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Abstract

We consider all-optical networks using a combination of wavelength and time divi-
sion multiplexing where the path of a signal is determined by the network switches,
the wavelength of the signal, and the signal origin. We present lower and upper
bounds on the minimum number of wavelengths needed based on the connectivity
requirements of the users and the number of switching states. The bounds hold for
all networks with switches, wavelength routing, and wavelength changing devices.
Passive and configurable devices in both non-blocking and blocking networks are
considered. Switchless networks with near optimal wavelength re-use are presented.
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Chapter 1

Introduction

1.1 All-Optical Networks

We consider networks supporting high data rate sessions. Each session has an origin
and a destination. At the origin, the data is converted from the electrical domain to
the optical domain by modulating a laser. At the destination, the data is converted
from the optical domain to the electrical domain via a photodiode and demodulation.

Optical networks consist of fiber optic links and nodes. They can be divided into
two broad classes based on the function of the nodes: All-Optical Networks (AONs)
and Electro-Optical Networks (EONs). The EON is the conventional approach. In an
EON, also called Second Generation Optical Networks [Gre93] and Multi-Hop Net-
works [Aca93], the nodes perform optical to electronic conversion, electronic routing,
e.g. virtual circuit or packet routing, followed by electronic to optical conversion.
An advantage of EONSs is that electronic routing can be performed. However, this
advantage is also its potential downfall since the total throughput on the incoming
links to a node must not exceed the electronic processing speed of the node. This has
been called the electronic bottleneck [Gre93]. The name electronic bottleneck is some-
what of a.misnomer; it is actually a cost/throughput trade-off since the throughput

of a network is not necessarily limited by the throughput of a node. That is, high
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throughput networks can be made by simply increasing the number of nodes of the
network. Note also that the number of links may also increase to interconnect the
large number of nodes.

There is another way to describe the electronic bottleneck. In a network of high
data rate sessions, where the data rate of a session is on the order of the processing
speed 6f a node, then any given node can only process a small number of sessions.
Therefore, networks with lots of sessions require lots of nodes. Again we see that the
electronic bottleneck is a cost/throughput trade-off.

In All-Optical Networks (AONs), a.k.a. Third Generation Optical Networks
[Gre93], a.k.a. Single-Hop Networks, the sessions remain in the optical domain from
the origin to the destination. The nodes of the network are all-optical and eliminate
the electronic bottleneck. Several laboratory and field experiment AONs have been
demonstrated: Bellcore’s LambdaNet [GKV190], AT&T Bell Laboratory’s Wave-
length Division Networks [WK*90, KISSSS, GST88], British Telecom’s Wavelength
Routing Network [W*91], Rainbow-1 Network [Gre93], and NTT’s 100 Wavelength
Network [T+90]. A description of these networks can be found in [Gre93]. Re-
cently more ambitious AONs have been proposed for study: Linear Lightwave Net-
works (LLNs) [Ste90, Pan92], The MIT/DEC/AT&T AON [A*93], and The Bell-
core/Columbia/UPENN AON.

AONSs eliminate the electronic bottleneck; however, since electronic routing is not
possible, all-optical routing methods are required. One option is all-optical packet
routing. Here the nodes of the network perform basic logic functions on the optical
signals in order to route the messages from the inputs to the outputs of the node.
There are severe technological problems with optical packet routing at this time. First
of all, only the most basic of logic functions can be implemented. Second is the lack
of optical buffers. If these technological limitations can be overcome or circumvented,
optical packet routing may be the design of choice for future high speed networks.

Optical packet routing is probably the most technologically distant all-optical
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routing method. On the other hand, broadcast routing has already been demon-
strated. In a broadcast network, each destination hears every signal from each ori-
gin. The signals are multiplexed using waveléngth division multiplexing (WDM),
time division multiplexing (TDM), polarization division multiplexing, code division
multiplexing, or some combination of the above. Examples of broadcast networks
that have been demonstrated are Bellcore’s LambdaNet [GKV*90], IBM’s Rainbow-
1 [Gre93], and NTT’s 100 Wavelength Network [T*90], achieving throughputs of 32
Gb/s, 9.6 Gb/s , and 62 Gb/s, respectively. Each of these networks use a combination
of WDM and TDM to multiplex signals from different sources.

Broadcast networks have two inherent flaws which make them unscalable. First
of all, the total throughput of a broadcast network can be no more than the total
. throughput of a fiber. Second, since each signal reaches each destination, there is an
inherent power splitting loss which grows with the size of the network. 4

Another option is the topic of this thesis: wavelength routing [Goo89, Gre93.
Informally, the path a signal takes is a function of the wavelength of the signal. Most
wavelength routing nodes are passive devices which work on interference effects and
therefore do not suffer from the electronic bottleneck.

The next two sections describe wavelength routing networks in detail. Afterwards,

important examples that we will return to many times are presented.

1.2 Wavelength Routing

In a wavelength routing all-optical network (A-routing AON), the path a signal takes
is solely a function of the state of the devices, the wavelength of the signal, and
location of the signal transmitter. If the paths are under control of the network
through the use of switches, configurable wavelength routing devices, or configurable
wavelength changing devices, we say that the network is configurable. Otherwise, the

network is passive or fized.
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A trivial example of a configurable wavelength routing node is an elementary 2 x 2
switch. The switch has 2 states, bar and cross. In the bar state, each signal on each
wavelength from input 7 is routed to output z, for i = 0,1. In the cross state, each
signal on each wavelength from input ¢ is routed to output i +1 (mod 2).

In a passive AON, the path is only a function of the wavelength and location of the
signal transmitter. Here, the input/output connectivity of the network is fixed but
routing through the network is possible since the connectivity of the devices, although
also fixed, is a function of the optical wavelength. Connections are established by the
tuning of the transmitters and/or receivers. Broadcast networks, discussed above,
are the simplest example of a passive network where there exists a path from every
input to every output on every wavelength.

A more complicated example of a passive network is shown in Fig. 1-1. The
network has 2 origins and 3 destinations and uses passive A-routing to establish
sessions between origins and destinations. Each origin (destination) has one tunable
laser (receiver) and only one fiber to access the network. The wavelength routing
nodes (A-nodes) selectively route the signals from the origins to the destinations
based on wavelength only. Paths for three wavelengths Red, Green, and Blue are
also shown in Fig. 1-1. Since the network is passive, the only freedom, after the
network topology and wavelength paths have been determined, is in the tuning of
the transmitters and receivers to different wavelengths.

Suppose that a session requires a full wavelength of bandwidth. Then the network
in Fig. 1-1 can support sessions between any matching of the origins to the destina-
tions (without multi—casting) except the matching ¢ = {(1,Y),(2,2)}. To see that
this matching cannot be supported, notice that origins 1 and 2 must both be assigned
wavelehgth Red to reach their intended destination. Since there is a Red-path from
2 to Y, two Red signals collide at destination Y. This need not Happen for any other -
pair of sessions provided wavelengths are assigned properly.

However, if a session only requires half a wavelength of bandwidth so that sessions

18




on the same wavelength can be time multiplexed, the network can support ¢ =
{(1,Y),(2,2)}.

Since we are allowing the use of wavelength conversion within the network, a signal
launched from a transmitter may arrive at a receiver on a different wavelength. In
fact, a signal launched from a transmitter rnay‘ arrive at a variety of receivers on many
different wavelengths and/or arrive at a receiver on several different wavelengths.

Wavelength converters are represented by m-nodes. As for A-nodes, there are two
types of m-nodes: configurable and fixed. An example of a network with a fixed 7-
node is shown in Fig. 1-2. Here if a signal on wavelength Red is launched from source
2, it arrives at destination Y on wavelength Red and at destination Z on wavelength
Green.

In the general situation, the 7-nodes are configurable, e.g. depending on the state
of the device, Red is converted to Green or to Blue. An AON containing configurable
m-nodes is itself configurable. Also, if a passive AON contains m-nodes, they are, by

definition, fixed.

1.3 Network Model

We consider networks with M, transmitters, M, receivers, and F wavelengths. When
ME M; = M, the network is symmetric and M is the number of users. Each trans-
mitter (receiver) is connected to one outgoing (incoming) fiber. To model wavelength
changing, we define an origin-destination channel, or OD channel, as an ordered pair
of wavelengths and use the notation f: f’ to represent an OD channel. We say that
transmitter n is connected to receiver m on OD channel f: f’ if a signal launched from
n on wavelength f is received at m on wavelength f'. If a transmitter or receiver
is tuned to wavelength f, we say it is assigned f. Note that there is no assumed
relationship between the OD channels connecting transmitter n to receiver m and

the OD channels connecting transmitter m to receiver n. Using the OD channel ter-
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Solid = G , Dashed = R , Dotted = B

Figure 1-1: Example of a A-routing network without wavelength changing
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Logical
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Solid = G , Dashed = R , Dotted = B

Figure 1-2: Example of a A-routing network with wavelength changing
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minology, the connectivity of a A-routing network can be fully described by the set
H = {Hy|y € ¥}, where Hy(n, m) is the set of OD channels connecting transmitter
n to receiver m in state ¥, and U are the switching states of the network. A switch-
ing state 1 represents the combined state of all configurable switches, A-nodes, and
m-nodes in the network.

In networks without wavelength changing, f: f' € Hy(n, m) implies that f = f'.
In this case, we will use the obvious short hand notation of f for f: f.

If |¥| = 1, the network is passive. In this case, the connectivity of the AON
is specified by a single connectivity matrix H. For example, the passive A-routing

network shown in Fig. 1-2 has the connection matrix,

{G:G,R:R} {R:R} {B:B}
{G:G} {R:R} {R:G}

H =

Note that our network model is a generalization of a conventional circuit switched
network [Hui90]. In our terms, a conventional circuit switched network has F = 1

wavelength and || > 1 states.

1.4 Light Tree AONs (LT-AON)

A symmetric 3-stage interconnection AON is shown in Fig. 1-3. The first stage
consists of M tunable transmitters, M wavelength demultiplexers, and up to M
arbitrary fixed wavelength changers. The second stage consists of single wavelength
fiber trunks. The third stage consists of up to M arbitrary fixed wavelength changers,
M wavelength multiplexers and M tunable receivers. The first and third stages are
called peripheral stages or peripheral nodes.

Each output (input) of the demultiplexers (multiplexers) are connected to at
most one wavelength changer. In addition, each wavelength changer is connected to

at most one trunk. Therefore, a signal from a transmitter travels on at most one
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Figure 1-3: LT-AON

trunk. Similarly, a receiver can hear at most one trunk on each wavelength.

We call the trunks, along with the transmitters and receivers connected to a given
trunk a light tree. The transmitters are the roots of the tree and the receivers as the
leaves. The number of trees is simply the number of trunks and the wavelength
of a tree is by definition the wavelength of the trunk. Note that the wavelength a
transmitter uses to reach a trunk or a receiver uses to hear a trunk is not necessarily
the wavelength of the trunk, due to the presence of wavelength changers. But since
each output (input) of each wavelength changer in the first (third) stage is connected
to at most one trunk, it does follow that each transmitter is connected to at most
F trees and each receiver is connected to at most F' trees. We now define a very

important class of AONs.!

Definition 1 Light Tree AON (LT-AON)

A passive AON is a passive Light Tree AON iff there exists a 3-stage interconnection
AON with the same connectivity matriz. A configurable AON is a configurable Light
Tree AON iff the network is a passive Light Tree AON in each switching state.

LThe definition is more general than that in [A*93].
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Usually, this definition is little help in determining if an AON is a Light Tree.

The following equivalent definitions generally remedy the situation.

Definition 2 Light Tree AON (LT-AON)
A passive Light Tree AON has a connectivity matriz H such that if three entries of
H are of the form

m 4

nll {f:f.. 3| {f:d,-.
z| H(z,m) | {g:q,..

— |

then the fourth entry must contain g: f',

m y
n|l{f:f,..} {f:¢,...}
z | {g:f..} | {g:9,..}

That is, if n #x and m # vy, f:f' € H(n,m), g:¢' € H(z,y), and f:g' € H(n,y)
then g: f' € H(a:',m).

Note that there is nothing special about H(z,m) being in the left hand corner and

by permuting n,z and/or m,y, we can make the undetermined square in any of 4

possible positions. Also, the rows and columns need not be adjacent to each other.
When there is no wavelength changing, the connectivity matrix is a superposition

of rectangles.

Definition 3 Light Tree AONs w/o Wavelength Changing
A passive Light Tree AON without wavelength changing has a connectivity matriz H
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such that if three entries of H are of the form

m y
n| {f-} | {f, -}
z| H(z,m) | {f,..}

then the fourth entry must contain f,

m 4

n | {f,-} | {f -}

That is, if n %2 and m £y, f € H(n,m) N H(z,y) NH(n,y) then f € H(z,m).

Hypergraphs are another way to view the connectivity of a LT-AON.2 To see this,
form a bi—partlite hypergraph with M; input nodes and M, output nodes. Then for
each light tree in the network, form an edge containing the transmitters and receivers
connected to the tree. Conversely, any AON whose connectivity is represented by a

Hypergraph can be represented by a LT-AON.

1.5 Latin Routers

A special case of a passive wavelength routing device or network has a connection
matrix which is a latin square. A latin square is an N x N matrix where each element
(4,7) is one of N symbols such that no symbol appears in a row or column more than
once. Two examples of 4 x 4 latin squares are shown in tables 1.1a and 1.1b. Notice
that in table 1.1b the symbols are the four sets {0,1},{2,4}, {5,6}, {3, 7}.

We call a device or network whose connection matrix is a latin square a Latin

Router (LR). We only consider Latin Routers without wavelength changing and where

2Hypergraphs are a generalization of undirected graphs where the arcs of the graphs are arbitrary
sets of nodes. If each arc contains only 2 nodes, the hypergraph is a graph [Brg89].
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each input is connected to each output on k wavelengths, some k. k is called the
coarseness of the device. If £ = 1, we say the device is fine and in this case the
number of inputs and outputs of the device is equal to the number of wavelengths,
ie. N=F. In general, F = Nk.

It should be easy to see that the Latin Router, with any number of users connected
to the inputs and outputs, is a LT-AON. It should also be easy to see that all F
wavelengths can be simultaneously applied to each of the N inputs without any
output contention accommodating a total of F2?/k simultaneous connections [Hil&8,
HCD89, WK89, Goo89, Bra90).

A well known physical implementation of a Latin Router with k = 1 is the WDM
cross-connect [Bra90] shown in Fig. 1-4.. The cross-connect is a 2 stage network
where the first stage consists of F' frequency demultiplexers of size 1 x F each and
the second stage consists of F' multiplexers of size F' x 1 each. The demultiplex-
ers separate the wavelengths on each input fiber onto a unique output fiber. The
interconnection between the stages consists of F? fibers connecting each of the F
demultiplexers to each of the F multiplexers in the final stage. By properly choosing
the output and input ports of the demultiplexers and multiplexers any latin square
can be implemented. Although the cross-connect uses an excessive 2F devices and
F? interconnections, there are far more practical designs; for instance a 1000 x 1000
Latin Router can be implemented with 66 devices, each of size 33 x 33, and 1000 fiber

interconnections [BH93a]. Each device used in this design is itself a Latin Router with

011123 {01} {2,4}] {56} {37}
3101112 {37} | {56} {24} {01}
2131011 {2,4}] {01} {37} ] {56}
11213]0 {56} {37} {01} {24}
Table 1.1a Table 1.1b

k=1 k=2

Table 1.1: Two Examples of 4 x 4 Latin Routers/Squares
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Figure 1-4: WDM Cross-Connect

a special periodic structure. These devices, similar to a generalized Mach-Zehnder

interferometer, have been integrated onto silicon [Dra9l].

1.6 Non-Light Tree AONs (NLT-AONsS)

Not all networks are LT-AONs. An example of a non-Light Tree AON (NLT-AON)
is shown in Fig. 1-5. The Y-nodes represent star couplers which broadcast all input

signals to all outputs. The connection matrix is

{1,2,..F} {1,2,..F}
H = 0 {1,2,..F} 0
1,2,..F} {1,2,..F}

where () is the empty set.
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Figure 1-5: Non-Light Tree AON
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Chapter 2

Problem Statement

Recall that in a broadcast AON each transmitter is connected to each receiver on all
wavelengths and therefore as many wavelengths as there are simultaneous signals are
required. In networks where the number of active users far exceeds the number of
available wavelengths', it will be necessary to simultaneously assign many transmit-
ters the same wavelength. In addition, it will be necessary for a signal originating at
a source to reach many destinations. Since two sessions using the same wavelength
cannot travel over the same fiber simultaneously, certain collisions within the network
need to be prevented. In particular, we must insure that sessions do not collide at
intended receivers. That is, if receiver m is listening to wavelength )\ at time t, we
must insure that only one signal on ) arrives at receiver m at time ¢. If two or more
arrive, we say there is contention.

Contention is avoided by isolating signals of the same wavelength. This isolation
can be done spatially and temporally. Spatial isolation is achieved by A-routing.
In this thesis, we show that there is a limit to the possible amount of isolation, or
equivalently a limit on the wavelength re-use. This limit depends on the number
of wavelengths, the number of devices, the functionality of the devices, and the

requirements of the users. We will derive lower bounds on the required number of

!Bandwidth is a scarce commodity!
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wavelengths for A-routing networks under various constraints. We will also present
constructions and existence proofs which show that some of these bounds can be
tight.

We will outline the most important results in this chapter. Before that, we need a
language to describe the connectivity requirements of the users. To that end, define
a session (n,m) to be an ordered pairing of a transmitter, n, to a receiver, m. The
session data rate is defined to be R, b/s.

A traffic ¢ is a set of sessions. If (n,m) € ¢, we say that (n,m),n, and m are
active in ¢. We assume that each transmitter and each receiver are active in a.t‘ most
one session in any traffic, that is we do not consider any multi-point connections.
If two sessions are active in the same traffic ¢ they are said to be concurrent in ¢.
We say that a network supports ¢ if all the sessions in ¢ can be connected without
contention. ‘

The traffic set T is a set of traffics. A network supports T if the network supports
all traffics in 7.

The Permutation Traffic Set for M users is defined to be the set of all traffics of
size M and has M! traffics. We say a network does permutation routing if it supports
the Permutation Traffic Set. We also say it is a permutation network and a connector.

We will be interested in another important traffic set. Define the p-Permutation
Traffic Set as the set of all traffics of size pM. p is called the utilization and pM
is called the load. If a network supports the p-Permutation Traffic Set, then we say
it does p-permutation routing. Also we say the network is a p-permutation network
and a partial-connector. If p = 1, p-permutation routing is permutation routing and
a p-permutation network is a permutation network.

The general question we are interested in is how many wavelengths are needed
given a demand on the network, as measured by a traffic set, and given an acceptable
level of performance, as measured by the blocking probability. We will mainly be

interested in passive networks where the demand on the network is the p-Permutation
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Traffic Set, but we will consider configurable networks and other demands as well.
Throughout this thesis we will use various combinatorial functions; these functions

and some of their properties are described in Appendix A. We will also use the

binomial and hypergeometric probability distributions; these distributions and their

properties are described in Appendix B.

2.1 Non-Blocking WDM Networks

Throughout this thesis, M is the number of users, F' is the number of wavelengths,
R b/s is the maximum throughput of each wavelength, and R, is the required bit
rate of each session. When each session requires a full wavelength of bandwidth, i.e.
R, = R b/s, we call the network a WDM network. When each session requires less
than a full wavelength of bandwidth, the network is called a WDM/TDM network.
WDM networks are the subject of Parts I and II. WDM/TDM networks are treated
in Part III.

A non-blocking network is one which supports the traffic set which describes
the demand on the network. For instance, a non-blocking network which supports
permutation routing is a connector and a non-blocking network which supports p-
permutation routing is a partial connector.

In Part I we consider building non-blocking WDM networks. We start in Chap-
ter 3 with a special case. Specifically, we determine the minimum number of wave-
lengths required for a passive AON when pairs of users are connected by at most
one OD channel, as in the WDM cross-connect. Such a network is called a sim-
ple network. We will see that there are essentially no good simple networks for
p—perfnutation routing.

We therefore consider the general case where users are connected on more than
one OD channel. Chapter 4 presents a lower bound on the number of wavelengths for

any non-blocking A-routing AON based on the traffic set and the number of switching
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states. The influence of wavelength changers on this bound is also discussed. We will
see that wavelength changing plays a very insignificant role in this bound and that
the bound can be tight without wavelength changing.

Chapter 5 is devoted to connectors. Four connectors are considered: rearrangeably
non-blocking and wide-sense non-blocking connectors with and without wavelength
changing. A rearrangeable network is allowed to reassign wavelengths and reconfigure
devices in response to a session request or termination. A wide-sense network cannot
disturb active sessions and therefore requires at least as many wavelengths as a rear-
rangeable network. As a consequence of the lower bound presented in Chapter 4, at
least /M /e wavelengths are required to build a passive connector. We will see that
O(+/Mlog M) wavelengths are sufficient for a wide-sense non-blocking network with-
out wavelength changing.? This is currently the best asymptotic bound for all four
types of passive connectors, but the constants are slightly smaller for rearrangeably
non-blocking versus wide-sense non-blocking networks. There is currently no differ-
ence in constants with or without wavelength changing. We also consider configurable
networks. Again there is no difference between the best known bounds with and with-
out wavelength changing but unlike the passive case, the bounds presented here have
a small asymptotic difference between rearrangeably and wide-sense non-blocking
connectors. This difference has recently been closed [ABCR*93]. Unfortunately, we
only prove the existence of wavelength routing networks with © ( Mlog M ) wave-
lengths; currently no constructions with this efficiency are known. This limitation is

taken care of in Part II.

2We use h(M) = ©(g(M)) to mean that there exist positive bounded constants cy, ¢z, M, such
that for all M > M,, cg(M) < h(M) < cog(M). h(M) = O(g(M)) means h(M) < ©(g(M)) and
h(M) = Q(g(M)) means h(M) > ©(g(M)).
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2.2 Blocking WDM Networks

In Part II, we consider the problem of honoring as many requests as possible from a
random list of requests. Let s, ..SpM be an ordered list of session requests where re-
quest 7 is made before request :+1 and where all lists without multi-point connections
are equally likely.

We consider two types of networks: non-sequential and sequential. In a non-
sequential network, analogous to a rearrangeable network, the network waits until
the last request before deciding which requests to honor and which to block. In a
sequential network, analogous to wide-sense non-blocking networks, the decision to
honor or block the ** request is made before the (i + 1)* request. Also a sequential
network is not allowed to reassign wavelengths nor reconfigure devices in order to
honor the i** request.

We show that for small blocking probability P,, a non-sequential blocking network
requires just about as many wavelengths as a rearrangeably non-blocking network.
Then we construct sequential networks with very small blocking probabilities using
only ¢\/pM wavelengths where c is a constant that depends weakly'on the blocking
probability and is between 6.5 and 9.2 for P, between 10~3 and 10~%. The constructed
networks, which do not require wavelength changing, consist of broadcast local area
networks (LANSs) connected to a Latin Router. An optimization is done on the
number of wavelengths connecting pairs of users. Therefore, unlike non-blocking
connectors, we have essentially been able to meet the theoretical lower bound in
terms of asymptotic growth of the required number of wavelengths. However the
constants may be too large for applications where the number of wavelengths is
limited.

Part IT also treats the case of almost-all connectors. In an almost-all connector, the
network must honor all of M randomly requested sessions with high probability. We
explicitly construct almost-all connectors using © (/M log M) wavelengths without

wavelength changing, meeting the best non-blocking existence proofs.
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2.3 WDM/TDM Networks

Recall that R b/s is the maximum throughput of each wavelength and that R, is
the required bit rate of each session. When each session requires less than a full
wavelength of bandwidth we call the network a WDM/TDM network. We assume a
slotted system with 7' periodic time slots where each session is assumed to require
one time slot of a wavelength, i.e. Ry = R/T b/s.

Recall that at least F' > ©(y/pM) wavelengths are required for passive WDM
networks. Inverting this formula, the maximum load pM of such a network is ©(F?).
It will be more convenient to express results on WDM/TDM networks in terms of
the load.

First off, since a network with F' wavelengths and T time slots cannot perform bet-
ter than a network with F'T' wavelengths, the maximum load of a passive WDM/TDM
network is ©(F?T?). We show that ©(F2T) is achievable and that this is the best
any passive LT-AON can do [Gal92b]. We also presents bounds for configurable
LT-AONs.

Then, in Chapter 8 we show that if the Light Tree restriction is relaxed, F2T*/?
active sessions are possible as long as F' > T%/3. The difference between F?T%/® and

F?T? is an open question.
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‘Part 1

Non-Blocking WDM Networks
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Chapter 3

Simple Networks

A simple AON is defined to be a passive AON where each user pair is connected by
at most one OD channel, i.e. |H(n,m)| < 1. Simple networks have the practical
advantage that the OD channel used by a session is not a function of the other active
sessions.

An important example of a simple network is the F' x F WDM cross-connect,,
Fig. 1-4. Consider using a WDM cross-connect to build a partial connector with
pM > 2 active sessions. Clearly F = M wavelengths suffice by hooking one user to
each input and each output. If F < M, at least one input port ¢ and at least one
output port j have more than one user attached. Since the cross-connect can support
at most one session between any input and output port, the network cannot support,
p-permutation routing if pM > 2. Therefore a broadcast network, which requires
pM wavelengths, is more wavelength efficient than the cross-connect for any p < 1,
and equally efficient for p = 1. Note that this conclusion may not hold if a session
does not require a full wavelength of bandwidth. N

Can we do better without relaxing the restriction |H(n,m)| = 1 ? The answer
is yes, but only by a factor of two. Specifically, an M x M simple connector can
be built with f%} + 2 wavelengths and this is the best we can do. The networks

do not require wavelength changing and are LT-AONs. A 7 wavelength, 10 user
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Table 3.1: 10 user AON with 7 wavelengths.

11 2 3 4 5 6 7 8 9] 10 12 1 1 1 1 1 1 1 1 1
1] 11 3 4 5 6 7 8 9 | 10 2| 12 2 2 2 2 2 2 2 2
1 2|11 4 5 6 7 8 9 | 10 3 3| 12 3 3 3 3 3 3 3
1 2 3|11 5 6 7 8 9 | 10 4 4 4] 12 4 4 4 4 4| 4
1 2 3 4] 11 6 7 8 9 (10 5 5 5 5 | 12 5 5 5 5 5
1 2 3 4 5111 7 8 9 | 10 6 6 6 6 6 | 12 6 6 6 6
1 2 3 4 5 6 | 11 8 9110 7 7 7 7 7 7|12 7 7 7
1 2 3 4 5 6 7|11 9 | 10 8 8 8 8 8 8 8 | 12 8 8
1 2 3 4 5 6 7 8 | 11 [ 10 9 9 9 9 9 9 9 9 | 12 9
1 2 3 4 5 6 7 8 9 |11 10| 1w0|10]|10] 10| 10 | 10 | 10 | 10 | 12

12 2 1 1 1 1 1 1 1 1 11 2 3 4 5 6 7 8 9 | 10
2 |12 2 2 2 2 2 2 2 2 1|11 3 4 5 6 7 8 9 (10
3 3] 12 3 3 3 3 3 3 3 1 2|11 4 5 6 7 8 9 |10
4 4 4 | 12 4 4 4 4 4 4 1 2 3111 5 6 7 8 9 | 10
5 5 5 5| 12 5 5 5 5 5 1 2 3 4 | 11 6 7 8 9 |-10
6 6 6 6 6 | 12 6 6 6 6 1 2 3 4 5 [ 11 7 8 9 | 10
7 7 7 7 7 7| 12 7 7 7 1 2 3 4 5 6 | 11 8 9| 10
8 8 8 8 8 8 8 | 12 8 8 1 2 3 4 5 6 7|11 9 | 10
9 9 9 9 9 9 9 9 | 12 9 1 2 3 4 5 6 7 8§ |11 | 10

10 {10 | 10 [ 10 | 10 | 10 | 10 | 10 | 10 | 12 1 2 3 4 5 6 7 8 9 | 11

Table 3.2: A Non-blocking 20 x 20 AON with 12 wavelengths

example is shown in Table 3.1. Wavelength 1 is printed in boldface to help the reader
discern the pattern. Another example is shown in table 3.2. Both these networks
are non-blocking since if H(n,m) = {f} and H(z,y) = {f}, then f & H(n,y) and
f & H(z,m). Therefore when (n,m) and (z, y) are both active, neither signal is heard
at the other’s receiver. Note that n # z and m # y since multi-point connections are
not allowed in permutation routing. |
Surprisingly, this is the best we can do even if p << 1. Specifically, let F; be the

minimum number of wavelengths to do p-permutation routing with a simple AON.
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Then,

W < F; S[%]+2

[M+1

2 2

for all pM > 2. Notice that the required number of wavelengths is independent of p,
for pM > 2. If pM = 1, a broadcast network supports the traffic set and exactly one
wavelength is required. Also if p < .5, eqn. (3.1) shows that a broadcast network is

more wavelength efficient than a simple wavelength routing network.

Theorem 1 Bounds for Simple AONs

Let Fs be the minimum number of wavelengths to do p-permutation routing with
a simple AON. Then for pM > 2,
M

| <= <|5]+2 | (3.1)

[M—i—l
2

Proof: Let H be any simple AON that supports p-permutation routing,
pM > 2. Then clearly H must support %-permutation routing. That is, H

must support the following traffic set,

75 d=9f {(n,m),(z,y) I n#m’m#y} (3'2)

We will show that at least [%-’ wavelengths are required to avoid contention.

Let f(n,m): f'(n,m) be the OD channel in H(n,m). We refer to f(n, m)
as the o-color and f’(n,m) as the d-color of (n,m). Now define d,(n,m) to be
the number of entries in row n with o-color f(n,m). Note that d,(n,m) > 1
since H(n, m) contains o-color f(n,m). Similarly define d,(n, m) > 1 to be the
number of entries in column m with d-color f'(n,m). Note also that d, (n, m) <
M and d.(n,m) < M since a color can be used at most M times in a row or
column.

Notice that if d.(n,m) > 2 and d,(n,m) > 2, then there exists an m/
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such that f' = f'(n,m') = f'(n,m) and similarly there exists an n’ such that
f = f(n,m) = f(n',m). It therefore follows that there is contention at receiver

m/ in traffic {(n',m), (n,m’)} as the reader can easily verify. So,

L + L >1+ l—
d.(n,m) = d.(n,m) ~ M

for all (n,m). Now summing over all (n,m) gives

1 1

1
+ > M (1+— ). (3.3)
(ngﬂ;z) d" (na m) dc(na m) ( M) |

To finish the proof, we need only count the left hand side of eqn. (3.3) in a
different way. Notice that for all n,

M 1 F 1
— ~ | <F
',nzzl dT‘ (n) m ‘;l ; d’f‘ (n) m) -

H(nm)=Ff

since the inner sum is 1 if f is used in row n and 0 otherwise. Similarly, the

number of d-colors used in column m is

S o <F

(n m)
Thus, the left hand side of eqn. (3.3) is at most 2FM. The fact that F' must

be integer completes the proof of the lower bound.

The following construction, which uses ’-% + 21 wavelengths without wave-
length changing is due to [E*86]. The construction supports p-permutation
routing for all 0 < p < 1. Specifically for a 2M x 2M square, call the rows
T1, T2, .. T, Y1, Y2, ---Yar and the columns uy, ug, ...upr, V1, V2, ...UM The coloring

is as follows,

f(miyuy) = f'(=i,u;) = J for i = 1,2,..M,7 #1
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f(@i,v5)

flzv;) = 4 fori=1,2,..M,j+#i
- f

!

= 1 fori=1,2,.M,j+#1

f (i, uy) (Y4, u;

)
)
Flyi,vi) = f'(y,vy) = § fori=1,2,..M,j+#i
flxi,wi) = f'(zi,us) = M+1 fori=1,2,..M
f@ivi) = f'(zi,v:)
Fyiywi) = f'(ys, i)
)

Flys,vi) = f'(yi, vs

= M+2 fori=1,2,..

= M+2 fori=1,2,..

R 8 K

= M+1 fori=1,2,..

3.1 Conclusions and Extensions

In the remaining chapters, we will relax the restriction |H(n,m)| = 1. Before pro-
ceeding, we note 4 extensions of Theorem 1.

First, for simple AONs without wavelength changing, the minimum number of
wavelengths is exactly l-% + 2]. The slight improvement to the lower bound is shown
by relating the problem of supporting 75 to a previously solved bi-partite graph edge
coloring problem [E*86]. The transmitters are one set of nodes, the receivers are the
other set, and the wavelengths are the colors of the edges. A feasible H corresponds
to a colored graph without monochromatic paths of length 3 edges. The added
complexity is not worth the improved results for our purposes so we omit the details.

Second, the problem can be extended to the case where the number of transmitters
M; is not equal to the number of receivers M,. Then by obvious modifications of the

arguments,

R MM ([ L (3.4)
' = M, + M, max (M, M,) '

The case of no wavelength changing has been solved by [EU91]. For M, > M,,6 M

-
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an integer, and M; > 6,

M, +2

— mi e DI
F, = min{M,, [MtMt n M'r-l +1}

(3.5)

For M, < M, , reverse the rolls of M; and M, in the above expression. When
M, = M, = M , this expression reduces to Fy = [%1 + 2 as before. Notice that for
large M; , Fs, = M, and the optimal network assigns one fixed wavelength to each
receiver. Similarly, for M, large, the optimal network requires one wavelength per
transmitter. ,

Third, the results of this section hold for passive AONs that are not simple but
instead assign a fixed OD channel to each session. In this case f(n,m): f'(n,m)
represents the OD channel used by session (n,m). As is the case for simple networks,
the session (n,m) is always routed through the same path in the network. This type
of routing is called oblivious routing [Lei92].

Fourth, notice that the constructed networks are strict sense non-blocking.! We
will see later that at least [M/2] wavelengths are needed for a strict sense non-
blocking LT-connector [Chapter 5, p. 76]. Since the construction provided in this
chapter is a LT-AON, it is optimal in another way.

1An AON is strict sense non-blocking (S.S.NB.) if given any set of active sessions without con-
tention and a new session request between an inactive transmitter and an inactive receiver, there
always exists an OD channel to feasibly assign the session.
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Chapter 4

On the Number of Wavelengths
and Switches Needed in AONs

4.1 Introduction

In this chapter, we only consider networks with M users where each user has one
transmitter and one receiver, i.e. M = M, = M,. The techniques and results can be
easily extended to the case where M, # M,.

We relax the restriction used in Chapter 3 and consider A-routing networks with
arbitrary topology, wavelength changers, and switches. A lower bound on the num-
ber of wavelengths is presentéd in section 4.2. Section 4.3 discusses the influence of
wavelength changing on the bound. In section 4.4, we show that the bound can be
very tight and that near optimal wavelength re-use is possible even without wave-
length conversion. Partial connectors are discussed in section 4.5 followed by another
example in section 4.6.

Conclusions on the scalability of non-blocking wavelength routing AONs are de-

layed until Chapter 6.
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4.2 Lower Bound

Recall that 7 are the traffics the network must support. Each traffic ¢ € T is called
an allowable traffic. Two sessions in the same traffic are said to be concurrent. Also,
when considering a fixed traffic ¢, we say that n, m, and (n,m) are all active in ¢ if
(n,m) € ¢. Also recall that two concurrent sessions collide if they arrive at the same
receiver on the same wavelength. Such a collision may not be fatal; it is fatal only
if the collision occurs at one of the intended receivers. If two sessions have a fatal
collision, we say they contend.

Let F(T,S) be the minimum number of wavelengths needed to support all the
traffics in 7~ without contention for any A-routing network with |¥| = S states. Also
let d = maxs || be the maximum number of concurrent sessions. Our main result

proved in this section is that

F(T,S) > ('—S,T—');_d(]‘;)_l/é—1 (4.1)

For example, the Permutation Traffic Set has d = M and |7T| = M! traffics. There-
fore, applying the bound and using M! > MMe=M | at least \/M/e — 1 wavelengths
are needed to arbitrarily interconnect M users in any passive (S = 1) A-routing
network.

Define a tuning state, v, as the 2 x M matrix

fa,l fo,2 fo,M
far fa2 - fam

where fon (fam) is the wavelength assigned to transmitter n (receiver m) in this
tuning state. If f,, = 0 (f4.n = 0), we say that transmitter n (receiver m) is off. Let
V;n, and voy be the first and second row of v, respectively. v;, and vo,; are known as

the transmitting and receiving tuning states, respectively.
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A tuning state v, together with a switching state 1, defines a network state. 1f
H is a A-routing network, we say that a network state is feasible for traffic ¢ if all
active sessions (n,m) in ¢ can be assigned OD channel f,: f4m without contention
when the network is in switching state . Network state feasibility is formally defined

below.

Definition 4 Network State Feasibility
Let H = {Hylyp € U} be a A\-routing network, v be a tuning state, and 1 a switching
state. Then the network state defined by v and 1 is feasible for a traffic ¢ if

(C0) Inactive transcewvers are off.
(C1) Active sessions are connected, i.e. V(n,m) € ¢ , fon:fam € Hy(n,m).

(C2) Concurrent sessions do not contend, i.e. if {(n, m), (z,y)} C ¢ then forn:fiy &
HlP(”a y) and fo,:z . fd,m g H¢(IL', m)

Condition (2) says that for all pairs of concurrent sessions (n,m) and (z,y), there is
not a path from n to y on f,,: fa, and similarly there is not a path from z to m on
f o,zif d,m-

A network H supports traffic set 7 without contention if for each allowable traffic,
there is a feasible network state. We will show below in lemma 3, that a network
state can be feasible for at most one traffic. Therefore, the number of network states
must be at least the number of traffics. Bounding the number of network states will
then prove eqn. (4.1). Following the proof of eqn. (4.1) and a few variations, we
will discuss some further interpretations of this result with an emphasis on the role
wavelength changers play in defining feasible network states. Afterwards, we will

presents some examples.
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We now formally prove our bound.

Theorem 2 Lower Bound
Let F(T,S) be the minimum number of wavelengths needed to support T without

contention for any A-routing network with S states. Then,
1)

rersy= ()" 12)

where |T| is the number of traffics in T .

2) Also, let d = maxy |¢| be the mazimum number of active sessions, then

S () ) ”

3) Also for all integer L <z < M, let T, ={¢p € T | |¢| =z} be the traffics with

z active sessions. Then,

F(T,S) > <%‘)%(M)_l/w (4.4)

T

4) which implies that for any A-routing network with F wavelengths,

S = |TulFM (4.5)

Proof: Part I: S =1
First consider an arbitrary passive A-routing network specified by a connection
matrix H. Since H is assumed to be able to support 7, it must be true that
there is a feasible tuning state for each ¢ € 7. We will show in the lemma

below that for a passive network, conditions (C0), (C1), and (C2) imply that
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a tuning state can be feésible for at most one traffic. Therefore, the number
of feasible tuning states must be greater than the number of allowable traffics.
This proves eqn. (4.2) when S = 1 since the number of feasible tuning states is
at most (F' + 1)*M.

Equations 4.3 and 4.4 follow by using the added information to better bound
the number of feasible tuning states. To see eqn. (4.3) note that at least M — d
transmitters and at least M — d receivers are off. There are ( MNi d) ways to pick
the M —d inactive transmitters and the same number of ways to pick the inactive
receivers. The remaining d transmitters are either assigned a wavelength from
1 to F or off. Similarly for the remaining d receivers. Therefore, the number of
feasible tuning states is no more than (F 4 1) (Mﬂfd)z = (F+1)% (5)2.

Eqn. 4.4 uses the same reasoning as above, except now there are exactly z
active transmitters and z active receivers in each traffic of 7,. There are (]‘f)2
ways to pick the active transmitters and receivers and each one is assigned a
wavelength between 1 and F.

Part II: S >1
Let 7T () be the traffics supported by the network in switching state 9. Then
since T = Uyey T (¥), at least one switching state must support at least |7]/S
traffics. Now apply Part I in this state. This proves eqns. (4.2),(4.3), (4.4) for
arbitrary S. Solving eqn. (4.4) for S gives eqn. (4.5) when z = M.

O

Lemma 3 In a passive network, a tuning state can be feasible for at most one traffic.

Proof: Consider an arbitrary passive A-routing network with connection ma-
trix H. Let V(¢) be the set of feasible tuning vectors for traffic ¢. That is V(¢)
are those vectors v that satisfy conditions (C0), (C1) and (C2).

Suppose v were feasible for two traffics. Specifically, suppose v € V(¢) and
v € V(¢'). Then (CO0) implies that ¢ and ¢’ have the same active transceivers.

Since ¢ # ¢', there must be at least one receiver m matched to n in o, i.e.
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(n,m) € ¢, and not matched to nin ¢/, i.e. (n,m) & ¢'. Sinée m is active in ¢/,
there must be an z # n such that (z,m) € ¢'. From condition (C1) applied in
#, there must be a path from n to m on fon: fam, 1-€. fon:fam € H(n,m). Also
from condition (C1) applied in ¢’ there must be a path from x to m on foz: fam,
i.e. for:fim € H(z,m). Now since « is active in ¢, there must be a y such that
(z,y) € ¢. Therefore condition (2) is violated since {(n,m), (z,y)} C ¢ and
there is a path from z to m on OD channel f,;: f4m- This is a contradiction

since we assume v was feasible for ¢. O

4.3 Networks without Wavelength Changing

Consider the traffics where everybody is on. Let # network states = # switching
states X # tuning states. According to Theorem 2, the total number of network
states must be large enough to assign a unique network state to each traffic in the

traffic set. That is,
# switching states X # tuning states > # traffic states

is a necessary condition to avoid contention for any A-routing network. Since there

are no more than F?M feasible tuning states,
# switching states x F?M > # traffic states

Now consider networks without wavelength changing. There is a temptation to apply
the following erroneous reasoning. The number of traffic states is |7|. There are M
active sessions and each session is assigned one of the F wavelengths. Therefore, it
must be true that S x F™ > |T| for networks without wavelength changing. This
is not true. We will show by example in section 4.4 that this argument can vastly
overestimate the required number of wavelengths for networks without wavelength
changing. The above reasoning fails because it counts the possible number of feasible

tuning states for any traffic ¢, not the total number of feasible tuning states. That is,
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it is true that for any ¢, |V(¢)| < FM for networks without wavelength changing and
[V(¢)] < F?M for networks with wavelength changing. However, it is not true that
the total. number of feasible tuning states for networks without wavelength changing
is at most F'M,

In a network without wavelength changing, f: f’ € Hy(n,m) implies f = f'.
Combining this with condition (C1), we see that in order for v to be feasible, fon =
fam for all active sessions (n,m). This implies that (C3) the number of receivers
assigned f must equal the number of transmitters assigned f. We use this condition
in the following theorem to improve Theorem 2, but the improvement is negligible.
Our reason for including it is to spare the ambitious reader the trouble of reproducing

the argument.

Theorem 4 Lower Bound for Networks without Wavelength Changing
Let F'(Tu, S) be the minimum number of wavelengths needed to support Try with-
out contention for any A-routing network without wavelength changing. Let S be the

number of switching states. Then,

F'(Tar, S) > (1 + ) (@) m (4.6)

’ InvM
where € goes to 0 faster than HW

Proof: Let V' be the number of tuning states where v, is a permutation of

Uin. We first count V' and then use this to bound F.

To count V, let V(k), k = [ky,ky, ..., kp], be the number of transmitting
tuning states with &; transmitters using wavelength 1. Obviously, V' (k) is also
the number of receiving tuning states with k; receivers using wavelength 4. In

addition, each receiving state counted in V' (k) is a permutation of any v;, with
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k; transmitters using wavelength ¢. Therefore

vV = Z VZ([kl,kQ,...,k;F])
Z:f‘=]_";i:M
w2
g (m> (4.7)
Zf‘:lki:M 1:R2.. .V

Dividing both sides by F?, we see that the right hand side is a multinomial
distribution. Using the Central Limit Theorem, we approximate the multino-
mial by an F' — 1 dimensional Gaussian density with mean k= % and variance

o2=M (%) in each dimension.
1% 1 =S R
—_ = ———exXp{ ——> ki —k })
M kl,kz,-ZkF—1 ((27702)%—1 { 20? ;( » )

where now the sum is over all integers in each dimension. Approximating the

sum as an integral and letting R be the reals,

1% 1 =S A
i~ fo (mexl’{—ﬁ (ki =) })

=1

B S S
_(27r02)£27—1 RF-1 (27r02)¥ Pl =

The integral is the weight under a scaled gaussian with variance 02/2. There-

fore, V is approximated by

Now since the number of traffics can be no more than the number of network

states, V x S > |T|. Let F* be the smallest F' such that V' x S > |T]. Using
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the approximation for V' and relaxing the integer constraints,

npe = BTl-hS B M1 In 47 M (4.8)

2M 4M F* 4M

Now, define a such that F* = oF,, where In F, = 11[7—2-% Since F, is the
lower bound on F for networks with channel changing, oo > 1. Thus eqn. (4.8)

reduces to

oF, 4rM 1 ‘
i In oF, M Indn M (4.9)

Ina =

Note that the right hand side of eqn. (4.9) is ‘an increasing function of both
o and F,. Since F* is no more than M (since V > FM and |T| < M!), a is
no more than M/F,. Using a < FMO to bound the right hand side of eqn. (4.9)
shows that In o < .25In 4. Using a < (47)%, we get

(ar)¥* M 1

Y Indn M (4.10)

Ina < In

(47)iF,
M
Since the right hand side of eqn. (4.10) is increasing with F,, we can replace F,
by its largest possible value. F, is increasing with %l and J%:-l < M!. Therefore,
F, < (M)Y2M_ Using Sterling’s approximation gives us our final bound on

In o,

4m)i (2 M) 7h7 3 ~_L 1
( )4\(/]76) In ((471‘)4(27TM) M \/]\76) — —11’147!'M

1 <
na < 5

Since MM =14+ O(2M) Ina = 0(1"7—‘ﬁ4ﬂ) Lete=a—1,s0¢= O(l%ﬁ).

This completes the proof.

As an aside, V' can be strictly lower bounded by taking only the middle
term, i.e. ky = ky = ... = kyy = M/F, in eqn. (4.7). The conclusion is the same

except that the convergence of € to 0 is slightly slower. O
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The preceding theorem does not say that wavelength changing cannot help, only
that the absence of wavelength changing will not significantly change the lower bound
derived earlier. We included it here to emphasize the fact that the number of tuning

states grows something like F?M with and without wavelength changing.

4.4 Near Optimal Wavelength Reuse

We present an example to make two important points. First, S x F¥ > |T] is not
a necessary condition to avoid contention in networks without wavelength changing.
Second, the bound derived in Theorem 2 can be extremely tight, even in the absence
of wavelength changing. |

In order to describe the traffic set, group the transmitters into VM disjoint T-
Groups of size v/M each. Number the T-Groups from 1 to \/M and let I(n) be
the T-Group of transmitter n. Similarly group the receivers into R-Groups and let
1< Jim) < V/M be the R-Group of receiver m. Define the Santa Barbara Traffic
Set, Tsp, to bé the set of all traffics without multi-point connections with eXactly
one active session between each [T-Group,R-Group| pair. A typical traffic is shown
in Fig. 4-1. Notice that like permutation routing, the Santa Barbara traffics have M
active sessions in each traffic. »

To implement the Santa Barbara Traffics, we use a VM x vM WDM cross-
connect with each T-Group connected to an input and each R-Group connected to
an output; see Fig. 4-2. The network uses a total of vV'M wavelengths. Numbering
the wavelengths by the integers from 1 to F' = /M, the connection matrix is defined
by

H(n,m) = (I(n) — J(m)) mod VM + 1 | (4.11)

To see that this is about the best possible, we count the number of traffics and use

eqn. 4.4 with x = M and S = 1. |Tsp| can be directly counted from its definition,
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however we will employ an easier trick. Consider only the case where every user
is on and notice that the network of Fig. 4-2 supports exactly the Santa Barbara
Traffics. Therefore, if we count the number of traffics supported by the network,
'we simultaneously count |7sp|. To count these traffics, notice that each feasible
tuning state for the network produces a unique traffic since if a transmitter (receiver)
retunes, it is talking (listening) to a different R-Group (T-Group). Therefore to
count |Tgp| it suffices to count the number of feasible tuning states for Fig. 4-2 when
everybody is on. So |Tgg| = (VM)12YM gince there are 2v/M groups, each group
can be independently tuned, and there are (v/M)! ways to tune a group. Now using
eqn. 4.4 with x = M,

2M
FM > (VM) > (@) (4.12)

oerg.

If we had used the incorrect bound F™ > |Tsp| for networks without wavelength

M
)

changing, we would have predicted that at least 5 wavelengths were needed. Note
also that H is a simple network [Chapter 3] that uses v/M wavelengths. Theorem 1
does not apply in this case since 7, ¢ Tsp. Therefore even though H can support
|TsBl, and |Tsg| is quite large, it cannot support many traffics with only two sessions.
For iﬁstance, H cannot support two concurrent sessions between a T-Group and an

R-Group, even if these two sessions are the only active sessions in the entire network.

This is of course not true when each session requires less than a full wavelength of

bandwidth.
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Figure 4-2: Implementation of 7sp
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4.5 Permutation Routing

As another example of how to apply Theorem 2, recall that the p-permutation traffic
set is the set of all one-to-one matchings of transmitters to receivers with no more
than pM active sessions. Let F(M,p,S) be the minimum number of wavelengths
to do p-permutation routing over a_ll A-routing networks with S states. Also, let
S(M, p, F) be the minimum number of states to do p-permutation routing over all
A-routing networks with F' wavelengths.

There are (,3{4) ways to pick the number of active transmitters, (,,A;\IJ) ways to pick
the active receivers, and (pM)! ways of matchings the transmitters to the receivers.

Therefore, eqn. (4.4), with z = pM, gives the bounds

F(M,p,5) > s M (4.13)
e
logy S(M, p, F) > pM log, pM — 2pM log, F — 1.44pM (4.14)

For instance, passive AONSs require /pM /e wavelengths to do p-permutation routing.

4.6 Duplex Permutation Routing

In dupler permutation routing there are no multi-point connections and every user
can call every other user, but if n is talking to m then m is talking to n. The duplex
permutation traffics are therefore a subset of the permutation traffics and model
typical phone service without conference calling.

Let’s apply eqn. 4.4 to this case. There are M receivers transmitter 1 could
request. Given that request, there are M — 2 receivers the next lowest available
transmitter may request. Note if 1 requests 2, the next lowest available transmitter

is 3, else it is 2. Given the first 7 requests, the next lowest available transmitter may
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request one of M — 27 receivers. So the number of traffics is

M!

MM =2)(M =4)..2 = Gr—pmr—

(4.15)

Since M(M — 2)...2 ~ (M — 1)(M — 3)...1, the number of traffics is approximately
VM!. Applying eqn. 4.4, we have F > (M/e)'/*. This is much smaller than the
bound for permutation routing!

However, we have picked this example to show that Theorem 2 need not be
tight. Paradoxically, we show this by applying the bound to a subset of the traffics.
Specifically consider only the duplex permutation traffics where all transmitters n <
M /2 are talking to receivers m > M/2 and transmitters n > M/2 are talking to
receivers m < M/2. Considering only the bottom half of the sessions, i.e. (n,m)

where n < m, there are M/2 active transmitters, M /2 active receivers, and (M/2)!

traffics. Therefore applying eqn. (4.4), F > \/M/2e >> (M/e)Y/*.

4.7 Conclusions

In this chapter we considered networks using a combination of wavelength routing,
wavelength changing, and circuit switching. A general bound on the number of
wavelengths was presented. The bound holds for all AONs and can be tight, even in

the absence of wavelength converters.
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Chapter 5

Connectors

A connector is a network which can support arbitrary one-to-one connectivity be-
tween its inputs and outputs. Connectors are traditionally built with one wavelength
and many switches. Shannon proved that a single wavelength M x M connector
requires at least ©(M logy, M) 2 x 2 switches [Sha49] and Benes showed that this
number is sufficient [Ben65].

In this chapﬁer, we consider building ' wavelength all-optical M x M connectors.
From Theorem (2) and the inequality M! > MMM , it follows that at least ©(v/M)
wavelengths are required to build a passive connector and at least @(S‘ﬁ\/l\_/[ )
wavelengths are required to build a configurable connector with S states.

In section 5.1, we investigate connectors with wavelength changers. In this case,

we are able to use known results in switching theory to get some quick answers. In

partiéular, we show that no more than @(S‘ﬁ \/ M log, M — log, S) wavelengths are
needed to build a rearrangeably non-blocking all-optical connector with wavelength
changers. In addition, we show that no more than ©(S~=7 \/m ) wavelengths
are needed to build a wide-sense non-blocking all-optical connector with wavelength
changers.

Then in section 5.2, we consider building connectors without A-changers. In this

case, the results on switching networks are not as useful but the arguments can
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be modified with no penalty in the required number of wavelengths: no more than

G(S_Elﬁ \/ M log, M — log, S) wavelengths for a rearrangeably non-blocking connec-
tor and no more than ©(S~ 2 \/m ) for a wide-sense non-blocking connector.

We also consider the problem of building configurable AONs with 2 x 2 elementary
switches. An elementary switch has two states: bar and cross. In the bar state, the
switch passes signals on all wavelengths from input ¢ to output 7, ¢ = 1, 2. In the cross
state, the outputs are exchanged. The lower bound shows that at least ©(M log )
switches are needed and the above result on rearrangeable connectors shows that
O(Mlog % — Mloglog F) switches suffice. [ABCR"93] has shown that for a wide-
sense non-blocking connector, the same result hold.

For passive networks, there is still a factor of ©(y/log M) between the lower and
upper bounds on the required number of wavelengths. Section 5.3 discusses some of

the difficulties of closing this gap.

5.1 Connectors with Wavelength Changing

5.1.1 Rearrahgeable Connectors

In this section, we prove that there exist rearrangeably non-blocking M x M connec-

tors with no more than @(S‘ﬁ\/ﬂ log M — log S) wavelengths.

Consider Fig. 5-1. Here a tunable transmitter is followed by a demultiplexer which
separates each of the F' wavelengths onto a unique fiber. Each demultiplexer output is
then followed by a wavelength changer which converts the input signal to wavelength
1. All-to-one wavelength changing devices have been demonstrated, but currently
their use is limited to signals using amplitude modulation [GT92b, G*t92a, D*93].
The device in Fig. 5-1 is functionally equivalent to an 1 x F' switch, the state of the
switch being determined by the wavelength of the transmitter. Similarly, the device

in Fig. 5-2 is functionally equivalent to a F' x 1 switch, where here the i** wavelength

changer converts wavelength 1 to wavelength ¢. Now consider a network with M
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Figure 5-2: An all optical implementation of a F' x 1 switch.
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M xM’

— M x M’

1

M’ switches M’ switches
Figure 5-3: Benes like network

transmitters, M receivers, and F' wavelengths. Use the above constructions to build
aﬁ 1 x F switch after each transmitter and a F' x 1 switch before each receiver. By
connecting outputs of the 1 x F' switches to one or more inputs of the F x 1 switches, a
network with two switching stages can be built. 2-stage wide-sense non-blocking, and
hence also rearrangeably non-blocking connectors were considered in [FFP88]. The
goal there was to minimize the number of switching cross-points; the goal here is to
minimize the switch size. [FFP88, Theorem 3] proves the existence of 2-stage wide-
sense non-blocking connectors using ©(M*/2 \/logw ) switching crosspoints and it is
easy to verify that the ‘proof uses switches of size no more than 8 [\/MTgQ—M ]
Let (M, S) be the minimum number of wavelengths required to build an M x M
connector with S states. We have just shown that F'(M,1) <8 [\/J\m -’ For
the configurable case, we use a technique of Sasaki [Sas93]. Let k be a positive
integer. We will show below how to build a configurable 2¥M’ x 2¥ M’ connector with
elementary switches and multiple copies of a passive M' x M’ connector. We assume

that the M’ x M’ connector uses the minimum number of wavelengths, F(M’,1).
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The configurable connector uses the same number of wavelengths and K = 2%k M’

switches so that S = 2%+, Therefore, we will show that
F(2°M',25%) < F(M')1) (5.1)
for aﬁy k > 1. Making the change of variables, M = 2*M' and k = a7 log, S,
F(M,S) < F(MS 1) (5.2)

Using the above results on passive networks now shows that

F(M,S) < ©(S™57/Mlog M — log S). (5.3)

We now iteratively build the desired connector. For k = 1, the OM' x 2M' connector
is shown in Fig. 5-3. The first and last stage together consist of K; = 2M’, 2 x 2
switches and the middle stage consists of two M’ x M’ passive connectors with
F(M',1) wavelengths. For k = 2, repeat the iteration using 4M’' new switches and
two of the 2M" x 2M’ connectors just constructed to build a 4M’ x 4M’ connector
with Ky = 4M' + (2M' + 2M") = 8M’ switches and F(M',1) wavelengths. After
k iterationé, we have k stages of 2 x 2 switches, with 2¥=1M’ switches per stage, 2F
M' x M' passive networks in the middle, followed by k stages of 2 x 2 switches with
2’“‘1M " switches per stage. The final construction is a Benes network with the middle

2log, M' — 1 stages replaced by 2* passive M’ x M’ connectors.
82
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5.1.2 Wide-Sense Non-blocking Connectors

Let F,(M,S) be the minimum number of wavelengths to build a wide-sense non-
blocking connector with S states. Since [FFP88, Theorem 3] proves the existence of

2-stage wide-sense non-blocking connectors with switch size no more than

8[\/Mlog2M1,
F,(M,1) < O(y/Mlogy, M) | (5.4)

which is the same as the best known upper bound on F(M,1). We cannot use the
technique we used in the last section to build configurable connectors since the Benes
network is not wide-sense non-blocking. We can however get almost the same result
using a different technique.

For S > 1, replace the 1 x F' switches and the F' x 1 switches by 1 x bF and bF' x 1
switches, where b = [S '21W_| The construction of the switches is straightforward. For
instance, a 1 x bF switch is shown in Fig. 5-4. A network built from these switches
has less than S states. Therefore since 2-stage connectors can be built with switch
size 8 [ M log M ], all-optical connectors can be built in this way with F' wavelengths
if

F-b§8[\/m1. ‘(5.5)

We have just proved the following theorem,

Theorem 5 WSNB Networks with Wavelength Changing
Let F,(M, S) be the minimum number of wavelengths to build a wide-sense non-

blocking connector with S states. Then

1 M 1
~37\|= < F,(M,S) < ©(5 5 ,/M1 5.6
S~m o< (M,S) <O(S~ /M log, M) (5.6)
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1; is the ** state of the switch.

Figure 5-4: An all-optical implementation of a 1 x bF' switch using a 1zb switch.
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Unfortunately, [FFP88] does not construct these connectors; only their existence
" is proven. The proof randomly interconnects the inputs and outputs of the first and
second stages. It is shown that if the interconnections are made in an appropriately
random fashion, a connector will be constructed with probability greater than 0.

Up until very recently, the best 2-stage construction was also due to Feldman,
Friedman, and Pippenger [FFP88] and required ©(M®°/?) cross-points. Since the
switch size is ©(M?/3), the construction is also a wide-sense non-blocking connector
with F = ©(M?/3) wavelengths.

Wigderson and Zuckerman [WZ93] have recently proposed a polynomial time
algorithm for constructing 2-stage wide-sense non-blocking connectors with switch

size p(M)v M, where
p(M) — 2(logn)5/6+0(1) — Mo(l) (57)

They also report that the 5/6 factor can be reduced to 4/5 using a more complicated
algorithm. This leads to p(M)v/'M wavelength connectors. Unfortunately, p(M)
decays so slowly that in order for p(M)v/M to be less than M, we need M > 10%.
Therefore for reasonable M, the ©(M?/3) construction mentioned above is still the

best.

5.2 Connectors Without Wavelength Changing

In the last section we showed how to implement any 2-stage switching network all-
optically with wavelength changers. Without wavelength changers, a 2-stage switch-
ing network still has an all-optical implementation but may require many more wave-
lengths. We outline the difficulties below. Then we consider building all-optical
connectors without wavelength changing. We consider rearrangeable connectors in
section 5.2.1 and wide-sense non-blocking connectors in section 5.2.2.

Let G be a 2-stage switching network with switch size d. With wavelength chang-
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ers, GG can be ifnplemented all-optically with d wavelengths using the constructions

in Fig. 5-1 and Fig. 5-2. Without wavelength changers, many more wavelengths may
be necessary. To understand why, let us say that G has pin changing if an output ¢

of some first stage switch is connected to an input j # i of some second stage switch.

Clearly if G does not have pin changing, it can be implemented all-optically without

wavelength changing with d wavelengths; proceed as before using the 1 x F' and the

F' x 1 switches but removing the wavelength changers.

If G has pin changing, there may or may not be such an implementation. There
will be an implementation if there is a consistent labeling of the inputs and outputs of
the first and second stage switches with d labels such that if an output is connected to
an input, they have the same label, and such that two ports (outputs or inputs) of a
switch have different labels. If there were such a labeling, the ports could be renamed
in such a way that the renamed network did not have pin-changing. Therefore we
will assume that if G has pin-changing, there is no such labeling.

Now suppose G has pin changing and maximum switch size d. We can still im-
plement this switch all-optically without wavelength changing, but the number of
wavelengths may be much larger than d. We shall not try to determine the re-
quired number of wavelengths but simply show that no more than 2 wavelengths
are ever necessary. To see this, let us define the M x M switching connectivity ma-
trix [G(n,m)], where G(n, m) is the set of paths connecting source n to source m.
A path is represented by a pair i:j. i:j € G(n,m) means that the ith output of
source n’s first stage switch is connected to the j** input of sink m’s switch. Now
construct a new switching network G’ with switch size d>. Label the outputs (inputs)
of each first (second) stage switch by the pairs (a,b), a,b = 1,2, ...,d. Connect output
(a,b) of the n™ first stage switch to input (a,b) of the m® second stage switch iff
a:b € G(n,m). This new network has a switch size of d?, does not have pin chang-
ing, and is equivalent to G in terms of connectivity, i.e. it supports exactly the same

traffics. Therefore it can be implemented all-optically without wavelength changers
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with d? wavelengths.

In section 5.1, we used results from [FFP88|. The proof randomly interconnects
switches of size d = ©(y/Mlog M). Given the random nature of the argument,
the connector may have pin changing and therefore require up to d* = ©(M log M)
wavelengths if wavelength changers are not used.! This is why we need the proofs in
sections 5.2.1 and section 5.2.2.

| [FFP88] also presented a construction with switch size ©(M?/3). Because of the
difficulties discussed above, this design requires M wavelengths without wavelength
changers. This construction will be discussed again in section 5.3.

Given that the best known 2-stage designs are not efficiently implementable all-
optically without wavelength changers, it is surprising that the best bounds for con-
nectors with and without A-changing are currently the same for all posed connection

problems.

5.2.1 Rearrangeable Connectors

We first show that @(\/]\ﬂ)gQ—M ) wavelengths are sufficient to build passive rear-
rangeably non-blocking connectors without wavelength changing. The arguments
used are an adaptation of those used in [Pip73] for rearrangeable networks tak-
ing into account the particular restrictions of networks without wavelength chang-

ers. Then using the Bene§ construction we used in section 5.1.1, we show that

O(S-—m \[ M log, M —log, S) wavelengths are sufficient for an S state network.

We are interested in M x M connectors, but it will help us later on if we construct
an asymmetrical network. So consider a network with M, inputs, M, outputs, and
M, /a single-fiber trunks where a is a constant to be determined later. The outputs are
divided in M, /a groups, each group being served by one trunk. Input n is connected

to trunk j through a fiber and a filter which passes the wa?elengths in the set HJ

LOf course we would never need more than M wavelengths to build a connector; we are talking
here about the all-optical implementation of a particular design.
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Group 1

M, —a+1

Group M=
M, a

M, J
Figure 5-5: Rearrangeably non-blocking AON w/o wavelength changers.

and blocks the other wavelengths. This network is shown in Fig. 5-5. The filters HI
are picked such that Hj and HJ pass no common wavelengths for all choices of n
and j # j'. This insures that the signal from input n passes through a maximum of
one trunk. Call this the trunk independence property. Notice that this is a LT-AON.

Given a traffic ¢, define ¢’ to be the sessions in ¢ whose destinations are served by
trunk j. Since each signal passes through at most one trunk, the traffic is supported
by the network iff each ¢’ is supported by the network. Furtherfnore, @’ is supported
iff each session in ¢’ can be assigned a distinct wavelength such that the signals pass
through the filters, i.e. if (n,m) € ¢/, then (n,m) must be assigned a wavelength in
HJ. _

Let ¢7 = {(n1,m1), (na, ma), ..., (g, mz)}. Then for the network to support ¢,

there must be a list of L distinct wavelengths, wy, ws, ..., W, such that w; € H,J;L,.
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Such a list is called a system of distinct representation (SDR) of the sets Hj, , Hj,
v H,{L. Hall’s Theorem asserts that these sets will have an SDR iff the union
of every k < L of these sets has at least k elements [10]. We will prove that if
F > @(\/m) and the sets HJ are picked in an appropriate random fashion
satisfying the trunk independence property, Hall’s Theorem will be satisfied for every
possible ¢/ with positive probability. Therefore, with positive probability we will

have picked a connector. This establishes the existence of connectors with F' <

O(y/M log, M) wavelengths [Bar93].

Theorem 6 Wavelength Efficient Passive Connectors w/o A-Changing
For M, > M,, there ezist passive M; x M, connectors with ©(y/ M, log, M) wave-
lengths.

Proof: Recall that there are M, /a trunks. Let each filter pass d wavelengths.
a and d are constants to be specified later but we require that F' = M,d/a. For
each input n, pick H! uniformly randomly from the set of all filters which pass
d wavelengths, i.e. p(H2) = (5)”. Having picked HJ for j =1,2,...,J, pick
H’*! uniformly randomly from the set of all filters which pass d wavelengths
not used in UJJ'=1 HJ. Therefore, the trunk independence property is satisfied.
Also, notice that HJ is statistically independent of HTJ,:, for each j and all choices
of n #n. '
Let P; be the probability of not having a connector. We will show that
P; < 1. If we do not have a connector, then there is some trunk j such that
there exists a traffic ¢’ that cannot be supported. By the union bound and by

symmetry,

M,
Py < —P;
f= a I

where P} is the probability that there exists a traffic ¢! that cannot be sup-

ported by trunk 1. If there exists a traffic which cannot be supported by trunk
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1, then by Hall’s theorem, there exists L sets, L < a, whose union contains
less than L elements. Therefore, P; is the probability that there exists an L,
d+1< L < a,and 1y, 1, ...i; such that

L
|UH <L
=1

L can be any number between d + 1 and a; there are (Ag‘) ways to pick the L
sets and (L}j 1) to choose the L — 1 wavelengths the union of these sets must

fall in. Since the sets are picked independently, Py is no more than

o) e

d

PfSMT > {

L=d+1

Now using (Ag‘) < MtL, ( F ) < FL and (Ld_l)/(g) < (L/F)?, we see that

L—-1
M. & L\¢ L
P, < u =) M
=4 L=Zd+1 [(F) tF}
M, & a\¢ 2L
. L;{(F) Mt]

since F' need never be more than max{M,, M,} = M,. Evaluating the sum,

d d
Py < M, [(%) Mf} — 2
’ N OR
Substituting a = M,d/F and F = /2M,d, we see that

1

~dpr2]®
Py < y/2M./d[27MP] T3

which is less than 1 if d > log,(2M?). Therefore if F > \/2MT log, (2M?),
Pf <1. 0
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Using the analogy to 2-stage switching networks, we now have the following corollary.

Corollary 7 There exists 2-stage switching networks without pin changing with
only ©(M?3/2,/logy M) cross-points.

Building the Bene§ network as before, we have the following theorem.

Theorem 8 Wavelength Efficient Connectors w/o A-Changing
Let F'(M,S) be the minimum number of wavelengths to do permutation routing

without wavelength changing over all A-routing networks with S states. Then

o % < F'(M,5) < 6(S /M log M — log 5)

5.2.2 Wide-Sense Non-blocking Connectors

We show that ©(S ~5 \/m ) wavelengths are sufficient to build wide-sense non-
blocking connectors without wavelength changing. The arguments are an adaptation
of those used in [FFP88] and are almost the same as the rearrangeable case. The key
difference is that instead of Hall’s Theorem, an expander theorem will be used.
First consider the passive case. The network is the. same as the last section, but
we’ll find that d must be slightly larger. Let ¢/ = {(n1, m1), (n2, m2), ..., (np, mz)}
be a traffic with destinations being served by trunk j. A necessary condition for the

network to support ¢’ is that HJ , HJ

ny ? n

, »-» H3_has an SDR. For the network to be
wide-sense non-blocking, there must exist an algorithm for determining this SDR as
sessions come on and off without re-assigning wavelengths. The following expander

theorem guarantees the existence of such an algorithm. We omit the proof which can

be found in [FFP88|.

Theorem 9 Expander Matching Theorem
Given sets Hy,H,, ..., Hy, there exist an algorithm for dynamically assigning
wavelengths for up to b sessions if the union of any k of the sets has at least 2k

elements for each k < 2b.
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We now have the following theorem.

Theorem 10 Efficient Passive WSNB Connectors w/o A-Changing

For M, > M,, there exists passive wide-sense non-blocking M, x M, connectors

with ©(,/ M, logy, M;) wavelengths.

Proof: There are M, /a trunks. Let each filter pass d wavelengths. a and d
are constants to be specified later but we require that F = M,d/a. Randomly
pick the filters in the same way as before. |

Let Py be the probability of not having a wide-sense non-blocking connector.
We will show that Py < 1. If we do not have such a connector, then there is some
trunk j such that Hf , Hg y ey H ﬂ,f do not satisfy the conditions in the Expander

M, pr
=P, where

Matching Theorem. By the union bound and by symmetry, P <
P; is the probability that trunk 1 fails. By the expanding theorem, if trunk
1 fails to be wide-sense non-blocking, then there exists L sets, L < 2a, whose
union contains less than 2L elements. Therefore, Py is the probability that

there exists an L, § + 1 < L < 2a, and i1, 4y, ...if, such that
b
IIU1 H,|<2L

M;

T ) ways to pick the L

L can be any number between % + 1 and 2a; there are (
sets and (2LF_ 1) to choose the 2L — 1 wavelengths the union of these sets must

fall in. Since the sets are picked independently, Py is no more than

w2 [CD) o
Py < 2 L:Z§+1 (5) } (2L—1)(L)

Now using (Aé‘) < ML, ( o ) < F?L and (ZLJI)/(Z) < (2L/F)4, we see that

2L-1
Ad; 2a 2L d L
e 5 (]
L=%+1



Evaluating the sum,

d 2
P; < M, [(4_a) ME] —1d__
a F 1— (4a) M3

Substituting a = M,d/F and F = \/8M,d, we see that

W

] d/2 1

Py < \/8M,/d[27M T p

which is less than 1 if d > log,(2M?). Therefore if F > \/8M, logy(2M),

Pf<]..|:|

For a configurable M x M connector, we use the construction shown in Fig. 5-6.
Let b = lS ﬁJ The network consists of M, 1 x b elementary switches followed by
b, M x % passive wide-sense non-blocking networks. Now use the above theorem
with M, = M and M, = 2. This shows that @(S‘Ei?\/m ) wavelengths are
sufficient.

Aggarwal et. al. have improved this bound to

F.(M,S) < ©(S~57/Mlog, M — log, S) (5.8)

matching the rearrangeable case [ABCR193]. They have also figured out how to
use the results of Widgerson and Zuckerman to construct all-optical wide-sense
non-blocking connectors with p(M )\/M wavelengths without wavelength changers.
p(M) is given by eqn. (5.7) as before. This is now the best known construction for
large M. However, p(M) decays so slowly that in order for p(M WM to be less
than M, we need M > 10%. Therefore, for M < 10?8, the best known connector

without wavelength changers is the [% + 2} connector presented in Chapter 3. The
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Figure 5-6: Wide-sense non-blocking AON w/o wavelength changers

best known construction with wavelength changers for M < 10% is the all-optical
implementation of the 2-stage construction in [FFP88] and requires O(M?3) wave-

lengths.

5.3 Light Tree AONs

Throughout this chapter, we have used results and techniques from the study of
2-stage switching networks. Actually, only a subset of these networks has been cor-
sidered in the literature for connectors: depth 2 interconnection networks.2 A depth 2
interconnection network is a directed graph with 3 stages of nodes: one stage of input
nodes, one stage of middle nodes, and one stage of output nodes. The nodes corre-
spond to busses and the edges correspond to switching cross-points. Each cross-point

can be open or closed; a closed cross-point allows a signal to flow across the edge. At

?2-stage switching networks which are not interconnection networks were considered in [BLM93], .
but not for building connectors. We will discuss these results in Part III.

73



most one signal can tranverse any bus or cross-point so each input and output can
serve at most one user if the network is to be a connector. In general, the depth of an
interconnection network is the maximum number of cross-points (edges) a signal can
pass through from an input to an output. Unfortunately, depth 2 interconnection
networks are sometimes referred to as 3-stage interconnection networks which should
not be confused with 3-stage switching networks; the former has 3 stages of nodes
and the latter 3 stages of switches. A 3-stage switching network may or may not
have an interconnection network representation. If it does, it would be depth 3 and
have 4 stages of nodes in the representation.

All the AONs considered in this chapter, in fact in this part of the thesis, are LT-
AONs. LT-AONs are in some sense equivalent to depth 2 interconnection networks.
This section discusses that equivalence and contains various results which should
provide the reader with a deeper insight into these networks and the difficulty of
constructing wavelength efficient passive connectors.

First we need a couple of definitions. Referring to Fig. 1-3, consider an arbitrary
passive LT-AON with L light trees. Form a 3-stage directed graph where the first
stage nodes are transmitters, the second stage nodes are trunks, and the third stage
nodes are receivers. Put a directed edge from a periphery node to a middle stage
node if the transceiver is part of the light tree. Now label each of the middle nodes
with the wavelength of the light tree. We call this a labeled interconnection network
of depth 2.

For an arbitrary LT-AON H3, let Gy be its labeled interconnection network.
A session in H corresponds to a length two path in Gy (path length measured in
edgés). Similarly, a length two path in Gy corresponds to a session in H. Two non-
contending sessions in H cannot share a light tree, so two non-contending paths in

Gy cannot share a middle vertex. Likewise, any set of middle vertex disjoint paths

3Since whether a network is a LT-AON is completely determined by its connectivity matrix H,
we will typically refer to H as the network itself.
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in Gy represents a set of non-contending sessions in H.

Interconnection networks for permutation routing have been well studied. The
goal is generally to minimizing the number of edges as a function of the depth of
the network. In 1949, Shannon [Shad9] proved that a non-blocking interconnection
network of any depth must have at least M log,(M/e) edges. The argument is as
follows. Let |E| be the number of edges. Then the network has at most 22! states
since an edge can be used or not used in a.path. No two permutations share a state
so it must be that 2/¥! > M! which gives |E| > M log,(M/e). Notice that if Gy is a
labeled interconnection network of a LT-AON with F wavelengths, then Gy has less
than 2F M edges. This is true since each transmitter or receiver can be connected to

at most one light tree of a given wavelength. Therefore, for a LT-AON
2FM > |E| > Mlog, M — 1.44M (5.9)

which gives F' > .5log, M. Since we have already shown that at least \/J\/I—/e wave-
lengths are required, the bound is not useful here. Shannon’s bound fails because it
does not take into account the fact that the network has depth 2. |

A better bound was derived in 1982 by Pippenger and Yao [PY82]. Here, they
showed that at least 2M3/2 edges are required for a rearrangeably non-blocking depth

2 interconnection network. Therefore, a Light Tree Connector requires
F>vM | (5.10)

wavelengths, a factor of /e better than the bound of Theorem 2. We will derive
eqn. (5.10) from a more general bound, the Light Tree Bound, in Chapter 13. The
relationship between the Light Tree Bound and Pippenger and Yao’s bound will be
discussed there but note for now that the proof does not generalize to all AONs.

It is interesting to note that Pippenger and Yao proved a much stronger result

than we have just stated. They proved that at least 2M/3/2 edges are needed for a
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depth 2 interconnection network to be an M-shifter. An M-shifter is a network that

supports the M traffics of the form
{(1,9),(2,i+1),....,(M,i+ M —-1)} (5.11)

for + = 0,1,..M — 1, where addition is done modulo M. Therefore a Light Tree
M -shifter requires /M wavelengths. In fact thié bound is tight since a v/M x VM
WDM cross-connect with v/M users connected to each input and each output can
function as an M-shifter. To see this, number the users connected to input n of
the cross-connect (n,i), for ¢t =0,1, ..., v/M — 1. Similarly label the users connected
to output m of the cross-connect (j,m), for j = 0,1, .. VM — 1. Each shift i is
representable by a pair (a;, b;) where user (n, j) is shifted to (n + aj, j + b;), addition
modulo v/ M. Since two users connected to the same input are never shifted to the
same output, the LR is an M-shifter.

We say an AON is strict sense non-blocking (S.S.NB.) if given any set of active
sessions without contention and a new session request between an inactive transmit-
ter and an inactive receiver, there always exists an OD channel to feasibly assign the
session. At least [%1 wavelengths are required for a strict sense non-blocking Light
Tree AON since Friedman [Fri88] showed that at least 2M? edges are requiféd for
a strict sense non-blocking connector. We present this proof in terms of LT-AONs
below. Since the [% + 2] connector presented in Chapter 3 is a LT-AON and is strict
sense non-blocking, this bound is almost achievable even without wavelength chang-

ers. Currently, the best lower bound for strict sense non-blocking NLT-connectors is

M/e.
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Theorem 11 Strict Sense Non-blocking LT-AONs
A S.S.NB. LT-connector requires F > [%] wavelengths.

Proof: N uinber the light trees from 1 to [, and let V(n, m) be the light trees
connecting n to m. We begin with an observation. Suppose that V(1,1) =
{cl,cg,...,ck}, K < M, and that for each k = 1,..., K, channel Ck 1s used at
least £ more times in row 1. Then it is always possible to select K receivers
",T2, ..., Tk other than 1, such that ¢k € H(1,7). To see this, notice that
wavelength ¢; is used at least one other time in row 1. So pick 7y such that
¢ € H(1,r) and 7, # 1. Now since wavelength c, is used at least two other
time other than in (1,1), pick 7, such that C2 € H(1,r,) and ry # 1, 7,. Continue
this procedure until r, T2,...Tk have been determined. The following lemma is

based on this observation.

Lemma 12 Let hi be the number of transmitters connected to light tree i, { =
1,2,...L. Similarly, let w; be the number of receivers connected to light tree i,
t=1,2,....L. Then if H is S.S.NB.,

1 1
E e +—2>1 (5.12)
i€V(inm) M Wi

for all (n,m).
Proof: We’ll prove eqn. (5.12) for any arbitrary (n,m). Let
Vin,m) = {c, e, ek} ={cy,ch, .., cx}

where ¢}, is just another ordering of the elements of Vi(n,m). Let g, = he,
and b = We, and assume without loss of generality that the ordering has
been chosen so that ax and by, are non-decreasing with k. Then we want
to show that

1 1
D —+—>1
k:lalC bk

if H is S.S.NB. There are two cases. First suppose that for some 1, a0; < g
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or b; < 4. Then the claim is true since

K
1
§ i

G1L
o @

, 1 1 ) .
ix | —+ — since ay, and by are non-decreasing
a; i

AV

> 1

Now suppose that ay > k+ 1 and by > k+1 for £ =1,2,.. K. We
will show that H is not S.S.NB. using the observation made earlier. Since
a; > 2 there is another receiver connected to light tree c¢;. Call this rec;.
Now since a, > 3, there is a receiver different from m and rec; connected
to co. Proceeding in the same way, we can select K distinct receivers
recy,Tecs, ...,reckx such that cx € V(n,recy). Similarly, we can select
K transmitters, tran,,trans, ...,trang such that ¢, € V(trang,m). Let
tran!,trany, ...,tran’y be a re-ordering of the transmitters trany, ..., trang
such that ¢, € H(trany, m).

Now, pick the traffic {(tran}, rec,), (tranh, recs), ..., (tran’, reck)} and
assign session (tranj,recy) light tree ¢;. Since H is a LT AON, ¢ €
V (tran,,recy). There is no way to route the session (n,m) since all its
channels have been blocked. Therefore H is not S.S.NB. O

This lemma and the fact that a transmitter (receiver) can be connected to
at most F' LTs will give us our desired result.

By the lemma,
G B
(n,m) 1€V (n,m) 1 .

But this sum is identical to

L 1 1 L

=1 i=1

Since each transmitter n and each receiver m can be connected to at most F'

LTs, this sum is no more than 2F M. O
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Note that a depth 2 interconnection network with |E| edges is not in general a
LT-AON with F' = .5|E|/M wavelengths. There are two ways the interconnection
network can fail to represent a LT-AON. First, the degree of a peripheral node may
be greater than F' in an interconnection network but not in a labeled interconnection
network. Second and more troublesome, is that without wavelength changers, there
may not be a way to consistently label the middle stage nodes with only F' labels
(wavelengths) since in this case each input or output can be connected to at most one
light tree of the same wavelength. In fact, to transform the O(M?5/3) edge construction
mentioned above to a LT-AON without wavelength changing requires M wavelengths.
The reason being that any two middle nodes of this construction have a common
input. Therefore, those two nodes must have distinct wavelengths. There are M
middle nodes and therefore M wavelengths are required.

We are now in a better position to understand the difficulties of constructing a
passive LT-connector without wavelength changing with only (VM ) wavelengths.
This problem is equivalent to constructing a depth 2 interconnection network with
©(M?/?) edges, with bounded degrees on the first and third stages, and which can
be labeled with ©(v/M) wavelengths. If we were able to construct such a network,
we could construct a depth 2 interconnection network with ©(M?®2) edges beating
the best known construction by a factor of p(M) and the construction in [FFP88] by
a factor of M/S. With \-changers, labeling the middle nodes is no longer a prob-
lem. We still have the bounded degree property so strictly speaking constructing
a wavelength efficient passive LT-connector with wavelength changing is a harder
problem than constructing an edge efficient depth 2 interconnection network. How-
ever it would not be surprising if for symmetric problems, like a connector or some
other homogeneous traffic, the number of edges is minimized by graphs with constant

degree. There is no general proof of this though.
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5.4 Determining the Number of Switches

Since for F < /M /ve, it is impossible to build a connector without switches, we
now consider the issue of whether using a combination of switching and wavelength
routing can significantly reduce the number of switches required when F' < M.
Let S(M, F) be the minimum number of states to do permutation routing over all

A-routing networks with F' wavelengths. Then from eqn. (4.14) with p =1,
log, S(M,F) > Mlogy M —2M log, F' — 1.44M (5.13)

When F =1, eqn. (5.13) agrees with Shannon’s bound.

As a consequence of eqn. (5.13), if the number of users is much more than the
square of the number of wavelengths available, the number of switches needed in a
permutation AON with A-routing cannot be significantly reduced over the number
of switches needed in a conventional circuit switched network with 1 wavelength.
Specifically, define the \-routing gain to be the possible reduction in elementary

switches due to A-routing. That is, define G to be

log, S(M, 1)

log, S(M, F) (5.14)

It is easy to see that a gain of 2 may be achieved if the number of wavelength grows
at a rate of M1/4. However to achieve a gain of 10, F must grow like M%20. Larger
gains require F' to grow at a rate rapidly approaching VM.

Therefore, for configurable networks WDM combined with wavelength routing and
wavelength changing cannot change the order of growth of the number of switches.
However it may be possible to reduce the number of switches by a factor. For instance,
with & 10® users and 1000 wavelengths, wavelength routing could possibly reduce the
number of switches by about a factor of 5. Therefore, even in very large networks,

wavelength routing may reduce hardware cost and switching control complexity.
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Chapter 6
Conclusions on Scalability

In this part of the thesis we considered both configurable and passive non-blocking
networks where each session requires a full wavelength of bandwidth. The emphasis
has been on passive connectors but configurable networks and other traffic demands
have been introduced.

The most important conclusion is that if the number of active sessions far exceeds
the square of the number of wavelengths, passive networks cannot provide reasonable
user connectivity without contention. We will next see in Part II that the same
conclusion holds for blocking networks with small blocking probability. Therefore,
passive WDM networks are not scalable. Furthermore, we will see in Part III that
this conclusion continues to hold even if each session requires only a fraction of the
wavelength.

We also showed that there are no good simple networks, i.e. networks where pairs
of users are connected on only one wavelength [Chapter 3]. The same conclusion
continues to hold when a small amount of blocking is tolerated [Part IT]. However
in WDM/TDM networks the conclusion may not hold when T' >> 1, or equivalently
R, << R. The reason is clear, pairs of users are connected on T frequency time slots
even though they are connected on only one wavelength. Simple networks will play

an essential role in building channel efficient WDM/TDM networks [Part II].
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6.1 Open Problems

We have shown that ©(y/M log M) wavelengths are sufficient to build a wide-sense
non-blocking connector without wavelength changing. This is the best known bound.
An interesting open question! is whether wavelength changing or the ability to re-
arrange sessions can reduce this bound. We also showed that ’-Aﬂ wavelengths are
required for a LT-connector to be strict sense non-blocking. It is not known if relaxing
the LT restriction is beneficial.

In addition, the most wavelength efficient networks are constructed probabilisti-
cally. An important open problem is to explicitly construct a wavelength efficient
network.

All the networks considered in this part of the thesis were Light Tree and there is
a factor of ©(y/log M) wavelengths between the lower and upper bounds for passive
networks. This raises the question of whether NLT-connectors are more wavelength
efficient than LT-connectors. This is an open question, but we will see in Part III
that NLT-AONs are more time slot efficient than LT-AONs. Note that to prove that
passive connectors can be built in ©(y/M log M) wavelengths, we made use of Hall’s
Matching Theorem and the Expander Matching Theorem. It is unclear how to use
these theorems, or some variant, on networks which are not Light Tree. Since a LT-
AON is equivalent to a depth 2 interconnection network, finding NLT-AONs which
are more efficient than LT-AONs would imply that the it may be beneficial to relax
t'he self-imposed restrictions of interconnection networks and consider more general

switching networks.

INot a very practical one given the results to come in Part II.
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Part 11

Blocking WDM Networks
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Chapter 7

Introduction

Since the construction of wavelength efficient non-blocking connectors has been so
elusive and since a small amount of blocking in a network is usually tolerable, we turn
our attention and effort to networks with blocking. In this case, progress is much
more encouraging but less complete: specifically, we only consider passive networks.

Let s1,...,8,m be a random list of session requests where session s; is requested
before session s;;1 and where ¢ = {s1,..., s,ar} is a traffic without multi-point con-
nections. The random requests are such that given pM, all traffics and all orderings
of the traffics are equally likely. '

Each session is honored or blocked according to some routing strategy. We con-
sider two types of strategies: sequential or non-sequential. In a sequential strat-
egy, the decision to honor or block request ¢ is made without knowledge of requests
i+ 1,2+ 2,..oM. If ¢ is honored, it must be assigned an OD channel that does
not contend with the honored requests proceeding i. In addition, the previously
honored requests cannot be reassigned OD channels in a sequential strategy. In a
non-sequential strategy, the network waits until the last request before deciding which
requests to honor or block. These two modes are not all inclusive and we could imag-
ine networks operating in a partially sequential strategy where the network waits a

few requests after request ¢ before deciding whether to route or block s;.
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Two different but related performance measures are considered. The first is the

failure probability Py, defined to be the probability that one or more requests cannot

‘be honored. The second is the blocking probability P,, defined to be the expected frac-

tion of requests that are blocked. Note that a rearrangeably non-blocking connector
is a network with P, = Py =0 when p =1 and when operated with an appropriate
non-sequential strategy and that a wide-sense non-blocking connector is a network
with P, = Py = 0 when p = 1 and when operated with an appropriate sequential
strategy. |

For both these performance measures, we present lower bounds on the number
of required wavelengths for a network operating under any strategy and then con-
struct networks which operate with a particularly simple sequential strategy. The
constructions do not require wavelength changing.

First in Chapter 8, we focus on almost-all connectors, 1.e. networks with a small
failure probability Py under heavy load p = 1. We'll see that except for Py & 1, at
least /M /e wavelengths are required for any passive network; thé Same as in the
non-blocking case. We then explicitly construct sequential networks which have very
small Py using ©(y/M log M ) wavelengths; the same number as the “probabilistically
designed” networks in Chapter 5. The constructions are called LAN-LRs since they
consist of broadcast LANs connected to a Latin Router backbone.

We then turn our attention to networks with small blocking probability B,. The
lower bounds are essentially the same as the non-blocking and almost-all cases. In

Chapter 9 we will show that at least

F> (\/;?M) o (1 +0 (IZLMD ~1 | (7.1)

wavelength are needed.

Then in Chapter 10, we show that the LAN-LR network only needs ¢/ pM wave-

lengths where c is a constant which depends on P, and is between 6.5 and 9.2 for B,
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between 10~ and 107®. Therefore unlike the non-blocking and almost-all cas.e, we

have essentially met the theoretical lower bound.

87



88




Chapter 8

Almost-All Permutation Routing

Let sy, ..., sp be a random list of requests where all lists without multi-point connec-
tions are equally likely. We will investigate the number of wavelengths required to
keep the failure probability P; small. Clearly at least \/m wavelengths are required
and ©(y/Mlog M) are sufficient when P; = 0 [Chapter 5].

First we show that except for Py = 1, the ability to block the list of requests does
not reduce the lower bound [Section 8.1]. Then we describe the LAN-LR networks
[Section 8.2]. The LAN-LR is a two level hierarchical network. The bottom layer
consists of N broadcast local area networks with b users per LAN; M = Nb is the
total number of users as always. The upper layer interconnects the LANs through
an NV x N Latin Router (LR) [Section 1.5]. Each pair of LANs are connected on k
wavelengths, where recall that k is called the coarseness of the LR. The WDM cross-
connect (k = 1) is shown to be very wavelength inefficient in Section 8.3; however
with proper choice of the number of wavelengths connecting any input to any output,

the LAN-LR is very wavelength efficient [Section 8.4].
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8.1 Lower Bound

To derive the lower bound, we first need a definition.

Definition 5 Combinatorial Power
Given a passive AON H, let Ty be the permutation traffics that H can support.
Following Benes [Ben65], we define the combinatorial power r of a network as the

fraction of the number of permutations supported. In particular,

= ';\Z—M,' (8.1)

so that T is the probability that a random permutation is supported by the network

when all permutations are equally likely.

Consider an arbitrary passive AON and a list of requests sy, ..., sps for the network.
If {s1,...,sp} is not supported by the network then any routing strategy must fail.
Therefore the failure probability is at least Py > 1 — r. The following two bounds

are now trivial.
Theorem 13 Almost-All Lower Bounds

1) A passive AON with failure probability Py requires at least

F > [0-P)Var W\/g (8.2)

wavelengths.

2) If Pp<1-— \/;—M then at least /M /e wavelengths are needed.

Proof: Since the number of feasible tuning states must be no less than the

number of traffics and since there are rM! > (1 — Py) M! permutation traffics,

F?M > (1—P)M! > rV2rM(M/e)M (8.3)
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which proves statement 1). Now if Pr<1-— \/Q}W, then

1-P)vV2rd > 1 (8.4)

This combined with eqn. (8.2) shows that in this case at least /M/e wave-

lengths are required. O

8.2 LAN-Latin Router Network

The networks considered have NV LANSs, with b users per LAN. We think of each LAN
consisting of two parts: a T-LAN containing only the transmitters and the R-LAN
consisting of the receivers. Number the LANSs from 0 to N — 1 and use the notation
[z, y] to stand for a T-LAN » R-LAN pair. Each [z, ] is called a block for reasons that
will become apparent. Each transmitter in T-LAN z is connected to each receiver in

R-LAN v on the wavelengths J[z,y], where !

Tel=1s | |1 j =y-2 (mod N)} (5.5)

The connection matrix of the network is given by H(n,m) = J [Zn, Ym] Where X, is
the T-LAN of transmitter n and Ym is the R-LAN of receiver m. The connection
matrix H is shown in F ig. 8-1 and a possible implementation is shown in Fig. 8-2.
Note that each transmitter is connected to each receiver on k wavelengths and
recall that & is called the cogrseness of the network. The backbone network J{z, y]
is an example of a Latin Router (LR) [Section L.5]. In a Latin Router, all F =
kN wavelengths can be simultaneously applied to each of the NV inputs without
any output contention providing a throughput of %2 wavebands, i.e. simultaneous

connections. When k — 1, a possible implementation of a LR 1s the well known

'Any LR with coarseness k will perform equivalently to J. We use eqn. (8.5) only as a concrete
example.
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Figure 8-1: LAN-LR connection matrix

WDM cross-connect.

We call the network a LAN-LR. Note that the connectivity of a LAN-LR is
completely determined by N, b and k. The total number of users is M = Nb and the
total number of wavelengths is F = Nk. Since the maximum throughput of a LAN-
LR is FTZ wavebands, it seems reasonable at first thought to only consider the WDM
cross-connect (k = 1) since this maximizes the maximum throughput. However, the
logic of maximizing the maximum throughput starts to break down as F' gets large

since for F' > v/M and k = 1, the maximum throughput is larger than the achievable
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throughput of M. Since F' > \/M_/e is a necessary condition, this case cannot be
discounted. We will show below that the cross-connect is a poor choice if the goal
is to minimize P unless F' =~ v/M. However, in this case P; ~ 1. In Chapter 10,
we show that the same conclusion holds if the goal is to minimize P, the blocking
probability, and that this conclusion continues to hold for p < 1.

Before proceeding, note that the LAN-LR requires M wavelengths to be non-
blocking since all b transmitters in a T-LAN could request all b receivers in an R-LAN
and F = Nk. Therefore, the LAN-LR is a very wavelength inefficient inefficient
non-blocking connector. However, we will see below that for proper choice of N, b,
and k, the LAN-LR is an efficient almost-all connector. Specifically, for any Py > 0,
no more than © ( M log M ) wavelengths are required.

8.3 WDM Cross-Connect

We’'ll show that for P not to approach 1 rapidly, the cross-connect (i.e. k = 1)
requires at least ©(M?/3) wavelengths. Since there are networks with Py = 0 and
© (\/m ) wavelengths, the cross-connect is a very wavelength inefficient design.

Notice that P, %1 — P is no more than the probability that the first b sessions
can be routed. Let P, be that probability. The total number of ways of matching
the first b receivers to b of the M transmitters is (M), since there are M ways to
match the first transmitter, M — 1 ways to match the second, etc.? The first b
sessions can be honored iff each falls in a different block. It follows that the total
number of successful ways to match the first b transmitters to b of the M receivers

is M(M — b)(M — 2b)...(M — (b— 1)b) since there are M ways to successfully match

transmitter 1, M — b ways of successfully matching transmitter 2, etc. Therefore, P,

2(M), is read M lower factorial b. For a description of the lower factorial function, see Ap-
pendix A.
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is upper bounded by

M(M —b).. (M~ (b—1)b) (M —b)..(M = (b—1)b)
(M)s B (M = 1)y

P, < P =
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where the last inequality follows from 1 — z < e~%. Therefore

P < exp { ”i(]zw— 1)b } exp {_b(b—Ml)_(bb—Z)} ®7)

i=1

So in order for P, not to go to 0, ® = F3 must grow slower than M, or equivalently

F must grow at least as fast as M?/3.

8.4 Performance Analysis

Relax the cross-connect restriction and consider LAN-LRs with k& wavelengths per
block. We operate the network in a sequential mode using a greedy strategy: if s
falls in block [z,y], then the " request is honored iff less than k previous requests
have been honored in [z,y]. The failure probability P; is the probability that more
than £ requests fall in some block. Since there are N LANS,

P <N?-Pi>k+1) (8.8)

where P(i) is the probability of ¢ requests in an arbitrary block [z,y] and where we
have used the union bound.

Now let’s derive P(i). Since there are b transmitters in T-LAN z requesting a
session from one of M receivers, there are (A:) ways to pick the b requested receivers.

Out of these ways there are (i’) (A;I__zb) ways that ¢ receivers in R-LAN y will be
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requested from T-LAN z. Therefore, the request distribution is given by

-b
P@) = ("—Af)gf—‘) (8.9)
(%)

for 0 < ¢ < b. The distribution is known as a hypergeometric distribution and in order
to bound the failure probability we need to bound the tail of P(3). For a description
of the hypergeometric random variable and its relationship to the binomial random
variable, see Appendix B [Think of the b receiver in R-LAN y as “blue balls”, the

remaining M — b receivers as “red balls”, and the b requests as “picks”].
Let A ¥ M /N? be the expected number of requests in a block. The weight in the

tail of a hypergeometric is bounded above by [Appendix B, eqn. (B.40)]

ImPGi>k+1) < InP(i>k) < (k—)\)—l-kln%—i—ﬁ (8.10)

for all k& > 6\, where § = exp(75) =1+ © (%) Now using eqn. (8.8), N = kF,
and b= M/N = Mk/F

2 ME?2 Mk k
F ) (k—7>+kln(ﬁ)+m

(8.11)
which is valid for integer F,k,M such that N = F/k and b = Mk/F are integer.
Since we are interested in asymptotic results bin this chapter, we will relax these
integer constraints.

In order to get the best asymptotic results, we optimize eqn. (8.11) over k for a
fixed M and F. To that end, let p ef % be a measure of the wavelength efficiency

of the network. Re-writing eqn (8.11) in a more convenient form,

]V[p2 . eg(k)+__’=L

P < = 3=/ (8.12)
k? '
g(k) = (k — F) + klnI% (8.13)
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which is valid for £ > 6\ = §k?/p?.

Since the bound on Pj is strongly dependent on g(k) and weakly dependent on
the other terms, we will minimize g(k) over k to approximate the optimal value of
k. We are interested in %k in the range k¥ < p? since in order to keep the failure
probability low, k > A = k?/p?. g(k) is strictly negative in the range 0 < k < p? and
has a unique minimum at k ~ .2p%. At this value k = .2p> >> X = k?/p? = .04p? so
that the bound in eqn. (8.12) is valid. Therefore since g(.2p*) ~ —.16p?

25M e_.16p2+_-2L

P < o Vi~ (8.14)

From eqn. (8.14) it is easy to see that for fixed P; > 0, p need not grow faster than

O(v/log M). Specifically, let p = {/®2M = 2.5v/In M so that k = .2p*> = 1.251n M.
Eqn. (8.14) becomes

16-25M oMt
In M

4 In M

=—— {140 8.15

mrr (o (V7)) 519

Therefore since F' = pv/ M, an almost-all connector with any Pr>0 asymptoti-
cally requires no more than 2.5\/M log M wavelengths.

Py
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Chapter 9

Lower Bounds for Networks with

Blocking

In the previous chapter we considered networks which with high probability routed
all of the requests. We now consider networks which with high probability route
most of the pM requests from a random list of requests.

First we give lower bounds on the number of wavelengths needed in a passive
AON that has some blocking. The first section shows that for sufficiently small P,

at least y/pM /e wavelengths are required. The next section shows that for any £,

1-P,
Px () (1o (25 ey 0.

e p e

wavelengths are needed. In the next chapter, we will show that the LAN-LR requires
about this many wavelengths.

A few preliminaries will simplify the coming proofs. Consider any AON with
connectivity matrix H and let 7(H) be the set of traffics H can support. Also
let s1, S, ..., Spm be a list of session requests where session s; is requested before
session s;;1. Recall that each session is either honored or blocked according to some

strategy. If the decision whether to block the ith request s;, is always made before the
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(i + 1)*" request, we say the strategy is sequential. Also by definition, OD channel
rearranging is not permitted in a sequential strategy. If the strategy makes use of all
the information, it is non-sequential. An optimal strategy is one which always honors
the maximal number of requests possible. Formally, an optimal strategy is one which

always honors

gs = max{|¢'| :¢'C¢ and ¢' € T(H)} (9-2)

sessions where ¢ = {s1,...,5,m}. Note that the optimal strategy depends on the
network.

The optimal blocking probability is the probability that a request picked at ran-
dom from a traffic picked at random is blocked under an optimal strategy.‘ The

expected number of honored sessions under an optimal strategy is

1
Elg = —y—— 9.3
(4] (ﬁ@) M) ;qqs (9.3)

where the sum is taken over all p-permutations. The optimal blockiﬁg probability is

b, = pMp;MEM] (9.4)

The lower bounds of the next two sections will be proved by assuming an optimal
strategy and then proving the lower bound when p = 1. Then using the following

lemma, we can simply substitute pM for M when p < 1.

Lemma 14 Let F(M, p, P,) be the minimum number of wavelengths for a network
with M users, pM requests, and optimal blocking probability P,. Then F(M, p, P,) >
F(pM7 1a Pb) : |

Proof: Consider an arbitrary passive AON operating with an optimal strat-
egy and a blocking probability P,. Conditioning on the set of transmitters

and set of receivers requesting sessions, the optimal blocking probability can be
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written as the expected blocking probability given a set of transmitters and a

set of receivers, i.e.

P, 1;2 > Py(Tran, Rec) (9.5)
(pM) Tran,Rec

where the sum is taken over all sets of pM transmitters and all sets of pM
receivers and where P,(Tran, Rec) is the optimal blocking probability given
Tran and Rec. Pick a (T'ran, Rec) with P,(Tran, Rec) < P,; there must be at
least one. Now form a new network with the pM transmitters in Tran and the
pM receivers in Rec with the same wavelength connectivity between these users
as the original network. Then at least F/(pM, 1, P;(Tran, Rec)) wavelengths are

required for this new network. Since P,(Tran, Rec) < P, the result follows. O

9.1 Very Small P,

The case when P, is very small is easily shown. This is done in the following theorem.

Theorem 15 Lower Bound for Small P,

1) -A passwe AON with blocking probability P, requires at least

F > [(1 - pMP,,),/zyrpM] e \/@ (9.6)

wavelengths.
2) If B, < ﬁ - m, then at least \/pM /e wavelengths are needed.

Proof: We first do the p = 1 case. Let H be any network operating with an
optimal strategy and let 7a;(H) be the set of permutation traffics that H can
support. By the union bound, the failure probability P; < M P, and therefore
Trm(H) contains at least M!(1—P;) > M!(1— MP,) permutation traffics. Since
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the number of feasible tuning states must be no less than the number of traffics,
FPM > (1= MP)M!> (1 — MP)V2rM(M/e)™ (9.7)

where the second inequality follows from Sterling’s formula [Appendix A]. This

proves statement 1) when p = 1. Now if MP, <1 — \/—#ﬁ, then

(1-MP)VorM > 1 (9.8)

This combined with eqn. (9.7) shows that in this case at least \/M/e wave-
lengths are required for p = 1.
For p < 1, use the lemma to prove 9.6. Statement 2) follows exactly as

before replacing M by pM. O

9.2 Moderate P,

If P, < ,%M — m, then the expected number of blocked requests is less than
1. Therefore, the fraction Py of times not all requests can be supported must be
small. This fact proved the last theorem. Here we treat the case of larger P,. We
are particularly interested in the case when E[q] = (1 — B,)pM >> 1.

The next theorem is based on the intuition that if we want E[g] to be large, the

network must support a large number of traffics. We proceed as before: assume an

optimal strategy, bound F' when p = 1, and then replace M by pM in the bound.

Theorem 16 Lower Bound for Moderate P,

F> ( % o (1+O<11]p\?f4)) 1 (9.9)

wavelengths are needed for a passive AON with blocking probability P.
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Proof: Let H be any passive AON and 7 = T(H) be the traffic set the
network supports. We use a slight abuse of notation and set |H| = |T(H)|
to be the number of traffics supported by the network. Assume an optimal

strategy. By the lemma, it is sufficient to prove the theorem for p = 1.

The first step of the proof is to show that if E[q] is large, then |H| must
also be large. Specifically, we first show that for any integer 0 < k < M — 1,

M ) (k +1)|H| .10)

Elg) < k+ (M_l 0,

where recall that (n); = (’:)z' =n(n —1)..(n — i+ 1) is the lower factorial

function.

The expected number of sessions routed under the optimal strategy is
M
Elgl =3 qP(q) (9.11)
g=1

where P(q) is defined to be the probability that the maximum number of ses-
sions that can be routed is g. Define P'(q) > P(q) to be the probability of
being able to route ¢ sessions, i.e. the probability that there exists a subset of

¢ of size ¢ that can be supported by the network.

Now, for any £ between 1 and M — 1,

Elq) = X_:qu(Q) (9.12)

< k+ Y P9 (9.13)
q=k+1

< k+ fﬁ aP'(q) (9.14)
9=k+1

Now let 7; be the set of traffics in 7 with exactly k sessions. There are (]:[)

g-subsets of ¢, i.e. subset of ¢ with size ¢q. If any of these subsets is in Tqs
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we can route g sessions. The probability that one of these subsets picked at

random is in 7, is

(9.15)

2
since there are a total of (1;4) q! possible g-traffics, i.e. traffics of size ¢, and if
we pick a g-subset of ¢ any g-traffic is equally likely. Using the union bound,

the probability of being able to route ¢ sessions is no more than

(Il 7l

m\2 T (M1
( q ) ¢! ( q )q.
Therefore, the expected number of sessions that can be routed is upper bounded

by

P < (9.16)

Elg < k+ Z ay|H|

=k+1 ( )q! 17

where aq = |74|/|H| and ZM k41 @ < 1. Using lemma 17 in the appendix to

this chapter E[g] is no more than

k+1
M)gs1

Bli < ke | (5727 ¢ (918)

which proves eqn. (9.10).
For the second part of the proof, pick k = |E[g]] —1 < M — 1. The second

term in eqn. (9.10) above must be at least 1, and solving for |H| this gives

H| > (M]V;l> (LEl[q”)(M)LE[qu (9.19)
(9.20)

Now, using the lower bound on (M), presented in the second appendix to this
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chapter,

> (57 () (2) (5) 7 em
and since E[q] > | E[q]] > Elq] — 1,
m oz (50 () () ()7 e

Finally, since E[g] = M(1 — B,), since the number of feasible tuning states
can be no less than the number of supported traffics, and since the number of

feasible tuning states cannot be more than (F + 1)?M,

(F+1) > e<\/¥) B (9.23)

where

Now lne:O(“}\ﬁ’I) S0 thate=1+0(1‘}wM). a
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9.3 Appendix
Here we prove the upper bound referred to above.

Lemma 17 Let {a;}} be a sequence of non-negative real numbers such that

Yrpa; < 1. Then forn > 3,

k

zz:;cai (;) : ( - ) (n)k (9-25)

i n—1

Proof: Let b, = N ) The sum is upper bounded by b maxk<z<nb We
now show that b is never more than n/(n — 1) times the first term. To see’thls

first notice that by > by1 > ... > b, since

bi i (n)iy1
- - 9.26
bi+1 1+ 1 (n)z ( )
)
= —1 9.
i (927)
and i(n —14)/(i+1) is at least 1 for 7 no more than n — 2. Also, &3 ) > > s 2
n-l_ foralln > 3. So ’
(n)n—1
A k£n—1
max —— = o 87 (9.28)
k<i<n (’n)I (7:1) k=n—1

and therefore the b = b, unless k = n — 1. If K = n — 1 then the maximum is

b, but

by = — :( n )bn_1 (9.29)

which completes the proof. O
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9.4 Appendix

Here we bound (M),. Using [Gal92a]
Vorz (g) <z!<eyx (g) (9.30)

we get

(v () (932
> (%)z \/z—ﬂ (9.33)
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Chapter 10

Latin Routers

In the previous chapter, we essentially showed that at least \/pM /e wavelengths are

required for any network with a small blocking probability. Here we will construct a

network with a very small blocking probability using less than (2.5v/.8 — In P,)/pM
wavelengths. For P, between 1072 and 107%, between 6.5/pM and 9.21/pM wave-
lengths suffice.

The networks are the LAN-LR described in section 8.2. In section 10.1 we bound
the blocking probability of a LAN-LR and optimize the number of wavelengths con-
necting each pair of LANs. The optimization is very similar to the optimization in
Section 8.4. In 10.2, we analyze the WDM cross-connect and show that this de-
sign performs quite poorly compared with the first design. Conclusions appear in

section 10.3.
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10.1 Performance

We analyze the blocking probability of a LAN-LR with pM requests where all lists

of requests sy, ..., s,n equally likely. Recall that the LAN-LR network has N local
| area networks, each with b users. The LANs are interconnected by an N x N Latin
Router with coarseness k [Section 1.5].

Before deriving an expression for P,, note that for all p > % = %, the LAN-LR
requires M wavelengths to be non-blocking. To see this, note that for P, = 0, k&
must be at least b since all b transmitters in a T-LAN could request all b receivers in
an R-LAN. Therefore since F' = Nk, non-blocking operation requires F' > Nb = M
wavelengths which makes a LAN-LR a very wavelength inefficient non-blocking
connector even for very small p.! However, we will see below that for proper choice
of N, b, and k, the LAN-LR is a very wavelength efficient blocking connector.

Now let’s derive P, the expected number of blocked requests. Since there are N 2

blocks and since at most & requests can be honored in any block,

P, = > (i —k)P(q) (10.1)
i=k+1

> =

where P(1) is the probability of 7 requests in a block and A oM /N? is the expected

number of requests per block. P, can be rewritten and bounded as

P - %{k__;f;’“mw__§l<i—k>P<i>}
< Sk PG2E+1)+b P2 2k+1)} (10.2)

In the appendix to this chapter, we use eqn. (10.2) to bound P, when p = 1, i.e.

there are M requests. In this section, we do an approximate analysis for any p.

1Recall that F' = ©(y/M log M) wavelength suffice for a non-blocking connector; see Chapter 5.
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When p = 1, the results here agree with the exact analysis given in the appendix.

Consider an arbitrary block [z,y] and pick a transmitter n uniformly from the b
transmitters in T-LAN z. The probability that n is requesting a session is p since
the total number of requests is pM and there are a total of M transmitters. If n
requests, the probability that the requested receiver is in R-LAN y is 1 /N since there
are N R-LANs. We make the approximation that the number of requests in each
block is binomially distributed with mean \; specifically let

P = (Do/NY (1-1—’\),-)b_i. (10.3)

Note that pb/N = 2 = ).

To proceed, we need the following bound on the tail of the binomial

Lemma 18 Binomial Bound

Let u be a binomial random variable with mean @ = (n and distribution
Then for k > 1,

In Pr(u > k) < (k—%)+kln (10.4)

| &

Proof: We start with the Chernoff bound [Gal68§],

lnPr(ﬁZk) < n[%ln%+(l—ﬁ)ln11_g]

Note that since (1 —¢)/(1 —k/n) =1+ _ICT‘;’;% and since In (1 + z) < 7,

InPr(u>k) < kln%+(k—n§).

Substituting @ = {n finishes the proof. O
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Using the bound,

} N\t
Pi>k+1) < (k—ﬂ) et (10.5)
Regrouping,
3 A /AN B\
;> < 22 e — : .
Pi>k+1) v (k) e e(k+1> (10.6)
Now since
EO\FH
we have
=/ A )\ k k—\
and similarly
3 A\ A\ 2
P(i>2k+1) < T (ﬁ) e A (10.9)

Therefore the blocking probability P, is no more than
0 % k-, b A" 2k—X
P, < (E)e +§E<ﬁ) e .
k 2%
— é . ek_A + i . i . 62k_A
k 2k \2k
AN b [ex\"
= (E) AR {1 + 5 (4_k> (10.10)

where we have made use of eqn. (10.2).

This bound can be used to find the minimum k for a given N, b, and desired
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blocking probability. Here we take a different approach. We use the bound on P,
to determine the best value of &£ holding the number of wavelengths F and the total
number of users M = Nb fixed but allowing the number of LANs N and the number
of users per LAN b to vary with k. We will see that for proper choice of k, the
blocking probability can be made very small with c\/pM, where ¢ is between 7 and
10. On the other hand, section 10.2 shows that if care is not taken in choosing k,
many more wavelengths may be required.

Since the LAN-LR has M = Nb users, and F' = Nk wavelengths, we can re-write
eqn. (10.10) in terms of M, k and F. Noting that A = pMk?/F? and b = Mk/F,

A= k)P (10.11)
_ M E\*
P, < 6g(k) . {1 + _zc/p . (46—62-) } (1012)
k2 k
g(k) = (k - c_Z) + kln z (10.13)

where ¢ & ﬁ is a measure of the wavelength efficiency of the network and from

the last chapter we know that c > 1/+/e. Note that by definition, & > 1 and in order
to keep the blocking probability low, £ > X = k2?/c?. Therefore, we are interested in

k in the range

1<k<c? (10.14)
and this implies that
kz
k— _6—2 > 0 (1015)
k
ls:lnc—2 < 0 (10.16)

Since the bound on P, is strongly dependent on e?() and only weekly dependent

on the other terms, we will optimize g(k) over 1 < k < ¢? and use this value of k
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integer constraints op k. As k varies, Integers b — YE and NV also vary. We ignore

the integer constraints on b and ) for now; the significance of this will be discussed
at the end of thig section.

As a first step only, we relax the integer constraints on k ang find the valye
of k£ which Mminimizes 9(k). The minimum occurs at R .20? and at this valye
9(:2¢%) ~ — 1602 Since & must be ap integer this solutiop I8 not strictly valiq

Therefore we set % — [.2¢*] for which



©(v/pM) for the number of wavelengths, basically equal to the lower bound. On the
other hand, the constants are fairly large for many applications. To see that this is
so, imagine a system with 100 wavelengths and a blocking probability of 1073, Then
only F?/6.5% ~ 236 expected sessions can be accommodated. However if F = 1000,
then for the same blocking probability more than 23,600 expected sessions can be
accommodated. '

It is difficult to see the trade-off between blocking probability and number of
wavelengths in eqn. (10.17) because of the ceiling functions. However the bound can
be simplified with only slight increase in the number of required wavelengths for a
given B,. To that end, first notice that since In P, > g(.2¢2) ~ —.16¢2, the bound is
more than 1/e unless ¢ > 1/1/.16 = 2.5. Since we are interested in small B,, we will
assume ¢ > 2.5. The next lemma shows that under this condition, setting k = [.2¢?]

is almost as good as k = .2¢2.

Lemma 19

1) If .2c% is an integer then,
B < e8¢ (10.18)

Furthermore, for a given P,, ¢ need not be larger than

c < 25/-Inp, (10.19)

2) Now for any ¢ > 2.5,

Py < e16°+8 (10.20)

Furthermore, for a given Py, ¢ need not be larger than

c < 25/8-Inp (10.21)
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Proof: To prove the first statement of 1), simply note that g(.2¢*) < —.16¢%.
For the second statement, solve for c.

To prove the first statement of 2), first notice that

g([2¢*]) = [.2¢*]In % +[.2¢%] (1 _ |-_2Cﬂ)

2
2 [-2¢] 2
< [.2¢%]1n —a + .8[.2¢%]
Now since [.2¢?] < .2¢% +1,
[.2¢?]
9([.2¢%]) £ [-2¢*]7In Q= t 16¢* + .8
Finally note that zln £ is decreasing with = for x < ¢?/e. So if [.2¢?] < ?/e,

2
[.2¢*] In @ < .2¢%1n .2
c

Lastly, [.2¢?] < c*/e for all ¢ > /e = 1.64 which is true by assumption.
Therefore for all ¢ > /e,

9([.2¢*]) < (16+.2In.2)c®+ .8

< —.16¢%* + .8

which proves the first statement of item 2).

Now for the second statement of 2), solve for ¢. O

To derive the above results, we relaxed the integer constraints on N and b; let’s

now address the validity of these approximations. Let ¢* be the minimum c for a

given B, e.g. ¢t =17 for P, = 1073, Under the above approximations, F' = c*v/pM

wavelengths suffice for a blocking probability of P, in a network with M users and

utilization p.

First since N = F/k, we should have restricted ourselves to k which divide F'
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But since k divides ‘c*y/pM + a for some a < k, the number of wavelengths can be
increased by at most k, i.e. F' = c¢*\/pM + k wavelengths suffice.

Now imagine that we did not relax the integer constraints on b, but wished to
keep the number of users M fixed. We could still use a network with a LR backbone

and N LANSs, but some LANs will have | %% | users and some [2£] users. However,

{#J = % (1 +0 (\/Lﬁ)) (10.22)
H2lof)

the approximations on b are sufficient for our purposes.

since

10.2 WDM Cross-Connect

Recall that the familiar implementation of a LR with £ = 1 is the WDM cross-
connect. Here we show that cross-connect performs quite poorly compared to the

optimal case. The approximate blocking probability is

1 -
= 5 X G-1E
= 3 [Zro-xr0)
= ; [\ =1+ P(0)] (10.24)

Recall that P(i) = (%) (& "(1-£)"". Therefore P(0) is
i) \N N

(10.25)

Q

—

|
I3
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| =
N
3.
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Now since A = pb/N = 1/p?, P, is approximately,
P, = A = — (10.26)

So for a given blocking probability, about 4/ Pb"l -/ pM wavelengths are required. For
instance, P, = 1073 requires about 31.61/pM wavelengths, a factor of 5 more than
the optimal design.

10.3 Conclusions

The results are both encouraging and discouraging. First of all we have established an
order of growth of /pM for the number of wavelengths, basically equal to the lower
bound. On the other hand, the constants are fairly large for many applications. We
also saw that the WDM Cross-Connect is only optimal if the number of wavelength

is small, i.e. F' < +/5pM. However, in this case the blocking probability is large.

10.4 Appendix

Here, we bound the blocking probability for the LAN-LR when p = 1 without making

the binomial approximation. In particular, we show that

B, < eg<’“)-{1+—@- (ﬁ)k}-(l—l—O(%)) (10.27)

2¢ 4c?

where g(k) is as before. Therefore for p = 1, the binomial approximation gives the
same answer as the hypergeometric.

In Chapter 8, the request distribution was derived. Recall that

P@) = % (10.28)
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and that

X A b

(10.29)

Since M = Nb, InP(i > q) < (¢ — A) + kIn$ + 5&5. Now the claim follows by
comparing this bound to eqn. (10.4) and using eqn. (10.2) as before.
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Chapter 11

Conclusions

In this part of the thesis we considered passive networks where each session requires
a full wavelength of bandwidth and where a small amount of blocking is tolerated.

The most important conclusion is that these networks are not scalable. Specifi-
cally, if the expected number of session requests far exceed the square of the number
of wavelengths, passive WDM networks cannot provide reasonable user connectivity
without contention or without a high probability of blocking.

Unlike the case of non-blocking connectors, we have been able to construct wave-
length efficient blocking networks. Specifically, for a blocking probability of P,, the

minimum number of wavelengths is somewhere between

1-P,
(1+0(%)) ( %) <F<25/8-nP, VM (11.1)
The upper bound is achieved by the LAN-LR network. This network has recently
been proposed as part of a larger Wide Area AON [A+93].

We also saw that the LAN-LR with O(\/M log M) wavelengths supports almost-
all permutations. This is asymptotically the same number of wavelengths as the
best existence proofs for non-blocking connectors. The advantage here is that we

have been able to explicitly construct the networks without wavelength changing. In
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addition, the algorithm used to assign wavelengths to sessions in a LAN-LR is trivial

whereas the existence proofs of Chapter 5 do not address this important control issue.

11.1 Open Problems

There are two significant open questions. First, are there better topologies than the
LAN-LR when F < 7y/pM. Most likely the answer is yes. The problem with the
LAN-LR is that if P, is small, the k%" wavelength in each block is rarely used. This
implies an inefficiency in wavelength re-use. However, it may turn out that more
efficient networks require non-sequential operation; this also is an open question.
Second, what are good configurable topologies? One possibility is to use construc-
tions like Fig. 5-4 of Chapter 5 on the input side and the equivalent constructions
on the output side to build a configurable network with F wavelengths and b*M
switching states which “looks” like a passive network with F'b wavelengths. However
this design is impractical and would throw away one of the important advantages
of AONs, the ability to organize users into broadcast LANs. Another approach has

been taken by Karol [Kar92]; however configurable wavelength changers are required.

It is clear that this topic deserves more attention.
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Part III

WDM/TDM Networks
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Chapter 12

Time Slots and Wavebands

We now consider WDM/TDM networks which support sessions that do not require a
full wavelength of bandwidth. As always, the networks have M users, F' wavelengths,
and S switching states. A wavelength supports = R b/s and a session requires R, =
R/T b/s. For simplicity we assume that T is an integer and that each wavelength is
divided up into 7" periodic time-slots. Each frequency time slot is called a channel.
A session therefore requires one channel of bandwidth.

Of course TDM is only one way to share bandwidth; consider instead that each
wavelength is further divided into T' wavelengths for a total of F'- T wavelengths. In
this way, a WDM/TDM network with F wavelengths and T time slots is analogous
to a WDM networks with F' - T wavelengths where the A-nodes and 7-nodes are
restricted to operate solely on wavebands. In particular, the T wavelengths of a
waveband are always routed together through a A-node and a m-node changes all
the signals in a waveband to another waveband but cannot operate on individual
wavelengths. Similar analogies can be drawn to networks using CDMA or subcarrier
multiplexing to share the wavebands.

It should be clear that there is more freedom in designing a network with F - T
wavelengths than in designing a network with F' wavelengths and T time slots per

wavelength. Therefore, if F' wavelengths are required in an AON when each session
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requires a wavelength, at least F'/T wavelengths are required when each session only

requires 1/7 wavelengths. From eqn. (4.4), at least

For > () ()7 (12.1)

channels are required to support 7 where 7; are the traffics in 7 with d active ses-
sions. All the lower bounds on wavelengths developed in Parts I and IT immediately
generalize to lower bounds on channels. For instance, a non-blocking paftial con-
nector requires F - T > \/m channels and a blocking network requires at least
(\/p_M/;)l-Pb 1+0 (%‘;TM» — 1 channels. However, since A-routing AONs only
have to ability to route on the basis of wavelengths but not on the basis of channels,
eqn. (12.1) seems optimistic.®

Now consider the following straightforward way of building a WDM/TDM net-
work from a WDM network. Let H be an M x M connector with F' wavelengths, S
states, and 1 time slot. Connect T' users as a group to each input and each output of
H. Then by time sharing, we have an MT x MT connector with F' wavelengths, S
states, and T time slots. To see this, use Hall’s Theorem to decompose each traffic of
the MT users into T traffics of the M groups. ? Each group traffic is supported by the
M x M connector so the new network is non-blocking in 7" time slots. Since passive
WDM connectors can be built with ©(y/M log M) wavelengths, passive WDM/TDM
connectors can be built with @(\/¥—log(M—/T)) wavelengths.

Using the same technique and the results in Chapter 10, a WDM/TDM network
can be built with @(\/W ) wavelengths if a small probability of blocking P, is

1We could imagine channel routing networks built from channel routing and channel changing
nodes. For instance a channel Latin Router can be built from a cascade of wavelength Latin Routers
and time slot Latin Routers [BH93a]. Then using the results in Chapter 10, eqn. (12.1) would in
fact be tight.

2For each traffic on MT users form an M x M matrix where the (n,m)* entry is the number
of requests between input group n and output group m. Each row and column of the matrix sums
to T so by Hall’s Theorem the matrix can be written as a sum of T permutation matrices [Ber92]..
Each matrix represents a traffic on the groups.
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tolerated. Therefore, the maximum load on a passive network lies somewhere between
Q(F’T) < pM <0 ((FT)ﬁ) . (12.2)

Note that since we are interested in P, very small, we will approximate the upper
bound by O(F?T?) from now on. Closing this gap is the topic of the next two
chapters. LT-AONSs are covered in Chapter 13. NLT-AONs are treated in Chapter 14.
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Chapter 13

Light Tree AONSs

In this Chapter, we improve the bound in eqn. (12.1) by a factor of VT for LT-AONs.
Equivalently, we show that at most O(F?T) active sessions can be supported by a

passive LT-AON. Two different proofs will be given: the Tuning State Bound and

13.1 Equivalent Tuning States

Recall that 7, are the traffics in 7~ with exactly d sessions and that at least

F.T > (JE)é (M)_é (13.1)

— S d

channels are required to avoid contention. Therefore g passive partial connector
requires F' > %\/pM /e wavelengths. However, since A-routing AONg only have to

ability to route on the basis of wavelengths but not op the basis of time slots, this
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bound is optimistic. Specifically we show:

Theorem 20 LT-AON Lower Bound A necessary condition for a A-routing network

to support a traffic set T without contention s

1
L (Ve ITIN™
T > — C— 13.2

e () 152
where F is the number of wavelengths, T is the number of time slots, and S is the

number of switching states.

Since (v/2/e)'/?® = 1, a LT-partial connector requires F' > 1,/22 wavelengths and
the Santa Barbara Traffics requires F' > ;%./% wavelengths. These bounds are a
factor of /T /e more pessimistic than the bound in eqn. (12.1).

Let’s first update a few definitions from Chapter 4. A tuning state v for a
WDM/TDM network is represented by the 2 x M vector

Co1l Coo .. Co
v | o1 o2 M (13.3)

/ / /
Cd’l Cd’2 CdyM

where ¢, n = (fn,tn) is the channel assigned to transmitter n in v and cqm = (fi,, tr,)
is the channel assigned to receiver m in v. A network state (v, ) is a tuning state
v and a switching state 1. A network state is feasible for a traffic if C0) inactive
transceivers are off, C1) sessions are connected, and C2) there are no fatal collisions.
Notice that since we can think of the time slots as wavelengths within a wavelength,

these definitions are exactly the same as in Chapter 4. Therefore no network state

can be feasible for more than one traflic and
M2 2d
s () FD)* > |7 (13.4)

is a necessary condition to avoid contention. Solving for F'-T gives eqn. (13.1) which

is the WDM/TDM equivalent to eqn. (4.4).
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To see that eqn. (13.4) is optimistic when T > 1, observe that if (v, ) is a feasible
network state for a traffic ¢, we could exchange the sessions in time ¢ with those in
time slot ¢ and still maintain feasibility. Therefore rescheduling produces a second
feasible network state for ¢.! Since a network state cannot be feasible for two traffics,
¢ uses up at least 2 network states and therefore the left hand side of eqn. (13.4)
can be reduced by a factor of 2. This is the idea behind the following definition and

lemma.

Definition 6 Equivalent Tuning States
For a given AON, two network states are equivalent if they support the same

traffic or neither supports a traffic.

Notice that the definition depends only on the network and not on the traffic set
we wish the network to support. The following lemma formally shows that the idea
of equivalent tuning states can be used to reduce the left hand side of eqn. (13.4).

The lemma holds for all networks, not just LT-AONs.

Lemma 21 An AON supports at most V traffics, where V is the number of non-

equivalent network states.

Proof: If the statement is not true, there exist two distinct traffics supported
by equivalent network states. But by definition of equivalent, this means that
each of the two network states is feasible for the two traffics. Since no network

state can be feasible for more than one traffic, this is a contradiction. O

We now show that Light Tree Networks must have a large number of equivalent
tuning states. That limits the number of non-equivalent tuning states which will

prove eqn. (13.2).

!Note that exchanging sessions on ‘wavelength f with those on wavelength f’ does not necessarily
produce equivalent tuning states because signals are routed on the basis of their wavelength. As a -
counter example, consider the simple network in Chapter 3.

131



Lemma 22 For a given LT-AON, let V(¢) be the network states which support traffic
¢ and let d = |¢|. Then if the network supports ¢, at least

V(@) > (THY T ) amoar (13.5)
network states support ¢.

Proof: Pick (v,v) € V(¢) which is always possible since the network sup-

ports ¢. v can be represented as

v = (fintr) (forto) oo (furtar) (13.6)

(ft1) (fta) — (Farth)
where (f,,t,) is the channel assigned to transmitter n in v and (f;,,t.,) is the
channel assigned to receiver m in v. Let [L] = {1,2,..., L} be the light trees
used in v. Then v can also be written as

v— (Cl,tl) (Cg,tg) (CM,tM) | (137)

(1, t1) (epta) - (chrrtha)
where c, is the light tree assigned to transmitter n in v, ¢/, is the light tree
assigned to receiver m in v, and ¢,,t! are as before.
Now let h; be the number of sessions assigned light tree [ in v, for | € [L].
Since there are T' time slots and since a light tree can support at most one

session per time slot, by < T for all [ € [L]. Also since there are d active

sessions,

Y m=d (13.8)

le[L]

There are (T),, ways of scheduling the h; sessions assigned light tree j since

there are T ways of scheduling the first session, (T' — 1) ways of scheduling the
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second session, etc. Since no signal travels on more than one light tree, the
sessions on each light tree can be scheduled independently without interfering
with sessions on other light trees. Therefore, the number of feasible network

states for ¢ is at least

Vie)| = f[ (13.9)

To complete the proof, we show that

min{(llf[(T ) CY = } (THYYTHT) ymoar (13.10)

{h} lelL)

The key to proving eqn. (13.10) is the observation that for integers a and b such
that 0 <a <b< T,

(T)o41(T)a1 < (T)s(T)a (13.11)

To see this, divide both sides by (7)1 (T)s. This gives

s _ (T

T = (T)a-s (13.12)

The left hand side is T — b and the right hand side is 7 — a+ 1 and since b > a,
the inequality is true.

Now let hj, I =1,2,..., L minimize the left hand side of eqn. (13.10). Then
exactly [%J of the hj’s have value T, one hj has value d mod T, and the re-
maining d — [%] variables have value 0. If this were not the case then there
would exist and ¢ and j such that 0 < hf < b3 < T. But if this were so,

(T)ng1 (T ng—1 < (T)is (T (13.13)

K3

and b, ! =1,2,..., L would not minimize the function. O
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By the two lemmas,

(1\;1) ? pedpd

5 (T‘)I‘d/TJ (T)dmodT

>V > |T4 (13.14)

2 _
since there are at most S - (]ZI) (FT)? feasible network states for 7;. We simplify
eqn. (13.14) by noting that 7! > (T'/e)* and (T)amoar > 3@(T/e)dm"‘”; the latter

was proved Section 9.4. Therefore

d—dmodT dmodT
T Do > (2) () (13.15)

e € e

Use this to upper bound the left hand side of eqn. (13.14) and then raise both sides
by 1/2d to prove eqn. (13.2).

Notice for 7' = 1, eqn. (13.2) is about a factor of 1/y/e worse than the bound
of Chapter 4. This is only due to the inequality used in eqn. (13.15). For a small

number of time slots eqn. (13.14) can be used for a better bound.

13.2° Light Tree Bound

In this section, we will present and discuss a bound due to Gallager [Gal92b]. The
bound is valid for passive Light Tree Networks under certain traffic restrictions. The
traffic is modeled using a more conventional flow model instead of the traffic sets we
have been using. The bound, hereafter referred to as the Light Tree Bound, will be
formally presented below. First, let us informally present the definitions and results.

Consider any pasvsive LT-AON H with L light trees, each of which can support
at maximum of R b/s. Let v(n,m) be the throughput between user n and user m
measured in b/s and let v be the average throughput, where the average is taken
over pairs of users. The M x M matrix [y(n,m)] is called the flow. The relationship
between flows and traffics will be discussed later.

The Light Tree Bound says that if y(n, m) = « for all (n, m), the total throughput
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zd M?y is no more than F2R. Tn addition if v(n,m) ~ v for all (n,m), the total
throughput cannot be much greater than F2R. When Y(n,m) = v for all (n, m),
we say the flow is homogeneous. When [v(n,m) — | < ¢, we say that flow is e-
homogneous.

We now prove the bound for e-homogneous traffic. Then we relate this bound
and the ﬂov& model to the traffic set model. Conclusions on previously studied traffic

sets are presented there.

Theorem 23 Light Tree Bound
A passive Light Tree AON supporting e-homogeneous flow has a throughput no

more than

Z < F’R (7 T 6) . (13.16)
Y —€

Therefore if the flow is homogeneous, Z < F?R and also F > M,/v/R.

Proof: Let z be the throughput of light tree I, [ = 1,2,...L. Also, let h(1)
and w(l) be the number of transmitters and receivers connected to light tree [,
respectively. A light tree cannot support more b/s on average than the users
connected to it can give it. Since there are h(l)w(l) pairs of users connected to

light tree [ and since the flow between two users is no more than v + ¢,
2 < (v + e)h(Dw(l). (13.17)
Also, since a light tree can support no more than R b/s.

z < min {(y + e)h()w(l), R} (13.18)
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and therefore,

Z = Zf:zl < imin{(’y +e)h(Dw(l), R} (13.19)
- Rimm{h(z)w(z)”; € 1. (13.20)

Since min{z, 1} < 4/z, we have

7 < RXL: ,/h(l)w(l)'yg : (13.21)

= JR(y+¢) lZ_: VhDw(D). (13.22)

Now since /zy < .5(z + y), which can be seen by squaring both sides of the

inequality,

Z < 5yR(y+¢€) > h(l)+wl). | (13.23)

=1

Each transmitter is connected to at most F' light trees and similarly true for

each receiver, so
Zz < 5JR(y+0@FM)=FM\/R(y+¢).  (13.24)
Now squaring both sides,
Z? < F?RM*(y+e). (13.25)
By definition of throughput and e-homogeneous flow,

Z=S qnm) > M(y—¢). (13.26)

(n,m)




Therefore, M? < 7—{ - and
2 €
Z*< FR(H). | (13.27)

This completes the proof of the first statement. Now if € = 0, the second
statement follows. Also, if € = 0, Z = M?y < F?R and therefore, F >
M,/v/R. O

Care needs to be taken not to overstate the results of the Light Tree Bound.
In particular, the Light Tree Bound does not say that £ is the maximum num-
ber of light trees. Consider the following generalization of the ring network.
Label M F' trunks by the doublet (i, f) fori =0,...,M —1and f=0,..., F—1.
Connect input n to trunk (n, f) on wavelength f for each f = 0,1,...,F — 1.
Also connect the output of trunk (n, f) to the receiver n+ f mod M. Then this
is a light tree network with F'M trees; however this network cannot support
homogeneous traffic. In fact, the network is not even connected. To make a
connected network, form the ring network described above with F — 1 wave-
lengths and hook all transmitters and all receivers to a light tree on wavelength
F. Now there are M(F — 1) + 1 light trees and the network is connected.

In the above examples, either the network is not connected or the light trees
are overlapping. The quick reader may have hypothesized that at most F light
trees are possible if the light trees do not overlap and the network is connected.

This hypothesis is also incorrect; an example is given in [Gal92b].

13.2.1 Traffic Set Light Tree Bound

The Light Tree Bound can be used to show that Fv/T > \/pM is a necessary
condition to do p-permutation routing. This is a factor of e better than the
tuning state bound in section 13.1. Similarly, the Light Tree Bound can be
used to show that F/T > /M for the Santa Barbara Traffics, a factor of e?
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better. To see how to apply the Light Tree Bound, we first need the following

definition.

Definition 7 Homogeneous Traffic Set
A traffic set is homogeneous if each session appears in the same number of

traffics.

Consider any traffic set 7 and let p(n, m) be the fraction of traffics in which

session (n,m) appears. Then p(n,m) is given by

p(n,m) = > Lnmy (@) (13.28)
|T| by

where 1(, ) (¢) = 1if (n,m) € ¢ and 0 otherwise. So p(n, m) is the probability
that session (n,m) is active in a traffic picked uniformly at random from the
traffics in 7 and T is homogeneous iff all sessions are equally likely.

All of the traffic sets used in this thesis are homogeneous: p(n,m) = 1/M
for permutation routing, p(n,m) = p/M for p-permutation routing, and the
Santa Barbara Traffics have p(n,m) = 1/M. Note that when p(n,m) = p for
all (n, m), the expected number of active sessions in a traffic picked at random
is pM?. This provides an easy way to compute p for symmetric traffics like
p-permutation routing.

As before, we will only need a lesser assumption, that of J-homogeneous

traffics.

Definition 8 §-homogeneous Traffic Set
A traffic set, T, is §-homogeneous if for all (n,m),

Mnm—&< prjép (13.29)

Consider an AON supporting 7 in F wavelengths and 7" time slots. When
the network is supporting ¢ € T, the total throughput is Zy = R,|¢| b/s where
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recall that R, = R/T is the session bit rate. Now by routing each traffic in 7°

exactly once, we have a network which has a throughput of

Z = A
i % A S

¢€T ¢eT
= R,pM? (13.30)

Also, the throughput between n and m is

v(n,m) = R, Zl(nm) = R;p(n,m) (13.31)
€T

By the Light Tree Bound, Z < F2R( ) where € = R 8. Therefore,
F > M 2 (2=2) (13.32)
z T\5+0

13.3 Previous Results

In Chapter 5 we discussed a bound derived by Pippenger and Yao [PY82]. They
showed that at least 2M3/2 edges are required for a depth 2 interconnection
network to be an M-shifter and therefore a Light Tree Connector without time
slots requires F' > /M wavelengths. Since an M-shifter is a homogeneous
traffic set, the same result follows from the Light Tree Bound. In fact, Pippenger
and Yao’s bound holds for all homogeneous traffic sets and the proof is very
similar to the proof of the Light Tree Bound. There are a couple differences.
First, their bound is not as general since it uses the traffic set model instead of
the flow model and also does not consider time slots. Second, Pippenger and
Yao were interested in the total number of edges required, not the maximum

degree of a peripheral node, the latter being the required number of wavelengths

in the light tree representation. However it would not be surprising if for
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homogeneous traffic sets, the number of edges would be minimized by graphs
with constant degree. |

Birk, et. al. [BLM93] and Liew [Lie88] have independently derived bounds
similar to the Light Tree Bound. Birk, et. al. bound the maximum throughput
of a multiple bus network whereas Liew bounds the sum of the numberb of bus
connections for a given throughput. Note that the number of bus connections

is analogous to the number of edges in Pippenger and Yao’s bound.
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Chapter 14

The All-to-All Problem

In the All-to-All problem each of N LANs has exactly one R, b/s session for each
other LAN. In addition, each LAN has one outgoing fiber, one incoming fiber,
and a large but unspecified number of users. The outgoing (incoming) fiber of
a LAN is connected by a broadcast star to all the transmitters (receivers) of
that LAN. Since there is exactly one active session between each pair of LANS,
the network supports N2 sessions. Define the capacity, C, as the largest value

of N? possible as a function of F and T'. Also define the mazimum throughput

to be Z = R,C b/s.

We study the capacity and throughput of passive AONs. Before proceeding,
let’s discuss two special cases: broadcast AONs and LT-AONs. Recall that i'n a
broadcast AON, each receiver hears the signals from each transmitter on each
wavelength. Since there is no wavelength re-use, the class of broadcast networks
has capacity Cg = F - T.

By the Light Tree Bound Z;r < F2R or equivalently Crr < F2T. To see
that this capacity is achievable, fix F and T and connect N = /T LANs to
each input and each output of an F' x FF WDM cross-connect so that N2 =
(F x VT)? = FT. Since each LAN has one session for each other LAN, there

are a total of T' sessions between any input and any output of the LR. This is
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exactly the number of sessions supportable by the one wavelength connecting
any input to any output. If T is not a perfect square, a slight inefficiency is

incurred.

Most of this chapter investigates NLT-AONs for the All-to-All problem.
We will see that by relaxing the Light Tree assumption, capacity can be greatly

increased.

First in section 14.1, we precisely formulate the problem and lay out the rules
of contention. Then in section 14.2, we discuss the relationship between the
All-to-All problem and the Santa Barbara Traffic Set introduced in Chapter 4.
A bound on capacity is presented in section 14.3. We then turn our attention

to constructions.

14.1 Modeling

As in Chapter 10, we think of each LAN consisting of two parts, a T-LAN
containing only the transmitters and an R-LAN consisting of the receivers.
Number the LANs from 0 to N — 1 and use the notation [z,y] to stand for
a T-LAN, R-LAN pair. Each [z,y] is called a block. Since each block must
support exactly one session in All-to-All traffic, we will also refer to [z,y] as a
session. It should be kept in mind that “session [z,y]” is a short hand way of

saying a session between a transmitter in T-LAN z and a receiver in R-LAN y.

Each transmitter in T-LAN z is connected to each receiver in R-LAN y on
the wavelengths J[z,y|, where unlike Chapter 10, J is unspecified at this time.
The connection matrix of the network is given by H(n,m) = J[Zn, ym] where
z,, is the T-LAN of transmitter n and v, is the R-LAN of receiver m. However

we will not have any need of H since all relevant information is in J.

 Let W{z,y] = f[z,y]: f'[z,y] be the OD channel used by session [z,y]. The

142




ey W CRE * ERER v - -

N x N matrix, W is called the assignment matriz.! Since for connectivity we
need flz,y]:f'[z,y] € J[z,y], we will simply assume that f[z,y]: f'[z,y] €
J[z,y]. However since |J[z,y]| > 1 in the general situation, the assignment
matrix, W, should not be confused with the connectivity matrix, J.

Having said that, we will adopt the convention that J = {W|[z,y]} and
therefore drop the distinction between J and W from now on. A cautionary
word to the reader is in order. This approach is not valid if there are other
restrictions like J is a LT-AON. For instance, suppose that W[0,0] = W[0,1] =
W(1,1] # W11,0], then J[n,m] = {W[n,m]} is not a LT-AON.

Let X[n,m] be the time slot used by session [z,y]. We call X the scheduling
matriz. Two sessions [n,m] and [z, y] using the same time slot are said to be
simultaneous. It should be kept in mind that having [n,m] and [n, y] simulta-
neously active is not a multi-point connection between two users. Similarly for
[n,m] and [z, m] simultaneous.

Let the symbol x stand for any wavelength or time slot depending on the
context. For instance, f:x € J[n,m] means that there exists a wavelength f’
such that f: f' € J[n,m]. Using this notation, we say that session [n, m] kills
session [z, y] if they are simultaneous and the relevant entries in the assignment

matrix look like

R-LAN m | R-LAN y

T-LAN n fix f:f
T-LAN z * 1%k *: f!

If [n,m] kills [z,y] then there is a fatal collision at y since when [n,m]
launches on f the signal is received at y on f’ preventing the reception of [z, y].

If n = z then the above definition is equivalent to: [n', m] kills [n,y] when

'In [BLM93], W is called the wiring matrix and indicates which transmitters are connected to
which receivers. ’
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fln,m] = f[n,y]. Clearly there is contention in this case since two sessions em-
anating from the same T-LAN n must start on different wavelengths. Similarly,
[n,m] kills [z,m] if f'[n,m] = f'[x,m] since two sessions entering an R-LAN
must be on different wavelengths. Note that in the general situation, [n,m]
killing [z, y] does not mean that [z, y] kills [n, m|. We say that there’s a killing
if [n, m] kills [z,y] or [z,y] kills [n, m].

An assignment matrix W along with a scheduling matrix X is said to be
feasible if there is no killing. The goal in this chapter is to find feasible (W, X)

in the fewest number of wavelengths and time slots possible.

14.2 Santa Barbara Traffics

In Chapter 4, the Santa Barbara Traffics were introduced to show that the
tuning state bound could be tight. We repeat the definition below. It turns out
that the Santa Barbara Traffics and the All-to-All problem are very related. We
illustrate that relationship here and use it to bound the capacity of an AON.

Given M users, group the transmitters into groups of size VM. Call each
group a T-Group. Similarly group the receivers into v/M R-Groups. The Santa
Barbara Traffics are those which contain exactly one session between each T-
GROUP and each R-GROUP. The traffic set is denoted by 7sp and we showed
in Chapter 4 that |Tsp| = (VM)2VM ~ e~ M M1,

To see the relationship between Tgp and the All-to-All problem, suppose
that J is an N x N AON which supports All-to-All routing in F' wavelengths
and T time slots. Connect a T-LAN with N transmitters to each input of
J and an R-LAN with N receivers to each output. The network supports
Tsp and has M = N? users. The converse is not true since we have not
assumed that a T-Group (R-Group) is a T-LAN (R-LAN). Therefore the All-

to-All problem is a harder problem than the Santa Barbara problem. Since
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[Tsp| = (VM)VM 4 e ™M), where M = N2 here, and since the number of

feasible tuning state is no more than (FT)?M

S

F.T>

(14.1)

N
=

e

Is a necessary condition for any AON to support All-to-All Traffic. Thus C,

the largest possible value of 2, satisfies
C < e2p?re, (14.2)

However, observe that since each LAN has N sessions leaving and entering it,
and since each session requires one frequency time slot of bandwidth, it must
be true that FT > N and therefore, C' < F272 ¢, any AON. Therefore the
tuning state bound is not useful for us here. For a LT-AON, we showed in
Chapter 13 that a necessary condition for feasibility was f2M (eT)M > @m .

Therefore

OLT S 63F2T. (143)
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14.3 A Bound on Capacity

In this section, we show that

2 2
LT+

C 1

(14.4)

Notice that if T = 1, C < F? and that this capacity is achievable by using
an F' x FF WDM cross-connect as discussed in the introduction. Therefore,
C = Cppr = F? for any F and T = 1. However for T >> 1, we'll see that
NLT-AONs have much larger capacity than LT-AONs.

Theorem 24 All-fo-All Capacity Bound

FX(T +1)?

¢ <
4

(14.5)

Proof: Let d,[n,m] be the number of times f[n,m] is used in row n.
Also let d.[n,m] be the number of times f’[n,m] is used in column m.

Then for any n,

1
d,[n, m]

(14.6)

N
>
m=1

is the number of origin wavelengths used in row n. Similarly, for all m,

(14.7)
is the number of destination wavelengths used column m. It follows that

1 1
<2 4.
L) + damm) < 2N (14.8)

(n,m)

Consider any [n,m] and let d, = d,[n,m], d. = d.[n,m], f = f[n,m]
and f' = f'[n,m]. This situation is represented in eqn.( 14.9). There
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are d, sessions in the top row with the same origin wavelength and d,
sessions in the right column with the same destination wavelength. The
row and column meet at [n,m]. It’s easy to see that if any of the sessions
are simultaneous, there’s a killing. Since there are d, + d. — 1 sessions,

T>d, +d.— 1.

fox | fox|o | fox|fof

ik | kik | kik | ke f

kik | kik [ kik |k f (14.9)
*ik | kik | L. | kik

ik | kik | .| xik | ke f

Therefore,

1 1 1 1

—t > 4.1
d,+dc - d,+T-|—1—d, (14.10)

Relaxing the integer constraints, the right hand side is minimized at d, =

(T'+1)/2, s0

> — (14.11)

Summing over all [n,m] and using eqn. 14.8,

4N?

2FN 2 (14.12)
which gives
N? < BT (14.13)
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14.4 Constructions

We present various constructions. The constructions are ordered from worst to
best performance in terms of time slot efficiency. In particular, we start with the
Latin Router design which achieves a throughput of F?T wavelengths. Then we
discuss several designs which support N? = ©(F?T logT) sessions. Finally in
section 14.4.5 we present the best known design which supports N? = F2T*/3

sessions.

14.4.1 Latin Router

This design was discussed in the introduction. We include it here for complete-
ness and because we will use it later as a building block.

Hook I_\/T J LANS to each input and each output of an F' x F* WDM cross-
connect for N2 = F? I_\/TJ2 ~ F?T possible concurrent connections. An exam-
ple is shown in Fig. 14-1.

We formally define the LR design (Wpg, Xpr) with F wavelengths and T
time slots to be the following F|v/T| x F|v/T| matrices |

Wil m = hﬁJJ - {L\/TJJ (mod ),
Xrr[n,m] = (nmod {\/TJ) * l\/TJ + (m mod l\/TJ) (14.14)

In Fig. 14-1, wavelength 0 is shown as R, 1 is shown as G, 2 is shown as B, and

3 is shown as Y. The scheduling matrix is not shown.

14.4.2 Birk’s Design

We only present the most relevant design from [BLM93|. This design uses 2
wavelengths which we call Red and Blue.

The key part of the design is an asymmetric network with k transmitters
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Figure 14-1: The 4 wavelength, 16 time slot Latin Router Assignment Matrix Wy .

and‘ N = 2* receivers. For this part of the design k can be any positive integer;
however, we will further restrict k below. The first row of the assfgnrnent matrix
W contains 25~ Reds followed by 25~ Blues. See Fig. 14-2 for a k = 4 example
(Only the Red wavelengths are shown for clarity). The next row contains 2+2
Reds followed by 25~2 Blues followed by 25~2 Reds, and ended with 2¥=2 Blues.
In each subsequent row, the number of adjacent Reds and Blues is cut in half
until the last row which contains the pattern RBRB...RB. To be more precise,
let s, = 257! for n = 0,2,..k — 1. Then f[n,m] = Red if l_ﬁJ is even and
fln, m] = Blue if l_ﬁJ is odd.

The k x 2* assignment can be scheduled with 2* time slots by setting
tln,m] =m+s, (mod 2*)if f[n,m] = Red and t[n,m] =m — s, (mod 2¥)
if f[n,m] = Blue. For this reason we call s, the shift of row n. So the first Red

of row n uses time slot s,, and the first Blue of any row uses time slot 0. The
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OfR|R|{R|R|IR|{R|R|R| -] -] |-
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2|/R|R|-|-|R|R|-|-|RIR| -] - |R|R]| -
3| R R|-|R|-|R|-|R|-|R|-|R| - -|R

Figure 14-2: Birk’s 2 Wavelength Design
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Figure 14-3: Schedule for Design
feasibility of (W, X) is shown in the next lemma.

Lemma 25 The design is feasible.

Proof: It suffices tb prove that R-LAN y only hears T-LAN z in time
slot t[z, y], for all [z, y]. Note that this is a stronger condition than feasi-
bility, i.e. feasibility is R-LAN y only hears T-LAN z in t[z, y] on f[z,y],
for all [z,y].

First we need a few definitions. Let §, be the binary representation
of s,. &, is all 0’s except for a 1 in the (k — n)® bit. Also let 7 be the
binary representation of m, for m = 0,1...,2%. Then f[n,m] is Red iff the

(k — n)®™ bit of 1 is 0. Associating Red with 0 and Blue with 1,
fln,m] =3, 0m (14.15)
where @ is the dot product. The time slot of [n, m] in binary is

tn,m] = 8, ® (14.16)
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where addition is done bitwise modulo 2.

Now suppose [n, m]’s signal is heard at T-LAN v in the same time slot
that [z,y] is using, [n,m] # [z,y]. Then it must be true that f[n,m] =
fln, y] and t[n, m] = t[z, y]. Since f[n,m] = f[n,y],

G OM=3,07 (14.17)

or equivalently 7 and § agree in the (k — n)™ bit. Also, they must be

simultaneous so

SO =5, @7 (14.18)

The (k —n)™ bit on the left hand side is the negative of the (k — n)™ bit
of 1. Since 7 and § agree in the (k — n)® bit, the equality can only be
true if z = n. But if z = n, then s, & 7 = s, ® § and since s, is all 0’s
except for the (k — n)™ bit, 77 = §. Therefore [n,m] = [z,y] which is a

.contradiction. O

Now to build a symmetrical 2* x 2* assignment from the k x 2* assignment,
we repeat the above design % times. Fig. 14-4 shows how this is done for k = 4.
If k does not divide 2*, then we must repeat the design [%1 times and discard
the extra 2% — k- [%1 rows. Since this will introduce inefficiency, we will restrict
our attention to k’s which divide 2%, i.e. k a power of 2.

FEach vertical repetition uses 2* distinct time slots for a total of T = %.
Therefore in T time slots and 2‘wavelengths, we can support N = 2*¥ LANs.
For instance, if k = 4, then with 2 wavelengths and 64 time slots, a total of 16
LANSs are supportable. This is a throughput of 256 wavelengths, exactly the
same as the LR design. However for larger k, the design outperforms the LR.

In general for any k a power of 2, the design achieves a throughput of N2 = 4F
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9 R|RIR|R - RIR|R|R

10| R|R| - RIR| - R|R R | R
11|R|-|R R|-|R R R R R
12|RIRIRIRIR{R|R|R| - .
B|R|R|R|R]| - RIRIR|R| -] -
4| |R|R| - RIR]| - R|R| - R|IR| -
15 || R R R R R R R|-|R

Figure 14-4: Vertical Repetition of Fig. 14-2

which is approximately %T logT. To see the approximation, notice that

k k
r 4 =140 (k’gk) (14.19)

1TlogT 148 (2k — log k) k

Since the error term is decreasing with & for k& > e, we can upper bound it by

lower bounding k. Now note that k£ > .5log T since logT = 2k — logk so

1 loglogT
2 = (271 ) : — .
N (2 ogT)-|1+0 log T (14.20)

In [BuHa90], it was shown how to improve the k x 2% design to k + 1 x 2*
using the same number of time slots. Repeating this design vertically kz—:l

times, assuming k + 1 divides 2¥, we end up with a network with N = 2F LANs,
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T = 2 time slots and 2 wavelengths. Now note that

T k41
k k
4 = 4 - 140 (loik) (14.21)

1T log4T 12 (2k+2 —logk

and that £ > .51og T since log T = 2k — logk + 1 so

1 loglog T
2 —_— — . ——
N = (2Tlog4T) [1 +0 ( log T )J (14.22)

14.4.3 Birk*2 Design

In the proof of lemma 25, we showed that if R-LAN y is listening to B in
time slot ¢, then no other signals are received at y in time slot ¢, not even on
wavelength R.? Therefore, it seems likely that we should be able to supplement
the design by adding rows so that y also hears a signal on R in time slot ¢. In
fact this is possible.

The design is as follows. For k£ > 1 an integer, the top k rows are the k x 2%
rows described above. The second k rows are the negative of the first k& rows,
ie. the first £ rows with R’s and B’s replaced. The schedule for each half is
the same as the original design. To be more precise, let f[n,m] and t[n, m] be
the assignment and schedule for the k x 2* design and let f’ [n,m] and ¢[n, m)]
be the assignment and schedule for the supplemented design. Then letting f

stand for the inverse of f,

fln,m] ifn <k
fin—k,m] ifn>k
In,m] = t[nmod k,m] (14.23)

flin,m] =

forn=0,1,..,2k -1, m=0,1,..2* — 1. An example is shown in Fig. 14-5.

However it is not true that an R-LAN only ever hears one signal. Consider Fig. 14-2 and time
slot 8. R-LANs 12,13,14, and 15 all hear a Red signal from (0,0] and a Blue signal from [1, 12].
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To see that the design is feasible, suppose that [n,m] kills [z,y]. There are
two possibilities: [n,m] and [z, y] in the same half or in opposite halves. The
first case is impossible by lemma 25. To see that the second case is impossible,
assume without loss in generality that [n,m] is in the bottom half and refer to

the following picture.

Yy m
T Bt
Top Half
n—k R Rt
(14.24)
Bottom Half n B Bt

If [n,m] kills [z,y] then f[n,m] = flz,y] = f[n,y] which we have assumed is
B in the picture. Therefore f[n — k,y] = f[n — k,m| = R by the definition
of the design. Since t[n,m] = t[n — k,m] = ¢, the session [n — k,m] is heard
at R-LAN y during time slot ¢. Now if [n,m] kills [z, y] then they must also
be simultaneous, so t[z,y] = t. Therefore considering only the top half during
time slot ¢, R-LAN y hears two signals, one of which is intended for R-LAN y.
By the proof of lemma 25, this is impossible so [n,m] does not kill [z, y] and
the design is feasible.

To build a symmetrical 2¥ x 2* design from the 2k x 2* design, we repeat
the above design g—z times. If & does not divide 2*~!, then we must repeat the
design I-g—,’:] times and discard the extra 2% — 2k - [%1 rows. Since this will
introduce inefficiency, we will restrict our attention to k’s which divide 2%~1,

i.e. k a power of 2.

Each vertical repetition uses 2% distinct time slots for a total of T = %
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Figure 14-5: Birk*2 Design
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Figure 14-6: Schedule for Design
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Therefore, in T time slot and 2 wavelengths, we can support N = 2k LANs.
For instance, if k = 4, then with 2 wavelengths and 32 time slots, a total of
16 LANs are supportable. This is a throughput of 256 wavelengths, which is
twice the throughput of the LR. For larger k, this design does even better. In
general, the design achieves a throughput of N2 = 4% which is approximately
T'log2T. To see the approximation, notice that

4* 4* log &
= 1+0 14.25
T log 2T £ (2k —logk) ( k ) (14:25)

and that £ > .51log T since logT =2k —1—logk so

o logl
N? = (Tlong)-[1+0<olg?ojg,T” (14.26)

14.4.4 An 8 by 8 Example

An important design that we’ll return to later is the 2 wavelength 8 x 8 design
shown in Fig. 14-7. It is based on the theory of the last section with k& = 3 and
using the extension laid out in [BuHa90]. The design uses 8 time slots, Only
the Red sessions are shown for clarity.

The example is important for two reasons. Most importantly, we will use
this design to build larger very efficient networks. This is done below. Secondly,
the design shows that the bound of the last section can be tight. In particular,

only 8 time slots are used and from Theorem 24 at least 7 are needed.

14.4.5 Composition of Designs

Let (Wl,Xl) be a feasible N; x N, design with F wavelengths and 7} time
slots. Also assume for simplicity that W; does not use wavelength changing.
Suppose also that (Wg,Xz) is a feasible N, x N, design with F, wavelengths
and 73 time slots that also does not use wavelength changing. In [BLM93], it
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was shown how to construct an N; - Ny X Ny - N, feasible design with £} - F3
wavelengths and Tj - Ty time slots using (W7, X;) and (W, X3) as building
blocks. Here we lay out the theory of this composition as well as using it to
construct new designs.

Denote the composition of two matrices as W = W; ® W,. An example is
shown in Fig. 14-9 where W} is the 4 x 4 two wavelength design and W, is the
two wavelength 2 x 2 design. The entries of W are wavelengths, written in the
form, (f,w). We call w the waveband of the wavelength (f, w). Informally, the
composition operator replaces each entry of Wy with a copy of W; where the

wavelengths of W fall in the wavebands of W.

Definition 9 Composition
Let W; be an N; x N; matriz for 1 = 1,2. Then the composition of Wi and
Wy, denoted W = W1 ® Wa, is the Ny - No X Ny - Ny matriz with entries

W[(nl, TLQ), (ml, mz)] = (Wl (’I’Ll, ml), Wz(ng, mz)) (1427)

where we have labeled the rows and columns of W by the pairs (ni,ng), 0 <

TL]<N1,0STL2SN2.

The entries W{(x, ng), (%, m2)] are called the children of [ny, ms]. Also, [n2, ms]
is their unique parent. Notice that children of [ng, my] all use wavelengths
in band W, [r2, mo] so that entries in W having different parents use different
wavelengths.

Now denote the composition of two designs as
(VV,X) = (Wl,Xl) ®(W2,X2) - (W] ®W2,X1®X2). (1428)

Note that the entries of the composition X = X; ® X, are time slots and are

written in the form (¢,b). We call b the time band of time slot (¢,b). From
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Fig. 14-9 it is fairly obvious that the composition of two feasible designs is also

feasible; this is shown in the next theorem, adapted from [BLM93].

Theorem 26 Feasible of Compositions ’
If (Wl,Xl) and (Wz,X2) are feasible, (VV, X) = (WI,Xl) ® (WQ,XQ) 18
feasible.

Proof: By contradiction.

Suppose s = [(n1, ), (19, my)] kills s’ = [(z1,41), (22, 2)]. A neces-
sary condition is that s and s’ use the same time slot and wavelength.

Now there are two possibilities: either s and s’ have the same par-
ent or they have different parents. If they have the same parent, i.e.
[n2, ma] = [z2,ys), then the session [ny, m;] would kill [z, 9] in (W1, X7),
contradicting the assumption that (W7, X;) was feasible.

If they have different parents it must be true that Wy[ny, my] =
Wa(za,y2] = Walng,ys] else they would have different wavebands and
therefore could not contend. But then s and s’ use different timebands

so they do not contend. O

Using this composition, we now have the following interesting design. Let
(W1, X1) be any feasible N; x N; design with F} wavelengths and T} time slots.
Let (Wig, Xrr) be the F; x F; Latin Router Design with F, wavelengths and
1 time slot. Then (W1, X1) ® (Wrr, X1r) is a feasible FyN; x F3 N, design with
F\F; wavelengths and T; time slot. Call this the LR erztension. Fig. 14-9 is a
LR extension since the second matrix is a 2 x 2 Latin Router.

For instance consider the following design which is valid for F' a multiple of
2 and T = 4% /2k for some k a power of 2. Set F = F/2 and F} = 2. Use the de-
sign laid out in section 14.4.3 how to form a feasible (W}, X;) with 2 wavelengths
and T time slots. It was shown there that N = (T'log 2T) [1 +0 ( loglog 7 T)]

logT

Therefore, the LR extension supports N? = (.25F2T log T [1 +0 ( °lolg°TT)].
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Figure 14-9: Composition of T'wo Designs

We are now in a position to present the best known design for large F' and
T'; the construction is trivial given what we have already done. First, compose
the 8 x 8 design on itself n times. Then compose the final answer with a k£ x &k
LR. In the end, we have an k8™ x k8" network using F' = k2™ wavelengths and
T = 8" time slots. Notice that N? = F2T%3 and that F' = kT'/3. Therefore
C>6 (F2T4/ 3) for F > T'/3. Also notice that this design greatly outperforms
the LR for large T since then F2T*%/3 >> F?T.

14.5 Conclusions

Using NLT-AONs for the All-to-All problem was first Studied in a different
context [BLM93]. There it was shown that for F = 2, C > (T log T), beating
the F?T light tree limitation; however no upper bound on C was presented.
We showed that for any F' and T, C' < .24F?(T + 1)?. By combining Birk’s
design and the LR, we also showed that C > ©(F?T'logT) for all F>2. In
addition, for F > T3 C > ©(F?T*/?). Note that surprisingly, both results
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are achievable even if FF << T as long as ' > T'/3. None of the AONs require
wavelength changing.

The capacity of an AON can be increased by increasing T at the cost of
decreasing the session bit rate R, = R/T. Since Cpr < F?T, increasing T
increases the capacity of a LT-AON but does not increase the maximum total
throughput Z;7 = CrrR/T = F2R b/s. However Zyyr increases as the session
rate decreases! This is a fundamental design trade-off that does not exist in

traditional multi-access networks and is an area for future study.
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Appendix A

Identities, Bounds, and

Approximations

The factorial function n! is defined to be
nl=nxn-1xn—-2x..x1 | (A1)
The famous Sterling’s formula is
n\" &
n! = v2mn (—) eTon (A.2)
where 0 < 8 < 1 and therefore

nl > V2rn (g)n > (ﬁ>" (A.3)

e

The last inequality will generally suffice for our purposes.

A related function is (n);, read n lower factorial 7. By definition (n)y = 1,

and for any other positive integer 1,

(n)i=nn—-1)..(n—i+1). (A.4)
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Notice that (n), = n!. Two other useful identifies are

n (n);
(Z) (4); (A-5)
(n)y = (n)i(n —i)p—i _ (A.6)

where the last one is valid for b > ¢. We will generally encounter ratios of the

lower factorial function. In that case the following bound is useful

(")i. < (ﬁ)i (A7)

for n < m since in this case (n — j)/(m — j) is decreasing with j. If n > m

reverse the inequality.
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Appendix B

Hypergeometric Distribution

A probability distribution used in this thesis is the hypergeometric distribution.
Consider a vat with b blue balls and M —b red balls. Define the random variable
i to be the total number of blue balls picked out of the vat in n trials, where the
balls are not replaced after each pick. Then i is given by the hypergeometric

distribution,

_ O o0 .
R ) I ) (B

for 0 <4 < min(n,b) and n < M — b, where M is the total number of balls.

p(s

‘The mean and variance of the hypergeometric are [Fel68]

Eli] = ne (B.2)
M —n
M—l}

var(i] = ne(l —¢) * {
where € = % is the probability of picking a blue ball on the first pick.

Now define the random variable j to be the total number of blue balls picked

out of the vat in n trials, where the balls are replaced after each pick. Then j
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is given by the familiar binomial distribution,

bj) = (j) (1= ey (B.4)

where ¢ is as before. The mean and variance of the binomial are

E[j] = ne (B.5)
var[j] = ne(l —e) (B.6)

If the expected number of red balls chosen without replacement is small com-
pared to the total number of red balls, the hypergeometric is well approximated

by the binomial [Fel68]. That is if

b :
nor <<bern<< M (B.7)

then p(i) =~ b(j). Below we will bound the tail of the hypergeometric. Before
doing that, recall that the tail of the binomial can be bound using the Chernoft
bound. That is if

b(j > k) i() (1—e)"™ (B.8)

=k

<.

then using the Chernoff bound,

nb(j > k) < n[ﬁlnﬂ+<l—ﬁ)lnll_2] (B.9)

for k > E[j] = ne. Also note that since (1 —¢)/(1 —k/n) =1+ le—f/ﬂ and

since In (1 +z) < «,

Inb(j > k) < kln%+(k—ne) | (B.10)
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Now in order to bound the tail of the hypergeometric, we first show that the
hypergeometric can be bounded above by a binomial times a correction factor.

The derivation is taken from [Bol85].

p(i) = ()((};g)_n) (B.11)
- (e
- (>( _”)b ~i(b); (B.13)

Separating out the first b — n terms of (M — n),_; using eqn. (A.6), we get

(M —n)pei = (M —n)y_n x (M —b)u_s (B.14)

Also using eqn. (A.6) twice on (M),

(M)y = (M)n(M =n)yn = (M)i(M = i)p_i(M =)y (B.15)

Plugging these in,

N (n\ (M —=n)e_n(M —b)n_i(b);

P = (Z) (M)i(M = )—i(M — n)p_r (B.16)
n (M — b)n—i(b)i

(2> (M)i(M = 1)y (B.17)

(&) =y

where the inequality follows from eqn. (A.7). Now since

M-b _ M-b_ M.=(1_£><1+ t ) (B.19)

IA

M -1 M M—1 M M-
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we have

p(i) < (77‘)8(1 — )" x (1 + Mi_i)n_i (B.20)

1

< <”) €(1— €)™ x exp {1’5\3 - ?} (B.21)

< <7}) (1 —e)" " X exp {z(Mn — Z) } (B.22)

where the last inequality is true since ¢ < b. Now since i(n — ¢) is maximized

at i =n/2,

n 2

o) < (1)ea- e { 5] (.23

Eqn. (B.23) will be useful to us at times. It can also be used to bound the tail

of the hypergeometric in terms of the tail of the binomial. Specifically

2

Inp(i > k) < Inb(i > k) + m (B.24)
S kln?-l-(k—ne)—i—m (B25)

where the last inequality follows from eqn. (B.10) and is valid for & > Eli] =
ne. This formula can be useful when n? << M. However, when n is on the
order of the v/M, the bound we will now derive is better. Starting again from
eqn. (B.22),

o) < (1)ea- o e {=1 (B.20)

1

<
|

7

_ (”) () (1 — o (B.28)

?

where v = ezp(=2-). Note that the random variable e* takes on only positive

M—b
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values. Therefore by Markov’s inequality and the fact that ¢ > k is equivalent

to e® > e** for all s > 0,

p(i > k) = p(e >e*) (B.29)
< —Z?ﬂef,fz)e” (B.30)

Now using eqn. B.28, we get that for all s > 0,

p(;' >k -skz< ) e‘ey) (1 —e)"™ (B.31)
=eF(efey+ (1 —¢€)" (B.32)

Let gi(s) & (e*ey + (1 — €))". Then the minimum of the right hand side occurs
at the point

ko= aigg(i)s) (B.33)
= %lngi(s) (B.34)

Taking the derivative of g;(s) and solving the above equation for s gives

(1-e)k
=In—— B.
s ne’y(n—k) (B.35)
which is non-negative if n > k£ > Tgwa)e Using this value of s,
p(i>k) < e (efey+(1-€)" (B.36)
. k e'yn k 1—e¢
Inp(i > k) < [n In — . (1 — ;) In — E] (B.37)

Notice that if ¥ = 1, this is the Chernoff bound on the tail of the binomial.
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One more step and we’re done,

1—-% = 1—k/n

and therefore

Inp(i > k) < (k—mne)+kln ney

k

=(k—ne)+kln%+Mn_b

which is valid for all n > k > 7

for all n > k > ney.
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(B.39)

(B.40)

T+(7—1De Since vy = -5 > 1, eqn. (B.40) is valid
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