the panel and set equal
to zero at the right edge of the panel. The solution for the correction potential, 2%,
can then be expressed as the summation of these base problem solutions, multiplied
by the difference in the duct wake strength between the fully unsteady duct solution
and the quasi-steady duct solution at the corresponding streainwise location in the
wake as shown in equation (6). The first two base problems must be treated in a
special way in order to handle the linear dipole distribution on the first duct wake

panel.

87 = 90 [A8%0(t) - Ad(e1,1)] + o1 [Ad(er,t) — Adles, )]
+p2 [A895P(6) 2 (Bd(22,8) + Ad(zs, 1)) | + -

+on [A692(6) - 2 (Ad(en,t) + Bdlansn,t))] (4335)

where ¢, is the potential on the duct foil from the base problem solution for the nt"
duct wake panel. The values for ¢, ¢?°P, ¢BF, and ¢, are all solved for the same
grid of duct control points.

The correct value for the vorticity shed by the duct foi! at this timestep is ther
equal to the difference in the jump in the corrected potential, (#2950 4 ¢BF), at the
trailing edge. This can also be obtained by correcting the quasi-steady duct wake
strength directly, using the shed vorticity at the trailing edge from each of the base

problem solutions.

Ad(zo,t) = AP5P(t)+ Do [AG2SD(t) — Ad(zs,t)] + DI% [Ad(z1,t) — Ad(za,t)]
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Figure 4-5: Correction potential expressed in terms of base problem solutions.
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Figure 4-6: The full base problem solution.

+D; [Ag952(t) = 3 (A(a,t) + Ad(es,1))] + -

+Diy [8495218) - 2 (A(om,) + Adlansn, 1) | (4.36)

where D,, is the jump in potential at the trailing edge of the duct foil from the base
problem solution for the n** duct wake panel.

The procedure works the same way for the “full base problem” solution except
that the kinematic boundary condition must also be satisfied on the propeller foil for
each of the base problem solutions. This is shown schematically in Figure 4-6. The
base problems only have to be computed for the duct wake panels. The strength of
the propeller wake panels are set to zero, except for the first propeller wake panel
which has a linear dipole distribution, equal to zero at the right end of the panel
and the potential jump at the trailing edge of the propeller foil at the left end of the

panel.

4.3.4 Results

The flow past the test geometry shown in Figure 4-2 was solved using both the method
producing the quasi-steady duct solution and the fully unsteady duct solution. The
results shown are for a reduced frequency, k£ = 5%, of 4.0, based on the chord length

of the propeller foil, and a gust amplitude equal to 20% of the inflow velocity. The
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quasi-steady duct solutions were then corrected using both the full base problem
solution and the partial base problem solution. Figure 4-7 shows the results for the
lift coefficient on the duct foil over a complete period. The results are compared for
the fully unsteady duct solution, the quasi-steady duct solution, and the quasi-steady
duct solution modified by the partial base problem solution. This shows that there
is a relatively large discreparcy in the lift coefficient obtained from the quasi-steady
duct and fully unstéady duct solutions, and that this discrepancy is nearly eliminated
through the addition of the partial base problem solution. Figure 4-8 shows the same
comparison, except that this time full base problem solution is used to correct the
quasi-steady duct results. In this case the discrepancy between the fully unsteady
duct and quasi-steady duct solutions is completely eliminated by the addition of the
full base problem solution. This was expected, since the full base problem solution
is defined to be difference between the fully unsteady duct and quasi-steady duct
solutions. The partial base problem, however, is generally adequate in accounting for
the vorticity shed by the duct foil. In addition, the partial base problem solution is
more efficient when the procedure is extended to three dimensions, since knowledge
of the propeller geometry is 10t required.

Figure 4-9 shows the results for the Lift coefficient on the propeller foil over one
period. A comparison is given between the fully unsteady duct and quasi-steady duct
solutions and the quasi-steady duct solution corrected with the full base problem
solution. The partial base problem solution will have no effect on the propeller foil,
as in that case the potentials will only be modified on the duct foil. The figure
shows that virtually no discrepancy exists between the lift coefficients on the propeller
foil obtained using the quasi-steady duct and fully unsteady duct solutions. What
little discrepancy does exist is eliminated completely by the addition of the full base

problem solution.

4.3.5 Extension to Three Dimensions

The extension of the method to treat the vorticity shed by the duct in the ducted

propulsor problem has been implemented in a straightforward manner. Currently only
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Figure 4-7: Lift coefficient on duct foil over one period with partial base problem
correction.
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Figure 4-8: Lift coefficient on. duct foil over one period with full base problem correc-
tion.
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Figure 4-9: Lift coefficient cn propeller foil over one period with fuil base problem
correction.
the partial base problem solution is used. By taking advantage of the axisymmetry
of the duct geometry, the base problems have to be solved only for the panels along a
single chordwise duct strip, and the propeller and stator geometries are not involved.
The first several base problems are solved using triangular panels in order to better
represent the direction of the vorticity in the duct wake. It has been found that only
the base problems representing the section of the duct wake corresponding to about
half a propeller revolution have a significant impact on the solution. Therefore, after
this point one additional base problem is us<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>