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ABSTRACT

A single zone burn rate analysis for cylinder pressure data proposed by Gatowski
et al in 1984 and Chun in 1987 was implemented and evaluated in this work. The analysis,
which uses the heat release approach based on the First Law of Thermodynamics, included
sub-models for the effects of residual fraction, heat transfer, and crevice. One of the
important parameter in the analysis, the ratio of specific heats, ¥, was estimated at various
equivalence ratios and initial burned fractions by matching the burning profile of the one-
zone procedure to that of the two-zone engine simulations. Since a two-zone analysis
usually is more complex and time-consuming, this approach allowed the use of the simpler
one-zone analysis with 2 more accurate thermodynamic properties.

Each of these sub-models were assessed and recalibrated, if necessary. Sensitivity
checks were done on parameters like wall temperature, heat transfer calibration constants,
swirl ratio, motoring polytropic constant, initial mass, heat transfer exponent, and
uncertainty in pressure data. In addition, new ratios of specific heats was computed by the
matching process for alternative fuel including propane, methanol, and methanol-gasoline
mixtures. The burn rate analysis also incorporated several other computations. suggested
by the engineers at Chrysler because of their usefulness. These included the effective
compression ratio, polytropic constants, specific fuel consumption, and ener,_y losses due
to blowdown and throttling.

Cylinder pressure at various engine operating conditions obtained from the Sloan
Lab. and Chrysler were used to evaluate the accuracy and compatibility of the analysis to
real data. The results showed that the analysis performed better at moderate operating
conditions than at wide open throttle due to inaccuracies in pressure data. Subsequent use
of the burn rate analysis on alternative fuels and engine hydrocarbon emissions studies at
the Sloan Laboratory indicated that it could be used as a useful tool in engine development
activities.
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CHAPTER 1 - INTRODUCTION

1.1 Background

Cylinder pressure has always been an important measurement in studies of
automotive engines because of its direct relation to the combustion process. In an internal
combustion engine, chemical energy stored in fuel is released through combustion. The
burning of fuel raises the cylinder pressure which, in turns, drives the piston to produce
useful work. Thus, by knowing the time-history of the cylinder pressure, the amount of
fuel burned can be estimated. This fuel mass burned expressed as a fraction of the total
mass is the mass fraction burned. Mass fraction burned and mass burning rate curves
(Figure 1-1) show how combustion progresses as a function of crank angle. The burn rate
analysis provides researchers with valuable information about the quality of combustion.
It can be used in many aspects of engine research and developments such as cycle-by-cycle
variations and lean burning behaviors.

Because of its usefulness, many methods have been developed over the years to
determine the mass fraction burned. One of the earlier models was proposed by
Rassweiler and Withrow [1] in 1936. Although the model is over fifty-years old and
several other new approaches have been proposed by others since then, it is still one of
most widely used methods. One advantage of this approach is that it is simple to apply. It
requires only the cylinder pressure along with the cylinder volume details. Due to its
simplicity, data processing time is short which allows real-time processing with today's fast
computers.

Despite its advantages, the Rassweiler and Withrow model also has its drawbacks.
The polytropic constant (n) used in the calculation is assumed to be a constant throughout
the analysis. However, the polytropic constant varies from compression to expansion and
changes during the combustion process. Besides, it is not easy to select an appropriate

polytropic constant because it varies with engine operating conditions. In addition, the
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effect of heat transfer is not accounted for in the model. It is included only to the extent
that the polytropic constant is different from the ratio of specific heats (y) which is a
thermodynamic property of the unburned and burned fuel. The :nodel also does not
account for the existence ¢t crevices, small narrow volumes connected to the combustion
chamber. Cylinder charge flows into the crevice during compression and returns to the
combustion chamber during expansion. Some of the charge is not burned because the
flame cannot propagate into these crevice regions.

Because of the limitations of the Rassweiler and Withrow model, more complete
and sophisticated approaches have been proposed by others over recent years. Some
utilize a two-zone combustion analysis which models the burned gas and unburned gas as
two separate regions. This approach is complicated and time-consuming, thereby limit its
use.

A simpler one-zone model was proposed by Gatowski et al. [2] at Massachusetts
Institute of Technology in 1984. The single-zone analysis uses the energy release
approach to determine the burn rate from measured cylinder pressure. During combustion,
chemical energy of the reactants is converted into sensible energy of the products which
increases the pressure inside the chamber. In addition to combustion, the change in
cylinder chamber volume, heat transfer to the walls, and mass transfer between the
chamber and crevices also influence the pressure. If these effects can be related to the
pressure and be separated from the effect of combustion, the mass fraction burned can
then be estimated. The approach uses the First Law of Thermodynamics and several sub-
models to relate the overall energy balance to the measured pressure. One advantage of
this method is that it calculates each effect explicitly. Therefore, additional information
about the combustion process can be obtained if the pressure data is accurate. It is more
complete than the Rassweiler and Withrow method but simpler than the two-zone model,

thus greatly reduces data processing time.
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1.2 Objective
The energy release burn rate analysis was first implemented by Chun [3] and later
by Sztenderowicz [4] at the Sloan Automotive Laboratory of MIT. It had been used for
various applications within the Sloan Laboratory. However, it is yet to be widely used in
the industry. Different divisions of a company with various needs would implement their
own versions of the burn rate analysis based on different models making communications
among them difficult. Hence, a standardized pressure data analysis will be beneficial.
The goal of implementing the energy release burn rate into the automotive
industry's engine development and design activities leads to the following objectives:
1. Assess and calibrate, if necessary, all the sub-models used in the analysis to
ensure validity and accuracy.
2. Incorporate additional calculations into the burn rate analysis to satisfy the
needs of different users.
3. Test the complete model with data from practical engines to ensure that the

analysis is robust and compatible to commercial engines.
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CHAPTER 2 - ENERGY RELEASE BURN-RATE MODEL

2.1 Energy Release Equation

To derive the energy release burn-rate relationship, consider the combustion
chamber to be the control volume of a thermodynamic system with the cylinder wall,
piston head, and the cylinder roof as the boundary. Figure 2-1 shows the schematic of the

system. The First Law for this system is

8Q,, = dUg +3W + 3. hidm; +8Qy, 2.1)
where 6Q,, = chemical energy release by combustion,
du; = change in sensible energy from reactants to products,
oW = work done by piston,
Zhdm; = mass flux across the system boundary,
80, =  heat transfer to the chamber walls.

The First Law provides the basic framework of the model. Then each term of Eq. (2.1) is
converted into expressions in terms of cylinder pressure, volume, and other convenient
parameters.

The sensible energy can be represented by

U; =mu(T) 2.2)
where m = mass of charge inside the control volume,
T =  mean charge temperature determined by the Ideal Gas Law.

Differentiating both sides of Eq. (2.2) gives

du; =m§la’1' +udm
oT
dUg =mc,(T)dT +u(T)dm (2.3)

where ¢, is the specific heat at constant volume.
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The piston work is simply given by pressure multiplied by the change of cylinder volume:
W = pdV 24

The mass flux across the system boundary is given by two terms:
3 hidm; = hipidm ¢ + b dng, 2.5)

The first term describes the energy flow due to fuel injection whereas the second term
accounts for the effect of flow into and out of crevices. All our analysis will be mainly for
spark-ignition (SI) engine and will focus on the period between intake valve closing (IVC)
and exhaust valve opening (EVO). During this period, there is no fuel injected into the
chamber during this period. Hence, the fuel injection energy term is dropped. All the
crevices inside the cylinder are aggregated into one single volume because of the overall
effect is what is required. The crevice gas flow is at the same pressure as cylinder gas but
different temperature. The temperature and enthalpy of crevice gas flow is evaluated at
cylinder conditions if mixture is flowing into the crevice and at crevice conditions if
mixture is returning into the combustion chamber. The crevice model will be discussed
more fully in Chapter 2.2.2. Therefore, Eq. (2.5) becomes

X hydm; = h dmg, = ~h dm,y; (2.6)
The Ideal Gas Law states
pV =mRT
or Vdp + pdV = R(Tdm+mdT)
hence mdT =de—’;e’iiv——mm @7

In addition, the constant volume specific heat (c,) can be expressed in terms of the ratio of

specific heats (y):
Y=
Cy

where ¢, is the specific heat at constant pressure.
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Sy _ 1

and 2.8
R y-1 (2.8)

In the burn rate analysis, ¥ is approximated by a function of temperature:
Y=a+bT 2.9)

The method of obtaining this function will be presented in Chapter 2.3.
Substituting Egs. (2.3) to (2.9) into Eq. (2.1) and expressing the energy release
rate in terms of crank angle (0) provides us with the functional form of the burn rate

expression:

Oy _ Y _dV__ 1 _dp
+—Ly®
40 vy-17430 y-1 do

r, T 1, y-1.dp dOp
+VC’[T,,, Ty, (Y T bT,, (y e @10

where V., =  crevice volume,
T = crevice gas temperature,
T,, =  wall temperature,
Y = 1atio of specific heats for cylinder gas,
Y = ratio of specific heats for crevice gas.

Therefore, the mass fraction is given by the percentage of the integral of Eq. (2.10) over
the total available energy, that is,

T @iy
- spark @.11)
mOryy
where x, = mass fraction burned,
mg = mass of fuel,
Oryv = lower heating value of fuel.

18



The effect of heat transfer on the overall fraction burned is not directly measured. Thus, a
model is employed to estimate the heat transfer effect which will be discussed in the

following section.

2.2 Sub-models

As described in the previous section, there are several events occurred inside the
chamber other than combustion that affect the cylinder pressure history. These events
include heat transfer to the chamber walls, flow into and out of crevices, and residual
fraction left over from the previous burning cycle. Since these effects on the overall
burned fraction are not directly measured, models are used to relate them to the pressure

history.

2.2.1 Heat Transfer

During engine operation, energy is translated from the in-cylinder gases by heat
transfer to the chamber walls. The loss of energy lowers the pressure and shows up in the
pressure history. If this pressure history is used to calculate the mass fraction burned
without compensating for the heat loss, abnormally low burned fractions will be obtained.
Thus, a model is needed to estimate the amount of energy lost in heat transfer.

The heat transfer model used in the burn rate analysis is based on Woschni's

correlation for engine heat transfer coefficient (h;) [S]. The convective heat transfer rate

is given by
d—%’—: Ah,(T-T,) 2.12)
where A =  heat transfer area,
h. =  convective heat transfer coefficient.
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The heat transfer coefficient is given by Woschni's correlation with some minor

modifications:
h, =3.26¢,B™ 1 pmr0-75-1.62m,,m (2.13)
where m =  heat transfer exponent which equals 0.8,
B = bore,
p =  cylinder pressure,
T =  cylinder charge temperature,
¢; = calibration constant that gives the correct dimension for 4,.,
w = characteristic velocity contributed by piston movement, charge motion,
and combustion,
W =2.28(5), +ligyiy) +3.24¥1073¢ ZTM.(V Yd yBf " Pm fp P 2.14)
e e
where 5, = the mean piston speed,
Uswing=  switl velocity due to charge motion,
Vg = displaced volume,
¢ = calibration constant that gives the correct dimension,
ps =  firing pressure,
Pm =  motoring pressure,

the subscript ivc refers to conditions at intake valve closing.
The swirl velocity (ug,,;;) is given by a swirl ratio (R,;;) that is input by the user

depending on the charge motion of the engine.

Usyirl = TNBRg, i1 (2.15)
where N =  engine speed [rev/sec.],
B =  bore,
Rgyinp =  swirl ratio which is defined as the ratio between the angular velocity

of a solid-body rotating flow and the crankshaft angular rotational
speed.

20



Unlike the Woschni correlation, Eq. (2.14) includes the movement of the mixture
induced by charge motion in term of u,,;,;. In addition, the calibration constant c; and c¢;

are added to adjust the heat transfer effect.

2.2.2 Crevice Model

In an engine, there exist several crevices, for example, above the top ring between
the piston and the cylinder, around the spark plug, and between the cylinder block and the
head gasket (Figure 2-2) [6]. Gas flows into and out of the crevice as cylinder pressure
rises and falls, thus, affecting the combustion process. The simplest way to model the
crevice effect is to assume all crevices to be one single volume. The gas inside the crevice
is at essentially the same pressure as the chamber, but at a different temperature. Since
crevice volumes are narrow and the walls are cold, crevice gas is close to wall

temperature. The mass in the crevice can be estimated using the Ideal Gas Law,

- PV

mer RT,

The volume and temperature are assumed to be constants which gives

V
dm,., =—<—d 2.16
cr RT, /4 ( )

Eq. (2.16) conﬂpns that the gas flows into or out of the crevice depending on the
variations of the cylinder pressure. When the cylinder pressure rises (dp > 0), mass flows
into the crevice. On the other hand, mass returns to the chamber when the pressure drops
(dp < 0). When the cylinder mixture is pushed into the crevice because of the high
cylinder pressure, the state of the crevice gas is evaluated at the cylinder condition.
However, in the case of crevice gas returning to the chamber because the cylinder pressure

drops, the crevice condition is used to evaluated the state of the returning mixture.
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The total crevice volume for a warm-up engine is about 1% to 2%. in this model,
the effect of blowby is not included because the significance of blowby is small in modern

engines.

2.2.3 Residual Gas Fraction

At the end of combustion (EOC) and during exhaust, some burned gas stays in the
chamber without being pushed out. This residual gas affects the combustion process by
mixing with the fresh intake charge. Since the burned gas is hot, the mixing heats up and
dilutes the fresh charge. Therefore, a model is needed to predict the amount of residual
fraction (x,).

The model used in the burn rate analysis was developed by Fox [7] of MIT in

1992. The model relates x, to the engine speed, inlet pressure, valve overlap, and fuel-air

equivalence ratio.
F, . .
%y =1.266,[Pin — Pox] (~222122 Lin 087 0 63 & (Pin)-074 (317
N Pex R. Dex
where N =  engine speed,
¢ = fuel-air equivalence ratio,
R, = compression ratio,
Foverlqp =  valve overlap factor.
The valve overlap factor is defined as
Dy, Ay, + D, A
Fovertap =—— 7 — (2.18)

where D is the diameters of the intake (iv) and exhaust (ex) valves. The quantities A;, and

A,, are defined as,
iv=ev EVC

Ap = j IV,,-ﬁdO & Ay = jEV,,-ﬁde (2.19)
Vo ev=iy
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Alternatively, the overlap factor can be estimated with a second order equation.

#10-3
Foverlap = 1“f—5-é1°——[107+7.8(Evc ~IVO)

p (2.20)
+(EVC - IVO)?|(‘max y Gave
B B
where l,,, =  average maximum valve lift,
dg. =  average valve diameter.
Sometimes exhaust gas is intentionally circulated back to the cylinder (%EGR) to
mix with fresh mixture along the residual gas for better fuel efficiency. Thus, the total

initial burned gas fraction before combustion is

EGR
xb,o = (_16'0_)(1 —Xr ) + Xy (2.21)

Since by definition,

mp
m; +my,

Xb,0 =

where m; is the mass of fresh intake, the total mass of cylinder charge can be computed
knowing the residual gas fraction and %EGR,

m;

(2.22)
i- Xp.0

Mygeq1 =

With all sub-models established, Figure 2-3 shows the contribution of each effect
on the overall mass fraction burned. Heat transfer has significant effect especially at the
end of combustion whereas crevice effect is relatively small because of the small crevice

volume,
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2.3 Ratio of Specific Heats

The algorithm used to determine the ratio of specific heats (y) was first proposed
by Chun [3} in 1986. This approach improves the one-zone analysis by finding the Y(T)
which makes the one-zone burning rate predictions match closely with predictions made
from the same pressure data with a two-zone model.

The flow chart in Figure 2-4 shows the steps used to determine y. A pre-defined
mass fraction burned profile is inputted into a two-zone engine cycle simulation program
which was developed by Poulos and Heywood [8] in 1983. The effects of heat transfer
and crevice are set to zero because they can only be modeled approximately. Mass
fraction burned is specified by a Wiebe function:

_9-80 mu1
[-a( 70 )

xp=1-e (2.23)
where §p =  start of combustion,
A9 = total burn duration.
a = aconstantequals to S,
m = aconstant equals to 2.

From the simulation program, a time-history of cylinder pressure can be generated. By
rearranging the burn rate equation, Eq. (2.10) without heat transfer and crevice =ffects, an
expression of Y in terms of fraction burned, pressure and volume can be obtained.

80,/ , Vdp

'Y =
an%e"p Vo

The input for the simulation program were:

N = 1500pm,
6p = 20degBTC,
A8 = 60deg,

Pin = 0S5atm.



Figures 2-5, 2-6 show ¥ from IVC to EVO calculated from the simulation program. Using
these values, 7y is approximated by a linear function of cylinder temperature during the
compression and compression processes
Y(T)=a+bT (2.25)

During combustion, 7y is approximated by a constant value. As shown in the plot, Eq.
(2.22) produces numerically unstable y values near the end of combustion. In order to
avoid this instability, the combustion v is an average of gamma values from 7% to 93%
burned. The approximated 7 is put into the burn rate analysis, and Figure 2-7 shows the
variation of y from IVC to EVO. In order to ensure a smooth transitions from
compression to combustion and from combustion to expansion, a 10 degrees transition
region was added at the beginning and end of combustion.

In Figure 2-8, the pre-defined fraction burned profile was compared to the mass
fraction burned profile obtained from the burn rate analysis using the estimated y. The
two profiles match reasonably well with a slight difference after spark. This difference
may possibly due to that the simulation pressure is from a two-zone model whereas the
burn rate analysis is one-zone. Besides, the combustion v is assumed to be a constant in
the burn rate analysis.

Since y of the entire cylinder charge varied with the fuel-air equivalence ratio,
residual fraction, and fuel types, a number of y's were computed at different equivalence
ratios and residual fractions for fuel types including iso-octane, propane, indolene,

methanol, M10 (10% methanol and 90% indolene by volume), M60, and M85.
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CHAPTER 3 - AUXILIARY COMPUTATIONS

3.1 Introduction

In order to make the burn rate analysis package more useful to more engine
developers and designers, additional calculations were added. Suggested by the engineers
at Chrysler, these computations include the polytropic constants, blowdown and throttling

energy losses, effective compression ratio, and the specific fuel consumption.

3.2 Polytropic Constarits

Figure 3-1 shows the pressure-volume data from a firing engine on linear p-V and
log p-log V scales. On the log p-log V diagram, the compression process and expansion
process are straight lines. This is because both the compression of unburned mixture and
the expansion of burned gases are close to adiabatic isentropic processes. For an
isentropic process, pVY =constant where vy is the ratio of specific heats. The
compression and expansion processes are showed to be well fitted by a polytropic relation:

pV" = constant 3.1)
where n is the polytropic constant. n has the value of 1.340.05 for convention fuels. It is
close to the value of ¥ for unburned mixture over the compression process, but is greater
than vy for burned gases during expansion due to heat loss. The dotted lines in Figure 3-1
shows that the polytropic approximation fits the compression and expansion processes
quite well.

To determine the value of n, least square straight lines are fitted through the
compression and expansion processes on the log p-log V plot. The slopes of the lines are
the polytropic constants. The main purpose of obtaining the polytropic constant for the
experimental pressure-volume history is to check the pressure data. If the pressure data is
erroneous, the polytropic constants will most likely to be very different from the average

values.
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3.3 Blowdown and Throttling Energy Losses

In practical engine operating cycles, there exist energy losses due to blowdown
and throttling. Since valves never open and close at exactly top dead center (TDC) and
bottom dead center (BDC), blowdown losses occur at the end of expansion and the
beginning of exhaust while exhaust throttling loss may occur at the end of the exhaust
stroke. Figure 3-2 shows the three possible areas of energy losses we had identified: the
expansion blowdown, exhaust blowdown, and exhaust throttling losses.

To compute the expansion blowdown loss, the rneasured pressure-volume data is
compared to the polytropic expansion. The polytropic expansion process is obtained by
extrapolating the polytropic relation all the way to BDC. The area enclosed between the
measured pressure history and the extrapolated pressure from the point they begin to
differ to BDC is the desired expansion blowdown loss.

BDC
[(Pext —p )V

Pext*Pf

Losspiow = 3.2)
Va
where p,,.pr =  extrapolated and measured expansion pressure,
Lossp,w =  expansion blowdown loss in unit of pressure so it can be

compared to the engine mean effective pressure.

When the piston reaches BDC during the exhaust process, the cylinder picssure is
not close to the exhaust pressure. The cylinder pressure approaches the exhaust pressure
after the piston has started moving upward. The time it took the pressure to reach the
exhaust pressure from BDC is defined to be the exhaust blowdown loss. To calculate the
amount of exhaust blowdown loss, the difference between the measured pressure data and
the exhaust pressure is integrated starting BDC until the two pressures are equal. Since
the exhaust pressure is not an input from the user, it has to be computed from the given
pressure data. In order to avoid the effects of valve movement near TDC and BDC,

exhaust pressure is taken to be the average of the measured exhaust pressure between
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70% to 40% of the maximum volume (volume at BDC).

8DC
j (Pf = Dexn)dvV
Loss . = 2L=7e > (3.3)
d
V=0.4Vinax
pf
where Poxh = ——mar . (n = # of points)
n

In some operating conditions, throttling loss takes place at the end of the exhaust
process and the beginning of the intake process when both the exhaust and intakes are
opened. This loss is characterized by the "spike” near TDC of the exhaust stroke. The
amount of exhaust throttling loss can be calculated by integrating the area between the

measured exhaust pressure and the average exhaust pressure near BDC.

Pf=Pexh
[(Pf = Pexn)dV
Lossy, =—12< 7 (3.4)

Note all blowdown and throttling losses are expressed in the unit of pressure so that they

can be compared to the engine mean effective pressure (mep).

3.4 Effective Compression Ratio

Another computation that was requested by the engineers at Chrysler is the
effective compression ratio (R; 5. The regular compression ratio (R.) is essentially the
ratio of the maximum volume to the minimum. However, in operating engines the intake
valves close after BDC and spark occurs before TDC. Therefore, R, may not be a
realistic representation of the ratio of compression. Instead of using the volume, pressure
is used to evaluate R o

pm TDC )l/n‘_.

3.5)
Pf.BDC

,eﬁ =(———
where prppc =  pressure at BDC of compression stroke for normal firing cycie,
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Pm1pc = motoring pressure at TDC of compression stroke,

ne compression polytropic constant.

The BDC firing pressure is readily available from the data whereas the TDC motoring
pressure is obtained by extrapolating the compression pressure using the least-square
fitted compression polytropic constant. The extrapolation is carried out by the polytropic
relation Eq. (3.1). It starts from where the least-square fit ends, which should be a little

before spark.

3.5 Specific Fuel Consumption

In order to learn more about the fuel efficiency of the engine, the specific fuel
consumption (sfc) is also added to the analysis. The specific fuel consumption measures
how efficiently an engine is using the fuel supplied to produce work. sfc is a function of

intake fuel mass flow rate, and power output:

m
se=—L (3.6)
P
where power output can be expressed in terms of the indicated mean effective pressure
(imep), displacement volume, and engine speed.

p= (imep)VyN
nR

3.7

where ny, is the number of crank revolutions for each power stroke per cylinder (two for
four-stroke cycles; one for two-stroke cycles). The mean effective pressure is calculated
from integrating the p-V diagram. I only the compression, combustion and expansion
processes are integrated, then it is the gross indicated mean effective pressure (imepg). If
the entire operating cycle including the exhaust and intake processes is integrated, then the
net mean effective pressure is obtained (imep,,). In the burn rate analysis package, imepy,
is used to compute P and sfc. Therefore, the obtained value of sfc is the net indicated

specific fuel consumption (isfc,). However, sfc is by no mean limited to indicated
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quantities. Depending on the form of power output that is used, one can obtain the gross
isfc (i.sfcg) and the brake sfc (bsfc). In order to compute these sfc's, slight modifications
will have to be made.
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Figure 3-1. Pressure-volume history with approximated polytropic processes.
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CHAPTER 4 - SENSITIVITY AND PARAMETRIC STUDIES

4.1 Introduction

Now that the framework of the burn rate mcdel has been established, this chapter
will investigate the sensitivities of several key variables and parameters. These variables
include the wall temperature, heat transfer calibration constants, swirl ratio, motoring
polytropic constant, initial mass, and the crevice volume. The first four quantities are
mostly directly related to the heat transfer sub-model while the initial mass affects the
overall burned fraction and the crevice volume obviously influences the crevice effect.
Since some of these variables are not available explicitly, assumptions are made about
them. In order to ensure that the assumptions are adequate. sensitivity tests are done to
ensure that no large error in the analysis will result from expected uncertainties in these
assumptions. By systematically adjusting the variables, the sensitivity of predictions to

changes in these variables is determined.

4.2 Sources of Data

Sets of data taken at various engine operating conditions were used in the
sensitivities and parametric studies. The Sloan Automotive Laboratory and Chrysler
Corporation Powertrain Division were the sources of these data. The Sloan Lab. data
were taken by Fox [7] and Min [9] on a single cylinder research engine. The engine is a
four-stroke spark-ignition Ricardo Hydra Mark IIT with dual overhead cam. The spark

plug of the engine is located near the center of a hemispherical combustion chamber. The

engine geometry is described below:
bore, B = 85.7mm,
stroke, L = 86.0 mm,

connectingrod,! = 157.9 mm,

clearance volume, V., = 68cc,
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Ivo = 4degBTC,

IVC =  132degBTC,
EVO = 124degATC,
EVC = 16degATC.

The cylinder pressure data were taken with Kistler model 6121 pressire transducer
coupled with Kistler model 5004 charge amplifier. A PC-based data-acquisition systsm
was responsible for collecting the pressure data. The data were taken at a revolution of 2
crankangle degrees/sampling point, that is, 360 data points in one cycle of engine
operation.

The Chrysler data were data by the engineers there with their 3.5L V6 production
engine. It has the following geometry:

bore, B = 81.0mm,

stroke, L = 96.0 mm,
connectingred,/ = 151.0 mm,
clearance volume, V., = 62.37 cc,
IVO = 8degBTC,

IvC = 116 degBTC,

EVO = 122 degATC,

EVC = 14 degATC.

The data-acquisition system from DSP was used to collect the data. Only data from
cylinder one was used for the burn rate analysis.

In order to assess the behavior of all the sub-models and the overall burn rate
model, a wide variety of operating conditions were tested. Tables 4-1 and 4-2 list all the
conditions tested both at the Sloan Lab. and Chrysler. In each condition, multiple cycles

(at ieast 100) of pressure data were taken to ensure statistical validity.
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4.3 Wall Temperature

In a firing engine, the distribution of the combustion chamber wall temperature is
complicated. The wall temperature varies between different parts of the cylinder: piston
crown, cylinder head, and cylinder liner. The wall temperature undergoes a small cyclical
changes every cycle which is neglected. The wall temperature is controlled by engine
speed, load, equivalence ratio, compression ratio, spark timing, charge motion, inlet
temperature, wall material, and coolant temperature. It would require a too sophisticated
a model for the burn rate analysis to predict the wall temperature. Therefore, the burn rate
analysis assumes a constant wall temperature which is chosen based on the equivalence
ratio only. Table 4-3 lists the criteria for choosing the wall temperature. In order to
ensure the constant temperature assumption is adequate, a sensitivity test was done to
check that reasonable variations in wall temperature has no drastic effect on the overall
burn rate analysis.

Table 4-4 and Figure 4-1 show that the peak fraction burned and heat transfer
changes little with wall temperature (< 1% for AT,,=100K) at operating conditions ranging
from idle to WOT. The influence of wall temperature on heat transfer is larger at idle and
part load than that of WOT. In addition, heat transfer per cycle is lower at high speed
because of the shorter cycle time. Thus, changing of the wall temperature has less effect
at high speed.

The sensitivity test shows that the heat transfer model and the overall analysis are
insensitive to reasonable changes in the wall temperature. Hence, an approximate estimate

of the wall temperature should be adequate.

4.4 Heat Transfer Calibration Constants
In the heat transfer model, two constants (c; and c;,) are included to calibrate the
effect of heat transfer on the overall analysis and to balance the dimensions. These two

constants are not physical quantities like wall temperature and may differ from engine to
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engine. Therefore, ¢; and c; are calibrated with actual firing engine data. c¢; and c; are to
be varied systematically frem 0.7 to 1.3. The set of ¢;, c; that gives the most consistent
value for the peak fraction burned at different conditions is then chosen.

Table 4-5 and Figure 4-2 summarize the results of our parametric study. The
results show that the combination of ¢;=1 and c,=1 gives more reasonable fraction burned
values than other combinations most of the time. This conclusion agrees with the study
done by Gatowski et al. in their original energy release analysis paper [2]. However,
contrary to Gatowski's study, my results suggest that the analysis is quite sensitive to ¢;
and c; especially at low speed. One possible source of differences could be the form of
the convective heat transfer coefficient (h;). In Gatwoski's paper, k. has a constant
coefficient of 131c; and the bore has an exponent of 0.2 whereas A has a coefficient of ¢,
and the bore is raised to a power of -0.2 in Woschni's correlation and the burn rate
analysis. It is not completely clear how Gatowski obtained his correlation. This difference
may also explain why Gatowski could vary ¢; from 0.75 to 2 and ¢; from 0 to 2 without

causing major error in the analysis results.

4.5 Swirl Ratio

In the characteristic speed term of the heat transfer model, the effect of charge
motion is included in the form of the mean swirl velocity. The swirl velocity is defined by
the swirl ratio which is inputted by the user of the analysis. In most modern engine, there
is some organized charge motion to enhance combustion speed; at the same time this
increases heat transfer. Therefore, the swirl ratio can be an important parameter in the
heat transfer model in the burn rate analysis. A sensitivity test was done to find out the
significance of swirl ratio.

The swirl ratio does have a physical meaning; however, it is not measured during
pressure data-acquisition. Thus, it is not always readily known by the user for data

analysis. In the semsitivity study, the swirl ratio was varied from 0.0 to 1.5 which
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corresponds to 4.4 m/s at 700 rpm and 37.7 m/s at 5000 rpm.

The results in Table 4-6 and Figure 4-3 show that the swirl ratio can have quite an
effect on the heat transfer and the fraction burned. Changing R,;,; from 0.0 to 0.75
increased the peak fraction burned by about 5% at low speed and part-throttle conditions
and about 2% at WOT. The effect R,;; shows the same trend as that of wall
temperature. It is more influential at low speed and load than at high speed and load
because of the smaller heat transfer effect at high end conditions. Due to its significance,
an accurate Rg,,;,; will increase the confidence level of the burn rate analysis. R, can

usually be estimated by past or practical experience.

4.6 Motoring Polytropic Constant

In the heat transfer model (Chapter 2.2.1), the motoring pressure, that is the
cylinder pressure without firing, is needed to determine the contribution of combustion to
the characteristic velocity, Eq. (2.14). The polytropic relation, pV”* = constant, is used te

estimate the motoring pressure (p,y,).

V:
Pm = Diyc ('%Q')n (4- 1)

Since there is no exact value of n, an arbitrarily chosen constant n within the reasonable
range would be used in the heat transfer model of the burn rate analysis. A sensitivity
check was done to make sure that this assumption is acceptable, that is, changes in n do
not cause big change in the burn rate analysis. Since n has the value of 1.3010.05 for
conventional fuels, it was varied from 1.25 to 1.35 during the sensitivity test.

Table 4-7 indicates that n,,,,,, has little, if any, effects on the heat transfer and the
peak fraction burned regardless of the operating conditions. Hence, using a constant

ny00r Would be adequate without leading to large error.
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4.7 Initial Mass

In the burn rate analysis, the initial mass of mixture inside the cylinder is
determined from the air mass flow rate, equivalence ratio, exhaust gas recirculation, and
residual fraction. However, during experiment, the air mass flow rate is usually measured
with a few percents of error due to the instruments and fluctuation of intake. In addition,
the equivalence ratio is not exact either because the precise composition of gasoline is not
known. The residual fraction is estimated by a model which can have an error of a few
percents. As a result, the initial mass can be as much as five percents different from the
exact mass inside the cylinder. Thus, a sensitivity check was done to see how significant
this error could be.

In the sensitivity test, the air mass flow rate was varied £5% from the measured
rate; thus inducing a difference of about £5% in total initial mass. Table 4-8 and Figures
4-4, 4-5 show that lowering and raising the initial mass by 5% can increase or decrease the
peak burned fraction by 5 to 7%. The effect of varying the initial mass is closed to linear.
Therefore, inaccuracy in the initial mass measurement can lead to a proportional error in
the burned fraction results. One should be careful when measuring parameters that are
directly related to the initial mass determination.

The peak fraction burned increases when the initial mass decreases because in
order to produce the measured pressure history with less fuel, more portion of the fuel will
have to be burned. The other side of this reasoning applies to increasing initial mass with

lower fraction burned.

4.8 Crevice Volume

Crevice volume is the important parameter in the crevice effect model (Chapter
2.2.2). The model assumes a single aggregated crevice, that is, the crevice volume used in
the calculations is the sum of all crevices in the chamber. The exact size of the total

crevice is usually not known. Thus, it is customary to assume the crevice volume to be a
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of the clearance volume.

The sensitivity check tested three crevice volume sizes: 0%, 1%, and 2% of the
clearance volume. Table 4-9 and Figure 4-6 show that the variations of crevice volume
has a minor effect on the mass fraction burned. Therefore, the assumption of constant
crevice volume at about 1% of the clearance volume [9] should not lead to any major
€rTor.

The effect of the different crevice volume is the most obvious at the point of peak
burning and near the end of combustion. At the point of peak burning, the pressure is high
which pushes unburned mixture into the crevice. A bigger crevice means more gas would
be pushed into the crevice and less gas left in the combustion chamber. Thus, a larger
crevice volume shows a high peak burning rate. On the other hands, near the end of
combustion, cylinder pressure drops and crevice gas returns to the chamber. A larger
crevice would mean more unburned gas returns to the chamber at the end of combustion.

That is why the burning rate is lower at end of combustion for larger crevice.
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Pinlet
[bar]
0.298

0.408

0.408

1.000

0.947

Table 4-5. Parametric study of heat transfer calibration constants.

Speed
[rpm]
700

1600

3200

1200

¢
1.01

1.01

1.01

1.18

1.17

File ID

39_41

6_1-1

6_2-1

41_11

41131
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cl

0.7
1.0

1.3

1.0
1.0
0.7
13

0.7
1.0
13
1.0
1.0
0.7
1.3
0.7
1.0
13
1.0
1.0
0.7
1.3

0.7
1.0
13
1.0
1.0
0.7
1.3

0.7
1.0
13
1.0
1.0
0.7
13

0.7
1.0
13
0.7
1.3
1.0
1.0

0.7
1.0
1.3
0.7
13

1.0

1.0

0.7
1.0
1.3
0.7
1.3
1.0
1.0

0.7
1.0
1.3
0.7
1.3
1.0
1.0

0.7
1.0
13
0.7
L3
1.0
1.0

Peak
fct. brn.
08116
0.8513
0.8989
0.8378
0.8639
0.8210
0.8816

09179
0.9765
1.0452
09545
0.9968
0.9326
1.0189

0.9387
0.9764
1.0213
0.9649
0.9870
0.9464
1.0074

1.0239
1.0555
1.0979
1.0410
1.0691
1.0332
1.0786

0.9448
0.9571
09716
0.9535
0.9606
0.9473
0.9670

Heat tir.
@EVO
0.0662
0.1074
0.1564
0.0935
0.1209
0.0760
0.1389

0.0852
0.1424
02111
0.1213
0.1626
0.1000
0.1848

0.0644
0.1029
0.1476
0.0918
0.1137
0.0722
0.1336

0.0794
0.1364
0.2061
0.1130
0.1587
0.0957
0.1770

0.0394
0.0617
0.0871
0.0562
0.0670
0.0433
0.0802
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Figure 4-1. Effects of wall temperature on peak fraction burned and heat transfer.
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CHAPTER § - RESULTS AND DISCUSSION

5.1 Analysis of Data

The burn rate analysis was then tested with pressure data taken from actual firing
engine. The conditions for these data were listed in Tables 4-1 and 4-2. This enables us
to see how the analysis behaves over the entire range of operation and how compatible the
analysis is with pressure data from different engines. These data were divided into three
groups: idle, part-load, and wide open throttle (WOT). Within each group, operating
parameters were changed to create different scenarios, for example, varying spark timing,
speed, and amount of EGR.  Analysis results from each group will be discussed in the
following sections. The expected value of the maximum mass fraction burned under
normal combustion conditions should be about 0.92 to 0.96. Complete combustion is not
achieved because there exist unburned fuel in the crevices, quench layers on the cylinder
walls, fuel absorption into the oil layer on cylinder liners, and combustion inefficiency.
Therefore, the expected peak fraction burned of 0.92-0.96 will be used to compare against
the calculated fraction burned from actual data.

5.1.1 Idie Cases

When operating at idle conditions, an engine produces just enough energy to
overcome the friction and pumping losses of itself and to sustain its operation. No extra
power is generated to carry load. In our analysis, three idle cases with different spark-
timings were tested. All three cases were operated at stoichiometric, 700 rpm, and inlet
pressure at about 0.3 bar, but with spark-timing of 6°, 20°, and 40° BTC.

The multiple-cycle plots of three idle cases are showed in Figures 5-1 to 5-3. The
summaries in Table 5-1 and Figure 5-4 indicate combustion in these idle cases did not
come close to complete burning. The closest value was given by the case of spark-timing
at 40° BTC, but the result also showed some partial-burned and misfired cycles. The
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multiple-cycle plots also show an irregular burning process with significant cycle-to-cycle
variations. These phenomena were expected because of the low load condition. The
existence of partial-burned and misfired cycles in the 40° BTC-spark-timing case could be
due to the advanced timing. Pressure was not high enough at spark to ignite the charge or
to sustain combustion ever after ignition leading, therefore, to partial-burned and misfired

cycles

5.1.2 Part Load Cases

An engine spends most of its time operating at part-load conditions when it is on
the road. Thus, a number of part-load data were taken at different conditions. Firstly, a
spark-sweep was done. Pressure data were taken at stoichiometric, 1600 rpm, and inlet
pressure at about 0.4 bar, but with spark-timing of 59, 200, and 30° BTC. Figures 5-5 to
5-7 show the fraction burned profiles for these cases. The results in Table 5-2 and Figure
5-8 show that the combustion process reaches reasonable level except at the extremely
retarded spark-timing (5° BTC). The multiple-cycle plots in Figures 5-5 and 5-6 show
that the burning processes are more regular with less cycle-to-cycle variation at part load
with logical spark-timings. At conditions with overly retarded spark-timing (5° BTC),
cycle-to-cycle variation becomes prominent again. Increasing irregularity is expected at
extreme conditions like this.

Then, data at two different loads at two speeds were analyzed. The operating
conditions for these two sets of data are: stoichiometric, inlet pressure of 0.4 bar and 0.7
bar at 1600 rpm, and 0.4 b=t and 0.65 bar at 3200 rpm. Figures 5-9 to 5-11 along with
Figure 5-5 show the fraction burned and burning rate of five consecutive cycles for each of
the conditions. The combined results are showed in Table 5-3 and Figure 5-12. At low
load, the two speeds gave almost identical peak burned fractions, but the 1600 rpm had a
slightly higher peak burned fraction at the higher load. Apart from the 1600 rpm high

load, all other conditions show consistent peak fraction burned. Since the engine was
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operated at part-load and MBT timing, cycle-to-cycle variations are less comparing to the
idle cases.

Two more part-load cases involving EGR were provided by Chrysler. Both data
were taken at 1600 rpm, stoichiometric, inlet pressure at 0.4 bar, MBT timing, and %EGR
at 0% and 5.4%. The focus is to see the effect of EGR on the analysis. The results are
showed in Table 5-4 and Figure 5-13. Both cases show reasonable level of fraction
burned. The small amount of EGR does not appear to affect the analysis a great deal.
The analysis should be able to handle data with moderate amount of EGR.

In addition to the Chrysler data, some part-load data were also taken from Fox [7]
of the Sloan Lab. (Chapter 4.2). These data were taken at conditions ranging from lean to
stoichiometric with speed at 900 or 3000 rpm. The burn rate analysis results are showed in
Table 5-5 and Figure 5-14. The peak fraction burned is consistently higher at 900 rpm
than that of 3000 rpm for both indolene and propane fuels. At the same speed, the
fraction burned is relatively stable across the range of equivalence ratios although partial-
burned cycles occur at low equivalence ratio (0.77). This is expected because the
extremely lean mixture may cause problem at ignition and combustion. The consistency
across the equivalence ratios shows that the burn rate analysis is adequate at different
equivalence ratios. The effects of engine speed on the analysis may require further studies.

The second set of part-load data taken by Fox included three different charge
motions: quiescent, swirl, and tumble. The fuel used was propane and the fuel-air ratio is
0.77. Results which are showed in Table 5-6 and Figure 5-15 display the similar trend as
the previous set. The peak fraction burned is higher at low speed than at high speed. All
fraction burned values at low speed are higher than 1.0. In terms of charge motion, the
fraction burned increases from quiescent motion to swirl to tumble.

Keep in mind that the data with different charge motions were taken with propane

fuel at very lean conditions. Comparing the Chrysler data to Sloan Lab. data, the Chrysler
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data gave much more reasonable and consistent fraction burned values. This may indicate

problems in the Sloan Lab. cylinder pressure data.

5.1.3 Wide Open Throttle Cases

After testing the analysis with idle and part-load data, WOT data from both
Chrysler and Sloan Lab. were analyzed. In a rcad engine, WOT is usually accompanied by
overfueling which means that the relative fuel-air ratio is rich (¢ > 1.0) to ensure maximum
power output. The Chrysler WOT data were taken at equivalence ratio of 1.17.

Figures 5-16 to 5-18 show the multiple-cycle burn rate profiles for three of the
Chrysler WOT cases. Table 5-7 and Figure 5-19 summarize the results of the WOT data
with engine speed varying from 1200 rpra to 6000 rpm. Figure 5-19 displays the same
trend that was observed with the pari-ioad data. Fraction burned is higher at low speed
than at high speed. However, in the part-load case, the fraction burned value reaches
normal at about 3000 rpm: whereas in the WOT case, the fraction burned wouild not fall
below 1.0 until 4000 rpm. Thus, there may be additional factors affecting the WOT
analysis.

One possibility is the thermal shock to the pressure transducer during pressure data
measurement. The engine runs hotter and at higher pressure at WOT than at part-load.
This higher temperature may cause drift to the transducer which leads to error in pressure
data. Aoéording to Chrysler engineers, transducer thermal effect could exist in their data.
The analysis of the Chrysler data also show a high level of cycle-to-cycle variations. The
fraction burned and buining rate profiles both show a great deal of irregularity which may
indicate noise in the pressure data. This could also contribute to error in the analysis.

The second set of WOT data were taken by Min [9] of the Sloan Lab. Instead of
using rich mixture like Chrysler data, the Sloan Lab. data were taken at near
stoichiometric conditions with speeds at 900 rpm, 1600 rpm, and 2500 rpm. Table 5-8
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and Figure 5-20 show the analysis results. The peak fraction burned at 900 rpm and 1600
rpm are both reasonable while the value at 2500 rpm is too low.

Since the Chrysler WOT results display an over-sensitivity to low speed, an
additional study was done to examine the influence the heat transfer model speed
exponent, m, in Eq. (2.13) has on the overall analysis. The Chrysler 4400 rpm WOT data
set was selected to be the baseline case because of its reasonable peak fraction burned. In
both Woschni's and Gatowski's works, m was set to be 0.8. In our study, m was changed
to 0.7 and 0.9. In order to keep the total heat transfer and fraction bum;:d to be constants
for the baseline case, the heat transfer calibration constant, ¢;, was adjusted at the same
time. The new combinations of m and c; were then used to analyze the 1200 rpm WOT
data. Table 5-9 shows the combinations of m and c; used, and the results. The new speed
exponent exhibits little effect on the fraction burned (<0.5%). This led us to conclude that
the decrease of peak fraction burned from above 1.0 at low speed to below 1.0 at high
speed is not r«imarily caused by the speed component in the heat transfer model.

Since the parameters in the analysis were unable to account for the discrepancies
between the calculated and expected results, the quality of pressure data became a
question. A sensitivity test was done to investigate the effects of uncertainty in pressure
measurement on the burn rate analysis. Three cases were chosen for the test: one at part-
load condition and two at WOT conditions. The original pressure data of these cases
were scaled up and down by 5% to see the changes in the peak fraction burned results.
Table 5-10 and Figure 5-21 summarize the outcome of the test. The burn rate analysis
forms an almost one-to-one relation with the scaling. A change of 5% on the pressure
data leads to a 5% - 6% variation in the peak fraction burned. Hence, the burn rate
analysis is sensitive to errors in the pressure measurements. Errors in pressure data are
potentially larger at WOT conditions than at moderate conditions due to the higher
pressure transducer thermal loading. Therefore, the discrepancy in the analysis results of

some of the cases could come from errors in the pressure data.
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The table below summaries the sensitivity of the burn rate predictions to the key

parameters:
Parameters Changes to Resulting changes
parameters to peak fct. burned
wall temperature +S0K F 0.5%
swirl ratio 0-0.75 + 2% - 5%
heat tfr. const., c1 +30% (c2=const) + 1% - 4%
heat tfr. const., c2 +30% (cl=const) + 1% - 2%
crevice volume +1% of clear. vol. + 0.5% - 1%
motoring poly. const.  1.30+0.05 * <1%
initial mass +5% F 4% - 6%
heat tfr. exponent 0.8+0.1 + <1%
inaccuracy in pressure  +5% t 5% - 6%

Fable 5-11. Summary of sensitivity of burn rate predictions to key parameters.

5.2 Results of Other Pressure-Related Calculations

In addition to the standard burn profile results, the analysis also incorporates
several other pressure-related computations that were described in Chapter 3. Table 5-12
summaries some of the results obtained from the Chrysler data. The outcomes of these
calculations suggest that there is a correlation between these results and the quality of the
pressure data. For example, the data sets that give unusually large polytropic constants
(>1.33) also have abnormal burning profiles or unexpected peak fraction burned. The
average exhaust pressure for some of the WOT conditions are too low which suggest
there is problem with the pressure measurement. Therefore, these calculations not only
provide information about the combustion process but also serve as a check on the quality

of the pressure measurements.
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5.3 Summary and Conclusions

The motivation for this work was to develop and implement a robust and flexible
burn rate analysis to replace the earlier Rassweiler and Withrow model for practical use in
the industry. Based on the energy release approach, the overall burn rate analysis is
comprised of several sub-models to account for the individual effect inside the combustion
chamber which includes heat transfer, crevice, and residual gas fraction. Each of these
sub-models was assessed and recalibrated, if needed. In addition, one of the major
parameter used in the burn rate calculation, the ratio of specific heats, Y, was determined
by matching the one-zone analysis to a more accurate two-zone simulation. The results of
this matching process were shown to be satisfactory. Therefore, a number of ¥s were
generated at various initial burned gas fractions, equivalence ratios ranging from lean to
rich, and fuel types including iso-octane, propane, methanol, and methanol-gasoline
mixtures.

In order to make the analysis more complete for all users, additional pressure-
related computations are included into the package. The complete burn rate analysis was
implemented on PC based computers. Since the code used were FORTRAN 77, it could
be transferred to other computing platforms without many alterations. Because of the
simplicity of the one-zone model and the speed of modern computers, the program can
analyze several hundreds continuous cycles in a minute. Its speed and flexibility should
also allow the analysis to be directly connected to the data-acquisition systems for
immediate post-processing of pressure data..

The conclusions of this work may be stated as follow:

1. The energy-release based burn rate analysis can provide more information about the
combustion process. It includes the standard burn profile parameters, identifies partial

burns, misfires, quantifies heat transfer, and crevice effects.
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2. When used with pressure data at moderate engine operating conditions at which road
engines operate most of the time, the burn rate analysis predicts burn profiles and
maximum mass fraction burned which agree well with expected values.

3. The sensitivities of the burn rate predictions to some of the key parameters have been
identified. The most important parameters are initial mass, accuracy of pressure data,
and the swirl ratio. The heat transfer model variables are less significant. Less
important still are the crevice volume, wall temperature and the motoring polytropic
constant.

4. When the model predictions show discrepancy between the calculated peak mass
fraction burned and the expected value of this parameter, the problems are most likely
to be caused by inaccuracies with the cylinder pressure. The quality of pressure data
appears to be worst at WOT possibly due to the high thermal loading on the pressure

transducer.
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Figure 5-1. Mulitple-cycle burn rate plot for idle data 39_11,
P;=0.3 bar, 700 rpm, ¢=1.0, 6°BTC spark, indolene.
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Figure 5-2. Mulitple-cycle bum rate plot for idle data 39_41,

Pin=0.3 bar, 700 rpm, ¢=1.0, 20°BTC spark, indolene.
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Figure §-3. Mulitple-cycle burn rate plot for idle data 39_81,
P;=0.3 bar, 700 rpm, ¢=1.0, 40°BTC spark, indolene.
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Figure 5-4. Result of Chrysler idie conditions as a fanction of spark-timing,
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Figure 5-5. Multiple-cycle burn rate plot for part-load data 6_1-1,
P;=0.4 bar, 1600 rpm, ¢=1.0, 30°BTC spark, indolene.
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Figure 5-6. Multiple-cycle burn rate plot for part-load data 6_3-1,
P;;=0.4 bar, 1600 rpm, ¢=1.0, 20°BTC spark, indolene.
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Figure 5-7. Multiple-cycle burn rate plot for part-load data 6_4-1,
Pip=0.5 bar, 1600 rpm, ¢=1.0, S°BTC spark, indolene.
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Figure 5-8. Result of Chrysler part-load conditions as a function of spark-timing.
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Figure 5-10. Multiple-cycle burn rate plot for part-load data 6_2-1,
P;jp=0.4 bar, 3200 rpm, ¢=1.0, 39°BTC spark, indolene.

85



MASS FRACTION BURNED

MASS BURNING RATE [1/deg]

1.0

0.8

0.6

0.4

0.2

IIIIIIIlllllllll_lllllllllllll

0-06 1 i 1 ] I 1 ] i I l LI 4 [
0.04

0.02

-0.02

llllllllllll!lllllllllll

_0'04 ! 1 1 1 ' 1 L | 1 ' L 1 1 1

0 50
CRANK ANGLE [deg]

Figure 5-11. Multiple-cycle burn rate plot for part-load data 6_6-1,
P;n=0.6 bar, 3200 rpm, ¢=1.0, 33°BTC spark, indolene.
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Figure 5-12. Result of Chrysler part-load conditions as a function of load.
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Figure 5-13. Result of Chrysler part-load conditions as a function of EGR%.
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Figure 5-14. Result of Sloan Lab. part-load conditions as a function of equivalence ratio.
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Figure 5-15. Result of Sloan Lab. part-load conditions as a function of charge motion.
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