Shape and Topology Synthesis of Structures
using a Sequential Optimization Algorithm

by
Ashok V. Kumar

M.S., Mechanical Engineering
The University of Michigan
June, 1990

B.Tech., Mechanical Engineering
Indian Institute of Technology
June, 1988

Submitted to the Department of Mechanical Engineering
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy
in Mechanical Engineering

at the

Massachusetts Institute of Technology
September, 1993

© Massachusetts Institute of Technology, 1993, All rights reserved.

Signature of Author

Department of Mechanical Engineering
August 18, 1993

Certified by v E—

i 4~
Professor David C. Gossard
Thesis Supervisor

Accepted by

Ain A. Sonin
Q| T : i
MASSACHUSETTS WSTRUTE - Chairman, Department Committee

NOV 29 1993

[P IRT 1R Tren ey

Shape and Topology Synthesis of Structures using a
Sequential Optimization Algorithm

by
Ashok V. Kumar
Submitted to the Department of Mechanical Engineering
in Partial Fulfillment of the Requirements for the Degree of
Doctor of Philosophy in Mechanical Engineering.
ABSTRACT

In this thesis, a new method is proposed for the design optimization of structural
components where both its shape and topology are optimized. The boundaries of the shape
of the structure are represented using contours of a “shape density” function and the shape
is optimized using a sequential approximate optimization algorithm. The advantage of this
shape representation is that both shape and topology of the structure can be modified and
optimized by the optimization algorithm. In this shape representation, regions where the
density function value is higher than a threshold value are considered to be the interior of
the shape. The contour of the density function corresponding to the threshold value is
defined as the boundary of the shape. The shape density function is defined over a feasible
domain and is represented by a continuous piece-wise interpolation over the finite elements
used for structural analysis. The values of the density function at the nodes serve as the
design variables of the optimization problem. The material properties of the structure are
assumed to depend on the density function. Many approximate material property-density
relations have been studied. The shape and topology of structural components are
optimized with the objective of minimizing the compliance subject to a constraint on the
total mass of the structure. The number of design variables in this optimization problem is
very large and the functions are computationally expensive to evaluate. A sequential
approximate optimization algorithm was developed that is well suited for this application.
The method generates a sequence of sub-problems iteratively using a first order
approximation for the objective function and sets bounds on the variables using the barrier
method. This algorithm uses only the first order derivatives of the objective function and
consiraints and does not require excessive number of function evaluations. The shape
representation and the optimization algorithm proposed here provide a computationally
efficient method for designing optimal structural components.

Thesis Advisor: Professor David C. Gossard

Thesis Committee: Professor Mary C. Boyce
Professor Mark J. Jakiela

Acknowledgments

I wish to express my sincere gratitude to my thesis advisor Professor David C.
Gossard for his support, encouragement and council without which this thesis would not
have been possible. The quality of this research has also greatly benefited from the inputs
and suggestions from Professor Mary C. Boyce and Professor Mark J. Jakiela. I would
like to thank them for their encouragement, help and constructive criticism. Many thanks
are also due to Professor Richard Garrett for his interest in my work and his advice in

furthering my career.

This research was supported by Ford Motor Company. Their financial support is
sincerely appreciated. I would also like to express my appreciation to the Computer-Aided
Design Laboratory at MIT for providing excellent technical facilities and an environment

conducive to research.

My life at MIT was greatly enriched by friends at the CADLAB. I have greatly
benefited from discussions with George Celnicker, Kenji Shimada, Barbara Balents, Lian
Fang, David Wallace, Jayaraman Krishnasamy, Colin Chapman, Minho Chang and many
other friends at MIT.

Finally, I would like to thank my parents for their love and encouragement and for
instilling in me the drive and motivation that made this work possible.

Table of Contents

PN o1 ¢ APPSR PRSP 3
ACKNOWIEAZEIMENTeeeetii it 5
Table Of CONLENLS ... veetietet ettt e e et ettt e e et et e e e s e s e aaaaans 7
List Of FIgUIeS...oceuiiii i 9

| T o) 115 [T TP 11

NOMENCIAUTIE. ... et aas 12

JIB £11E (s L1 Tot £ 1) | R TSSO 15

1.1. Goals and MoOtiVation...........ooeeieiiiiiiiiiiiiiiii e 15

1.2. Design OptimiZationccoeveiiieiuiniiiiiiie e 19

1.3. Structural SynthesiS.........ccoooiiiiiiiiiiiiiiiiii 21

1.4. Problem Statemento.eeiuiiiiiieiiiiiiiiiiii i, 23

1.5. Scope of WOrKcovinini 24

2. Previous Work in Structural Optimization..............c.ooiiiiiiiiiiiiiiiie, 27

2. L. OVEIVIEW . ettt ettt ettt ettt ae et e e naeeeneeenas 27

2.2. Structural AnalysiS.......ocovviuiiiiiiiiiiiiii 28

2.2.1. The Finite Element Method...............c.ccooiiiiiiii, 29

2.2.2. Sensitivity AnalysiSoovviiniiiiiiiiiiiiii 31

2.3. Structural OptimizZationo.oviuiuiniiiiii e 34

2.3.1. Sizing Optimization..........cccccoeruiiiiuiiiiiiiiiiiiiiiiiiiein 34

Trusses and Framesc.cooooiiiiiiiiiiiiiiiiiiinn, 34

PlaeS ...ttt 36

2.3.2. Shape OptimiZation............oouiiiiiiiiiiiiiiieeeeae, 36

Parametric Variables.............c.cooiiiiiiiiiiiiii 37

Boundary Variation............ccooveviiiiiiiiiiiiin 37

Technical difficulties...........ccocoviiiiiiiinii . 40

2.3.3. Topology OptimiZatiOn........ccceeeirriiiiiieniiiiiiiiiiennnenienannnn. 41

Topology Design of Trussescooeoeiiiiiiiiiiin, 41

Homogenization Method................c.ooo 42

Binary Indicator Particles.....................coo 46

2.3.4. Design Objectives and Constraintscccoeiiiiiiiinnn.n. 46

2.4. Optimization algorithmscooiiiiiiii 48

2.4.1. Historical Perspectivecoooiiiiiiiiiiiiiii, 49

2.4.2. Optimality Criteria Methodscoons 50

2.4.3. Mathematical Programming Algorithms 51

3. Shape and Topology Optimization.........cccccoeeeiiimiiiimiiiiiiiiiiiiiee e 57
I B0 175 77 1= P 5

3.2. Shape density function representation..............cooeieviiiiinininiiinenen.n. 58

3.3. Optimization objective and CONSraints...........ccoecieiniiiinnininiicennnee. 60

3.4. Material property variation with density.....................cL 62

3.4.1. Linear approximate relation..........c.cooeeeeieiiiiiiiiiiiiiiiiinnn.n. 63

3.4.2. Quadratic and higher order approximations 65

3.5. "nplementation using Finite Element Methodo. 67

3.6. Sensitivity evaluationcooeiiiiiiiiiiii 69

4. A Sequential Approximate Optimization Techniquecol. 73
A1 OVEIVIEW .ottt e e e e 73
4.2. Sequential Optimization Algorithmso, 75
4.2.1. Sequential Linear Programming (SLP)ol . 77
4.2.2. Convex Linearization (CONLIN).......cccooevviiiiiiiiiiniiiinnnnns 78
4.2.3. Method of Moving Asymptotes (MMA)cccoeiiiiinian.... 79
4.3. Moving Barrier Sequential Linear Programming (MBSLP) 80
4.3.1. Subproblem definitionccciiis 80
4.3.2. The dual of the subproblemc.oooiiiiin.s, 82
4.3.3. SOIUtiON StTALEZY .. euuvnenet ettt eneaaaas 82
4.3.4. Criteria for moving the barriers..................cooeveiiiiinnn.L. 85
4.4. Finding an initial feasible point.................coooiiiiii 88
4.5. Extending MBSLP to handle nonlinear constraints............................. 91
4.6, SUMIMATYottt te et et e e e e ea e e ereaneeanenens 96
5. Implementation.ccooiiiiiiiiiiiiiiii e ea 99
5.1 OVEIVIEW ..t 99
5.2. Shape and Topology Optimization AlgorithmclL Ll 99
5.2.1. Design problem specification (Pre-processor) 99
5.2.2. Description of the algorithm..................coooviiiiiiine, 104
5.2.3. Displaying the results (POSt-processor)............cvceeveeeenennnn.. 109
S.3.MBSLP Algorithm........cooiiiii 110
6. Results and DISCUSSIONSueinininitiiteieieiiet ettt ee e e ereneaenaaas 119
6.1 OVEIVIEW ...ttt et et e e e e e e aeanaaan 119
6.2 Examples using MBSLP algorithm...............coooiiiiiiiiiiiiic i 119
6.3. Shape and topology synthesis of structures............ccccoeeeureeereesunnnnnnn. 123
6.4. Summary and diSCUSSION.........coeeivivuiriiiiiiiiiiieeiiieeeiiee e eeaies 135
T CONCIUSION ...uiniiit e e ettt 139
7.1. Thesis SUMMATYoociuiiiiiiiiii it e e eeaaaans 139
7.2, ConClUSIONS....iiiiiiiii i 141
7.3. Future DIreCtioNS....c.ouiuieniniiitii i 143
APPENAIX et e e 145
L DefINItiONSev et e 145
Local maxima and minimac..eeieiiiniiiiniiienierineiieannanannn. 145
Descent dir€CtON.o.viviniiiie i 146
Convex sets and functions............coeveiiiiiiiiiiiiiiinie e, 146
2. Kuhn-Tucker criteria for optimalitycocooiiiiiiiiiiiiii 148
3. Dual problems.......ccooouiiiiiiiiiiiii 149

| 3 {5 (5 1 &= 151

List of Figures

Figure 1.1. Stages of the design proCesscoevuiuiiiiiiiiiiiiiiiiiiiieieceeeae, 10
Figure 1.2. Shape versus topology Optimization........ccccccccceciiceievieeieireeeeeennenn.. 11
Figure 1.3. Structural optimizZation OVEIVIEWcccitiiieiiiiiiiiiiiiieaiiiaana, 15
Figure 1.4. Boundary value problem in elasticity.........ccccooiiiiiiiiininnininnnenn.. 16
Figure 2.1. Planar structure with applied loads and boundary conditions................... 23
Figure 2.2. Truss with applied loads and boundary conditions.............................. 29
Figure 2.3. 39 bar truss (Adapted from Moris_82)......ccccociriiiieiiiiiiiciiiiinnne. 30
Figure 2.4. Parametric design variables........c.cccccoiiiiiiiiiiiiiiiiiiiiiceiieeeee 31
Figure 2.5 Example of shape optimization (Adapted from Yang 86)....................... 32
Figure 2.6. Design element CONCEPL.......c.uiiiiniimeiiaiieaeiieeieeeeeneeeeeanaaenanas 33
Figure 2.7. Design element with b-spline control points as design variables............... 33
Figure 2.8. Design domain and applied 1oads....................ooooiiiiiiiiiii i, 37
Figure 2.9.(a) A unit cell....ooo e 38
Figure 2.9.(b) Unit cell orientationinaelementc.cooiiiiiiiiiiiiiiniiinnnnn.... 38
Figure 2.10. Material property as a function of density.....................cooeiiiiiin.n. 38
Figure 2.8. Rectangular hole and Rank-2 microstructures...........ccccceeeeenvierennne... 39
Figure 2.12. Classification of algorithms used for structural optimization 43
Figure 2.13. Classification of algorithms used in structural optimization................... 46
Figure 2.14. Oscillating behavior of steepest descent algorithm 47
Figure 3.1. Shape representation using shape density function.............................. 52
Figure 3.2. Triangulated feasible region ..., 53
Figure 3.3. Triangular element.............ooo e 54
Figure 3.4. Material property coefficients versus density function.......................... 59
Figure 4.1. Objective function of the subproblem for one-dimensional case............... 76
Figure 4.2. Resetting the move imitS...........ocooiiiiiiiiiiiii e, 80
Figure 4.3. Failure of resetting criterion for nonconvex functions 81
Figure 4.4. Finding a feasible point (1D case)...........cooooiiiiiiiiii . 84
Figure 4.5. Finding a feasible point (3D illustrative example)c.ooll. 85
Figure 5.1. Design problem specification............cccoooiiiiiiiiiiiiiiiiiiiiiiiiiiieeneeenens 94
Figure 5.2. Max-Min angle Criterionoooiiiiiiiiiii e 96
Figure 5.3. Circle Criterioncooiiiiiiiiiiiiiiiii e 96
Figure 5.4. A model generated by the preprocessor.c.cooviiiiiiiiiiininiieennn.. 98

Figure 5.5. OPT algorithm (Material removal in Steps)cccevvveniiiiiiineininn.... 100
Figure 5.6. OPT algorithmcoiiiiiii e 102
Figure 5.7. Fringes of shape density function L. 104
Figure 5.8. MBSLP algorithm 106
Figure 5.9. Algorithm to compute a descent direction.........ccecoeeevreeireeneennennee.. 108
Figure 5.10. Finding a feasible point...........cccoooooiiiiiiiiiiiiiiiiiiiiiiieeeeeenn. 111
Figure 6.1. Contours of the function f(x1,x2) (Example 6.2.1)............................. 115
Figure 6.2. Design space and constraints (Example 6.2.3)...........c..ccooevvunnennen... 116
Figure 6.3. Optimal geometry (Example 6.3.1).....cccoiviiiiriiiiiiiiiiiiiiceeeeeee, 118
Figure 6.4. Two bar frame SIructurecoooiiiiiiiiiiiiiii e, 119
Figure 6.5. Two bar frame (Weight reduction in steps)..........ccccceeeveveviicreeneenn... 120
Figure 6.6. Two bar frame (Quadratic dij(f) relation)oooiiil. 121
Figure 0.7. Optimal SUPPOIt StIUCIUTEt itiie et e e, 122
Figure 6.8.(a) No penalty on intermediate densitiesooiieineio. ... 123
Figure 6.8.(b) With penalty on intermediate densitieS...........ccceeeveuuuueuerevereennnnn... 123
Figure 6.9. Optimal L-shaped support Structurecooviiiiiiiiiiiiiieieenenn.. 124
Figure 6.10.(a) 4th order material property density relation.................................. 125
Figure 6.10.(b) With penalty on intermediate densities....................ccooiiiiinnnen. 125
Figure 6.11.(a) 70% material removed.........cccoeeveeiiiiiiiiiiiiiiiiiiiiee e 126
Figure 6.11.(b) 80% material removed ...t 126
Figure 6.12. Bridge-like frame (70% Material removal)....................occooin . 127
Figure 6.13. Michell’s truss (80% Material removal)ooL. 128
Figure 6.'4. Bicycle frame (70% material removal)..........c.c.cooeuvvivnenrneeeernannn.... 129
Figure A.1. Unconstrained Optmacoooviiiiiiiiiniiiiiiiiiees e, 140
Figure A.2. Property of a convex function..............c.ooooiiiiiiiiiiii i, 141

Figure A.3. Property of differentiable convex function....................................... 142

List of Tables

Table 6.1. Unconstrained optimization (Example 6.2.1) ...,
Table 6.2. Quadratic program iterations (Example 6.2.2) ...,

Table 6.3. Nonlinear inequality constraints (Example 6.2.3)c.oini.

11

¢

i

Oth

L, i=1,2,3
A

L(u)

A%

Wo

XL Yi

()
H™(Q)
X.{Xi}

P ok

u,{ux,uy}
c.{c}
&,{€}

(D]

[Dy]

[D;]

Nomenclature

Shape representation

Shape density function

Value of shape density function at the ith node

Threshold value corresponding to shape boundary

Area coordinates or linear interpolation functions for triangles
Area of each triangular finite element

Compliance of the structure

Weight / Volume of the structure

Maximum allowed weight for the structure

Nodal coordinates of node i in the finite element mesh

Finite element analysis

Function whose partial derivatives of order upto m are continuous in 2.
Sobolev space of order m

Spatial coordinates for the current (/fmodified) shape

Spatial coordinates for the initial shape

Current domain of structural analysis (after shape change)

Initial domain of structural analysis

The domain of one element of the finite element mesh

Boundary of the structural domain

Part of the boundary on which displacement boundary conditions are
specified

Part of the boundary on which extemal traction is acting

Traction acting on the boundary I't

Body force acting on the structure

Displacement vector field

Stress field

Strain field

Elasticity matrix for plane stress - plane strain

Elasticity matrix with linear approximate dependence on density function
Elasticity matrix with it order dependence on density function

12

g g

Up
{e°}
{u;}
[B]

K, [K]
[Kel

13

Virtual displacement vector field

Virtual strain field

Number of degrees of freedom in the finite element analysis model
Discrete representation of the displacement field

Strain within a constant strain element ‘e’.

Displacements associated with nodes of the element ‘e’.
Coefficient matrix for strain-displacement relation for constrain strain
triangular finite elements

Global stiffness matrix

Eiement stiffness matrix

Resultant external force vector

Adjoint variables for sensitivity analysis

Transformation from the initial shape to the modified shape
Design velocity with respect to the ith design variable

Stiffness matrix or differential operator for composite material
Homogenized stifness matrix for composite material

Void dimensions in the microstructure for homogenization method
Microstructure orientation for homogenization method

Young’s Modulus of Elasticity

Poisson’s ratio

Nonlinear programming

n
m
r

X;, XeR"

f(x)

h(x)
g(x)
{1i}, 1
{ui}, u
{1y}, Ik
{uf}, uk
Fr(x)
Fi(y)

Number of design variables

Number of equality constraints

Number of inequality constraints

Design variables, vector of design variables
Value of the design variables at the ky, iteration
Objective function, f:R" - R

Equality constraint functions, h:R" = R™
Inequality constraint functions, g:R" — R’
Lower bounds on the variables

Upper bounds on the variables

Lower move limits on the variables

Upper move limits on the variables

Linear approximation of a function f(x)
Function f(x) linearized with respect to intermediate variables y

14

Fr(x) Function f(x) linearized with respect to reciprocal variables
Fe(x) Conservative approximation of a function f(x)

Introduction

1.1. Goals and Motivation

Shape and topology optimization involves the application of design optimization
techniques to synthesize mechanical components so that a certain property of the
component is optimized subject to some performance constraints. V'hen either this property
or the performance constraints relate to the structural properties of the component, it is
referred to as structural optimization.

Structural optimization automates synthesis of mechanical components whose primary
function is to provide structural support. As opposed to analysis, where a given design’s
performance is evaluated by simulating its mathematical model, synthesis involves
searching among many feasible designs to arrive at one that best satisfies a certain design
goal. Therefore, synthesis involves repeated analysis in search of better designs. Like most
design problems, structural design involves many design goals and criteria {also referred to
as the functional requirements). It is often impossible to account for all the design goals or
criteria simultaneously. Just as one constructs a model for analysis by neglecting all but the
most important phenomena, design optimization problems for synthesis should ideally
consider only the most important design criteria. It is common practice to state the more
critical criteria as design constraints and select one criteria as the design o' >ctive that is to
be optimized.

The design process has been decomposed into various stages or phases [Shigley_83,
Kirsch_81]. The commonly identified phases are: recognition of need and definition of
problem, that is, the formulation of the functional requirements; conceptual design; design
optimization; and detailing. In the context of structural design, the functional requirements
could include the loads to be supported by the structure, the location and type of supports
on the structure, a limit on the weight of the structure. etc. Conceptual design is usually
associated with the creative part of the design where the designer uses his ingenuity and

15

16 Chapter 1. Introduction

engineering judgment to select the “type” of the design. For example, the overall topology
of the structure, the type of the structure (truss, frame or plate etc.), the material etc. Design
optimization, as stated earlier, involves repeated design analysis to find the optimal design
among the many that satisfy the functional requirements. This optimization is often
automated using computational techniques. Finally, in the detailing stage, details that relate
to tolerance, manufacturing specifications, aesthetics, eic. are added. Figure 1.1 gives a
schematic representation of the design process.

Formulate functional
requirements < 1

Y

Conceptual Design

v

Design Analysis and
Optimization iterations

’

Detail Design

Figure 1.1. Stages of the design process

Design is iterative at each phase as illustrated in figure 1.1. At the conceptual stage
many alternatives or design concepts are generated. Each such concept or design type may
be expressed in terms of design parameters and the optimal values of these parameters may
be found iteratively. In structural design, the topology generation for the structure is
traditionally associated with the conceptual phase of design [Kirsch_81]. The designer may
consider many alternative topologies iteratively. During the optimization stage, the topoiogy
is fixed and only certain parameters such as the cross-section of the elements of 4 <uss or
parzmcters describing the boundary of the geometry are varied. This type of approach may
yield sub-opiimal zhapes due to the inability of the approach to modify the ionulogy (or the
layout) during the ojiimization. As a result, the optimal shape predicted by such
optimization techniques depends 6 the initial zucsa. If the luitial starting shape selected by
the designer at the conceptual stage, does not have the optimal topology, the final shape
computed by such an approach will be sub-optimal. The truly optimal shape may require

1.1 Goals and motivation 17

the creation of one or more new boundaries to change the topology of the component being
designed. This is illustrated in figure 1.2.

tt M

Initial
design

Feasible
region

LAY,

it

VY
L/\::m:y \O /

TLT
Shape optimization Shape and topology optimization

Figure 1.2. Shape versus topology optimization

Starting from an initial rectangular shape, the shape on the left in figure 1.2 is obtained
by varying just two of the boundaries. While this shape has a better strength to weight ratio
than the starting rectangular shape, even better results may be obtained by creating a new
variable boundary. The shape on the right is obtained by adding a new boundary to create a
hole, thereby removing some under-utilized material from the center of geometry to get an
even better strength to weight ratio. Conventional techniques of shape optimization that use
parametric curve or surface boundaries have difficulty in identifying regions where it is
beneficial to create a new boundary and it is cumbersome to keep track of newly added
boundaries and the associated variables.

Combined shape and topology optimization needs a more flexible geometry
representation that allows the topology to change during the optimization. The principal
advantage is that the designer then does not have to guess the optimal topology or specify
the variable boundaries. Instead, the designer specifies a feasible region within which the

18 Chapter 1. Introduction

component has to fit as well as the support locations (boundary conditions) and the applied
loads. The topology generation can thus be automated as part of the design optimization

process.

Structural optimization problems often take into account some important design
constraints such as weight constraints, assembly and packaging constraints etc. However,
it is cumbersome to account for all design criteria (such as cost, economic factors,
manufacturing, aesthetics etc.) simultaneously. The primary application of shape and
topology optimization of structures may be to provide guidance to designers of structural
components at the conceptual stage of design to select an optimal shape and topology based
mostly on structural requirements. This design can then be modified at the detailing stage to
account for manufacturing, aesthetic and other design criteria. By moving the design
optimization iterations to an earlier (conceptual) stage in design, the designer can search a
larger design domain and often avoid major modifications during the later stages when the
cost of design modifications are higher. Modifications after the detailing stage can be very
expensive and therefore design iterations shown by the loops on the right in figure 1.1 are
to be avoided.

The objective of this research is to develop computationally efficient tools for structural
optimization that enable the design of optimal shape and topology for mechanical
components. The two primary goals of the research were to seek efficient shape
representation schemes that enable both shape and topology variation and to develop
optimization algorithms particularly suited for structural optimization. The major
requirement of the shape representation scheme is that it allow shape variation not only by
varying existing boundaries, but also by creating new boundaries to enable topology
variation. Some important criteria for an optimization algorithm suited for structural
optimization are that it should not require too many design analysis, should be able to
handle large number of variables, should have a good convergence rate etc.

Shape optimization has been applied tc the design of trusses, frames and shell
structures as well as a variety of support structures that may be loaded in the plane or in
three-dimensions. In this work, we model piane stress / plane strain loading situations so
that designers can optimize the shape and topology of planar structures. The methods and
algorithms developed in this thesis may be extended to shell structures and three-
dimensional structures as well.

1.1 Goals and motivation 19

Progress in structural optimization research has paralleled progress in structural
analysis methods. Since analysis is a prerequisite for structural optimization, development
of sophisticated general purpose structural analysis tools have contributed to the
development of more useful and powerful structural optimization techniques. Much of the
early research in structural optimization was motivated by the need in aircraft and aerospace
design applications to design light weight structures. This led to the development of
methods for designing optimal trusses and frames and subsequently to the development of
more general shape optimization techniques. Optimal design is becoming increasingly
important in the automobile industry as standards for fuel economy get stricter. Most
commercially available structural analysis tools now also include simple optimization
capabilities. It is expected that very general shape and topology optimization techniques
would become part of the design cycle of automobile panels and structural members in the
future, just as the use of computational analysis techniques have become standard practice
over the last two decades.

1.2. Design Optimization

Design optimization involves seeking the best design among a family of designs
described using some parametrization. The parameters that are varied to obtain different
members of the family (or design space) are referred to as the design variables. The designs
in the design space are evaluated by some measure of performance. This criteria for
determining the relative merit of the designs is referred to as the design objective. The
design objective is described as a function of the design variables. This function is called
the objective function in the optimization literature. In mechanical design applications, such
functions are often non-trivial and the evaluation of these functions requires some kind of
design analysis. Each design variable can vary within a range. The bounds on the variables
that define this feasible range are referred to as the side constraints. These bounds are set to
eliminate designs that may be infeasible from engineering considerations. In addition to the
side constraints there may be several functional requirements represented as design
consiraints that must be satisfied by all valid designs. In a design optimization problem
statement, these design constraints are expressed as functions of the design variables.
These design constraint functions are also often nonlinear and may require numerical
simulation to evaluate. The set of all the points in the parameter or design variable space
that lead to valid designs is called the feasible design domain..

A design optimization problem such as structural optimization can be stated as follows:

20 Chapter 1. Introduction

Minimize (or Maximize): Design objective
subject to :

Design constraints

Side constraints on the variables.

The design objective and constraints are expressed as functions of the design variables.
The design objective (or objective function) is often a nonlinear function in the mechanical
and structural design context. We shall denote the objective function as f(x), where x is the
vector of design variabies of dimension n, x € R". The design constraints may be equality
or inequality functions of the design variables. We shall denote equality constraints as
h(x) =0, h:R" — R" to represent m equality constraints and the inequality constraints as
g(x)<0, g:R" - R’ to represent r inequality constraints. These functions may be linear
or nonlinear. Those inequality constraints that are satisfied as an equality at the optimal
solution are called active constraints. Those that are not satisfied as an equality are passive
constraints and are essentially redundant constraint in the sense that removing them from
the problem statement will not change the optimal solution. Ideally one would like to
identify all the active constraints among the inequality constraints and eliminate all passive
constraints. However, in most practical optimization problem it is not possible to predict
which constraints are active without knowing the optimal solution, especially when there
are a large number of inequality constraints. When the objective functicn and all the
constraints are linear functions of the design variables, the optimization is referred to as a
linear programming problem. If either the objective function or any of the constraints are
nonlinear functions then the optimization is a nonlinear programming problem. Using the
above notation a general optimization method may be stated as:

min f(x)

subject to :
h(x)=0, g(x)<0
L <x, <y

(1.2.1)

Many algorithms exist to solve linear and nonlinear programming problems. Such
optimization problems arise in a variety of fields so that linear and nonlinear programming
techniques have a wide range of applicability. Accordingly, the literature is vast and
innumerable algorithms have been proposed to solve these problems. The algorithm that is
best suited to solve a particular optimization problem depends on the nature of the objective
and constraint functions. A good review of nonlinear programming algorithms used in
structural optimization has been compiled by Morris (Morris_82) and Haftka and Gurdal

1.2 Design Optimization 21

(Haftka_92). In chapter 2, nonlinear programming algorithms have been classified in terms
of their applicability to structural optimization problems. Brief descriptions of the
algorithms are also given in this chapter.

1.3. Structural Synthesis

Structural optimization involves optimizing an objective function (often a structural
property) while satisfying structural and other design constraints. Typical objectives for
structural design are to improve the strength to weight ratio or to maximize stiffness. The
functions involved are often nonlinear leading to a nonlinear programming problem. An
optimization algorithm is used to solve the problem. The optimization algorithm iteratively
modifies the shape and searches for feasible designs that better satisfy the stated objective.

Structural

optimization

Structural
Analysis

Geometric

Modeling Optimization E¥

Non-linear §¥
programming B3
algorithm |

Density
function
contour

Finite clement
analysis

Figure 1.3. Structural optimization-overview

Shape synthesis for structural components, when stated as an optimization problem,
has three requirements. It needs a geometric modeling tool to represent the shape, a
structural analysis tool and an optimization algorithm, as illustrated in figure 1.3. The
geometry of the structure is the variable of the design optimization. The shape
representation technique used depends on the kind of geometric variation desired.
Structural optimization techniques can be classified on the basis of the type of design
variables used to describe the geometry. The objective and the design constraints have to be
expressed as functions of these design variables.

The optimization algorithm searches for the optimal value of these design variables. It
evaluates the design at each iteration by evaluating the objective and constraint functions

22 Chapter 1. Introduction

and then determines how much to change the design variables (that is, modify the
geometry). For simple structural design problems, it is often possible to derive analytical
relations for the objectives or constraints as functions of design variables. However, most
2D and 3D structural optimization requires general purpose numerical analysis techniques
such as the finite element method. Alternately, some researchers have used boundary
element method (BEM) for structural analysis. However, these numerical methods are
computationally intensive and hence function evaluation is expensive for structural
optimization problems. Therefore, for this application, optimization algorithms that require
very few function evaluations are desirable.

For a given geometry of the structure with applied loads and boundary conditions, the
structural behavior can be expressed as a boundary value problem in elasticity. The shape
of the structure is the domain of structural analysis and is denoted by Q. The boundary of
this domain is denoted by I". The part of the boundary that is fixed or supported is denoted
by I', and the part on which external forces or traction acts is denoted by TI',. This notation
is illustrated in figure 1.4. The response of the structure under the action of these loads and
boundary conditions can be obtained by solving the equilibrium equations and compatibility
equations together with the linear elastic constitutive equations that describe the behavior of
the material. The response of structures with arbitrarily complex geometry Q under the
application of design loads can be solved using numerical methods such as the finite

element method.

Figure 1.4. Boundary value problem in elasticity

The geometry of the structure 2, is the variable for structural optimization. This
geometry is parameterized so that it varies as a function of a set of design variables. The
functions describing structural behavior such as the deflection of the structure due to loads,

1.3 Structural Synthesis 23

the internal energy absorbzsd by the structure, etc. are functions of these design variables
describing the geometry. When the design variables and therefore the geometry of the
structure are modified, such functions would also get modified. For example, when the
cross-sectional area of a bar is reduced, it would deflect more under a given tensile load.
Sensitivity analysis techniques can be used to evaluate the sensitivity of the function f with
respect to the design variables, such as the gradient vector Vf, which is the vector of first
partial derivatives of the function with respect to the design variables. The matrix of second
partial derivatives of the function with respect to the design variables is called the hessian
matrix, denoted as V*f. Most optimization algorithms need to evaluate the sensitivity of the
structural behavior with respect to these variables. When the number of design variables is
very large, the hessian matrix becomes large, requiring a large amount of storage and
expensive computation to assemble and use. Therefore, optimization algorithms that do not
require the hessian matrix are preferred for structural optimization.

Based on the type of geometric variation allowed, structural optimization has been
broadly classified into sizing, shape and topology optimization. A detailed survey of
literature on sizing and shape optimization was documented by Haftka and Grandhi
[Haftka_86].

Sizing optimization is applicable to the design of trusses, frames and membranes. The
variables of the design are the cross-sectional areas of truss elements, thickness of
membranes, etc. Here the layout of the truss and the shape of the membrane are not

allowed to change.

Unlike sizing problems, shape optimization involves a change in the shape or the
domain Q of the structural analysis. Certain boundaries are specified as variable and
defined using a parametric representation such as Bezier or B-Spline interpolation. The
optimization algorithm modifies the shape by varying the shape of these boundaries.

Topology optimization involves geometric variation of a component, not only by
boundary variation, but also by changing its layout by creating internal holes and therefore
new boundaries. Topology variation allows global optimization of shape so that the final
shape does not depend on the initial guess.

24 Chapter 1. Introduction

1.4. Problem Statement

The primary design goals of the structural design problem in this work are to maximize
stiffness and minimize weight of a mechanical component while avoiding interference. To
achieve this goal the objective and the constraints of the optimization problem are stated as :

Maximize Stiffness (or Minimize Strain Energy absorbed)
subject to :
Weight of structure < Wo

The final shape of the component is also constrained to lie within a feasible region to
avoid interference or spatial conflict with other parts with which it must be assembled. The
shape is modified by the optimization algorithm by removing material from regions where
material is under-utilized (i.e., not fully loaded) so that the final shape is a structure of
maximum stiffness for the given weight. The stiffness of the structure can be maximized by
minimizing the strain energy absorbed by the structure under the applied loads. The strain
energy absorbed by the structure is a measure of the compliance of the structure since
structures that are more compliant absorb more energy under a given load. Stiffer structures
deform less under the application of load and hence absorb lesser energy. Therefore, a
structure that has the minimum compliance deflects the least under a given load and hence
are the stiffest. Details of the formulation of the objective and constraints are described in
chapter 3.

1.5. Scope of Work

In this thesis, a methodology is described for the design of structurally optimal
mechanical components. A new shape representation has been developed and used for
structural optimization that allows both shape and topology variation. The optimization is
carried out using a novel sequential approximation technique for nonlinear programming.

Chapter 2 gives a survey of the structural optimization literature. Section 2.2 briefly
summarizes structural analysis using the finite element method as well as sensitivity
analysis techniques to evaluate the gradient of the structural properties with respect to
design variables. In section 2.3, the structural optimization problem is broadly classified
into sizing, shape and topology optimization and the differences between them are
summarized. Section 2.4 provides a classification of the nonlinear programming algorithms

1.4 Problem Statement 25

and describes some algorithms that have been used for structural optimization and their

computational implications.

The structural optimization problem statement is defined in Chapter 3. Section 3.2
describes the shape representation scheme we use and how it differs from some of the other
popular techniques. The objective function and the constraints are described in section 3.3.
The structural properties of the component are related to shape density function by
assuming a relation between the material properties and the density function. This relation
is described in section 3.4. In section 3.5, the implementation of the compliance
minimization problem using finite element method is described. Section 3.6 gives a
derivation of the gradient of the compliance with respect to the design variables.

Chapter 4 describes the nonlinear programming algorithm used to solve the structural
optimization problem. Section 4.2 of this chapter is an overview of the philosophy of
sequential approximate optimization algorithms along with a brief summary of some of the
popular algorithms in this class that have been proposed for structural optimization. The
algorithm used in this thesis will be referred to as the moving barrier sequential linear
programming (or MBSLP) and in section 4.3 we describe its application to optimization
problems that have only linear constraints. In section 4.4, a technique for determining an
initial feasible point for the optimization problem is described. The algorithm has been
extended to solve optimization problems with nonlinear constraints in section 4.5.

Details of the implementation of the shape and topology optimization software is
described in chapter 5. Section 5.2 describes the shape and topology optimization algorithm
and its implementation. The implementation of the sequential approximate optimization
algorithm used in this thesis is described in section 5.3.

Chapter 6 contains examples illustrating the application of the algorithms developed in
this thesis. The optimization algorithm has been applied to many nonlinear programming
problems in section 6.2 to test its performance. Section 6.3 gives some examples and
applications of the shape and topology optimization algorithm to design optimal structures.

Chapter 7 is the concluding chapter that gives a summary of the thesis as well as

recommendations for future work.

Previous Work in

Structural Optimization

2.1. Overview

In structural optimization the variable of the design is the geometry of the structure. The
geometry or shape of the structure is parameterized to enable the required geometric
variation. These parameters are the design variables of the problem. Many different design
objectives and constraints have been used ir. structural optimization problems. The most
common examples are to minimize the weight of the structure subject to constraints on the
stress or maximize stiffness subject to constraints on weight.

Early work in structural synthesis involved the design of the cross-sectional areas of
truss and frame members [Kirsch_81, Morris_82, Topping_83]. The design variables are
the cross-sectional areas of the members of the truss or frame. Such problems are relatively
easy since the number of variables are small and the analysis of these structures very
inexpensive. A similar application is the design of optimal plates wherc the thickness is
variable. In this case finite element analysis is used to analyze the structural properties. The
design variables are the thickness of each plate element.

Significant progress in structural optimization occurred with the introduction of
boundary variation [Briabant_84, Haftka_86]. In this case, the shape is parameterized such
that its boundaries vary with these parameters. Examples of this situation are when the
radius of a circular hole or the width of a rectangular hole is treated as the design variable or
when Bezier or B-spline curves are used to parametrize the boundary. In this case, the
number of design variables may be small, however, when firite element analysis is used to
analyze the structure, the change in shape implies the need for recreating the mesh at each

iteration.

Shape optimization by boundary variation does not always lead to truly optimal
designs. The parametrization allows the variation of certain boundaries, but does not allow

27

28 Chapter 2. Previous Work in Structural Optimization

the creation of new boundaries. As a result the topology of the geometry does not change
during the optimization process and if the designer does not correctly guess the optimal
topology for the initial geometry, sub-optimal shapes are obtained. The techniques that
have been developed for topology optimization treat the material as a composite or a porous
material [Kohn_86, Bendsoe_88]. The optimization problem then involves solving for the
optimal pore distribution (or equivalently the optimal material distribution). These
techniques use homogenization techniques to determine the material properties of the
porous material. Topology optimization problems usually require a large number of design
variables to characterize the distribution of pores.

Nonlinear programming algorithms are used to compute the optimal solution of the
structural optimization problem. In the design of trusses and frames, where the analysis
involved is inexpensive, most nonlinear programming algorithms perform well. However
for the design of general 2D and 3D structures, costly numerical methods are required for
structural analysis. Therefore, algorithms that tend to use fewer function and gradient
evaluations have been favored in structural optimization. Sequential approximation
algorithms typically use fewer function and gradient evaluations and as a result have been
popular in structural optimization [Schmit_74, Fluery_79, Haftka_92] .

Structural synthesis by optimization requires very general and automated structural
analysis techniques. Section 2.2 provides a brief introduction to the finite element method
to analyze structures. In this section, we also describe sensitivity analysis techniques that
are used to obtain the gradient of structural properties with respect to design variables. In
section 2.3, structural optimization is classifieda on the basis of the design variables used to
parameterize the design. It is also possible to classify the literature on the basis of the
design objectives and constraints. The commonly used objectives and constraints are also
described in this section. Optimization problems in structural synthesis applications are
often nonlinear. An introduction to nonlinear programming algorithms used to solve such

optimization problems is given in section 2.4.

2.2. Structural Analysis

In this section a brief introduction to the finite element method for structural analysis is
presented, followed by a review of techniques used to find the design sensitivity of
structures that can only be analyzed using numerical methods such as finite element

method.

2.2 Structural Analysis 29

2.2.1. The Finite Element Method

With the exception of a few simple truss or frame like structures, most structural
optimization techniques use general purpose numerical methods such as finite element
method or boundary element method for structural analysis. In this section, a brief
description of the finite element analysis of plane strain - plane stress linear boundary value
problem is presented to clarify the notations used in this thesis. Details about the finite
element method can be found in text books such as [Bathe_82, Reddy_84, Kikuchi_86,
Zienkiwicz_89].

Figure 2.1. Planar structure with applied loads and boundary conditions

Consider a structure of arbitrary shape shown in figure 2.1. The domain of the
structure Q is divided into a finite element mesh shown as a triangular mesh in the figure.
The structure is subjected to a body force f and a traction t along part of its boundary. The
principle of virtual work that governs the behavior of the structure may be expressed as,

joﬁadﬂ: jt.sudg+jf.8udn (2.2.1)
Q r, Q

o is the stress field created in the structure due to the applied forces and boundary
conditions. du and &8¢ are the virtual displacement and the corresponding virtual strain
respectively, so that the left hand side of the above equation represents the virtual internal
energy absorbed by the structure and the right hand side represents the virtual work done

by the external body forces and the traction. du, the virtual displacement field, must be
kinematically admissible subset of Sobolev space, so that, du e H'(Q2), du=0onT,.

The relation between the stress and the strain is given by the constitutive equations. For
a linear elastic material, these equation are given by Hook’s Law and can be written as,

30 Chapter 2. Previous Work in Structural Optimization

{o}=[D]{e} (2.2.2)

where, {o} and {€} are the stress and strain fields expressed as vectors. For planar
structural analysis,

{o}=1{0,,,0,,,0,,}'
(2.2.3)
{e} = {g,,-€,,,&,,)
lv O
[Dl=—=|v 1 0 (2.2.4a)
1-v 00 U=V

2

where, [D] is the elasticity matrix for plane stress, E is the Young’s modulus of
elasticity and v is the Poisson’s ratio. The elasticity matrix for plane strain is given by,

1 — 0
Ed-v) | v v
[D]= (1 0 (2.2.4b)
(A+v)Y(1=-2v){1-vV
1-2v
2(1-v) |

The strain vector can be calculated from the displacement vector field u = {u,, u, }* as,

X X

g€ =——, =, &, = — g —x
* o oox Y a9y Y 2l ox 9y

ou %, = —l—(au’ + du) (2.2.5)

The integral equation representing the principle of virtual work is integrated piece-wise
and the unknown displacement fields u and du are represented by a piece-wise continuous
interpolations. This converts the integral equation into a set of linear simultaneous equation
in terms of the coefficients of the interpolation functions used to represent u. These
equations are solved using standard linear equation solvers such as LU decomposition
[Press_88]. The integral equations are reduced to a set of linear algebraic equations of the
form,

{0u, }'[K}{u,} = {ou,}'{F} = [K}{u,}={F} (2.2.6)

where, [K] is the global stiffness matrix, {F} is the resultant external force vector and
{up} is the discrete representation of the displacement field and it consists of the
coefficients of the piecewise-interpolation used to represent the displacement field u.

2.2 Structural Analysis 31

In this thesis triangular finite elements were used and the displacement fields u and du
were linearly interpolated with each triangle as follows,
u=ulL +uL, +u,L
11 2+ 33 (227)
v=vL +v,L,+v,L,
where, Li, L2 and L3 are shape functions for linear interpolation, also referred to as
area coordinates or Barycentric coordinates [Zienkiewicz_89]. These coordinates are
defined by the equations (2.2.7) and the assumption that L{+Ly+L.3=1. The transformation
from the (x,y) coordinates to (L},L2,L3) coordinates can be obtained as

L, NE b, c,-ll
L, =3A a, b, c2J x (2.2.8)
L, a; by ¢y
where,
4 =X — XY (2.2.9)
b, =y, ~ % (2.2.10)
Ci =X — X (2.2.11)

and i, j and k are cyclically allotted the values 1, 2 and 3. A is the area of the triangular
element and (x;,y;) are the nodal coordinates of the triangular element.

2.2.2. Sensitivity Analysis

Most nonlinear programming algorithms used to compute the optimal values of design
variables require sensitivity information such as the gradient of the functions with respect to
the design variables. Sensitivity analysis can be very expensive and therefore, considerable
research effort has been directed at developing efficient techniques for sensitivity analysis
of functions that represent structural behavior. A comprehensive description of design
sensitivity analysis techniques for structural systems has been compiled by Haug et al
[Haug_86].

The simplest method for finding the sensitivity is to use finite difference approximation
for all the partial derivatives. The idea is to evaluate the function for two values of the
design variable very close to each other and then to approximate the partial derivative as the
ratio of the change in the function to the change in the variable. For example, the forward-
difference approximation is given as

32 Chapter 2. Previous Work in Structural Optimization

of Af _ f(x; +4Ax;)—f(x)

=

ox, Ax. Ax.

(2.2.12)

where, f is the function, x; are the design variables and Af is the change in the function
due to the change Ax; in the design variable x;.

Even though the finite difference approximation is easy to implement, it is very
computationally expensive for sensitivity evaluation of structural behavior. In order to
evaluate functions that represent structural behavior, it is often necessary to perform a
structural analysis. This can be very expensive when the analysis is to be performed by
numerical methods. To evaluate the gradient of a function using the finite difference
approximation described above, each gradient evaluation requires two function evaluations.

It is often possible to directly differentiate the governing equations of the structural
analysis to obtain sensitivity information. Such an approach is particularly straight forward
when the domain of the structural analysis €2 does not change with the design parameters
and only the stiffness varies. This is the case for sizing optimization and also for topology
optimization using homogenization method as well as the methods proposed in this thesis.
Consider a function g(u,x) that represents a structural behavior such as its compliance or a
critical stress. This function may depend directly on the vector of design variables x and
also indirectly due to its dependence on the displacement field u. The displacement field
expressed in the discretized vector form {uy} in equation (2.2.6) is, of course, a function
of the design variables. Differentiating this function with respect to the design variables, we

get,

dg _ og + dg du,

dx, O0x; du, 9x;

(2.2.13)

og .) u, . du,.
where, 8 is a vector of elements g and b js a vector of elements —2,
du, Uy ox; X,

j=1,..na, where ng is the number of degrees of freedom in the finite element model.

Differentiating the governing equations expressed in a discrete form in equation
(2.2.6), we get,

%%=%-§%uh (2.2.14)

2.2 Structural Analysis 33

Equation (2.2.14) can be solved for 3& and substituted into (2.2.13) to obtain the
X;

gradient of the constraint g(u,x). This is the ‘direct approach’. Alternately, the so called
adjoint method can be used where a set of adjoint variables A, is defined by,

K\, =28 (2.2.15)
du,

so that, the gradient of the function g, can be written as,

dg _oJg JF oK
= Y - 2.
dx, ox; " “(axi ox; uh) (2.2.16)

Equation (2.2.15) may be solved to obtain A, and its value can be substituted into
equation (2.2.16) to get the desired gradient. When the number of variables is larger than
the number of functions whose gradients have to be found, the adjoint method is more
efficient. For the direct method equation (2.2.14) must be solved once for each variable,
whereas for the adjoint method equation (2.2.15) needs to be solved only once for each
function whose gradient is to be evaluated.

The methods described above assumes that it is easy to compute the derivative of the
stiffness matrix with respect to the design variables (0K/dx,.) However, this may not be
the case, especially if one does not have access to the source code of the finite element
analysis software. It is possible to directly differentiate the principle of virtual work (2.2.1)
instead of the discretized version (2.2.6). This leads to the variational sensitivity analysis
techniques. The details of this method can be found in [Haug_86] and [Haftka_92].

In the sensitivity analysis techniques described so far we have assume that the shape of
the domain of analysis does not change. However, during shape optimization, the shape of
the structure and therefore the domain of the analysis changes. The scalar and vector fields
defined over the domain change with the design variable not only because of the change in
structural behavior with the shape but also because the deformation of the domain
transforms the coordinates used to define the field. This leads to the concept of material
derivative, analogous to the material derivatives defined in fluid mechanics. Let the initial
domain be Q, and the medified domain be Q. Let T be the transformation mapping from
the coordinates X, from the initial domain to the coordinates X in the modified domain, so
that X = T(X,,x) and Q = T(Q,,x). The design velocity is defined as the rate at which the

domain is transformed with change in design variables x;,

34 Chapter 2. Previous Work in Structural Optimization

v.=9T ici.n (2.2.17)
ox,

The material derivative of a scalar field u(X,x), may then be defined as,

Eu——=—Q—u—+V§Vu, where, Vu= du (2.2.18)
dx;, 9x, aX

Similarly, material derivatives can be defined for functionals defined in terms of the
scalar of vector fields defined over the domain. Typically, the transformation of the domain
with respect to the design variables is defined using the concept of design elements
described in section 2.3.2 on shape optimization. Even though sensitivity analysis for
varying structural domains is well established, the added computational expense and
complexity associated with it is one of the draw backs of shape optimization by boundary
variation.

2.3. Structural Optimization

Structural optimization may be classified on the basis of the design variables chosen to
describe the geometry. They may also be classified based on the particular combination of
objective function and constraints used to describe the optimization problem. Based on the
type of design variables used, structural optimization may be classified as sizing, shape and
topology optimization. These classifications and the type of geometric parametrization used
are described below.

2.3.1. Sizing Optimization

The earliest attempts at structural optimization used simple parametrization of the
geometry and optimized easy-to-analyze structures such as trusses, frames and plates
[Haftka_86, Haftka 92, Kirsch_81, Morris_82] . In sizing optimization, the variables of
the design are the cross-sections of the truss members or thickness of the plates etc. The
geometry change induced by varying these design variables is not drastic so that there is no
need to create a new analysis model each time the design variables are changed. Such
design variables are called sizing variabies.

Trusses and Frames

Structural optimization of trusses and frames involves the optimal design of the cross-
sections of the elements. The design variables are the cross-sectional areas of the truss or

2.3 Structural Optimization 35

frame elements. For simple trusses with only a few members, analytical expressions may
be derived to express the structural properties as a function of the design variables. Larger
trusses and frames can be analyzed using the finite element method. Cross-sectional
dimensions of the truss elements are sizing variables since the finite element model or the
analytical expression describing the behavior of the truss is valid for all feasible values of
these variables. Figure 2.2 illustrates a typical truss design problem with the applied loads
and boundary conditions. The nodal coordinates and the lengths of the elements are fixed
for the cross-section design problem.

Elements

Applied Loads

Nodes V
Figure 2.2. Truss with applied loads and boundary conditions

Trusses and frames can be optimized also by varying their configuration. The optimal
configurations of a truss can be computed by solving for the optimal nodal coordinates. In
this case, the design variables are the nodal coordinates of the truss. The topology or
connectivity of the truss is fixed and therefore, for configuration design there is again no
need to modify the analysis model when the variables are changed.

Yet another choice of variables for the optimal design of trusses are material selection
parameters that distinguish which material to use for each element of a truss or frame.
Material selection is a combinatorial optimization problem of selecting the optimal material,
from a given set, for each element of the truss or frame. In truss and frame optimization, it
is common to simultaneously consider a combination of these three types of sizing
variables. For example, the cross-sectional areas of the elements and coordinates of the
nodes may be varied simultaneously. Figure 2.3 shows an example of a 39 bar truss whose
configuration as well as the cross-sectional areas of its elements are optimized. This
example has been adapted from [Morris_82]. Figure 2.3(a) illustrates the initial
configuration of the truss while figure 2.3(b) show the optimal configuration and cross-

36 Chapter 2. Previous Work in Structural Optimization

sections for supporting the load acting on nodes 13, 14, and 15 as shown. Details of this
example as well as the algorithm used for the optimization can be found in [Morris_82].

14 15

a) b)
Figure 2.3. 39 bar truss (Adapted from Moris_82)

Plates

In early attempts at designing optimal plate-like structures, the plate thickness was
chosen as the design variables. This choice of variable makes the problem a sizing
optimization, since the overall shape or topology of the plate remains fixed during the
optimization and only its thickness is allowed to vary. The analysis model therefore, does
not change during the optimization. The thickness is assumed constant within each element
but can vary from one element to the other. The thickness of each element is treated as a
design variable. The results obtained by such optimization are not satisfactory, since the
thickness varies very discontinuously from element to element and the mesh that is
adequate for the finite element analysis is often not adequate for representing the optimal
thickness distribution.

2.3.2. Shape Optimization

2.3 Structural Optimization 37

Shape optimization as opposed to sizing optimization involves varying the boundaries
of the structure thus modifying the domain of structural analysis. As a result, shape
optimization requires the finite element model to change during the optimization process.
The design variables used for shape optimization cause boundary variation and are referred
to as the shape design variables. Boundary variation is usually expensive relative to sizing
optimization due to the changing finite element model and because more sophisticated
sensitivity analysis tools are required. However, shape optimization is more generai and
can often significantly improve the performance of 2D and 3D structures.

Parametric Variables

Shape design variables could be parameters defining certain features of the shape or
important dimensions. For example, the radius of a circular hole or the side of a square
hole could be a design variable. The length or breadth of structural components can also be
treated as shape design variables. Clearly changing these parameters can significantly
change the geometry and in some cases require the regeneration of the mesh. Many
examplies of shape variation using parametric variabies have been illustrated by Botkin et. al
[Botkin_86]. An examples of parametric variables is shown in figure 2.4. The radii x; and
x2 and the dimensions of the slot are design variables. When these variables arc changed,
the shape changes but the topology does not. The finite element mesh needs to be adjusted
or recreated when the design variables are modified. A number of geometric constraints are
imposed to maintain the validity of the shape. For example, the edges joining the semi-
circles of radii x3 and x4 should remain tangent to these semi-circles when the radii are
modified.

lFigure 2.4. Parametric design variables

Boun Variation

Shape optimization can also be achieved by treating parts of the boundary of a solid as
variables by choosing shape design variables that parameterize parts of the boundary. For

38 Chapter 2. Previous Work in Structural Optimization

example, the nodal coordinates of the nodes on the boundary of the shape may be treated as
the design variables. However, one important criterion for shape optimization is that the
finite element model should not deteriorate during the optimization. This may require
regeneration of the finite element mesh at each iteration. Therefore, a one-to-one
correspondence between the finite element mesh and the design variables is not desirable
for shape optimization. Figure 2.5 shows an example of shape optimization. Figure 2.5(a)
shows the initial shape of a torque arm selected by the designer. Parts of the outer
boundary are treated as variable and the shape is optimized to obtain the final design in
figure 2.5(b). Notice that the finite element mesh has modified with the shape. Details of
this example can be found in [Yang_86].

(a)

(b)
Figure 2.5 Example of shape optimization (Adapted from Yang_86)

In shape optimization by boundary variation, the concept of a design element is often
used [Imam_82, Briabant_84]. Design elements are regions into which a structure is
divided and the boundaries of each such region is controlled by a set of design variables.
Each design element may consist of many finite elements. Many methods of parameterizing
the boundaries have been used and they are described below. Early approaches used the
two-dimensional isoparametric interpolation functions used in the finite element formulation
to represent the boundaries of the design elements. Therefore, the positions of nodes of the
isoparametric finite elements were the shape design variables. However, as described
earlier, this one-to-one correspondence between the finite element mesh and the design
variables was found to be undesirable. Figure 2.6. illustrates the concept of design

2.3 Structural Optimization 39

elements. Each design element may be divided into many finite elements for analysis
purpose, as shown in figure 2.6 for design element 2. The shape of each design element is
controlled by a set of shape design variables. Parametric variables such those described in
the previous section have also been used to vary the shape of design elements.

®

®

Figure 2.6. Design element concept

Many researchers [Haftka_86] have proposed the use of polynomial functions to
represent the boundaries of the design elements. The polynomial coefficients may then be
the shape design variables. More generally the boundary could also be treated as a linear
combination of shape functions. The weighting coefficients could then serve as the design
variables. However, the use of very high order polynomials can lead to oscillatory

boundaries.

Briabant and Fleury [Briabant_84] have used cubic splines to represent the boundaries.
The structure is divided into design elements and blending functions commonly used in
computer graphics, such as Bezier or B-spline curves and surfaces, are used to represent
the design element boundaries. The control points of these blending functions then serve as
the variables of the structural optimization problem. A design element parameterized using
b-spline blending functions is illustrated in figure 2.7.

o Boundary control points
o Internal control points
o Fixed control points

Figure 2.7. Design element with b-spline control points as design variables

In figure 2.7, the coordinates of the boundary control nodes are the design variables.
The boundary of the design element is modified when the boundary control points are

40 Chapter 2. Previous Work in Structural Optimization

moved . The boundary marked by fixed control nodes remains unaffected by changes to the
boundary control points. The internal control nodes define the isoparametric curves on the
design element that are used to define the mesh. When the boundary control nodes are
moved, the internal control points are moved homothetically along meridians such that the
mesh density remains nearly uniform within the design element.

The use of Bezier or b-spline blending functions provides greater flexibility in
representing the boundaries and can represent relatively complex shapes using fewer design
variables. Splines are composed of low order piecewise polynomials and therefore do not
have oscillatory behavior. They also maintain boundary regularity and smoothness. Some
properties that make Bezier and b-splines curves desirable are: the variation diminishing
property, axis independence and the ability to represent multi-valued functions and closed
curves. The variation diminishing property ensures that the curve will lie within the convex
hull of the control points defining the curve. Axis independence ensures that the curve
representation is independent of the coordinate axes used to locate the control points. The
degree of the Bezier curve depends on the number of control points. It is possible to piece
together many low order Bezier curves and enforce the desired degree of continuity at the
joints. Bezier curves however, do not allow local control of the curve, so that the location
of each control point affects the entire curve. B-splines on the othzr hand allow local
control of the curve shape and its degree is independent of the number of control points.
Consequently, b-spline representation is a preferred means of boundary representation for
shape optimization. Analytical expressions can be derived for the sensitivity of the design
objective and constraint functions with respect to the control point positions.

Technical difficulties

As the shape is modified during the shape optimization process, very often the finite
element mesh may need to be refined or fully regenerated. Mesh refinement is required
when the shape changes significantly so that the finite element mesh is highly distorted in
certain regions causing loss in accuracy. If the shape changes drastically a new mesh may
need to be generated. Since the shape is automatically modified by the optimization
algorithm, mesh generation should also be automated. This is one of the major difficulties
associated with shape optimization. However, at least in 2D, some good mesh generation
and mesh refinement algorithms are now available.

Most optimization algorithms need sensitivity analysis to determine the rate of change
of the objective and constraints with respect to the design variables. Sensitivit:* analysis for
shape optimization is complicated by the fact that the domain of the analysis is changing, so

2.3 Structural Optimization 41

that the rate of change of the displacement field must account for not only the changes in
design variables but the transformation of the local curvilinear coordinates of the design
element Gue to the deformation of the domain. Sensitivity analysis for shape optimization is
briefly described in section 2.2.2.

In addition to the above mentioned issues, there are some fundamental difficulties with
the shape optimization. First, the final design depends on the initial guess, due to the
inability of this approach to make modifications to the topology. As a result, it converges to
different optimal shapes for different starting topologies. Furthermore, such optimization
schemes are very sensitive to the accuracy of the structural analysis solution at the
boundaries.

2.3.3. Topology Optimization

Due to the above mentioned limitations of shape optimization, it was realized that to
obtain globally optimal shapes the topology must be modified, allowing the creation of new

boundaries.

Early attempts towards topology optimization involved structural analysis using finite
element method followed by removal of elements that were under-stressed. This approach
was unsuccessful because the final shapes were found to depend on the initial mesh density
used for the finite element analysis. Strang [Strang_86a] attributed this behavior to the non-
convex nature of the problem statement. Kohn and Strang [Kohn_86], noting that the
original problem was not well posed, suggested a relaxed variational problem that allows
composites (or porous material) instead of the ~0-1 dichotomy between holes and materiai”.
The properties of such composites can be derived using the homogenization technique.
Homogenization is a mathematical tool that predicts the variation of material properties of a
composite material due to variation in the amount of its constituents, in the limit when the
size of individual particles of the constituents tends to zero.

Topology Design of Trusses

The earliest attempts to design topologically optimal structures was in the design of
truss-like (or skeletal) structures. Research in this area has been extensive and a review of
literature on the optimization of skeletal structures has been compiled by Topping
[Topping_83]. The most common technique is the so called ‘ground structure’ approach.
In this approach, the design space is covered with a grid of nodes. These nodes include
locations where the loads are applied and boundary conditions imposed. The ‘ground

42 Chapter 2. Previous Work in Structural Optimization

structure' is constructed by connecting every node to every other node. Linear
programming methods can be used to optimize this ground structure with the objective of
minimizing the weight subject to constraints on the plastic collapse load. During the
optimization all the unnecessary members of the ground structure are automatically
removed when their cross-sectional areas are reduced to zero by the optimization algorithm
yielding the optimal topology of the structure. It was found that in this approach the optimal
structure is not unique even when the optimal weight is unique. When stress or
displacement constraints and multiple-loads are to be considered, nonlinear programming
techniques need to be used. Automatic removal of unnecessary members is no longer easy,
since the stress in these members become large as their cross-sectional areas tend to zero.
Another problem is that the stiffness matrix may become singular due to the removal of
some members. Many methods for overcoming these difficulties have been proposed
[Topping_83, Haftka_92].

The optimal layout or topology obtained by the 'ground structure' approach depends on
the grid of nodes used to construct the ground structure. The grid that is used significanily
influences both the layout and the optimum weight of the structure. The 'geometric’
approach to layout design of skeletal structures treats both the nodal coordinates of the grid
and the cross-sectional areas of the members as variable.

Homogenization Method

Homogenization is a mathematical tool for modeling the behavior of periodic structures,
such as composites and porous materials, whose properties vary periodically at a
microscopic level [Bensoussan_78]. The behavior of the structure at the macroscopic level
is predicted in the limit when the & (the ratio of period of the structure to a typical

macroscopic length scale) tends to zero.
Mathematically, a boundary value problem for a structure may be stated in the form,
K*u, =F, u is kinematically admissible displacement field (2.3.1)

K¢, the coefficients of the differential operator (stiffness matrix if FEM is used),
depends on the periodicity of the structure. Stated differently, the material property of the
composite structure would depend on the constituents and on the ratio of the constituents
(€;). Homogenization predicts the behavior of the composite and yields an homogenized

differential operator K, such that K* - K, as €, = 0.

2.3 Structural Optimization 43

In the context of shape and topology optimization, Kohn and Strang [Kohn_86]
proposed the use of homogenization as a means for allowing a uniform variation of
properties from O to 1. Previous attempts at topology optimization had allowed only solid
(1) and hole (0). The holes were created by removing under stressed elements. Such
methods faced serious convergence difficulties. Mathematically, this suggested the need for
relaxing the original variational problem statement so that it would be well-posed (allowing
convergence). Kohn and Strang show that, relaxing the variational problem is identical to
allowing composite materials. The properties of such a composite material can be predicted
using homogenization.

Bendsoe and Kikuchi [Bendsoe_88] have carried the above idea further. They assume
that the material is porous and solve for the optimal distribution of porosity. A design
domain is defined as the space within which the structure has to fit. This domain is divided
into a rectangular mesh. The loads to be carried by the structure and the support conditions
are prescribed by the designer as shown in figure 2.8.

E

Figure 2.8. Design domain and applied loads

The structural behavior under the applied load and boundary conditions is analyzed
using the finite element method. The design domain is taken as the initial shape of the
structure. The material is modeled as porous by assuming a microstructure. A unit cell of
the microstructure is shown in figure 2.9(a). The material is assumed to be made up of
infinite such units cells that are assumed to be infinitesimal in the limit. Suzuki and Kikuchi
[Suzuki_91] have assumed a rectangular void of dimensions ‘a’ and ‘b’ within the unit cell
as shown in figure 2.9(a). The dimensions of the void within the unit cell determines the
overall porosity or void fraction of the material. Each finite element is assumed to have a
fixed porosity or void fraction so that it is associated with its own void dimensions a; and
b;, where ‘i’ is the element number. These void dimensions along with the orientation of
the unit cells in each finite element 6; are taken as the design variables. Initially, the material
is assumed to be uniformly porous everywhere in the structure so that all the elements are
assumed to have the same porosity or void dimensions a;j and b; and orientation 0;.

44 Chapter 2. Previous Work in Structural Optimization

Figure 2.9.(a) A unit cell Figure 2.9.(b) Unit cell orientation in a
element

An optimality criteria algorithm was used [Bendsoe_88, Suzuki_91] to solve for the
optimal distribution of porosity, that is, the optimal value of void dimensions and
orientations for each element. The properties of the material obviously depend on the
assumed microstructure and therefore on the void size in each unit cell. The material
properties are a continuous function of the void dimensions. For a given porosity or void
size, the material properties can be determined using the homogenization method.

!
Dij

-t >
| 1_a 2
Figure 2.10. Material property as a function of density

Figure 2.10 illustrates the typical relation between a material property coefficient and
pore/void size, where the void in the unit cell is assumed to be a square (a=b), so that, 1-a2
represents the density of the unit cell (and the material). When there is no void in the unit
cell, that is a=0, then the material is fully dense and the material properties are the same as
that determined experimentally for the non-porous material. As the pore size becomes
larger, the density of the material decreases and the material property coefficients decrease.
The homogenization method can be used to predict the material property coefficients Dj; for
a given porosity (void size). A finite element analysis over the unit cell is required to
evaluate the material property coefficient for each value of void size. Therefore, to obtain a
relation such as that shown in figure 2.10, the value of Djj is evaluated for a discrete
number of values of the void dimension ‘a’ and then the functional relationship is obtained
by interpolating these values using Legendre polynomials. For square and rectangular

2.3 Structural Optimization 45

voids highly nonlinear relationships are obtained. The evaluation of the relation in figure
2.10 therefore requires several finite element analysis over the unit cell. The relation
obtained would be different if a different microstructure is assumed. When two variables
are used to characterize the microstructure such as in figure 2.7(a) (ie, a#b), two-
dimensional interpolation is required to represent the material property versus void size
(a,b) relation. To avoid extra computation while solving for the optimal void size
distribution, the relation such as in figure 2.10 needs to be evaluated apriori and stored for
each microstructure assumption.

The optimization algorithm automatically increases the pore size (or decreases density)
for elements where material is under-utilized (under-stressed) and decreases the pore size
where the material is highly utilized (over-stressed) and therefore needs to be strengthened.
When the optimization algorithm converges, some elements would have very large void
size so that they have very low density and others would have zero void size (fully dense
material). The elements that have density below a certain threshold value are removed to
obtain the geometry with the optimal topology. Typically, this threshold is set to zero or
nearly zero density (or void size nearly equal to unit cell size).

As noted earlier, the material property density relation varies with the microstructure
assumed for the composite or the porous material. In the method adapted by Bendsoe and
Kikuchi [Bendsoe_88] square or rectangular void was assumed within a unit cell. More
recently Allaire and Kohn [Allaire_92] have used rank 2 microstructure.

(a) (b)

Figure 2.8. Rectangular hole and Rank-2 microstructures
(Adapted from Bendsce_92b)

46 Chapter 2. Previous Work in Structural Optimization

Figure 2.11 shows a comparison between these two microstructures. Figure 2.11(a)
shows a microstructure consisting of unit cells with rectangular voids while figure 2.11(b)
illustrates rank 2 microstructure. The rank 2 microstructure consists of layers of stiff
material and rank 1 material. Rank 1 material in turn consists of layers of stiff and soft
material. Allaire and Kohn [Allaire_92] have used rank 2 microstructure and have shown
that for a composite material of fixed ratio of the two constituent materials, the rank 2
layering yields the stiffest composite. The bulk density is a function of the densities of the
constituent materials and their ratio in the composite. The optimal shapes solved for using
rank 2 layering do not have clearly defined holes. Instead, the structures obtained by this
approach suggests that truely optimal structure may have continuously varying density due
to continuously varying ratio of the two constituent materials. Such composite structures
are difficult to manufacture since it is not economically possible to control the density and
ratio of the constituents within a structure.

The geometry of the structure, obtained by the above methods, yields uneven
boundaries, especially when the mesh is not very dense. Papalambros et.al.
[Papalambros_90] use image processing techniques to extract a feasible initial shape from
the topology designed using the homogenization method [Bendsoe_88]. They then use this
shape as the starting shape for conventional shape optimization by boundary variation. A
similar two stage process has been used by Bendsoe [Bendsoe_91] to obtain combined
topology and shape optimization for 2D structures.

Binary Indicator Particles

Anagnostou et. al. [Anagnostou_92] use a combinatorial optimization procedure for
shape optimization where they represent shapes using a lattice of binary indicator particles.
The binary indicator particles are either on or off indicating the presence or absence of
material. This kind of geometry representation is ideally suited for probabilistic
optimization algorithms, since the variables are discrete. The optimal shape that minimizes a
cost function is computed using simulated annealing. The method has been applied to
several structural and heat transfer examples.

2.3.4. Design Objectives and Constraints

In this section, the most commonly used design criteria or functional requirements in
structural synthesis are described. These functional requirements are stated in the form of
design criteria and one such criteria is chosen as the design objective to be maximized or
minimized. The actual choice of the objective function and constraints depends on the

2.3 Structural Optimization 47

designers intent and the application. Most of the criteria described here can be cast as the
objective function or as a design constraint in the optimization problem statement.

In early applications of structural optimization, the goal was primarily to design light
weight structures. The objective function was often therefore, chosen to be the weight or
the volume of the structure. In the design of trusses, minimizing the weight of the structure
subject to constraints on the plastic collapse load leads to a linear programming probiem.
Since very efficient and reliable linear programming algorithms exist, this formulation has
been very popular in truss design. The plastic collapse constraints are formulated using
limit analysis, a good explanation of which can be found in [Kirsch_81].

Another important design criterion is the stress and strain distribution in the structure
under the applied loads. Often such criteria are stated in the form of design constraints
where the stress or strain is not to exceed a certain design limit anywhere in the structure.
These constraints are usually nonlinear. For some simple trusses and frames it is possible
to derive analytical expressions for stress or strain as functions of the design variables. In
general, however it is necessary to use numerical methods to compute the stresses and
strains in the structure. These constraints are difficult to impose for 2D and 3D structures
because the stresses and strains vary over the structural domain. It is not possible to predict
the location where the stress would be maximum. Therefore, stress constraints have to be
imposed at a large number of points in the structure resuiting in a very large number of
constraint equations. Furthermore, when numerical methods are used to compute the
stresses, loads are often modeled as point loads and the stresses can be artificially large in
the immediate neighborhood of the loads. These stresses then tend to be the active
constraints dominating the design. The stress criterion in structural design is sometimes
stated as the design objective by defining the objective as minimization of the maximum
stress in the structure.

In the design of many planar and spatial structures, the primary design consideration is
often to improve the stiffness to weight ratio. It is desirable to make the structure stiffer for
a given weight of the structure, so that it deflects less under applied loads. This criteria can
be stated as a constraint on the deflection of some point on the structure under the applied
loads. Alternately, it can be stated as the design objective where one desires to minimize the
deflection of a point on the structure.

The overall stiffness of the structure can also be maximized by minimizing the mean
compliance of the structure or the total strain energy at equilibrium. In structural

48 Chapter 2. Previous Work in Structural Optimization

optimization literature, mean compliance has been defined as twice the strain energy
absorbed by the structure under the given loads [Haug_86, Haftka_92, Bendsoe_88].
Stiffer structures deflect less under applied loads and hence absorb less energy for a given
load, therefore they have lower compliance. Maximizing the stiffness of the structure
subject to constraints on the weight of the structure leads to designs that use material more
efficiently and therefore have a better stiffness to weight ratio.

In the design of thin bars and membrane like structures, buckling is sometimes an
important design criteria. For design of trusses and frames, the Euler buckling load is often
modeled as a design constraint. Simulation ot buckling for membranes is often non-trivial
and therefore, expensive numerical methods have to be used to evaluate the buckling load.
In the design of vibrating structures, the design criteria may be to maximize the natural
frequency of the structure. Again for most types of structures, numerical methods are used
to evaluate the natural frequency and their sensitivity with respect to the design variables.
More details of such methods can be found in [Haftka_92].

2.4. Optimization algorithms

Many design or synthesis problems can be stated as an optimization problem where the
design is parameterized and the optimal values of the design parameters are found by
maximizing or minimizing an objective function subject to design constraints. Such
optimization problems arise in a variety of design and decision making contexts and
therefore, many general purpose numerical algorithms exist for solving them. A general
optimization problem involves solving for the optimal values of a multi-variable function
subject to a number of equality and inequality constraints. Algorithms for solving such
problems are commonly referred to as mathematical programming algorithms, and the
discipline that deals with such parameter optimization is often called mathematical
programming. As mentioned in chapter 1, when the optimization problem involves only
linear function we have linear programming problems and when some of the functions are
nonlinear, the optimization problem is said to be a nonlinear programming.

A large number of algorithms have been proposed for all classes of linear and nonlinear
programming. The best algorithm for solving a particular optimization problem often
depends on the nature of the functions involved. It is often possible to design algorithms
that are particularly suited for an application of interest. In this section, a brief historical
perspective of algorithms used for structural optimization is given, and the algorithms are

2.3 Structural Optimization 49

broadly classified as the special purpose optimality criteria algorithms and the general

purpose mathematical programming algorithms.
2.4.1. Historical Perspective

Mathematical programming is a well established discipline with diverse applications
such as design optimization, decision making (operations research) in business and
economics, applied mathematics, optimal controls and many more. Mathematical
programming originated as a formal field of study in the operations research community
where mathematical techniques were sought to help in business and economic analysis and
decision making. However, many of the calculus based algorithms of optimization existed
long before. Many general purpose optimization algorithms that have evolved from this
branch of mathematics can be applied to structural optimization as well. The main difficulty
in structural optimization is the high computational cost involved in evaluating functions
that describe structural behavior. Typically each such function evaluation requires a
structural analysis using numerical methods such as the finite element method. In addition
most mathematical programming algorithms require sensitivity of the functions such as its
gradient vector or hessian matrix. Due to the high cost of function evaluation and sensitivity
analysis, algorithms that use few function evaluations and do not need the hessian matrix
are preferred in structural optimization. A certain special class of algorithms have been
proposed for structural optimization that make use of the understanding of the structural
behavior and the nature of the optimal design. These algorithms are referred to as the
optimality criteria methods. The optimization algorithms used for structural optimization
can therefore be classified into optimality criteria methods and the mathematical

programming algorithms as shown in figure 2.12.

Optimization

Mathematical
Programming

Figure 2.12. Classification of algorithms used for structural optimization

50 Chapter 2. Previous Work in Structural Optimization

Optimality criteria methods initially evolved as a set of ad hoc or heuristic methods that
directly solve the Kuhn Tucker optimality criteria (see Appendix A). Often such methods
originated from intuitive reasoning about the nature of the optimal design such as the fully
stressed structure. However, since these methods are non-rigorous and not easily
generalizable they have not received full acceptance from the optimization / mathematical
programming community. Mathematical programming algorithms on the other hand have
been extensively studied and applied tc a wide variety of applications. Optimality criteria
methods tend to be special purpose and are fine tuned for a specific application and
therefore they typically performn very efficiently for that application. The distinction
between these two classes is fading since research in the past decade has established
[Fleury_79, Fleury_86] that some of the dual methods of mathematical programming are
very closely related to the optimality criteria methods. In fact some of the popular optimality
criteria methods can be derived from these dual methods.

2.4.2. Optimality Criteria Metheds

The optimal value of the variables satisfy a set of conditions referred to as the optimality
criteria (also known as the Kuhn-Tucker conditions, see Appendix A). These are a set of
necessary conditions that are satisfied by all the local maxima and minima of the
optimization problem. If it can be shown that all the functions defining a nonlinear
programming problem are convex then there exists only one unique optima which is the
global minima of the optimization problem. Such a nonlinear program is called a convex
program. For convex programs, one may solve the nonlinear equations of its optimality
criteria using methods such as Newton’s method to obtain the optimum values. However,
in general, nonlinear programming problems commonly encountered in structural
optimization have many local maxima and minima. Since the necessary conditions for
optimality do not distinguish between local maxima and local minima, it is not possible to
directly solve these equations for a minima. Moreover when there are many inequality
constraints, its often not possible to predict which of these constraints would be active at
the optimal solution. As a result, it is often not easy to solve the optimality conditions
directly for a general nonlinear programming problem.

Optimality criteria methods use recurrence relations to update the variables until they
satisfy the optimality conditions to a given tolerance [Haftka_92, Morris_82]. When there
are many inequality constraints, it is assumed that the active constraints are known a priori
or can be gnessed. The recurrence relations are obtained from the optimality criteria using
certain simplifying assumptions. A commonly used assumption is that the objective

2.3 Structural Optimization 51

function is nearly linear in the design variables whereas, the constraint functions are linear
in the reciprocal variables. This is true for the truss optimization problems for which these
methods were initially developed. Consider the following optimization problem expressed
in terms of the reciprocal variables y,

min f(y), subjectto g,(y)20, j=1,..r,

The optimality conditions for this problern may be simplified to the following form,

(xi)zfi—iljcﬁ:O, or xi—[i?\. cu] (2.4.1)

j=1 l j=1

ag.
where, A; are the Lagrange multipliers, f; =§—f and c; =—~a—g—’-, i=1,..n. This
X; Yi
relation may be converted into a recurrence relation in a number of different ways. For

example, the exponeantial rule is based on rewriting equations (2.4.1) as,

X = ((x e 27«, qu i=1,..n (2.4.2)

ij=1

1 gives control over the stepsize taken at each iteration. For larger values of 1 the
change in the design variables is smaller per iteration.

Calculation of the Lagrange multipliers is made difficult when there are many inequality
constraints because some of them may not be active at the optimal solution. If we assume
that all the r, constraints are active, then one can solve for the Lagrange multipliers by
substituting the expression for the updated variables into the linearized form of the
constraints. Optimality criteria methods are easy to apply to structural optimization
problems where it is possible to predict the active constraints at the optimal solution.

2.4.3. Mathematical Programming Algorithms

The mathematical programming algorithms used in structural optimization may be
broadly classified as calculus based and probabilistic search algorithms. Common examples
of probabilistic search algorithms are simulated annealing and genetic algorithms. This
classification is illustrated in figure 2.13. Calculus based algorithms can be classified
further into those that directly solve for the optimal solution of the nonlinear program and
those that iteratively construct approximate sub problems and solve for tueir optimal

52 Chapter 2. Previous Work in Structural Optimization

solution at each iteration. The latter class of algorithms known also as sequential
approximate optimization or ‘approximation concepts’ techniques have been particularly
popular in structural optimization [Schmit_74, Fluery_79, Fluery_89]. The sub problems
gencrated at each iteration are simple and easier to solve than the original problem.

Mathematic al

Programmi ng [

o e 2.13. lsiﬁcation of algorithms used in structural optimization

In the structural optimization context, it is convenient to classify the algorithms
available to directly minimize a given nonlinear problem on the basis of the order of
sensitivity information required by the algorithm. The gradient based algorithms require
only first order sensitivity, that is the gradients of the functions. Examples of these are the
steepest descent method, conjugate gradient methods, etc. Algorithms derived by
modifying Newton’s method on the other hand require the second order sensitivity, that is,
the Hessian matrix as well. Details of such algorithms and applications for unconstrained
and constrained optimization problems can be found in text books such as [Haftka_92] and
[Morris_82]. A brief description of the key ideas behind various classes of algorithms is
given below along with comments on their applicability for structural optimization.

Direct gradient based algorithms such as steepest descent for unconstrained
optimization are inefficient for many applications, since they use local information only and
move in the direction of steepest descent. The steepest descent direction is the direction
opposite to that of the local gradient vector. When the objective function is badly scaled or

2.3 Structural Optimization 53

ill-conditioned with respect to the variables such algorithms perform poorly. An example of
this is shown in figure 2.14 for a two dimensional objective function, where the steepest
descent algorithm exhibits oscillatory behavior and converges very slowly. The figure
shows constant value contours of the objective function in its 2D design space. The
gradient is orthogonal to the constant contour curve. In this example, the steepest descent
direction is nearly orthogonal to the direction that leads to the minimum.

Figure 2.14. Oscillating behavior of steepest descent algorithm

Steepest descent methods do not take into account the local “curvature” of the objective
function. Modified Newton algorithms use the hessian matrix and in effcct construct a local
quadratic approximation of the objective function and hence exhibit better convergence for
ill-conditioned problems. However, second order sensitivity or the hessian matrix is in
general expensive to compute. When the number of variables is large, the Hessian matrix is
large and it requires considerable storage space and computing power to manipulate. This is
particularly true in structural optimization where evaluating the sensitivity information of
structural behavior often requires expensive numerical methods and the number of variables
is usually very large. As a result even though theoretically modified Newton algorithms
have a fast rate of convergence (fewer iterations), in practice they are not very efficient due
to the high computational cost per iteration. In Newton methods, the descent direction (@*)
for a function f(x) is computed by solving equations of the form

Vi(x*)d* = -VI(x*) (2.4.3)

To ensure that the direction d" is a descent direction, the hessian matrix V*f(x*) must
be positive definite. However, this may not be the case for certain regions of the feasible
domain. Therefore, in modified Newton methods positive constants are added to the
diagonal elements of the hessian matrix, if necessary, to make it positive definite.

54 Chapter 2. Previous Work in Structural Optimization

Quasi-Newton methods are among the most efficient methods for minimizing
unconstrained optimization problems. Quasi-Newton methods require only the gradient,
however, they construct an approximation to the inverse of the Hessian matrix using the
gradients computed at each iteration. This approximation is updated at each iteration using a
rank-one update matrix constructed using the gradient computed at that iteration. This
approach therefore, does not require the evaluation of the hessian matrix at each iteration.
Furthermore, by directly constructing the inverse of the approximate hessian matrix it
reduces the computation associated with solving for the descent direction using equations
of the form (2.4.3).

Many techniques exists for extending unconstrained optimization algorithms to handle
constraints. When the constraints are linear, gradient projection methods can be used to
enforce the constraints. This method consists of using a gradient based algorithm to find a
descent direction and stepsize to update the current variables and then projecting it back to
the feasible set. Let S be the set of feasible points. The variable is updated each iteration as

X< = x5 4+ ok (X5 - x5) (2.4.4)

where, o* €[0,1] is a stepsize, X* is obtained by projecting on S the point obtained by
the gradient method (x* —s*Vf(x*)) where sk is the stepsize computed by line
minimization along the descent direction. It is assumed that S is a convex set so that the

projected point is unique.

Penalty methods are applicable to general nonlinear programming problems. These
methods convert constrained optimization problems into unconstrained optimization by
constructing a new objective function which consists of a sum of the original objective
function and penalty terms for constraint violation. The simplest among these is the
quadratic penalty method that adds a square of the constraint functions. The penalized
objective function is of the form

L, (x) = f(x)+ %ﬂh(x)llz (2.4.5)

For large values of c, there is a high cost of infeasibility so that the unconstrained
minimum of this function is nearly feasible and would approach the constrained minimum
of f(x) subject to the constraints h(x), in the limit as ¢ — os.

Multiplier methods also penalize constraint violation. The constrained optimum is found
by the unconstrained optimization of the Augmented Lagrange function, defined as,

2.3 Structural Optimization 55

L (x,A)= f(x)+k‘h(x)+—;-|lh(x)||2 (2.4.6)

If A is equal to the Lagrange multipliers A" satisfying the Kuhn-Tucker optimality
conditions, then for a sufficiently large c, the unconstrained local minima of L _(x,A") is

the constrained local minima of f(x) subject to the constraints h(x). In the method of
multipliers, A is updated each iteration as

A =A% + cth(x*) (2.4.7)

k

where, x* is the unconstrained minimum of L_ (x,A%). It can be shown that the

sequence { x* } converges to a constrained local minima of f(x), while { A*} converges to
the Lagrange multipliers A".

Sequential optimization algorithms, construct a sequence of sub problems such that the
solutions to these sub problems tend towards the solution of the original problem.
Sequential linear programming (SLP) and sequential quadratic programming (SQP) are
some of the earliest sequential optimization algorithms. Sequential optimization algorithms
have been of considerable interest to structural optimization research, since they often help
to reduce the number of function and gradient evaluations. Therefore, a number of
sequential approximate algorithms have been proposed specifically for this application. In
structural optimization, evaluation of the objective and constraint functions and their
gradients is very expensive. The number of variables is also typically very large. Due to
these reasons “some approximations concepts” were first proposed for struciural
optimization by Schmit and Farshi [Schmit_74], to reduce the number of function and
gradient evaluations required during optimization. Commonly used approximations include
linear approximation, leading to SLP, linearization in reciprocal variables as well as hybrids
of these two approximations. Quadratic approximations are usually avoided in structural
optimization due to the high cost of constructing the hessian matrix. Details of some of the
sequential approximate optimization algorithms that have been proposed for structural
optimization and their evolution has been described in section 4.2 (Chapter 4).

The methods described so far typically converge to a local minima of the optimization.
Except for convex optimization problems there is no guarantee that the minimum obtained
is a global minimum. Probabilistic search methods search a larger space of the design
domain and hence tend to identify the global optimum. These methods are in general very
computationally expensive, but they are well suited for parallel computing. The two most
popular probabilistic search algorithms are simulated annealing and genetic algorithms.

Shape and Topology

Optimization

3.1. Overview

Traditional geometric modeling techniques have assumed that geometry is completely
defined and modified by human input. Such tools have therefore emphasized ease of
geometric input and proper user-interface for geometry editing by the user. However, in
structural optimization, geometry is modified by an optimization algorithm. The
conventional geometric modeling techniques are not ideally suited for this application.

In the previous chapter, an overview of the types of geometry representation and design
variables used in structural optimization was described. Sizing variables do not change the
overall shape of the structure, instead they change the cross-section of bars/beams or vary
the thickness of plates etc. Shape variables are parameters that describe the boundaries of
the shape and therefore varying them, varies the boundary of the shape but not its
topology. To enable shape and topology optimization we need shape representations and
design variables that allow both the shape and topology to vary. Topology optimization by
homogenization method assumes that the material is porous and solves for the optimal
material distribution. The optimal solution assigns the optimal porosity for each element in
the model such that elements in regions where material is not needed are highly porous and
are removed to create holes.

The shape is represented using 2 "shape density" function in this thesis such that the
boundaries of the shape are contours of this function corresponding to a threshold value of
the density. Section 3.2 describes shzpe representation using the shape density function
and the design variables associated with it. The objective function and the constraints that
are used to define the structural optimization problem are described in section 3.3.
Approximate relations are used to characterize the variation of material properties with the
shape density function. The relations that were studied in this research are described in
section 3.4. The shape is modified by an optimization algorithm and the structural

57

58 Chaptei 3. Shape and Topology Optimization

properties are evaluated at each iteration using the finite element method. Section 3.5
describes how the finite element method is used to analyze the structural behavior taking
into account that the density function and the material properties vary continuously over the
domain. The nonlinear programming algorithm used to evaluate the optimal design requires
first order sensitivity information. Section 3.6 describes how the gradient of the objective

function and the constraint are evaluated.

3.2. Shape density function representation

To model geometry as a variable, we use the contours of a function that we will refer to
here as the shape density function (or simply as density function). Contours of this
function corresponding to a threshold value are defined as the boundaries of the shape so
that regions where the value of the function is below the threshold are not part of the
geometry. Hence, the shape may be defined using the following implicit expression

o(x,y) 2 ¢, (3.2.1)

where, ¢(x,y) is the density function and ¢, is the threshold value of the density

function. The equality in the above expression corresponds to the boundary of the shape.

Applied load

Hole (No material)
Solid (Material)

Contours of ¢

¢ = ¢th (Boundary of solid)

Figure 3.1. Shape representation using shape density function

Figure 3.1 illustrates this shape representation. The density function is defined within
the rectangular feasible region. Contours of the density function corresponding to constant

values of density are plotted. The shaded region represents the interior of a 2D shape and
the contour ~f the density function corresponding to the threshold value ¢, is the boundary

3.2 Shape density function representation 59

of the solid. In this example, there are two contours corresponding to the threshold value
and hence there are two boundary curves, one internal and one external boundary. Shape
representation using a contour of the shape density function enables the entire geometry to
be treated as a variable. By changing the shape density function it is possible to not only
modify existing boundaries but also to create new internal boundaries.

The density function takes values ranging from the threshold value, 0, to 1. It takes
value 1 where the material is fully dense and the threshold value ¢, where there is no

material. It can also take intermediate values. A new internal boundary corresponding to a
hole, for example, would be created if the value of the density function decreases to the

threshold value in a region.

Fixed boundary

Feasile region

Figure 3.2. Triangulated feasible region

To define the shape density function, the feasible domain is divided into triangular finite
elements as shown in figure 3.2. The density function is linearly interpolated over each
clement using the same interpolation functions that were used to represent the displacement
fields (equation 2.2.7). Within each element the density function is given by,

o= oL, + ¢2L2 +o,L, (3.2.2)

where, ¢, are the nodal values of the density function and L; are the linear interpolation

functions described in section 2.2.

L, =(a, +bx+cy)/2A (3.2.3)
a; = XY — XYy (3.2.4)
b, =Yy~ % (3.2.5)

C, =X, — X (3.2.6)

60 Chapter 3. Shape and Topology Optimization

where, i, j and k are cyclically allotted the values 1, 2 and 3. A is the area of the
triangular element.

Figure 3.3. Triangular element

(xj,yi) are the nodal coordinates of the nodes of the element. These simple interpolation
functions L;, often referred to as the area coordinates, ensure a linear interpolation of nodal
densities within the element. A contour of the density function corresponding to the
threshold value passes through the element it some nodes of the element have nodal density
values higher than the threshold value while others have values below. Since we have used
linear interpolation, the contour within an element is linear. This contour can be obtained by
joining the points on the edges of the triangle that have density value equal to the threshold
value as shown in figure 3.3. A CO continuous shape density function ensures CO
continuous boundaries for the final shape, providing a means of combined shape and
topology optimization.

The mesh used for defining the density function can also serve as the finite elements for
structural analysis. The values of the shape density function at the nodes serve as the
design variables of the optimization problem. Initially, the nodal shape density values are
set equal to unity at each node so that the geometry is identical to the feasible region.
During the optimization process the nodal density values, ¢, are modified by the
optimization algorithm which iteratively searches for the optimal values of the nodal
densities such that the overall stiffness of the structure is maximized. The objective function
is described mathematically in the next section. The optimization algorithm used in this
thesis is described is chapter 4.

3.3. Optimization ebjective and constraints

In this thesis, we will solve for the optimal geometry of structural components with the
objective of maximizing stiffness, while setting a limit on weight and avoiding interference
with other components. We limit the study to planar (2D) problems, such as plane stress

3.3 Optimization objective and constraints 61

and plane strain. To maximize the stiffness of a component, we minimize the strain energy
of the structure at equilibrium.

Structural synthesis is the inverse of the structural analysis problem. The structural
analysis problem is typically stated as a principle of virtual work (PVW), (see section
2.2.1).

[3e) (D] {e} dQ = L(Su) (3.3.1)

Q

L(3u) = [£-8u dQ+ [¢t-5u dl (33.2)
Q I,

where {€} is the strain vector, [D] is the elasticity matrix and L(8u) is the virtual work
done by the applied body force f and traction t. du is the virtual displacement and Q is the
domain over which the PVW applies. The domain Q represents the shape and topology of

the component whose structural properties are being analyzed. We use the finite element
method to solve for the displacement field u(x) for x belonging to Q.

The shape and topology synthesis problem involves solving for a domain Q that
optimizes some structural property for given loading and boundary conditions. The main
challenge is in representing the domain Q as a variable. As explained in the previous
section, we define € as the region within the original feasible domain Qg where the shape
density function has a value greater than the threshold value. The design problem
specification consists of defining a feasible domain, the applied loads and the boundaries
that are fixed, as shown in figure 3.2.

The structural optimization problem is stated as, the minimization of twice the strain
energy of the structure (or mean compliance) L(u) subject to a constraint on weight. The
minimization problem may then be written as,

Minimize L(u)

L(u(6)) = j f-u(0)dQ + j t-u(¢)dl (3.3.3)
Q T,

subject to,

W) =[ods W, (3.3.4)
Q

62 Chapter 3. Shape and Topology Optimization
[1Be} (D@ (e} 4, = L(3w) (3.3.5)
Q,

where, ¢(x) is the shape density function. Equation (3.3.4) describes the constraint that
the weight (volume) W of the component should be less than or equal to Wq. L(u) is twice
the work done by the applied forces due to the displacement u (often referred to as the
mean compliance in structural optimization literature). Note that L(u) is also twice the strain
energy of the structure at equilibrium under the applied loads. In this thesis, we will refer to
L(u) as the strain energy or the mean compliance. Larger compliance implies an ability to
absorb more energy for a given load. Stiffer structures deflect less and hence have a lower
compliance since they absorb less energy for a given load. Therefore, minimizing the mean
compliance (or the strain energy of the structure) is equivalent to maximizing the stiffness.
The design objective is to find the shape that provides maximum stiffness for a given
weight and fits in the feasible domain.

3.4. Material property variation with density

When shape defined by the density function varies the structural properties must vary
accordingly. This implies that the material property coefficients defined in the matrix [D]
equation (2.2.4a) must depend on the density function ¢(x,y). In chapter 2, section 2.3.3
the homogenization based methods of topology optimization was discussed. In this
approach the material was assumed to be porous or a composite of 2 materials. The optimal
topology was obtained by computing the optimal distribution of porosity or ratio between
the constituents of a composite. Homogenization method is used to predict how the material
property coefficients vary as a function of porosity (void fraction) or as a function of ratio
of the constituents when the material is assumed to be a composite. The material property -
density relations obtained using homogenization technique depends on the microstructure
assumed for the porous material or the compcsite. The optimal structures obtained also
differ based on the microstructure assumed. Bendsoe and Kikuchi [Bensoe_88] have
assumed a microstructure consisting of rectangular voids in each unit cell (see section
2.3.3). This assumption lcads to highly nonlinear material property density relations that
are difficult to integrate over each element. Therefore, they make the assumption that each
element has a constant porosity. The optimal shapes predicted by their approach has clearly
defined holes and very little region having intermediate porosity, that is the material is either
fully dense (no porosity) or zero density.

3.4 Material property variation with density 63

Allaire and Kohn [Allaire_92] have used rank 2 microstructure (see section 2.3.3). This
assumption leads to analytical relation between material properties and densities, however,
the shapes obtained by this approach do not have clearly defined topology. The ratio
between the constituents of the composite varies gradually with no clearly defined
boundaries between holes and material.

In this section, we discuss the material property - density relations assumed in this
thesis. The goal is to seek relations that simple and therefore easy to integrate over each
element when density varies linearly with each element. Also we are interested in relations
that Iead to clearly defined topologies so that the final shape obtained is fully dense and the
density function transitions sharply at the boundary from full density to the lowest possible
(threshold value). In the subsections below we discuss the material property density
relation studied in this thesis.

3.4.1. Linear approximate relation

When the shape of the component changes, its structural properties change. The
structural properties (stiffness, in particular) must depend on the shape density function
since we represent shape using a contour of this function. This relationship between
structural properties and the density function is approximated by assuming that the material
properties vary linearly with the density. This assumption may be intuitively explained by
noting that if the density decreased in a region, the material property coefficients would
decrease by our assumption causing the material to become weaker in that region. The
optimization algorithm therefore, decreases the density in regions where material is under-
utilized causing either new boundaries (holes) to be created in such regions or causing
existing boundaries to shrink inwards. In equation (3.3.3), therefore, the strain energy of
the structure or L(u) is expressed as a function cf the shape density function ¢. In this
section we describe a linear approximate relation between material properties and density
that is valid for small variations of the density function. Assuming linear elastic material,
the stress-strain relation for a two-dimensional plane stress case may be written as :

{c} =[D,(¢)}e} (3.4.1)
dll dl2 0
[D(®)]=|d, d;; O (3.4.2)

0 0 dy

64 Chapter 3. Shape and Topology Optimization

[I] is the elasticity matrix with linear approximate dependence on the density function.

Assuming that the elasticity modulus is linearly dependent on the density and linearizing the
resultant coefficients djj about ¢=1, we get the following relations for the elasticity

coefficients that are linear in ¢.

_E E(1+V) h
11— l—V2 + (1 (q))
d, = —v? (1 v)2 (¢-D (3.4.3a)
E

G =saew 2(1+ @D

where, E = Young’s modulus of elasticity and v = Poisson’s ratio. At ¢=1, the second
term in equations (3.4.3) vanishes, reducing djj to the usual elasticity coefficients of the
plane strain-plane stress elasticity matrix. These coefficients are plotted as a function of the
density function ¢ in figure 3.4. The curves represent the variation of the coefficients d;;
with the density function, when both the elastic modulus and Poisson’s ratio are assumed
to vary linearly with the density function. The tangent to these curves at ¢=1 represents the
relation given by equations (3.4.3). As can be seen from the figure, the approximation is
good only in the neighborhood of ¢=1. Some coeificients even become negative for small
values of the density function. Therefore, the threshold value are set close to 1 so that the
density function can vary only slightly within the geometry. The lower bound on the
density function is set equal to the threshold value. In addition the use of threshold values
close to 1 ensures that in the final optimal geometry there is a sharp transition of density
values at the boundary from the maximum allowed value to the lowest possible value
(below threshold value). Sharp transition of the density function at the boundaries lead to
clearly defined boundaries and fully dense material in the interior of the shape.

3.4 Material property variation with density 65

dd

11

Ib—q,

Figure 3.4. Material property coefficients versus density function

It is convenient to decompose the elasticity matrix into a constant component and one
that depends {inearly on the density function as

[D,]=[D]+[dD](¢-1) (3.4.3b)

where [D] is the elasticity matrix defined in equation (2.2.4), while [dD] is made up of
the coefficients of (¢-1) in equation (3.4.3). The details of the implementation of these

material property relations in an optimization software is described in chapter 5.
3.4.2. Quadratic and higher order avproximations

Rather than use linear approximations such as those explained in the previous section, it
is possible to obtain a quadratic approximation by assuming that the elastic modulus of the
material varies quadratically with respect to the density function. Similarly, one could make
higher order approximations. Just as different microstructure assumptions lead to different
material property-porosity relation when homogenization method is used, different
assumptions on the variation of elastic modulus and poisson’s ratio with density lead to
different material-property density relation. The criteria in our case for choosing between
the different relations is the sharpness of the density transition at the boundary. In other
words, we want the material inside the shape to be fully dense (¢p=1) and the material to
have the lowest possible density where the holes are located. At the boundary we want the
density to transition sharply from the highest value to the lowest value, so that we have
clear and well defined boundaries. When the material is assumed to have a rank 2

66 Chapter 3. Shape and Topology Optimization

microstructure the material tends to have gradual transition of density so that the bulk of the
solid is porous. Similarly, when a linear relation is assumed we fail to get sharp
boundaries. Since in this thesis we are interested in the design of structures of non-porous
materials, we prefer a relation that leads to clearly defined boundaries with fully dense
material in the interior. It was found that in general, higher order approximations of the
material property-density relations lead to desired behavior.

Assuming p'® order variation of the elasticity modulus with the density function, we get

the following material property-density variation,
E¢P
e

_Evg’
=1 (3.4.4)

%P
d,.=

P21+ v)

12

Again the coefficients dj; increase with the density function ¢. In addition, for this
approximation the material coefficients reduce to zero as density goes to zero, that is, d;=0
for ¢=0. Therefore, the threshold value on density ¢th can be set to be ery small or nearly
zero. The elasticity matrix can then be conveniently defined as

[D,($)]=[D1¢* (3.4.5)

where [D] is the elasticity matrix for plane stress-plane strain defined in equation
(2.2.4).

When higher order material property-density relations are used the threshold value can
be set to zero since the material coefficients do not become negative in the interval (0<¢<1).
The advantage of setting the threshold value to zero is that during the optimization process
when the density is reduced to zero in certain regions the contribution of these regions to
stiffness is also reduced to zero. This is equivalent to physically removing the finite
elements in the region to create holes. However, when the threshold values are set to zero
the optimal solutions obtained often contains regions where the density function has
intermediate values, that is values that are neither zero or one. The transition of the density
function values in the optimal solution is often very gradual so that the large portion of the
shape have intermediate densities. While the truly optimal shapes may be composites
whose density varies in the manner suggested by the optimal solution, it is often desirable

3.4 Material property variation with density 67

from manufacturing considerations to obtain solution that have fully dense solids. To
achieve this we add a penalty function to our objective function that penalizes intermediate
densities. The penalized objective function may be stated as

L,(u(@)) = [£-u(0)d2+ [t-u@)dr +c, [6(1 - $)dQ (3.4.6)
Q r, o

In the above function the last term represents a penalty on intermediate densities. ¢, is a
penalty constant whose value is increased in steps in our implementation as described in
chapter 5. As can be easily verified this term has the maximum value for $=0.5 and has a
minimum value at the extreme value of the interval [0,1]. A similar penalty function has
been used by Allaire and Kohn [Allaire_92].

3.5. Implementation using Finite Element Method

The shape density function is assumed to be uniformly varying over the domain and is
represented, as described in section 3.2, by a piece-wise linear interpolation. Since material
properties depend on the density function, they too vary uniformly over the domain. The
elasticity matrix, therefore, is a function of the density function by the approximate
relations described in the previous section. In constructing the stiffness matrix, we integrate
the principle of virtual work (equation 2.2.1), over each element to obtain the element
stiffness matrix and then assemble these together to obtain the global stiffness matrix. We
have used constant strain triangular finite elements for plane stress analysis. The
displacement fields are therefore, represented by piece-wise linear interpolation. This
representation when used in equation (2.2.5), yields the following linear displacement-
strain relation for the element,

{e°} =[Bl{u;} (3.5.1)

Substituting this relation in the expression for the virtual internal energy (or the 1.h.s of
the principle of virtual work), we get, for each element

L*(8u) = [{8e°}'(D(®)Ne°} d2, = (Buf }'[[B1'D@)IBI dn,]{u:} (3.5.2)
Q. Q

L*(8u) = {8u; }'[K,){u; }, where, [K] is the element stiffness matrix,

[K.]= [[BI'[D(@)IB] 4, (3.5.3)
Q,

68 Chapter 3. Shape and Topology Optimization

Since we have assumed a linear interpolation for the displacement within each element,
the matrix [B] is constant, resulting in a constant strain over the element. The elasticity
matrix, however, depends on the density function. Depending on the type of relation
assumed between the material properties and the density function, we need to integrate
various powers of the density function over the element. In the linear approximate relation,
using equation (3.4.3), we express the element stiffness matrix as

[K.]1=[B]'[DIB]A +[B]'[dD][B]A, (3.5.4)

where, A is the area of the triangle, [D] is the elasticity matrix for fully dense plane

stress element and

A, = j (6-1)dQ, =(m3-"12£-1)A (3.5.5)
Q,

and i, j and k are the nodes of the element e. Linear interpolation of the density function
over the elements makes this integration relatively easy. For quadratic and higher order
approximations, we need to integrate higher powers of the density function over the
element. The following relation can be derived for a p't order material property-density

relation,
11-L,
P = [¢°dQ, = [[(Li6; +L,0; +Ls6,)°2AdL,dL, (3.5.6)
Q, 0 0
where, L, +L, +L; =1

+2 _ +2 - +2 _
oA 80—)+ 0570~ 90+ 07 (0, ~0) (3.5.7)
(p+D(p+2)(®; —)0 — ;)¢ —)

IP

However, in practice it is not possible to use this relation directly since the denominator
can become zero if the density function values of any iwo nodes are equal. The
denominator can be factored out of the numerator once the value of 'p' is specifiec using
symbolic manipulation software. For example for p=4, we can express 1P as,

I = 1“—5(4»: £ O +00+070, + 070, +070, + 070,
+03; + 0.0, + 0707 + 070 + 0;0; (3.5.8)
+070,0, +070.0, +020,0,)

3.5 Implementation using finite element method 69

These relations for IP can be used to express the element stiffness matrix for higher

order material property-density relations as,

[K.1=[BJ'[D]B]I° (3.5.9)

These element stiffness matrices can then be assembled into a giobal stiffness matrix for
finite element analysis (equation 2.2.6).

3.6. Sensitivity evaluation

As explained in chapter 2, most mathematical programming algorithms use sensitivity
information such as the gradient or the hessian of the objective function and constraints
with respect to the design variables. In this section, we describe the method for finding the
gradient of L(u) with respect to the density function. One could use adjoint variable
technique described in section 2.2.2 to derive the gradient. However, here we derive the
same result by directly differentiating the equilibrium equations expressed in the form of
linear simultaneous equations using the finite element method (equation 2.2.6). We restate
the equations here for convenience,

[K}{u,}={F} (3.6.1)

where [K] is the global stiffness matrix, {uy} is the displacement vector, that is, a
discrete representation of the displacement field, and {F} is the resultant external applied
load vector. In terms of these quantities, the compliance in equation (3.3.3) may be written

as,
L(u)= {u, }'[K}u,} (3.6.2)

Taking the partial derivative of equation (3.6.2) with respect to the nodal values of the
density functions yields,

9 1) = fu,) L g,y +

t l a h
30, 3. M) gy, + i) L (3.6.3)

a9, 09,

The derivative of the displacement field with respect to the density function can be
obtained by differentiating equation (3.6.1), which yields,

a{llh} _ —~1 _a[;Kl
o = KT 55 tm) (3.6.4)

70 Chapter 3. Shape and Topology Optimization

Substituting this expression in equation (3.6.3), we get,

9 L (w) = ~{u, 0 A

3.6.5
2, ¢{ n} (3.6.5)

The derivative of L(u) with respect to density is negative if d[K]/d9, is positive
definite. A negative value of the derivative implies that when the density function increases
the compliance of the structure decreases while its stiffness increases. Since this is the
desired behavior we choose material property-density relations such that o[K]/d¢, is
positive definite. In using equation (3.6.5), it is not necessary to construct the derivative of
the global stiffness matrix with respect to each nodal density value. In fact, the element
stiffness matrix of only those elements that contain the node are functions of its nodal
density value. Therefore, the partial derivative with respect to a nodal density can be
constructed as

9 _ a[K]
% 9 Lu)= 2{ up) (3.6.6)

where the summation is carried out over the elements that contain the it node, [Ke] is
the element stiffness matrix and {u;} is the displacement vector corresponding to the

element.

The derivative of the element stiffness matrix with respect to a nodal density value can
be computed by differentiating equation (3.5.3). If a linear approximate material property-
density relation is assumed, then differentiating equation (3.5.4), we get,

dK.]_A o
% 7 [BI'(dDI(B] (3.6.7)

Differentiating equation (3.5.9), we can get the following expression for higher order
material property - density relations,

JK.] aI’
BJ'[D][B] = 3.6.8
a¢. =[B]'[DI[B] — %, ()

For example, when p=4, differentiating equation (3.5.8), we get,

3.6 Sensitivity evaluation 71

aA® 2 .5 1 5 g 1, 2 1 ., 2
%, _15¢i +30(¢j +¢k)+10(¢i¢j+¢i¢k)+15(¢j¢i+¢k¢i)

1 2 i
+ 56(‘1), q)k + ¢k¢j) + 15 ¢i¢j¢k

(3.6.9)

The nonlinear programming algorithm used in this thesis requires only the gradient of
the functions with respect to the design variables. The methods described in this section can
be extended to derive the hessian matrix of the compliance of the structure if needed. The
constraint function on the weight / volume of the structure is the integral of the density
function over the feasible domain. Its gradient is trivial to compute and the element by
element method described in this section was used to evaluate it.

A Sequential Approximate

Optimization Technique

4.1. Overview

Engineering design and structural optimization problems are often stated as non-linear
programming problems as illustrated in the earlier chapters. Typically these problems have
a large number of variables and the evaluation of the objective function and the constraints
involve computationally expensive analysis. In section 4 of Chapter 2, an introduction to
some of the commonly used nonlinear programming algorithms is presented. A large
number of algorithms exist for nonlinear programming. None of the algorithms perform
uniformly well for all kinds of problems. Most have been specifically designed to perform
well for a certain class of problems.

Sequential approximate optimization techniques (or “approximation concepts”
approaches) create a sequence of sub-problems that are easier to solve than the original
problem. The approximate objective functions and constraints of the sub-problem are much
cheaper to evaluate and the sub-prcblems are relatively inexpensive to soive. The function
and gradient evaluations of the original optimization problem are typically performed only
once per sub-problem. Unlike non-linear optimization algorithms derived by extending
Newton’s method, methods based on sequential linearization do not require the hessian
matrix a hessian matrix can be very large in applications involving a large number of
variabies, therefore, constructing this matrix and its LU decomposition represents a large
overhead. As a result, sequential approximation methods often perform better for
applications where the number of variables are very large or the second derivatives of the

function are very expensive to evaluate.

An important area of application of such sequential approximate techniques has been
structural optimization, where function evaluation involves computationally expensive
structural analysis. The evaluation of the gradient of the objective function and its Hessian
matrix each represent significant computation. In addition, for combined shape and

73

74 Chapter 4. A Sequential Approximate Optimization Technique

topology optimization problems, the number of variables involved is very large and is
dependent on the mesh density used for the finite element model. Since most mathematical
programming methods do not perform well for such a large number of variables, optimality
criteria methods have been used to solve the topology optimization problems by Suzuki and
Kikuchi [Suzuki_91]. Among the mathematical programming algorithms, sequential
approximation methods seem to be the most promising for such problems.

In Sequential Linear Programming, a non-linear programming problem is solved by
solving a sequence of linear programs created by linear approximations of the objective and
constraints. Schmit and Farshi [Schmit_74] suggested linearization in the reciprocal of the
variables. Fluery and Briabant [Fluery_79, Fluery_86] proposed the use of mixed
variables, that is to linearize with respect to some variables and with respect to the
reciprocal of other variables in such a way as to construct a convex subproblem. This idea
was further extended by Svanberg [Svanberg_87], where he suggests a method of moving
asymptotes (MMA). This method can be interpreted as setting move limits on the variables
using asymptotes. These asymptotes are moved to make the method stable and to expedite
convergence. Svanberg suggests a set of heuristic rules for moving these asymptotes. Each
sub-problem is solved by solving its dual problem that has a concave objective function and
hence can be solved using conventional gradient methods such as the conjugate gradient

method.

In this chapter, a sequential approximation method is proposed that is particularly suited
for structural analysis problems with large number of variables. In this method, a sequence
of sub-problems are generated by linearizing the objective function and setting move limits
on the variables usirg logarithmic barrier functions. Therefore, we shall refer to this
algorithm as moving barrier sequential linear programming (MBSLP). This method can be
interpreted as sequential linear programming using the primal-dual technique
[Monteiro_89a] to generate a descent direction and step size. Move limits on the variables
are flexible and are moved each iteration in a fashion such that the upper and lower limits
converge towards each other. The resulting algorithm is a general non-linear programming
technique. The principal advantage of the method is that it does not require the exact
solution of the sub-problems and hence requires very little computation per iteration.
Numerical experiments suggests that the method exhibits fast convergence and requires
fewer function and gradient evaluations than traditional Newton-like methods. It is
insensitive to the scaling of the variables and performs well even for ill-conditioned
problems if the hessian matrix is nearly diagonal.

4.1 Overview 75

The philosophy of sequential approximate optimization techniques and their evolution is
summarized in section 4.2, with a brief description of some popular techniques. A
sequential approximation method that uses logarithmic barriers to set move limits on the
variables is introduced in section 4.3. The subproblem generated at each iteration for linear
equality constrained problems is described along with the solution strategy and the criteria
for moving the barriers. The algorithm requires a feasible starting point. A simple method
for finding such a point using moving logarithmic barriers is described in section 4.4. The
method is extended to handle nonlinear equality and inequality constrained optimization in

section 4.5.

4.2. Sequential Optimization Algorithms

Sequential approximate optimization algorithms construct local approximations of the
objective and constraint functions to create sub problems that are easier to solve. In
structural optimization, the objective functions and/or constraints are not explicit functions
of the design variables. Instead, the structural response must be determined by numerical
methods such as the finite element method. A global approximation of the functions can be
constructed by evaluating them at a large number of design points and fitting a polynomial
approximation. Even though constructing such a global approximation would make the
subsequent optimization fast, the construction of such a global approximation can be very
expensive when the number of variables is large. Therefore, most sequential approximation
algorithms construct local approximations using the objective and constraint function values
and their gradients evaluated at the current best guess of the solution. Some of the common
local approximations that have been used are linear approximations, reciprocal
approximations and convex approximations constructed by using a hybrid of linear and

reciprocal approximations.

Lir ar approximation is the simplest of the local approximation schemes and is based
on the first order Taylor series expansion of the function. A nonlinear function f(x) is

linearized about a point Xy as follows:

Fo(x)=f(x,)+ Vi(x,)" (x - X,) (4.2.1)

Rather than linearize over the design variables it is possible to linearize with respect to
intermediate variables. For example, if a set of intermediate variables are defined as
functions of the design variables as:

x=x(y), yeR" 4.2.2)

76 Chapter 4. A Sequential Approximate Optimization Technique

Then a function f(x) can be linearized with respect to y as
Fi(y)=f(x(y)+ V f(x(y,)' (Y- ¥,) (4.2.3)

where, V_ is the gradient with respect to the intermediate variables y.

In structural optimization, the reciprocal variables have been a very popular intermediate
variable. The reason is that for many truss and frame sizing optimization problems, the
stress and displacement functions are linear functions of the reciprocal of the design
variables. As a result linearization with respect to reciprocal variables leads to accurate
linearization. Reciprocal approximation can be obtained by linearizing with respect to the
reciprocal intermediate variables.

Using y; =1/x;, i=1,...n, in equation (4.2.3) and linearizing with respect to y yields
the reciprocal approximation. This approximation can then be expressed in terms of x by
substituting for y in terms of x to obtain the following,

Xy OF

e (4.2.4)

Fe(x) = f(x,)+ Y. (x; = X;)
i=1

X=Xy

A hybrid of the linear and reciprocal approximations leads to the so call conservative
approximation or mixed linearization, which can be expressed as,

: of
Fc(x)=f(xk)+2ri(xi—xik)5x— (4.2.5)
i=l ilx=x,
Loif x %) <
ox,
where, 1, = (4.2.6)
X .
—=, otherwise

X.

This approximation is referred to as the conservative approximation because when a
constraint is expressed as f(x)20, then F(x) is more conservative because Fe(x)<FL(x).
The approximation Fc(x) is constructed by setting Fc(x) identical to Fr(x) in the region
where Fp(x)>Fgr(x) and Fc(x)=F_(x) otherwise. The approximate function constructed
here is concave. One could convert it to a convex approximation by redefining rj. This
property makes conservative approximation popular, since the convexity / concavity of the
functions can be used to design elegant and fast optimization algorithms.

4.2 Sequential Approximation Methods 77

Higher order approximations can also be constructed by expanding the function using
Taylor series and including the higher order terms. Thus, one could create a quadratic
approximation by including the second order terms of the Taylor series. Using the
reciprocal of the variables in the quadratic approximation, one can construct the reciprocal

quadratic approximation and so on.

Sequential approximate optimization algorithms construct a sequence of sub problems
using approximations such as those cited above. The basic algorithm common to all
sequential approximation algorithms may be summarized as:

1) Guess an initial value of the variables xg at iteration k=0.

2) For each iteration k, evaluate the objective function {(x), the constraints h(x), g(x)
and their gradients Vf(x),Vg(x),Vh(x) at the design point x.

3) Construct local approximations of the objective function and all the nonlinear
constraints about the point xi using the function values and gradients evaluated in step 2
and generate a subproblem defined in terms of these approximate functions. (Typically
bounds are set on the variables in the sub problem’s definition. These bounds or side
constraints are referred to as move limits and they are updated each iteration.)

4) Solve the above subproblem to obtain its optimal point x; .

5) Test whether this point satisfies the convergence criteria for the original problem.
Terminate the iterations if it does, otherwise use x, as the starting point of the next

iteration. That is, set Xk+] = X, and go to step 2.

Various sequential approximate optimization algorithms have been proposed. They
differ from each other due to the differences in the local approximation schemes used and in
the sub problem definition.

4.2.1. Sequential Linear Programming (SLP)

Sequential linear programming is the simplest and earliest sequential approximate
optimization algorithm. It constructs sub problems using the linear approximation of the
objective and constraints functions. Consider a nonlinear programming problem stated as

minimize fo(x), 4.2.7)
subject to fj(x) <0, j=1,..r

78 Chapter 4. A Sequential Approximate Optimization Technique

Sub problems are constructed for this problem as,

min fo(x*) + D (x;-X{ oo (4.2.8)
i=1 ox; c=xt
subject to,
R - .\ Of; .
fi(x)+Z(xi—xi)a <0, j=1,.r (4.2.9)
i=1 X x=x*
IF<xk<uf, i=1l..n (4.2.10)

The above problem is a standard linear programming (LP) problem that can be solved
using standard LP packages that are very reliable and robust. The vectors 1f and uf,
i=1,..n are the move limits that set bounds on the variables. They are reset every iteration.
One problem with SLP is that each iteration involves solving a LP completely and hence the
computational cost per iteration is very high especially when there are a large number of
variables. Moreover, one needs a good strategy to set rnove limits to ensure convergence.
The move limits are tightened at each iteration so that the upper and lower limits move
towards each other. Various different criteria have been proposed to determine when and
by how much to shrink the move limits.

Schmit and Farshi [Schmit_74] proposed linearization in reciprocal variables to
construct sub problems similar to those constructed above. These sub problems are simple
nonlinear optimization problem that are typically inexpensive to solve relative to original
nonlinear problem. In the design of statically determinate trusses and frames, the siresses
and displacements are linear functions of the reciprocal of the design variables, namely the
cross-sectional sizing variables. This was the original motivation for linearizing with
respect to the reciprocal variables, however, this technique was found to be beneficial for
other structural optimization problems as well.

4.2.2. Convex Linearization (CONLIN)

Convex linearization methods construct a sequence of convex sub-problems whose
solutions converge to the solution of the original nonlinear programming problem. The
sub-problem is constructed by mixed linearization that was described earlier. For the
nonlinear program (4.2.7) described above, the objective and constraint functions are
locally approximated using conservative approximation such that all the functions in the
subproblem are convex. The subproblem may be stated as :

4.2 Sequential Approximation Methods 79

min Y &;fX; -28;52—d0 (4.2.11)
i=1 i=1 X
subject to,
_f; .
ZSffux, -—Zﬁi <d;j=ler (4.2.12)
=1 i
where,
of of,
8 =1,8 =0, f, = , if —| >0 4.2.13
i i ax, n i ax, i ()
of . af
8'=0,8 =1, f, 1 <0 4.2.14
ij () axi |x=xk ax s, ()
d; zx,k l —f,(x,), j=0,.r (4.2.15)

The inequalities in the above subproblem are conservative approximations to the
inequalities fj(x) <0, j=1,..r. In addition, the objective and constraint functions of this
subproblem are convex [Fluery_86]. Therefore, the method has been referred to as convex
linearization (or CONLIN) method. Taking advantage of the convexity and seperability of
the subproblem, various dual methods have been proposed [Fluery_79, Fluery_86] to
solve these sub problems efficiently.

4.2.3. Method of Moving Asymptotes (MMA)

The method of moving asymptotes is a generalization of the convex linearization
method that provides flexibility in controlling the degree of convexity and conservativeness
of the approximation. The local approximation used in this method linearizes the functions
with respect to the intermediate variables 1/(U; —x;) or 1/(x; —L,) depending on the sign
of the partial derivatives of the function with respect to x;. For the nonlinear problem
(NLP1), the subproblem for the kth iteration may be stated as:

min 25* o —28‘ (4.2.16)
subject to,
Ll f. ! f.

& —1 -3 & —1—<d;, j=1,.. 4.2.17
2352 28— sdpj=lr (4.2.17)

where,

80 Chapter 4. A Sequential Approximate Optimization Technique

" _ 20f; .. of
8 =1,8 =0, f,=(U,-x,) &’- if a—x’ >0 (4.2.18)
X i 2 Of, . Of,
8i =0, 8i =1, fij =(xik _Li) Sx—‘:x:)(k, 1 &‘:-x“k <0 (4219)
n L \Of
d; =38/ (U, - 28 "a —£,(x,) (4.2.20)
i=l ils,

The constants 1; and U; are reset at each iteration and they define the asymptotes of the
approximate functions used in the subproblem. Therefore, this method can be interpreted as
convex linearization with move limits set by these asymptotes for each subproblem. Also
we note that MMA reduces to convex linearization method if we set L;=0 and U;=+c-.
When the L; and U;jare set closer to each other the degree of convexity and
conservativeness of the approximation increases.

4.3. Moving Barrier Sequential Linear Programming (MBSLP)

In this section, we propose a sequential optimization algorithm that we refer to as the
moving barrier sequential linear programming. In this algorithm, the functions are
approximated as a sum of the linear approximation of the function and logarithmic barrier
terms that tend to infinity near the move limits on the variables. This approximation is
convex and we refer to it as the logarithmic barrier approximation. The sub-problems
generated using this approximation for linearly constrained problems and solution methods
for these sub problems are described in this section.

4.3.1. Subproblem definition

Consider a optimization problem with linear constraints and side constraints as
described below,

P):Min f(x), xeR",f:R" >R “4.3.1)
subject to,

= mxn m
Ax=b, AeR ,beR 43.2)

The objective function f is a nonlinear function. The vectors I and u set the side
constraints on the variables, written succinctly as, I < x < u. In the solution of the above

4.3 Moving Barrier Sequential Linear Programming 81

optimization problem the side constraints are treated differently than the other linear
constraints. A sequence of sub-problems are generated of the form,

(Py) : Min F,(x), suchthat, xe€§, (4.3.3)

S, ={x|Ax=b; I* <x < @i} (4.3.4)
n R n

Fy (x) = VE(x*)'x— £, Y In(x; - 1)~ £, ¥ In(&f —x;) (4.3.5)

i=1 i=l

The function Fi(x) is the objective function of the sub problem (P}) generated at the kth
iteration. This function is constructed by logarithmic barrier approximation of the original
objective function f(x). This approximate function is strictly convex since it is the sum of
terms linear and logarithmic in the design variables. Assuming that Sy is a non-empty and
bounded set, there exists a unique global minimum for the above sub-problem. Note that
the side constraints for the sub-problem (Py) are not the same as that for the original

problem (P). Instead, I* and @ are flexible move limits that satisfy the condition,
I<i*<x<i<u (4.3.6)

These move limits serve to limit the step size taken at each iteration k. A criterion for
selecting their value is given later. This criterion causes the upper and lower move limits to
converge towards each other and the optimal solution. If the gradient vector ¢ = Vf(x*) is
taken to be a constant, the above sub-problem can be viewed as linear programming, using
barrier methods to enforce the move limits. The logarithmic barrier function has been found
to perform well for the primal-dual method (Monteiro_89a) of linear programming. The
primal dual method is a interior point method for linear programming that uses logarithmic
barriers to impose side constraints. In one dimension the objective function of the
subproblem may be represented as shown in figure 4.1. The gra-‘ient of the function is
evaluated at the current value of the variables x*. The straight line tangent to the function
f(x) at the this point is the linear approximation of the function. The objective function of
the sub-problem, Fy(x), is nearly equal to the linear approximation in the neighborhood of
the point x*, but due to the logarithmic terms its values rises sharply near the move limits
x =1* and x = @*. Therefore, these logarithmic terms behave as barriers that prevent the
variables from violating the move limits during the optimization of the sub problem.

82 Chapter 4. A Sequential Approximate Optimization Technique

f(x)A

& x

[k -
¥ x -

Figure 4.1. Objective function of the subproblem for one-dimensional case

4.3.2. The dual of the subpreblem

In the sub problem defined in the previous section, if we neglect the logarithmic barrier

terms and treat the gradient vector ¢ as a constant, then the sub problem becomes a linear
program. The dual problem for this linear program, min e'x, x €S, is defined in this

section. The dual variables are the Lagrange multipliers of the linear program. The variables
defined in connection with this dual problem are useful in describing the solution scheme in
the next section. The dual problem of the linear program can be defined as

(Dy) : max q(A) 4.3.7)

q(A) = ingrrégm {e'x + N (Ax —b)}
= (c'"+NA)X-Ab (4.3.8)

= z's—Xb
where,

1,

if z,>0
} (4.3.9)

u. otherwise

z = (c+A'M)eR" and)‘(i={

A is the vector of Lagrange multipliers that serve as the variables of the dual problem.
The vector z is a set of intermediate variables that are linearly dependent on the dual

variables A.

4.3.3. Solution strategy

The optimality criteria for the sub-problem (Py) can be derived as,

4.3 Moving Barrier Sequential Linear Programming 83

(x, — 1¥)(0* — x,)z; — &, (5 +1¥ —2%,)=0, i=1...n

Ax=D) 4.3.10)
z—A'A=c,

where,

zeR", ¢=Vf(x*)eR" and AeR"™ (4.3.11)

The optimality criteria are a set of nonlinear simultaneous equations. Due to the
convexity of the sub-problem, we know that the solution of these equations would yield the
unique global minimum of the sub-problem. These equations could be solved using
Newton’s method. In doing so we treat ¢ = Vf(x*) as a constant vector, thereby making a
linear approximation of the objective function. Using the standard first order Taylor series
expansion, we get the following linear simultaneous equations for evaluating the Newton

descent direction.

(x* = T)(0F — x*)Az, +|(GF + I - 2x5)zF|Ax, + 26, Ax, =—v}, i=l..n

Alx =0 (4.3.12)
Az—-A'AL =0
where,
vE = (xf - I8 — xP)zt - e, (@ +1F - 2x)) (4.3.13)

The above equations can be solved easily using a linear equation solver. However, we
note that the first ‘n’ equations of (4.3.12) are decoupled. We make use of this special
structure of the equations to calculate the solution efficiently. The following notation
simplifies the algebraic manipulation of the above equations. Let X € R™" and Z € R"™"
be diagonal matrices defined as:

X, = (xE =Tk - x), X;=0,i#] (4.3.14)
Z, =|(@F +1% - 2x*)zt|+2¢,, Z,=0,i#] (4.3.15)

Equations (4.3.12) and (4.3.13) can then be rewritten as;

XAz + ZAx = —v, where, v = Xz* -, (@* + 1¥ - 2x¥) (4.3.16)
AAx=0 (4.3.17)
Az—A'AL=0 (4.3.18)

84 Chanter 4. A Sequential Approximate Optimization Technique
Multiplying equation (4.3.16) by AZ™' and substituting equations (4.3.17) & (4.3.18)
into (4.3.16), we get,

AL =—(ADAY) AV
Az =A'AL (4.3.19)
Ax=-V-DAz, VeR" and D=R"™

where, D=Z"'X and V =Z"'v which can be written out as,

(xk = i)k - xt)

D =r——% , D;=0,1#j, i,j=L..n
(G +1F —2x¥)zk |+ 2¢, !
(4.3.20)
V.
Vi = ~ : , i=1l..n
(GF +1¥ —2xF)zf |+ 2¢,
The variables are updated as follows,
x*"' =x* + o, Ax
"' =z* + o, Az (4.3.21)

A =2+ 0, AL

The step size a, is selected such that the new values of the variables are feasible, i.e.,

I¥ < x < §i*. The step size may therefore be computed as follows,

o, = El’f..“n{di} (4.3.22)
where,
Tk _ Lk
L =X if Ax, <0
& =1, ‘k ,i=l..n (4.3.23)
u -

X;)
! L otherwise

The Newton iterations derived above may be used to solve the optimality criteria
equations and thereby obtain the global minimum of the sub-problem (Py). However, since
the minimum of the subproblem is not the same as the minimum of our original problem,
we do not solve the subproblem exactly. Instead, we restrict the number of Newton
iterations to the minimum required to generate a descent direction. For unconstrained
optimization such a direction is found at the very first iteration. However, for constrained

4.3 Moving Barrier Sequential Linear Programming 85

optimization, if our initial guesses for the Lagrange multipliers are not close to the real
values, more than one iteration is required. If this is the case we use the above iterations to
update A and z, but leave x unchanged. Once a descent direction is found, the variables are
updated and the subproblem is redefined by re-evaluating the functions and gradients and
by resetting the move limits. Typically very few Newton steps are required per sub-
problem. As a result the computation per iteration is reduced as compared to other
sequential programming algorithms where the sub problems have to be completely solved
using dual methods (see [Svanberg_87]). Note that at each iteration we need to solve only
'm' simultaneous equations to obtain AA in equation (4.3.19). Also note that only one
function and gradient evaluation is required per iteration to define the sub-problem.
However, once the descent direction and step size are found it is beneficial to use Armijo’s
rule to reduce the step size further if necessary. When Armijo’s rule is used to reduce step
size, one additional function evaluation is required per step size reduction. The move limits
set by the barrier function usually makes further step size reduction unnecessary in most
iterations so that Armijo’s rule serves merely as a safety check. The Armijo rule used in our
implementation is given below. We set the step size s, =™, , where we chose a fixed
scalar (3 such that 0 < <1 and m, is the smallest positive integer for which the following

relaticn holds.

f(x,)—f(x, +B™ o, Ax,) = -of™a, VI(x,) Ax, (4.3.24)

This algorithm can be extended to handle inequality constraints of the form Cx <d, ,
CeR™,d eR" by using slack variables to convert them to equality constraints of the form
Cx+s=4d,seR’, s; 20. In the next section, we give the details of handling inequality

constraints for very general nonlinear programs.
4.3.4. Criteria for moving the barriers

The move limits are set at each sub-problem in such a way that the variables stay within
the feasible domain of the original optimization problem (P). The upper and lower limits
are moved such that they converge towards each other and the feasible region for the sub-
problems shrinks progressively. The move limits help to stabilize the algcrithm and prevent
the step size from being excessive. The values of the move limits are initialized to be the
same as the side constraints on the original optimization problem (P), that is, i," =1, and

A0 _
u; =u,.

Many update schemes are possible for resetting the move limits at each iteration. Here
we give a scheme that was found to perform very well for linearly constrained problems

86 Chapter 4. A Sequential Approximate Optimization Technique

where a large number of the side constraints are likely to become active. In this scheme, the

move limits are updated as follows,
if Ax, >0,
1¥! =x* (Update lower bounds) (4.3.25)

else if Ax, <0,

k*l = x¥ (Update upper bounds) (4.3.26)

1

u

This criterion is based on the idea that if the value Ax;>0, then x; is increasing and by
updating the lower limit as above, we prevent the x; from subsequently reducing below x;.
This scabilizes the iterations and if the value of the variable is oscillating about its optimal
value, this ensures that the step size is progressively reduced until both the upper and lower
move limits converge towards the optimal value. Figure 4.2 illustrates this move criterion
for a unconstrained two-dimensional optimization. The contours of the function are shown
in the design space. In this case, the descent direction is such that both the variables are
increasing and therefore the lower move limits are updated as shown and the upper bounds
are unaffected.

X (Optimum)

Descent direction

Figure 4.2. Resetting the move limits

This criterion ensures convergence if the objective function is strictly convex.
However, if the function is not convex, the criterion (4.3.25, 4.3.26) alone does not work.
For example, when the contours of the objective function are non-convex, it is possible for

4.3 Moving Barrier Sequential Linear Programming 87

the Ax; to be positive but the optimal value of the x; to be less than x{ and vice versa. This
is illustrated in figure 4.3.

XZA

X * (Optimum)
Descent direction

ll2 P
k
1, -
< ! k k+ 1 &
— 4
\/ u =y Xy

Figure 4.3. Failure of resetting criterion for nonconvex functions

The contours of the function are non convex in the example shown in figure 4.3. In this
case, the descent direction is such that the variable x; decreases causing the upper move
limit to be reset as shown. The optimum point x* now lies outside move limits. In
subsequent iterations, as the variable xk tries to move towards the optimum, the upper
move limit will become active. Since the move limits are artificial bounds set on the
variables, they should not become active constraints at the optimum. Therefore, if a move
limit becomes active, it is an indication that a situation such as the one illustrated in figure
4.3 has occurred. Therefore, we need a criterion to detect when a moving limit becomes
active and if it does, the move limit is pushed back. The criterion may be stated as follows,

if (z; > 0) and (v; < 0),

it = max {(if - 6k - 1), 1i} (4.3.27)
else if (z; < 0) and (v; > 0),
6" = min {(a¥ + @ -) u} (4.3.28)

This criterion is based on the observation that when z; > 0, the variables x; should
decrease and tend towards its lower limit. For the unconstrained case, Ax; =-v;/Z;,
therefore, v; should be greater than zero in order for Ax; to decrease (Z;;>0). In equation
(4.3.13), we defined v} as:

88 Chapter 4. A Sequential Approximate Optimization Technique

vE=(xf - iik)AF — x5z —e, (GF + ii" —-2x})

Clearly, the sign of v{ would be identical to z*, when the first term in the right hand
side is dominant. The factor g tends to zero as the iterations progress and the second term

on the r.h.s of equation (4.3.13) also tends toward zero. However, if a bound is active or
nearly active then the first term vanishes and the sign of v¥ is determined by the second

term. In this case, we push back the lower move limit using the update formula in equation
(4.3.27) and (4.3.28).

The value of the constant g is set each iteration such that it tends to zero. Ax is a
descent direction only if ¢tAx < 0. Using the expression for Ax in equation (4.3.19), we

get,

c'Ax = (ekZCi(ﬁf +1F —2xf) = Y ey 2k + Az)X, J /zii (4.3.29)

i=l i=1

Clearly, the value of g influences Ax so that for large values of €, Ax may not be a
descent direction. In our implementation, we set g at each iteration such that,

£ = 5—; , where g, =2'(x— %) (4.3.30)

z and X are defined in equation (4.3.9). Note that g, is the duality gap between the
linear program min ¢'x, x €S, and its dual max q(A) defined in equation (4.3.8). The
duality gap decreases when z becomes very small and when the upper and lower move
limits of the variables approach each other. Therefore, resetting € by equaticn (4.3.30)
ensures that its value decreases each iteration as the move limits converge towards each
other. The value of g obtained by equation (4.3.30) does not guarantee that Ax is a
descent direction. When some variables are very close to the move limits such that
X, = (x¥ —1¥)(@* - x¥) tends to zero then, it is possible that the terms in the first
summation of equation (4.3.29) dominate causing Ax to be a non-descent direction.
However, as noted earlier, the criteria for updating the move limits (4.3.27) and (4.3.28)
prevents this by moving back the move limits whenever they tend to be active constraints.
Therefore, the criteria for resetiing €, and the move limits together ensure that a descent

direction is obtained at each iteravion.

4.4. Finding an initial feasible poeint

4.4 Finding an initial feasible point 89

The algorithm described above is an interior point method since we 2ssume that the
current guess of the solution, xk, is always within in the feasible region. The initial guess
of the solution must therefore be a feasible point. During the subsequent iterations, we get a
sequence of points that are within the feasible region due to the move limits set by the
barrier function. An initial feasible point can be found using a simple modification to the
moving barrier technique.

An arbitrary starting point x° can be projected on the hyper plane Ax=b by
minimizing "x - :4(""2 subject to Ax = b. The projected point X° is obtained as

% =x"-A'(AAY(Ax" -b) (4.4.1)

The analytical center of the polyhedra S={x|Ax=b; I <x< 0"} is defined as the
unique minimum over S of the convex function F, defined below.

P,: MinF,(x) = -—sk(ziln(xi -1+ iln(ﬁik - X,)), x€eS (4.4.2)
i=l

The analytical center is an interior point of the polyhedra S. If the point X° does not
satisfy the feasibility requirement 1< X° < u of the original problem (P), then move limits
of the problem (P,) are set such that 1<x’<i using equations (4.4.3). The method used
in section 4.2, to find a descent direction for the sub problems (P,) can also be used for
the optimization problem (P,). Indeed after setting ¢ =0 equations (4.3.14), (4.3.15) and
(4.3.16) yields a descent direction for (P,). In practice large values for €, leads to faster
convergence towards the analytical center. After updating the value of X° using the descent
direction, the move limits may be reset as,

¥=%%-§; =y, if x, <1,
i =xk+8; 0k =1ifx, 2y, (4.4.3)
i =y, ;i¥=1;ifl,<x,<u,i=l.n

where & is a small positive real number. The concept is illustrated for the one-
dimensional case in figure 4.4. The current guess for the variable, xk, does not lie within
the side constraints 1 < x < u. The move limits are set such that it encloses xk and the lower
limit 1* is nearly equal to xk. When Fy(x) is minimized, each iteration ~~ = " s the variable
closer to the analytical center of the set Sk={x | *<x< i }. The movc it is reset after
each iteration using equation (4.4.3) so that the move limit 1¥ moves closer to the new
value of the variable xk. The iterations are continued until xk is in the fea. ible region l<x<u.

90 Chapter 4. A Sequential Approximate Optimization Technique

F, (x)4

|
|
|
|
|

' |

| | Direction of

I increasing €k

| |

- | >
L L OB uo
<k

Analytical center

Figure 4.4. Finding a feasible point (1D case)

For linearly constrained problems, the value of X° is changed at each iteration such that
it moves away from the move limits along the hyper plane Ax =b. By resetting the move
limits using equations (4.4.3), the move limits are again moved closer to the variable %°.
As the iterations are continued the move limits approach the actual bounds on the variables 1
and u. The iterations are stopped when the feasibility conditions 1< X* <u are satisfied.

Figure 4.2. illustrates a three-dimensional example where the linear constraint is a plane
and the feasible region is a triangle on this plane whose edges are defined by the lower
bounds on the variables. An initial guess is projected on to this plane. If the projected point
does not lie inside the feasible triangle, the lower move limits for the variable are adjusted
so that the projected point now lies inside the feasible region defined by the new move
limits. Subsequent iterations towards the center of the analytical center of the feasible
triangle gives us a sequence of points lying on the plane and tending towards the analytical
center. The iterations are stopped when we obtain a point that lies inside the feasible

triangle.

4.4 Finding an initial feasible point 9]

Xy

Figure 4.5. Finding a feasible point (3D illustrative example)

4.5. Extending MBSLP to handle nonlinear constraints

In the last two sections, we introduced a sequential approximate algorithm for
optimizing linearly constrained optimization problems. In this section, we extend the
method to solve general nonlinear programming problems with nonlinear equality as well
as inequality constraints. A general nonlinear programming problem can be stated as,

(NLP) : Min f(x), xeR", f:R" 5 R (4.5.1)
subject to,

h(x)=0, h:R" > R™

g(x)<0, gR" >R’ (4.5.2)

li Sxi Sui, i=1,...,n

where h(x) and g(x) are nonlinear functions that express the equality and inequality
constraints respectively. As before, f(x) is the objective function which may be a nonlinear
function of the variables. The vectors I and u are used to describe the side constraints on
the variables. An approximation to the above nonlinear program may be constructed as
follows,

Min Vf(x,)'x - s:kiln(xi -1)- ekiln(ui -X;) (4.5.3)
i=1

i=l

92 Chapter 4. A Sequential Approximate Optimization Technique

subject to,
h(x,)+Vh(x,) (x-x,)=0
g(x)+Vekx,)(x-x,)<0 (4.5.4)

|, <x,<u,i=L..,n

To apply a meihod similar to the one developed in section 3, we convert inequality
constraints into equalities using slack variables s. The sub problems may then be defined

as:
Pk : Min F, (x,) (4.5.5)
subject to,
Ax=Dh (4.5.6)
Cx+s=d, seR’ “4.5.7)
*<x <u i=1..n (4.5.8)
5,20, j=1,.r (4.5.9)
where,
F (x,)=c'x—g, 3 In(x; - 1) - £, Y In(df —x;) — &, Y In(s;) (4.5.10)

i=l1 i=1 i=1

A=Vh(x,)', AeR™ (4.5.11)
C=Vg(x,)', CeR™ (4.5.12)
b=Vh(x,)'x, —h(x,), beR" (4.5.13)
d=Vg(x,)'x, —g(x,), deR’ (4.5.14)
¢ = Vi(x,) (4.5.15)

By linearizing the nonlinear constraint equations about the current value of the
variables, we now have a linearly constrained subproblem. The objective function of the
subproblem F, (x,) is strictly convex and therefore we have a convex subproblem that has
a unique minimum. Inequality constraints have been converted to equality constraints asing
the slack variables s. Note that logarithmic terms corresponding to the slack variables can
be thought of as barriers that prevent the violation of the linearized inequality constraints.
As before 1 and u* are the move limits on the variables. The criteria for setting their value
at each iteration is described later. Techniques similar to those developed in section 4.2 can
be used to solve this subproblem. Using the Kuhn-Tucker conditions (see Appendix A) the
optimality criteria for the subproblem may be stated as:

4.5 Extending MBSLP to handle nonlinear constraints 93

(ﬁk +ik —2x) m r .
C.—¢ i 4+ AA+)YCu. =0, i=1,..n 4516
i & (x, — 1)@k - x,) gl. i Z:, it ()

Sy =0, Q=1 (4.5.17)
S
Ax=b, Cx+s=d (4.5.18)

A eR™ and p €R" are the Lagrange multipliers. The above nonlinear equations can be
solved for the variables x, A, i and s using Newton’s method. However, as before we are
not interested in the exact solution of the sub-problem and therefore carry out only the
minimum number of iterations required to find a descent direction. For notational
convenience we define, z€ R" as z=c+ A'A+ C'u. The variables may be updated using

Newton iterations and the descent direction and the step size may be calculated as follows:

(xF = I8 - x¥)Az, + (|65 + 0¥ — 2x5)z|+ 2¢, }Ax, =—v*, i=1,..n

(4.5.19)
SEAW, + W As, = —sflL, +€,, = ~wF (4.5.20)
AAx =0 4.5.21)
CAx+As=0 (4.5.22)
Az~ A'AL-C'Ap=0 (4.5.23)

where, v¥ = (x¥ = I¥)(G% - x¥)z* — g, (0¥ + 1% - 2x*)

The following matrix notation enables succinct algebraic manipulation. Let X,Z € R™"
and S,M e R™" be diagonal matrices defined as,

X =(xk =)@ - x¥), X, =0,i#]

A (4.5.24)
Z; = (0 +1f =2x{)zf|+2¢,, Z,=0,i#]j
S; =5/, S;=0, i#]
k . (4.5.25)
M; =p;, M;=0,i#]
This notation allows us to rewrite equations (4.5.19-4.5.23) as:
X 0](Az Z 0 |{Ax -V
+ = (4.5.26)
|0 S|{Ap 0 Mj|As | —w

A 0](Ax)
=0 (4.5.27)
| C 1] As}

94 Chapter 4. A Sequentia! Approximate Optimization Technique

(o e
Ap ¢ IjlAn

The above linear simultaneous equations can be solved to obtain the stepsize Ax, Az,
As, AN and Ap. We make use of the special structure of these equations to obtain the

solution efficiently as follows. Premultiplying equation (4.5.26) by the matrix

AOTZ o] o ,
, and substituting equation (4.5.27) and (4.5.28), we get,

CI|OM
AZ'XA! AZ'XC AA -AZ'v
I — Iyt -1 = -1 - (4.5.29)
CZ'XA' CZ7XC'+M 'S ||An -CZ ' v-M'w
Az = A'AA +C'Ap (4.5.30)
Ax =-Z'XAz-Z7'v (4.5.31)
As=-M"SAp-M"'w (4.5.32)

Equations (4.5.29) are (m+r) linear simultaneous equations and they can be solved
using standard linear equation solvers such as LU decomposition followed by back
substitution. The values of AA and Ap can then be used in equations (4.5.30), (4.5.31)
and (4.5.32) to obtain Az, Ax and As respectively.

We need a feasible starting point to minimize the sub-problem (Py) described in
equations (4.5.5)-(4.5.9). Unlike in the linearly constrained problems described in section
4.3, the new solution obtained after an iteration need not be a feasible solution of the sub-
problem generated in the next iteration when the constraints are nonlinear. Hence, at each
iteration we need to check whether the current solution is feasible and if its not we need to
search for the closest feasible point. We do this using the method that was described in
section 4.4, with slight modifications to account for the inequality constraints and the slack
variables. Firstly, the current point is projected on to the hyper plane represented by the
equality constraints. Using equations 4.4.1, we obtain the projected point X* as

%% = x* — Vh(x,)(Vh(x,) Vh(x,)) " h(x,) (4.5.33)

If the projected point does not satisfy all the inequality constraints, then we reset the
move limits and the slack variables and move in the direction of the analytical center of the
polyhedra defined by the move limits and slack variables. The analytical center for this
polyhedra is obtained by minimizing the following function,

4.5 Extending MBSLP io handle nonlinear constraints 95

Py: Min Fy,, x €S, (4.5.34)

F,(x)= —sk(Zln(xi -1%+ Z"ln(ﬁik -x;)+ z‘ln(si)) (4.5.35)
i=l i=1 i=1

Sb={x|Ax=b;Cx+s=d;i"<x<ﬁk;0<s} (4.5.36)

A few iterations to minimize the above optimization problem, yields a feasible point for
the original optimization problem. The move limits are reset each iteration using equation
(4.4.3) and the slack variable are initialized to a small positive value.

In section 4.4.3, we described a criteria for resetting the move limits at each iteration.
The criteria was found to work very efficiently for linearly constrained problems including
the shape and topology optimization problem where the number of variables were very
large. Here we propose an alternate criterion for resetting the move limits. This criteria
eliminates the dependence of the descent vector on the parameter €x. The move limits are

updated as follows.

a =— (4.5.37)

ii“ =max{x; —a;,, I} .
| ,1=1,.,n (4.5.38)
0 = min{x, +a,, u;}

Note that the move limits on each variable are set such that they are equidistant from the
current value of the variable, except when the variable is very close to the side constraints.

When the move limits are equidistant, the descent direction generated at each iteration is not
dependent on g, as can be verified by equation (4.3.12). Furthermore, this update criteria

decreases the distance between the bounds, 2a;, as the square of the Kuhn-Tucker vector

z'.z decreases. At the optimal solution, when the Kuhn-Tucker vector z vanishes, the
upper and lower move limits converge on to the optimal values of the variables. The
inverse relation between a; and z; in equation (4.5.37) ensures that the subproblem is
properly rescaled during the Newton iterations. We also obtain the Lagrange Multipliers as
by-products during the solution process provided none of the side constraints of the
original problem become active. In fact if we are interested in obtaining the Lagrange
Multipliers we should treat all the side constraints the same as other linear constraints.

96 Chapter 4. A Sequential Approximate Optimization Technique

The step size suggested by the Newton iteration for the sub-problem depends inversely
on g,. As the variable approaches the optimal value and the upper and lower move limits

converge towards each other, g,_should tend towards zero so that step sizes do not become
too small. We have used the following rule to set the value of g,.

g, = %k— , where g, =2'(x— &) (4.5.39)
n
gk is the duality gap between the linear program min c'x, xeS, and its dual
max q(A) , u =0, where
S, ={x|Ax=b; Cx+s=d; I¥ <x<ii¥;s; 20}, i=1,.n and j=1,.r (4.5.40)

g(A) = infimum {c'x+A'(Ax —b)+p'(Cx+s—d)}

1Sx<u
(¢ + NA +p'C)R - A'b—p'd (4.5.41)
= z'kx—-Ab-p'd

1 ifz>0
(4.5.42)

u. otherwise

z = (c+A'A+C'p)eR" and ii={

The duality gap decreases when z becomes very small and when the upper and lower
move limits of the variables approach each other.

4.6. Summary

This chapter described a sequential approximate optimization technique for nonlinear
programming that locally approximates the objective functicn linearly and sets move limits
on the variables using logarithmic barrier functions. This technique, like other sequential
linearization techniques, does not require the evaluation of the hessian of the objective
function. In addition, computation per iteration is reduced by not solving the sub-problems
completely. The move limits of the sub-problem are readjusted each iteration so that the
upper and lower limits move toward each other as the variables approach their optimal
values. These move limits reduce or eliminate the need for step-size reduction at each

iteration.

The algorithm requires the user to provide a starting point or a set of side constraints
within which the optimal point lies. An initial feasible point is found by projecting the
starting point on to the hyper plane represented by the equality constraints and moving
along this hyperplane iteraiively towards the analytical center of the feasible polyhedra until

4.5 Extending MBSLP to handle nonlinear constraints 97

a feasible point is found. The algorithm can handle inequality constraints also by converting
them into equality constraints using slack variables. The Lagrange Multipliers can be
obtained as a by-product of constrained minimization if the side constraints are also
converted to equality constraints using slack variables.

Preliminary tests indicate that the algorithm works fairly well for unconstrained as well
as constrained problems. Examples to test the algorithm as well as its application to shape
and topology optimization are included in chapter 5. The algorithm seems to be particularly
suited for structural optimization problems as is illustrated in the shape and topology

optimization examples.

Implementation

5.1. Overview

In this chapter, a brief description is given of the implementation of the shape and
topology optimization as well as the sequential optimization (MBSLP) algorithm. The
software implementation consists of two parts. The first part consists of a pre- and post-
processor, that provides a graphical interface to define the design problem and to display
the results respectively. The shape and topology optimization algorithm is implemented in a
software that will be referred to as OPT. The pre-processor writes out the data associated
with the problem definition in a file that serves as input to OPT. OPT computes the optimal
shape and topology in the shape density function representation. The results generated by
OPT are written into a file that serves as input to the post-processor that displays the result
graphically.

In section 5.2, the shape and topology optimization algorithm is described. This section
also describes the implementation of the pre-processor and the post-processor. The design
problem is specified in the preprocessor which generates the finite element mesh and related
data to describe the design model. The results are displayed by the post-processor. The
techniques / algorithms employed in both the pre- and post-processors are briefly described
and the related references cited. The implementation of the sequential approximate
optimization algorithm is explained in section 5.3. Finally, in section 5.4 we summarize the
chapter.

5.2. Shape and Topology Optimization Algorithm
5.2.1. Design probiem specification (Pre-processor)

The design problem specification for shape and topology synthesis consists of
specifying the following information:

99

100 Chapter 5. Implementation and Results

1) A feasible domain (or design domain) within which the final optimal structure should
fit. This region specifies the maximum volume the structure can occupy and it excludes
regions where other parts must fit. This enables obstacle avoidance and prevents
interference with other component in the assembly in which the cornponent being

designed must fit.
2) The loads to be carried by the structure (design loads) and their location.
3) Support conditions on the structure, that is the boundary conditions.

4) The material properties of the structure.

An example for an arbitrary planar structural design is illustrated in figure 5.1. The
preprocessor provides a graphical interface to interactively specify the design problem. The
feasible domain is specified by defining its boundaries in the plane. It is possible to specify
non convex regions with internal holes. The external boundary is specified counter-
clockwise and the internal boundaries are specified clockwise. This enables the algorithms
to distinguish between the interior and the exterior of the domain. This feasible domain is
taken as the initial guess for the geometry. Nodes are placed along the boundaries of the
feasible domain at user specified intervals. The design loads are specified on the
appropriate nodes along the boundary. The type of support provided to the structure can
also be specified by defining boundary conditions on the nodes along the boundaries that

have external supports.

Fixed boundary

Feasible region

Figure 5.1. Design problem specification

As explained in chapter 3, structural behavior is analyzed using the finite element
method. The feasible domain must therefore be divided into a finite element mesh. In this
implementatinn we have used triangvlar elemen:s. The shape is represented using the shape
density function as was explaineu :n chapter 3. This density function is also represented by

5.2 Shape and Topology Optimization algorithm 101

piece-wise linear interpolation over this triangular mesh. A mesh generation algorithm was
implemented that takes the feasible domain as the input and divides the region into a
triangular mesh. The current implementation requires the users to specify the boundary
nodes as well as some of the internal nedes if necessary. The mesh generation algorithm
automatically adds some internal nodes and then connects all the nodes together to form a
triangular mesh using a triangulation algorithm. For finite element applications, the ideal
triangulation consists of triangles that are as close to equilateral as possible.

A Delaunay triangulation algorithm was implemented in the preprocessor that
automatically connects a given set of points into triangles. The details of Delaunay
triangulation, its properties and an algorithm for generating them are briefly described

below.

Of all possible triangulations for a given set of points in a plane, the one that consists of
triangles closest to equilateral triangles is Delaunay triangulation. In finite element mesh
generation applications, Delaunay triangulation of nodal points has come to be accepted as
the best triangulation since most triangular element interpolations involve mapping to a
parametric space where the triangles are assumed to be equilateral. If the actual element
shape is close to equilateral then distortion in the mapping is reduced. Another desirable
property of Delaunay triangulation is that the triangles never overlap, and therefore, no
additional checking is necessary to ensure non-overlapping elements. Delaunay
triangulation is unique to a given set of points except in a degenerate case. A formal
definition of Delaunay triangulation and the related concept of Voronoi polygons is given

below.

Voronoi polygons: Let P = { P; i=1,N } be a set of N distinct points in a plane (R2),
then, Voronoi polygons have been defined [Ho-Le_88],[Sloan_87], as the set of polygons,
V={V;,i=1,N }, where,

Vi={xe R2:|x-Pi|<|x-P|Vj=i)

andl -] denotes the Euclidean distance norm. Hence, all the points in the ith Voronoi
polygon is closer to its generating point P; than any other point in the given set P.

Delaunay triangulation: The set of triangles formed by connecting the generating point
of neighboring Voronoi polygons is called the delaunay triangulation. In general, a vertex
of a polygon is shared by two other neighboring polygons. Hence, connecting the
generating points of neighboring polygons yield triangles.

102 Chapter 5. Implementation and Results

The two most important properties of Delaunay triangles are listed below. These
properties have been used as an alternative definition of Delaunay triangles and have been

used in triangulation algorithms.

Max-Min angle criteria: For any pair of triangles as shown in figure 5.2, the minimum
angle for the two cases I and II are compared and if ol < o2, then case II represents

Delaunay triangulation.

II

Figure 5.2. Max-Min angle criterion

Circle criterion: In the Delaunay triangulation of a given set of point, the circumcircles
of the triangles do not contain any other point of the given set. Hence, for the pair of
triangles shown in figure 5.3, if the circumcircle of the triangle ijk contains the point p,
then the triangulation is not Delaunay. The diagonal ik has to be swapped to form Delaunay
triangles.

Figure 5.3. Cixcle criterion

This criterion is computationally the most economical means of constructing Delaunay
triangles. This criterion may be checked easily, using the property that if the sum of the
angles o+ > =, then point p lies inside the circumcircle of the triangle ijk. If o+B = 7,
then the point p lies on the circumcircle of the triangle ijk. This is the degenerate case, when
Delaunay triangulation is not unique. Both the possible choice of triangulation are equally

acceptable.

5.2 Shape and Topology Optimization algorithm 103

We have used Lawson’s algorithm [Lawson_77] to construct the Delaunay
triangulation. Using the criteria described above, any set of four points can be connected
optimally by swapping the diagonal of the quadrilateral if necessary, as shown in figure
5.3. This makes the triangulation locally optimal (Delaunay). Lawson shows that repeated
application of this local optimization to pairs of triangles, finally terminates in the global
optimal triangulation in a finite number of steps. This is a consequence of the fact that
Delaunay triangulation is unique and that local optimization by swapping diagonals does
not affect any triangles other than the two involved in the swapping. An efficient

implementation for this algorithm is described by Sloan [Sloan_87].

When the domain is non-convex and it contains internal boundaries, the above
procedure of triangulation cannot be strictly applied. The initial Delaunay triangulation
yields the convex hull of the given set of points. Therefore, for non-convex geometries
some external elements are generated that have to be identified and removed. Also it is
essential that in the initial triangulation no edge of a triangle, should cross a internal
boundary. To ensure this, swapping an edge is prevented during local optimization, if the
edge lies along a boundary. Similarly, swapping is enforced if doing so makes the edge lie
along the boundary. In our implementation the nodes on the boundary are ordered
sequentially such that the nodes on the external boundary are numbered counter-clockwise
and the nodes on the internal boundary are numbered clockwise. As one moves along the
boundaries in these specified directions, triangles that lie on the right side of the boundaries
are the external triangles. These triangles are detected and removed.

Once the mesh is generated it is beneficial to renumber the nodes to reduce the
bandwidth of the stiffness matrix. This reduces the computation per finite element analysis.
Since the optimization algorithm performs the analysis for each iteration, bandwidth
minimization yields significant improvement in performance. The preprocessor includes a
bandwidth minimization function that renumbers the nodes optimally. The algorithm used
for bandwidth minimization is described in [Gibbs_76]. The design specification and the
data generated by the preprocessor are then written to a file that serves as the input to OPT.
The input file to OPT contains the following information :

1) The number of nodes in the mesh.

2) The nodal coordinates of all the nodes.

3) The number of elements.

4) The element connectivity data (the node numbers of the element vertices).

5) The fixed nodes (boundary conditions).

104 Chapter 5. Implementation and Results

6) The applied loads (the load vectors and the node numbers on which they are applied)
and
7) the material properties (Young’s modulus and Poisson’s ratio).

Figure 5.4 shows an example model created using the preprocessor. The nodes are
displayed by the small squares and the fixed nodes are marked by slightly larger squares.
The applied load is shown by the arrow.

Figure 5.4. A model generated by the preprocessor
5.2.2. Description of the algorithm

In chapter 3 we described the ideas and concepts behind the shape and topology
optimization method. The algorithms implemented in OPT is described in this section.
Figure 5.5 illustrates the algorithm for implementing the linear approximate material
property-density relation. The design problem specification in the form of the feasible
region, loads and boundary conditions is read in from the input file generated by the
preprocessor. Material is removed in small steps. The user can specify the percentage of
material to be removed in each step as well as the number of steps.

5.2 Shape and Topology Optimization algorithm 105

The feasible region is take as the initial guess for the shape. The shape density function
is therefore, set equal to unity everywhere in the feasible domain. The material is removed
iteratively as shown by the loop in flow chart (figure 5.5). In each iteration the mass of the
structure (W) is computed by integrating the density function over the feasible region (see
equation 3.3.4). The gradient of the mass with respect to the nodal values of density is also
computed at the beginning of each iteration. The constraint on the mass of the structure is a
linear constraint so that the gradient of the mass is a constant vector (represented as A). The
mass of the structure can be expressed in terms of this gradient vector as,

W(9) = [¢dQ = A9, (5.2.1)
Q

where, A = VW and ¢; are the nodal values of the density function. The constraint is
specified such that the mass of the optimized geometry is reduced at each iteration by the
amount specified by the user. The constraint on the mass is stated as an equality constraint

as

W(d)=A¢p, =(1-1)W, (5.2.2)

where, r is the percentage of mass to be removed at each iteration and Wo is the current

mass of the structure.

The optimization algorithm is used to solve for the optimal geometry. The nodal value
of the density functions are treated as the design variables. This algorithm is described in
detail in section 5.3. The algorithm expects the user to provide routines that evaluate the
objective function and the gradient of the objective function. In our implementation the
objective function (that is the strain energy L(u) of the structure, defined in equation 3.3.3)
is evaluated using the finite element method. The gradient of the objective is evaluated
using the sensitivity analysis techniques described in section 3.6. The algorithm also
expects the user to define the constraints as well as the gradients of the constraints. Since
the constraint on the mass is linear, we need to evaluate its gradient only once each iteration
to define the constraint (as in equation 5.2.2). The side constraints on the design variables

are set as

¢, —0.01<¢, <10 (5.2.3)

The threshold value ¢, was set at values higher than 0.5 to ensure that the material
property coefficients do not become negative in the allowed range of density variation.
Once the optimal design is found for the given constraint on mass, the geometry is updated

106 Chapter 5. Implementation and Results

by removing elements for which all three nodal density values lie below the threshold
value. This updated geometry is used as the starting geometry for the next iteration. The
iterations or the material removal steps are carried out as many times as the user specifies.
Some of the results obtained by this algorithm are illustrated in chapter 6. It is noted that the
density function values transition very sharply from the lowest value to the highest value
(equation 5.2.3) at the boundary of the solid. As a result we have clearly defined
boundaries. However, since the geometry is updated at each iteration the results seem to
depend on the mesh density and quality. This is seen in some examples included in chapter

6.

READ INPUT FILE:
feasible region,
loads and boundary
conditions.

v

INPUT FROM USER:
1) % material removal

per step, (r)
2) Number of steps, NS

v

Initialize the
geometry, ¢i=1

Find the mass, Wo
k=k+1 and its gradient

3 i

Define the equality
Update the | | constraint, W=Wc
geometry We= (1-r)Wo

l Call the optimization

algorithm, mbslp()

Figure 5.5. OPT algorithm (Material removal in steps)

In section 3.4.2 we described quadratic and higher order material property density
relations. As noted in chapter 3, for this case the material property coefficients are positive

5.2 Shape and Topology Optimization algorithm 107

for all values of density in the interval [0,1]. Therefore, we can set the threshold value to
zero. Regions where the density value is reduce to zero do not contribute to the stiffness of
the structure. Therefore, the material can be removed in one step and there is no need to
update the geometry by removing elements. The algorithm is illustrated in figure 5.6. The
design specification is read in from the file generated by the preprocessor. The user can
specify the percentage of material to be removed. Rather than remove the material in many
small steps, this algorithm removes the specified percentage in one step. The optimal
designs thus obtained may have large regions where the density has intermediate values. In
order to get clearly defined boundaries and fully dense optimal shapes, it is beneficial to
add a penalty function to the objective function that penalizes intermediate densities. The
penalty function is described in section 3.4.2 (equation 3.4.6). The optimal shape obtained
without penalty on intermediate values of density is taken as the initial guess for subsequent
optimizations with penalty imposed on intermediate densities. The penalty constant c;, in
equation (3.4.6) is increased in steps. The user can specify the number of such steps.

108 Chapter 5. Implementation and Results

READ INPUT FILE:
feasible region,
loads and boundary
conditions.

v

INPUT FROM USER:

1) Total % material
removal (r)

2) Number of steps, NS

v

Initialize the
geometry, ¢;=1

v

Find the mass, Wo
and its gradient

v

Define the equality
constraint, W=Wc
Wce= (1-r)Wo

Call the optimization
k=k+1 algorithm, mbslp()

Y

Set/increase

penality on

intermediate
values of density

Figure 5.6. OPT algorithm

In the first step, the initial guess of the optimal geometry is set to be the same as the
feasible region. The nodal density values are set to unity in the entire feasible region. The
constraint on the mass of the structure is set such that the mass of the optimal structure is
less than the initial guess (the entire feasible region) by the percentage (r) specified by the
user. This constraint is set as in equation (5.2.2). The optimization is carried out using the
algorithm. The side constraints on the design variables is set as

5.2 Shape and Topology Optimization algorithm 109

b, <0, <10 (5.2.4)

The threshold value was set to very low values (0.01-0.05) for this algorithm since it
uses quadratic and higher order approximations. The threshold value was not set to zero to
avoid any singularities that occasionally arise. The optimal geometry thus obtained is taken
as the initial guess for subsequent iterations where a penalty is added to the objective
function to remove intermediate densities. The penalty constant is increased each iteration
by a fixed factor. In this implementation, we set the penalty constant as ¢,=10 and increase

it each iteration by factor of 10.
5.2.3. Displaying the results (Post-processor)

At the end of the optimization process, the optimal shape as well as the analysis results
from the finite element analysis program are written out in a file. These results can be
graphically visualized using the post processor. Since shape is represented using the shape
density function, it is represented in OPT as a list of nodal density values corresponding to
all the nodes in the finite element mesh. In order to visualize this shape the post processor
can display the fringes of the shape density function in the feasible domain. In figure 5.7. a
simple example is shown. The model has very few nodes and elements. The rectangular
region is the feasible region. The fringes of the shape density function are plotted such that
white corresponds to fully dense material (0.9<¢<1), while black represents the lowest
possible density allowed by the side constraints. Intermediate values of the density function

are represented by 10 levels of gray.

110 Chapter 5. Implementation and Results

Figure 5.7. Fringes of shape density function

A contour corresponding to the threshold value of the density is then interpreted as the
boundary of the shape. Regions with density values larger than the threshold value are
considered to be the interior of the structure. In the example illustrated in figure 5.7, the
threshold value was set at 0.01.

5.3. MBSLP Algorithm

In chapter 4, a sequential approximate optimization technique is proposed which we
refer to as the moving barrier sequential linear programming algorithm. In this section, the
implementation of the algorithm is described. This algorithm was implemented in C

language and executed in a UNIX environment.

The optimization algorithm is implemented in a function called mbslp(). The user has to
define three functions:

5.3 MBSLP Algorithm 111

1) A main function that allocates memory for the data structure opt, initializes the

variables and calls the function mbslp() to solve for the optimum.
2) A function that evaluates the objective function and the constraint functions.
3) A function that evaluates the gradients of the objective and constraint functions.

The software assumes that the objective and constraint functions are defined in a
function called eval_function(opt,x). The arguments to this function are a pointer to the data
structure (opt) that contains the variables and the arrays associated with the optimization
algorithm and an array (x) that contains the value of the variables at which the functions are
to be evaluated. This function returns the value of the objective function and stores the
values of the constraint functions in the structure opt. Similarly, the gradients of the
objective and constraint functions are assumed to be evaluated by a function named
eval_gradient(opt,x). The optimization data structure, opr, consists of the following

information:

1) The number of variables, the number of equality constraints and the number of

inequality constraints.
2) An array that holds the values of the variables.

3) The values of the objective function and each constraint function evaluated at the

current value of the variables.
4) The gradient vector for the objective function and each of the constraint functions.

5) Two arrays that store the lower and upper bounds on the variables which are also

referred to as the side constraints.

The users must specify an initial value for the variables and also the side constraints on
the variables in their main function. The algorithm implemented in the function mbslp() is

schematically represented in figure 5.8.

112 Chapter 5. Implementation and Results

Define the
optimization
problem

v

Initialize the
variables and
move limits

v

Evaluate the
functions and
gradients at x©

> Find feasible point X

YES

Find the descent Evaluate the

direction AxXand f@—— functions and_
update xk / X~ gradients at X

Figure 5.8. MBSLP aigorithm

The algorithm initializes the move limits to the lower and upper bounds. The functions
and gradients of the objective and constraints are evaluated at the initial guess for the
variables. A simple convergence criteria is used to check whether the algorithm has
converged. The descent direction is found iteratively until the variables satisfy this
convergence criteria. At each iteration the current value of the variables are tested to see if it
represents a feasible point, that is whether all the constraint equations are satisfied. If any
of the constraints are violated, the nearest feasible point is found using the method
described in section 4.4. The implementation of the algorithm for finding a feasible point is
described later in this section. The functions and gradients are re-evaluated at the new
feasible point. A descent direction is found using equations (4.5.29)-(4.5.32). The
variables are updated using equations (4.3.21) and (4.3.22) after selecting a step size using
Armijo’s criteria described in equation (4.3.24). The details of the algorithm to find a

5.3 MBSLP Algorithm 113

descent direction is described later in this section. The iterations are stopped when the
convergence criterion is met or when the number of iterations exceed the maximum

permissible limit.

In this implementation, we have used duality gap as a convergence criterion. It is

defined as
g, =z'(x-X) (5.3.1)

g, is the duality gap between the linear program min c'x, xeS, and its dual
max q(A) , i >0 defined in equations (4.5.40) and (4.5.41). When the duality gap g, is
smaller than a preset tolerance the iterations are terminated. At each iteration, the Kuhn-
Tucker vector z gets smaller and the move limits converge towards each other and as a
result the duality gap becomes smaller.

The descent direction is found at each iteration by minimizing the subproblem (Py),
defined in equations (4.5.5)-(4.5.9), using Newton’s method. The subproblem and the
method to find a descent direction are described in section 4.3 for linearly constrained
problem and in section 4.5 for the general case of nonlinear equality and inequality
constraints. The algorithm for computing a descent direction is illustrated in figure 5.9.

114 Chapter 5. Implementation and Results

Compute the
Kuhn-Tucker
vector z
(equation 4.5.42)

Y

Reset the
move limits

v

compute the
duality gap, g |

!

compute the Solve equation
duality gap, g i (4.5.29) for AN, An

v

Compute
Az, Ax, As

using equations
(4.5.30)-(4.5.32)
Update z, A, p Y

Select step size
parameter o

Is AX a
descent
direction ?

NO

Armijo's Rule
to update Ax

Y

Evaluate the
functions and

gradients at xk+1

L]

Update 5, 2, A, pn

RETURN

Figure 5.9. Algorithm to compute a descent direction

5.3 MBSLP Algorithm 115

This algorithm is implemented in a function called primdual(). The input arguments to
this function are the optimization data structure opt, the maximum permissible number of
iterations and the arrays containing the move limits on the variables. The algorithm first
computes the Kuhn-Tucker vector, z = (¢+A'A+C'W), using the current values of the
Lagrange multipliers. The Lagrange multipliers corresponding to the linear constraints , A,
are initialized to unity, while those for nonlinear constraints, |, are initialized to a small
positive number at the first iteration. The Lagrange multipliers are updated each iteration
and these new values are used in the next iteration to recompute the z vector. Thereafter,
the move limits are updated using one of the criteria defined in chapter 4.

The new duality gap is computed using the z values and the move limits computed in
this iteration. Equation (4.5.39) are used to compute the new values for x. Now using the
current values of the arrays x, s, z, A and | the coefficient matrix on the left hand side of
equation (4.5.29) as well as the right hand side vector can be computed. It can be verified
easily that the matrix is symmetric. Therefore only the upper triangular part of the matrix
need be computed. Also note that the Z and X matrix are diagonal. Making use of this fact,
we compute the sub-matrices in equation (4.5.29) as

_ X
[AZ'XA'L =Y A, ZEAy (5.3.2)
k=1 kk
[AZ'XC'], =[CZ'XA'], = Z‘:Am -’i%ckj (5.3.3)
[CZ'XC' +M'S], = Y C, ﬁk-ckj +ok g, (5.3.4)
ka1 Ly My

Similarly, we compute the two sub vectors of the right hand side vector as

[AZV], =Y A, (5.3.5)
k=1 Zkk
[CZ'v+M'w], =Y C, -+ 2 (5.3.6)
k=1 Zkk u'i

After assembling the left hand side coefficient matrix and the right hand side vector,

equations (4.5.29) are solved using standard linear simultaneous equation solvers to obtain
the vectors AA and Ap. In our implementation, we use LU decomposition algorithm to

solve the equations [Press_88].

116 Chapter 5. Implementation and Results

The vectors Az, Ax, As can then be computed using equations (4.5.30)-(4.5.31). The
variables are updated as follows,

X' =x* + 0, Ax
' =2 + o, Az (5.3.7)
A =+ o, AL

The step size o, is selected such that the new values of the variables are feasible, i.e.,
1*<x<@* ands>0. The step size parameter 0y may therefore be computed as follows,

o, = min {6 }, where (5.3.8)
Tk _ ok Gk — xk
I*Ax;‘i Jif Ax, <0; “iAx_:" Jif Ax, > 0;

0, = min ! ! , i=1,..n (5.3.9)

B i A, <0; =35 if As, <0;
Ap, As,

Before updating all the variables using equation (5.3.7), we check whether Ax is a
descent direction, that is, if c'Ax<0. If it is not a descent direction, then we updaie only z,
A and p. The duality gap and g are re-evaluated another Newton iteration is carried out for
the sub problem. These iterations are continued until a descent direction is found. For
unconstrained and linearly constrained problems descent direction is found at the very first
iteration. After a descent direction is found, we use Armijo’s rule to check whether the step
size is excessive. The Armijo rule used in our implementation is given below. We reset the
step size as o, =~[B™a, , where we chose a fixed scalar B such that 0 < B<1and m, is
the smallest positive integer for which the following relation holds.

f(x,)—f(x, +B™ o, Ax,) 2 —-of™a, Vi(x,)' Ax, (5.3.10)

The move limits and the corresponding barrier functions limit the step size. Therefore,
Armijo’s rule is satisfied in most cases and no further step size reduction is required. After
updating all the variables, the functions and gradients are evaluated at xk+!. These values
are returned to the calling function.

The algorithm for finding a feasible point is illustrated in the figure 5.10. This
algorithm is implemented in a function called find_feasible_point(). The current design
vector (vector of design variables) and the functions evaluated for this value of the variables
are passed to this function.

5.3 MBSLP Algorithm 117

Identify

violated
constraints

v

Project x, on
the feasible
region S i

Are side
constraints
violated ?

NO
>(RETURN)

Find a descent Reset the move
directionforF | lg | (imits using
and update x,. equation (4.4.3)

Figure 5.10. Finding a feasible point

The algorithm first identifies the constraints that are violated. Then it projects the
current design vector on to the set of feasible points, S = {x | Ax=b, Cx+s=d} using
equations (4.5.33). The projected point may still violate some of the side constraints and/or
the move limits. The move limits are reset using equation (4.4.3) such that the projected
point is erclosed within the move limits. The minimum of the function Fy, defined in
equation (4.5.3) is the analytical center of the feasible polyhedra defined in equation
(4.5.36). The algorithm for finding the descent direction of the sub problems can also be
used to find a descent direction of the function F, after setting ¢ = 0. The variables are now
updated using the descent direction thus obtained. After a few such iterations we obtain a
feasible point that satisfies the side constraint as well.

Results and Discussions

6.1 Overview

In this chapter the concepts and algorithms described in the previous chapters are
applied to examples to illustrate their performance. In section 6.2 the MBSLP algorithm is
applied to simple test problems whose solutions are known analytically. To illustrate the
generality of the algorithm, we apply it to unconstrained, linearly constrained and
nonlinearly constrained problems. However, the algorithm has been extensively tested only
for linearly constrained problems. The criteria for resetting the move limits described in
section 4.3.4 was found to perform well for linearly constrained problems. For nonlinearly
constrained problems it may be possible to design better criteria ihat take into account the
nature of the constraint functions. For the shape and topology optimization problem, the
objective function is the strain energy of the structure. This objective function is a highly
nonlinear function of the design variables (that is the nodal values of the density function).
The constraint on weight is however a linear function of the variables.

In section 6.3 we apply the methods discussed in chapter 3 to design the shape and
topology of structures. Many specific examples of planar loading conditions are
considered. The merits and demerits of the various material property-density relations
proposed in section 3.4 are discussed. The effect of mesh density and the quality of the
mesh are also studied. In section 6.4, the chapter is summarized and some the key results

are discussed.

6.2 Examples using MBSLP algorithm

In this section, we give examples to illustrate the application of the sequential
approximate optimization algorithm to solve nonlinear programming problems. The
MBSLP algorithm is applied here mostly to simple test examples that have very few

119

12C Chapter 6. Results and Discussions

variables and whose solution are known analytically. In the next section, we apply the
algorithm to shape and topology optimization of structures.

Example 6.2.1. Unconstrained Optimization

In this example we consider a simple unconstrained nonlinear program with 2

variables. The optimization problem may be stated as :

(%, +¥,) — Xy,

min f(x,,X,) = s 6.2.1
(*1,%;) 1000. ¢)

where,

¥1(X;,X,) = 56000.-5000.x, +40.x, — x,x, — 0.002x§ and (6.2.2)

¥, (X,,X,) = 100000.+2y, (6.2.3)

Initial points were given as (X,,X,)=(l.,10.) and the side constraints on the variables
were set as 0.< x, <135. and 0.< x, <10000. The results are tabulated below.

Table 6.1. Unconstrained optimization (Example 6.2.1)

Tteration f(x) X1 X2 ztz=ctc
1. -235.04 4.88 3190.80| 2540.14
2. -716.45 9.29 5596.90| 8767.80
3. -786.40 11.06 | 7815.70| 1267.46
4. -793.60 10.20 | 7165.98 | 309.40
5. -793.89 10.99 | 7241.18(98.20
6. -794.94 10.77 | 7094.08| 100.14
7. -795.52 10.35 7323.2 11.76
8. -796.05 10.58 | 7308.75| 27.16
9. -796.07 10.55 | 7331.17 0.19
13. -796.070{ 10.559 | 7330.951| 1.0e-6

The contours of the function f(x;,x,) are plotted in figure 4.3. The function has a very
ill-conditioned hessian matrix, but our algorithm performs well in this case because the
hessian is nearly diagonal (that is, the off-diagonal terms are nearly zero). The algorithms
exhibits very fast convergence for this problem as can be seen in table 1. The algorithm
took fewer iterations than modified Newton algorithms and fewer function evaluations.
The algorithm is not expected to take fewer iterations than other sequential programming

6.2 Examples using MBSLP algorithm 121

algorithms, however the computation required per iteratior will be lower since only one or
two Newton steps were required per iteration.

3000 \\\\\\\\\\\\\\ AN\ \\
2 —/j |\ \\\\ DK
\\\\\\ \ 2x 1o+04

\
SOOO

20000 -+

10000 -

Figure 6.1. Contours of the function f(x1,x2) (Example 6.2.1)

Example 6.2.2 Quadratic Program

We consider a quadratic program with 5 variables, subject to three linear equality
constraints. This example is problem 53 in [Hock_81].

min f(x) (6.2.4)
f) = (x,—x,)" +(x, + X3 -2)° +(x, —1)° + (X5 — 1)’

subject to,
h,(x)=x,+3x,=0
h,(x)=x,+x,-2x,=0 (6.2.5)

hy(x)=x,+3x,=0

The bounds on the variables were set as -10 < xj < 10., i=1,..5. An initial feasible
point was found as (-0.46, 0.154, 0.154, 0.154, 0.154) for which the function value was
f(x)=4.674. The iterations are tabulated below.

Table 6.2. Quadratic program iterations (Example 6.2.2)

122 Chapter 6. Results and Discussions
Iter. | f(x) X1 X2 X3 X4 X5 zlz
1. 4.3540 | -0.948 0.316 0.356 0.276 0.316 11.36
2. 4.1175 | -0.685 0.228 0.549 -0.093 0.228 1.694
3. 4.1149 | -0.855 0.285 0.600 -0.030 0.285 0.667
4. 4.0930 | -0.765 0.251 0.625 -0.116 0.255 0.152
20. 4.0930 | -0.7676 | 0.2258 | 0.6279 | -0.1163| 0.2558 1.0e-6

Example 6.2.3. Nonlinear constraints

The following example (problem 18 in [Hock_81]) has a quadratic objective function of
2 variables. The two inequality constraints are nonlinear.

min f(x) (6.2.6)

f(x)= 0.01x} +x3

subject to,
g(x)=25-xx,<0

g,(x)=25-x] -x}<0
2<x,<50
0<x,<50

(6.2.7)

(6.2.8)

AX:

| g,(x)=0 X,
Figure 6.2. Design space and constraints (Example 6.2.3)

Figure 6.2 illustrates the design space and the two constraints. Clearly g>(x)<0 is a
redundant constraint. The value of the variables and the objective function at each iteration

are tabulated in table 6.3.

6.2 Examples using MBSLP algorithm 123

Table 6.3. Nonlinear inequality constraints (Example 6.2.3)

Iteration f(x) X1 X2 ztz=clc
1. 101.21 11.0 10.0 -
2. 6.2574 | 11.039 | 2.2447 | 400.00
3. 4.1904 | 15.854 | 1.2949 | 20.129
4. 49482 | 13.817 | 1.7433 6.660
5. 48732 | 16919 | 14179 | 11.760
6. 4.9951 16.151 1.5449 6.456
7. 49969 | 15.761 | 1.5852 3.031
8. 49999 | 15.825 | 1.5797 1.0e-4
19. 5.0000 | 15.811 | 1.5811 | 1.0e-06

6.3. Shape and topology synthesis of structures

To illustrate the application of the shape and topology optimization algorithms described
in section 5.2.2, we consider the design of planar structural components subjected to two-
dimensional loading and boundary conditions. As explained in section 5.2 the feasible
region is taken as the initial guess for the shape of the structure so that the shape density
function is initialized to the maximum permissible value (unity) all over the feasible region.
In the examples considered below we are interested in designing structures made of
homogeneous, isotropic materials. In most engineering applications it is difficult to
manufacture structures whose density can be varied in a controlled fashion. Therefore, we
seek solutions that are fully dense in the sense that the shape density function has the
maximum permissible value inside the solid and its value transitions sharply at the

boundaries to the lowest possible, that is the threshold value.

Example 6.3.1

In this simple exampie, we apply forces on a 2 dimensional block that produces
bending moment in it. The initial geometry, the applied loading and boundary conditions

are illustrated in figure 6.3.

124 Chapter 6. Results and Discussions

ANSE
7

N
.\ i

Figure 6.3. Optimal geometry (Example 6.3.1)

The optimal shape is displayed using the contours of the density function. If one
interprets these contours as thickness distribution, the optimal shape suggested by the
algorithm has an I-shaped cross-section. The result shown in figure 6.3 was obtained using
the linear approximate relations described in section 3.4.1. Identical results where obtained
using quadratic and higher order relations described in section 3.4.2. In this example,
regardless of the material property density relations used, the final result was found to be
independent of the quality and density of the mesh used for shape representation and
analysis. This may be due to the simple loading applied and the resultant simplicity of the
final optimal shape.

Example 6.3.2

We consider here a commonly used test example of designing a two bar frame
structure. The solution to this example can by obtained analytically by using simple frame
models. For the planar loading case and boundary conditions illustrated in figure 6.4. the
optimal geometry has a height twice its width (H=2L).

6.3 Shape and topology synthesis of structures 125

Figure 6.4. Two bar frame structure

In figure 6.5 the optimal shapes computed using the linear material property density
relation are illustrated. The shapes shown are the optimal solution computed by removing
material in steps of 5% each. The rectangular region represents the initial feasible region.
This shape is taken as the starting geometry of a component that supports the shear load
shown by the arrow. The highlighted nodes on the boundary are fixed nodes. They
represent regions where the structure is supported. In the first step, 5% of the weight is
removed by optimizing the shape subject to such a constraint on weight. The dark region
has full density ¢=1 while the lightly shaded region represents an area from which material
has been removed. The lightly shaded regions have shape density value below the
threshold value of 0.9. At the end of the step, geometry is updated by removing the
elements in the lightly shaded area. In the next two steps weight is again reduced by 5%
each followed by removal of elements to update the geometry.

As noted in chapter 5, material has to be removed in small steps when the linear
material property - density relation (equation 3.4.3a) is used because the threshold value of
density has to be set close to 1.0 to prevent material properties from becoming negative.
Setting the threshold value close to unity has the additional advantage that the final design is
nearly fully dense so that the density values transition sharply at the boundaries from the
highest value 1.0, to the lowest (threshold value). However, when large percentage of
material removal is desired, many steps of material removal are required. Furthermore,
extra computation is required at each step to identify elements where the density is below
the threshold and to remove them.

126 Chapter 6. Results and Discussions

In the example in figure 6.5, the height of the initial feasible region is twice that of the
length. The mesh used consisted of 800 elements and 449 nodes. The structure is assumed
to be made of a isotropic linear elastic material.

. | «<tf——— Shear load

Initial feasible
! region, load and
boundary conditions

Step I (5% reduction
in weight)

Step II (3% reduction) Step III (5% reduction)

Figure 6.5. Two bar frame (Weight reduction in steps)

Figure 6.6 shows the optimal shape obtained for the same example using a quadratic
material property-density relation where the objective functior includes penalty on
intermediate densities as explained in section 3.4, equation (3.4.6). In this example 60% of
the material has been removed from the initial geometry (that is the rectangular feasible
domain). Unlike in the linear material-property density relation, material was removed in
one step. The shape and topology were first optimized without the penalty on intermediate
density values. The optimal geometry thus obtained was taken to be the initial design for a
subsequent optimization with penalty imposed on intermediate densities. The optimal
design in figure 6.6 was obtained in just two steps, one without penalty and the next with

6.3 Shape and topology synthesis of structures 127

penalty imposed on intermediate variables. A very regular mesh consisting mostly of
equilateral triangles was used in this example. The model consisted of 1081 nodes and
2020 elements. Significant savings in computation is obtained by removing material in one
step using quadratic or higher order d;j(¢) relation, especially when large percentage of
material removal is desired. This example took approximately 4 hours of computation on a
SGI, Indigo? Extreme. Since material was removed in one step very large percentage of
material could be removed without incurring large computational expense. Note that even
though much smaller percentage of material was removed in the shape obtained in figure
6.5, the optimal topology is essentially the same as in figure 6.6.

- (AVAVAVAVAVAYAVAVAVAV "

Lk CATAVAAYETAAYAANS® -
" AVAVAVAVAVAVAVAVAVANG ™= 1

WAYAYS

T UAYAVAYAT P NAAN)” L

Figure 6.6. Two bar frame (Quadratic d;;(¢) relation)

Example 6.3.3

128 Chapter 6. Results and Discussions

Figure 6.7 illustrates another planar structural optimization example where the structure
is supported below along the shaded boundary. The loads to be supported are shown by
the arrows. The final shape represented by the darkly shaded region was obtained after 4
steps of material removal using the linear approximate d;;(¢) relation. Note that even though
the initial geometry was a rectangular block, the optimization technique automatically
identifies regions where it should remove material from and suggests a final shape that is
topologically different. A hole was created since the optimization procedure identified this
region as a region where material is under-utilized (stresses are lower than in other
regions). In this example 1098 elements and 592 nodes were used. Since the loading is
symmetric the optimal shapes are expected to be symmetric. For linear d;j(¢) relation since
elements are removed after each step, the quality of mesh affects the solution. For example
when the mesh is not symmetric, the elements get removed unsymmetrically resulting in
unsymmetric initial geometries for subsequent steps. This biases the solution to become
further unsymmetric in subsequent steps. This is a drawback of removing elements at each
step. However if perfectly symmetric mesh can be generated for the feasible domain this
problem can be overcome.

Figure 6.7. Optimal support structure

Quadratic and higher order d;j(¢) relation is less sensitive to mesh since material is
removed in one step. Figure 6.8 shows the same example where a quadratic material
property-density relation has been used and 30% of the mass was removed in one step.
Note that the optimal topology obtained here is the same as in figure 6.7 even though a
different material property density relation was used and a different percentage of material
was removed. A regular mesh consisting mostly of equilateral triangles is used in the model
which consists of 1131 nodes and 2130 elements. The optimal geometry shown in figure

6.3 Shape and topology synthesis of structures 129

6.8(a) is not fully dense and the shape density function has intermediate values over large
regions near the boundaries. This optimal geometry was used as the starting design for
subsequent optimization with a penalty on intermediate densities. This yields the geometry
shown in figure 6.8(b) where the shape density function transitions sharply at the
boundaries resulting in a fully dense optimal design. The topology suggested by the
optimization is the same for both cases in figure 6.8 (a) and (b).

Figure 6.8.(a) No penalty on Figure 6.8.(b) With penalty on

intermediate densities intermediate densities

Example 6.3.4

In figure 6.9, we consider an example where we are interested in finding the optimal
structure that fits in the L-shaped feasible region and supports the load depicted by the
arrows. The structure is supported at the shaded boundary. The optimization was carried
out assuming the linear material property density relation from equation (3.4.3a). The
optimal shape suggested by algorithm after 7 steps of material removal is illustrated by the
darkly shaded region in figure 6.9. We used 1950 elements and 1056 nodes. Smoother

boundaries can be obtained by using finer mesh.

130 Chapter 6. Results and Discussions

/4

Figure 6.9. Optimal L-shaped support structurc

The number of variables again is equal to the number of nodes used since the nodal
values of density are treated as design variables. The optimization involved 15-20 iterations
in each step of material removal. The optimization algorithm typically performs one
function evaluation (finite element analysis) per iteration.

Example 6.3.5

In this example we are interested in designing a frame-like structure for carrying the
load indicated in figure 6.10. The feasible load is the rectangular region loaded as in a short
cantilever beam. Very large percentage of material has to be removed from the initial
geometry to obtain a frame like structures.

6.3 Shape and 1opology synthesis of structures 131

Figure 6.10.(a) 4th order material Figure 6.10.(b) With penalty on

property density relation intermediate densities

The geometries displayed in figure 6.10 were obtained by 70% reduction in mass from
the starting shape. The geometry in figure 6.10(a) was obtained using a 4th order material
property density relation. Due to the large percentage material removal the final geometry
has large regions where the shape density function takes intermediate values. This suggests
that the truly optimal shapes for carrying this load may be composite materials whose
density varies within the structure. Indeed, naturally occurring optimal structures such as
bones in animals have varying density and are infact composite materials. However, for
engineering applications structures with varying density are difficult or very expensive to
manufacture. To obtain a frame like structure made of fully dense material we apply a
penalty on intermediate densities. Figure 6.10(b) shows the structure obtained by adding a
penalty to the objective function to eliminate intermediate material. The penalty constant in
equation (3.4.6) was increased in 3 steps by a factor of 10 each. The resultant gcometry

suggests the optimal topology of a frame to support the given load.

The model used in the above example consists of 1441 nodes and 2730 elements. The
four steps of optimization required to obtain the result in figure 6.10(b) took roughly 6
hours on an SGI, Indigo workstation. When a large percentage of material needs to be
removed such as in this example, linear approximate d;;(¢) relation is not efficient due to

132 Chapter 6. Results and Discussions

the large number of material removal steps required. Moreover for this example the results
obtained were found to be highly sensitive to the mesh when material was removed in steps
followed by removal of elements as in the case of the algorithm described in figure 5.5.

Example 6.3.6

In this example we consider the design of frames to support the loads shown in figure
6.11. Fourth order material property density relation is used in this example followed by
three steps of subsequent optimization with penalty on intermediate values of density. The
geometry in figure 6.1 1(a) was obtained after 70% material removal while the geometry in
figure 6.11(b) was obtained after 80% material removal from the initial geometry
represented by the square feasible region. Note that the topology of the optimal shape is
different when the percentage of material removed is different.

Figure 6.11.(a) 70% material removed Figure 6.11.(b) 80% material removed

In the above example we have used a regular mesh consisting of 1291 nodes and 2440
elements. The penalty constant was initialized as c;=10 and was increased by a factor of 10
in the subsequent iterations.

Example 6.3.7

In this example we consider the design of a bridge like frame. The structure is rigidly
supported at the two ends and is assumed to carry loads as shown in figure 6.12. The
optimal shape was obtained by removing 70% material. A 4th order d;j(¢) relations was

assumed. The optimal shape shown in figure 6.12 was obtained after 6 steps of

6.3 Shape and topology synthesis of structures 133

optimization with increasing penalty on intermediate densities. To obtain well defined
members for the frame a relatively dense mesh consisting of 1597 nodes and 3010 elements

was used.

Figure 6.12. Bridge-like frame (70% Material removal)

Example 6.3.8

The example below shows the design of Michell’s truss. The structure is rigidly
supported at the circular region. The nodes around this region are assumed to be fixed and
are therefore highlighted. The circular region may represent a shaft to which the a torque is
applied due to the load shown by the arrows. We are interested in designing the optimal
structure that transmits the bending moment created by the load. Analytical solution for this
problem was given by Michell [Hemp_73]. This example has also been solved using
homogenization method by [Suzuki_91]. The model below consists of 1413 nodes and
2616 elements. The optimal shape in figure 6.13 was obtained using fourth order material
property density relation and a penalty on intermediate densities. The optimal shape is quite
similar to the analytical results obtained by Mictell as well as the shapes predicted using
homogenization method.

134 Chapter 6. Results and Discussions

Figure 6.13. Michell’s truss (80% Material removal)

Example 6.3.9

In the example below we consider the design of bicycle frame. The loading and
boundary conditions are assumed to be as shown in figure 6.14. The structure is supported
at the two ends where the wheels are attached and may support load at the seat, handle and
the pedal. The design in figure 6.14 was obtained by removing 70% mass from the feasible
region. Here again we have used a 4th order material property density relation and applied

penalty to intermediate densities in 5 steps.

6.3 Shape and topology synthesis of structures 135

Figure 6.14. Bicycle frame (70% material removal)

6.4. Summary and discussion

In this chapter we have applied the algorithms and concepts discussed in the previous
chapters. The MBSLP algorithm was first applied to solve some simple test examples of
nonlinear programming. The algorithm was then used in the shape and topology design of
structures. The optimal shape and topology are computed by minimizing the compliance of
the structure subject to constraint on the total mass of the structure. The constraint is linear
and therefore for the examples is section 6.3, we have used the criteria discussed in section

4.3.4 to reset the move limits.

By maximizing the stiffness of the structure subject to constraint on its weight we
obtain shapes that better utilize the available material. That is, the optimal shape carries a
nearly uniform stress or strain energy distribution all over its domain for the given load.
This is clearly illustrated by plotting the strain energy distribution over the domain for the
initial shape and the final optimal shape. Figure 6.15 show the strain energy distribution of
the two bar frame example (example 6.3.2). The initial shape is the same as the feasible
region. It can be seen that the strain energy distribution for this geometry is not uniform.
The strain energy is maximum in white regions and least in the dark regions. There are
large regions where the strain energy is nearly zero and it is maximum near the applied load
and the boundary condition where there is stress concentration. The optimal geometry and
the corresponding strain energy distribution is shown on the right. The strain energy is
nearly uniform within the optimal shape, except for small regions of stress concentration.

136 Chapter 6. Results and Discussions

L

GVAY¥

LAVAYAYAYaRatated

TR
LA

Figure 6.15 Strain energy plot for two-bar frame.

6.4 Summary 137

The strzin energy distribution is plotted in figure 6.16 for the design of an optimal
bracket. The structure is supported below as shown and carries the a load at the circular
region. This load is caused due to a shaft passing through the circular hole and is therefore
assumed to be a distributed load. The optimal shape obtained by the algorithm is shown on
the top right of figure 6.16. Again note that the optimal shape has a nearly uniform strain
energy distribution (lower right), while the initial shape on the left has large regions that do
not carry significant strain energy. This indicates the available material is more efficiently
utilized (fully loaded or stressed) for the optimal topology obtained by minimizing the strain
energy absorbed.

2/ 77

XX
anavs
X

7/ 7 7/ /7

Figure 6.16 Strain energy plots for bracket.

The optimal topology obtained for a given loading and boundary condition is
independent of the appli:d loads. In practice it was found that large magnitude of load led
to faster convergence to an optimal solution. When very dense mesh is used the magnitude
of the partial derivative of the objective function with respect to the nodal density becomes

138 Chapter 6. Results and Discussions

very small if the applied loads are not sufficiently large. This seems to lead to loss of

accuracy and the resultant poor convergence.

The optimal topology depends on the percentage of material removed from the initial
guess, that is the feasible region. When small percentage of material is removed all the
material property density relations and corresponding algorithms discussed in chapter 5,
lead to the same topology. However, when large percentage of material is removed it is
desirable to be able to remove material in one step and therefore quadratic and higher order
material property density relation discussed in chapter 3 are more efficient. The resultant
optimal shape tend to have large areas of intermediate density suggesting that the truly
optimal shapes are composites with varying material property within the structure. To
obtain design that are fuily dense and homogeneous we add « penalty function to the
objective function that penalizes intermediate densities. The optimal shapes obtained by
adding the penalty term are frame-like structures that have sharply defined boundaries and
fully dense material.

As suggested in chapter 1, shape and topology optimization helps the designer at the
conceptual stage of design by computing the optimal shape and topology from purely
structural considerations. By maximizing the compliance subject to a constraint on the
weight we obtain shapes that are the stiffest possible for the given weight of the structure.
This geometry may have to be modified to account for other design considerations. Note
that even though the optimal topology is independent of the applied load, the exact shape
and the dimensions would depend on the loads if the stress and strain constraints are
directly accounted for. However, as noted in chagter 3, the stress and strain constraints are
not easy to impose directly since they lead to a large number of constraints and because
such constraints make the design sensitive to stress concentration arising out of modeling
error. The optimal design obtained by minimizing compliance tend to have nearly uniform
stress distribution and the average stress is related to the compliance of the structure.
Therefore, it is possible to indirectly ensure that stress constraints are not violated by
checking whether the compliance of the optimal structure is above the critical value

associated with the design stress.

Conclusions

7.1. Thesis Summary

In this thesis the design optimization of structures has been studied with the goal of
developing efficient algorithms and methodologies for optimizing both the shape and
topology of structural components. In this chapter the main motivations, the key ideas and
the results are summarized. The conclusions arrived in the course of this research and a
discussion of results obtained are presented in section 7.2. The potential applications and
implications of the new trends in structural design is discussed in section 7.3. Future
extensions to this research and some general areas that need further research are also

discussed in this section.

Structural optimization has traditionally been viewed as the last stage or the detailing
stage of design. The conventional techniques of structural optimization treat certain critical
dimensions or certain boundaries of the shape as the design variable. This allows very
limited change of shape and hence the optimization can often make only very marginal
improvements to the initial shape provided by the designer. Combined shape and topology
optimization on the other hand treats the entire geometry of the structure as a variable.
Rather than make small modifications to an initial design, this approach can predict optimal
shapes that are entirely independent of the initial guess. Indeed the optimal shapes predicted
by such techniques can be topologically different so that it may have new boundaries and

holes.

The introduction of topology optimization fundamentally changes the application and
scope of structural optimization. Due to the drastic design changes introduced during
combined shape and topology optimization, such techniques can help designers at an early
stage of design. Rather than suggest slight modifications to a detailed design, combined
shape and topology optimization suggests new design concepts to which details are to be
added. This fundamental difference drastically changes the utility and applicability of

139

140 Chapter 7. Conclusions

structural optimization. By applying structural optimization at an early stage in design,
major design modifications are feasible allowing significant improvements in structural

performance.

Most structural optimization techniques cannot account for all the design constraints
encountered in real life design. Typically only the structural constraints and objectives are
modeled so that other constraints such as aesthetics, manufacturing and assembly
requirements etc. must be handled manually. Therefore, applying structural optimization
techniques at the detailing stage of design can sometimes be counter-productive. Since only
minor changes are possible at this stage, often only marginal improvements in structural
performance are obtained. Furthermore many design constraints that are not modeled may
be violated during the optimization process. Combined shape and topology optimization
enables the introduction of structural optimization at the conceptual stage of design. These
techniques also account for only the structural design criteria during the optimization
process so that the shape obtained is optimal only from structural considerations. However,
since the optimization is applied at a early stage, the structurally optimal shape provides a
guideline to the designer. The other design criteria still have to be accounted for manually,
but in doing so the designer can try to minimize the deviation from the structurally optimal

shape.

Shape and topology optimization requires very flexible shape representation that allows
the topology to change when the design variables are modified. An implicit shape
representation is used in this thesis where the contours of a shape density function
corresponding to a threshold value are treated as the boundaries of the shape. The shape
density function is defined over a feasible region and is represented by piece-wise linear
interpolation over triangular finite elements. The value of the density function at the nodes
serve as the design variables of the optimization problem.

The shape as well as the topology can be modified by varying the design variables in
the above shape representation. As the shape varies the structural properties should change
accordingly. This implies that the material properties should be somehow related to the
shape density function. In this thesis many different material property-density relations
were studied. In selecting this relation the two major criteria where as follows:

1) When the density decreases in a region the overall stiffness of the structure should
decrease.

7.1 Thesis Summary 141

2) The final designs should be fully dense shapes so that even when the threshold value
on the density is close to zero the density of material within the boundary is nearly 1.0.

Shape representations that allow both shape and topology variation typically require
large number of design variables. The optimization problem defined in terms of this
variables therefore have very high dimension. In addition, structural optimization requires
repeated structural analysis. Very efficient algorithms are therefore required to solve these
optimization problems. The important requirements for the optimization algorithm are:

1) Its performance should not deteriorate seriously when the number of variables are
very large.

2) It should require very few function evaluations.
3) It should exhibit fast convergence.

A sequential optimization algorithm was developed with these requirements in mind.
The algorithm can be interpreted as a modified form of sequential linear programming
where the move limits are set using the logarithmic barrier method. The key advantage of
this method is that the sub problems generated at each iteration is a convex nonlinear
program that can be solved using Newton’s method. Computation per iteration is further
reduced by not solving the sub problem completely. Instead a descent direction of the
subproblem is found by Newton’s method and the variables are updated using this descent
vector. A new subproblem is then defined by re-evaluating the functions for the new value
of the variables. The algorithm was found to perform very well for linearly constrained
problems. A method for extending the algorithm to handle nonlinear constraints is also
proposed in this thesis. However, further research may be required to test its performance
and to ensure reliability.

7.2. Cenclusions

The implicit shape representation using shape density function along with the mcving
barrier sequential linear programming algorithm provides a computationally efficient m::ans
of combined shape and topology optimization. By selecting approximate material property-
density relations we are able to represent the shape density function using piece-wise linear
CO continuous interpolation. Even though the side constraints on the density variables are
set such that they can assume any value in the interval [¢,1] it is desired that the optimal

design be composed of fully dense material since we are interested in designing structures

142 Chapter 7. Conclusions

made of homogeneous, isotropic materials. Therefore, ideally the density value should
transition sharply at the boundary from the maximum value (¢=1) to the minimum (¢=¢yp).

In this thesis we have experimented with different material property-density relations. A
linear approximate relation was first constructed using the assumption that the material
properties (Young’s modulus and Poisson’s ratio) vary linearly with the density function.
The material property coefficients in the stress-strain relation were then linearized with
respect to density. The threshold value on density was set very close to 1.0 to ensure that
the material is fully dense in optimal shapes obtained. Material was removed in small steps
so that at the end of each step, the elements in regions where density value is below the
threshold are removed from the analysis model to create a hole. This method was found to
give good results when only small weight reduction from the initial geometry was required.
For large material removal the optimal designs obtained where found to be sensitive to the
mesh used. Moreover the method becomes computationally inefficient since material is
removed in many small steps and therefore a large number of steps are required to achieve
the desired material removal. Another drawback of this material property density relation is
that it assumes that the density values decrease monotonically during the optimization
process. At the end of each step the elements are removed from regions with low values of
density and the density values in these regions are assumed to be fixed. Therefore in
subsequent steps the density in such regions cannot increase.

To overcome these difficulties quadratic material property-density relations were used
under the assumption that the Young’s modulus varies quadratically with respect to
density. Similarly higher order relations can be obtained by assuming higher order relation
between Young’s modulus and the density function. For these relations the material
property coefficients do not become negative for density values in the interval [0,1]. Hence
the threshold value can be set to zero (or very close to zero). During the optimization
process when the density value in a region is reduced to zero the elements in those regions
are effectively removed since they do not contribution to the stiffness of the structure.
Therefore large percentage of material can be removed in a single step. However, it was
found that when large percentage of material is removed the optimal shapes obtained tend to
have many regions where the density function has intermediate values. As a results the
boundaries are not clearly defined. In order to prevent this a penalty term was introduced in
the objective function that penalizes intermediate values of density. The optimization
process therefore tends to favor solutions that are fully dense.

7.2 Conclusions 143

In the design of trusses and frames where large percentage of material has to be
removed from the initial feasible region, a combination of fourth order material property
density relations and a penalty on intermediate density was found to yield good results.

7.3. Future Directions

Shape and topology optimization has the potential to vastly improve the design process
of structural components. The traditional methods of shape optimization have so far found
application only in aerospace design where weight minimization is a very important design
requirement. However, recently optimal design of structural components has become
crucial to automobile industry also due to stricter fuel economy standards and stiff
competition. Other applications of structural optimization include civil, naval structural
design, sports equipment etc. In all these applications topology optimization can potentially
reduce design time and yield superior designs by assisting the designer at the conceptual

stage of design.

Research in shape and topology optimization is still at an early stage. Possible
extensions to the research presented in this thesis are:

1) C! continuous interpolation for the shape density function. In combination with
higher order material property density relation, such a interpolation function would result in
very high order polynomial to be integrated over each element during the assembly of the

stiffness matrix.

2) Extension of the methods developed in this thesis to sheli elements and 3D elements.

3) Develop better criteria for resetting move limits in the MBSLP algorithm with
nonlinear constraints so that the logarithmic barriers better approximate the local curvature

of the objective function.

Appendix
Optimality Criteria

In this chapter some simple concepts in optimization theory are described. Details on
these concepts can be found in most texts on linear and nonlinear programming such as
[Luenberger_84] and [Bertsekas_92].

1. Definitions
Local maxima and minima

The vector x* € R" is the unconstrained local minimum of a function f(x) if the value of
the function evaluated at x* is less than or equal to the value of the function at all other
values of x in an arbitrarily small neighbourhood of x*. That is, if there exists a £>0 such

that

f(x")<f(x), V xsuch that [x-x"|<e (A.1)

Similarly, a vector x* is a unconstrained local maximum of the function f(x) if there
exists a £>0 such that

f(x') 2 f(x), V x such that [x-x"|<e (A.2)

The vector x™ is the unconstrained global minimum of the function f(x), if the value of
the function evaluated at x™ is less that its value for any other x, that is,

f(x")<f(x), Vx eR" (A.3)

These concepts are illustrated in figure A.1 for a one dimensional function. At a strict
local minimum the function value is strictly less than at all the neighbouring points.

145

146 Appendix

*f(x)

<3 . —— 5>

LY
Strict local Strict local Local Global
minimum maximum minima minimum

Figure A.1. Unconstrained optima

Descent direction

A vector Ax is said to be a descent direction of a function f at the point xy if,
Vi(x,)'Ax <0 (A4)

Most optimization algorithms find the optimal solution by iterative descent. They start at
an initial guess X and then generate a sequence of vectors x such that, f(xy.,;)<f(xy),
k=1,...n. At each iteration a descent direction is computed and the current guess for the

optimal solution xi is updated as
X =X, O AX (A.S5)

where oy is the step size and Ax is a descent direction. The step size is selected such
that

£(Xy) < £(X,) (A.6)

The vector Ax =-aVf(x,) is a descent direction of the function at xx. Similarly, the
vector Ax =~[D]Vf(x,) is a descent direction if [D] is a positive definite matrix.

Convex sets and functions
Consider a set C which is a subset of R". The set C is said to be a convex set if

ox,+(1-a)x,€C, Vx,, x,eC, Vae(0,1] (A.7)

Appendix 147

Therefore, if the set is convex all the points on the line joining any two points in the set

will also belong to the set.

Let f be a function defined over a convex set C. The function is said to be a convex

function if

f(ox, + (1 - 00)X,) S 0f (%) + (1 -)f(x,), V X,,%, €C, V 0. €[0,1] (A.8)

This property of a convex function is illustrated in figure A.2. for a one dimensional
case. The linear interpolation of(x,)+ (1 —a)f(x,) overestimates the value of the convex

function at ox, + (1 -)x,.

f(x) A

of(x,) + (1 - o)f(x,)

-

. &>
v X, X, X

Figure A.2. Property of a convex function

An important property of convex sets is that the intersection of two or more convex sets
is also a convex set. Similarly, a weighted sum of two or more convex functions, with
positive weights, is convex over the set defined by the intersection of the domains of the
functions being added. A linear function is an example of a convex function. A twice
differentiable function f defined over a convex set is convex if V*f(x) is positive semi-

definite forall xeC.

Another property of convex functions that is often used to characterize convexity of
differentiable functions is the following. A differentiable function f defined over a convex

set C is convex, iff,
f(x) 2 f(x,)+(x-x,) Vf(x,), Vx, x,€C (A.9)

If the inequality in equation (A.9) holds strictly whenever x # x,, then the function is
said to be strictly convex. This property is illustrated in figure A.3.

148 Appendix

-

Figure A.3. Property of differentiable convex function

2. Kuhn-Tucker criteria for optimality

The necessary conditions for optimality of a nonlinear program is referred to as the
optimality criteria. Consider a general nonlinear program defined below,

min f(x), subject to, h(x)=0, g(x)<0 (A.10)

where, f(x):R" - R, h(x):R" - R™ and g(x):R" — R" are all nonlinear functions.
The optimality criteria for this nonlinear program may be expressed in terms of the
Lagrangian function defined as

L(x, A1) = £(x) + Y by (x)+ Y g (%) (A.11)
i=l j=1

where L e R™ and p eR".

The optimality criteria for the nonlinear program defined in equation (A.10), is also
known as the Kuhn-Tucker necessary conditions and can be state as follows:

Let x* be a local minimum of the nonlinear program defined in (A.10) and let us
assume that the gradients of the constraint functions are linearly independent at this point.
Then there exists unique Lagrange multiplier vectors A* and u* such that,

V,L(x", A, p")=0 (A.12)
20, j=1,..r (A.13)

and y; =0 for j corresponding to inequality constraints that are active at x*.

Appencix 149

3. Duzl problems
Consider the nonlinear program defined as
min f(x), subjectto, g(x)<0, xe X (A.14)

If we refer to this problem as the primal problem, its dual problem is defined as

max q(}) (A.15)
subject to,
K20, j=1L..r (A.16)

where, u € R and q is defined as

q(u) = inf L(x,) (A.17)

L(x,p) is the Lagrangian function defined as

L(x, 1) = f(0) + Y, j;8,(x) (A.18)

=1

and the function q(i) is defined over the domain p € D, = {u] q(t) > —eo}.

[Allaire_92]

[Anagnostou_92]

[Bathe_82]

[Bennett_86]

[Bendsoe_92a]

[Bendsoe_92b]

[Bendsoe_91]

[Bendsoe_88]

References

G. Allaire and R. V. Kohn, “Topology optimization and optimal
shape design using homogenization”, Topology Design of
Structures, Ed. Bendsoe and Mota Soares, Kluwer Academic
Publishers, 1992.

G. Anagnostou, E.M. Ronquist and A.T.Patera, “A Computational
Procedure for Part Design”, Computer Methods in Applied
Mechanics and Engineering., vol. 97, pp. 33-48, (1992).

K. J. Bathe, Finite Element Procedures in Engineering Analysis,
Civil engineering and engineering mechanics series, Prentice-Hall,
Inc., Englewood Cliffs, New Jersey, 1982.

J. A. Bennett and M. E. Botkin, Editors, “The Optimal Shape:
Automated Structural Design”, General Motors Research
Laboratories Symposia Series, Plenum Press, New York, 1986.

Martin P. Bendsoe and Carlos A. Mota Soares, Editors, Topology
Design of Structures, Kluwer Academic Publishers, 1992.

M. P. Bendsoe, A. Diaz and N. Kikuchi, “Topology and
generalized layout optimization of elastic structures”, Topology
Design of Structures, Ed. Bendsoe and Mota Soares, Kluwer
Academic Publishers, 1992.

M.P. Bendsoe and H.C. Rodrigues, “Integrated Topology and
Boundary Shape Optimization of 2-D solids”, Computer Methods in
Applied Mechanics and Engineering., 87 (1991) 15-34.

M.P. Bendsoe and N. Kikuchi, “Generating optimal topologies in
structural design using a homogenization method”, Computer
Methods in Appiied Mechanics and Engineering, Vol. 71, pp. 197-
224, 1988.

151

152

{Bensoussan_78]

[Bertsekas_92]

[Botkin_86]

[Briabant_84]

[Choi_87]

[Fluery_89]

[Fluery_86]

[Fluery_79]

[Fukushima_92]

References

A. Bensoussan, J. Lions and G. Papanicolaou, Asymptotic analysis
for periodic structures, North-Holland Publishing Company, New
York, 1978.

Dimitri P. Bertsekas, “Notes on Nonlinear Programming”, MIT
course 6.252 notes, 1992.

M. E. Botkin, R. J. Yang and J. A. Bennett, “Shape optimization of
three-dimensional stamped and solid automotive components”, The
Optimum Shape, J. A. Bennett and M. E. Botkin Editors, Plenum
Press, NY, 1986.

V. Briabant and C.Fleury, “Shape optimal design using B-splines”,
Computer Methods in Applied Mechanics and Engineering, 44 (3)
(1984) 247-267.

K. K. Choi, "Shape Design Sensitivity Analysis and Optimal
Design of Structural Systems", in Computer Aided Optimal Design:
Structures and Mechanical Systems (C.A. Mota Soares, Ed.),
Springer Verlag, pp. 439-492, (1987).

C. Fleury, “Efficient approximation concepts using second order
information”, International Journal of Numerical Methods in
Engineering, Vol. 28, pp. 2041-2058, 1989.

C. Fluery and V. Briabant, "Structural Optimization: A new dual
method using mixed variables", Infernational Journal of Numerical
Methods in Engineering, Vol. 23, pp. 409-428, 1986.

C. Fleury, "Structural weight optimization by dual methods of
convex programming", International Journal of Numerical Methods
in Engineering, Vol. 14, pp. 1761-1783, 1979.

J. Fukushima, K. Suzuki and N. Kikuchi, “Topology optimization
of a Car Body with Multiple Loading Conditions, The 33rd
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and
Materials Conference, 2499/2507, (1992).

References

[Gibbs_76]

[Haug_86]

[Haftka_92]

[Haftka_86]

[Hemp_73]

[Hernandez_91]

[Hock_81]

[Ho-Le_88]

[Imam_82]

[Kirsch_81]

153

N. E. Gibbs, W. G. Poole,Jr., and P. K. Stockmeyer, “An
algorithm for reducing the bandwidth and profile of a sparse
matrix”, SIAM, Journal of Numerical Analysis, Vol. 13, No. 2,
1976.

E. J. Haug, K. K. Choi, V. Komkov, “Design Sensitivity Analysis
of Structural Systems”, Mathematics in Science and Engineering
series, Academic Press Inc., 1986.

R.T. Haftka and Z. Gurdal, Elements of Structural Optimization,
3rd Edition, Kluwer academic publishers, 1992.

R.T. Haftka and R.V. Grandhi, “Structural shape optimization - A
survey”, Computer Methods in Applied Mechanics and
Engineering., vol. 57, pp. 91-106, (1986).

W. S. Hemp, Michells structural continua, Optimal structures,
Clarendon Press, Oxford, 1973.

S. Hernandez and C.A. Brebbia, Optimization of Structural Systems
and Industrial Applications, Computer Aided Optimum Design of
Structures 91, Computational Mechanics Publications, Elsevier
Applied Science, 1991.

Willi. Hock, and Klaus Schittkowski, Test examples for Nonlinear
Programming Codes, Lecture Notes in Economics and Mathematical
Systems, Springer-Verlag, New York, 1981.

K. Ho-Le, “Finite element mesh generation methods: a review and
classification”, Computer-Aided Design, Vol. 20, no. 1, pp. 27-38.

M. H. Imam, “Three-dimensional shape optimization”, International
Journal of Numerical Methods in Engineering, Vol. 18, pp. 651-
673, 1982.

Uri Kirsch, “Optimum Structural Design: Concepts, Methods and
Applications”, McGraw-Hill Book Company, NewYork, 1981.

154

[Kikuchi_86]

[Kohn_86]

[Kumar_93]

[Kumar_92]

[Lawson_77]

[Luenberger_84]

[Monteiro_89a]

[Monteiro_89b]

[Morris_82]

[Mota Soares_87]

References

N. Kikuchi, Finite element methods in mechanics, Cambridge
University Press, New York, 1986.

R.V. Kohn and G. Strang, “Optimal design and relaxation of
variational problems”, Communications in Pure and Applied
Mathematics, vol. 39, pp. 113-137 (Part I), pp. 139-182 (Part II),
and pp. 333-350 (Part III), (1986).

Ashok V. Kumar and David C. Gossard, "A sequential
approximation technique for nonlinear programming using
logarithmic barriers" to be submitted to International Journal of
Numerical Methods in Engineering, 1993.

Ashok V. Kumar and David C. Gossard, "Geometric modeling for
shape and topology optimization", Fourth IFIP WG 5.2, Geometric
modeling in Computer-Aided Design., Ed. Wozny, M. et. al. 1992.

C. L. Lawson, “Software for cl interpolation”, in Rice J. (ed.),
Mathematical Software III, Academic Press, New York, 1977.

Luenberger, “Introduction to Linear and Nonlinear Programming”,
Addison-Wesley, 1984.

Monteiro, R.D.C. and Adler, 1., "Interior path following primal-
dual algorithms. Part I: Linear Programming", Mathematical
Programming, Vol. 44, pp. 27-41, 1989.

Monteiro, R.D.C. and Adler, 1., "Interior path following primal-
dual algorithms. Part II: Convex Quadratic Programming",
Mathematical Programming, Vol. 44, pp. 27-41, 1989.

A. J. Morris (Editor), “Foundations of Structural optimization: A
Unified Approach”, John Wiley and Sons, 1982

Carlos A. Mota Soares, Editor,Computer Aided Optimal Design:
Structures and Mechanical Systems , NATO ASI Series, Springer
Verlag, Series F: Computer and Systems Science, Vol. 27, (1987).

References

[Papalambros_90]

[Press_88]

{Reddy_84]

[Rozvany_91]

[Schmit_74]

[Shigley_83]

[Sloan_87]

[Strang_86a]

[Strang_86b]

[Suzuki_91]

155

Panos Papalambros and Mehran Chirehdast, "An Integrated
Environment for Structural Configuration Design", Journal of
Engineering Design, Vol. i(1): pp. 73-96, 1990.

W. H. Press, B. P. Flannery, S. A. Teukolsky and W. T.
Vetterling, “Numercal Recipes in C, The art of Scientific
Computing”, Cambridge Universty Press, NY, 1988.

J. N. Reddy, An introduction to the finite element method,
McGraw-Hill, New York, 1984.

G. I. N. Rozvany, Editor, Optimization of Large Structural
Systems, Volume I-II, NATO ASI Series, Kluwer Academic
Publishers, 1991.

L.A. Schmit and B. Farshi, “Some Approximation concepts for
Structural Synthesis”, AIAA Journal, Vol. 12(5), pp. 692-699,
1974.

Joseph E. Shigley and Larry D. Mitchell, “Mechanical Engineering
Design”, Fourth Edition, Series in Mechanical Engineering,
McGraw-Hill Book Company, New York, 1683.

S. W. Sloan, “A fast algorithm for constructing Delaunay
triangulations in the plane”, Advanced Engineering Software, Vol.
9, No. 1, 1987.

Gilbert Strang and R.V. Kohn, “Optimal design in elasticity and
plasticity”, International Journal for Numerical Methods in
Engineering,, vol. 22, pp. 183-188, (1986).

Gilbert Strang, Introduction to Applied Mathematics, Wellesley-
Cambridge Press, Cambridge, Massachusetts, 1986.

K. Suzuki. and N. Kikuchi, “A homogenization method for shape
and topology optimization”, Computer Methods in Applied
Mechanics and Engineering, Vol. 93, pp. 291-318, 1991.

156

[Svanberg_87]

[Topping_83]

[Yang_86]

[Zienkiewicz_89]

References

K. Svanberg, "The Method of Moving Asymptotes - A new method
for structural optimization", International Journal of Numerical
Methods in Engineering, Vol. 24, pp. 359-373, 1987.

B. H. V. Topping, "Shape optimization of skeletal structures: A
review", Journal of Structural Engineering, Vol. 109, No. 8, pp.
1933-1951, 1983.

R. J. Yang, K. K. Choi and E. J. Haug, “Numerical considerations
in structural component shape optimization”, ASME Journal of
Mechanics, Transmissions and Automation in Design, Vol. 107,
No. 3, pp. 334-339, 1986.

O. C. Zienkiewicz, The finite element method, 4th edition,
McGraw-Hill, NY, 1989.

