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Abstract

This thesis presents the first ab initio calculation of the Si(111)-(7x7) surface reconstruction,
perhaps the most complex and widely studied surface of a salid. The large number of atoms
in the unit cell has up to now defied any complete and realistic treatment of its properties. In
this thesis, we exploit the power of massively parallel computation to investigate the surface
reconstruction with a supercell geometry containing 700 effective atoms. These calculations
predict the fully relaxed atomic geometry of this system; allow construction of theoretical
STM images as a function of bias voltages; and predict the energy difference between
the (7x7) and (2x1) reconstructions. The diversity of dangling bond sites on the (7x7)
surface provides an optimal system for investigating chemical reactivity. A detailed study
of the electronic surface states is presented, showing that the interpretation of the surface
chemical reactivity in terms of newly developed theories of local softness is consistent with
chemisorption experiments. We conclude with predictions of results for surface reactions
involving a large variety of atoms and molecules. The method of computing electronic
structure on a massively parallel computer is fully described, including a discussion of how
the calculations would be improved through implementation on a more modern parallel
computer. The results demonstrate that the state of the art in ab initio quantum-mechanical
computation of electronic structure has been raised to a new echelon as the study of systems
involving thousands of atoms is now possible.

Thesis Supervisor: John D. Joa.n"ilopoulos
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Chapter 1

Introduction

The (7x7) reconstruction of Si(111) is perhaps the most complex and widely studied surface
of a solid. Since its discovery through low-energy electron diffraction more than thirty years
ago, an enoruous amount of effort has been expended to elucidate the properties of this
important surface. Based on this work, it is now generally accepted that the geometry of
the (7x7) reconstruction is described by a dimer-adatom-stacking fault (DAS) mbdel as
proposed by Takayanagi et al. The complexity of this geometry, however, has defied any
complete and realistic theoretical treatment of its properties. The only progress that could
be made theoretically was by isolating and modelling bits and pieces of the surface. The
only attempt at a complete work nas been using an empirical tight binding model to study
the Si(111)-(7x7) reconstruction in a supercell geometry with 196 atoms. In this thesis,
we exploit the power of the state of the art in parallel computation to demonstrate the
feasibility of performing ab initio calculations with supercells approaching one thousand
atoms. Specifically, we have performed the first ab initio calculation of the Si(111)-(7x7)

reconstruction using a supercell geometry with 700 effective atoms.
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By applying the tool of massively parallel computation to electronic structure calcula-
tions, it is possible to investigate many aspects of the Si(111)-(7x7) reconstruction. The
energy per surface atom is a crucial starting point. It is known experimentally that the
(111) surface of silicon cleaves into a metastable (2x1) phase. It is only through annealing
at 600 degrees Kelvin that the surface reconstructs into the complicated (7x7) phase. The
energy difference per surface atom between these two phases must be very small. Comput-
ing this energy difference is a good test of the accuracy of the pseudopotential theory and

its computational implementation.

Having verified the fundamental accuracy of computation, it is possible to use the com-
puted wave function to determine forces on atoms. At the time the investigation described
in this thesis was begun, the general structure of the (7x7) reconstruction was known, but
uncertainties in the position of any atom in the system were on the order of 0.5 Angstroms.
We began our investigation of the system by placing atoms in approximately correct posi-
tions guessed from the lattice geometry of bulk silicon. By continuing to iteratively compute
forces on atoms, relax atoms in response to forces and update the wave function until equi-
librium is achieved, the ionic positions were determined with roughly an order of magnitude

more accuracy, ~ 05A.

While accurate knowledge of the coordinates of the atoms near the silicon surface is
valuable for comparing various experimental and empirical techniques previously applied to
the problem, it is crucial for resolving an unsolved controversy related to the interaction of
the Si(111) surface with Scanning Tunneling Microscopy (STM) probes. STM is a recently
discovered technique for imaging individual surface atoms by measuring the atomic-scale

deflection of an electrically biased metal probe as it is moved across the surface of a spec-
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imen. The Si(111) surface is probably the most well-known STM image because of the
complexity of its structure and the esthetically pleasing pattern arising from the large hor-
izontal separation of adatoms on the surface, roughly twice the normal separation of atoms
in bulk silicon. What is unexplained about theses images, however, is why one side of the
(7x7) unit cell appears significantly higher than the other. Since STM signals are sensitive
both to heights of surface atoms and the amount of electronic charge on surface atoms, it
is difficult to experimentally separate the two contributions. Accurate knowledge of the
surface electronic wave function is necessary to determine whether the Si(111) surface is
structurally asymmetric or whether a mass redistribution of electronic charge causes the

effect.

This thesis will address issues related to the electronic surface states in detail, including
the STM asymmetry about the short diagonal of the unit cell. By comparison to STM
experiment, it is possible to characterize the performance of contemporary STM probes.
While the horizonal resolution of STM probes is well-established through comparison with
X-ray data, the ability of STM to image complicated three-dimensional structures varying on
a sub-nanometer length scale is largely unknown because no other experimental technique
has this capability to work at this experimentally small length scale. This same length
gca.le is actually large for theory. No first-principles theoretical calculations have been
performed at this length scale because of the computational difficulties until now. By
comparing theory to experiment for the deep corner hole of the Si(111) surface unit cell,
it is possible to determine how accurately STM can characterize three-dimensional sub-
nanometer structures. This iscue has technological ramifications as many countries are now

researching sub-nanometer electronic devices.
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While bulk silicon is an electronic semiconductor with a gap at the Fermi energy, a
cleaved silicon surface can be metallic, since the broken bonds can contribute free electrons
to the surface layer. As a result, silicon surfaces can be highly reactive and prone to interact
and bond with any impurities present in the vacuum system used for semiconductor process-
ing or experimental investigation. Within the past five years, it is possible to electronically
image impurities on the Si(111) surface using STM. The results of these investigations show
that various impurities exhibit strong preferences regarding which of the different dangling
bond sites on the Si(111) surface favor chemisorption. This picture is complicated because
impurities with different electronegativities and chemical hardnesses prefer different surface
bonding sites. Traditional first-order theories of chemisorption do not apply to the silicon

surface because each bonding site consists of a silicon atom with the same eletronegativity.

The chemical behavior of Si(111) can only be explained through a second-order chemisorp-
tion theory which distinguishes the subtle differences between the nineteen closely related
yet distinct bonding sites. This thesis presents a calculation of the local softness and charge
capacity of each bonding site on the surface. The results will show that charge capacity
accurately explains the one-reactant chemisorption experiments performed to date. Our
local softness calculations also suggest reinterpretations of multi-reactant chemisorption ex-
periments that have been reported before our theoretical picture emerged. Having demon-
strated the accuracy and utility of chemical softness analysis for this system, we conclude
with a prediction of how many reactants will behave on silicon surfaces without resorting

to expensive experiments or first-principles calculations.

The chapters of this thesis are organized in a logical progression starting from general as-

pects of parallel computing through a detailed discussion of the specific physical results that
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were obtained for the (7x7) system. Chapter 2 presents a survey of concurrent computer
technology written from the perspective of an industrial practitioner rather than a com-
puter scientist. It shows what tools are currently available for scientific computation with
emphasis on the massively parallel technology used to investigate Si(111). We also discuss
how more advanced computer architectures would facilitate the study of more complicated

material systems.

Chapter 3 describes how a typical implementation of the Car-Parrinello algorithm used
by dozens of electronic structure theorists was modified to run on a massively parallel
computer. The details regarding performance and bottlenecks for various sizes and types

of material systems are discussed.

Chapter 4 presents the new physical results for the Si(111)-(7x7) surface reconstruc-
tion. Having obtained the wave function and relaxed ionic coordinates for this system,
the surface energy, structural properties and electronic states follow directly. These results
are presented and compared with previous theory and experiment whenever previous data
exists. New results are presented for the details of electronic states, particularly below the

surface adatom layer where experimental investigation is difficult.

The diversity of dangling bond sites on the (7x7) surface provides an optimal system for
investigating chemical reactivity. The different reactive sites on this surface are identical to
first order in terms of classical electronegativity analysis and yet exhibit distinctly different
cheﬁﬁcd behavior. A detailed study of the chemical physics is presented in Chapter 5, show-
ing that the interpretation of the surface chemical reactivity in terms of newly developed
theories of local softness is consistent with chemisorption experiments. The complexity of

the (7x7) surface reconstruction provides a strong test of higher-order terms in expansions
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of the chemical potential within the local density approximation. Predictions of surface
chemisorption with respect to reactants which have not yet been experimentally tested are

presented.

The calculations presented thus far in the thesis were performed within the context
of the Local Density Approximation, a one-electron approximation to the true many-body
wave function of an electronic system. A brief review of alternative methods for more accu-
rate electronic structure calculations is the subject of chapter 6, including a new stochastic
method for computing the wave function of many-fermion systems. The more exact tech-
niques are limited to problems involving two or three electrons. As this thesis shows, it is
remarkable that the Local Density Approximation can successfully analyze systems involv-

ing thousands of electrons using the one-electron approximation.

This 7x7 study shows what is now possible with massively parallel computing. The
unprecedented complexity of the material system under investigation allowed us to resolve
outstanding questions involving the electronic structure of nanometer-scale systems of cur-
rent technological interest, including chemical, structural and electronic properties as they
relate to a variety of experimental probes and theoretical techniques. Popularized accounts
of some of our results (1] appeared in Science [2] and Physics World [3]. But the hardware is
already obsolete and the algorithm is obsolescent. Current parallel hardware, including the
CM-5 [4], and more advanced electronic structure algorithms 5], including those designed
speciﬁcally for parallel computation should greatly boost performance. The uniformity
and extensibility of massively parallel architectures means that larger machines should be

forthcoming, resulting in still more exciting scientific results in the future.
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Chapter 2

Parallelism in Scientific Hardware
and Software: Real and Apparent
Concurrency

One of the more subtle questions raised in this report is not related to how-one works with
large numbers of atoms using ab initio quantum-mechanical techniques. Rather, it is why it
has taken so long for supercomputers other than vector-pipelined architectures to be useful
in high-performance computation. Answering this question requires some understanding of
computer architecture including the limitatim;s of contemporary digital circuit technology.
Before addressing algorithmic implementation and physical results in subsequent chapters,
we'll spend this chapter considering what kind of hardware makes a computer fast and
how one uses software to exploit the speed. In addition to providing clues for effective use
of existing parallel supercoﬁputers, a knowledge of computer hardware enables scientific
programmers to anticipate what sorts of architectures should be available soon for even

more advanced calculations.

When designing a faster computer, an architect uses two non-exclusive approaches.
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One is to select fast circuit technology so that the computer executes digital operations at
a relatively high clock frequency. The advantage of this approach is its relative simplicity
in terms of parts count and communication requirements. The disadvantage is that fast
components tend to be more expensive, more difficult to cool and less dense in terms of
gates per integrated circuit package. As a result, computers using fast circuit technology
tend to cost more, dissipate more heat and occupy more space than otherwise equivalent

counterparts.

There is a second way to speed up computers even with a fixed operating speed for indi-
vidual components. This option is parallelism. In thec coniext of computation, parallelism
is simply defined as doing more than one thing at a time. There are many different ways
of designing parallelism into a computer architecture. Most methods of parallel execution
in computers do not involve performing identical operations simultaneously so perhaps a

more general word is concurrency.

All computers expioit hardware concurrency to differing extents. In many cases the
concurrency is so efficiently designed that users take advantage of it transparently. In the
domain of high performance computation, this is rarely the case. Effective use of new and

advanced computer architectures requires understanding concurrent hardware and how to

use it.

2.1 Concurrent Hardware

Concurrency in computation is not a new idea. It seems to have occurred, in one form

or another, to nearly all the pioneers of computing from the earliest times [6]. However

18



most of the good ideas could not be implemented in the past due to hardware limitations.
While this is still a problem, modern integrated circuits offer an unprecedented freedom
for implementing advanced computer designs. Figure 2.1 shows that the device density
of integrated circuit components has rapidly increased over three decades [7]. However, it
is only since about 1975 or 1980 that devices with functionality comparable to an 8-bit
microprocessor could be designed into a single integrated circuit package. Many forms of

concurrency require complexity well beyond this scale.

The idea of parallelism appeared almost as soon as the first computer hardware [6].
In the 1830’s, Charles Babbage designed the Analytical Engine, one of the first computers
capable of automatic multistep calculation. Although Babbage never mentions parallelism
in his writing, the possibility is mentioned explicitly by Menabrea, one of his colleagues,
following a discussion with Babbage. In the Bibliothéque Universelle de Genéve, one can

read an account of this machine by Menabrea[8]:

D’ailleurs, lorsque I’on devra faire une longue série de calculs identiques, comme
ceux qu’exige la formation de tables numériques, on pourra mettre en jeu la
machine de maniére & donner plusiers résultats 4 la fois, ce qui abrégera de

beaucoup l’ensemble des opérations.

A modern computer incorporates many levels of functionality where concurrency can

be used. We categorize them as follows:

1. within functional units

2. within processing elements
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Figure 2.1: Integrated circuit complexity vs. time.
3. within uniprocessors

4. many-processor systems

It is important to understand some of the opportunities for designing concurrency into each

level, especially the forms of concurrency used in high-performance scientific computers.

Within functional units. Logical and arithmetic operations can be applied to operands
in a bit-serial mode or to whole operands concurrently. Figure 2.2 compares circuits using
bit-serial and bit-parallel operations [9]. The major difference is that a bit-parallel com-
puter requires wide, generally 16, 32, 48 or 64-bit data paths. Less obvious is the complexity
of the carry look-ahead circuitry and pipelining necessary to perform operations ranging
from integer addition to floating point multiplication and addition in bit-parallel modes.
However, these functions have been designed for decades and are now available as standard

IC components or macrocell libraries for VLSI circuit design. The main cost of parallelism
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Figure 2.2: Parallelism within functional units.

at the bit level is the increased gate count to apply operations to bit-parallel operands
and increased pin count on IC packages to connect the wider data paths between different
devices. The main benefit is an acceleration of computer oper.;a.tions by at least a factor
of b/n, where b is the number of bits in the operand and = is the number of clock cycles

required to apply to operation concurrently to every bit in the operand.

Within processing elements. The discussion of concurrency with a single functional
unit ended with the statement that the speedup is at least a factor of b/n. A speedup by a
factor of b can be obtained by using concurrency within a single processing element in the
form of pipelining. In many computational processes the total process can be partitioned
into a number of discrete steps or segments. Figure 2.3 shows schematically the difference
between some unsegmented process P and the same process separated into six sequential
segments. There is no reason why the total time T for an unsegmented process P should

differ from the sum of the separate segment times ¢, + t3 + 3 + t4 + t5 + ts. The idea
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Figure 2.3: A process P in unsegmented form and pipelined form.

of pipelining is simply that if all the segments S are implemented by physically separate
subunits, then they can operate together, and several prcesses may proceed concurrently in
an overlapped fashion. Figure 2.3 represents thus a processing pipe in which there may be

up to six concurrent processes P at any given instaiit.

A very important example of pipelined concurrency within a functional unit occurs in a
pipelined floating point arithmetic logic unit (ALU). A functional block diagram of a typical
ALU is shown in figure 2.4. The concurrent segments break down as follows:

51 Move input operands to the input registers
S§2 Subtract the exponents

S3  Shift the smaller operand’s mantissa to align
Sy Add the aligned mantissas

Ss Normalize the result

S¢ Move the result to the output register

If two long vectors are to be added together as a = b + ¢ with this pipelined adder,

the timing is as shown in the right column of the figure. When element a; is written to
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Figure 2.4: Pipelined concurrency within a floating point adder.

the output register, element a;,5 is written to the input register. It takes six clock cycles,
the pipeline latency, for each input operand to generate an output from the pipe. However,
outputs appear every clock cycle as long as the pipeline is kept full. Whenever the number
of elements N in each vector is much larger than the pipeline latency, this pipelined device

speeds up processing by a factor of six compared to a similar non-pipelined functional unit.

Referring back to the example of bit-serial arithmetic, some number b of microinstruction
cycles are required within units like the adder in figure 2.4. It is possible to further speed
the processing by pipelining the adder so that up to b operands are processed concurrently
through the ALU microsequence. The cost of this concurrency is a longer pipeline latency

and more registers for clocking intermediate adder stages.

Within uniprocessors. It is generally possible to find several independent tasks that
can be performed concurrently by different functional units within a uniprocessor. There

are two important examples of concurrency within uniprocessors. The first is known as
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Figure 2.5: Partition of a uniprocessor into a controller, memory and adder.

instruction pre-fetch. Every uniprocessor can be partitioned into the three modules shown
in figure 2.5. The controller must fetch instructions from program memory and set up the
processing unit to execute the instruction on appropriate data elements stored in memory.
During the time while the processing unit is executing instruction i,, the controller can
fetch an instruction i, i, where m is the length of the instruction pipeline. This technique
minimizes the amount of overhead time required to set up the processing unit for rxecution.

Instruction pre-fetch is discussed in great detail in reference [10].

Instruction pre-fetching is particularly important in vector-processing architectures where
the -omplexity of the different functional units may require numerous clock cycles to initial-
ize a given instruction. Long instruction overhead times will otherwise destroy performance

during programs with short vector lengths.

Vector-oriented architectures generally include more specialized processing units within

the uniprocessor. Consider, for example the functional block diagram of the Convex C120
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Figure 2.6: The Convex C120 functional block diagram.

supercomputer shown in figure 2.6 taken from reference [1i]. The main functional units
are for instruction processing, vector-pipelined arithmetic, scalar arithmetic and address
translation. The address translation unit computes addresses of each input and output
operand for the vector pipeline. Understanding its function is best done by looking at a

typical vector operation. A conventional matrix multiplication, for example

N-1
a;; = Z bjkcki (2.1)

=0

is written in a scalar programming language such as C in figure 2.7.

The C programming language was chosen because it maps closely into uniprocessor
assembly language, providing a detailed description of the hardware operations necessary
to multiply matrices. The program ravels all matrices into one-dimensional arrays to ac-
celerate the address arithmetic, as any good optimizng compiler would try to do. From
the large number of lines in the program relative to the single multiply operator in the

code, we see that a uniprocessor must serially execute a sequence of instructions to do
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matrix_multiply(b, c, a, bcol, brow, crow) /+* A <~ B * C %/
float b[], c[], all;/* input matrices written as 1-d arrays for speed */

short bcol, brow, crow; /* matrix dimensions */
{

short i, j, k; /* indices */

float sum; /* accumulator */

float *bptr, *ptr;/* pointers used to accelerate address arithmetic */
float *resetb, *resetc;

resetb = b; /* initialize pointers to beginning of matrices */
resetc = c;
for(i=0; i<bcol; i++) {

for(k=0; k<crow; k++) {

bptr = resetb; /* repeat the left mairix B */
Cptr = resetc++; /* move to next column in C */
sum = 0;

/% INNER LOOP: if j = B’s rowlength, branch */
for(j=0; j<brow; j++) {
sum += (*bptr++) * (*cptr); /* arithmetic function */
cptr += crow; /* increment C pointer to move down column */
} /* branch back */
*a++ = sum; /* update result and increment A pointer */
}
resetb += brow;
resetc = c;

}

Figure 2.7: Matrix multiplication program in a serial programming language.
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the matrix multjplication. The three for loops are compiled into machine instructions to
reset, increment and test counters to determine when to branch in each loop. All of the
other lines except two perform address arithmetic to fetch and store matrix elements. The
sum=0 line initializes the pipelined ALU by clearing the accumulator. Exactly one line, sum
+= (*bptr++)*(*cptr) does useful floating point arithmetic. Without a separate address
arithmetic unit to compute new input and output operand addresses such as cptr += crow,
the arithmetic unit would constantly alternate between computing floating point data and' !
integer address arithmetic. Since these two operations are functionally independent, it is
possible to dedicate a address generation unit to concurrently execute the address arith-
metic, with the floating point pipeline allocated exclusively for floating point operations.
While the address and floating point units execute concurrently, the control functions such
as for(j=0; j<brow; j++) are processed in the instruction processor and scalar arithmetic
unit. Thus concurrency allows a relatively simple supercomputing architecture to execute
multiple address computations to fetch operands, a decrement, test and branch to deter-
mine loop limits in the time required for a single floating point operation. This type of
concurrency is necessary so that the matrix multiplication is driven by the memory access
rate and floating point multiply/accumulate rate rather than the time required to serially

execute the control instructions and address arithmetic specified in the C program.

With this description of a simple vector-pipelined architecture, we have now summarized
every type of concurrency that has been used in electronic structure calculations prior o
the results in this thesis. Reference [12] aescribes a much more complicated supercomputer
system designed along the same types of concurrency, the Cray-1. It is an important
example because computers in the Cray or IBM 3090 performance class are generally nsed for

research-level problems in electronic structure. Recently, more advanced levels of parallelism
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Figure 2.8: SIMD architecture.

have become available to go beyond the performance possible with the vector-pipelined

approach.

Many-processor systems. This category of concurrency describes systems where a
computer contains several processors, often sharing a single memory with some means of
intercommuhication. There is a great difference between computers where all processors
are identical and operate in lockstep and where they differ. A commonly used taxonomy
was introducted by Flynn [13]. According to Flynn, many-processor systems are divided
into two broad categories, those which corcurrently execute the same instruction in every
processor on different data (Single-Instruction, Multiple-Data or SIMD) and those which
concurrently execute different instructions on different data (Multiple-Instruction, Multiple-

Data or MIMD).

The earliest massively parallel computers fall into the SIMD category. A tvpical SIMD

architecture known as a processor array is shown in figure 2.8. SIMD architectures typically
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employ a central control unit, multiple processors and an inteconnection network for either

processor-to-processor or processor-tc-memory communications [14].

The first published idea of using regular arrays of processors to obtain high throughput
appears to go back to Unger in 1958 [15]. He described a processor array designed for
pattern recognition. Each node was a single-bit processor that performed logical xor and
and functions between six bits of memory and a single-bit accumulator. Each node required
about forty transistors. Each processing node was connected to its four nearest neighbors.
This paper is 2 remarkable prediction of the processor array connectivity of subsequent
massively parallel machines, including the Connection Machine CM-2. It also predicts the
important role of monolithic digital integrated circuit technology in building a machine with

so many identical components.

The Illiac IV was the first processor array to actually be built [16]. It comprised an 8x8
array of 64-bit floating point processors. With a 13 MHz clock, the maximum processing
speed was 15 MFLOPS. An Illiac IV block diagram is shown is figure 2.9 [17]. The central
control unit interprets instructions as in a conventional computer. The processor array
simultaneously executes array-oriented commands whenever they can be scheduled. The
processors are each connected to private memory and are interconnected by a communica-
tions network. In this system, a single, identical instruction will simultaneously execute on
multiple data streams. Processing elements in each array are connected to their four near-
est neighbors, the same topology suggested by Unger [15]. The control unit must control
the processor array in addition to executing all of the data processing functions found in a

standard uniprocessor.
Only one Illiac IV was built. It was tested on a wide variety of applications [18],
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Figure 2.9: Illiac IV functional block diagram.

spawning much research into algorithms for parallel computers. In these respects it laid the
groundwork for the current generation of parallel machines, which shares some of the same
limitations. For example, the operating system software is similar to Connection Machine
CM-2 in that one user attaches to the machine, uses it exclusively and then releases to the

next user in the queue.

The main limitations of the architecture are overhead latency time for initialization of
the processor array instructions by the control unit and limited inter-processor communica-
tion bandwidth. A long setup latency means that the processor will only efficiently execute
programs where most of the processing operations apply to long vectors. Otherwise, the
execution time is driven by the amount of time spent by the control processor executing
data processing parts of the code and the time spent initializing the massively parallel array

for relatively short vector instructions.

However, the principal difficulty of the Illiac IV was not the aggregate processor power
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available, but that it was difficult to get the required operands in and out of the processing
elements fast enough. There is only one channel between the control processor and its 64
slave processors. Transfer of data to all 64 processors must be performed serially over this
channel at rates governed by the speed of the serial processor. Each processing element
has direct access only to its corresponding 4096-word memory. As long as operations can
be performed in the PE memories, concurrency is obtained and the system throughput is
relatively high. Whenver processors must communicate, either among each other or to fetch
more data from the control processor, the throughput drops to uniprocessor rates. In this
sense, the concurrency of the massively parallel architecture is merely apparent, because

the memory-processor bottleneck resulted in an unbalanced design.

A typical illustration of the severity of this bottleneck can be found in reference [19],
a comparision of a vector-pipelined computer similar to figure 2.6 with the llliac IV done
in 1976. Both processors ran at a similar clock rate, so the major difference was the
comparision of massive parallelism with a single vector-pipelined architecture. The test
problem was taken from naval underwater surveillance: compute the coherence function [20]

between two sonobuoy sensors

| R e XY ()2
(k1 XeX2) (2R Ya()Yi ()

12,(7,60) = (22)

This calculation is more parallel than the typical electronic structure calculation, con-
sisting of dot products and the Fast Fourier transform. It is applied repetitively to data
sets differing only in time delay 7. Despite its 64 parallel processors, the Illiac IV was
actually a factor of five times slower than the vector-pipelined machine. The reason was the
memory-processor bottleneck and the significant overhead in the control processor - proces-

sor array interface. The 64 parallel processors constitute an apparent concurrency whenver
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they sit idle waiting for initialization from the control unit. Moreover, the vector-pipelined
computer fit in a single 19-inch equipment rack suitable for installation on an aircraft or
submarine, while the Illiac IV occupied an entire room. This example shows the perils of
taking concurrency too far and the difficulties in making massively parallel computation

live up to its potential.

The second type of concurrency among maultiple processors, the MIMD architecture,
goes beyond the SIMD approach in complexity in the sense that one may now assign com-
pletely different programs to different computers interconnected according to some commu-
nications network. A review of various MIMD connectivities may be found in [14]. While
the MIMD approach is still new to scientific computation, it has been explored in signal

processing for at least a decade.

The programming issue is one of partitioning. The algorithm must be divided into
several individual subtasks. The representation of the partitioned algorithm is invariably
a graph, usuaily similar to a signal processing flow graph [21], although oftentimes at a
higher level than the multiplies and adds common to many signal flow graphs from the
1970’s. The objective is to construct the graph with a sufficient number of nodes to .spread
across a MIMD architecture, with the nodes chosen to minimize inter-node commuﬁication.
This technique is commonly applied in the real-time signal processing community. A sonar
example is shown in figure 2.10 [22]. In this example, the following subroutines must be

executed:

Prefilter Hilbert transform data from real to complex.

AGC - Compensate long term variation in input level
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Octave Filter - Separate data into octave bands

Spectrum Analyze - Separate octave bands into narrow band channels

Linear Detect - Compute magnitude of narrow band channels

Short Term Integrate - Slow outputs of higher octaves to rate of lowest octave
Long Term Integrate - Apply additional smoothing to narrowband detected data
Noise Mean Estimation - Establish background level

Threshold - Separate signals from background

Format - Pack data for transmission to display

In the figure, each module is assigned one or more nodes on the grapli, with lines connecting
nodes that must transfer data. When a module is assigned to more than one node, the user
expects that module to run concurrenly en multiple nodes in SIMD fashion. In this example,
three nodes execute Input, Prefilter, and AGC in a MIMD pipeline. At this point data is
passed to three Octave-Spectrum Analyze-Linear Detect pipelines which form a SIMD
node cluster within the overall MIMD architecture. The back-end processing is once again

MIMD with one node per processor.

The crucial issues in getting an algorithm to run effectively on a MIMD computer
involve balancing processing and minimizing communication. Each node on the graph must
perform close to the same amount of computation, since the most time-consuming node
will be the gating element on system throughput. Thus algoritams which are partitionable
into a large number of graph nodes will run faster than those which are not. However,

the number of graph nodes is limited by the communication capacity of the bus network
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Figure 2.10: Sonar application graph for MIMD architecture.

connecting the processors. It does no good to minimize the amount of computation time in
each node if the resulting graph raises communication levels to the point where nodes must

sit idle waiting for a bus before communicating to other nodes.

Figure 2.11 shows an example of MIMD hardware partitioned for a real-time signal
processing application [23]. The top diagram shows a set of identical uniprocessor nodes
communicating over a global bus. The bottom diagram shows how communication is routed
among the processors for a specific application in speech recognition. This particular exam-
ple shows an apparent concurrency in the sense that while the mapping implies that ded-
icated communication channels exist, the actual communication will be done serially over
a single shared bus. Markov calculations by the author[24] have shown that this shared-
bus approach works without excessive delays due to bus contention within the parameters

shown in figure 2.12.

If communication requirements exceed the shared-bus bandwidth, it is clear how to
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Figure 2.11: Allocation of partitioned modules on a MIMD computer.
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Figure 2.12: Loss due to contention on a shared bus architecture.
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regain concurrency in this MIMD example. One would simply use a multi-ported unipro-
cessing node and allocate direct bus interconnects between the nodes. The cost of this
approach is increased complexity due to the additional connectivity as well as less reliabil-
ity due to vulnerability to single-point fzilures in the dedicated communication channels.
Reliability is an important issue in any large computer system. 1t is intuitively clcar that a
MIMD architecture is more reliable than a SIMD architecture, since the MIMD architecture
encompasses a heterogeneous pool of computer resources which can be mapped in a variety
of ways by different users on different applications, while the SIMD architecture presents

the same array of N fixed, identical processors to every user.

While no MIMD algorithm of any sort has yet been used for an electronic structure cal-
culation, there is one advanced feature of MIMD architectures that may soon be valuable
for scientific applications: the ability to insert special-purpose nodes into the heterogeneous
architecture. For example, one may wish to install a special node dedicated vo high-speed
computation of three-dimensional Fourier transforms in hardware. Recent advances in sili-
con compilers [25] make it more cost-effective for users to permanantly program hardware.
The program is written in a hardware description language. The program is then “com-
piled” at a VLSI foundary, with the resulting “object code” shipped back in the form of
an integrated circuit dedicated to executing the function. Every year brings new improve-
ments in the usability of hardware programming languages and reductions in the costs of
the resulting dedicated integrated circuits. It is easy to imagine how one could convert
parts of large electronic structure calculations from Fortran into a hardware language so
that several crucial subroutines run on dedicated nodes in a MIMD. At this point, however,
we are well beyond the level of concurrency used for the electronic structure calculations in

this thesis. Before we can begin to describe the parallel Car-Parrinello algorithm, we still
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must consider a computer issne: how do scientific users program the :oncurrency?

2.2 Software

The language of choice for scientific programming has always been a version of Fortran.
The biggest disadvantage of using Fortran on a parallel architecture is its complete lack
of array-oriented constructs. All of the primitive arithmetic operators, including addition,
subtraction, multiplication, and division, apply to scalar operands. Unfortunately this
complaint applies to every major programming language, including C, Pascal, Ada or even
Cobol. We saw what happens to matrix multiplication when it is described in C, with all
indexing and iteration explicitly specified in figure 2.7. Most the code has nothing to do
with muitiplication. The challenge for a parallel programmer is to take a program like this
one which is written in a common programming language and make it run efficiently on

parallel hardware.

The simplest way out of this bind would be to have a compiler that is capable of “vec-
torizing” existing problems. This technique is commonly employed in the vector-pipelined
supercomputer industry. One must learn which language constructs are vectorizable and
which are not. While the optimizing compilers for mature systems like the Cray are remark-
ably good, often times those for new machines are not. Automatically optimized programs

typically run far slower than the peak rate of the target vector machine [26].

Another common technique is for the vendor to supply a subroutine library of hand-
optimized functions. The problem here is always one of versatility. Subroutine calls are

limited since they cannot be manipulated with the same facility as a complete programming
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language. When a given subroutine does not exist, it must usually be written in the less

efficient high-level language since combining subroutines is rarely effective.

A realistic alternative for many embedded signal processing applications is to hand-
microcode the problem. The time and expense is justified for numerically intensive programs
that will run billions of times. An avionic signal processing program is a typical example.
However, microprogramming is labor-intensive and requires specialized skills. It is rarely

feasible for scientific programming.

Some vendors have designed scientific machines that dire;:tly execute high-level language
constructs. The design of an APL computer is described in reference {27]. The Analogic
AP500 array processor was based on a similar concept. This array processor was con-
nected to an IBM PC workstation host and programmed in a machine language identical to
APL [28]. The machine was commercially successful. Unfortunately, machines of this class

are rarely designed and manufactured.

All of these programming methods would be unnecessary if a true parallel language
existed based on a hardware model that mapped straightforwardly onto real parallel archi-
tectures. A detailed and famous review of the flaws of Fortran was given by its inventor
Backus in 1978 [29]. In this review, he traces the problem back to its underlying machine
model. Any programming language must have an underlying machine model if it is to be

efficiently implemented.

Fortran, which was invented in the 1950’s and has hardly been improved by existing
well-known computer languages, has as its intellectual parent, the von Neumann computer

architecture. This computing hardware model was developed in the 1940’s before the exis-
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tence of transitors, at time when each logic gate was implemented on a single circuit board.
While this architecture was a great engineering advance at its time, Backus criticized the
computing industry for not moving on to more advanced models in the forty years since its

introduction in his famous discussion of the von Neumann bottleneck:

In its simplest form a von Neumann computer has three parts: a central pro-
cessing unit (or CPU), a store and a connecting tube that can transimt a single
word between the CPU and the store (and send an address to the store). I
propose to call this tube the von Neumann bottleneck. The task of a program is
to change the contents of the store in some major way; when one considers that
this task must be accormplished entirely by pumping single words back and forth

through the von Neumann bottleneck, the reason for its name becomes clear.

Irorically, a large part of the traffic in the bottleneck is not useful data but
merely names cf data, as well as operations and data used only to compute
such names. Before a word can be sent through the tube its address must be
in the CPU; hence it must either be sent through the tube from the store or be
generated by some CPU operation. If the address is sent from the store, then
its address must either have been sent from the store or generated in the CPU
and so on. If, on the other hand, the address is generated in the CPU, it must
be generated either by a fixed rule (e.g. “add 1 to the program counter™) or by
an instruction that was sent through the tube, in which case its address must

have been sent... and so on.

Surely there must be a less primitive way of making big changes in the store

than by pushing vast numbers of words back and forth through the von Neumann
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bottleneck. Not only is this tube a literal bottleneck for the data traffic of a
problem, but, more importantly, it is an intellectual bottleneck that has kept us
tied to word-at-a-time thinking instead of encouraging us to think in terms of
the larger conceptual units of the task at hand. Thus programming is basically
planning and detailing the enormous traffic of words through the von Neumann
bottleneck, and much of that traffic concerns not significant data itself but where

to find it.

We saw these details in the matrix multiply program written in C, where all but one
line of code went toward bookkeeping related to address arithmetic and iteration. We also
pointed out that in a serial uniprocessor, each of these instructions must be executed in
sequence because each instruction requires the same communicaton channel between the
CPU and store, the channel Backus calls the von Neumann bottleneck. Backus goes on to
say that conventional programming languages are basically high level, complex versions of

von Neumann comp:iters:

Von Neumann programming languages use variables to imitate the computer’s
storage cells; control statements elaborate its jump and test instructions; and
assignment statements imitate its fetching, storing, and arithmetic. The assign-
ment statement is the von Neumann bottleneck of programming languages and
keeps us thinking in word-at-a-time terms in much the same way the computer’s

bottleneck does.

Consider a typical program; at its center are a number of assignment statements
containing some subscripted variables. Each assignment statement produces a

one-word result. The program must cause these statements to be executed
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many times, while altering subscript values in order to make the desired overall

change in the store, since it must be done one word at a time. The programmer
is thus concerned with the flow of words through the assignment bottleneck as

ke designs the nest of control statements to cause the necessary repetitions.

In fairness to Fortran, when it was invented it was never intended to serve as a stan-
dard for over one-third of a century. So what’s the alternative? Backus goes on to discuss
functional programming languages, which expiicitly address the issue of removing the as-
signment bottleneck. Rather than discussing the details of functional languages which are
largely unavailable on parallel hardware, let’s discuss some of the evolutionary features of

existing languages.

Kenneth Iverson’s APL removes the von Neumann bottleneck in many array-oriented
operations [30]. The array operators are applied in right-to-left order to input arrays and
stored in output arrays. It allows users to apply arithmetic primitives to large data collec-

tions (arrays) rather than a single word at a time. For example, if one writes
A~ B+C

corresponding elements of arrays B and C are added together, irrespective of dimensionality
and rank of B and C. All operations on individual elements are extended to component-
by-component operations on aggregates. Backus calls this convention, a functional form, a
method of combining exisiting functions to make new ones. In this example, the functional
form is the implicit extension of elementary operations to vectors, and the existing functions

are scalar addition, multiplication and so on.

Iverson introduced several other functional forms into APL, which he calls opcrators(31].
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To illustrate this concept, consider the reduction operator. The ®-reduction of a vector x

is denoted by ®/ and defined as
z=0O/xez=(((21022)0123)0--) O z,,),

where © is any binary operator with a suitable domain. Thus +/x is the sum, x/x is the

product, and V/x is the logical sum of the components of the vector x.

It is easy to combine APL operators and functions into useful array operations. For

example, the vector dot product function is written
c—+/BxC

In this program, the binary function x is applied between vectors B and C in component-by-
component form and the result is summed by application of the “reduce-by-plus™ operator
+/. The result is assigned to the scalar variable ¢. Absent from this program are all
statements related to addressing and iteration. They are specified to the hardware through

the functional forms without forcing the programmer to spell out extraneous details.

In APL, matrix multiplication is written with the inner product operator. The matrix
product of two matrices B and C is defined as a matrix whose ¢jth element is obtained by
summing the result of taking an element-by-element product between row ¢ of B and column
j of C, expressible in APL as +/BJ[i;] x C[; j]. The inner product operator, denoted by a
period, applies to two functions f and g (as in +.x) to produce a functions analogous to
matrix product, but with f/B[i; ]gC replacing +/BJi;]x C. Consequently, the inner product
operator is a generalization of matrix product, producing it in the special case +.x. Thus
the APL program for matrix multiplication reduces to the binary array operator +.x, a

substantial simplification when compared to the one-page C version in figure 2.7.
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Figure 2.13: Simple hardware model suggested by APL functioral forms.

Functional forms are important from a hardware perspective because computer lan-
guages provide intellectual models for computer design. Although the lack of funrtional
forms in word-at-a-time languages makes this point difficult to illustrate for them, it is
easy to show for the operators in APL. The simple block diagram in figure 2.13 shows' one
computing model suggested by the parallelism in APL. In this diagram, an arithmetic unit
applies a function g between two input arrays in accordance with the implicit clement-by-
element functional form and the first function argument in inner product. The arithmetic
unit also applies a function f in the feedback form necessary for execution of reduction
and the second funciion argument g in inner product. An address generator device fetches
array.elements from a single shared memory in either the default row-major order or any
permutation specified by APL operators, including the sequencing defined in the inner
product functional form. This hardware model is just one possible implementation of APL.

Massively parallel implementation of APL would also be possible.
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A hardware-oriented language related to APL was the subject of the author’s mas-
ter’s thesis [32]. The language, known as MFL, defined a small set of primitive operators
which concisely expressed most APL primitives in a form designed for efficient hardware
implementation for real-time signal processing applications. The thesis showed how the
instruction set was also conducive to scientific computation. Deta.iis of the language [33]
and hardware [34] are documented elsewhere. A key feature of the hardware design was
an address generator device [35],[36] that could execute all of the array addressing patterns
implied in the APL hardware model without microcode. It was possible to reparameterize a

single microinstruction to do all of the address sequencing, thereby eliminating instruction

overhead.

Another unique feature of the MFL system was an interactive workstation [37] that
computed expected execution times for the user’s algorithm as he wrote the code. By
giving the cycle count for a hypothetical vector processor every time a program is run, the
MFL programming environment assists the algorithm designer in optimizing programs from

a high-level language perspective while the parallel algorithm is still under development.

MFL was not unique to one particular hardware model. A later paper [38] showed how
MFL could be implemented on the Navy's standard MIMD signal processor, the AN/UYS-
2 [39]. One advantage here is the ability to estimate performance as the parallel algorithm
and high-level language implementation is developed rather than during hand-microcoded
optimization. In this way, constraints and features of the parallel architecture can exert a
detailed influence on algorithmic development. Moreover, if the array-oriented constructs of
a parallel language such as MFL are easier to vectorize than a word-at-a-time language such

as Fortran, the performance loss due to automatic compilation rather than hand optimzation
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could he negligible. The savingsin time and expense is then sufficient to shift more emphasis
to developing more efficient parallel algorithms, ultimately leading to more optimum use of

concurrent computing resources.

One could also implement APL, MFL or any other set of parallel constructs in LISP [40].
Among well-known languages, LISP is unique in enabling users to design functional forms.
Three common restrictions in word-at-a-time languages are: (1) requiring that a procedure
be named and then referred to by name, (2) forbidding procedures to be returned as values
of other procedures, (3) forbidding procedures to be components of such data structures
as records or arrays. Without these constraints, it is easy for programmers to define new
functional forms in terms of LISP primitives [41]. Considering the limitations of word-at-
time languages, it is ironic that the major caution in using LISP pertains to its power and
generality: a parallel hardware model would require fixed specification of a few functional

forms defined in a specific LISP program in order to obtain an efficient design.

Another approach to obtaining parallelism in contemporary computer languages is
Linda [42]. Linda consists of a few simple operators designed to support and simplify
the construction of explicitly-parallel programs. These operators can be injected into'exist-
ing programming languages to convert them to parallel languages. A Linda-based parallel
language is a new language to the extent when the compiler recognizes the Linda operations

and generates parallel code.

A review article by Saperstein and Blelloch surveys the current state-of-the-art on par-

allel languages [43].

Fortran 90 (44] is similar to Linda in the sense that it adds parallel constructs to the
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standard Fortran 77 dialect in order to specify concurrency. Fortran 90 allows an array to

be treated either as a set of scalars or an array. As a set of scalars, array elements are
indexed explicitly in a DO construct. As an array they are not. For example, the following

two programs add one to every element in an array

DO I=1,100
ACT) = A(T)+1

ENDDO

is the familiar Fortran 77 expression, while

A=A+1

is the corresponding Fortran 90 expression. After thirty years, Fortran is starting to use
some cf the APL constructs. Sectioning of arrays is also done identically with APL. For
example, B[i,:] extracts row i from B. Fortran 90 also allows array arguments to intrinsic

functicns, for example

A = SIN(B)

stores the sine of every element in B into array A. Fortran 90 also supplies a limited set

of array intrinsic functions to implement some of the more common functions possible with

APL operators. For example

SUM(B)

>
n

DOTPRODUCT(B,C)

-
1]
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correspond to +/ and +.x in APL. Fortran 90 is important because it currently is the most

efficient way for scientists to program the Connection Machine.

2.3 __Massively Parallel Hardware: The Connection Machine =

CM-2

The Connection Machine CM-2 warrants a detailed description because it is the machine
that was used to obtain the new physical results described in subsequent chapters of this
thesis. As such, it is the first computer used in modern electronic structure calculations

that is not based on the von Neumann architecture.

The key idea in the Conection Machine’s programming model is the association of
processors with data [45]. An application might associate one processor with each Fourier
component in an electronic wave function, one processor with each real space point in a
charge density, etc. 'fhere must then be some notion of interprocessor connectivity so that
processors can communicate, ranging from nearest neighbor communication on a Cartesian
grid to full interconnectivity. A single instruction is broadcast to every processor in the

CM-2 array which then executes this instruction in parallel on different data.

The Connection Machin~ hardware consists of a parallel processing unit containing
thousands of data processors, a front-end computer and an I/O system that supports mass
storage, graphics devices and fast peripherals. The central element in the system is the

parallel processing unit, which contains:

e from 4K to 64K 1-bit data processors

e a sequencer controlling the data processors
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Figure 2.14: Connection machine CM-2 programmer’s model

e an interprocessor communications network

e zero or more I/O controllers and/or graphics buffer modules

Figure 2.14 shows a simplified block diagram of the CM-2 parallel processing unit. Each
data processor executes instructions globally broadcast by the front end computer, a Sun or
VAX minicomputer. These commands are decoded into microinstructions by a microcoded
sequencer. Each data processor then executes the microinstructions in parallel on different

data under synchronous control from the microsequencer.

While all processors can access their respective memories simultaneously. the sequencer
must access the processor array memory serially, one 32-bit word at a time over the scalar
memory bus. This bus is the same memory/processor bottieneck inherent in the Illiac IV.
It is crucial to avoid this type of communication if one expects reasonable performance in

a large calculation. The data processors can also combine results in a reduction operation
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Figure 2.15: Connection machine CM-2 data processing node

such as sum (+/ in APL), delivering the reduced value on the global result bus. The data
processors can exchange information among themselves in parallel through routing, NEWS

and scanning mechanisms; these are in turn connected to the I/O interfaces.

Figure 2.15 shows a block diagram of a CM-2 data processing node consisting of

e 32 1-bit data processors with associated memory
¢ a floating-point unit

e communications interface.

Arithmetic is carried out bit serially in this processor, consuming at least three clock cycles
per bit. A 32-bit add takes about 21 microseconds. Floating point execution also requires
32 nanoinstruction cycles, one for each of the 32 1-bit data processors connected to the

floating point unit. The floating point coprocessor performs the floating point arithmetic
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at the rate of one clock cycle per operand on pipelined data streams.

Interprocessor communication is accomplished in the CM-2 parallel processing uuit by
special-purpose hardware. Message passing happens in parallel; all processors can simul-
taneously fetch or send data to other processors through the most general of the CM-2’s
communications mechanisms, the router. Each CM-2 processor chip contains one router
node to serve the 16 data processors on the chip. All router nodes are wired together in
a boolean n-cube network topology. Each router node is connected to twelve other router
nodes. Store-and-forward message passing is thus used: a message travels from one router

node to another until the receiving processor is found.

This chapter has surveyed techniques for putting concurrency into computer technology.
It shows to what extent electronic structure calculations have employed the state of the art
in computer hardware and what types of more advanced computer systems are available to
work with more complex material systems. We next describe specifically how the massively

parallel CM-2 applies to electronic structure calculations.
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Chapter 3

A Massively Parallel
Implementation of the
Car-Parrinello Algorithm

Ab initio total energy pseudopotential calculations can predict many physical properties of
materials using only the atomic numbers of the constituent atoms as an input. The method
has been successfully used to predict equilibrium lattice constants, bulk moduli, phonons,
piezoelectric constants and phase transition pressures and temperatures. The method is
based on expanding the electronic wavefunction in terms of plane wave basis functions for
a set of ionic positions. For a given configuration, the total energy is computed. The plane
wave coefficients and ionic positions are varied until the values minimizing the total energy

of the system are obtained.

Even for systems containing only a few atoms in the unit cell, total energy pseudopo-
tential calculations consume a substantial amount of computer time. The total energy is
computed from a Kohn-Sham Hamiltonian matrix. Since this matrix depends on the charge

density, the total energy must be computed self-coasistently through an iterative process.

51



Each step toward diagonalization of the Kohn-Sham Hamiltonian leads to an improved so-
lution for the wave function which in turn improves the Hamiltonian until self-consistency

is obtained.

The molecular dynamics method developed by Car and Parrinello[46] transformed the
philosophy of total energy pseudopotential calculations. Instead of determining the minimiz-
ing set of plane wave coefficients by explicitly diagonalizing the Kohn-Sham Hamiltonian,
Car and Parrinello recognized that a more direct minimization of the Kohn-Sham energy
could be more efficient and allowed both electronic and ionic degrees of freedom to appear on
the same footing. To perform the minimization, they introduced an iterative optimization
technique where the plane wave coefficients and ionic coordinates are treated as fictitious
particles interacting through a classical Lagrangian. Integration of the equations of motion
for these particles leads to the configuration that minimizes the total energy of the system.
Recently, conjugate gradient methods have been developed[47] that consume in certain cases
an order of magnitude less CPU time than the best fictitious electronic dynamics schemes.
Still, the memory and throughput available through conventional vector supercomputers

limits both methods to systems involving around 100 atoms.

Massively parallel computation provides another technique for working with larger sys-
tems. The challenge in exploiting the massively parallel architecture is to efficiently map
the algorithm onto the parallel architecture without incurring excessive loss due to commu-
nication among the processors. In this case, one can scale the size P of the processor array
with the characteristic size N of the system under study. As N is increased, a corresponding
increase in P results in more throughput, reducing the processing time below the increase

that would be incurred for fixed P, including P = 1, a serial machine. On a Connection
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Machine CM-2, a parallel implementation of the Car-Parrinello algorithm makes the study

of systems approaching a thousand atoms possible.
3.1 Algorithm Description

The Car-Parrinello algorithm is a quantum mechanical method of computing electronic
wavefunctions within the density functional theoretic treatment of the many body problem.
In practice the local density approximation is generally used. A detailed review of ab initio
total energy techniques is given in Ref. [48]. The algorithm is summarized here in order
to introduce the most important data structures and procedures as implemented in the

parallel computation.

Each electronic wavefunction is expanded as a sum of plane waves

¢,’(r) = Z Cik+G exp[i(k+ G) . l']. (3.1)
G

In thic expansion, G denotes the set of reciprocal lattice vectors defined by G -1 = 27rm
where 1 is a lattice vector of the crystal and m is an integer. k denotes the point in
the Brillouin zone where the calculation is performed. Total energy calculations generally
approximate integrals over the crystal Brillouin zone with discrete sums over a few “special”
k points[49]. The electronic wavefunction ¥ is usually calculated for a few independent
values of k. In very large systems, one k point is often sufficient to sample the Brillcuin

zone.

In an ideal expansion, the sum over reciprocal lattice vectors in Eqn. (1) runs over an
infinite set of coefficients c; ., g with corresponding kinetic energy %lk + G|2. However, in

a pseudopotential calculation the coefficients for the plane waves with small kinetic energy
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are typically more important than those with large kinetic energy. The plane wave basis set
can then be truncated. In total energy pseudopotential calculations one need only in?l?:de
the plane waves which have kinetic energies less than some particular cut-off energy. This

parameter is a convenient quantification of the number of plane waves in the computation.

Substitution of the plane wave expansion for the wavefunction in the Kohn-Sham total

energy functional and integration over r gives the secular equation{50]

h2
Z[ﬁlk + Gl*ggr + Vion(k+ G,k + G') + V(G - G') + Vxc(G - G')]ci ks
G’

= €i¢i k4G (3.2)

where Vi denotes the Hartree (Coulomb) interaction, Vxc denotes the exchange-correlation

interaction and Vign denotes the ionic pseudopotential.

While this equation can be solved through conventional matrix diagonalization, Car
and Parrinello recognized that the electronic wavefunctions can be treated as variables in a

fictitious dynamical system. A Lagrangian is defined for the electronic system according to

L= Y u<dlb > ~El{}, (R}, al ©3)

where u is a fictitious mass associated with the electronic wavefunctions, E is the Konn-

Sham energy functional,

R _,
E[{‘l’s}] 22'[’:[—2_";V ¥
+ /Vlow(r)p(r)d3r+ /P(P)P(r‘)d;; d3 /
+ ::c[P(r)l + EION({RI})]’ (3°4)
p is the charge density, Ry is the position of ion I, and the parameters {an,n = 1,2,3}

define the dimensions of the unit cell. The kinetic energy term in the Lagrangian is due to
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the fictitious dynamics of the electronic degrees of freedom.

The electron wavefunctions are subject to the constraints of orthonormality

[ #ienwde = 6. (35)

These constraints are incorporated in the molecular dynamics Lagrangian through the

method of Lagrange multipliers. The molecular dynamics Lagrangian becomes
L=3"p< il > ~Elpi Ry, an] + Y Aj / P (x);(r)dr — &;5). (3.6)
i 1)

The Lagrange multipliers Aj;- ensure that the wa.veﬁ_xpctions remain normalized and the
Lagrange multipliers {A;;,i # j} ensure that the wavefunctions remain orthogonal. It is
more computationally efficient to maintain orthogonality only at the end of each discrete
time step. In this case, the Lagrange multipliers for the constraints of normalization A;; are

replaced by the expectation values of the energies of the states, A;, where
Ai =< ¥i|H|i > (3.7
resulting in the following equation of motion for the plane wave coefficients

. h?
KCik+G = -[gn-;lk +GI* = Neixia -
> Vu(G - G)cikrar -
Gl

Z Vxc(G - G')c,-'k_‘_(;: -
Gl

Y Vion(k+ G,k + G')c; k4G (3.8)
G

When a local pseudopotential is used, this equation can be written

. : h?
Béi k4G = -[§;n-lk +GJ? - Mleikyc — 2 V(G - G')eiksGr (3.9)
(el i
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where Vr(G) is the total potential given by

Vr(G) = Vion(G) + Vi(G) + Vxc(G). (3.10)

If one now introduces the definitions

h2
wikeG = gk +GI* - Ail/u (3.11)
and
Bixic = Y. V(G- G)e;prarl/p (3.12)
G'%G

the equation of motion becomes

EktG = ~Wlk4GCik+G — Bikra- (3.13)

This equation can be numerically integrated at short time steps. After each time step
the potentials are recomputed based on the new charge density derived from the updated

plane wave coefficients in the wavefunction.

As noted in Ref. [51], Eqn. (13) is an oscillator equation. During a sufficiently short

time step, the plane wave coefficients should behave approximately as

cik+G(t) = € k4G (0) cos(w; k1 Gt) (3.14)

Thus the equations of motion can be integrated analytically up to the next time step,

resulting in the following difference equation:

cix+G(At) = 2cos(w;kiGAL)e; kiG(0)

—Cik+G(—At) — 2[1 — cos(wi k4G A B x4 G /Wikpg-  (3:15)
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It is also possible to form a first order equation of motion for the electronic degrees of

freedom[52]. In this case, the equation of motion is

; 2
Cik+G = ~WiksGCik+G ~ Bik+G» (3.16)
leading to the difference equation

B.
k+G + [C. k+G(0) + k+G

2 " G]exp(—w?‘k+GAt). (3.17)
ikt ,k+

¢ k+G(At) =

This first order equation gives roughly the same asymptotic convergence rate as the
corresponding second order equation. It is more efficient in the sense that only half the

storage is required since only 1(0) and not ¥(—At) are maintained.

This version of the Car-Parrinello algorithm was chosen for parallel implementation with
one addition. To better describe scattering properties of the Si atoms, a nonlocal Kleinman-

Bylander pseudopotential[53] was employed. This pseudopotential has the following form:

|60,,6Vi >< 8Vigl, |

Vion = Vioc + - m 3.18
ot LR Vi, > (3.18)

where Vioc is a local, norm-conserving pseudopotential(54], ¢f. are the wavefunctions of

the pseudoatom and 6V is

Vi = Vine - Vioc (3.19)

where V; nr, is the | angular momentum component of any non-local pseudopotential.

Table 3.1 summarizes the notation used in this implementation of the Car-Parrinello
algorithm with the first-order equation of motion and the Kleinman-Bylander nonlocal
pseudopotential. Dimensions in terms of parameters defined in Table 3.2 are also given.

Of all data structures in the program, the wavefunction occupies the most memory. It
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Table 3.1: Summary of arrays used in the Car-Parrinello implementation.

Variable | Dimension | Name
L; 3 lattice vectors
2y Ng atomic number
R. 3N4 ionic coordinates
€ k+G NpNiNg reciprocal space wavefunction
je) NiNg mapping from packed to unpacked G
p(G) NxNyNz reciprocal space charge density
p(r) NxNyNz real space charge density
Vu(G) NxNyNz Hartree potential
Ey 1 Hartree energy
Vxc(G) | NxNyNz exchange-correlation potential
Exc 1 exchange-correlation energy
5(i,G) NsNx Ny Nz | structure factor (}_;,.,)
Vps(i,R) | NsNx Ny Nz | pseudopotential interpolation
Ves(G) NxNyNz pseudopotential
Eps 1 pseudopotential energy
Fal' r 3Ny ion-ion force
E;_; 1 ion-ion energy
FL, 3N4 local electron-ion force
Ri,k+G 3NGNI¢ = Gg.k/uG"

imk+G | NsNimNkNe | = [5° dre*ji(qr)dim(r)8Vi(r)
S:,k-{-G NsNiNg e—2mk+Gor,
Glank Ns4Ni3NgN; | nonlocal pseudopotential sums
F,f",-l' 3N4 nonlocal electron-ion force
An Np band eigenvalues (energies)
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Table 3.2: Array size abbreviations

Parameter | Description

N4y atoms

Np bands

Ng plane waves per band

Ng special k points

Ny atomic angular momentum quantum numbers
Ns atomic species

Ny lattice points in direction 1

Ny lattice points in direction 2

Nz lattice points in direction 3

scales as the number of bands times the number of plane waves. The second largest array
is a structure factor e~2mGTa that is computed for each atom. It is used repeatedly in a
computationally intensive part of the nonlocal pseudopotential calculation. The memory
required for these two arrays provides a coarse estimate of the memory required for the
entire computation. All other arrays are much smaller for systems with large numbers of

jons.

Fig. 3.1 summarizes the algorithm. It begins with a trial ionic configuration and a trial
wavefunction consisting of an initial set of plane wave coefficients. An initial charge density
is computed from this wavefunction for use in the Hartree, exchange-correlation, local and
nonlocal pseudopotentials. The total energy for this trial wavefunction is then computed,
and the plane wave coefficients are updated by integrating their fictitious equations of
motion according to the Ca.r-Parrinello.scheme. After every integration, the wavefunction
is re-orthogonalized. Then the next iteration begins. After every five to ten iterations, ionic
forces are computed and the ions are moved in order to relax the ions simultaneously with

the wavefunction. This procedure continues until the total energy and the ionic forces do
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not change substantially from one iteration to the uext.
3.2 Parallel Implementation of Car-Parrinello Algorithm

Most aspects of the algorithm we used for our calculations are sufficiently general to apply
to a wide class of parallel machines, though we have chosen the CM-2 for our implemen-
tation. In order to discuss the algorithmic issues involved in the parallel Car-Parrinello
procedure, it helps to distinguish features of general importance for a wide class of parallel
architectures from those of particular interest for the machine we used, the CM-2. In order
to keep these issues separate, we will use a simple abstract model of a parallel architecture,
a distributed memory parallel random access machine (DM-PRAM) [55]. This model is
similar to the standard one discussed in elementary computer science texts on parallelism,
but with distributed memory. In this model, P processors are connected by a network
which can route messages in (1) time. In the DM model, all memory is local to a specific

processor, and only that processor can read/write data to its memory.

Many real network architectures, including hypercube, butterfly, and hypertree, are
universal in that they can simulate any other network of P processors, including the simple
PRAM network, with at most a logP slowdown. Other real networks such as d-dimensional
grids are not universal in this sense, because simulating the PRAM routing process requires
O(P'/4) time. Nevertheless engineering factors can make machines based on such networks
able to simulate the PRAM over a useful range of P. We use the term communication to

refer to all operations involving the network.

The PRAM model has some drawbacks. In practice the assumption that network com-
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munication times scale in the same way as computations is less important than the large,
if constant, factor multiplying the communication time step relative to computation. Ef-
ficient codes attempt to minimize the network communications as much as possible. The
assumption that communications cost is equal no matter what the relative location of source
and destination is much closer to reality and to programming practice. A final drawback
is that the simple PRAM network does not take account of special purpose hardware for
performing certain patterned operations such as broadcast and reduction. These can be

synthesized in O(logP) time but with hardware become effectively constant-time.

Here we formalize some of the concepts relating to the scalability of an acceptable
algorithm. Define T(N, P) to be the time required to solve a problem of size N on P
processors. To be definite, N might be the number of atoms in the unit cell. Let t(N)
be the time for solving the same problem using the best sequential algorithm, then the
efficiency e is defined by e = t(N)/(PT(N, P)) and must be less than 1, since a serial
machine can emulate a P-processor parallel machine with a slowdown of order P at worst.
The goal is to design a scalable parallel algorithm. In this context, scalability means the
T(N,1) = O(i(N)); and that T(N,P) = O(T(N,1)/P) for sufficiently large P and N.
These conditions guarantee, in effect, that the algorithm is not worse in its N-scaling than
the best serial algorithms, and that the algorithm is cost effective in its P-scaling. We shall
relax these scalability requirements slightly and allow deviations containing polylogarithmic
factors (in NV or P ) because of their modest growth rates over ranges of the parameters of

interest and of current computational feasibility.

Of course no formal considerations are a substitute for a test of whether a real parallel

implementation can solve new problems. In view of this, no formal proof that our algorithm

62



is scalable will be attempted. Indeed most of our experience with the code makes clear that
the constant multipliers, preasymptotic factors, memory constraints, etc. left out of the
formal analysis are of critical importance for the present range of (N, P). We will offer
estimates of the scaling behavior of component parts of the code however as an indicator
of their performance on the next generation of parallel machines, for the correspondingly

larger problems which will be solved.

Our principal concern is to solve large problems in a tractable amount of time rather
than to solve moderate problems in very short time. One of the most critical properties of
larger parallel machines is that the memory scales with the number of processors. Table 3.3
shows that the memory requirements of the code scale roughly as N%, with N denoting
the number of atoms N4. In actual practice, we followed a curve in the (N, P) plane
corresponding to the smallest value of P with enough memory for doing a problem of size

N. Therefore we only explore a small part of the 2-parameter function T(N, P).

Our specific target machine was the Connection Machine CM-2, a massively parallel
computer with up to 21 = 65536 bit-serial processors and 2!! = 2648 64-bit floating point
units. The current CM Fortran compiler views the machine in terms of the floating point
units (FPU’s), ignoring the bit-serial processors, and we will describe the machine aigo from
the this point of view. Thus P means the number of FPU’s. The 2K FPU’s are connected in
an 11-dimensional hypercube. ( We use the common notation where K = 1024, M = k2,
etc.) The channels forming the edges of the hypercube are bi-directional and all edges
originating from a processing node can carry messages simultaneously. Each FPU has an

associated memory of up to one million 32-bit words.
The architecture is a Single-Instruction, Multiple-Data (SIMD), meaning that instruc-
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tions are broadcast from a sequencer controlling a partition of processing nodes and executed
by the nodes one at a time. The nodes do not execute separate programs, but can, based on
data in their memory, ignore a particular instruction. The node can also execute indirect
address accesses to their memory. The CM-2 has an associated mass-storage device called
the Datavault, with capacities up to 80 GB. We stored checkpoint files on Datavault during

the long runs necessary for calculations on large material systems.

The software model is data parallelism. This programming model provides the pro-
grammer with the abstraction of a global address space and logically arbitrary numbers of
processors. Programs are conceived as alternating sequences of (a) independent operations
on elements of a data set in parallel, and (b) communications among different elements.
We are presented with this model through the CM Fortran 1.0 compiler. The CM Fortran

language implements the support for array operations of the standard Fortran 90.

The CM Fortran compiler provides directives allowing the user to control the mapping
or layout of arrays onto the processors. Because communication is relatively expensive, im-
portant distinctions exist among different ordering choices. These directives control whether
all positions along a specified array axis will be located in a single processor’s memory, a
:SERIAL axis, or whether they will be spread in contiguous chunks over all proceis_sors, a
:NEWS axis. “Communication” operations applied along :SERIAL axes translate into in-
processor memory moves, and so are much faster than normal communication involving the
network. The :NEWS ordered axes are laid out on the processors to optimize the performance
of local communication on multidimensional Cartesian grids. A third ordering, :SEND, al-

lows an axis to be laid out across the processors similar to :NEWS, but ordered to optimize

FFT’s rather than local communication. For this reason :SEND ordering was chosen for the
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charge density arrays and all arrays which need to be conformable with them.

Although our general design philosophy was to make as much of the code Fortran
90 compatible as possible, there were two places where performance issues dicta,t.ed more
machine-specific solutions. The first is the FFT. The code depends heavily on this primitive,
and an efficient FFT was therefore essential. We used the optimized FFT in the Connec-
tion Machine Scientific Subroutine Library (CMSSL). The reason is that the library takes
advantage of a natural mapping between the FFT algorithm and the physical hypercube
network structure of the CM-2. This cannot be done nearly as efficiently from high level

languages such as CM Fortran.

The second instance concerns packing and unpacking the wavefunction from one-dimensional
slices into its full three-dimensional form. This operation is also performed many times in
the code, but the pattern of the communication never changes. The communication hard-
ware of the CM-2 is not exposed to the CM Fortran compiler, which relies on calls to a
run-time software layer to manage communication. The run-time software treats all com-
munication as dynamic. What was required is precomputed communication for the given
static pattern and this required a machine-specific low level treatment. Fortunately there is
a pair of CMSSL functions, gather and scatter, which perform this communica.titizn after
a call to a setup routine {executed once at program initialization) which precompiles the
computation and stores this information for the routines to use. For the pack/unpack in

the charge density computation module, a factor of three gain in throughput was obtained

by replacing the generic Fortran 90 UNPACK function with the CMSSL scatter function.

The parallel implementation begins with an analysis to determine the distribution of

data across the parallel processing array. Fig. 3.2 shows the memory consumed by each
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Figure 3.2: Memory utilization for the Si(111)-7 x 7 calculation with 896 bands at a 8 Ry
cutoff energy.

major array for a Si(111)-7 x 7 calculation at an 8 Ry cutoff energy. This semiconductor
surface is the focus of the physical results presented in the next two chapters. It is described
in this chapter in terms of the performance requirements it imposes on the parallel comput-
ing hardware. All arrays except the wavefunction and the e~2"G-Ra factors were stored
in double precision. All computations are performed in double precision except Fourier
transforms on the unpacked single precision wavefunction. The rationale for using single
precision on the large arrays is to save memory. When the calculation has converged, band
eigenvalues are accurate to about four decimal places. The eigenvectors have comparable
or less precision. Storing the extra 32 bits in a double precision wavefunction would only
store computational noise. More memory was saved by configuring the unit cell to exploit
inversion symmetry. An inversion-symmetric system can be computed with a real wavefunc-
tion and a conjugate-symmetric structure factor array, reducing the memory requirements

roughly in half.
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Table 3.3: Array distributions

Array Dimensions | Distribution

Cik+G NgNiNg :SERIAL, :SERIAL, : NEWS

Saxs+G | NaNeNe :SERTAL, : SERIAL, : NEWS

Ga,link NagN;;,3NpgN; | :SERIAL, :SERIAL, : SERIAL, :SERIAL, :NEWS
V(G) NxNyNz :SEND, : SEND, : SEND

o(Q) NxNyNz :SEND, :SEND, :SEND

Vps(i,R) | NsNxNyNz :SERIAL, :SEND, :SEND, : SEND

p(r) NxNyNz :SEND, :SEND, : SEND .

5(i,G) NsNxNyNz :SERIAL, :SEND, :SEND, : SEND

T(G) NxNyNz :SEND, :SEND, : SEND

Fig. 3.2 shows that an 8 Ry calculation on 700 effective silicon atoms consumes about
380 million bytes of memory. More memory is allocated by the compiler for intermediate
computations. Of the memory specified by the programmer, 62 per cent is allocated for the

two large single precision arrays.

Table 3.3 shows the data distribution for each data structure in the figure. The :SERIAL
and :NEWS designations in the table entries indicate that a given array axis is either contained
entirely in local memory, or spread evenly across the processors, respectively. This notation
is borrowed from the CM Fortran compiler. The need to chcose the layout of data on a

—_

parallel machine is of course a universal feature of parallel algorithm design.

The most important distribution is probably the mapping of the plane wave coefficients
¢ix+G- The :SERIAL,:SERIAL,:NEWS designation for indices i,k,G indicates that plane
waves are spread across the processors with each processor containing the same plane wave
subset for all band indices as shown in Fig. 3.3. With this mapping operations on plane

waves will be performed in parallel for each band and k point index. The iterations over
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Figure 3.3: Distribution of the wavefunction across the processing array.

the :SERIAL band and k point indices in the wavefunction are then performed, with each
processor performing a loop over these values for its subset of G-vector components. The
T(G) table entry refers to large, temporary arrays sized to the reciprocal space grid in order

to accelerate computations performed at every grid point in parallel.

An alternative mapping would be to assign a given band and k point (i,k) to each
processor, with every plane wave coefficient G for a given (#,k) in a single processor. While
this scheme would require less communication, there is insufficient memory in each p;ocessor
to carry out the resulting computations in parallel. The other mapping was used because
available memory was more of a limiting constraint than processing time in determining

the size of the calculation that could be performed.

The other major decision involved the geometry of all arrays dimensioned as the 128
X 128 x 64 grid in the unit cell, including the charge densities p(G) and p(r), and the

potentials V(G). It is a straightforward decision to distribute all three indices across the
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Figure 3.4: Distribution of the charge density across the processing array.

processor array as shown in Fig. 3.4. Operations on all tnree lattice coordinates proceed
in parallel. Mappings for all other arrays involving FFT grid coordinates were chosen
to conform to the mappings for the charge densities and potentials, thereby minimizing

communication.

The other distributions was chosen out of expedience: it is necessary to allocate some
data structures on the processor array rather than the CM front end because front end
memory is limited. The mapping here is arbitrary since communication will be incurred in

any case.

Once data distributions are determined, one can proceed tc write parallel code. Our
code is written eatircly in Fortran 90 with the exception of calls to math library routines for
performing the FFT, generating random numbers, and performing the global gather/scatter
for optimized packing of the wavefunction. Fortran 90 versions of gather and scatter are

also available.
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Throughout the calculation, it is possible to compute array values for different k points
in parallel. The Car-Parrinello algorithm treats each k point independently to the extent
that different sets of energy eigenvalues are computed for each k point. Where memory
permits, it is straightforward to generalize the following description of the parallel imple-
mentation to simultaneously compute arrays at different k points. This technique will

accelerate computations over smaller unit cells involving multiple k points.

With these data distributions, the only communication required occurs in one of three
places: performing sums over G-vectors, performing FFT’s, and packing/unpacking the
wavefunction. For operations which do not include communication, it is easy to see that at
least for large N and P the scaling will be T'(N, P) = O(¢(N)/P). This means the perfor-
mance of such segments approaches a constant efficiency and scales with problem size and
machine size. To understand the scaling then requires examination of the communication-

dependent kernels.

A sum of N values can be performed on P processors in time T'(N, P) = O(kologP +
N/ P) by recourse to the following procedure. Each processor initially has N/P values and
independently adds them in O(N/P) time. Now each processor has one value and the values
must be combined. To do so a balanced binary tree is embedded in the processor a,-g.ra.y. In
O(logP) steps the global sum is computed because such a tree has logP levels between the

leaves (here the processors) and the root.

A global FFT of length N can be performed in T(N, P) = O((N/P)['ogN/ P + kologP])
time. The easiest way to see this is to make use of the butterfly pattern of data combinations
in the FFT[56]. The butterfly has log/N stages, the last logP stages being performed by

actual communication. Thus the first logN — logP = log(N/P) stages must be performed
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in-processor. Each stage (whether in-processor or not) requires a constant amount of work
for each of N/P data values. Thus the FFT is completed in O(N/P)[log(N/P) + kologP]

time, as claimed.

Packing the wavefunction data can be accomplished in T(N, P) = O(N/P) time in our
abstract model, since there are N/ P words of data per processor, and the network can route

one word per cycle.

All of these segments represent scalable algorithms, in the sense suggested earlier. The
serial times for the three kernels are ¢{(N) = O(N) for computing a sum, ¢{(N) = O(NlogN)
for the FFT, and t(N) = O(N) for the packing. Thus up to logarithmic factors they perform

as well to within constant factors as the best serial algorithms for the same tasks.

Next the parallel modules will be described. For the computationally intensive modules
we give an estimated T(N, P) based on the analysis of the communication-dependent pieces

given above.

Wave function initialization. This is accomplished by setting each plane wave coeffi-
cient ¢; ;G to a random number using a parallel random number generator. Wave function
initialization requires O(NgNgNy/P) time on P processors. The initialization is co;_gpleted
by orthonormalizing the wavefunction using the Gram-Schmidt orthogona.liza.tioh scheme

described below.

Charge density computation. The wavefunction ¢; yx+q) contains all three-dimensional
reciprocal lattice vectors { G } with kinetic energy below the cutoff energy packed into a one-
dimensional array. The wavefunction is unpacked and distributed on a full three-dimensional

real space grid before it is Fourier transformed to real space. The charge density is com-
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puted by unpacking each reciprocal space band contained in the wavefunction, transforming

to real space and summing the contributions over all bands

p(r) = 313G, a2 © (3.20)
)

The address indirection I(k + G) determines the unpacking order. This vector maps the
packed non-zero values of the plane wave coefficients onto the full three-dimensional FFT
grid. Points not stored in the packed wavefunction are left set to zero. This process is

implemented through the scatter function.

A factor of two acceleration was obtained by leaving the partial sum in Eqn. (20) in
bit-reversed order. Again due to communication losses, shuffling the final result of an FFT
from bit-reversed to normal order costs roughly as much as doing the FFT. There is no
arithmetic difference in performing the summation in bit-reversed order, then unreversing
p(r) at the end of the computation. The charge density computation time is dominated by
the FFT’s and sum calculations. Based on the estimates for these primitives given above,

the time is O(NgNi{Nx Ny Nz/Plko + kilogP + log(N/P)] + kilogP}).

Hartree potential. This module computes the Coulomb potential

Vu(G) = |(CT) ~(3.21)
and the Coulomb energy
QZ 2 (ﬁ;‘lr;(G) (3.22)
G

where (2 is the volume of the unit cell. By spreading the values of G over the processor
array, this computation proceeds efficiently since no communication is required except in

the final summation in computing Ep.
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Exchange-correlation potential. The Perdew-Zunger parameterized correlation en-
ergies [57] are computed in parallel at each grid point. The performance is similar to the

Hartree case.

Local pseudopotential. This is computed according to

Ns
VL(G) = 3 5(i, G)Ups(G) (3.23)
i=1

The sum is over the Ns different atomic species in the system. For the Si(111) reconstruc-
tion, this sum is over one species only. Computation of Ups(G) involves iteration over all
values of G with an interpolation in a large pseudopotential lookup table. The execution
of this step was deliberately left inefficient because it consumes a very small fraction of the
total processing time. Allocating memory for large temporary arrays in order to accelerate
this function was not ucsirable since available memory resources rather than throughput
ultimately limits the size of systems that can be modeled with the Car-Parrinello algorithm

on the CM-2.

Kleinman-Bylander nonlocal pseudopotential. The contribution to the product of
the Hamiltonian and the wavefunction ; at wave vector k + G for the Kleinman-Bylander

pseudopotential is given by [58] .

2""(k) zz -i2rRa-(G-G')yy (k+ G,k + G')c k+G/ - (3.24)
G a

where w(k) is the k-point weight, Qg is the unit cell volume, and
4
Vall + Gk + G) = S5+ Gk + &)

121r k+ G k+ G’

+ . |k+G|fx (Ik+ GJ)- |k+G'|j'(|k+G|) (3.25)

if 6Vi=2 = 0. In Eqn. (25),
= / " P2dr6Vi(¢G,)? (3.26)
o _
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and

filg) = /ooo r2drj1(27rqr)6V[(r)¢?m(r). (3.27)

Ju is the spherical Bessel function of order I. The spherical Bessel function j;(2wqr) gives the
amplitude of the ! angular momentum component of the plane wave exp[i2rqr] a distance

r from the origin.

In this module, it is convenient to compute the partial sums
Glank = 3_ e 2 Ra(G-F) fa(|k 4 G/|)c, ypqr (3.28)
Gl
appearing in Eqns. (24) and (25). This module consumes a substantial fraction of the total
processing time. It consists entirely of dot products over the plane wave sets per band. The

dot product is computed for every band and for every atom in the system. The time for

this segment is O(NtNaNp[Ng/P + kologP)).

Wave function update. This module begins by convolving the wavefunction with the
total local potential

BixiG = Y_Vr(G - G)cixrar (3.29)
GI

The convolution is implemented by Fourier transforming the wavefunction, multiplying it
by the Fourier transform of the local potential, then inverse Fourier transforming the result.
The throughput of this computation is doubled by exploiting the lower communication costs
associated with leaving FFT results in bit-reversed order. To do so, the local potential is
first shuffled into bit-reversed order. Tl.len when the wavefunction is Fourier transformed,
it is also left in bit-reversed order to align the data for multiplication by the local potential.
When the bit-reversed product is then inverse Fourier transformed, communication time is

less when the result is left in real order. Avoiding the shuffles from bit-reversed to normal
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order saves a factor of two in total FF'T processing time. A further factor of two savings is
realized for inversion symmetric systems by packing two bands from the real wavefunction
together into a single complex input for the convolution. The real and imaginary-parts of

the result correspond to two independent real convolutions. The time for this convolution

is O(NkNgNx Ny Nz/PlkologP + log(N/P)]) on P processors.

Computation of the nonlocal Kleinman-Bylander pseudopotential is next completed
according to Eqns. (24) and (25) in terms of the previously computed partial sums gjon

with the parenthesized sum previously computed. This step takes O(NxNsNpgNg/P) time.

Finally, the wavefunction plane wave coefficients are updated according to Eqn. (15).
This step consists of numerous operations performed in parallel over every plane wave in

each band. The update requires O(NyNgNg/P) time.

This module iterates over the bands, performing calculations consecutively on each
band, with the exception of the convolution where two adjacent bands are packed together

for more throughput.

Wave function orthogonalization. This is accomplished according to the Gram-

Schmidt scheme:

V== ) < Wil > (3.30)
j<i
with
/ P!
TV 3.31
Y= (3:31)

This step probably presents the least opportunity for parallelism of all of the major compu-
tational functions since orthogonalization of band ¢+ 1 cannot begin until orthogonalization

of band ¢ is completed. High throughput is only possible from this module when there is a
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large number of plane waves per processor. This step consists of Ny Ng(Npg—1) dot products

over the G-vector components of each band. Thus the time is O(NxNp?[Ng/P + kologP))

on P processors.

Every few iterations when the electronic coordinates are sufficiently relaxed, several
other modules are invoked compute forces on the ions. Efficiency is not as crucial here since

the force computations are applied less often.

Local force. This is computed according to
Fia = Im(3_ p(G)Vps(G)Gie'GRa), (3.32)
G

a relatively efficient operation involving products and sums over the reciprocal space grid.

Nonlocal force. The contribution to ionic forces from the nonlocal pseudopotential is

given by terms of the form

6ENL([ = 0) _ 87!' a.QI—O ank
it SIS (3.33)
where
gi=0,ank _ k+G _i2#RaG) fo
ORa, = Z 2r |k n GI fo(lk+ Gl)cn.k-i-G (3.34)

The terms for { = 1 are sinular. The time required for the dot products over the plane
waves per band in this module is roughly equivalent to the time required for an entire total

energy calculation during an iteration without ionic force computation.

Ewald energy and forces. The Ewald energy accounts for ion-ion interactions due
to long-range Coulomb forces. When the ions have moved, the Ewald energy for the new

configuration must be determined. The total Ewald energy is given by[59]:

1 2~ erfe(nRi+ 1V -Ral) 27
Eron = ZZZ {; |R1+l’—R2| \/ﬁ‘su
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2
e
z ——e 4'7 cos[(R; — Rp)-G] - —= (3.35)
Q& IGP 7%Q
where Z; and Z; are the valences of ions ¢ and j respectively and erfc is the complementary

error function.

This computation is implemented in two different ways. It can be done “off-line” as a
separate process with the results stored into a file, or it can be parallelized and included in
the CM-2 Car-Parrinello program. In the latter case, more memory is needed to make the
computation run efficiently on the processing array. The trade-off then is memory against

the convenience of not having to compute off-line.

Table 3.4 shows the allocation of processing load among the major functions both alge-
braically and in terms of actual numbers for a 7 x 7 calculation at an 8 Ry cutoff energy.
The nonlocal pseudopotential, wavefunction update, orthonormalization and charge density
consume almost all of the processing time. On iterations where forces are computed, the
nonlocal force computation adds an additional 60 percent to the processing load. However,
since this function is called only once every five to ten iterations, its fraction of total pro-
cessing time is small. Noting that generally Ng, Np, and the product Nx Ny Nz all grow
linearly with the number of atoms N4, and neglecting logarithmic factors, we find that the
overall algorithm scales as O(N3/P) on P processors. The algorithm is thus scalable and
is well suited to handling larger numbers of atoms and running on larger paralle] machines.
In Section V we will show that the N3 scaling is beginning to be approached for 500 atoms

and a P = 1024 floating point processor CM-2.
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Table 3.4: Approximate allocation of processing load among the major computational func-
tions.

Module Processing Load (FLOPS) MFLOP’s at 8 Ry
Hartree 43Ny Ny Nz .04
Exch.-corr. 166Nx Ny Nz 17
| Local pseudop. | 5Nx Ny Nz log,(NxNyNz) 11
NL pseudop. 10NsNgNiNg 127.62
Update ¥ NiNp((NxNyNz)5log,(NxNyNz) + 15NGN4) 290.82
Orthonorm. 1 | 2NyNg(Np)? 57.27
Compute p S5NyNENxNyNzlog,(NxNyNgz) 102.41

3.3 Performance

The performance of the 8 Ry computation on a 16K CM-2 processor array is shown in
Fig. 3.5. Among the modules computed on every iteration, the Hartree energy runs the
fastest. This computation of Vy(G) = p(G)/|G|? requires virtually no communication since
each value of Vi (G) is computed locally in the processor containing the corresponding value
of G. The large size of the G lattice also contributes to the efficiency since one can easily
amortize overhead for a function computing 128 x 128 x 64 lattice points. The exchange-
correlation energy computation is efficient for similar reasons. However, neither one —_qf these
two fast modules performs a significant fraction of the total processing work load. The local
pseudopotential does not run very fast, but it is not worth wasting memory to optimize

since it does not consume a significant amount of processing time.

Fig. 3.6 shows the distribution of work load and processing time among the differ-
ent modules in the computation. The nonlocal pseudopotential, wavefunction update, or-

thonormalization and charge density computation form the computational burden of the
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Figure 3.5: Algorithm performance for a 8 Ry Si(111)-7 x 7 calculation on the CM-2.

Car-Parrinelio algcrithm. To obtain efficient performance, it was necessary to optimize each
of these functions. Fig. 3.5 showed that each of these modules runs at roughly 300 MFlops
for an 8 Ry Si(111)-7 x 7 calculation on a 16K section of the CM-2. The similarity in
throughput among the four modules is somewhat surprising since they perform different
mixes of convolutions, Fourier transforms and dot products. As Fig. 3.5 shows, the dis-
tribution in processing time consumed by each major function corresponds closely to the
distribution of processing load performed by the function. In this respect, the implementa-

tion is balanced with no outstanding bottlenecks.

To further investigate how performance scales with the size of a material system, per-
formance was measured for processing loads associated with different sizes of bulk silicon
lattices ranging from a cube of side 5.43 A containing 8 atoms up to a cube of side 21.72 A
containing 512 atoms. For very large numbers of atoms, the processing load scales roughly

as the cube of the number of atoms in the system. If the number of atoms in the system
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Figure 3.6: Allocation of processing load and processing time among the major computa-
tional functions.

is doubled, then one of the dimensions in the unit cell will also double as will the number
of bands. The simultaneous doubling of atoms, bands and plane wave coefficients increases

the load by a factor of eight.

The processing time for different numbers of atoms in a 12 Ry calculation was measured
on the CM-2 at the Pittsburgh Supercomputing Center. The results fall into two domains.
Before the problem is large enough to fill the memory of the parallel processing array,
the total processing time scales as the cube of the number of atoms. In this ii:)majn,
the system is communication-bound and parallelism is not effective in accelerating the
computation. The arrow in Fig. 3.7 marks the point where a 12 Ry calculation saturates
a single 8K quadrant of the Pittsburgh CM-2, corresponding to about 64 atoms. Beyond
this problem size, one can efficiently allocate larger processing arrays for larger physical
systems. Now, the processing time increases more slowly than the processing load because

the processing efficiency increases. This behavior is confirmed in Fig. 3.8. The processing
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Figure 3.7: Processing time and processing load vs. number of bulk Si atoms at 12 Ry
cutoff energy.

rate is approximately constant at 70 Megaflops for systems with 64 or less atoms. As
the number of atoms exceeds this value, the throughput rate increases substantially. For
512 atoms on the entire 32K processing array at Pittsburgh, the throughput approaches
500 Megaflops. Of course, the required computational load also increases rapidly when one

attempts to increase the number of atoms in the system. But the results depicted in Fig. 3.8

larger systems.

The performance enhancement is more favorable when the cutoff energy :|s increased
for a fixed number of atoms. Due to the soft pseudopotential for silicon and the use of
nonlocal pseudopotentials, silicon calculations may be performed with an unusually low
cutoff energy. A larger cutoff energy is necessary in working with transition elements and
first-row elements. The computational load increases roughly as E,% , where E, is the cutoff

energy. For 256 Si atoms, roughly 500 billion floating point operations are necessary to
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Figure 3.8: Processing rate vs. log,(N), where N = number of bulk Si atoms.

perform each iteration in this cutoff energy range. Fig. 3.9 shows that the processing time
increases much more slowly than the computational load as the cutoff energy increases.
The drop in processing time as the cutoff energy increases from 20 to 24 Ry illustrates
the effect of doubling the size of the processor array. At 20 Ry and below, the calculation
fits on 16K processors. The processing time per iteration drops from 1200 to 750 seconds
when the system no longer fits on 16K processors and the processor array size is doubled.
Fig. 10 shows the corresponding throughput values. A 512-atom calculation at 2 plane
wave energy saturating a 32K Connection Machine approaches 750 Megaflops. Movmg to
a larger processing array to handle systems with more plane waves in a given volume is an
efficient use of parallelism. These results show that the largest throughput rates will be

obtained for problems with a relatively high cutoff energy and a relatively low number of

atoms.

The parallel implementation of the Car-Parrinello algorithm demonstrates that mas-
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Figure 3.10: Processing rate vs. cutoff energy for 256 bulk Si atoms.
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sively parallel computers enable one to perform ab initio total energy calculations on sys-
‘ems that are too large for treatment with conventional vector-pipelined supercomputers.
As one attempts to work with larger numbers of atoms in a material system, adding more
processors in ihe parallel computation increases the throughput rate. Massively parallel
computers become increasingly efficient with larger computations, so that the processing
time increases much more slowly than the increase in the computational work load. This
result also demonstrates that building larger parallel processing arrays would further reduce
the processing time. We found that the efficiency of massive parallelism is most favorable
when there is a large number of plane waves relative to the number of bands. A version of

this chapter is published in reference [60].
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Chapter 4

Application to the Si(111)-(7 x 7)
Surface Reconstruction

The size and speed cf massively parallel supercomputers has raised the complexity of mate-
rial systems that can be modeled using ab initio quantum-mechanical techniques to a new
echelon. In this section, we use our parallel Car-Parinello to show what this statement really
means by demonstrating the feasibility of performing ab initio calculations with supercells
approaching one thousand atoms. Specifically, we study the Si(111)-(7x7) reconstruction

using a supercell geometry with 700 effective atoms.

Semiconductor surface structures can be divided into two broad ca.tegories[6i]. The
first of these consist of structures which conserve the size and shape of the original two
dimensional unit cell. These are refered to as unreconstructed structures. The second cate-
gory corresponds to atomic displacements which modify the shape and size of the unit cell.
These distortions, referred to as reconstructions, are found on all faces of elemental semi-
conductors. Another characteristic common to a large fraction of the known semiconductor

surface structures is the fact that atomic displacements are not confined to the surface layer.
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Several semiconductors display substantial multilayer atomic displacements [62]. This extra
degree of complexity further separates most semiconductors from metals which generally
are characterized by surface geometries described in terms of small uniform contractions or
expansions of the top atomic plane alone, without change in the space group symmetry of

the surface.

The (7x7) reconstruction of Si(111) is perhaps the most complex and widely studied
surface of a solid. Since its discovery through low-energy electron diffraction more than
thirty years ago[63], an enormous amount of effort has been expended to elucidate the
properties of this important surface[64]-[76]. Based on this work, it is now generally accepted
that the geometry of the (7x7) reconstruction is described by a dimer-adatom-stacking
fault (DAS) model as proposed by Takayanagi et. al.[68]. The complexity of this geometry,
however, has defied any complete and realistic theoretical treatment of its properties. The
only progress that could be made theoretically was by isolating and modeling bits and pieces
of the surface. The only attempts at a complete work has been using an empirical tight
binding model to study the Si(111)-(7x7) reconstruction in a supercell geometry with 196

atoms(75] and an ab initio calculation at very low cutoff energy[77].

The calculations presented in this chapter predict the relaxed atomic geometri/'of this
system; allow construction of theoretical STM images as a function of bias voltages; and

predici the energy difference between the (7x7) and (2x1) reconstructions.
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4.1 DAS Model

The DAS model for the Si(111)-(7x7) surface reconstruction is shown in Fig. 4.1. The top
view is shown in figure 4.1(a). A dashed line outlines the unit cell boundary. Atoms at
increasing distance from the surface are indicated by circles of decreasing size. The largest
black circles denote the twelve adatoms. The large shaded circles denote six rest atoms
that lie one layer below the surface and are three-fold coordinated. There is also a single
corner hole in each unit cell, marked with a small shaded circle. Together, these nineteen
atoms account for the nineteen unbonded electrons on the reconstructed surface. Hollow
circles mark the remaining atoms on the first bilayer below the surface. The dimer pairs
surrounding each adatom triangle are an important feature of the first bilayer. Nine dimers
are present in each unit cell. The small black circles mark the atoms in the second bilayer
below the surface on the unfaulted half of the unit cell. The stacking sequence in the right
half of the unit is the same as in bulk Si while the stacking sequence in the left half is

faulted.

The side view (b) through the long diagonal emphasizes the depth of corner hole with
its dangling bond one full bilayer below adatom surface. The deep corner hole and (7x7)

periodicity of the unit cell necessitates a large supercell to accurately calculate the DAS

model.

4.2 Method of Calculation

Our surface model consists of a supercell with a slab geometry containing vacuum on both

sides. Periodic boundary conditions are applied in all directions. Figure 4.2 illustrates
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Figure 4.1: The DAS model for the Si(111)-(7x7) surface reconstruction.

the scope of the slab approximation. The slab contains the adatom layer and four surface
layers shown in Fig.4.1(b) plus a mirror image reflection in the vertical direction. Thus the
supercell consists of eight layers of atoms with adatom layers on both slab surfaces and a
region of 10A of vacuum. The 400 silicon atoms and the vacuum layer make this supercell

equivalent to a 700-atom system. Unit cell dimensions are 26.6A x 26.6Ax 22.5A.

We used the ab initio molecular dynamics scheme for calculating total energies and
performing simulated quenching[46],(51]. To compute the total energy, we used the Car-
Parrinello algorithm described in the previous chapter. Due to the large size of our unit

cell, only the I' point of the Brillouin zone was required for k-point sampling.

All atoms were allowed to move freely except the innermost two layers, which were

frozen in bulk positions. These atoms are marked by hollow circles in Fig. 4.2. Thus our

model of the surface includes the relaxation of three surface layers in addition to the adatom

layer. The atoms were assumed to be in their fully relaxed positions when the forces on the
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Figure 4.2: Vertical cross section through the plane of the long diagounal of the (7x7) unit
cell with periodic extensions illustrating the scope of the calculation.

ions were converged to 0.15 eV/A.

To check for convergence, we performed the calculation at 4, 5, 6 and 8 Ry. The 8 Ry
calculation requires a basis set size of about 36,000 plane waves per unit cell. Electronic
states were computed for 1,000 bands. The unit cell was sampled over a 64 x 128 x 128
lattice. Exclusive of temporary workspace, the calculation requires 400 million bytes of
memory. Computation of the wave function and relaxed ionic positions requires ~ 1014
floating operations, equivalent to running a supercomputer at one billion floating point
operations per second for one week. With a massively parallel Connection Machine CM-2

supercomputer, these performance requirements are currently feasible.

89



4.3 Surface Energy

The (7x7) surface reconstruction is experimentally observed to be the most energetically fa-
vorable Si(111) geometry. We compared the formation energies of the (7x7) reconstruction
with the other experimentally observed Si(111) phase, the 7-bonded (2x1)[78]. Cleavage
of Si to create the (111) surface results in a (2x1) metastable structure. This surface must
then be annealed to generate the stable (7x7) structure. The surface energy per (1x1) cell

for both structures is determined from the slab energy by
Esurf = Ealab - NatomEbulk (41)

where Epyk is the energy of bulk silicon computed with an equivalent k-point scheme, N,
is the number of atoms in the slab and F,, is the slab energy. To compute the energy of
the (2x1) surface, we used sixteen k points in the irreducible Brillouin zone that correspond
exactly to the k point I’ in the (7x7) unit cell. The equivalent bulk computation required
49 k points. At an 8-Ry cutoff energy, we find that the (7x7) reconstruction is energetically
favorable over the metastable (2x1) surface by 60 meV per (1x1) cell. Figure 4.3 plots the
surface energy of the (2x1) and (7x7) reconstructions as a function of cutoff energy. The
curves flatten significantly above 6 Ry, indicating that the 8 Ry calculation is closé‘to the

converged energy value.
4.4 Iomic Coordinates

The coordinates for all relaxed atoms in the slab are given in table 4.1. The coordinate
system corresponds to the tight-binding results of Qian and Chadi[75]. All reduced coor-

dinates (X,Y, Z) are with respect to the Cartesian system indicated in Fig. 1, where the
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Figure 4.3: The surface energies of T-bonded (2x1) and (7x7) reconstructions vs. plane-
wave cutoff energy computed for four-bilayer slabs at equivalent k-points.

x axis is along the cubic [110] direction, the y axis is along the [111] outward normal to
the surface. The actual atomic coordinates (z,y, z) are re'~ ted to (X,Y,Z) by the scaling
relations z = ¢ X,y = aY/V/3,2 = aZ//24, where a ~ 3.85A is the (1x1) surface hexagonal
lattice constant. We compare the results here with previous experimental and theoretical

work.

The degree of relaxation from bulk positions was far less in the horizontal plane parallel
to bulk layers than the degree of relaxation in the vertical direction. We found that most
bond lengths projected in the surface plane as listed by Robinson et. al.[79] agreed within
0.02 A with the semi-empirical calculations of Qian and Chadi[75]. The most significant
difference was an average dimer bond length of 2.45 A. Semi-empirical calculations predict

a bond length of 2.42 A. LEED and x-ray values are 2.45 and 2.50 respectively.

Vertical displacements are summarized by the average relaxation of each surface layer.
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Table 4.1: Relaxed atomic positions for the adatom layer and the first three surface layers
for the ab initio Tx7 calculation.

Atom z ¥ z

Adatoms 111500 1.500 | 1.662
214492 | 4491 | 1.594

316.002 | 6.002 | 1.555

4 19.005, 9.005 | 1.603

First-layer 5| 1.033 | 1.033 | -0.057
atoms 6 { 1.958 | 0.993 | -0.058
712481 | 2481 | 0.348

8 | 4.021 | 4.022 | -0.155

9] 4.974 | 4.050 | -0.099

10 | 5.980 | 5.057 | -0.135
1116478 | 6.478 | -0.163
12 |1 8.019 | 8.019 | 0.345
13 1 9.029 | 8.059 | -0.104
14 1 9472 | 9.472 | -0.111
Second-layer 15| 1.504 | 1.504 | -1.512
atoms 16 | 1.162 | 0.006 | -1.057
17 | 1.800 | 0.007 | -1.042
18 | 2.492 | 1.499 | -0.867
19 | 2.969 | 2.969 | -0.863
20 | 4494 | 4.495 | -1.561
21 |1 5403 | 4.780 | -1.046
22 | 6.004 | 6.004 { -1.567
23 |1 7532 | 7.532 | -0.871
24 | 8506 { 7.510 | -0.874
25 | 8.998 | 8.998 | -1.637
Third-layer 26 | 0.001 | 0.001 | -3.986 .

atoms 27 | 1.500 | 1.500 | -4.416 "
28 | 1.006 | -0.002 | -3.989
29 | 1.990 { 0.000 | -3.964
30 | 2.499 | 1.499 | -3.946
3112937 | 2997 | -3.951
32| 4499 | 4.499 | -4.460
33 | 5496 | 4.512 | -3.973
34 | 5999 | 5.969 | -4.440
35 | 7497 | 7.497 | -3.933
36 | 8.505 | 7.496 { -3.930
37 1 0.001{ 9.001 | -4.414
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Figure 4.4: Labels for various vertical displacements of interest.

We found that the adatom and top surface layer relaxed outward from their bulk positions,
while the second bilayer below was compressed. Figure 4.4 shows a side view of the unit cell
labelled according to Robinson and Vlieg {80] for the surface layers and Ichimiya [81] for
several interesting vertical displacements. Table 4.2 compares the layer relaxation with pre-
viously published x-ray[80], LEED([73],[74] and RHEED[81] experiments, a semi-empirical
calculation[75] and an local density approximation (LDA)[76] calculation of the (2x2) ge-
ometry. The slight compression of the two layers in the second bilayer below the surface is
seen in all results. All experiments and models also agree that the top surface la.ye;s relax
apart relative to their bulk values, and that the adatoms move away from the top surface
layer. The most outstanding difference among the results is the spacing between the first
and second bilayers. The x-ray and (2x2) LDA calculations report outward relaxations of
0.06 A and 0.02 A relative to bulk spacings. LEED and RHEED report compressions of 0.01

A and 0.09 A relative to bulk. Tight binding reports no change. We found a compression

of 0.02 A. A limitation on the confidence of this value is the limited number of bilayers in
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Table 4.2: Average surface layer displacements.

Spacing | bulk value | present work | x-ray [80] | RHEED [81] | LEED [73] | (2x2) [76] | Semi-emp [75]

Ad-1la 0.78 1.29 1.57 1.23 1.21 1.14 1.25
la-1b 0.78 0.83 0.85 0.83 0.84 0.80 0.88
1b-2a 2,35 2.33 2.41 2.34 2.28 2.37 2.35
2a-2b 0.78 0.73 0.75 0.68 0.72 0.76 0.66

our calculation. The (2x2) calculation used five bilayers instead of our four, which may
account for some of the difference beyond differences in the (7x7) and (2x2) geometries.

Experiments[82] report relaxation as deep as the eighth layer.

The adatom relaxation relative to the bulk value of the top surface layer is 0.06 A more
than the RHEED experiment and 0.15 A more than the (2x2). However, this spacing still
does not fall within the range of 1.58 £ .20 reported from x-ray reflectivity data. In another
(7x7) LDA calculation, Stich et. al. [83] found a slightly higher value of 1.33 A, which is

within error range of our result.

Table 4.3 shows more of the details of vertical displacements. The surface atoms bonded
to the adatoms (2) are slightly depressed from their bulk values by 0.08 A, which is consistent
with all published results. During ionic relaxation, the rest atoms (3) rose 0.27 A above
their bulk positions. This value falls between 0.25 A found by RHEED and thé‘~ (2x2)
LDA calculation’s 0.30. The other published (7x7) LDA calculation found a lower value
of 0.20 A. The atoms below the adatoms (4) dropped .43 A, an amount similar to other
published results. The atoms below these atoms (5) dropped 0.34 A, with 0.09 A taken as
compression of the vertical bond. Compression of these atoms is the fundamental source of

the net compression of layer 2a.
A difficult and interesting question surrounding the Takayanagi reconstruction has been
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Table 4.3: Average vertical ionic displacements.

Parameter | present work | Stich [83] | RHEED [81] | LEED [73] | Semi-emp [78] | (2x2) [76]
1 1.2% 1.29 1.16 1.10 1.23 1.16
2 -0.08 -0.12 -0.11 -0.08 -0.13
3 0.27 0.20 0.25 0.13 0.29 0.30
4 -0.43 -0.45 -0.28 -0.46 -0.49
5 -0.34 -0.41 -0.19 -0.45 -0.40
] -0.0¢ -0.08 -0.11 -0.08

7 0.10 0.09 0.16 0.05 0.17

the magnitude and source of the asymmetry in STM heights of the adatom triangles in
the faulted and unfaulted halves of the unit cell. Since the STM height difference varies
for occupied and unoccupied states, the effect is thought to be predominantly electronic.
However, the stacking fault should also influence the asymmetry by increasing the height
of adatoms on the faulted half. Chou, Cohen and Louie[84] found relaxations of ~ 0.05 A

by introducing a stacking fault into bulk Si.

The difference in vertical displacemenuts between faulted and unfaulted halves is shown
in table 4.4. The faulted adatom island lies 0.039 A higher than its unfaulted counterpart.
The semi-empirical result is 0.031 A. The only experimental result comes from LEED, 9.08
A. The asymmetry is slightly more pronounced for corner adatoms compared to center
adatoms, a result differing qualitatively with the semi-empirical calculation where virtually
all of the asymmetry was confined to corner adatoms. The rest atom heights were virtually
the same on faulted and unfaulted halves, which means that the rest atoms on the unfaulted
half are ~ .04A higher relative to neighboring adatoms. A similar result was found in the
semi-empirical calculation. Moving down into the unit cell, the asymmetry between faulted
and unfaulted halves decreases to 0.026 A for the first layer (/a) and 0.017 A for the second
(1b). Experimental LEED values are 0.050 for both layers. In this calculation the third

layer (2a) is slightly lower by 0.015 A for the faulted half due to the finite thickness of the
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Table 4.4: Difference in vertical displacements for faulted and unfaulted halves.

Structure present work | Semi-emp [75] | LEED [73]
Corner adatoms 0.047 0.055 0.080
Center adatoms 0.030 0.007 0.080
Rest atoms 0.003 -0.009 0.050
First layer 0.026 0.016 0.050
Second layer 0.017 -0.003 0.050
Third layer -0.015 -0.013 0.000

supercell slab.

4.5 Overview of Electronic Surface States

Scanning transmission microscopy has been sucessfully used to probe the electronic surface
states of the Si(111) in real space. An ab initio model of the surface enhances our under-
standing of STM data by confirming previous experiments and predicting features of the

surface which are difficult to measure experimentally.

According to the method of Tersoff and Hamman[85}, the current measured at the tip of
an STM probe due to tunneling from surface states is given by a sum over the local-density

"~

of states between the bias voltage and the Fermi energy.

Ep
io(r) = Y [6n(r)P8(En - Er) (4.2)

En=Eo

Adjusting the probe height to maintain constant current then traces out contours of
constant local charge density known as topographs. Figure 4.5 compares theoretical and
experimental STM topographs of the occupied and unoccupied states at a 2V tip bias.

The plots are based on the results of this calculation (top half, (a), (b)), and the experi-
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Figure 4.5: STM images of the Si(111)-(7x7) surface reconstruction.

mental results of Avouris and Wolkow([86] (bottom half, (c), (d))). Shown are theoretical
unoccupied (a) and occupied (b) state images, computed using the method of Tersoff and
Hamman[85], together with corresponding experimental unoccupied (c) and occupied (d)
state images. In these semi-quantitative gray-scale plots, a white pixel of maximum inten-
sity corresponds to a point with STM height greater than some maximum threshold, while
a black pixel of minimum intensity corresponds to a point with STM height less than some
minimum threshold. Points of height between the two thresholds are assigned intensity

values linearly proportional to their height above the minimum threshold.

Comparing first the topographs of the unoccupied states, one clearly observes twelve
adatoms in each unit cell surrounded by four deep corner holes. The adatoms on the fauited
and unfaulted halves appear to be at the same height, resulting in a flat ring of six adatoms

surrounding each corner hole.

Fz. the topographs of the occupied electronic states, cne observes the same twelve
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adatoms per unit cell surrounded by four corner holes, with several additional features
present. Rest atoms are now visible as light regions between adatoms, particularly on the
unfaulted half of the unit cell. The rest atoms are especially visible on the theoretical
topograph. The adatoms now appear at different heights, depending on their location in
the unit cell. Adatoms on the faulted half appear higher than their counterparts on the
unfaulted half. This effect is particularly noticeable by looking at alternating heights of
the six adatoms surrounding each corner hole. Corner adatoms appear higher than center

adatoms within the same adatom triangle.

The major differences between theory and experiment surround the visibility of rest
atoms and the relative heights of the adatoms. Both differences occur in the images of
the occupied states. The differences are due to the finite size of an experimental STM tip
compared to the infinitesimal size of a theoretical one. Tersoff and Hamman showed that
the finite size of a physical STM tip is taken into account by convolving a “perfect” STM
topograph with a gaussian window of width equal (R + d)/ X, where R is the tip radius,
d is the tip spacing and L is the exponential surface charge decay length. In order to
preserve the sharpness of the features in the theoretical topograph, no such convolution
was performed. The images were then made to look qualitatively similar by adjusting the
theoretical gray scale range to about 5 A, roughly five times the experiment=: range for this
particular image. The small tip size gives the theoretical image sufficient resolution to make
the rest atoms more visible. The smaller gray scale explains why vertical height differences

appear larger in the experimental topograph.

More quantitative data is found by plotting line contours through the long diagonal.

Figure 4.6 plots the STM height of both sccupied and unoccupied states through the long
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Figure 4.6: Theoretical STM depth vs position through the long diagonal.

diagonal of the unit cell. Tip bias is £2 V. The dashed line shows the unoccupied states.
There are four large peaks corresponding to four adatoms along the long diagonal. The
difference in height for corresponding peaks on the faulted and unfaulted halves of the
unit cell is small, approximately 0.04A, roughly the same amount as the structural height
difference between adatoms. The solid line shows the occupied states. In addition to four
large adatom peaks, two small peaks corresponding to rest atoms are also visible. The
height difference between faulted and unfaulted corner adatoms is ~ 0.11A whicli agrees

with experiments by Becker et. al. [70] and Tromp, Hamers and Demuth [87]. As shown

in Fig. 4.7 the height difference increases sharply when the bias voltage drops below 1.5 V,
an effect which has also been seen experimentally. The reason for this increase can be
understood by more closely studying the energy dependence of the occupied electronic

states.

While STM topographs give information about a range of states beginning or ending
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Figure 4.7: Difference in STM height for faulted and unfaulted corner adatoms vs. bias
voltage.

at the Fermi energy, it is possible to subtract two topographs in order to find particular
surface states. Hamers, Tromp and Demuth([88] experimentally identified three such states:

an adatom state at -0.35 V, a rest atom state at -0.8 V and a backbond state at -1.7 V.

Figure 4.8 shows the local density of states between -0.2 V and the Fermi energy through-
out a vertical plane along the long diagonal. The surface runs along the upper right edge
of plot, where the faulted and unfaulted sides of the surface are labelled. The four shaded
peaks near this edge are the adatom dangling bonds. The height of each peak is ;ropor-
tional to |$g,<E<EF(T,2)|?, where (z,2) is the location of the point in the vertical plane
along the long diagonal. The peaks are larger on the faulted half, indicating more charge
on this side of the unit cell. A rest atom peak is also visible on the faulted half at a greater
depth into the surface. Surface layers are labelled along the lower right edge. In this energy
range near the Fermi energy, the largest peak in the crystal is not on an adatom or 2 rest

atom but on the corner hole. This state is not reported experimentally in STM data.
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Figure 4.8: Occupied electronic states within 0.2 V of the Fermi energy through the long
diagonal plane.

Faulted half
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Figure 4.9: Occupied electronic states between 0.9 and 0.7 V below the Fermi energy.
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Figure 4.10: Occupied electronic states between 1.7 and 1.6 V below the Fermi energy.

Figure 4.9 shows the local density of states between -0.9 V and -0.7 V. This surface
state differs qualitatively with the adatom dangling bond state. The large peaks near on
the faulted (R-F) and unfaulted (R-U) rest atoms show that this state is localized on the
rest atom dangling bonds. There is a smaller peak on the faulted corner adatom. Fig. 1(D)
in Hamers, Tromp and Demuth [88] images the rest atoms as six dots in the unit cell for
this energy range. The blurs on the faulted rest atom dots are evidence of the charge on

the faulted corner adatom.

Figure 4.10 shows the backbond state near -1.7 V. Now the charge is distributed through
the slab with no clearly visible dangling bonds. Small shaded areas near the surface show

the remnants of adatom dangling bonds.

The differences between the occupied electronic surface states can be seen by comparing
contour plots in Fig. 4.11. The plot shows the adatom state near the Fermi energy (A); rest

atom dangling bonds at -0.8 V (B); and adatom backbonds at -1.7 V (C). The area and

102




Faulted Half Unfaulted Half

(A)

(B)

©)

o (00® .

@scccscscesscsssancoces essesce,

o B

Figure 4.11: Surface contours near the corner hole comparing the three occupied surface
states.

orientation of the plots is outlined in (D). These plots show the region of the surface along
the long diagonal near the corner hole. For the state near the Fermi energy, large dangling
bonds are visible on the corner adatoms. It can also be seen that the danglincg bond on the
faulted corner adatom is larger and extends further upward than its unfaulted counterpart.
There is also a significantly large dangling bond on the faulted rest atom. However, it is
more than 1A deeper into the surface. The corner hole is especially shallow at this energy
due to the large corner hole state, one contour of which is visible. This contour is;_nearly
2.5 A above the corner hole atom, about twice as high as the other dangling bonds. The
state at -0.8 V shows two large dangling bonrds on the rest atoms with a smaller dangling
bond on a faulted corner adatom. The backbond state at -1.7 V shows most of the charge

along the bond between corner adatoms and atoms in the layer directly below. No dangling

bonds are found on the rest atom, and very little charge sits above the adatoms.

Based on the relative amounts of charge on each dangling bond and its proximity to the
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Fermi energy, we might expect that the corner hole should be the most reactive sight, then
the rest atoms and Ist the adatoms. In an elegant STM study of NH; decomposition on
Si(111)-7x7, Wolkow and Avouris [89] have shown that, among all the silicon atoms with
dangling bonds, the Si rest atoms are more reactive than Si adatoms and the center adatoms
are more rective than the corner adatoms. Their study could not monitor the activity of
the atom recessed at the bottom of the corner hole. The electronic spectra obtained with
STM suggest that the rest atoms are reactive because they can transfer extra charge to
the neighboring adatoms [90] and thus react with NH3. The dangling bond of adatoms
experimentally appears to be more delocalized with a low density of states at the adatoms
site, leading to lewer reactivity. Our theoretical results confirm this adatom feature. With
respect to the corner hole, we must look to the infrared spectra obtained by Chabal [91]-
[93] for H on Si(111), since STM results are inconclusive. At low coverages of less than 0.2
monolayers, Chabal observed that the hydrogen bonds predominantly at the corner hole,
a result that is consistent with the corner hole being the most reactive site. In the next
chapter we will demonstrate how these results and others can be understood within the

context of surface softness and electronegativity.

Changes with bias voltage in the experimentally observed unoccupied states are more
subtle. At all bias voltages, Hamers, Tromp and Demuth[88] observed adatom structures.
At 0.65 V above the Fermi energy, the experimental STM heights of corresponding dangling
adatom bonds on the faulted and unfaulted halves of the unit cell was nearly the same.
The image near 1.2 V exhibits a reverse asymmetry compared to most energies since the
unfaulted half of the unit cell appears higher than the faulted half. At 1.6 V, the asymmetry

disappears once again.
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Figure 4.12: Contours comparing unoccupied surface states.

The theoretical picture is similar, as shown in Fig. 4.12. The contour plot in Fig. 4.12(A)
shows the flat adatom dangling bond structure at an energy of +0.5 V above the Fermi
energy. The dangling bonds on corner and center adatoms are nearly identical on faulted
and unfaulted halves. Also present are smaller dangling bonds on the rest atoms. Again,
there is little difference between faulted and unfaulted halves. At +1.1 V, our calculation
also finds that the dangling bonds are larger on the unfaulted half of the unit cell as seen in
Fig. 4.12(B). We also find that the charge on the rest atoms has nea.rly djsappeared and a
large amount of charge appears on the atoms bonded directly to the a.datoms Figure 4 12(C)
shows that at 41.7 V the surface again flattens out, with charge distributed more uniformly

through the surface and little asymmetry between the faulted ard unfaulted sides.

This section has shown how massiveiy parallel computation raises the complexity of
materials systems that can be modeled from first principles to a new echelon. Study of the

Takayanagi surface reconstruction of Si(111) shows that ab initio methods can successfully
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calculate several fundamental aspects of systems involving ~ 700 atoms. It is possible to
quantify the energy difference between a metastable state and the ground state even when
the systems are very large as was shown by comparison of the surface energies of the (7x7)
and (2x1) reconstructions. Since ab initio methods give accurate forces on ions, the relaxed
positions can be determined to a degree of accuracy limited mainly by the number of layers
in the slab. Detailed studies of electronic states are also possible. In thiz chapter we showed
that the results agree with available experimental data and predict new results in other

cases. This material in this chapter is published in references {1] and [94].
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Chapter 5

Surface Reactivity of the
Si(111)-(7x7) Reconstruction: A
Density Functional-Theoretic
Analysis

Electronic properties of semiconductor surfaces are active areas of experimental and theo-
retical investigation[88]. It is known that the valence electrons of surface atoms that are
not involved in covalent bonding, referred to as dangling bonds, constitute active sites for
surface reactions{95]. Dangling bonds determine, to a large extent, the chemical properties
of the surface. However, the details regarding the effect of the local environment;.on the

surface reactivity are not well understood.

In this chapter, we discuss an ab initio theoretical investigation of the chemistry on
the Si(111)-(7x7) surface reconstruction. This surface is a challenge for studying surface
chemistry because a single atomic species reconstructs into seven different types of dan-
gling bonds in the unit cell. While experiments testing the reactivity of these sites have

been performed with a variety of chemisorbed gases[96], [97], no corresponding theoretical
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picture of the complete surface has emerged due to the complexity of the unit cell. How-
ever, with parallel supercomputers, realistic theoretical calculations of the Si(111)-(7x7)
reconstruction are finally possible. Thus, an ab initio rationalization of the chemistry of
this system is now feasible through the use of Density Functional Theory methodologies
(DFT)[48]. Recently, DFT has also provided an interesting technique for using electronic
structure to analyze chemical reactivity{98]. In particular, local softness[99] has emerged as
a useful tool in the analysis of local reactivity behavior in systems ranging from molecules
to solids{100]-[104]. An interesting feature of local softness is that for surfaces, it could be
estimated through scanning tunneling microscopy under conditions of low temperature and

low bias voltage[105].

Our attempt to understand some aspects of the rich chemistry of the Si(111)-(7x7)
reconstruction is based on a careful study of the behavior of regional softness on the surface.
Thus, our rationale for analyzing chemical reactivity uses two well defined DFT concepts.
The assignation of donor or acceptor roles in charge transfer processes depends on chemical
‘potential (electronegativity) differences between the surface and the attacking species. Once
the role of the surface in the charge transfer process has been determined, local softness
distinguishes the abilities of different sites (dangling bonds) on the surface to perform charge

transfer.

The chapter is organized as follows. Section one describes the electronic surface states
of the Si(111)-(7x7) reconstruction in a chemical reactivity context. The basic definitions
behind local softness and its application to surface reactivity are discussed in section two.
The chemical reactivity of the Si(111)-(7x7) reconstruction is analyzied in section three.

Conclusions are presented in section four.
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Figure 5.1: Si(111)-(7x7) surface dangling bond sites.

5.1 Local Properties of Electronic Surface States

The Si(111)-(7x7) reconstruction has a rich and complex chemistry because it contains a
diverse set of dangling bonds which are in many respects similar; thus, it is difficult and
challenging to rationalize the dramatic differences in reactivity among the different sites on
the surface. This reconstruction is one of the most studied in the literature, however, only
with the use of massively parallel computers are ab initio studies of its electronic structure
tractable. In particular, we used the ab initio molecular dynamics scheme for ca.lcula{ing the
electronic states and computing the relaxed positions of the ions. Details of the calculation,

including parallel implementation, were described in the Chapter 3.

The relaxed positions of atoms in the 7X7 unit cell are plotted in Figure 5.1. A top view
of the surface with the unit cell outlined with dotted lines is shown in Figure 5.1{a). The

principal features were described in Chapter 4. In this figure, all unique dangling bonds

109



are labeled with capital letters corresponding to Wolkow and Avouris[89]. The faulted and
unfaulted rest atoms, denoted by shaded circles labeled A and A’ respectively, sit on the
top surface bilayer. There are a total of six rest atoms, three on each side of the stacking
fault. The large black circles labeled B, B/,C and C’ denote adatoms sitting on the top
of the first surface bilayer. The six adatoms on each side of the unit cell form triangles.
Adatoms at the faulted and unfaulted triangle corners B and B’ are chemically distinct
from adatoms at the triangle centers C and C’. The relative heights of the surface atoms
are plotted in Figurc 5.1(b), showing a side view through the long diagonal of the cell. It
can be seen that the rest atoms with the dangling bonds are buckled slightly upward from
the positions of other first-layer atoms. In the side view, the depth of the large hole at each
corner of the cell is also apparent. Inside this corner hole sits the nineteen*h dangling bond

site, labeled D.

In this section we describe the behavior of the local density of states of the Si(111)-
(7x7) reconstruction as a function of energy for the different atomic sites on the surface.
Figure 5.2 surveys surface states with a series of contour plots at 0.2 eV intervals between
-2 and +2 eV. The figures compare the same vertical slice through the long diagonal of the
corner hole with the faulted side on the right. The state at -1.9 eV is clearly a backbond
state, as charge is evident between adatoms and first-layer atoms. The adatom states show
evidence of pentavalent character. A fifth bond between adatoms and the atoms directly
below is visible. The charge distributions near the corner hole and the rest atom also have
a backbond character, but no charge extends directly above or below these atoms. Only
the adatom states have a slight dangling bond character. At -1.7 and -1.5 eV the surface
states retain their backbond character. At -1.5 eV there is a bond between first-layer atoms

and atoms directly below adatoms.
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Figure 5.2: Contour plots of the local density of states for several values of energy in a plane
perpendicular to the surface along the longest diagonal.




The cha?ge density decreases but retains a backbond character until an energy of -0.9
eV, where rest atom dangling bonds appear. At this energy, the only backbond left on the
surface is the corner hole. The rest atom dangling bonds are symmetric between faulted
and unfaulted halves of the surface. A slight dangling bond is also visible on the corner
faulted adatom. Contrast between rest atom and adatom dangling bonds is maximum
at this voltage. Experimental STM images of these rest atoms states were reported by
Hamers, Demuth and Tromp[72],(88]. The rest atom dangling bonds increase in intensity
as the energy approaches 0.5 eV below the Fermi level. At this energy, the rest atom bond
density is high, with no difference between faulted and unfaulted halves. The corner hole
dangling bond is also large. These bonds have sp® character, with backlobes below the
surface. The depth of the corner hole decreases substantially at this energy. The dangling
bond on the faulted corner adatom is also visible. To lesser extent, one can see dangling
bonds on the other adatoms. The order of intensity of adatom dangling bonds is faulted

corner > faulted center > unfaulted corner > unfaulted center.

At -0.3 eV, the dangling bonds on the adatoms reach their maximum density. However,
the adatom dangling bond densities are still less than the rest atoms dangling bond densities,
proof of charge transfer to the rest atoms. The corner hole peak is smaller. The occupied
states -0.1 eV below Er have strong dangling bond character. Adatom dangling bond
densities are comparable to the faulted rest atom. The unfaulted rest atom is smaller. The

largest dangling bond is at the corner hole.

The most notable difference between occupied and unoccupied states is the absence of
~ dangling bonds on the rest atoms. At 0.1V above Ef, adatom dangling bonds are present

with little dangling bond character at the rest atoms. The corner hole dangling bond is
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Figure 5.3: Density of states at different dangling bonds averaged over faulted and unfaulted
halves of the unit cell.

still visible. The adatom dangling bond densities peak at 0.3 eV, indicating the unocupied

nature of the adatom surface states.

At 0.7 eV, the unoccupied backbond states begin. There is a substantial amount of
charge on first-layer atoms near the corner hole. The corner hole is now deeper in the
absence of its dangling bond as was the case for occupied states. At 1.3 eV, the pentavalent
bond is visible, as are backbonds. At 1.7 and 1.9 eV, the charge distribution across the

surface actually flattens out, something that Hamers et al. observed.

Figure 5.3 plots the local density of states as a function of energy near the Fermi
level. Unfaulted and faulted dangling bonds are averaged together here because differences
between these surfa,cé states are more subtle as subsequent figures will show. The curves are
computed by averaging the charge density over a 3Ax 3A x 3A volume at each dangling

bond site. Computations were performed at the I point in the Brillouin zone with Gaussian
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smoothing applied. Curve A shows average density spectra near rest atom sites. The
characteristic features are strong occupied bands at ~ 0.5 eV below Er. The energy and
intensity of this band suggest that the corresponding rest atom dangling bond state is fully
occupied. Curve B shows densities averaged near corner adatoms. It shows an occupied
band at ~ 0.3 eV below Er and an unoccupied band at ~ 0.4 eV above Er. These bands
correspond to the occupied and unoccupied parts of the corner-adatom dangling bond states.
It is clear from the size of the occupied peak and the presence of a large unoccupied peak
that the adatom bands are not fully occupied. The band at ~ 2 eV below Ef is an adatom
back-bond sfate. The peak is small due to delocalized nature of this state. The very small
band at ~ 1.5 eV above EF is also primarily an adatom backbond state. The center-adatom
spectrum (curve C) looks essentially similar to the corner adatoms on the scale of this plot.
Curve D shows two large occupied dangling bond peaks in the corner hole directly below
Er,one at ~ 0.1 eV and the other at ~ 0.5 eV. Cherif[106] recently observed experimentally
that the corner hole state is similar to the rest atom state. We see from Figure 5.3 that
the corner hole density of states peaks at -0.5 eV in a manner similar to the rest atoms.
However, the corner hole DOS has an additional peak directly below Er. This difference

will affect the reactivity of this surface site.

Figures 5.4 and 5.5 compare the much smaller differences between dangling bonds.
Figure 5.4 compares corner and center adatoms. It can be seen that the corner adatoms
have larger peaks below Eg, while the center adatoms have slightly larger unoccupied peaks.
These qualitative differences have been observed in STM images. Figure 5.5(a) compares
faulted and unfaulted corner adatoms. The faulted adatom has a larger peak below Ef,
while the unfaulted corner adatom has a slightly larger peak slightly above Ep. The faulted

and unfaulted center adatoms, are compared in Figure 5.5(b). The local density of states on
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Figure 5.4: Local density of states for corner and center adatoms averaged over faulted and
unfaulted halves of the unit cell.

) Faull |
(A) |
|Unfaulted | |
Fau

@ AA l ,

| Unfaulted |
Fallllted ’
dnfaulted

(C) |
; . i
o2 48 A4 0.8 (1} 0.8 1 1.8

. 2
Figure 5.5: Differences between faulted and unfaulted states:(a) faulted and unfaulted cor-
ner adatoms; (b) unfaulted and faulted center adatoms; (c) faulted and unfaulted rest
atoms
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the unfaulted center adatom occupied state is substantially less than the density of states
on the faulted corner adatom. The faulted center adatom also has a highér unoccupied
density of states close to Er. The filling of the rest atom dangling bond state and the small
occupation of the adatom state suggests an adatom to rest atom charge transfer process[90).
The relative local densities for center and corner adatoms show that most of this charge is
contributed by the center adatoms. Each center adatom has two rest atom neighbors while
corner adatoms have only one. Figure 5.5(c) compares faulted and unfaulted rest atom

states. The unfaulted state is at slightly higher energy, while the faulted state is slightiy

more occupied.

Differences in the electronic structure surrounding each site on the surface, such as the
ones described above, should have important consequences in the chemical reactivity of the
surface. In the following sections we analyze those differences in the context of a reactivity

parameter which contains regional differences: the local softness.
5.2 Local Softness and Surface Reactivity

Local softness was introduced within the context of the finite temperature extension of

DFT. In this formalism, the grand potential is a functional of the density

QUp(e)] = [(u(r) - wo(r)dr + Flo(r)] (5.1

where p is the chemical potential, v(r) is the external potential and F[p(r)] is a univer-
sal functional of the density, that incorporates the kinetic energy, the electron-electron

interaction and an entropy term. In this representation of DFT, the natural variables are

temperature T, volume V and chemical potential.
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According to Yang and Parr{99], local softness is defined as

s(r) = (Q%%Q)u(r) : | (5.2)

Three alternative expressions for s(r) have given this quantity a remarkable place in the
spectrum of local reactivity indices defined in the framework of DFT. The first one was

obtained by Yang and Parr,
s(r) = FI:F(< p(E)N > — < p(r) >< N >) (5.3)

where N is the number of electrons, and <> implies an average over the grand canonical
ensemble. This expression indicates that large local fluctuations in p(r) go together with
large local softness. The relevance of this fact in catalysis, as pointed out by Yang and
Parr, is related with the idea of Falicov and Somorjai[107] that catalytic activity in transition
metals is associated with low-energy electronic fluctuations. The second relation establishes
that local softness and the derivative of the density with respect to the number of electrons,

the Fukui function[108], f(r) has the same local information

s(r) = (%) = ST (5.4)

The constant scale factor S is the global softness which is the integral of s(r)[éS]. As
has been pointed out, if the frozen-core approximation is used, f(r) reduces to the density
of the highest occupied orbital or to the density of the lowest unoccupied orbital (frontier
orbitals) depending on the charge transfer process considered to perform the derivation
with respect to N; consequently, Eq. (4) indicates that s(r) contains the frontier orbital

behavior as a limiting case. The third equation,

s(r)= (66”—1(1))”1 | (5.5)
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gives an interpretation of s(r) which is interesting for our purposes of obtaining an index
that distinguishes regional capabilities for charge transfer effects on surfaces: local softness
measures the ability of the system to donate or accept electrons at a particular point in
space as the external potential is changed at that point. This equation was first obtained by
Harbola, Chattarraj and Parr[109], and was used recently[103], [105] for justifying a relation

between s(r) and Scanning Tunneling Microscopy (STM) images. The relation with STM

images establishes that under conditions of low bias voltage and low temperature, local
softness is an experimentally measurable quantity for surfaces. There is also an interesting
result that identifies the difference in local softness between reactants A and B, As(r) =
sa(r)—sp(r), as a driving force for charge transfer. In this approach, an expression for the

change in the number of electrons in terms of As(r) is obtained:
d< N >= %/As(r)A[y - v"(r)}dr (5.6)

where Av"(r) represents relaxation of the nuclei, and Ay is the change in the chemical
potential of the combined system AB. Then it follows that for a given relaxation of the
nuclei and a given change in the chemical potential, a large charge transfer arises from a
large softness difference. The physical meaning of local softress extracted from Egs. (5)
and (6) shows that local softness should be a good measurement of regional charge fgfa.nsfer

abilities.

Now, let us focus the attention on regional softness. As we want to distinguish the
capabilities of different dangling bonds on the surface to perform charge transfer, we define

regional softness s; as

8 =/ s(r)dr. (5.7)
Q
This integral is done on a volume Q; surrounding the dangling bond i. This quantity
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measures the differences in the environment of each dangling bond on the surface. As an
extension of the physical meaning of the local property, we assign to s; the mea,nir.lg of a
measure of the ability of the dangling bond i on the surface to perform charge transfer.
Following Politzer[110], we can use the name proposed by Huheey[l111] for this kind of
property: charge capacity. Thus, in the present approach to the reactivity of the Si(111)-
(7x7) reconstruction, differences in charge transfer capabilities amony different dangling

bonds will be determined through s;.

The usefulness of hardness and softness in solid state systems has been pointed out
in several applications of the concepts. In order to consider a semiconductor surface, we
must extend the s(r) definition of Yang and Parr for metals to systems with a gap. From
now on the discussion is restricted to zero temperature but it may be extended to finite

temperature. The charge density p(r) for a solid state system can be expressed as

(o) = [ dEg(E,r) (5.8)

where g(E,r) is the local density of states
9(E,r) = 3 |i(r)*6(E - E). (5.9)

The chemical potential u is equal to the fermi level Ep. The wave function 1;(r) is associated
to the eigenvalue E;. According to the definition of s(r) (Eq. 2) one has to deal with the
derivative of the density with respect to the chemical potential. By using Eqgs. {2) and (8),

local softness may be written in the form

8p(r)) .1 /“+5"
_ = lim — dEg(E,r). 5.10
( O /1 ur) b0 op Ju 9(E.x) (5.10)

In general, 6u could be positive or negative, thus, there are two different derivatives.

We must analyze the physical meaning of the two possible signs in §u. Local softness was
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defined in the context of the finite temperature extension of DFT. In this formalism, the
grand potential is a functional of the density and the independent variabies are u, v(r) and
temperature. At constant v(r) and T, the physical situation may be visualized as depicted
in Figure 5.6. The system is in thermal contact with a heat reservoir at temperature T,
and the system and the reservoir freely interchange electrons. The external potential of
the system as determined by the atomic positions for a surface is assumed fixed. In this
picturé, tke chemical potential of the system changes according to the modifications of the
same variable in the reservoir at constant temperature. During this process the system
" interchanges electrons with the reservoir. For some changes in p the electrons flow to the
reservoir and for others the flow goes to the system. The former process is related to
the interaction of the system with electron acceptors (electrophiles) and the later to the
interaction with electron donors (nucleophiles). At this point it is important to distinguish
two different cases. For gapless systems (i.e. metals) the number of electrons as a function
of the chemical potential N(u) is a continuous increasing function with continuous first
derivative in the vicinity of the fermi level. In systems with a gap, (i.e. semiconductors)
N(u) is constant in the vicinity of the fermi level, and is an increasing function for values of
p which are in the conduction or in the valence regions The differences between metals and
semiconductors are illustrated in Figure 5.7. For semiconductors, N{u) has a discoxi!:inuous
first derivative indicating that the gap is identified as a region in the (N, i) space in which

global softness S is equal to zero:

= 0. (5.11)

v(r)

oy
\ Op

The discussion in this section shows that positive values of éu are related to processes

where the system increases its number of electrons while negative values are related to a
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Figure 5.6: Schematic illustration of the interaction of the electronic system with a charge
reservoir.
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Figure 5.7: Schematic illustration of the chemical potential as a function of the number of
electrons.
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reduction in the number of electrons. The two limits associated with Eq. (10) are therefore
different for a semiconductor because for positive éu the change in the density is due to
bands which are on the edge of the valence band, while for negative éu the density <hanges
involve bands at the edge of the conduction band. An interesting conclusion emerges from
Eq. 10 if we recongnize the integral as the contribution to charge density from states which
are in a vicinity 6u of the Fermi level. Then, due to the weighting factor ﬁ the states
that contribute the most to s(r) are those which are closer to the Fermi level. By recalling
the discussion surrounding Eq. (4), one can conclude that Eq. (10) contains the frontier

orbital theory for solid state systems, giving a strong support for the use of local softness

as a chemical rectivity index in solids and in surfaces.

5.3 Chemical Reactivity of Si(111)-(7x7) - Local Softness
and Charge Capacity

In this work, the local softness is estimated through a finite differences version of Eq. (8),

sau(r) = (?g%l) Toie) & ALF/"HA“ dEg(E,r) (5.12)
The values for charge capacity are obtained by the integration of s(r, Au) over volumes of
3x3x3A centered on each dangling bond. These values depend on the interval Auchosen
for the finite differences derivative. According to the formal definition of s(r), Eq. (8),
one should select Au as small as possible. However, one must be careful to include the
basic differences between the occupied énd unoccupied states close to the Fermi level. To

compromise between the formal definition and physical content of [ s(r, Ap)d3r we average

from Ag = 0 to Ap = £0.5 eV. The final values obtained are summarized in Table 5.1.

It was mentioned above that charge capacity is a measure of charge-donor or charge-
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Table 5.1: Charge capacity for different atoms on the surface.

Atom

corner hole atom

faulted corner adatom
unfaulted corner adatom
faulted rest atom
unfaulted rest atom
faulted center adatom
unfaulted center adatom

Donor Capacity | Acceptor Capacity
1.00 0.29
0.00 0.47
0.07 0.96
0.92 0.00
0.75 0.24
0.20 1.00
0.15 0.78

Table 5.2: Charge capacity order for different sites on the Si(111)-(7x7) reconstruction.

surface donor capacity
surface acceptor capacity

corner hole > rest atoms > adatoms
adatoms > corner hole > rest atoms

Table 5.3: Differences in charge capacity between faulted and unfaulted halves

As a donor faulted rest atom > unfaulted rest atom

As an acceptor | faulted center adatom > unfaulted center adatom
unfaulted corner adatom > faulted corner adatom
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Figure 5.8: Local softness for a plane parallel to the surface showing hard and soft channels.

acceptor abilities. The analysis of the values of Table 5.1 shows that the donor and acceptor
capacities follow the order displayed in Table 5.2. Table 5.3 summarizes the differences in

chiarge capacity between faulted and unfaulted halves of the unit cell.

Local softness calculated on a plane parallel to the surface is displayed in Figure 5.8.
As is expected, its behavior is dominated by the electronic structure of the adatom layver.
Oue can see that there are hard channels associated with the sites in which there are rest

atoms in the second layer, and corner hole atoms in the deepest layer of the reconstruction.

On the other hand the soft chaunnels are situated on top of the adatoms.

(/eneral Reactivity Patterns. According to Table 5.2, electrophilic attacking groups
interact with the surface in the following order: corner hole > rest atom > adatoms. The
corner hole and rest atom reactivites are strong, while the adatom reactivity is relatively
woak.  The nucleophilic groups interact with the surface mainly through the adatoms.

to a lesser extent with corner holes, and most weakly with the rest atoms. Among the
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Table 5.4: Chemical reactivity of the Si(111)-(7x7) reconstruction

Reactant Method Reactivity
H Spectroscopy[91] The most active site is the
corner hole atom
Pd,Ag,Li STM[95},[112][113][114] | The faulted half is preferred and reactants

are believed to bond primarily to rest atoms and
center adatoms

NH3,H,0,PH3 | STM[95] rest atoms > center adatoms > corner adatoms

seven different dangling bond- the corner hole is unique in exhibiting a strongly active site
for electrophilic reactants as well as exhibiting some reactivity for nucleophilic reactants.
Adatoms are more selective towards nucleophiles. While rest atoms are strongly reactive

toward nucleophilic species, the rest atoms are weakly reactive toward electrophilic species.

We now ccnsider the effects of the stacking fault in the reactivity of the Si(111)-(7x7)
reconstruction. With respect to donor capacity, there is a clear distinction between reac-
tivity at faulted and unfaulted halves as shown in Table 5.3. Electrophiles should prefer to
interact with the faulted half of the surface, and in-particula.r with the faulted rest atoms.
With respect to acceptor capacity, there does not appear as strong a selectivity for one half
or the other. Neverthelss if a donor (nucleophile) prefers to react with the faulted half, the
interaction will be primarily with the faulted center adatom, whereas if the unfaulted half

is selected the interaction is generally with the unfaulted corner adatom.

Reactions Preserving Reconstruction. To illustrate the utility of the present approach
we will apply it to analyze some experimental reactivity patterns of the Si(111)-(7Xx7) re-

construction. In particular, Table 5.4 displays the reactivity patterns for some attacking

125



compounds which maintain the reconstruction. The experimental information was obtained
using infrared spectroscopic techniques by Chabal et al.[91]-[93] and by scanning tunneling
microscopy (STM) by Avouris and colleagues[95]. To classify the reactants as doner or ac-
ceptors we used an electronegativity criterion. If the difference in electronegativity between
the surface and the reactant is negative then the reactant is the acceptor and the surface the
donor. If the difference is positive the roles are inverted. Table 5.5 shows these differences
for a series of compounds. Electronegativities for the reactants were taken from Pearson’s

estimations[115],[116]. The surface electronegativity is the work function, 4.8 eV. -

Interaction with Hydrogen. According to Table 5.5, H can be classified as an acceptor
species with respect to the surface. Hydrogen is one of the most electronegative of the

neutral reactants listed in this table. From Table 5.1 it is clear that the corner hole atoms are

of Chabal et af[91]-[93] summarized in Table 5.4.

Interaction with Pd, Ag, and Li. According tc Table 5.5, these metal atoms are electron
donors with respect to the surface[112]-[114]. Thus, our theoretical calculations suggest that
they should interact primarily with adatoms and specifically with faulted center adatoms.

This is again consistent with the experimental evidence summarized in Table 5.4. _

Interaction with NH;, H,0, and PH;. These molecules dissociate on the surface into the
anions OH~, (NH;)~, and (PHz)~ and the cation H*. From Table 5.5 all of the dissociation
products except the proton are donors. The proton is clearly a strong acceptor. By assuming
that the dissociation process takes place in the initial step of the reaction without inducing
large changes in the chemical potential of the surface, we determine the order of preferential

reactivity as corner hole atoms, then rest atoms and last the adatoms. Table 5.4shows that
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Table 5.5: Global softness and relative electronegativity 1 of reactants

Reactant global softness (eV) | electronegativity
Li 0.42 -1.8
Ag 0.32 -0.4
Pd 0.26 -.03
PHj 0.17 -0.7
H 0.16 24
NH; 0.12 -2.2
H,0 0.11 -1.7
Anionic Radicals

NH, 0.19 1.3
OH 0.18 1.7
PH, 0.23 0.7
Hard Acceptors

BF; 0.10 1.4
K+ 0.07 13.2
N, 0.11 1.9
Soft Donors

Na 0.42 -1.9
Al 0.36 -1.6
Ga 0.34 -1.6
Hard Donors

CH4 0.10 -2.3
(CH3)20 0.13 -2.8 h
C-C3H6 0.13 -2.0
Soft Acceptors

I, 0.29 1.2
Irt , 0.26 8.2
Pt 0.29 0.8
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Table 5.6: Predicted reactivity of the Si(111)-(7x7) reconstruction.

Reactant Reactivity

Hard Acceptors: BF3,K+,N; corner hole > rest atoms > adatoms
faulted rest atom > unfaulted rest atom

Soft Donors: Na, Al, Ga adatoms > corner hole > rest atoms

faulted center adatoms > unfaulted center adatoms
unfaulted corner adatoms > faulted corner adatoms

Hard Donors: CHy4,(CHj3),0,c-C3Hg | corner hole > rest atoms > adatoms
surface interaction could
active or break some bonds in the reactant.

Soft Acceptors: I,Irt Pt should react weakly with the order:
corner hole > rest atoms > adatoms

the predicted reactivity order of rest atoms and adatoms agrees with experimental STM
data[95]. Our calculations show that corner hole site is the most reactive. Due to the depth
of the corner hole below the adatom and rest atom layers our predictions regarding the
reactivity of the corner hole with respect to NH3, PHa, and H,0. have not yet been tested

experimentally.

By using Pearson’s electronegativity tables and the work function of the surface, one is
able to classify a great variety of atoms and molecules as donors or acceptors with respect
to the Si(111)-(7x7) reconstruction. Selected examples are presented in Table 5.6 in::luding
predictions of possible reaction patterns. The predictions assume non-dissociative interac-

tions and that surface reconstruction is maintained.

The local version of the Hard and Soft Acids and Bases (HSAB). Now, we analyze
the behavior of local softness for the Si(111)-(7x7) reconstruction in the context of the

local version of the HSAB principle. This principle establishes that given a system with
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different reactive sites, its hard regions prefex: to interact with hard species whereas its
soft areas prefer soft attacking groups to react. Recently, the validity of this principle has
been confirmed in the case of the Siy cluster[103]. In the present case, for the reactions we
analyzed above, hydrogen and the three molecules (NHa, H,0, and PH3) have low values of
softness, indicating that they are hard while the metals (Li, Pd, and Ag) have high softness
values indicating that they are soft. Since charge capacities quantify the“global softness”
for each region of the surface involved, we can test the validity of the local HSAB principle
for this case. Considering hydrogen first, it is a hard acceptor according to Table 5.5
but it mainly reacts with the softest site on the surface (corner lole atom) for this kind of
interaction, in contradiction to the local HSAB principle. Metals which are soft donors react
with soft sites (adatoms) on the surface in agreement with the local HSAB principle. The
three molecules are hard donors but their corresponding dissociation products are slightly
softer and positive acceptors. Thus, if the actual reactants are the dissociation products
they are reacting mainly with donor sites (rest atoms) that are softer than adatoms. Again,

the behavior is contrary to the local HSAB principle.

A possible explanation comes from the topography of the surface. At rela.ti.vely large
distances from the surface, the local softness is dominated by the relatively close adatom
layer since rest atoms and the corner hole are buried below the surface at a much greater
distance from the approaching reactant. Applying the local HSAB principle at long dis-
tances from the surface identifies the subsurface rest atoms and corner hole as hard channels
for H, OH-, (NH;)~ and (PH2)~. The soft channels for the interaction of metals with the
surface are then the adatoms, in agreement with the local HSAB principle. In this picture,
the local HSAB principle orients the reactants at long distances from the surface. In the

context of the charge transfers effects and the HSAB principle H20, NH; and PHj interact
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with the surface as though trapped in a wrong channel, resulting in dissociation in the early

stages of the reaction. Consequently, the dissociation could be a attributed to some charge

transfer toward antibonding orbitals.

5.4 Conclusions

Surface chemisorption depends on a variety of factors, especially electronic effects dictating
the existence and magnitude of activation barriers, as well as dissipative chanuels for the
energy of incident reactants, steric constraints, and surface diffusion. The close similarity of
different dangling bonds sites on the complex Si(111)-(7x7) surface reconstruction means
that most of the common chemisorption factors are virtually identical among the different
sites. The present work shows that the general qualitative behavior of the reactions with the
Si(111)-(7x7) reconstruction is explained by differences based on two parameters describing

the electronic surface states: the global electronegativity, and the local softness.

The definition of local softness introduced by Yang and Parr for metals was extended
to systems with a gap to obtain regional softnesses for the Si(111)-(7x7) reconstruction.
Two different classes of regional softness were calculated, one related to the nucleophilic
(donor) capacity, and the other related to the electrophilic (acceptor) capacity of the surface.
Accordingly, an order was assigned for the nucleophilic and electrophilic nature of the seven
dangling bonds of the surface. From this analysis of regional softnesses, a general qualitative

behavior for the reactivity of this surface reconstruction emerges.

The analysis of some particular cases illustrates the utility of the present approach:

e By using the electrophilic order of the dangling bonds obtained from regional softness,

130



one can understand the strong selectivity of the corner hole atom for atomic hydrogen.

o Interesting reactive differences of the surface depend on the stacking fault. These
differences are clearly present in the regional softness. In particular differences in
regional softness determine the preference of soft donor metals for interaction with
the faulted center adatoms. Perhaps, this is the origin of the predilection of metallic

particles to condense on the faulted half of the unit cell.

o Understanding the reactivity of molecules such as H,O, NH3, and PH3, which are
species that dissociate during the interaction, imply the use of the dissociation prod-
ucts for performing the analysis. Thus, one should assume that the dissociation occurs
in a first step of the reaction, and that during this first step the Fermi level (work

function) and the regional softnesses of the surface do not change strongly.

Some particular cases are mentioned as predictions subject to the restrictions of main-
taining surface reconstruction, and to a non-dissociative chemisorption. A detailed analysis
of the local HSAB principle indicates that, for this case, this principle is orienting the reac-
tants long distances defining hard and soft channels. Finally, it is important to notice that
local softness and consequently regional softness could be obtained experimentally from
STM experiments. Then, the methodology for analyzing surface reactivity described\in this

work involve two experimental system properties: Fermi level and local softness. A version

of this chapter is published in reference [117].
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Chapter 6

A New Quantum Monte Carlo
Method for Fermions

The results described in preceeding chapters were all based on calculations within the local
density approximation. While this approximation is sufficient for calculating many inter-
esting properties of electronic systems, it is sometimes desirable to attempt more exact
computations. This chapter contains a brief description of a new approach for calculating

the ground states of many-Fermion systems [118].

This work is motivated by a large class of physical systems with many Fermion degrees
of freedom for which perturbation theory is inadequate. In addition to smali ele:gtronic
systems, examples include the ground states of nuclei, nuclear matter, the structure of
hadrons, and the zero temperature equation of state of hadronic matter. Many significant
physics questions only require calculation of ground state expectation values of few-body
operators, such as the total energy, density, form factor, or correlation functions. Since th;e

resulting integrals over the ground state wavefunction may be evaluated effectively using

Monte Carlo techniques, we therefore seek an appropriate Markov process which samples

133



the ground state wavefunction with controlled statistical and systematic errors. For Boson
systems, for which the ground state wavefunction may be defined positive everywhere,
two essentially equivalent sampling techniques are well known and widely used. The path
integral Monte Carlo method [119] and Green’s function Monte Carlo method [120] project
the ground state from an arbitrary state |¢ > by evaluating (e=*)N|¢ > and (1/(H -
E))N|¢ > respectively. For Fermion systems, antisymmetry introduces nearly cancelling
postive and negative contributions to physical observables which render straightforward
generalizations of either method impractical. Thus, at persent, the only alternative for
Fermions is to reformulate the problem in terms of a functional integral over some scalar
field of an effective action which is bilinear in the Fermion field operators and to integrate
out the Fermion fields analytically. In problems such as lattice gauge theory, in which
the resulting integrand is positive, although some calculations are feasible, the resulting
Fermion determinant is extremely cumbersome (éomputationally and one loses all direct
information concerning the behavior of the Fermion ground state. For other problems, such
as nuclei and liquid helium 3, there is no known way to introduce an auxiliary field to obtain
a satisfactory effective action. Thus, more general and powerful methods are required for

Fermion systems.

This work explores more general Markov processes for Fermion systems. The essential
idea is to relax the cordition, implicit in previous path integral and Green’s function ap-
proaches, that the random walk should sample the solution to a linear Schrédinger equation.
Since sampling the Schrodinger equation unavoidably introduces explicit antisymmetry in
the stochastic variables, minus signs and the corresponding near cancellation of large pos-
itive and negative contributions are introduced at the very first step and can never be

controlled subsequently. Hence, instead we construct a more general Markov process for
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two postive functions which satisfy a non-linear coupled Schrédinger equations and whose
difference yields the antisymmetric Fermion wavefunction. We emphasize at the outset that
we have explored only the simplest generalization we could find that avoids the pathologies
of conventional approaches, so the basic idea may well be valid even if the specific form
of the non-linear eqations and technical details of the present stochastic method are inad-
equate for large systems. Finally we acknowledge the crucial role that Malvin Kalos [121]
had in showing us Eq.(6.9), which led to our thinking about the problem in this way and to
the development of the final practical method in Eq.(6.21), as well as the influence of the

related work of Arnow et al. [122] and Elser [123].

6.1 Coaventional Path Integral Monte Carlo

To establish the rationale for this new approach, it is useful to recall the basic elements of
the conventional path integral Monte Carlo method. We begin with a single particle in a

potential, and then generalize to systems of Bosons and systems of Fermions.

A simple way to sample the ground state |3 > for a particle in a potential V(z) is to

calculate .

¢ >~ e TH-E)|¢ >, ~ (6.1)

where ¢(z) is a positive function (and thus not orthogonal to the nodeless ground state),
T is sufficiently large that e~T(Ei—Eo) « 1 (so that all excited state admixtures in ¢(z) are
projected out to any desired precision), and E is a constant (the ground state energy) defined
to keep the normalization of | > finite as T — oo. If we divide T into n steps of length

¢ = T/n and approximate e~T(H-E) by the usual Euclidean Feynman path integral [124],
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the wave function may be written

n—-1
<zplp > = H /dzm < 3m+l|e-!(H-E)'1'm >< IOW’ >

m=0

- "f[l [ / dz,,.P(a:m.,.l,a:m)W(zm)] #(zo), | (6.2)

m=0

where P(Zpm41,Zm) = \/%rlc-e‘(M/z‘)(‘"'ﬂ"m)’ and W(zn,) = e~V(zm)-E),

Each of the integrals over r,, may be performed sequentially using the fundamental

Monte Carlo relation

N

/ dxf(x)P(x)=% Z f(x“’)iﬁ[(f’)p - (NHEIM?, (6.3)

(V) eP(x)
where the integrand is decomposed into the product of a probability distribution P(x) and
a residual function f(x). First, an ensemble of N points {xf,‘)} is selected, distributed
according to ¢(zg). Each point is replicated or deleted so that the probability of finding
the particular value zo in the ensemble is W(zp). For example, if [W(zo)] denotes the
greatest integer in W (zo), the value zo is included in the ensemble [W(zo)] times and with
probability W(zg) — [W(ze)] is included one additional time. For each :z:g),P(a:l,a:g)) is
sampled as a probability distribution for z; and the resulting values of z are replicated or
deleted according to the weight W(z,) yielding an ensemble {z}}. The (m+ 1)st step in the
Markov chain is defined by sampling P(z41, =) ) for each element of {zs,".)} and replicating

or deleting according to the weight W(z,,41) to obtain {35:;)4-1}

The form of the resulting branched random walk for the population {zs,';)} is sketched in
figure 6.1. In this example, an initial ensemble of five points is sampled from ¢(z) which is
more delocalized than (z). At each step, the points first undergo gaussian diffusion under

P(Zm+1,Zm), which represents the effect of the kinetic energy. The effect of the potential
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Figure 6.1: Sketch of the branched random walk which samples the ground state distribution
for a particle in the potential V(z).

is then included by the replication or deletion, with points being removed outside the
classical turning points and created in the classically allowed region. Note that the energy
E appearing in the weight W(z,) = e~<(V(#m)~E) 5 adjusted like a chemical potential to
keep the average population constant. By the final time, the combination of diffusion and

replication yieids the distribution representative of 1(z) as shown.

The generalization of this process for a system of identical Bosons is trivial. The coor-
dinate z for the single particle is simply replaced by a vector x denoting the coordinates
for all N particles X, = {Z1,m,Z2,m,--»ZN,m}, where in more than one spatial dimension,

each of the zj,'s is itself a vector coordinate for particle j. The diffusion term is simply a

product of Gaussians

M N/2 ,
P(xm+laxm) = (m) He-(M/h)("'i.(m—l)").m) (6.4)
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and for a two-body interaction v(z; — zx) the weight is

N

V(xm) = exp (—e (Z W(Zjm — Thim) — E)) . (6.5)

i<k .
For future reference, note that the potential involves a sum over each of the particle co-
ordinates for a particular member of the ensemble, but no sum over ensemble members.
Although there are many technical improvements to increase the efficiency of practical cal-
culations, such as importance sampling based on an approximate trial function, this basic
idea allows one to calculate virtually any desired ground state properties of liquid *He or
finite drops of *He. The two errors in the calculation arising from the finite T in Eq( 6.1)
and the finite sampling statistics can both be reduced below any predetermined accuracy
level by continuing the Markov process long enough. The error arising from the finite size €

in the path integral is controlled by choosing € sufficiently small and extrapolating to € = 0.

For Fermions, however, the conventional method is fundamentally deficient. The essen-
tial difficulty is the fact that e~TH |¢ > filters out the lowest eigenstate of H, irrespective
of symmetry, so that at large times the component of the lowest symmetric state is expo-
nentially enhanced relative to the antisymmetric state by the factor eT(Ea-Es) Hence, at
some point in the calculation, it is necessary to project onto the antisymmetric space. If
this projection can be done exactly, as in the case of exact integration of Fermion fields
for a bilinear action mentioned in the Introduction, there is no problem. However, if it is
only done stochastically, there is competition between the exponential growth of symmetric

noise, which increases as eT(Fa-Es) and the stochastic projection which only decreases as

1/VN.

Formally, a path integral Monte Carlo method for Fermions may be obtained by writing
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the Feynman path integral with antisymmetric coordinate states
(L/VNY)Y (=) |zp1..zPN >
P

at each step, with the result that Eq.(6.5) is unchanged and Eg3.(6.4) is replaced by

M N2 P YT o~ M/26)(2; (m1)=T5,m)?
P(xm1,%m) = (5) / ZP:(—) I;Ie 12e)(=; (m-1)=%5,m) (6.6)
The essential features are evident in the simple case of two particle interacting via a two-
body potential. Letting ¢ = z; —z; denote the relative coordinate and p denote the reduced

mass and ignoring the irrelevant cm wavefunction, the two-Fermion problem reduces to

finding the first odd state in a potential v(z). The Markov process in this case is defined

by
—_ l L —(“/2‘)(=m+l_zm)2 — —(p/2c)(zm+,+z,,,)2
| P(zpmi1,Zm) = 3 2”[«2 e ] (6.7)
and
W(zm) = e (v(Em)-E), (6.8)

In contrast to the Boson case, the minus sign now requires that we associate with each
coordinate sampling the wavefunction a sign, so that effectively the random walk is now
characterized by two species of random walkers: + walkers and - walkers. Typical config-
urations encountered for such a random walk for the first odd state of w onedjméjlsional
marmonic oscillator are sketched in figure 6.2. At the first step, sampling an odd wave-
function yields N/2 + walkers to the right of the origin and N/2 - walkers to the left. At
each subéequent step a walker at z has a 50% probability of undergoing Gaussian diffusion
about z with no sign change and a 50% probabiltiy of changing sign and diffusing around
—z. The result, as shown in the lower seqments of figure 6.2, is that both the 4 walkers and
the - walkers separately approach the symmetric ground state while their difference, which

approaches the desired antisymmetric ground state, is exponentially suppressed. Aside from
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Figure 6.2: Sketch of sequence of configurations obtained for the first odd state of a harmonic
oscillator.

the special trick of working in an ordered subspace z; < z; < ... < 7, in one dimension,
which cannot be generalized to higher dimensions, all known variants of the conventional

path integral Monte Cario method suffer the fatal flaw shown in figure 6.2.
6.2 Generalized Markov Process

Since we have just shown that the essential problem is displayed by the first odd étate of
a symmetric potential, representing the relative wave function for two Fermions, we will
discuss the new method for this special case. The basic ideas are equally applicable to one
or more dimensions, and for notationai simplicity the equations will generally be written in

one dimension.

Let 3*(z) denote the distribution of + walkers and 1~(z) the distribution of - walkers.

The essential issue is to introduce a non-linear term which keeps ¢* and ¥~ localized in
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separate domains. First, let us consider the following coupled non-linear equations [121]
for ¢+ (z) and ¥~(z) which are similar in structure to the familiar Hartree equations for

single-particle wavefunctions:

(T + V(z) + K¢~ (2))d*(z) = Ep*(z)

(T +V(z) + K¢¥(2))p~(z) = EYp(2) (6.9)

Subtracting these equations shows that ¢+ (z)—v~(z) satisfies the desired linear Schrédinger
equation

(T +V(2))(¥*(z) -~ ¥7(2)) = E(¥¥(z) - ¥~ (). (6.10)

The analogy with Hartree equations suggests that there should exist solutions of the nature
we want. Think of the term K'9~(z) as the Hartree potential seen by the orbital ¢+ (z)
generated by the orbital ¥y~(z) through a zero-range repulsive interaction. The only differ-
ence in the Hartree theory is that |¢)~(z)|? rather than ¢~ (z) appears, but since ¥~ (z) is a
positive function, the qualitative behavior should be the same. Furthermore, since ¥* and
¥~ interchange roles under particle exchange, it is reasonable to seek solutions in which the

two single particle energies are degenerate.

Consider now our experience with symmetry breaking in Hartree or Hartree-Fock so-
lutions. We know that when the self-consistent equations are solved iteratively, starting
from some initial guess, the solutions converge to some fixed point (or get stuck in some
limit cycle which we ignore for our present discussion). A whole range of initial guesses in
some basin of attraction will converge to one fixed point whereas a set of initial guesses in
another basin of attraction may converge to a different fixed point with different symme-

try properties. For example, in some regions of the periodic table or with particular force

parameters one may only find spherical solutions for nuclei; in other cases, there may only
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be deformed solutions; and in still other cases, one may find either spherical or deformed

solutions depending upon the shape of the initial starting guess.

Returning now to Eq.(6.9), in the case in which K is zero, ¥+ and ¢~ satisfy the same
Schrodinger equation and thus coverge to the symmetric ground state in the symmetric
potential V(z). When K is very small, the equations continue to have stable symmetric
self-consistent solutions. As K is increased, however, the repulsive interaction betweeen ¢+
and ¥~ continues to increase until one eventually reaches a critical value of K above which
the symmetric solution becomes unstable and the fixed point is a solution with brolen
symmetry in which 7 is localized in one region and ¥~ is localized in the opposite region.
This is the regime of interest to us. The parameter K represents a repulsive interaction
between unlike walkers which keeps them spatially separated, and the construction of the
equations ensures that ¥+(z) — p~(z) is the desired solution to the Schrédinger equation.
Note that in this try, the nodal structure of the Fermion wavefunction is determined by
the phase separation into separate domains of the + and - walkers. That this separation
should be possible is reasonable because the exact many-Fermion wavefunction minimizes its
energy by producing nodal surfaces at the optimal locations. Starting from such a solution,
it is plausible that when repulsion is introduced between regions of oppositive signs, this

-

same nodal geometry would continue to be stable over a range of K.

To verify this behavior inferred from the Hartree analogy, equations (6.9) were solved
numerically for a harmonic oscillator potential in one and two dimensions. Note that in
this simple case, because y+(x) = ¥*(—x), the equations reduce to a single non-linear
equation for ¥+(x). The results for the one-dimensional harmonic oscillator with mass,

spring constant, and /i = 1 are graphed in figure 6.3 and display all the expected properties.
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Figure 6.3: Self-consistent solutions ~(z) to the coupled equations for the first odd state
of a harmonic oscillator.

Below Iy ~ 8, the solutions are symmetric anc above this value they are strongly localized at
positive z. For each broken symmetry solution, ¢+(z)—~(—z) is the exact odd solution to
the harmonic oscillator with the correct energy. Observe that if the integral of #/+(z)~9~(z)
with any odd function were evaluated stochastically by first sampling yt(z) and then
subtracting the result of sampling ¥~ (z), the region of cancellation arising from overlap
of ¥+ and ¥~ would be well controlled by the use of any reasonable large K, and the
calculation would be free of the catastrophic cancellation sketched in figure 6.2 for the
conventional theory. The results for the two-dimensional harmenic oscillator are analogous,

with 9+(z) being strongly localized in one half plane for K" larger than the critical value.

The next question is how to adopt equation (6.9) for stochastic evaluation as in sec-
tion 6.1. Given the fact that the method of choice for solution of many Hartree or Hartree-
Fock problems is evolution in imaginary time, at first sight it appears obvious that one

should just use the standard path integral Monte Carlo method for Y *(z) including in the
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potential term (V(z) + K4~(z)) and similarly for ¥—(z). Unfortunately, this is impossi-
ble since at any step in the Markov chain one never knows the functions ¥*(z) or ¥~ (z).
Instead one only has ensembles of points {z*} and {z~} distributed according to these
functions. Having these ensembles allows us to calculate integrals of ¥*(z) and ¥~ (z) with

any function f(z) but not to construct the functions themselves.

Given that we can calculate integrals over ¥*(z) and ¢~ (z), suppose we replace equation(6.9)

by the non-local equations

(T +V(@)+(@) + [ dydzK (2,4, 29" (0)¥*(2) = B ()
(T + V@)W~ (2) + [ dydak (2,3, 209 (0)¥™(2) = E¥™(2) (6.11)
What requirements must be placed on the kernel K(x,y,z)? Subtraction of equation (6.11b)

from (6.11a) shows that in order for )+ —1~(z) to satisfy the original Schrédinger equation,

K" must be symmetric in the first two arguments:
K(z,y,2) = K(y,z,2). (6.12)

In addition, although it may not be strictly necessary, it appears desirable to require that

the single-particle Hamiltonians for ¥*(z) and ~(z) be Hermitian so that
K(z,y,2) = K(z,y,2) = K(z,z,y). ) (6.13)

Therefore K(z,y,z) must be totally symmetric. Hence, for any reasonable finite range

symmetric kernel one could straightforwardly evaluate the non-local potential appearing in

the equation for ¢*(z),

U(e,2) = [dyk(z,,2%°(0)

1
= ¥ Y K(z,%,2), (6.14)
vi€¥—(v)
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and write the infinitesimal evolution operator for ¥¥

< Tmpil e—e(T+V(.~Z-)+U(i:,£:’))Izm > .

However, at this point we lose the positivity of the infinitesimal evolution operator, since the
off diagonal matrix elements of e~<U(¥3')) may be negative. Hence, as in the conventional
path integral Monte Carlo method, + and - walkers intermingle at each step, and there is

no way in principle to maintain the phase separation crucial to this new method.

Hence, barring some new insight, it is necessary to introduce an additional approxima-
tion. In order to have a local potential for ¥*(z) computed from an integral over ¥~ (z),
we will relax the requirement that ¢+(z) — ¢¥~(z) exactly satisfy the Schrédinger equation.
Instead, we will allow a small error term in the Schrédinger equation governed by an explicit
small parameter. We will correct for this small parameter to leading order in perturbation
theory and, if necessary, extrapolate the final result in this parameter as we do for the step
size € appearing in this path integral. In fact, the analogy with the introduction of finite ¢
in the path integral is quite suggestive. In order to treat the non-commutativity of T and
V and obtain a useful expression for the infinitesimal evolution operator, it was essential to
replace e~4T+V) by e~Te~<¥(1 + O(e?)) or e~(e/2)V e=T o~(e/2V (] 4 O(€3)). Similarly, in
order to proceed with the Fermionic problem, it is essential to introduce a small co;[trolled

approximation at this point.

Therefore, consider the effect of replacing the nonlinear term Ky ~(z) in the potential
in equation (6.9) by the convolution of ¥~ with a short-range function. Let v(z) be a
short-range even function with the zeroth and second moments
fdzv(z) =1,
[dzz?v(z) = a® . (6.15)
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define the convolution with any function ¢ as

Ha) = [ dydla + y)olo)
2 z
= ¢(z)+ 5 ¢"(2) + O(a"), © (6.16)
and let ¥*(z) and ¥~(z) satisfy the coupled equation

(T + V(z) + K7 (z))9p*(z) = E¢p*(z). (6.17)

Subtraction of the equations for ¥+ and 9~ and using the expansion 6.16 then yield

K@) (@) - 5 @¥(2))
KE W @)HE) - 0 (@) (2) + Oa).

(6.18)

(T +V(z) - E)¢*(z) - ¥7(2))

The result shows that the solution of 6.17 yields an antisymmetric solution to the desired
Schrodinger equation which is valid to order a?, where a? can be decreased by decreasing

the range of the ccnvolution potential.

At this stage, it is useful to consider the structure of the stochastic solution to the
coupled equation 6.17 and its relation to an associated polymer‘ problem. As each + walker
evolves in its random walk, it éﬂ'ectively sees two different interaction potentials. ;\t each
time step, each + walker (which in the present example represents the coordinates of a
pair of physical particles) is acted upon by the attractive physical two-body potential V
in the conventional way. In addition, however, each walker of a given species (+ or -) sees
a repulsive potential v between itself and all other walkers of the opposite species. In

coordinate space, one may visualize a domain surrounded by nodal surfaces and filled with

+ walkers distributed according to the magnitude of *. This domain is surrounded by
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domains of ~, and each walker in these domains generates a small repulsive region of range
a, the cumulative effect of which is to create a repulsive barrier around the 1+ domain which
keeps all the + walkers confined. Physically, it is clear that this range ¢ must be larger than
the mean spacing between walkers in the periphery of the domain in order to confine the
walkers and much smaller than the size of the domain itself in order to keep the violation
of the Schrodinger equation acceptable small. Looking at the path integral for the + and -
walkers from a different perspective, the world lines correspond to the partition function for
a‘two-species polymer which has an attractive interaction between all the particles within a
given ensemble element and a repulsive interaction between all ensemble elements of unlike
species. This analogy potentially may be useful in understanding when the range a and

strength I" are capable of giving rise to phase separation and thus domain formation.

Having seen that equation (6.17) has the essential features required for the stochastic
solution of the Fermion problem, it is useful to introduce a small modification to remove

the leading error of order @2 in equation (6.18). Using the relation
" 2 -
¥(2) = SV (@) + K97 (2) - E}W*(a) + 0(a?) (6.19)

from equation (6.17) to replace the second derivatives in equation (6.18) yields

K2a?m
ﬁ2

(T +V(z)+ w-) (6% —97) = E@* - 97) +0(a).  _(6.20)

Hence, the leading correction of order a> may be cancelled completely by introducing the
additional term —(K2a?*m/h%)+(z)y—(z) in the coupled equations defining ¥+ and .
Thus, the final non-linear equations for solution of the Fermion problem are

K?a?m
ﬁ2

(T +V(z) + K$p¥(z) - %*r/;‘) ¥¥(z) = E¢p*(z) (6.21)

for which
(T + V(2))(¥H(z) - ¥~ (2)) = E(¥*(z) - ¢~ (2)) + O(a?). (6.22)
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{a) (b)

Figure 6.4: Distribution of points sampling the positive region of the first odd eigenstate of
the two-dimensional harmonic oscillator.

The dominant non-linear term is still K4 which creates a repulsive barrier around the
domain baoundary. The small attractive correction —(K2a?m/h?)+ ¢~ enters like a small
attractive three-body force and serves as the leading order perturbative correction to repair

the damage introduced by the finite range a.

As an example to verify the equation (6.21) indeed works as advertised, we have solved
for the first odd state of a two-dimensional harmonic oscillator. Note that for this two-
dimensional problem, z is replaced everywhere by x, denoting the relative coordh;ates in
the z — y plane, and ¥~ (x) = ¥*(—x). This is the simplest Fermion problem which
undergoes the catastrophic buildup of symmetric noise discussed in section 6.1 and thus
poses a non-trivial test of the new method. The oscillator Hamiltonian was defined with
spring constant, mass and ki = 1, yielding energy 2 and size parameter 1; the step size was

€ = 0.2 leading to an error in the total energy of order 2 x (¢2/8) = 1 x 10~4; K was 50, the

rms radius g was 0.5, and the ensemble had average population N = 500.
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The equilibrium distribution of points {x;} sampling ¥*(x) averaged over 30 indepen-
dent samples of 500 points is shown in figure 6.4. Note that because there is no potential
acting on the polar angle 8, and this angle therefore undergoes Gaussian diffusion with time,
we have plotted the ensemble at each time in the frame of the principal axes. Comparison
with the distribution of points for the positive postion of the exact wavefunction in the
second portion of the picture shows that the nonlinear equations did just what they were

supposd to in generating the correct nodal line and spatial distribution.

Calculation of E in equation (6.17) by ensemble normalization with 800 sainples of
approximately 500 points, perturbative correction for the a? term in equation (6.21), and
extrapolation to remove the linear ¢ dependence yielded 1.995 + 0.016. This energy is
consistent with the exact result E = 2 and demonstrates the statistical accuracy attainable

with this new method.
6.3 Discussion

We hope that the random walk for two positive functions defined by equation (6.21) whose
difference satisfies the Schrodinger equation has the potential to overcome the fundamental
limitations cf convetinal techniques for sampling general many-Fermion ground states. Since
we have only demonstrated its feasibility for an extremely simple two-particle example, it
is useful to consider the obstacles to applying it to larger systems of physical interest and

the possible means of overcoming these obstacles.

The biggest practical difference between the present calculation and conventional path

integral Monte Carlo calculations is the fact that evaluation of the potential for each en-
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semble member requires summations over all the other elements of the ensemble. If the
ensemble is too large, it will be impractical to perform enough steps in the path integral
to obtain a useful approximation. Thus, the key issue is how rapidly the size of the ensem-
ble must grow with dimensionality to keep the domain separation stable. The worst fear
is that as the dimensionality increases, the surface surrounding a given domain becomes
progressively more sparsely populated, giving rise the breakthrough of the + walkers in the

- domain where there are insufficient walkers to provide an adequate barrier.

To some extent, the sparseness of the population may be compensated by increa'sing the
range a of the convolution, since this range controls the size of the repulsive region defined
by each walker. Although in the present formulation, increasing the range introduces errors
in the Fermion ground state of order a?, it may be possible to write more sophisticated

correction terms which increase the accuracy to higher order in a.

In addition, since the convolution potential is short range, it is possible to group the
walkers into spatial bins and to restrict the ensemble sums to those bins which are within

the convolution range.

The biggest conceptual question is whether the nonlinear equation (6.21) sustains broken
symmetry solutions with domain structure corresponding to the nodal surfaces of the true
ground state Fermion wavefunction. At this point, we can only appeal to the heuristic
arguments presented earlier that since the geometry of the nodal surfaces for the Fermion
ground state minimizes the nodal surface energy, this same geometry should be favorable

for minimizing the additional repulsion associated with A".

Since these questions about the ensemble size and domain structure cannot be resolved
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analytically, we explored them numerically for two- and three-dimensional Fermi gases. We
found that a relatively large ensemble size was required to maintain the nodal sub-manifold.
Indeed, determining the location of this nodal sub-manifold is the crucial part of the many-
Fermion calculation, since the wave function can be immediately determined by a Bosonic

stochastic calculation within the space enclosed by the nodal sub-manifold once it is known.

Cne approach we considered was to choose an initial guess for the nodal sub-manifold
and then to iteratively improve this guess by moving the sub-manifold in response to the flux
of positive and negative walkers across the nodal boundary. The iteration convergésv to the
true nodal boundary when equal fluxes of positive and negative walkers across the boundary
are obtained. While we never designed an algorithmic implementation for this approach,
Hamman [125] has been successful in implementing a method for iteratively determining
nodal boundaries based on removing discontinuities in the slopes of ¥+ and %~ at the nodal

barrier. With this improvement, the method of using ¥* and ¥~ still shows promise.

The .otion of guessing the overall structure of a solution as was suggested here for
the nodal sub-manifolds was used by the author to develop a fast, accurate digital radio
direction finding system based on widc;. baseline interferometry. In this case, the unknown
parameter is the number of wavelengths of a radio signal between two antennas spac-gd mul-
tiple wavelengths apart. This parameter depends on the (unknown) elevation of the radio
source relative to the interferometer. Once the integer part of the number of wavelengths
is correctly guessed, it is relatively easy to use phase difference measurements to obtain the
fractional part and a conventional correlation detector to estimate the location of the radio
source. The details are beyond the scope of this thesis, but can be found in U.S. Patent

5,099,248 [126).
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Chapter 7

Conclusion

This thesis has presented the first ab initio investigation of a materia! system with com-
plexity on the scale of one thousand atoms. We used the unprecedented level of perfor-
mance possible with massively parallel computation to make the first ab initio study of the
Takayanagi 7x7 reconstruction of the Si(111) surfaces, a famous problem for its complex-
ity, both in terms of the rich surface physics and in terms of how it has eluded realistic

theoretical treatment.

Our first result was a careful determination of the surface energy. This calculation was
essential for initial verification of the accuracy of the computation. It is known experi-
mentally that the (111) surface of silicon cleaves into a metastable (2x1) phase. It is only
through annealing at 600 degrees Kelvin that the surface reconstructs into the complicated
(7x7) phase. Our value of 60 meV per surface atom for the energy difference is the most

accurate to date.

Ionic positions were determined to an accuracy of .05A. Taking into account the various

symmetries of the unit cell, there are roughly one hundred unique coordinates describing
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locations of the atoms in the first four layers of the surface. The most important result
involved the unknown difference in heights of atoms on the faulted and unfaulted halves of
the unit cell. It is known from STM that the unoccupied states of Si(111) produce a flat
STM image, while the occupied states produce an asymmetric image with the faulted side
of the unit cell raised in height by about .2 A. The separate contributions due to structural
and electronic differences between halves of the unit cell cannot be determined through
STM. We found a structural height difference of .04A between adatoms on faulted and
unfaulted sides of the unit cell, roughly half the value estimated from LEED experiments.
This result leads us to believe that the parametric fit to LEED data overestimated the

structural asymmetry.

We found that our computations of isocharge contours of the electronic wave function
according to the method of Tersoff and Hammann accurately reproduced STM results,
including a height difference between faulted and unfaulted halves of the unit cell of 0.2A
for the occupied electronic states at a tip bias of 2.0 Volts. This result proves that the
asymmetry between faulted and unfaulted halves of the unit cell is predominantly due to
electronic charge transfer, rather than structural differences between the two sides of the

unit cell.

We proceeded to compare properties of our electronic wave function with differential
STM measurements used to measure qualitative properties of individual surface states of
Si(111). Our results agree with published images of occupied and unoccupied surface states
for the adatom and rest atom layers. We found many details related to the dangling bond
in the sub-surface corner hole of the unit cell that we offer as challenges for experimental

detection. We believe that the experimental inaccessibility of the large amount of energetic
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charge in the corner hole shows the current limits in resolution possible with STM. This
result has technological implications related to our ability to observe and fabricate three-

dimensional devices on a nanometer length scale.

We also made the first detailed comparison between theory and experiment regarding
the chemical reactivity of electronic surface states, an exciting area since the diversity of
bonding sites on the Si(111) surface enhances our understanding of surface chemistry. The
different reactive sites on this surface are identical to first order in terms of classical elec-
tronegativity analysis and yet exhibit distinctly different chemical behavior. A second-order
theory of chemical reactivity in terms of local softness and charge capacity at each reactive
site explains the preferential chemisorption of the surface for a variety of reactants. Our
results explain reported single-radical chemisorption experiments and refine the interpre-
tation of preferential chemisorption of clusters of metallic atoms at different surface sites.
We conclude with predictions of surface chemisorption for unreported reactants. These
predictions are made using the charge capacity of the surface and the softness and elec-
tronegativity of the reactants without recourse to expensive first-principles calculations for

the surface-reactant system.

This thesis shows that massively parallel computation allows us to investigate material
systems of unprecedented scope. Using the Local Density Approximation, we investigated
the most complex and widely studied semiconductor surface, the Si(111)-(7x7) reconstruc-
tion. This problem was previously too large for realistic theoretical treatment. Our LDA
calculation reproduced well-established experimental results, refined our understanding of
more subtle aspects of the surface behavior and predicted how surface chemisorption should

proceed for different reactants. The results demonstrate that both theory and experiment
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are now capable of accurately describing detailed electronic properties of material systems
at nanometer length scales. LDA and chemical softness computations are now established as

valuable tools for analysis of nanometer-scale structures, an area of increasing technological

importance.
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