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Abstract

This thesis deals with several related questions in probabilistic and extremal graph
theory and discrete random matrix theory.

First, for any bipartite graph 𝐻 containing a cycle, we prove an upper bound of
2𝑂(ex(𝑛,𝐻)) on the number of labeled 𝐻-free graphs on 𝑛 vertices, given only a fairly
natural assumption on the growth rate of ex(𝑛,𝐻). Bounds of the form 2𝑂(ex(𝑛,𝐻))

have been proven only for relatively few special graphs 𝐻, often with considerable
difficulty, and our result unifies all previously known special cases.

Next, we give a variety of bounds on the clique numbers of random graphs aris-
ing from the theory of graphons. A graphon is a symmetric measurable function
𝑊 : [0, 1]2 → [0, 1], and each graphon gives rise naturally to a random graph distri-
bution, denoted G(𝑛,𝑊 ), that can be viewed as a generalization of the Erdős-Rényi
random graph. Recently, Doležal, Hladký, and Máthé gave an asymptotic formula of
order log 𝑛 for the clique number of G(𝑛,𝑊 ) when 𝑊 is bounded away from 0 and 1.
We show that if 𝑊 is allowed to approach 1 at a finite number of points, and displays
a moderate rate of growth near these points, then the clique number of G(𝑛,𝑊 ) will
be Θ(

√
𝑛) almost surely. We also give a family of examples with clique number Θ(𝑛𝛼)

for any 𝛼 ∈ (0, 1), and some conditions under which the clique number of G(𝑛,𝑊 )
will be 𝑜(

√
𝑛), 𝜔(

√
𝑛), or Ω(𝑛𝛼) for 𝛼 ∈ (0, 1).

Finally, for an 𝑛×𝑚 matrix 𝑀 of independent Rademacher (±1) random variables,
it is well known that if 𝑛 ≤ 𝑚, then 𝑀 is of full rank with high probability; we
show that this property is resilient to adversarial changes to 𝑀 . More precisely, if
𝑚 ≥ 𝑛+ 𝑛1−𝜀/6, then even after changing the sign of (1− 𝜀)𝑚/2 entries, 𝑀 is still of
full rank with high probability. This is asymptotically best possible, as one can easily
make any two rows proportional with at most 𝑚/2 changes. Moreover, this theorem
gives an asymptotic solution to a slightly weakened version of a conjecture made by
Van Vu in [Vu08].

Thesis Supervisor: Henry Cohn
Title: Adjunct Professor of Mathematics
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Chapter 1

Introduction

This thesis deals with several distinct but closely related problems in discrete math-
ematics, primarily in extremal and probabilistic graph theory. Formally, a graph
𝐺 = (𝑉,𝐸) is a collection of vertices 𝑉 , together with a collection 𝐸 of 2-element
subsets of 𝑉 , called edges. For example, a social network such as Facebook can be
viewed as a graph, where people are represented by vertices, and edges represent
friendships between pairs of people.

This work addresses two slightly different types of problems in graph theory; the
first type deals with extremal conditions, loosely speaking, the limiting cases in which
a graph with certain properties can exist. For example, how densely can a graph be
connected before it must contain a given substructure? Or, a closely related question:
if we must avoid a certain substructure, how much are we constrained in building a
graph? The second type of problem analyzes the structure of a typical graph, where
the graph is chosen at random according to some natural probability distribution. For
example, in a large network described by a given probabilistic model, how large a set
of fully interconnected nodes will typically exist? Chapters 2 and 3 deal respectively
with problems in these two areas, and Chapter 4 presents work in the closely related
area of random matrix theory.

1.1 Counting 𝐻-free graphs

Chapter 2 is based on the paper [FMS], joint with Asaf Ferber and Wojciech Samotij.
Given a graph 𝐻, its extremal number ex(𝑛,𝐻) is the maximum number of edges

that a graph 𝐺 on 𝑛 vertices may have without containing a copy of 𝐻 as a subgraph.
Such a graph 𝐺 is called 𝐻-free. The behavior of ex(𝑛,𝐻) is well understood for
graphs with 𝜒(𝐻) ≥ 3, where 𝜒(𝐻) is the chromatic number of 𝐻, the minimum
number of colors necessary to color the vertices of 𝐻 so that no two adjacent vertices
are of the same color [Tur41], [ES46]. However, determining the asymptotic behavior
of ex(𝑛,𝐻) in the case where 𝐻 is bipartite (i.e., when 𝜒(𝑋) = 2) remains a major
open problem in extremal graph theory, and has been solved in very few cases. [FS13]

The work presented here gives a partial solution to the separate but closely related
problem of counting 𝐻-free graphs. Explicitly, given a graph 𝐻, the problem is to
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determine |ℱ𝑛(𝐻)|, the number of labeled graphs on 𝑛 vertices that do not contain a
copy of 𝐻 as a subgraph. This is indeed very closely tied to the problem of finding
the extremal number ex(𝑛,𝐻); it can be shown easily that for any graph 𝐻,

2ex(𝑛,𝐻) ≤ |ℱ𝑛(𝐻)| ≤ 2𝑂(ex(𝑛,𝐻) log(𝑛)).

It is conjectured that, except in the case where 𝐻 is a forest, the lower bound is
essentially correct: namely, |ℱ𝑛(𝐻)| = 2𝑂(ex(𝑛,𝐻)). This was proven in 1986 by Erdős,
Frankl, and Rödl for non-bipartite graphs [EFR86]. For bipartite graphs, the work
presented here unifies a number of earlier results that proved this conjecture in specific
cases ([KW82], [KW96], [BS11b], and [MS16]), to show that it holds for any 𝐻 whose
extremal number ex(𝑛,𝐻) displays sufficiently regular growth. Namely, we prove a
slightly stronger version of the following result.

Theorem (Ferber, M., Samotij [FMS]). If 𝐻 is any graph containing a cycle, and if
ex(𝑛,𝐻) = Θ(𝑛𝛼) for some constant 𝛼 ∈ (1, 2), then |ℱ𝑛(𝐻)| = 2𝑂(ex(𝑛,𝐻)).

We also show that for a bipartite graph 𝐻, even if this regularity condition is not
satisfied, given a sufficiently strong lower bound on ex(𝑛,𝐻), the conjectured number
of 𝐻-free graphs on 𝑛 vertices is correct for an infinite sequence of values 𝑛 ∈ N. In
addition, we prove generalizations of both results to hypergraphs.

1.2 Random graphs generated from graphons

Chapter 3 is based on the paper [McK19].
As just outlined, Chapter 2 will explore problems related to the extremal proper-

ties that a graph may possess. But one may also ask about the properties of a typical
graph, averaging over graphs selected according to some natural probability distri-
bution. Perhaps the simplest such distribution is given by the Erdős-Rényi random
graph model. The Erdős-Rényi random graph 𝐺𝑛,𝑝 is a graph on 𝑛 vertices where,
between each pair of vertices, an edge is placed independently with probability 𝑝.
Since its introduction in 1959 by Gilbert [Gil59] and by Erdős and Rényi [ER59], it
has become one of the fundamental objects of study in probabilistic combinatorics,
and a wide variety of its properties are very well understood, including degree dis-
tribution, chromatic number, size of the largest connected component, and clique
number. Of particular interest here, it was shown in [GM75] and [Mat76] that for
a fixed 𝑝 ∈ (0, 1), the clique number of 𝐺𝑛,𝑝 (the number of vertices in the largest
complete subgraph of 𝐺) approaches 2 log 𝑛 · log(1/𝑝)−1 asymptotically almost surely
(abbreviated “a.a.s” hereafter).

The Erdős-Rényi random graph 𝐺𝑛,𝑝 may be considered “homogeneous” in the
following sense: between each pair of vertices, an edge is assigned with the same
probability 𝑝. In recent years, interest has been developing in studying inhomogeneous
random graphs, where edges are assigned between some pairs with higher or lower
probabilities. Specifically, an inhomogeneous dense random graph model arises from
the theory of graph limits. This theory studies objects called graphons ; symmetric
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measurable functions 𝑊 : [0, 1]2 → [0, 1]. To obtain a random graph G(𝑛,𝑊 ) from
𝑊 , we sample points 𝑥1, . . . , 𝑥𝑛 uniformly from [0, 1], and connect vertices 𝑖 and 𝑗
by an edge with probability 𝑊 (𝑥𝑖, 𝑥𝑗). This can be thought of as a generalization of
𝐺𝑛,𝑝, which is equivalent to G(𝑛,𝑊 ) for the constant graphon 𝑊 = 𝑝.

As an example, we illustrate a realization of 𝑥1, . . . , 𝑥𝑛 and G(𝑛,𝑊 ) for the
graphon 𝑊 (𝑥, 𝑦) = (1 − 𝑥)(1 − 𝑦), taking 𝑛 = 10 (note: for legibility, only the
subscripts are shown for the points 𝑥1, . . . , 𝑥10).

𝑊 (𝑥, 𝑦) = (1− 𝑥)(1− 𝑦)

1

2

3

4

5

6

7

8

9

10

G(𝑛,𝑊 )

With this theory in place, it is natural to ask whether we can determine the clique
number of an inhomogeneous random graph G(𝑛,𝑊 ) for a given graphon 𝑊 . In 2017,
Doležal, Hladkỳ, and Máthé [DHM19] showed that for a graphon 𝑊 that is bounded
away from 1, if a certain technical condition is satisfied, then a.a.s.,

𝜔(G(𝑛,𝑊 )) = (1 + 𝑜(1)) · 𝜅(𝑊 ) log 𝑛,

for a specific constant 𝜅(𝑊 ), which they determined. Here, we consider the case of
graphons 𝑊 that are allowed to approach 1 at a finite number of points; we show
that if such a graphon 𝑊 displays a moderate rate of growth near these points, then
the clique number of G(𝑛,𝑊 ) will be Θ(

√
𝑛) almost surely:

Theorem (M., [McK19]). Let 𝑊 : [0, 1]2 → [0, 1] be a graphon equal to 1 at a col-
lection of points (𝑎1, 𝑎1), . . . , (𝑎𝑘, 𝑎𝑘), and essentially bounded away from 1 in some
neighborhood of (𝑥, 𝑥) for all other 𝑥 ∈ [0, 1]. If all directional derivatives of 𝑊 exist
at the points (𝑎1, 𝑎1), . . . , (𝑎𝑘, 𝑎𝑘), and are uniformly bounded away from 0 and −∞,
then 𝜔(G(𝑛,𝑊 )) = Θ(

√
𝑛) a.a.s.

We also give a family of examples with clique number Θ(𝑛𝛼) for any 𝛼 ∈ (0, 1), and
some conditions (weaker than the existence of directional derivatives) under which
the clique number of G(𝑛,𝑊 ) will be 𝑜(

√
𝑛), 𝜔(

√
𝑛), or Ω(𝑛𝛼) for 𝛼 ∈ (0, 1).
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1.3 Discrete random matrices
Chapter 4 is based on the paper [FLM19], joint with Asaf Ferber and Kyle Luh.

Random discrete matrices, in particular 0/1 and ±1 random matrices, have a
distinguished history in random matrix theory. They have applications in computer
science, physics, and random graph theory, among other areas, and numerous investi-
gations have been tailored to this class of random matrices [BVW10, KKS95, Kom67,
Ngu13, TV07, TV09, Tik]. Discrete random matrices are also of interest in their own
right, as they pose combinatorial questions that are vacuous or trivial for other mod-
els such as the gaussian ensembles (e.g. singularity and simpleness of spectrum). For
example, denoting by 𝑀𝑛,𝑚 an 𝑛 ×𝑚 matrix with independent uniform ±1 entries,
it is already non-trivial to show that 𝑀𝑛,𝑛 is non-singular with probability 1 − 𝑜(1)
(this was first proved by Komlós in [Kom67]). It was a long standing conjecture that

𝑝𝑛 := Pr(𝑀𝑛,𝑛 is singular) =
(︂
1

2
+ 𝑜(1)

)︂𝑛

,

which corresponds to the probability that any two rows or columns are identical. This
problem has stimulated a great deal of activity [KKS95, TV07, BVW10], culminating
in the recent resolution by Tikhomirov [Tik] of the above conjecture.

Here, we examine another aspect of the singularity problem for discrete random
matrices. We look at the robustness of the non-singularity, meaning how many
changes to the entries of the matrix need to be performed to make it singular. This
has been called the “resilience” of a random matrix with respect to singularity [Vu08].
Note that an 𝑛×𝑛 matrix in singular if and only if its rank is less than 𝑛. Therefore,
we may extend this notion to general matrices (not necessarily square) as follows:
Definition. Given an 𝑛 × 𝑚 matrix 𝑀 with entries in {±1}, and with 𝑚 ≥ 𝑛, we
denote by Res(𝑀) the minimum number of sign flips necessary in order to make 𝑀
of rank less than 𝑛.

Note that for any two vectors 𝑎, 𝑏 ∈ {±1}𝑚 one can always achieve either 𝑎 = 𝑏
or 𝑎 = −𝑏 by changing at most 𝑚/2 entries; so in particular, for an 𝑛 × 𝑚 matrix
𝑀 , we have the deterministic upper bound Res(𝑀) ≤ 𝑚/2. For the case 𝑛 = 𝑚, it
was conjectured by Vu [Vu08] that this is essentially tight; i.e., that

Res(𝑀𝑛,𝑛) =

(︂
1

2
+ 𝑜(1)

)︂
𝑛

a.a.s. Note that by a a simple union bound, using any exponential upper bound on 𝑝𝑛,
one can easily show that a.a.s. we have Res(𝑀𝑛,𝑛) ≥ 𝑐𝑛/ log 𝑛 for some appropriate
choice of 𝑐 > 0. Perhaps surprisingly, no better lower bound is known.

Here, we prove the following weakening of Vu’s conjecture, resolving it in the case
of random matrices that are a little wider than square.
Theorem (Ferber, Luh, M. [FLM19]). For every 𝜀 > 0 and 𝑚 ≥ 𝑛 + 𝑛1−𝜀/6, a.a.s.
we have

𝑅𝑒𝑠(𝑀𝑛,𝑚) ≥ (1− 𝜀)𝑚/2.
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The proof relies on some recent machinery introduced in [FJLS19], and uses the
following basic strategy: first, notice that 𝑀𝑛,𝑚 has rank less than 𝑛 precisely if there
is a nonzero vector 𝑎 such that 𝑎𝑇𝑀𝑛,𝑚 = 0. We use the first 𝑛 columns of 𝑀𝑛,𝑚 to
show that any such 𝑎 will be “well-unstructured” or “pseudorandom” in some precise
sense, making use of the machinery from [FJLS19] to consider some portions of this
argument over a finite field F𝑝. We then show that any “pseudorandom” vector 𝑎 is
unlikely to also be orthogonal to the remaining 𝑚− 𝑛 columns.
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Chapter 2

Counting 𝐻-free graphs

2.1 Introduction

This chapter is based on the paper [FMS], joint with Asaf Ferber and Wojciech
Samotij.

The extremal number of a graph 𝐻, denoted by ex(𝑛,𝐻), is the maximum possible
number of edges in a graph 𝐺 on 𝑛 vertices which does not contain 𝐻 as a (not
necessarily induced) subgraph. Such a graph 𝐺 is referred to as 𝐻-free. The study
of the asymptotic behavior of ex(𝑛,𝐻) for various 𝐻 is a central theme in extremal
graph theory and goes back to the pioneering work of Turán [Tur41], who determined
ex(𝑛,𝐻) exactly in the case when 𝐻 is a complete graph. In fact, Turán’s construction
provides a lower bound on ex(𝑛,𝐻) that depends on the chromatic number of 𝐻,
denoted by 𝜒(𝐻), which is the least integer 𝑘 for which one can partition 𝑉 (𝐻) into
𝑘 independent sets (that is, sets which induce no edges). More precisely, Turán’s
construction gives

ex(𝑛,𝐻) >

(︂
1− 1

𝜒(𝐻)− 1

)︂(︂
𝑛

2

)︂
for every nonempty graph 𝐻. A matching upper bound was proved several years later
by Erdős and Stone [ES46], giving

ex(𝑛,𝐻) =

(︂
1− 1

𝜒(𝐻)− 1

)︂(︂
𝑛

2

)︂
+ 𝑜(𝑛2). (2.1)

Note that (2.1) determines the asymptotics of ex(𝑛,𝐻) whenever 𝜒(𝐻) > 3, but when
𝜒(𝐻) = 2, that is, when 𝐻 is bipartite, it only implies that ex(𝑛,𝐻) = 𝑜(𝑛2), whereas
Turán’s construction gives the trivial bound ex(𝑛,𝐻) > 0.

Perhaps unsurprisingly, the bipartite case of Turán’s problem is much more chal-
lenging and there are only a few bipartite graphs 𝐻 for which even the order of
magnitude of ex(𝑛,𝐻) has been determined. Among the known examples one can
find trees, cycles of lengths four, six, and ten, and the complete bipartite graphs 𝐾𝑠,𝑡

when 𝑠 ∈ {2, 3} or 𝑡 > (𝑠− 1)!. For a generic bipartite 𝐻, there does not even seem
to be a good guess for what ex(𝑛,𝐻) might be. The lower bounds in all the above
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examples are established by rather involved algebraic or geometric constructions. The
strongest general upper bound on ex(𝑛,𝐻) is due to Füredi [Für91] who proved that
ex(𝑛,𝐻) = 𝑂(𝑛2−1/𝐷) if all but one of the vertices in one of the color classes of some
proper two-coloring of 𝐻 have degree at most 𝐷. This generalizes the classical result
of Kővári, Sós, and Turán [KST54], who showed that ex(𝑛,𝐾𝑠,𝑡) = 𝑂(𝑛2−1/𝑠) for all
𝑠 and 𝑡. Treating a more general class of graphs than the one considered in [Für91],
Alon, Krivelevich, and Sudakov [AKS03] proved that ex(𝑛,𝐻) = 𝑂(𝑛2−1/4𝐷) for every
𝐷-degenerate bipartite graph 𝐻 (a graph is 𝐷-degenerate if every subgraph of it has
minimum degree at most 𝐷). For a more detailed discussion and further references,
we refer the reader to the excellent survey of Füredi and Simonovits [FS13].

Here we shall be concerned with the closely related problem of enumerating 𝐻-free
graphs. That is, we are interested in the asymptotic size of the set ℱ𝑛(𝐻) consisting
of all (labeled) 𝐻-free graphs with vertex set [𝑛] := {1, . . . , 𝑛}. Observing that every
subgraph of an 𝐻-free graph is also 𝐻-free and that every 𝑛-vertex 𝐻-free graph has
at most ex(𝑛,𝐻) edges, one obtains the trivial bounds

2ex(𝑛,𝐻) 6 |ℱ𝑛(𝐻)| 6
ex(𝑛,𝐻)∑︁
𝑘=0

(︂(︀𝑛
2

)︀
𝑘

)︂
6

(︃
𝑒
(︀
𝑛
2

)︀
ex(𝑛,𝐻)

)︃ex(𝑛,𝐻)

. (2.2)

This counting problem has been widely studied, and when 𝐻 is not bipartite, bounds
much tighter than (2.2) are known. It was proved by Erdős, Kleitman, and Roth-
schild [EKR76] (when 𝐻 is a complete graph, but implicitly also for every non-
bipartite 𝐻) and then by Erdős, Frankl, and Rchap1ödl [EFR86] that

|ℱ𝑛(𝐻)| = 2ex(𝑛,𝐻)+𝑜(𝑛2). (2.3)

In particular, if 𝜒(𝐻) > 3, then (2.1), (2.3), and the lower bound in (2.2) imply
that |ℱ𝑛(𝐻)| = 2(1+𝑜(1))ex(𝑛,𝐻). On the other hand, if 𝐻 is bipartite, then (2.3) is
very weak and the trivial upper bound in (2.2) is still the state-of-the-art bound for
a generic graph 𝐻 (up to a constant multiplicative factor in the exponent), giving

2ex(𝑛,𝐻) 6 |ℱ𝑛(𝐻)| 6 2𝐶ex(𝑛,𝐻) log𝑛 (2.4)

for some positive constant 𝐶 that depends only on 𝐻. It is natural to ask whether
the log 𝑛 factor in the above upper bound can be removed. Indeed, this question
was posed by Erdős some thirty five years ago (see [KW82]) for all bipartite 𝐻 that
contain a cycle.1 Until very recently, it was even believed that the stronger bound
|ℱ𝑛(𝐻)| 6 2(1+𝑜(1))ex(𝑛,𝐻) holds, as it does for non-bipartite 𝐻, but this was disproved
by Morris and Saxton [MS16] in the case when 𝐻 is the cycle of length six. In view
of this, the following seems to be the right question to ask.

1The case when 𝐻 has no cycles is very different as then ex(𝑛,𝐻) = 𝑂(𝑛) while there could be 𝑛-
vertex 𝐻-free graphs with as many as 𝑛! different labelings. In particular, since there are 2Ω(𝑛 log𝑛)

different labeled 𝑛-vertex graphs with maximum degree one, then |ℱ𝑛(𝐻)| > 2Ω(ex(𝑛,𝐻)·log𝑛) for
every acyclic 𝐻 with maximum degree at least two.
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Question 2.1.1. Suppose that 𝐻 is a bipartite graph which contains a cycle. Is there
a constant 𝐶 such that

|ℱ𝑛(𝐻)| 6 2𝐶ex(𝑛,𝐻)

for all 𝑛?

Despite renewed interest in Question 2.1.1 in recent years, very little is known. To
the best of our knowledge, it has been answered positively only in the cases when 𝐻
is the cycle of length four [KW82], six [KW96], or ten [MS16], the complete bipartite
graph 𝐾𝑠,𝑡 with 𝑠 ∈ {2, 3} or 𝑡 > (𝑠 − 1)! (see [BS11a, BS11b]), or so-called theta-
graphs [CT17]. Here we make a first attempt at addressing Question 2.1.1 for a generic
bipartite graph 𝐻. Our methods also extend to the setting of uniform hypergraphs,
which we shall discuss at the end of this section. The following is our first main result:

Theorem 2.1.2. Let 𝐻 be an arbitrary graph containing a cycle. Suppose that there
are positive constants 𝛼 and 𝐴 such that ex(𝑛,𝐻) 6 𝐴𝑛𝛼 for all 𝑛. Then there exists
a constant 𝐶 depending only on 𝛼, 𝐴, and 𝐻 such that for all 𝑛,

|ℱ𝑛(𝐻)| 6 2𝐶𝑛𝛼

.

Note that Theorem 2.1.2 answers Question 2.1.1 in the affirmative for every bi-
partite 𝐻 such that ex(𝑛,𝐻) = Θ(𝑛𝛼) for some 𝛼. This is the case for each 𝐻 for
which Question 2.1.1 has been answered so far and therefore Theorem 2.1.2 reproves
all the previously known results listed above. In fact, it is commonly believed that
ex(𝑛,𝐻) = Θ(𝑛𝛼) for all bipartite 𝐻, as conjectured by Erdős and Simonovits (see
for example [Erd81]):

Conjecture 2.1.3. For every nonempty bipartite graph 𝐻, there exist a rational
number 𝛼 ∈ [1, 2) and 𝑐 > 0 such that

ex(𝑛,𝐻)

𝑛𝛼
→ 𝑐.

Observe that if Conjecture 2.1.3 is true, then Theorem 2.1.2 resolves Question 2.1.1
for all 𝐻. Actually, the following weaker version of Conjecture 2.1.3 is sufficient.
However, a solution to either of these conjectures is most likely unattainable in the
near future.

Conjecture 2.1.4. For every nonempty bipartite graph 𝐻, there exist 𝛼 ∈ [1, 2] and
𝑐2 > 𝑐1 > 0 such that

𝑐1 6
ex(𝑛,𝐻)

𝑛𝛼
6 𝑐2

On a related note, we would like to mention a recent breakthrough of Bukh and
Conlon [BC18], who used a random algebraic method, pioneered by Bukh [Buk15], to
prove the following “inverse” version of Conjecture 2.1.4: for every rational 𝛼 ∈ [1, 2),
there exists a finite family of graphs ℒ for which ex(𝑛,ℒ) = Θ(𝑛𝛼) (where ex(𝑛,ℒ) is
the maximum possible number of edges in an 𝑛-vertex graph that does not contain
any member of the family ℒ).
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There are bipartite graphs 𝐻 for which the best known upper bound on ex(𝑛,𝐻) is
of the form 𝑂(𝑛𝛼), for some explicit 𝛼, and is conjectured to be tight. For such graphs,
it makes sense to establish the bound |ℱ𝑛(𝐻)| 6 2𝑂(𝑛𝛼). Indeed, such results have been
proved for even cycles [MS16], complete bipartite graphs [BS11a, BS11b], and theta
graphs [CT17]. All these estimates follow as simple corollaries of Theorem 2.1.2 and
the corresponding upper bounds on the extremal numbers [BS74, FS83, KST54].

Even if the asymptotic behavior of ex(𝑛,𝐻) is unknown, assuming a sufficiently
strong lower bound on it, in Theorem 2.1.5, we are able to prove strong estimates for
|ℱ𝑛(𝐻)| for an infinite sequence of 𝑛. A similar result for the number of 𝑘-arithmetic-
progression-free subsets of [𝑛] was obtained by Balogh, Liu, and Sharifzadeh [BLS17].
This result served as an inspiration for our work. Before formally stating the theorem,
we recall the notion of 2-density of a graph 𝐻:

𝑚2(𝐻) := max

{︂
𝑒𝐹 − 1

𝑣𝐹 − 2
: 𝐹 ⊆ 𝐻, 𝑣𝐹 > 2

}︂
.

Theorem 2.1.5. Let 𝐻 be a graph and assume that ex(𝑛,𝐻) > 𝜀𝑛2−1/𝑚2(𝐻)+𝜀 for
some 𝜀 > 0 and all 𝑛. Then there exist a constant 𝐶 depending only on 𝜀 and 𝐻 and
an infinite sequence of 𝑛 for which

|ℱ𝑛(𝐻)| 6 2𝐶·ex(𝑛,𝐻).

The assumption on 𝐻 stated in Theorem 2.1.5 is widely believed to hold for every
𝐻 containing a cycle. In fact, it is known to hold for quite a few bipartite graphs.
For example, it is known that for every ℓ,

ex(𝑛,𝐶2ℓ) > Ω
(︁
𝑛1+ 2

3ℓ+3

)︁
= Ω

(︀
𝑛2−1/𝑚2(𝐶2ℓ)+𝜀ℓ

)︀
,

where 𝜀ℓ > 0; see, for example, Terlep and Williford [TW12] and the references
therein (in particular, the famous papers of Margulis [Mar88] and Lubotzky, Phillips,
and Sarnak [LPS88]). To give another example, consider the case when 𝐻 is the 3-
dimensional hypercube graph 𝑄3. Theorem 2.1.5 applies to 𝐻 because 2−1/𝑚2(𝑄3) =
2 − 6/11 < 3/2 and ex(𝑛,𝑄3) > ex(𝑛,𝐶4) = Ω(𝑛3/2). As a third example, note that
ex(𝑛,𝐾4,4) > ex(𝑛,𝐾3,3) = Ω(𝑛5/3) and 5/3 > 2 − 7/15 = 2 − 1/𝑚2(𝐾4,4) and thus
Theorem 2.1.5 also applies with 𝐻 = 𝐾4,4. Finally, it follows from the work of Ball
and Pepe [BP12] that 𝐾5,5 and 𝐾6,6 also satisfy the assumptions of Theorem 2.1.5.

One may consider a natural extension of Question 2.1.1 to the setting of uniform
hypergraphs, where ex(𝑛,𝐻) and ℱ𝑛(𝐻) are defined in the obvious way. However,
the problem of enumerating hypergraphs without a forbidden subhypergraph has only
been addressed fairly recently. Generalizing (2.3), Nagle, Rödl, and Schacht [NRS06]
proved that for each 𝑟-uniform hypergraph 𝐻,

|ℱ𝑛(𝐻)| = 2ex(𝑛,𝐻)+𝑜(𝑛𝑟). (2.5)

Analogously to the graph case, it is easy to see that an 𝑟-uniform hypergraph 𝐻 that
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is not 𝑟-partite2 satisfies ex(𝑛,𝐻) = Ω(𝑛𝑟). On the other hand, extending the result of
Kővári, Sós, and Turán [KST54] to hypergraphs, Erdős [Erd64] proved that for every
𝑟-partite 𝑟-uniform 𝐻, there is an 𝜀 > 0 such that ex(𝑛,𝐻) = 𝑂(𝑛𝑟−𝜀). In particular,
(2.5) implies that |ℱ𝑛(𝐻)| = 2(1+𝑜(1))ex(𝑛,𝐻) for all non-𝑟-partite 𝑟-uniform 𝐻, but it
gives a very weak bound when 𝐻 is 𝑟-partite. Therefore, the right generalization of
Question 2.1.1 to the setting of hypergraphs with uniformity larger than two seems
to be the following:

Question 2.1.6. Suppose that 𝑟 > 3 and suppose that 𝐻 is an 𝑟-partite 𝑟-uniform
hypergraph. Under what conditions can one expect the existence of a constant 𝐶 such
that

|ℱ𝑛(𝐻)| 6 2𝐶ex(𝑛,𝐻)

for all 𝑛?

As mentioned above, our proof method applies to hypergraphs and both Theo-
rems 2.1.2 and 2.1.5 extend to this setting. Before stating them formally, we need the
following definition, which generalizes the notion of 2-density to hypergraphs. The
𝑟-density of an 𝑟-uniform hypergraph 𝐻, denoted by 𝑚𝑟(𝐻), is defined by

𝑚𝑟(𝐻) = max

{︂
𝑒𝐹 − 1

𝑣𝐹 − 𝑟
: 𝐹 ⊆ 𝐻, 𝑣𝐹 > 𝑟

}︂
.

The hypergraph analog to Theorem 2.1.2 is the following:

Theorem 2.1.7. Let 𝐻 be an 𝑟-uniform hypergraph and let 𝛼 and 𝐴 be positive
constants. Suppose that 𝛼 > 𝑟 − 1/𝑚𝑟(𝐻) and that ex(𝑛,𝐻) 6 𝐴𝑛𝛼 for all 𝑛. Then
there exists a constant 𝐶 depending only on 𝛼, 𝐴, and 𝐻 such that for all 𝑛,

|ℱ𝑛(𝐻)| 6 2𝐶𝑛𝛼

.

The idea of investigating Question 2.1.6 was suggested in a recent work of Mubayi
and Wang [MW19]. They conjectured that Question 2.1.6 has an affirmative answer
in the case when 𝐻 is 𝐶

(𝑟)
𝑘 , the 𝑟-uniform expansion3 of 𝐶𝑘, the (2-uniform) cycle

of length 𝑘. Improving upon the result from [HK18, MW19], Balogh, Narayanan,
and Skokan [BNS19] have recently solved the conjecture of Wang and Mubayi. As
immediate corollaries from Theorem 2.1.7 we reprove this result along with two related
estimates for expansions of paths and complete bipartite graphs. For further reading
about Turán problems for graph expansions, we refer the reader to a recent survey of
Mubayi and Verstraëte [MV16] and the references therein. Here is a summary of our
results:

Corollary 2.1.8. Suppose that 𝐻 is any one of the following:
2An 𝑟-uniform hypergraph 𝐻 is 𝑟-partite if its vertex set admits a partition into 𝑟 parts such

that every edge of 𝐻 contains one vertex from each of the parts.
3 Given a graph 𝐺 and an integer 𝑟 > 3, we define the 𝑟-uniform expansion of 𝐺 to be the

hypergraph 𝐺(𝑟) with edge set {𝑒 ∪ 𝑆𝑒 : 𝑒 ∈ 𝐸(𝐺)}, where {𝑆𝑒}𝑒∈𝐸(𝐺) are pairwise disjoint (𝑟 − 2)-
element sets disjoint from 𝑉 (𝐺).
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1. 𝑃
(𝑟)
𝑘 for some 𝑘, 𝑟 > 3, or

2. 𝐶
(𝑟)
𝑘 for some 𝑘, 𝑟 > 3, or

3. 𝐾
(3)
𝑠,𝑡 for some 𝑠, 𝑡 > 3 with 𝑡 > (𝑠− 1)!.

Then, there exists a constant 𝐶 depending only on 𝐻 such that for all 𝑛,

|ℱ𝑛(𝐻)| 6 2𝐶·ex(𝑛,𝐻).

The straightforward verification of the fact that the three families of hypergraphs
from the statement of Corollary 2.1.8 satisfy the assumptions of Theorem 2.1.7 is
left to the reader. We conclude with the following analog of Theorem 2.1.5 in the
hypergraph setting.

Theorem 2.1.9. Let 𝐻 be an 𝑟-uniform hypergraph and assume that ex(𝑛,𝐻) >
𝜀𝑛𝑟−1/𝑚𝑟(𝐻)+𝜀 for some 𝜀 > 0 and all 𝑛. Then there exist a constant 𝐶 depending
only on 𝜀 and 𝐻 and an infinite sequence of 𝑛 for which

|ℱ𝑛(𝐻)| 6 2𝐶·ex(𝑛,𝐻).

All of our theorems are obtained as (more or less) simple corollaries of the more
general but somewhat technical Theorem 2.4.1, which is stated (and proved) in Sec-
tion 2.4.

The rest of the chapter is organized as follows: First, in Section 2.2 we give a
short discussion of our proof method, including some comments about previous work.
Then, in Section 2.3, we present the main tool to be used in our proofs, Lemma 2.3.2,
which is a version of a similar lemma from [MS16] and is based on the method
of hypergraph containers developed in [BMS15, ST15]. Next, in Section 2.4, we
introduce our main technical theorem, Theorem 2.4.1, a “balanced supersaturation”
result that complements Lemma 2.3.2. Finally, in Sections 2.5 and 2.6, we prove
Theorems 2.1.2 and 2.1.7 and Theorems 2.1.5 and 2.1.9, respectively.

2.2 Discussion
As we have mentioned in the introduction, enumeration problems in the context of
forbidden (hyper)graphs have been successfully addressed for non-bipartite graphs
[BBS04, EFR86, EKR76] and non-𝑟-partite 𝑟-uniform hypergraphs [NRS06]. A main
difficulty in extending the results of [BBS04, EFR86, EKR76] to the bipartite case
is that the proofs in [BBS04, EFR86] are based on Szemerédi’s regularity lemma.
Even though there are now sparse versions of the regularity lemma, it is unlikely
that the regularity approach could be used for counting graphs without a bipartite
subgraph. The proof method of [EKR76] is different, but it hinges on the fact that
for non-bipartite 𝐻, the number of edges in most graphs in ℱ𝑛(𝐻) is 𝑛2−𝑜(1); this is
no longer true when 𝐻 is bipartite. In the case of 𝑟-uniform hypergraphs (𝑟 > 3),
the situation is even more complicated, as a hypergraph regularity lemma which is
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sufficiently strong to address the enumeration problem was proved only relatively
recently and is quite involved.

A nowadays standard way of tackling enumeration problems of this type is by
using the method of hypergraph containers. This method was introduced by Balogh,
Morris, and Samotij [BMS15] and, independently, by Saxton and Thomason [ST15].
In particular, it can be used to reprove (2.5) for all 𝑟-uniform 𝐻 in a simple way. The
container method essentially reduces the problem of establishing upper bounds on
|ℱ𝑛(𝐻)| to proving the following statement: If an 𝑛-vertex graph contains “slightly
more” than ex(𝑛,𝐻) edges, then it has “many” copies of 𝐻 (such property is known
as supersaturation) that are moreover “well-distributed”.

Keeping this in mind, it seems hopeless to provide a general solution to the count-
ing problem, as it seems crucial to know the order of magnitude of ex(𝑛,𝐻) in order
to establish a sufficiently strong supersaturation result. However, Balogh, Liu, and
Sharifzadeh [BLS17] recently managed to settle a question that has a similar flavor
without knowing the corresponding extremal function. Specifically, they showed that
for infinitely many 𝑛, there are 2Θ(Γ𝑘(𝑛)) many subsets of [𝑛] that do not contain an
arithmetic progression of length 𝑘; here Γ𝑘(𝑛) is the largest cardinality of a subset of
[𝑛] without a 𝑘-term arithmetic progression. We have found this result very surpris-
ing, as the asymptotic behavior of Γ𝑘(𝑛) is unknown. It motivated us to investigate
whether similar estimates can be obtained for the problem of counting 𝐻-free graphs.
A fact that was crucially used in [BLS17] is that every pair of integers is contained in
a constant number of 𝑘-term arithmetic progressions. This is not the case with copies
of a fixed graph 𝐻 in a large complete graph (and pairs of edges of this complete
graph) and this was one of the main challenges that we had to overcome.

The main contribution of this work is a general supersaturation theorem for 𝑟-
uniform 𝑟-partite hypergraphs, Theorem 2.4.1 below. Roughly speaking, it states
the following. Suppose that ex(𝑛,𝐻) = 𝑂(𝑛𝛼) for some 𝛼 such that the expected
number of copies of (the densest subgraph of) the forbidden hypergraph 𝐻 in the
random hypergraph with 𝑛 vertices and 𝑛𝛼 edges is of larger order of magnitude than
𝑛𝛼. Then every 𝑛-vertex hypergraph with at least 𝑛𝛼 edges contains “many” copies
of 𝐻 which are “well-distributed”. Although the number of copies of 𝐻 that we can
guarantee is still very far from the value conjectured by Erdős and Simonovits [ES84],
the lower bound we prove for this quantity is sufficiently strong to allow us to derive a
strong upper bound on |ℱ𝑛(𝐻)| using the container method. This was in fact already
observed by Morris and Saxton [MS16], who formulated the following conjecture
and showed that it implies a positive answer to Question 2.1.1. For an 𝑟-uniform
hypergraph ℋ and 1 6 ℓ 6 𝑟, let Δℓ(ℋ) be the maximum number of hyperedges of
ℋ that contain a given set of ℓ vertices.

Conjecture 2.2.1 ([MS16, Conjecture 1.6]). Given a bipartite graph 𝐻, there exist
constants 𝐶 > 0, 𝜀 > 0, and 𝑘0 ∈ N such that the following holds. Let 𝑘 > 𝑘0 and
suppose that 𝐺 is a graph on 𝑛 vertices with 𝑘 · ex(𝑛,𝐻) edges. Then there exists a
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(non-empty) collection ℋ of copies of 𝐻 in 𝐺, satisfying

Δℓ(ℋ) 6
𝐶 · 𝑒(ℋ)

𝑘(1+𝜀)(ℓ−1)
for all 1 6 ℓ 6 𝑒𝐻 .

Although we have not succeeded in resolving Conjecture 2.2.1, our Theorem 2.4.1
shows that the “balanced supersaturation” property asserted by it holds for every
graph 𝐻 for which Conjecture 2.1.4 (or the stronger Conjecture 2.1.3) is true.

2.3 A container lemma

Let 𝐻 be an 𝑟-uniform hypergraph and let ℋ denote the 𝑒𝐻-uniform hypergraph
whose vertex set is the edge set of the complete 𝑟-uniform 𝑛-vertex hypergraph 𝐾

(𝑟)
𝑛

and whose hyperedges are (the edge sets of) all copies of 𝐻 in 𝐾
(𝑟)
𝑛 . Note that the

edge set of every 𝐻-free hypergraph on 𝑛 vertices corresponds to an independent set
in ℋ and vice versa. Therefore, any upper bound on the number of independent sets
in ℋ yields an upper bound on the number of 𝐻-free hypergraphs.

In order to obtain the desired bound on the number of independent sets, we will
use a version of the container lemma due to Balogh, Morris, and Samotij [BMS15,
Proposition 3.1]. Roughly speaking, the lemma states that if the edges of a uniform
hypergraph ℋ are “well-distributed”, then the following holds: there is a “relatively
small” collection 𝒞 of subsets of 𝑉 (ℋ) (referred to as containers), each of which
induces “not too many” hyperedges, such that every independent set of ℋ is a subset
of at least one container. Here is the formal statement:

Proposition 2.3.1 (Container lemma [BMS15, Proposition 3.1]). Let ℋ be a 𝑘-
uniform hypergraph and let 𝐾 be a constant. There exists a constant 𝛿 depending
only on 𝑘 and 𝐾 such that the following holds. Suppose that for some 𝑝 ∈ (0, 1) and
all ℓ ∈ {1, . . . , 𝑘},

Δℓ(ℋ) 6 𝐾 · 𝑝ℓ−1 · 𝑒(ℋ)

𝑣(ℋ)
. (2.6)

Then, there exists a family 𝒞 ⊆ 𝒫(𝑉 (ℋ)) of containers with the following properties:

(i) |𝒞| 6
(︀

𝑣(ℋ)
6𝑘𝑝𝑣(ℋ)

)︀
6
(︁

𝑒
𝑘𝑝

)︁𝑘𝑝𝑣(ℋ)

,

(ii) |𝐺| 6 (1− 𝛿) · 𝑣(ℋ) for each 𝐺 ∈ 𝒞,

(iii) each independent set of ℋ is contained in some 𝐺 ∈ 𝒞.

Clearly, the smaller the 𝑝 we choose, the stronger the upper bound on the number
of containers. On the other hand, as we decrease 𝑝, it becomes more difficult to satisfy
the “density” condition (2.6).

To illustrate how the container lemma can be applied in our setting, let us assume
that we have an upper bound of 𝑂(𝑀) on the largest size of a container and that (2.6)
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is fulfilled with 𝑝 satisfying 𝑝 log 1
𝑝
= 𝑂(𝑀/𝑣(ℋ)). Then, we immediately obtain

|ℱ𝑛(𝐻)| 6 |𝒞| · 2𝑂(𝑀) = 2𝑂(𝑀).

Since one does not obtain strong bounds on the largest size of a container after
one application of Proposition 2.3.1, it is natural to iterate it. Specifically, given
a candidate 𝐺 for a final container, we can either decide to keep it (if 𝐺 is small
enough for our purposes) or invoke Proposition 2.3.1 to the induced subhypergraph
ℋ[𝐺] to break 𝐺 down further. In order for this recursive process not to produce
too many containers, we must prove that ℋ[𝐺] fulfills (2.6) with a “relatively small”
𝑝. Unfortunately, since we do not know anything about the structure of 𝐺, such a
statement might be very hard, or even impossible to prove.

In order to overcome this difficulty, we employ the following simple, yet powerful
strategy that was first used in this context by Morris and Saxton [MS16]. Given any
subhypergraph ℋ𝐺 ⊆ ℋ[𝐺], every independent set in ℋ[𝐺] is also independent in ℋ𝐺.
Hence, any upper bound on the number of independent sets in ℋ𝐺 is also an upper
bound on the number of independent sets in ℋ[𝐺]. It thus follows that even if ℋ[𝐺]
does not fulfill (2.6), we might hope to find a suitable subhypergraph ℋ𝐺 ⊆ ℋ[𝐺]
which does satisfy this condition, enabling us to continue the iteration.

With this strategy in mind, we are first going to show how the existence of such
ℋ𝐺 for every 𝐺 implies the desired upper bound on the number of independent sets.
A similar statement appears in [MS16], but since we consider hypergraphs here as
well (as opposed to [MS16]), for the convenience of the reader and in order to keep
this work self-contained, we include a full proof.

Lemma 2.3.2. Let 𝐻 be a nonempty 𝑟-uniform hypergraph, let 𝑛 ∈ N, and let ℋ be
the 𝑒𝐻-uniform hypergraph comprising (the edge sets of) all copies of 𝐻 in 𝐾

(𝑟)
𝑛 . Let

𝐾 be a constant and let 𝛾 = 1
1−𝛿

, where 𝛿 := 𝛿(𝑒𝐻 , 𝐾) is defined in Proposition 2.3.1.
Suppose that 𝑀 and 𝑡0 are such that the following holds: for all integers 𝑡 > 𝑡0 and
all 𝐺 ⊆ 𝑉 (ℋ) satisfying

𝛾𝑡𝑀 < |𝐺| 6 𝛾𝑡+1𝑀,

there exists a nonempty subhypergraph ℋ𝐺 ⊆ ℋ[𝐺] for which

Δℓ(ℋ𝐺) 6 𝐾 ·
(︂

𝑏𝑡
|𝐺|

)︂ℓ−1

· 𝑒(ℋ𝐺)

|𝐺|
(2.7)

where 𝑏𝑡 =
𝑀

(𝑡+1)3
, for all ℓ ∈ {1, . . . , 𝑒𝐻}. Then there is a constant 𝐶 depending only

on 𝐾, 𝑡0, and 𝑒𝐻 such that |ℱ𝑛(𝐻)| 6 2𝐶·𝑀 .

Remark 2.3.3. Since Δ𝑒𝐻 (ℋ𝐺) = 1 whenever 𝐺 is nonempty, inequality (2.7) in
particular implies a lower bound on 𝑒(ℋ𝐺), which in turn is a lower bound on the
number of copies of 𝐻 in 𝐺.

Proof. We are going to prove the claimed upper bound on |ℱ𝑛(𝐻)| by constructing
a collection of 2𝑂(𝑀) containers for independent sets in ℋ, each of size 𝑂(𝑀). We
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start with the trivial container 𝑉 (ℋ) which we break down into smaller containers by
repeatedly applying Proposition 2.3.1 to the subhypergraphs ℋ𝐺 from the assumption
of the lemma. Formally, we shall construct a rooted tree 𝒯 whose vertices are subsets
of 𝑉 (ℋ), that is, subgraphs of 𝐾(𝑟)

𝑛 , with the following properties:

(T1) The root of 𝒯 is 𝑉 (ℋ).

(T2) If 𝐺 is a non-leaf vertex of 𝒯 , then every independent set of ℋ[𝐺] is an inde-
pendent set of ℋ[𝐺′] for some child 𝐺′ of 𝐺 in 𝒯 .

(T3) Every leaf of 𝒯 is a subset of 𝑉 (ℋ) with at most 𝛾𝑡0𝑀 elements.

The existence of such a tree 𝒯 clearly implies that

|ℱ𝑛(𝐻)| 6 (#leaves of 𝒯 ) · 2𝛾𝑡0𝑀 . (2.8)

We construct 𝒯 greedily by starting from a tree comprising just the root 𝑉 (ℋ) and
repeatedly ‘s‘splitting” every leaf vertex that corresponds to a subset of 𝑉 (ℋ) with
more than 𝛾𝑡0𝑀 elements. Suppose that 𝐺 is such a subset and let 𝑡 > 𝑡0 be the
unique integer such that

𝛾𝑡𝑀 < |𝐺| 6 𝛾𝑡+1𝑀. (2.9)

By our assumption, there is a subhypergraph ℋ𝐺 ⊆ ℋ[𝐺] that satisfies condition (2.7).
Observe that if we let 𝑝 = 𝑏𝑡

|𝐺| , then we obtain precisely (2.6). Therefore, we can apply
Proposition 2.3.1 to ℋ𝐺 and obtain a family 𝒞𝐺 of subsets of 𝐺 such that

(i) |𝒞𝐺| 6
(︁

𝑒·|𝐺|
𝑒𝐻𝑏𝑡

)︁𝑒𝐻𝑏𝑡
6
(︁

𝑒𝛾𝑡+1𝑀
𝑒𝐻𝑏𝑡

)︁𝑒𝐻𝑏𝑡
,

(ii) |𝐺′| 6 (1− 𝛿) · |𝐺| 6 𝛾𝑡𝑀 for every 𝐺′ ∈ 𝒞𝐺,

and such that (T2) holds for 𝐺, as every independent set in ℋ[𝐺] is still independent
in ℋ𝐺. Note that (ii) implies that as 𝐺 ranges over the vertices of any path from the
root to a leaf of 𝒯 , the sequence of 𝑡 satisfying (2.9) is strictly decreasing. Moreover,
𝑡 6 𝑇 , where 𝑇 is the smallest integer satisfying 𝛾𝑇𝑀 > 𝑣(ℋ). It follows that

#leaves of 𝒯 6
𝑇∏︁

𝑡=𝑡0

(︂
𝑒𝛾𝑡+1𝑀

𝑒𝐻𝑏𝑡

)︂𝑒𝐻𝑏𝑡

6
𝑇∏︁

𝑡=𝑡0

(︂
𝑒𝛾𝑡+1(𝑡+ 1)3

𝑒𝐻

)︂ 𝑒𝐻𝑀

(𝑡+1)3

6
𝑇∏︁

𝑡=𝑡0

(︀
𝐴𝑡+1

)︀ 𝑒𝐻𝑀

(𝑡+1)3

6 exp

(︃
𝑒𝐻𝑀 · log𝐴 ·

∞∑︁
𝑡=1

1

𝑡2

)︃
6 2(𝐶−𝛾𝑡0 )𝑀 ,

(2.10)

where 𝐴 and 𝐶 are constants depending only on 𝛾, 𝑒𝐻 , and 𝑡0. The assertion of the
lemma now follows from (2.8) and (2.10).
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2.4 Supersaturation

In this section we establish our supersaturation statement for copies of a fixed hyper-
graph 𝐻. We shall be able to prove, for every 𝑛-vertex hypergraph 𝐺, the existence of
an ℋ𝐺 as in the discussion before Lemma 2.3.2 using only a relatively mild and natu-
ral assumption on the growth rate of ex(𝑠,𝐻) for all 𝑠 below some given 𝑛. As in the
argument of [MS16], we build ℋ𝐺 by adding suitable copies of 𝐻 in 𝐺 one by one. The
following technical statement is the main contribution of our work. The key idea in its
proof, a double counting argument based on averaging over induced subhypergraphs
of 𝐺, can be traced back to the seminal work of Erdős and Simonovits [ES83].

Theorem 2.4.1. Let 𝐻 be an 𝑟-uniform hypergraph, let 𝛾 > 1, and let 𝛼 > 𝑟 −
1/𝑚𝑟(𝐻). Suppose that 𝑀 and 𝑛 are such that for every 𝑠 ∈ {1, . . . , 𝑛},

ex(𝑠,𝐻) 6 𝑀 ·
(︁ 𝑠
𝑛

)︁𝛼
.

Then there exists a constant 𝑡0 depending only on 𝛼, 𝛾, and 𝐻 such that the following
holds. If 𝐺 is an 𝑛-vertex 𝑟-uniform hypergraph with

𝛾𝑡𝑀 < 𝑒(𝐺) 6 𝛾𝑡+1𝑀

for some integer 𝑡 > 𝑡0, then there is a collection ℋ𝐺 of copies of 𝐻 in 𝐺 for which,
letting 𝑏𝑡 =

𝑀
(𝑡+1)3

,

Δℓ(ℋ𝐺) 6 22𝑒𝐻+3 ·
(︂

𝑏𝑡
𝑒(𝐺)

)︂ℓ−1

· 𝑒(ℋ𝐺)

𝑒(𝐺)
(2.11)

for every ℓ ∈ {1, . . . , 𝑒𝐻}. In particular, Lemma 2.3.2 implies the existence of a
constant 𝐶 depending only on 𝛼 and 𝐻 such that |ℱ𝑛(𝐻)| 6 2𝐶·𝑀 .

Proof. Let ℋ denote the hypergraph with vertex set 𝐸(𝐺) comprising all copies of 𝐻
in 𝐺. We shall construct an ℋ𝐺 ⊆ ℋ from an initially empty hypergraph by adding
to it copies of 𝐻 one by one, in a sequence of 𝑁 steps (𝑁 to be chosen shortly). We
shall do it in such a way that after 𝑁 steps, the obtained hypergraph ℋ𝐺 will have
exactly 𝑁 edges and will satisfy (2.11).

Let 𝑚 = 𝑒(𝐺). Since we will add each copy of 𝐻 to ℋ𝐺 only once, we will have
Δ𝑒𝐻 (ℋ𝐺) = 1 and thus, isolating 𝑒(ℋ𝐺) in (2.11) with ℓ = 𝑒𝐻 , the number of edges
that we have to add to ℋ𝐺 satisfies

𝑁 >

(︂
𝑚

𝑏𝑡

)︂𝑒𝐻−1

· 2−2𝑒𝐻−3 ·𝑚.

In particular, choosing

𝑁 :=

(︂
𝛾𝑡+1𝑀

𝑏𝑡

)︂𝑒𝐻−1

·𝑚 =
(︀
(𝑡+ 1)3 · 𝛾𝑡+1

)︀𝑒𝐻−1 ·𝑚,
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we will guarantee that (2.11) holds for ℓ = 𝑒𝐻 .
We now make the above discussion precise. We shall construct a sequence (ℋ𝑖)

𝑁
𝑖=0

of subhypergraphs of ℋ such that ℋ𝑖 ⊆ ℋ𝑖+1 and 𝑒(ℋ𝑖) = 𝑖 for each 𝑖 and let
ℋ𝐺 = ℋ𝑁 . We let ℋ0 be the empty hypergraph. Suppose that we have already
defined ℋ𝑖 for some 𝑖 ∈ {0, . . . , 𝑁 − 1}. Our goal is not only to find some copy of
𝐻 in ℋ ∖ ℋ𝑖 to be added to ℋ𝑖 in order to form ℋ𝑖+1, but also to choose this copy
carefully so that at the end of the process, condition (2.11) is satisfied for every ℓ.
To this end, for every nonempty 𝐹 ( 𝐻, we let ℬ𝐹 (ℋ𝑖) denote the collection of ‘bad’
copies of 𝐹 in 𝐺 in the sense that they are already ‘saturated’ in ℋ𝑖. That is, the
ℋ𝑖-degree of the set of 𝑒𝐹 edges of 𝐺 that form this copy of 𝐹 is close to violating
the bound (2.11), with ℓ = 𝑒𝐹 . More precisely, given 𝐹 ′ ⊆ 𝑉 (ℋ𝑖), we define

degℋ𝑖
𝐹 ′ = |{𝐸 ∈ 𝐸(ℋ𝑖) : 𝐹

′ ⊆ 𝐸}| ,

and let

ℬ𝐹 (ℋ𝑖) =

{︂
𝐹 ′ ⊆ 𝐺 : 𝐹 ′ ≃ 𝐹 and degℋ𝑖

𝐹 ′ > 22𝑒𝐻+2 ·
(︀
(𝑡+ 1)3 · 𝛾𝑡+1

)︀1−𝑒𝐹 · 𝑁
𝑚

}︂
.

Observe that

2𝑒𝐻 ·𝑁 >

(︂
𝑒𝐻
𝑒𝐹

)︂
· 𝑒(ℋ𝑖) > |ℬ𝐹 (ℋ𝑖)| · 22𝑒𝐻+2 ·

(︀
(𝑡+ 1)3 · 𝛾𝑡+1

)︀1−𝑒𝐹 · 𝑁
𝑚

and therefore,
|ℬ𝐹 (ℋ𝑖)| 6 2−𝑒𝐻−2

(︀
(𝑡+ 1)3 · 𝛾𝑡+1

)︀𝑒𝐹−1 ·𝑚. (2.12)

Suppose that there exists an 𝐸 ∈ ℋ such that 𝐹 ′ /∈ ℬ𝐹 (ℋ𝑖) for every nonempty
𝐹 ( 𝐻 and every 𝐹 ≃ 𝐹 ′ ( 𝐸. Call each such 𝐸 good, assuming that 𝑖 is fixed. If
there is a good 𝐸 that is not already in ℋ𝑖, then letting ℋ𝑖+1 = ℋ𝑖 ∪{𝐸} guarantees
that for every ℓ ∈ [𝑒𝐻 − 1],

Δℓ(ℋ𝑖+1) 6 max

{︂
Δℓ(ℋ𝑖), 2

2𝑒𝐻+2 ·
(︀
(𝑡+ 1)3 · 𝛾𝑡+1

)︀1−ℓ · 𝑁
𝑚

+ 1

}︂
6 max

{︂
Δℓ(ℋ𝑖), 2

2𝑒𝐻+3 ·
(︀
(𝑡+ 1)3 · 𝛾𝑡+1

)︀1−ℓ · 𝑁
𝑚

}︂
6 max

{︃
Δℓ(ℋ𝑖), 2

2𝑒𝐻+3 ·
(︂
𝑏𝑡
𝑚

)︂ℓ−1

· 𝑁
𝑚

}︃
,

where the second inequality holds because(︀
(𝑡+ 1)3 · 𝛾𝑡+1

)︀1−ℓ · 𝑁
𝑚

=
(︀
(𝑡+ 1)3 · 𝛾𝑡+1

)︀𝑒𝐻−ℓ
> 1

and the last inequality uses the definition of 𝑏𝑡 and the bound 𝑚 6 𝛾𝑡+1𝑀 . In
particular, by the definition of 𝑁 , if we succeed in finding such a good 𝐸 ∈ ℋ ∖ ℋ𝑖

for every 𝑖, then the final hypergraph ℋ𝐺 = ℋ𝑁 will satisfy (2.11) for every ℓ ∈ [𝑒𝐻 ].
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Fix some 𝑝 ∈ (0, 1] such that 𝑝𝑛 is an integer and let 𝑅 be a uniformly chosen
random subset of 𝑝𝑛 vertices of 𝐺.4 Denote by 𝐺′ the subgraph of 𝐺 induced by 𝑅.
Let 𝐺′′ be a graph obtained from 𝐺′ by removing one edge from each copy of 𝐹 in 𝐺′

that belongs to ℬ𝐹 (ℋ𝑖), for every nonempty 𝐹 ( 𝐻. Note that any copy of 𝐻 in 𝐺′′

is good by definition. Let 𝑋 denote the (random) number of good copies of 𝐻 in 𝐺′′

and let 𝑍 be the total number of good copies of 𝐻 in 𝐺. Even though we might have
accidentally eliminated some good copies of 𝐻 in 𝐺′ while forming the subgraph 𝐺′′,
it is still true that

E[𝑋] 6 𝑍 ·
(︂
𝑛− 𝑣𝐻
𝑝𝑛− 𝑣𝐻

)︂⧸︂(︂
𝑛

𝑝𝑛

)︂
= 𝑍 ·

(︂
𝑝𝑛

𝑣𝐻

)︂⧸︂(︂
𝑛

𝑣𝐻

)︂
6 𝑍 · 𝑝𝑣𝐻 .

Since every copy of 𝐻 in 𝐺′′ is good and 𝐺′′ has 𝑝𝑛 vertices, then

𝑋 > 𝑒(𝐺′′)− ex(𝑝𝑛,𝐻) > 𝑒(𝐺′′)−𝑀 · 𝑝𝛼.

Since clearly
𝑒(𝐺′′) > 𝑒(𝐺′)−

∑︁
𝐹(𝐻

∑︁
𝐹 ′∈ℬ𝐹 (ℋ𝑖)

1[𝐹 ′ ⊆ 𝐺′],

and for every 𝐹 ′ ⊆ 𝐺 with 𝐹 ′ ≃ 𝐹 , we have Pr(𝐹 ′ ⊆ 𝐺′) =
(︀
𝑛−𝑣𝐹
𝑝𝑛−𝑣𝐹

)︀
/
(︀
𝑛
𝑝𝑛

)︀
6 𝑝𝑣𝐹 , it

follows that

𝑍 · 𝑝𝑣𝐻 > E[𝑋] > E[𝑒(𝐺′′)]−𝑀 · 𝑝𝛼 > E[𝑒(𝐺′)]−
∑︁
𝐹(𝐻

|ℬ𝐹 (ℋ𝑖)| · 𝑝𝑣𝐹 −𝑀 · 𝑝𝛼. (2.13)

Finally, if 𝑝𝑛 > 2𝑟2, then

E[𝑒(𝐺′)] = 𝑚 ·
(︂
𝑛− 𝑟

𝑝𝑛− 𝑟

)︂⧸︂(︂
𝑛

𝑝𝑛

)︂
= 𝑚 ·

(︂
𝑝𝑛

𝑟

)︂⧸︂(︂
𝑛

𝑟

)︂
> 𝑚 ·

(︂
𝑝𝑛− 𝑟

𝑛

)︂𝑟

= 𝑚 · 𝑝𝑟 ·
(︂
1− 𝑟

𝑝𝑛

)︂𝑟

> 𝑚 · 𝑝𝑟 ·
(︂
1− 𝑟2

𝑝𝑛

)︂
>

𝑚 · 𝑝𝑟

2
,

which substituted into (2.13) yields

𝑍 · 𝑝𝑣𝐻 >
𝑚 · 𝑝𝑟

2
−
∑︁
𝐹(𝐻

|ℬ𝐹 (ℋ𝑖)| · 𝑝𝑣𝐹 −𝑀 · 𝑝𝛼. (2.14)

We claim that there is a 𝑝 ∈ [2𝑟2/𝑛, 1] such that 𝑝𝑛 is an integer and the right-
hand side of (2.14) is at least 𝑁 · 𝑝𝑣𝐻 , and thus 𝑍 > 𝑁 . Since 𝑒(ℋ𝑖) = 𝑖 < 𝑁 , this
inequality would imply that there is a good copy of 𝐻 in 𝐺 that does not belong to
ℋ𝑖, completing the proof. Hence, it suffices to establish this claim. To this end, note

4The reason why we let 𝑅 be a uniformly chosen random set of 𝑝𝑛 vertices and not a binomial
random subset is that in the latter case, we did not see a clean way to bound E[ex(|𝑅|, 𝐻)]] from
above that would avoid estimating the 𝑟th moment of |𝑅|.
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first that by (2.12), we have∑︁
𝐹(𝐻

|ℬ𝐹 (ℋ𝑖)| · 𝑝𝑣𝐹 6
𝑚

4
·max

{︁(︀
(𝑡+ 1)3 · 𝛾𝑡+1

)︀𝑒𝐹−1 · 𝑝𝑣𝐹 : 𝐹 ( 𝐻
}︁
. (2.15)

Thus it suffices to have the following three inequalities for every 𝐹 ( 𝐻:

𝑝𝑟−𝑣𝐹 >
(︀
(𝑡+ 1)3 · 𝛾𝑡+1

)︀𝑒𝐹−1
, (2.16)

𝑝𝛼−𝑟 6
𝛾𝑡

8
6

𝑚

8𝑀
, (2.17)

𝑝𝑟−𝑣𝐻 > 8
(︀
(𝑡+ 1)3 · 𝛾𝑡+1

)︀𝑒𝐻−1
=

8𝑁

𝑚
. (2.18)

Indeed, combining inequalities (2.14), (2.15), (2.16), and (2.17) yields

𝑍 · 𝑝𝑣𝐻 >
𝑚 · 𝑝𝑟

8
,

which combined with (2.18) gives the desired lower bound on 𝑍. Note also that, as
𝛾 > 1, 𝑒𝐻 > 1, and 0 ≤ 𝑒𝐹 − 1 ≤ 𝑒𝐻 − 1, both (2.16) and (2.18) would follow if the
following was true for every 𝐹 ⊆ 𝐻:

𝑝𝑟−𝑣𝐹 >
(︀
8 · (𝑡+ 1)3 · 𝛾𝑡+1

)︀𝑒𝐹−1
. (2.19)

Observe that (2.17) holds trivially for all large enough 𝑡 if 𝛼 = 𝑟. Moreover, (2.19)
holds when 𝑣𝐹 = 𝑟, as then 𝑒𝐹 = 1. Hence, we may assume that 𝛼 < 𝑟 and
verify (2.19) only for all 𝐹 ⊆ 𝐻 with 𝑒𝐹 > 1.

We claim that it suffices to show that for all 𝐹 ⊆ 𝐻 with 𝑒𝐹 > 1,

(︀
8 · (𝑡+ 1)3 · 𝛾𝑡+1

)︀ 𝑒𝐹−1

𝑣𝐹−𝑟 6 min

{︃
1

2
·
(︂
𝛾𝑡

8

)︂ 1
𝑟−𝛼

,
𝑛

4𝑟2

}︃
(2.20)

Indeed, assuming that (2.20) holds, we shall be able to show that every 𝑝 in some
interval [𝑝0/2, 𝑝0] ⊆ [2𝑟2/𝑛, 1] satisfies both (2.17) and (2.19). Since every such inter-
val must contain a 𝑝 such that 𝑝𝑛 is an integer, we will be done. We let 𝑝0 be the
reciprocal of the left-hand side of (2.20), that is, 1/𝑝0 := (8 · (𝑡+ 1)3 · 𝛾𝑡+1)

𝑒𝐹−1

𝑣𝐹−𝑟 , and
note that 𝑝0 6 1, as 𝛾 > 1 and 𝑒𝐹−1

𝑣𝐹−𝑟
> 0, and that (2.20) implies that 𝑝0/2 > 2𝑟2/𝑛; in

particular, [𝑝0/2, 𝑝0] ⊆ [2𝑟2/𝑛, 1]. Finally, inequalities (2.17) and (2.19) are equivalent
to

1

𝑝
6

(︂
𝛾𝑡

8

)︂ 1
𝑟−𝛼

and
1

𝑝
>

1

𝑝0
,

respectively and thus (2.20) implies that every 𝑝 ∈ [𝑝0/2, 𝑝0] satisfies both of them.

Finally, we show that (2.20) holds. The first of the two inequalities in (2.20)
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holds for all large 𝑡, as 𝛾 > 1 and by our hypothesis

𝑒𝐹 − 1

𝑣𝐹 − 𝑟
6 𝑚𝑟(𝐻) <

1

𝑟 − 𝛼
. (2.21)

To see that the second inequality in (2.20) holds as well, note first that

1 = ex(𝑟,𝐻) 6 𝑀 ·
(︁ 𝑟
𝑛

)︁𝛼
6

𝑒(𝐺)

𝛾𝑡
·
(︁ 𝑟
𝑛

)︁𝛼
6

𝑛𝑟

𝛾𝑡
·
(︁ 𝑟
𝑛

)︁𝛼
,

and hence 𝑡 6 𝑟 log𝑛
log 𝛾

. It follows that

(︀
8 · (𝑡+ 1)3 · 𝛾𝑡+1

)︀ 𝑒𝐹−1

𝑣𝐹−𝑟 6

(︂
16 · 𝑟𝛼+3 · 𝛾
(log 𝛾)3

· 𝑛𝑟−𝛼 · (log 𝑛)3
)︂ 𝑒𝐹−1

𝑣𝐹−𝑟

6
𝑛

4𝑟2
,

provided that 𝑡 is sufficiently large (and thus 𝑛 is sufficiently large), since (𝑟 − 𝛼) ·
𝑒𝐹−1
𝑣𝐹−𝑟

< 1 by our hypothesis, see (2.21). This completes the proof.

2.5 Proofs of Theorems 2.1.2 and 2.1.7
In this section we prove Theorems 2.1.2 and 2.1.7. Both will be obtained as (more or
less) immediate corollaries of our technical Theorem 2.4.1.

Proof of Theorem 2.1.7. Let 𝛼 > 𝑟 − 1/𝑚𝑟(𝐻) and let 𝐴 be such that

ex(𝑛,𝐻) 6 𝐴𝑛𝛼

for all 𝑛. Define 𝑀 = 𝐴𝑛𝛼 and observe that for all 𝑠 ∈ [𝑛],

ex(𝑠,𝐻) 6 𝐴𝑠𝛼 =
(︁ 𝑠
𝑛

)︁𝛼
· 𝐴𝑛𝛼.

Therefore, Theorem 2.4.1 implies the existence of some 𝐶 > 0 such that

|ℱ𝑛(𝐻)| 6 2𝐶𝑛𝛼

,

as claimed.

Using a standard probabilistic argument, one can show that for every 𝑟-uniform
hypergraph 𝐻 with at least two edges, the bound ex(𝑛,𝐻) > 𝑐𝐻𝑛

𝑟−1/𝑚𝑟(𝐻) holds
for some positive constant 𝑐𝐻 . In particular, if ex(𝑛,𝐻) 6 𝐴𝑛𝛼 for all 𝑛, as in the
statement of Theorem 2.1.7, then 𝛼 > 𝑟 − 1/𝑚𝑟(𝐻). It turns out that when 𝐻 is a
graph that contains a cycle, the stronger lower bound

ex(𝑛,𝐻) > 𝑐𝐻𝑛
2−1/𝑚2(𝐻)(log 𝑛)1/(𝑒𝐻−1) (2.22)

holds for all 𝑛. This was first proved by Bohman and Keevash [BK10] and later
generalized to hypergraphs of higher uniformity by Bennett and Bohman [BB16].
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Proof of Theorem 2.1.2. Suppose that 𝐻 contains a cycle and 𝛼 and 𝐴 are such that
ex(𝑛,𝐻) 6 𝐴𝑛𝛼 for all 𝑛. It follows from (2.22) that 𝛼 > 2−1/𝑚2(𝐻). The assertion
of the theorem now easily follows from Theorem 2.1.7.

2.6 Proofs of Theorems 2.1.5 and 2.1.9
In this section, we prove Theorems 2.1.5 and 2.1.9. That is, we show that if ex(𝑛,𝐻)
exceeds the standard probabilistic lower bound of 𝑐𝐻𝑛𝑟−1/𝑚𝑟(𝐻) by a factor polynomial
in 𝑛, then Theorem 2.4.1 implies that |ℱ𝑛(𝐻)| 6 2𝐶·ex(𝑛,𝐻) for infinitely many 𝑛. Since
Theorem 2.1.5 is simply the case 𝑟 = 2 of Theorem 2.1.9, we only prove the latter.

Proof of Theorem 2.1.9. Let 𝐻 be an 𝑟-uniform hypergraph and suppose that there
is an 𝜀 > 0 such that

ex(𝑛,𝐻) > 𝜀𝑛𝑟−1/𝑚𝑟(𝐻)+𝜀

for all 𝑛. We shall construct an infinite sequence of 𝑛 satisfying the hypothesis of
Theorem 2.4.1 with 𝑀 = ex(𝑛,𝐻) and 𝛼 = 𝑟 − 1/𝑚2(𝐻) + 𝜀/2. Then, for each 𝑛 in
the sequence, we obtain

|ℱ𝑛(𝐻)| 6 2𝐶·ex(𝑛,𝐻)

for some 𝐶 that depends only on 𝛼, 𝜀, and 𝐻. This will complete the proof.
Assume towards a contradiction that there are only finitely many 𝑛 satisfying

the hypothesis of Theorem 2.4.1. In particular, there exists an 𝑁 such that for all
𝑛0 > 𝑁 ,

ex(𝑛1, 𝐻) > ex(𝑛0, 𝐻) ·
(︂
𝑛1

𝑛0

)︂𝛼

for some 𝑛1 < 𝑛0. Choose a small 𝛿 > 0, let 𝑛0 = ⌈𝑁1/𝛿⌉, and suppose that we have
defined 𝑛0, . . . , 𝑛𝑘−1 this way. If 𝑛𝑘−1 > 𝑛𝛿

0 > 𝑁 , then there is some 𝑛𝑘 6 𝑛𝑘−1 − 1 6
𝑛0 − 𝑘 such that

ex(𝑛𝑘, 𝐻) > ex(𝑛𝑘−1, 𝐻) ·
(︂

𝑛𝑘

𝑛𝑘−1

)︂𝛼

> ex(𝑛0, 𝐻) ·
(︂

𝑛𝑘

𝑛𝑘−1

)︂𝛼

·
(︂
𝑛𝑘−1

𝑛0

)︂𝛼

.

Note that if 𝑛𝑘 6 𝑛𝛿
0, then the lower bound ex(𝑛,𝐻) > 𝜀𝑛𝑟−1/𝑚𝑟(𝐻)+𝜀 implies

𝑛𝑟𝛿
0 > 𝑛𝑟

𝑘 >

(︂
𝑛𝑘

𝑟

)︂
> ex(𝑛𝑘, 𝐻) > ex(𝑛0, 𝐻) · 𝑛(𝛿−1)𝛼

0 > 𝜀𝑛
𝛼+𝜀/2
0 · 𝑛(𝛿−1)𝛼

0 > 𝜀𝑛
𝛼𝛿+𝜀/2
0 .

This is clearly impossible, as 𝜀 > 0 is fixed and we may choose 𝑁 as large as we
want and 𝛿 as small as we want. Therefore, there must be some 𝑛 > 𝑁 for which the
hypothesis of Theorem 2.4.1 holds, a contradiction.
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Chapter 3

Cliques in 𝑊 -random graphs

3.1 Introduction

This chapter is based on the paper [McK19].
The Erdős-Rényi random graph 𝐺𝑛,𝑝 is a graph on 𝑛 vertices where an edge is

placed independently with probability 𝑝 between each pair of vertices. One of the most
basic parameters of any graph 𝐺 is the clique number 𝜔(𝐺), the number of vertices
in the largest complete subgraph of 𝐺. It was shown independently by Grimmett and
McDiarmid in 1975 [GM75] and Matula in 1976 [Mat76] that for a fixed 𝑝 ∈ (0, 1),
the clique number 𝜔(𝐺𝑛,𝑝) of 𝐺𝑛,𝑝 satisfies

𝜔(𝐺𝑛,𝑝) = (1 + 𝑜(1)) · 2 log 𝑛

log(1/𝑝)
(3.1)

with probability 1 − 𝑜(1) as 𝑛 approaches infinity. This can be proved roughly as
follows: we obtain an upper bound on 𝜔(𝐺𝑛,𝑝) by finding 𝑘 such that the expected
number of 𝑘-cliques in 𝐺𝑛,𝑝 is asymptotically zero (the first moment method). Then,
to prove a matching lower bound, we show that for an appropriate, slightly smaller 𝑘,
the number of 𝑘-cliques in 𝐺𝑛,𝑝 approaches infinity in the limit and has low variance.
This implies that the number of cliques of size 𝑘 is highly concentrated around its
expectation, and will be positive with high probability (the second moment method).
Some variation on this method has been a standard technique for computing clique
number in other random graph models as well. (See [GM75], [Mat76], [DGLU11],
[DHM19], and [BCvdH20].)

Here, we turn our view from the “homogeneous” Erdős-Rényi random graph to
an “inhomogeneous” setting, in which edges may be assigned between some pairs of
vertices with higher or lower probabilities. This is both a better model of many
real-world phenomena and an object of independent mathematical interest. However,
with this greater flexibility comes greater difficulty in analysis. In what follows, we
will characterize the clique numbers of a variety of inhomogeneous random graphs
that arise from the theory of graphons.

A graphon 𝑊 is defined as a symmetric, measurable function from Ω2 to [0, 1],
where Ω is a probability space. To obtain a random graph from 𝑊 , we sample 𝑛
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points 𝑥1, . . . , 𝑥𝑛 independently according to the probability distribution on Ω, and
connect vertices 𝑖 and 𝑗 by an edge with probability 𝑊 (𝑥𝑖, 𝑥𝑗), independently for each
pair (𝑖, 𝑗). (For the sake of brevity, we will often identify the vertex 𝑖 with the value
𝑥𝑖, and speak of “sampling vertices” from Ω). We denote this graph by G(𝑛,𝑊 ), and
refer to it as a “𝑊 -random graph”. Notice that in the case where 𝑊 is equal to the
constant function 𝑝, we simply have G(𝑛,𝑊 ) = 𝐺𝑛,𝑝. One of the main results in the
theory of graphons, proved by Lovász and Szegedy in 2006 in [LS06], is that every
infinite sequence of graphs contains a subsequence converging to some graphon 𝑊 (in
what is called the cut norm), and moreover, that every graphon can be achieved in
this way, as the limit of some sequence of graphs. It is therefore reasonable to think
of graphons as the correct limiting objects for sequences of graphs that are Cauchy
sequences in an appropriate metric. See [Lov12] for a detailed survey of the theory
of graphons.

It should be noted that we must take some care in defining a notion of clique
number for graphons. We might hope that all sequences of graphs converging to a
given graphon would have the same clique number asymptotically; however, as noted
in [DHM19], this is not the case. Consider as an example the following two sequences
of graphs.

Example 3.1.1.

∙ 𝐺𝑛 consists of a clique on
√
𝑛 vertices, and 𝑛−

√
𝑛 isolated vertices.

∙ 𝐻𝑛 consists of 𝑛 isolated vertices.

Both sequences approach the zero graphon, as the density of edges approaches zero
in both cases. However 𝜔(𝐺𝑛) =

√
𝑛, while 𝜔(𝐻𝑛) = 1. Thus, instead of looking at all

sequences of graphs converging to a given graphon 𝑊 , we will consider only “typical”
sequences, sampled according to the distribution G(𝑛,𝑊 ). (Note: an alternate notion
of clique number for a graphon is presented in [HR17].)

This was the question considered by Doležal, Hladký, and Máthé in [DHM19],
where they obtained a partial characterization of the clique number of G(𝑛,𝑊 ) for
graphons 𝑊 . They proved the following result. (Note: in the statement below, by
“essentially bounded”, we mean that the given bound holds everywhere except perhaps
on some set of measure zero.)

Theorem 3.1.2 (Doležal, Hladký, and Máthé [DHM19, Cor. 2.8]). For a graphon
𝑊 : Ω2 → [0, 1] that is essentially bounded away from 0 and 1,

𝜔(G(𝑛,𝑊 )) = (1 + 𝑜(1))𝜅(𝑊 ) log 𝑛

a.a.s., where

𝜅(𝑊 ) = sup
{︁

2‖ℎ‖21∫︀
(𝑥,𝑦)∈Ω2 ℎ(𝑥)ℎ(𝑦) log(1/𝑊 (𝑥,𝑦)) 𝑑(𝜈2)

: h is a nonnegative 𝐿1-function on Ω
}︁
.

Notice that, for a graphon 𝑊 essentially bounded between 𝑝1 > 0 and 𝑝2 < 1,
we can couple G(𝑛,𝑊 ) with the Erdős-Rényi random graphs 𝐺𝑛,𝑝1 and 𝐺𝑛,𝑝2 so that
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𝜔(𝐺𝑛,𝑝1) ≤ 𝜔(G(𝑛,𝑊 )) ≤ 𝜔(𝐺𝑛,𝑝2). Since the clique number of 𝐺𝑛,𝑝 is Θ(log 𝑛) for
any value of 𝑝, this immediately tells us that the clique number of G(𝑛,𝑊 ) is also
Θ(log 𝑛) with probability approaching 1. Thus the key part of the result above is the
characterization of the constant 𝜅(𝑊 ) in Θ(log 𝑛).

A similar question was considered by Bogerd, Castro, and van der Hofstad in
[BCvdH20]; they studied clique number for rank-1 inhomogeneous random graphs,
where a graph is formed by assigning a weight to each vertex according to some dis-
tribution, and then connecting each pair of vertices independently with a probability
proportional to the product of their weights. They showed that, if all vertex weights
are bounded away from 1 (analogous to the assumption in Theorem 3.1.2 that 𝑊 is
essentially bounded away from 1), then the clique number of such a graph is concen-
trated on at most two consecutive integers, for which they gave explicit expressions.
This was proved in both the dense case and the sparse case, in which the edge density
approaches zero as the number of vertices grows. It should be noted that a great
deal of the work on inhomogeneous random graph models has centered on the sparse
case, which gives a more accurate model for a variety of real-world networks, and
it would be interesting to see more results in this direction. (See [BJR07] for one
of the seminal sparse models, and [vdH16] and [vdH17] for a survey of other recent
work.) Results have also been obtained for clique number in random graphs with a
power-law distribution [JŁN10] and hyperbolic random graphs [BFK18].

Here, however, we will explore in a different (and in some sense, even opposite)
direction. Namely, for graphons 𝑊 that are not bounded away from 1, even the rough
order of growth of 𝜔(G(𝑛,𝑊 )) is not apparent (we could think of this as producing a
𝑊 -random graph with potentially very dense spots); for this reason, it is interesting
to ask what may happen if 𝑊 is allowed to approach 1. (Note, however, that if 𝑊 = 1
on 𝑆 × 𝑆 for some set 𝑆 of positive measure, then 𝑊 will have linear clique number
a.a.s., as the subset of vertices sampled from 𝑆 will all be connected with probability
1.) Additionally, although the restriction to graphons essentially bounded away from
1 given in [DHM19] is a natural condition that precludes a variety of pathological
examples, there is no reason to suppose that any particular graphon that might arise in
an applied setting would necessarily satisfy it. It is still necessary, however, to impose
some restrictions on the behavior of 𝑊 in order to obtain a good characterization of
𝜔(G(𝑛,𝑊 )); the authors of [DHM19] also showed that for an arbitrary graphon 𝑊
not bounded away from 1, 𝜔(G(𝑛,𝑊 )) may behave quite wildly as 𝑛 → ∞.

Example 3.1.3 (Doležal, Hladký, and Máthé [DHM19, Prop. 2.1]). There exists a
graphon 𝑊 and a sequence of integers 𝑛1 < 𝑛2 < · · · such that, a.a.s., 𝜔(G(𝑛𝑖,𝑊 ))
alternates between at most log log 𝑛𝑖 and at least 𝑛𝑖

log log𝑛𝑖
on elements of the sequence.

In fact, we may take any 𝜔(1) function in place of log log 𝑛 in the example above.
This behavior is shown in [DHM19] to be achieved by a highly discontinuous graphon
𝑊 : [0, 1]2 → [0, 1], which raises the question: even if 𝑊 is not bounded away from
1, can we obtain a good characterization of 𝜔(G(𝑛,𝑊 )) as long as 𝑊 is reasonably
well-behaved? This is the central question of this chapter.

In order to characterize the “well-behavedness” of a graphon in a natural way,
we must impose additional requirements on the underlying probability space Ω. For
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example, for continuity to make sense, we must assume Ω is a topological space, and
smoothness requires even stronger hypotheses (for example, that Ω is a manifold). It
is unclear what the most natural or general setting is, and for practical applications,
the particular form of Ω should reflect the geometry of the underlying feature space for
a network model. We will not take up such questions here. Rather, all of the examples
and results here will deal with the uniform distribution on Ω = [0, 1], which is the
simplest probability space capable of capturing a wide range of graphon behaviors
and the most widely studied setting for graphons; indeed, this is the setting in which
graphons were originally defined, in [LS06]. Some generalizations to, say, a compact
topological space or Riemann manifold are fairly straightforward, but we leave open
the question of how to formulate broadly applicable generalizations.

We also note that, for a graphon 𝑊 : [0, 1]2 → [0, 1], among points with 𝑊 (𝑥, 𝑦) =
1, we are primarily concerned with those points along the line 𝑥 = 𝑦, as shown by
the following lemma.

Lemma 3.1.4. Let 𝑊 : [0, 1]2 → [0, 1] be a graphon whose essential supremum is
strictly less than 1 in some neighborhood of each point (𝑥, 𝑥) for 𝑥 ∈ [0, 1]. Then
𝜔(G(𝑛,𝑊 )) = 𝑂(log 𝑛) a.a.s.

This lemma is proved in Section 3.2. With this in mind, our goal is really to find
the clique number associated to a “well-behaved” graphon that is equal to 1 at one or
more points (𝑥, 𝑥) with 𝑥 ∈ [0, 1]. The main contribution of this chapter consists of
several such results. Before presenting these results, however, one final observation:
it is perhaps natural to ask whether graphons that are close in cut distance will
produce 𝑊 -random graphs whose clique numbers are close asymptotically. In general,
however, this is not the case. This can be illustrated by a wide variety of examples,
but perhaps the simplest is the following family of graphons on [0, 1]2:

𝑊𝜀(𝑥, 𝑦) =

{︃
1 if (𝑥, 𝑦) ∈ [0, 𝜀]2

0 otherwise

for each 𝜀 > 0. Under the cut norm, 𝑊𝜀 converges to the zero graphon as 𝜀 → 0,
but for any fixed 𝜀, the clique number of G(𝑛,𝑊𝜀) is (1 + 𝑜(1))𝜀𝑛 = Θ(𝑛) a.a.s. (see
Lemma 3.2.1) Indeed, the primary driver of clique number for a 𝑊 -random graph is
not global behavior (as measured by the cut norm), but local behavior near points
(𝑥, 𝑥) where 𝑊 is maximized. Following are several results characterizing clique
number in terms of this local behavior. First, and perhaps surprisingly, for a graphon
equal to 1 at only a finite number of points (𝑥, 𝑥), we will very often obtain a clique
number of Θ(

√
𝑛).

Theorem 3.1.5. Let 𝑊 : [0, 1]2 → [0, 1] be a graphon equal to 1 at some collection of
points (𝑎1, 𝑎1), . . . , (𝑎𝑘, 𝑎𝑘), and essentially bounded away from 1 in some neighborhood
of (𝑥, 𝑥) for each other 𝑥 ∈ [0, 1]. If all directional derivatives of 𝑊 exist at the
points (𝑎1, 𝑎1), . . . , (𝑎𝑘, 𝑎𝑘), and are uniformly bounded away from 0 and −∞, then
𝜔(G(𝑛,𝑊 )) = Θ(

√
𝑛) a.a.s.
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We can expand this result to graphons 𝑊 whose directional derivatives are not
defined at the points where 𝑊 (𝑎, 𝑎) = 1. In Section 3.3, we give a more com-
plete characterization in terms of the Dini derivatives of 𝑊 (the limsup and liminf
of the difference quotient that defines the ordinary derivative) at the points where
𝑊 (𝑎, 𝑎) = 1. In particular, this characterization will show that if 𝑊 is “too steep” at
the points where it is equal to 1, then the clique number of G(𝑛,𝑊 ) will be 𝑜(

√
𝑛)

(Lemma 3.3.6 (ii)), and if 𝑊 is “too flat” at these points (derivatives equal to zero),
then the clique number will be 𝜔(

√
𝑛) (Lemma 3.3.5 (ii)). This expanded character-

ization will also yield the following.

Lemma 3.1.6. Let 𝑊 : [0, 1]2 → [0, 1] be a graphon equal to 1 at some point (𝑎, 𝑎).
If 𝑊 is locally Lipschitz continuous at (𝑎, 𝑎), then 𝜔(G(𝑛,𝑊 )) = Ω(

√
𝑛) a.a.s.

(We will recall the definition of local Lipschitz continuity at a point (𝑎, 𝑎) in the
proof of Lemma 3.1.6.) In addition, in Section 3.4, we present a family of graphons
yielding clique numbers Θ(𝑛𝛼) for any constant 𝛼 > 0.

Theorem 3.1.7. For any constant 𝑟 > 0, define the graphon

𝑈𝑟(𝑥, 𝑦) := (1− 𝑥𝑟)(1− 𝑦𝑟).

The random graph G(𝑛, 𝑈𝑟) a.a.s. has clique number Θ(𝑛
𝑟

𝑟+1 ).

It will be shown in Section 3.4 that this implies the following more general result.

Theorem 3.1.8. Let 𝑊 : [0, 1]2 → [0, 1] be a graphon equal to 1 at some point (𝑎, 𝑎).
If 𝑊 is locally 𝛼-Hölder continuous at (𝑎, 𝑎) for some constant 𝛼, then 𝜔(G(𝑛,𝑊 )) =
Ω(𝑛

𝛼
𝛼+1 ) a.a.s.

(We will recall the definition of local 𝛼-Hölder continuity at a point (𝑎, 𝑎) imme-
diately before the proof of Theorem 3.1.8.) We will also be able to use the character-
ization of 𝜔(G(𝑛, 𝑈𝑟)) given in Section 3.4 to show that if a graphon 𝑊 has infinitely
many derivatives equal to zero at a point (𝑎, 𝑎) where 𝑊 (𝑎, 𝑎) = 1, then the clique
number of G(𝑛,𝑊 ) will be 𝑛1−𝑜(1) a.a.s. In other words, if 𝑊 is “extremely flat” at
the points where it is equal to 1, then the clique number of G(𝑛,𝑊 ) will be nearly
linear. We will prove this for the following specific example, but the same reasoning
can apply more generally.

Proposition 3.1.9. For the graphon 𝑊 : [0, 1]2 → [0, 1] defined by

𝑊 (𝑥, 𝑦) = (1− 𝑓(𝑥))(1− 𝑓(𝑦)), where 𝑓(𝑥) =

{︃
𝑒−1/𝑥2

𝑥 ̸= 0

0 𝑥 = 0
,

the clique number of G(𝑛,𝑊 ) is both 𝑛1−𝑜(1) and 𝑜(𝑛) a.a.s.

It should be noted that, in contrast to Theorem 3.1.2 and the characterization of
clique number for Erdős-Rényi random graphs, all the results above give the relevant
clique number up to a constant. For any graphon 𝑊 , however, the clique number
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of G(𝑛,𝑊 ) is highly concentrated for large values of 𝑛; the following was proved in
[DHM19]. (This is slightly different from the original formulation, but follows directly
the proof of Theorem 2.2 in [DHM19].)

Theorem 3.1.10 (Doležal, Hladký, and Máthé [DHM19, Thm. 2.2]). For any
graphon 𝑊 , with probability 1− 𝑜(1),

𝜔(G(𝑛,𝑊 )) = (1 + 𝑜(1)) · E[𝜔(G(𝑛,𝑊 ))].

From this, we know that a correct constant always exists. But although the clique
number 𝜔(G(𝑛,𝑊 )) is almost always very close to its expectation, it may occasionally
be very large. Indeed, for many of the examples we will consider, the number of cliques
of an appropriate size will have quite high variance, making it impossible to directly
apply the second moment method as with Erdős-Rényi random graphs. (This obstacle
is detailed more explicitly in Sections 3.3 and 3.4, with proofs given in Appendix A.)
Instead, in proving the results above, we use the first moment method to establish
upper bounds (the standard technique), while for lower bounds, we directly attempt
to predict which vertices are likely to form a large clique, and show that this does
indeed happen with high probability. It seems likely that to improve these lower
bounds, a different technique would be necessary.

It should be noted that the authors of [DHM19] did not use the second moment
method directly to prove Theorem 3.1.2, but instead applied it to a carefully selected
restriction of the graphon 𝑊 , converting this back into a lower bound on 𝜔(G(𝑛,𝑊 ))
via a somewhat complex argument. It is possible that a similar techinque could be
used to improve some or all of the lower bounds given here. It is also possible that
tighter bounds could obtained using techniques from the theory of large deviations as
in [AP03]; in this case, instead of looking at the (random) number of cliques 𝑋 of a
given size in G(𝑛,𝑊 ) and attempting to give upper and lower bounds on 𝑋 that hold
with high probability, we would define a random variable 𝑋 ′ that gives greater weight
to those cliques arising from a “typical” configuration of vertices (e.g., not too many
vertices sampled from a small interval), and that would thus have lower variance than
𝑋. If we could find upper and lower bounds on 𝑋 ′, these could then be translated
into upper and lower bounds on 𝑋.

Another potentially interesting extension of the results above could be to consider
graphons with an infinite number (either countable or uncountable) of points (𝑥, 𝑥)
with 𝑊 (𝑥, 𝑥) = 1. For example, the following graphon is equal to 1 along the line
𝑥 = 𝑦 and drops away from 1 off that line.

Proposition 3.1.11. Let 𝑊 (𝑥, 𝑦) = 1 − |𝑥 − 𝑦|. The clique number of G(𝑛,𝑊 ) is
𝑛1/2+𝑜(1) a.a.s.

This will be proved in Section 3.5; the lower bound follows directly from apply-
ing Lemma 3.1.6 to any point on the line 𝑥 = 𝑦, and the upper bound is a fairly
straightforward calculation. Both arguments could be used on a wide variety of such
examples, but both are likely not tight in general.

As a last note, we discuss briefly the related problems of finding a large clique
or a planted clique in a random graph, and how they relate to the work here. It
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is a long-standing problem, proposed by Karp in 1976 [Kar76] to find a clique of
size (1 + 𝜀) log2(𝑛) in 𝐺𝑛,1/2 in polynomial time. (A clique of size ∼ 2 log2(𝑛) will
almost always exist.) There are several polynomial-time algorithms that find a clique
of size (1 + 𝑜(1)) log2(𝑛) (e.g., [KS98]), but the original problem remains open. Of
a similar flavor, but slightly different, the planted clique problem asks us to find a
clique of size 𝑘 that is “planted” in an Erdős-Rényi random graph 𝐺𝑛,𝑝 by randomly
selecting 𝑘 vertices and adding all possible edges between them; we may ask for an
algorithm that runs either in polynomial or unbounded time. In unbounded time,
the planted clique can be recovered for 𝑘 quite close to the expected clique number
for 𝐺𝑛,𝑝, but perhaps surprisingly, if we ask for a polynomial-time algorithm, the
best known methods find the planted clique only for 𝑘 = 𝑐 ·

√
𝑛, for some particular

constant 𝑐 (first proved in [AKS98], with a variety of simpler algorithms or algorithms
improving the constant found later; see, for example, [FR10] and [DM15]). It could
be interesting to explore these problems in the setting where the background graph
is inhomogeneous (as opposed to 𝐺𝑛,𝑝); it seems entirely possible that a large clique
or hidden clique could be easier to recover in this setting. Indeed, this has been
shown to be the case for several specific (mostly sparse) random graph models (see
[FK12], [BFK18], and [JŁN10]). It is possible that a more general result along these
lines could be established for some of graphs discussed here, or those in [DHM19]
or [BCvdH20], especially given knowledge of the clique number in the background
graph.

The remainder of this chapter is structured as follows. In Section 3.2, we prove
Lemma 3.1.4 and a few other simple technical lemmas that will be used throughout the
chapter. In Section 3.3, we present a family of graphons giving clique numbers Θ(

√
𝑛),

and use this to prove Theorem 3.1.5, Lemma 3.1.6, and an extension to graphons
satisfying a more general set of conditions. In Section 3.4, we prove Theorem 3.1.7,
Theorem 3.1.8, and Proposition 3.1.9. In Section 3.5, we prove Proposition 3.1.11,
and discuss possible extensions of this work. And finally, in Appendix A, we prove
that for many of the 𝑊 -random graphs discussed in this chapter, the number of
cliques of an appropriate size has high variance, making a direct application of the
second moment method to establish a lower bound on the clique number impossible
in those cases.

3.2 Preliminaries
In this section, we establish some notation and technical lemmas that will be used
throughout the rest of the chapter. We will often want to focus only on a small
portion of a graphon 𝑊 , typically a neighborhood around a point where 𝑊 is equal
to 1. In order to analyze how local behavior affects the clique number of a 𝑊 -random
graph, we first ascertain how many vertices will typically be sampled from a given
neighborhood. Note: below, we write 𝜆 for the Lebesgue measure on R.

Lemma 3.2.1. Let 𝐴(1), 𝐴(2), . . . be measurable subsets of [0, 1] with 𝜆(𝐴(𝑛)) =
𝜔
(︀
1
𝑛

)︀
. Among 𝑛 points uniformly distributed on the interval [0, 1], the number of

points in 𝐴(𝑛) will a.a.s. be (1 + 𝑜(1))𝑛𝜆(𝐴(𝑛)).
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Proof. The number of points 𝑋 in any given subset of [0, 1] of measure 𝜆(𝐴(𝑛)) is a
binomial random variable with parameters 𝑛 and 𝑝 = 𝜆(𝐴(𝑛)). Therefore

E[𝑋] = 𝑛𝑝

and

Var(𝑋) = 𝑛𝑝(1− 𝑝)

≤ 𝑛𝑝.

Thus, for any 𝜀 > 0, by Chebyshev’s inequality

Pr [|𝑋 − E[𝑋]| ≥ 𝜀E[𝑋]] ≤ Var(𝑋)

𝜀2E[𝑋]2
≤ 𝑛𝑝

𝜀2(𝑛𝑝)2
=

1

𝜀2𝑛𝑝
.

By assumption, 𝑛𝑝 = 𝑛 · 𝜆(𝐴(𝑛)) = 𝜔(1). So taking, for instance, 𝜀2 = (𝑛𝑝)−1/2, we
have

Pr
[︁
|𝑋 − E[𝑋]| ≥ 1

(𝑛𝑝)1/4
· E[𝑋]

]︁
≤ 1

(𝑛𝑝)1/2
= 𝑜(1).

Thus with probability 1−𝑜(1), we have 𝑋 = (1+𝑜(1))E[𝑋] = (1+𝑜(1))𝑛𝜆(𝐴(𝑛)).

In Section 3.5, we will need a slight strengthening of the result above; namely, if we
sample 𝑛 points uniformly from [0, 1], the lemma below guarantees that no relatively
large subset of these points will occupy an interval much smaller than expected.

Lemma 3.2.2. Let 𝛿 = 𝜔
(︀

1√
𝑛

)︀
. Among 𝑛 points uniformly distributed on the interval

[0, 1], with probability 1− 𝑜(1), every set of 𝛿𝑛 points will occupy an interval of length
at least 𝛿

2
(1− 𝑜(1)).

Proof. We begin by dividing [0, 1] into consecutive intervals of length 𝛿. By
Lemma 3.2.1, with probability 1− 𝑜(1), there will be at most (𝛿 + 𝑜(1))𝑛 vertices in
any fixed one of these intervals, as 𝛿 = 𝜔

(︀
1
𝑛

)︀
. For 𝛿 = 𝜔

(︀
1√
𝑛

)︀
, there will in fact be

at most (𝛿 + 𝑜(1))𝑛 vertices in each; as shown in Lemma 3.2.1, if 𝑋 is the number of
vertices in a given interval of length 𝛿, then for any 𝜀 > 0, we have

Pr [𝑋 ≥ (1 + 𝜀)𝛿𝑛] ≤ 1

𝜀2(𝛿𝑛)
.

Then, taking a union bound over the 1
𝛿

consecutive length-𝛿 intervals, with probability
1 − 1

𝛿
· 1
𝜀2(𝛿𝑛)

= 1 − 1
𝜀2𝛿2𝑛

, each of these intervals contains at most (1 + 𝜀)𝛿𝑛 vertices.
So for any 𝛿 = 𝜔

(︀
1√
𝑛

)︀
, we can choose an appropriate 𝜀 = 𝑜(1) to conclude that with

probability 1− 𝑜(1), each of the 1
𝛿

consecutive intervals contain at most (1 + 𝑜(1))𝛿𝑛
vertices.

Notice that any other interval of length 𝛿 in [0, 1] is contained entirely in at most
two of these consecutive intervals. So with probability 1− 𝑜(1), any interval of length
𝛿 in [0, 1] will contain at most (1 + 𝑜(1))2𝛿𝑛 vertices. Equivalently, and after a slight
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change of variables, with probability 1−𝑜(1), every 𝛿𝑛 vertices will occupy an interval
of length at least 𝛿

2
(1− 𝑜(1)).

Now, we would like to be able to say something about the cliques in 𝑊 -random
graphs that we obtain by sampling points from smaller sets, for example, from neigh-
borhoods around points at which 𝑊 = 1. As in [DHM19], we define a subgraphon
of any graphon 𝑊 to be the restriction obtained by “zooming in” on a subset of the
sample space:

Definition 3.2.3. Given a graphon 𝑊 : [0, 1]2 → [0, 1] and a subset 𝐴 ⊆ [0, 1] of
positive measure, define the subgraphon 𝑊 |𝐴×𝐴 : 𝐴

2 → [0, 1] as the restriction of 𝑊
to 𝐴×𝐴, where we sample uniformly from the set 𝐴 to obtain a probability distribution
on 𝐴.

(Note that 𝑊 |𝐴×𝐴 as defined above satisfies the definition of a graphon on a more
general probability space Ω.) Intuitively, if we break a graphon 𝑊 into subgraphons,
its clique number will be at least the maximum clique number among the subgraphons
and at most the sum of all their clique numbers. This intuition is formalized in the
following lemma.

Lemma 3.2.4. Let 𝑊 : [0, 1]2 → [0, 1] be a graphon, let 𝑘 ∈ N be constant, and
let 𝐴1, . . . , 𝐴𝑘 ⊆ [0, 1] be measurable sets depending on 𝑛 that partition [0, 1], where
each 𝐴𝑖 = 𝐴𝑖(𝑛) has measure 𝜆(𝐴𝑖) = 𝜔

(︀
1
𝑛

)︀
. Then for each 𝑖, there exist 𝑛+

𝑖 , 𝑛
−
𝑖 =

(1 + 𝑜(1))𝜆(𝐴𝑖), with 𝑛−
𝑖 ≤ 𝑛+

𝑖 , such that a.a.s.,

(i) 𝜔(G(𝑛,𝑊 )) ≤ (1 + 𝑜(1))
[︀
𝜔(G(𝑛+

1 ,𝑊 |𝐴1×𝐴1)) + · · ·+ 𝜔(G(𝑛+
𝑘 ,𝑊 |𝐴𝑘×𝐴𝑘

))
]︀
, and

(ii) 𝜔(G(𝑛,𝑊 )) ≥ (1 + 𝑜(1)) · 𝜔(G(𝑛−
𝑖 ,𝑊 |𝐴𝑖×𝐴𝑖

)) for each 𝑖 ∈ {1, . . . , 𝑘}.

Proof. We will show that (i) and (ii) each hold for a specific coupling of G(𝑛,𝑊 ) with(︀
G(𝑛±

1 ,𝑊 |𝐴1×𝐴1), . . . ,G(𝑛±
𝑘 ,𝑊 |𝐴𝑘×𝐴𝑘

)
)︀
.

But before doing so, we briefly argue that this suffices to prove the lemma for any cou-
pling. By Theorem 3.1.10, we know that the clique number for any graphon is highly
concentrated: for any graphon 𝑈 , with probability 1 − 𝑜(1), we have 𝜔(G(𝑛, 𝑈)) =
(1 + 𝑜(1))E(𝜔(G(𝑛, 𝑈))). So if (i) or (ii) holds for any specific choice of coupling,
then it will hold for all, since each term in (i) and (ii) changes by at most a factor of
1 + 𝑜(1) regardless of the choice of coupling.

With this in mind, we prove (ii). By Lemma 3.2.1, when sampling vertices of the
𝑊 -random graph G(𝑛,𝑊 ), the number of vertices in the set 𝐴𝑖 for each 𝑖 will be
at least 𝑛−

𝑖 = (1 − 𝑜(1))𝜆(𝐴𝑖)𝑛 a.a.s., for an appropriate 𝑜(1) function. So there is
a coupling of G(𝑛,𝑊 ) with

(︀
G(𝑛−

1 ,𝑊 |𝐴1×𝐴1), . . . ,G(𝑛−
𝑘 ,𝑊 |𝐴𝑘×𝐴𝑘

)
)︀

such that a.a.s.
each G(𝑛−

1 ,𝑊 |𝐴1×𝐴1) is contained as a subgraph in G(𝑛,𝑊 ). For this coupling, (ii)
automatically holds.

Explicitly, the coupling is constructed as follows: for each 𝑛, we sample the 𝑛
vertices of G(𝑛,𝑊 ). With probability 1 − 𝑜(1), there will be at least 𝑛𝑖 vertices
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sampled from each 𝐴𝑖 (note: since 𝑘 is constant, taking a union bound over all the
𝐴𝑖 does not change this). Assume we are in this case (else, generate the other graphs
independently). To generate each G

(︀
𝑛−
𝑖 ,𝑊 |𝐴𝑖×𝐴𝑖

)︀
, since at least 𝑛−

𝑖 of the vertices
of G(𝑛,𝑊 ) are in 𝐴𝑖, then uniformly sample exactly 𝑛−

𝑖 of them. The subgraph
induced on these vertices has distribution G

(︀
𝑛−
𝑖 ,𝑊 |𝐴𝑖×𝐴𝑖

)︀
. We place no additional

edges. Note that we re-sample all the vertices for each 𝑛 to generate this coupling, as
opposed to adding on a vertex to G(𝑛−1,𝑊 ) to generate G(𝑛,𝑊 ). For this coupling,
(ii) holds; thus as argued above, (ii) holds in general.

Now we show that (i) also holds for a similar coupling. By Lemma 3.2.1, in
G(𝑛,𝑊 ), the number of vertices in the set 𝐴𝑖 will be at most 𝑛+

𝑖 = (1 + 𝑜(1))𝜆(𝐴𝑖)𝑛
for an appropriate 𝑜(1) function. We couple G(𝑛,𝑊 ) with(︀

G(𝑛+
1 ,𝑊 |𝐴1×𝐴1), . . . ,G(𝑛+

𝑘 ,𝑊 |𝐴𝑘×𝐴𝑘
)
)︀

as follows: for each 𝑛, we sample 𝑛 vertices for G(𝑛,𝑊 ). With probability 1− 𝑜(1),
there will be at most 𝑛+

𝑖 of them in each 𝐴𝑖. If this happens, then to generate each
G
(︀
𝑛+
𝑖 ,𝑊 |𝐴𝑖×𝐴𝑖

)︀
, take these vertices, and add in enough extra vertices (uniformly

sampled from 𝐴𝑖) to make exactly 𝑛+
𝑖 total vertices in 𝐴𝑖. On these 𝑛+

𝑖 vertices, place
all edges belonging to the copy of G(𝑛,𝑊 ) that we have sampled, and add edges
between a new vertex 𝑣 and any other vertex 𝑤 with probability 𝑊 (𝑣, 𝑤). Now, the
subgraph induced on these vertices has distribution G

(︀
𝑛+
𝑖 ,𝑊 |𝐴𝑖×𝐴𝑖

)︀
. And we see that

the largest clique in G(𝑛,𝑊 ) is, at very most, the union of the largest cliques in each
of the graphs G

(︀
𝑛+
𝑖 ,𝑊 |𝐴𝑖×𝐴𝑖

)︀
. So for this coupling, (i) holds, and as a consequence,

holds for any coupling.

Note that in the previous lemma, the quantities 𝑛−
𝑖 and 𝑛+

𝑖 are functions only
of 𝑛 and 𝜆(𝐴𝑖), and not of the graphon 𝑊 ; we will use this fact in the proof of
Lemma 3.3.6.

We finish this section with two lemmas showing that the clique number of G(𝑛,𝑊 )
is determined up to lower-order terms (in the case where this clique number is
𝜔(log 𝑛)) by the local behavior of 𝑊 near points (𝑎, 𝑎) where 𝑊 (𝑎, 𝑎) = 1. In particu-
lar, if 𝑊 is bounded above by 𝑈 locally near points where 𝑊 (𝑎, 𝑎) = 1, the following
lemma tells us that the clique numbers of 𝑊 and 𝑈 will satisfy the same inequality,
up to lower-order terms. Note that in the proof of the lemma below, there is nothing
special about using graphons 𝑊 and 𝑈 on [0, 1]2; in particular, we can take graphons
on 𝐴2 for any interval 𝐴 ⊆ [0, 1], as long as both graphons have the same domain.
We use this fact in the proof of Lemma 3.3.6.

Lemma 3.2.5. Let 𝑊,𝑈 : [0, 1]2 → [0, 1] be graphons equal to 1 at some point
(𝑎, 𝑎), and let 𝑊 be essentially bounded away from 1 in some neighborhood of (𝑥, 𝑥)
for all other 𝑥 ∈ [0, 1]2. If there exists some neighborhood 𝑁 of (𝑎, 𝑎) on which
𝑊 (𝑥, 𝑦) ≤ 𝑈(𝑥, 𝑦), then a.a.s.,

𝜔(G(𝑛,𝑊 )) ≤ (1 + 𝑜(1)) · 𝜔(G(𝑛, 𝑈)) +𝑂(log 𝑛).
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Proof. As in Lemma 3.2.4, we will show that the result holds for a specific coupling
of G(𝑛,𝑊 ) and G(𝑛, 𝑈), and as argued in the proof of Lemma 3.2.4, this will in fact
suffice to prove it for any choice of coupling. We define our coupling as follows: first,
sample the same numbers 𝑥1, . . . , 𝑥𝑛 for the vertices of both G(𝑛,𝑊 ) and G(𝑛, 𝑈),
and couple their edges in such a way that every pair of vertices (𝑖, 𝑗) with (𝑥𝑖, 𝑥𝑗) ∈ 𝑁
is connected by an edge in G(𝑛,𝑊 ) only if (𝑖, 𝑗) is also connected in G(𝑛, 𝑈); this
is possible because 𝑊 (𝑥, 𝑦) ≤ 𝑈(𝑥, 𝑦) on the neighborhood 𝑁 . The coupling of the
remaining edges can be defined in any way (for concreteness, we may sample them
independently for the two graphs).

Before proceeding further, we will restrict our view to a subset 𝐼2 ⊆ 𝑁 , for some
open interval 𝐼 containing 𝑎. Then, we define 𝑛in to be the (random) number of ver-
tices 𝑥1, . . . 𝑥𝑛 that are in the interval 𝐼, and consider the random graphs G(𝑛in,𝑊 |𝐼2)
and G(𝑛in, 𝑈 |𝐼2). We may generate them by taking the subgraphs of G(𝑛,𝑊 ) and
G(𝑛, 𝑈) respectively induced on the vertices in 𝐼 (still using the coupling of G(𝑛,𝑊 )
and G(𝑛, 𝑈) described above). With this coupling, G(𝑛in,𝑊 |𝐼2) is contained as a
subgraph in G(𝑛in, 𝑈 |𝐼2); thus we may write

𝜔(G(𝑛in,𝑊 |𝐼2)) ≤ 𝜔(G(𝑛in, 𝑈 |𝐼2)). (3.2)

And as G(𝑛in, 𝑈 |𝐼2) is a subgraph of G(𝑛, 𝑈) in the coupling we have just defined, we
may also write G(𝑛in, 𝑈 |𝐼2) ≤ G(𝑛, 𝑈), or combining this with (3.2),

𝜔(G(𝑛in,𝑊 |𝐼2)) ≤ 𝜔(G(𝑛, 𝑈)). (3.3)

This is the essence of our proof; however, we still need to deal with all the vertices
in G(𝑛,𝑊 ) that do not fall into the interval 𝐼, and ensure that they will not change
the clique number of G(𝑛,𝑊 ) by too much.

We deal with the remaining vertices as follows: let 𝑛out be the number of vertices
not in 𝐼 (i.e., 𝑛out = 𝑛 − 𝑛in). By the same reasoning just used, we may generate
G(𝑛out,𝑊 |([0,1]∖𝐼)2) as the subgraph of G(𝑛,𝑊 ) induced on the vertices counted by
𝑛out. And given any partition of the vertices of a graph 𝐺, the clique number of 𝐺 is
at most the sum of the clique numbers of the subgraphs induced on the parts of the
partition. Here, given the partition of [𝑛] into 𝐼 and [0, 1] ∖ 𝐼, this gives

𝜔(G(𝑛,𝑊 )) ≤ 𝜔(G(𝑛in,𝑊 |𝐼2)) + 𝜔(G(𝑛out,𝑊 |([0,1]∖𝐼)2)). (3.4)

Combining (3.4) with (3.3), we see that

𝜔(G(𝑛,𝑊 )) ≤ 𝜔(G(𝑛, 𝑈)) + 𝜔(G(𝑛out,𝑊 |([0,1]∖𝐼)2)). (3.5)

Since 𝑛out is deterministically bounded above by 𝑛, notice that 𝜔(G(𝑛out,𝑊 |([0,1]∖𝐼)2))
is always at most 𝜔(G(𝑛,𝑊 |([0,1]∖𝐼)2)), provided we couple these two graphs so that
G(𝑛out,𝑊 |([0,1]∖𝐼)2) is a subgraph of G(𝑛,𝑊 |([0,1]∖𝐼)2). Now, since the subgraphon
𝑊 |([0,1]∖𝐼)2 is essentially bounded away from 1 in some neighborhood of each (𝑥, 𝑥),
we may apply Lemma 3.1.4 (proved below) to conclude that 𝜔(G(𝑛,𝑊 |([0,1]∖𝐼)2)) =
𝑂(log 𝑛) a.a.s. (Note that we are taking the slight liberty of applying Lemma 3.1.4 to
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a graphon defined on ([0, 1] ∖ 𝐼)2 rather than [0, 1]2; as will be argued after the proof
of Lemma 3.1.4, this can be justified formally since the set [0, 1]∖𝐼 is compact.) With
this, (3.5) becomes

𝜔(G(𝑛,𝑊 )) ≤ 𝜔(G(𝑛, 𝑈)) +𝑂(log 𝑛).

To finish, note that as shown in the proof of Lemma 3.2.4, for any choice of coupling
of G(𝑛,𝑊 ) and G(𝑛, 𝑈), the clique numbers of each of these graphs will change by a
factor of at most 1 + 𝑜(1) a.a.s. Therefore, regardless of the choice of coupling,

𝜔(G(𝑛,𝑊 )) ≤ (1 + 𝑜(1))𝜔(G(𝑛, 𝑈)) +𝑂(log 𝑛)

with probability 1− 𝑜(1), as desired.

We end this section with a proof of Lemma 3.1.4, restated here for the convenience
of the reader.

Lemma 3.1.4. Let 𝑊 : [0, 1]2 → [0, 1] be a graphon whose essential supremum is
strictly less than 1 in some neighborhood of each point (𝑥, 𝑥) for 𝑥 ∈ [0, 1]. Then
𝜔(G(𝑛,𝑊 )) = 𝑂(log 𝑛) a.a.s.

Proof of Lemma 3.1.4. Associate to each point (𝑥, 𝑥) an open neighborhood 𝑁(𝑥, 𝑥)
in [0, 1]2 on which the essential supremum of 𝑊 is 𝑐(𝑥) < 1. These neighborhoods
form an open cover of the (closed) diagonal line segment 𝐷 = {(𝑥, 𝑥) : 𝑥 ∈ [0, 1]}.
Because this set is compact, we may find a finite subcover of 𝐷 by neighborhoods
𝑁(𝑥, 𝑥). Taking the maximum essential supremum 𝑐 = 𝑐(𝑥) of 𝑊 on any of these
neighborhoods, we see that for some 𝜀 > 0, the essential supremum of 𝑊 is 𝑐 on the
region {(𝑥, 𝑦) : |𝑥− 𝑦| ≤ 𝜀}.

Now consider any 𝑘 vertices from G(𝑛,𝑊 ), and view them as points in [0, 1]. By
the pigeonhole principle, dividing [0, 1] into 1/𝜀 disjoint intervals of length 𝜀, of the 𝑘
points, there must be at least 𝜀𝑘 points in some interval of length 𝜀. The probability
that this subset forms a clique is at most 𝑐(

𝜀𝑘
2 ) = 𝑐Θ(𝑘2), which also gives an upper

bound on the probability that the original 𝑘 vertices formed a clique. So, taking a
union bound, the probability that there exists any 𝑘-clique is at most(︂

𝑛

𝑘

)︂
𝑐Θ(𝑘2) ≤

(︂
𝑒𝑛

(1
𝑐
)Θ(𝑘) · 𝑘

)︂𝑘

=

(︂
𝑛

(1
𝑐
)Θ(𝑘)

)︂𝑘

.

The cutoff at which this approaches zero is 𝑘 = Θ(log 𝑛). So for any graphon 𝑊
bounded away from 1 in some neighborhood of each point (𝑥, 𝑥), the clique number
of G(𝑛,𝑊 ) is a.a.s. 𝑂(log 𝑛).

Notice that there was nothing special about the choice of [0, 1]2 in this result; the
only property we used of the interval [0, 1] was its compactness. So in particular,
Lemma 3.1.4 holds for a graphon defined on 𝐴2 for any closed interval 𝐴, a fact that
we will use several times throughout this chapter.
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3.3 𝑊 -random graphs with clique number Θ(
√
𝑛)

In this section, we prove Lemma 3.1.6 and Theorem 3.1.5, which characterize a variety
of 𝑊 -random graphs with clique number Θ(

√
𝑛) in terms of the local behavior of 𝑊

at points where it is equal to 1. We begin by finding the clique number of a specific
family of random graphs; this will in fact suffice to prove both Lemma 3.1.6 and a
more general result, of which Theorem 3.1.5 is a special case.

3.3.1 A family of examples with clique number Θ(
√
𝑛)

Lemma 3.3.1. For any 𝑟 > 0, define the graphon 𝑊𝑟(𝑥, 𝑦) = (1− 𝑥)𝑟(1− 𝑦)𝑟. The
clique number of G(𝑛,𝑊𝑟) is a.a.s. Θ(

√
𝑛).

To prove Lemma 3.3.1, we begin by finding an upper bound on 𝜔(G(𝑛,𝑊𝑟)); we
will use the first moment method.

Lemma 3.3.2. The clique number of G(𝑛,𝑊𝑟) is a.a.s. at most (1+𝑜(1))
(︀
𝑒
𝑟

)︀1/2 ·√𝑛.

Proof. Write 𝑋𝑘 for the number of cliques of size 𝑘 in G(𝑛,𝑊𝑟). By Markov’s inequal-
ity, 𝜔(G(𝑛,𝑊𝑟)) is a.a.s. bounded above by any 𝑘 for which E[𝑋𝑘] is asymptotically
0. And for any 𝑘, writing 𝑑�⃗� in place of 𝑑𝑥1 · · · 𝑑𝑥𝑘, we have

E[𝑋𝑘] =

(︂
𝑛

𝑘

)︂∫︁
[0,1]𝑘

∏︁
ℓ,𝑚∈[𝑘], ℓ ̸=𝑚

𝑊 (𝑥ℓ, 𝑥𝑚) 𝑑�⃗�

=

(︂
𝑛

𝑘

)︂∫︁
[0,1]𝑘

∏︁
ℓ,𝑚∈[𝑘], ℓ ̸=𝑚

(1− 𝑥ℓ)
𝑟 · (1− 𝑥𝑚)

𝑟 𝑑�⃗�

=

(︂
𝑛

𝑘

)︂(︂∫︁ 1

0

(1− 𝑥)𝑟(𝑘−1)𝑑𝑥

)︂𝑘

=

(︂
𝑛

𝑘

)︂(︂
1

𝑟(𝑘 − 1) + 1

)︂𝑘

.

For any 𝑘 that is 𝜔(1), we have 1
𝑟(𝑘−1)+1

= (1 + 𝑜(1)) 1
𝑟𝑘

. And for any 𝑘 that is 𝜔(1)

but sublinear, it can be shown from Stirling’s formula that
(︀
𝑛
𝑘

)︀
=
(︀
𝑒𝑛
𝑘
(1− 𝑜(1))

)︀𝑘.
Therefore the above expression becomes

E[𝑋𝑘] =
(︁𝑒𝑛
𝑘
(1− 𝑜(1))

)︁𝑘 (︂
(1 + 𝑜(1))

1

𝑟𝑘

)︂𝑘

=
(︁ 𝑒𝑛

𝑟𝑘2
(1− 𝑜(1))

)︁𝑘
.

So the cutoff at which E[𝑋𝑘] goes from asymptotically 0 to asymptotically infinity is
when 𝑘 ∼

(︀
𝑒
𝑟

)︀1/2 · √𝑛, which, by Markov’s inequality, gives an upper bound on the
clique number of G(𝑛,𝑊𝑟) that will hold with probability 1− 𝑜(1).

Ideally, we would like to prove a matching lower bound. However, such a bound
may be difficult to establish, or even untrue, as the variance of the number of cliques
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in G(𝑛,𝑊𝑟) of any size of order Θ(
√
𝑛) is quite large (Corollary A.0.5 ((i)) in Ap-

pendix A). In particular, this means we cannot use the second moment method di-
rectly to prove a lower bound on the clique number 𝜔(G(𝑛,𝑊𝑟)). (This argument is
fleshed out more fully in Appendix A.) These difficulties notwithstanding, we can at
least prove a lower bound that matches up to a constant.

Lemma 3.3.3. The clique number of G(𝑛,𝑊𝑟) is a.a.s. at least
(︀

1
12𝑒𝑟

)︀1/2 · √𝑛.

Proof. Our strategy is to directly compute a lower bound on the expected clique
number for the graphon 𝑊𝑟(𝑥, 𝑦) = (1 − 𝑥)𝑟(1 − 𝑦)𝑟 by guessing which vertices are
most likely to form a large clique and showing that this does indeed happen with
high probability. Suppose that for some constants 𝑠 and 𝑡, there are 𝑠𝑛1/2 vertices
less than 𝑡𝑛−1/2 in G(𝑛,𝑊𝑟). (Note: the expected number of vertices less than 𝑡𝑛−1/2

is 𝑡𝑛1/2.) By Lemma 3.2.1, this will happen a.a.s. for some 𝑡 = (1 + 𝑜(1))𝑠. We will
show, for an appropriate choice of 𝑠, that if we do have such vertices, then a.a.s.,
the subgraph they induce will contain all but 𝑘 possible edges (for some appropriate
choice of 𝑘 dependent on 𝑛). In total, this will show that the clique number is a.a.s.
at least 𝑠

√
𝑛− 𝑘, obtained by greedily deleting one vertex from each of the (up to) 𝑘

missing edges.
Concretely, for any constants 𝑠 and 𝑡, suppose that G(𝑛,𝑊𝑟) has 𝑠𝑛1/2 vertices

less than 𝑡𝑛−1/2. The probability that any fixed set of 𝑘 potential edges is missing
from the subgraph of G(𝑛,𝑊𝑟) induced on those vertices is at most∏︁

𝑘 edges

[︀
1− (1− 𝑡𝑛−1/2)𝑟(1− 𝑡𝑛−1/2)𝑟

]︀
=
[︀
1− (1− 𝑡𝑛−1/2)2𝑟

]︀𝑘
=
[︀
1−

(︀
1− 2𝑟𝑡𝑛−1/2 · (1 + 𝑜(1))

)︀]︀𝑘
,

where the last equality follows by taking a binomial series expansion. Simplifying this
expression slightly, the probability that any fixed set of 𝑘 edges is missing is at most[︀

2𝑟𝑡𝑛−1/2 · (1 + 𝑜(1))
]︀𝑘

.

Now to bound the probability that there are 𝑘 or more edges missing, we take a union
bound over all sets of 𝑘 possible edges in the subgraph induced on the 𝑠

√
𝑛 vertices

under consideration. The number of such sets is(︂(︀𝑠√𝑛
2

)︀
𝑘

)︂
≤
(︂
𝑠2𝑛/2

𝑘

)︂
≤
(︂
𝑒𝑠2𝑛/2

𝑘

)︂𝑘

.

So in total, the probability to have 𝑘 or more missing edges is at most(︂
𝑒𝑠2𝑛/2

𝑘

)︂𝑘 (︀
2𝑟𝑡𝑛−1/2 · (1 + 𝑜(1))

)︀𝑘
=

(︂
𝑒𝑟𝑡𝑠2

√
𝑛

𝑘
· (1 + 𝑜(1))

)︂𝑘

.

As argued above, for any constant 𝑠, with probability 1 − 𝑜(1), there is a set of
𝑠
√
𝑛 vertices less than 𝑡𝑛−1/2, for some 𝑡 = (1 + 𝑜(1))𝑠. Given such a set, as just
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shown, the probability that the induced subgraph on these vertices is missing 𝑘 or

more edges is at most
(︁

𝑒𝑟𝑡𝑠2
√
𝑛

𝑘
· (1 + 𝑜(1))

)︁𝑘
. Thus if this quantity is 𝑜(1), then a.a.s.,

there is a clique of size at least 𝑠
√
𝑛− 𝑘 in G(𝑛,𝑊𝑟), obtained by deleting one vertex

from each missing edge. If we choose 𝑘 to be, for example, 1
2
𝑠
√
𝑛, then(︂

𝑒𝑟𝑡𝑠2
√
𝑛

𝑘
· (1 + 𝑜(1))

)︂𝑘

=
(︀
2𝑒𝑟𝑠2 · (1 + 𝑜(1))

)︀ 1
2
𝑠
√
𝑛
.

This will be 𝑜(1) as long as 2𝑒𝑟𝑠2 = 1−Ω(1), or equivalently, 𝑠2 = 1−Ω(1)
2𝑒𝑟

. Taking any
constant 𝑠 < 1√

2𝑒𝑟
suffices, for instance 𝑠 = 1√

3𝑒𝑟
. Therefore, a.a.s., there will exist a

clique of size at least 𝑠
√
𝑛− 𝑘 = 1

2
· 1√

3𝑒𝑟

√
𝑛 =

(︀
1

12𝑒𝑟

)︀1/2 · √𝑛.

Note that the bound in Lemma 3.4.2 can be tightened by optimizing the choice
of 𝑘 in the proof above, but not to the point of matching the upper bound given
in Lemma 3.3.2. Together, the upper and lower bounds in Lemmas 3.3.2 and 3.3.3
imply the Θ(

√
𝑛) bound given in Lemma 3.3.1 for 𝜔(G(𝑛,𝑊𝑟)).

3.3.2 More general G(𝑛,𝑊 ) with clique number Θ(
√
𝑛)

We are now nearly ready to prove the main results of this section, Lemma 3.1.6 and
Theorem 3.1.5. We will reframe both results in a slightly broader setting and prove a
more general version of Theorem 3.1.5. This theorem characterizes the clique number
of a 𝑊 -random graph when 𝑊 has moderate directional derivatives at the points
where it is equal to 1. However, even if the directional derivatives of a graphon 𝑊
do not exist at a given point, we can still have some notion of “bounded derivatives”
by looking at the limsup and the liminf of the difference quotient that defines the
derivative.

Definition 3.3.4. For a function 𝑊 : R𝑘 → R, a point 𝑥 ∈ R𝑘, and a unit direction
vector 𝑑 ∈ R𝑘, the upper Dini derivative of 𝑊 at 𝑥 in direction 𝑑 is defined as

𝑊 ′
+(𝑥, 𝑑) = lim sup

ℎ→0+

𝑊 (𝑥+ ℎ𝑑)−𝑊 (𝑥)

ℎ
.

The lower Dini derivative of 𝑊 at 𝑥 in direction 𝑑 is

𝑊 ′
−(𝑥, 𝑑) = lim inf

ℎ→0+

𝑊 (𝑥+ ℎ𝑑)−𝑊 (𝑥)

ℎ
.

Notice that if any directional derivative of a graphon 𝑊 exists, then it is equal to
both the corresponding upper and lower Dini derivatives. Also, we have defined Dini
derivatives only in directions corresponding to unit vectors; this is not necessary, but
it makes several of the results and their proofs below slightly neater. We will use these
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definitions throughout the remainder of this section. We now show that a bound on
the lower Dini derivatives of a graphon 𝑊 at a point (𝑎, 𝑎) with 𝑊 (𝑎, 𝑎) = 1 provides
a lower bound on the clique number of 𝜔(G(𝑛,𝑊 )).

Lemma 3.3.5. Let 𝑊 : [0, 1]2 → [0, 1] be a graphon equal to 1 at some point (𝑎, 𝑎).

(i) If all lower Dini derivatives of 𝑊 at (𝑎, 𝑎) are bounded below by −𝑐 for some
constant 𝑐 ≥ 0, then 𝜔(G(𝑛,𝑊 )) = Ω(

√
𝑛) a.a.s.

(ii) If all directional derivatives of 𝑊 at (𝑎, 𝑎) exist and are equal to zero, then
𝜔(G(𝑛,𝑊 )) = 𝜔(

√
𝑛) a.a.s.

Before proving Lemma 3.3.5, we quickly show how it implies Lemma 3.1.6, which
is restated here for the convenience of the reader.

Lemma 3.1.6. Let 𝑊 : [0, 1]2 → [0, 1] be a graphon equal to 1 at some point (𝑎, 𝑎).
If 𝑊 is locally Lipschitz continuous at (𝑎, 𝑎), then 𝜔(G(𝑛,𝑊 )) = Ω(

√
𝑛) a.a.s.

Proof of Lemma 3.1.6. We begin by recalling a definition: 𝑊 is locally Lipschitz at
the point (𝑎, 𝑎) if there exists a neighborhood 𝑈 of (𝑎, 𝑎) and a constant 𝑐 ≥ 0 such
that for all points (𝑥, 𝑦) in 𝑈 ,

|𝑊 (𝑥, 𝑦)−𝑊 (𝑎, 𝑎)| ≤ 𝑐 · ‖(𝑥, 𝑦)− (𝑎, 𝑎)‖.

where in the line above, ‖ · ‖ represents the ℓ2 norm. (Note that any other norm
would produce an equivalent definition, as all norms on R2 are equivalent up to a
constant.) If 𝑊 satisfies this condition, and if 𝑊 (𝑎, 𝑎) = 1, then since 𝑊 (𝑥, 𝑦) ≤ 1,
the inequality above becomes

𝑊 (𝑥, 𝑦)−𝑊 (𝑎, 𝑎) ≥ −𝑐 · ‖(𝑥, 𝑦)− (𝑎, 𝑎)‖.

Now for any (𝑥, 𝑦) ∈ 𝑈 , write (𝑥, 𝑦) − (𝑎, 𝑎) = ℎ𝑑 for a unit direction vector 𝑑; with
this substitution, the inequality above is equivalent to

𝑊 ((𝑎, 𝑎) + ℎ𝑑)−𝑊 (𝑎, 𝑎)

ℎ
≥ −𝑐. (3.6)

Indeed, for any unit direction vector 𝑑, and for ℎ sufficiently small, the point (𝑎, 𝑎)+ℎ𝑑
will be in the neighborhood 𝑈 , and inequality (3.6) will hold. Thus, taking a liminf
of inequality (3.6) for each 𝑑 as ℎ → 0+, we see that by definition, all the lower Dini
derivatives of 𝑊 at (𝑎, 𝑎) are at least −𝑐. Then Lemma 3.1.6 follows immediately
from Lemma 3.3.5 (i).

We now give the proof of Lemma 3.3.5.

Proof of Lemma 3.3.5. We begin with part (i). Roughly, our proof strategy will
be to locally bound 𝑊 from below by a graphon in the family {𝑊𝑟}𝑟∈R+ defined
in Lemma 3.3.1, thereby bounding the clique number of G(𝑛,𝑊 ) from below by
𝜔(G(𝑛,𝑊𝑟) = Θ(

√
𝑛).
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Take any constant 𝜀 > 0, and let 𝑟 =
√
2(𝑐+ 𝜀). Notice that the graphon

𝑊𝑟(𝑥, 𝑦) = 𝑊√
2(𝑐+𝜀)(𝑥, 𝑦) = (1− 𝑥)

√
2(𝑐+𝜀)(1− 𝑦)

√
2(𝑐+𝜀)

has directional derivatives at most − 𝑟√
2
= −(𝑐+ 𝜀) at (0, 0), achieved in the direction(︀

1√
2
, 1√

2

)︀
. Also, 𝑊𝑟(0, 0) = 1. Then since 𝑊 (𝑎, 𝑎) = 1, and the lower Dini derivatives

of 𝑊 are at least −𝑐, we see that up to translation of the domain, 𝑊 is bounded
below by 𝑊𝑟 in some neighborhood of (𝑎, 𝑎). Therefore, by Lemma 3.2.5, we have

𝜔(G(𝑛,𝑊 )) ≥ (1− 𝑜(1))𝜔(G(𝑛,𝑊𝑟))−𝑂(log 𝑛) (3.7)

a.a.s. Note that we have not assumed that 𝑊 is bounded away from 1 away from the
point (𝑎, 𝑎); however, we may still apply Lemma 3.2.5, as we are only looking for a
lower bound on 𝜔(G(𝑛,𝑊 )).

And by Lemma 3.3.3, the clique number of G(𝑛,𝑊𝑟) is at least
(︀

1
12𝑒𝑟

)︀1/2 ·√𝑛; thus
(3.7) becomes

𝜔(G(𝑛,𝑊 )) ≥ (1− 𝑜(1))
(︀

1
12𝑒𝑟

)︀1/2 · √𝑛−𝑂(log 𝑛) = Θ(
√
𝑛).

This proves part (i).
The proof of (ii) is similar; if all directional derivatives of 𝑊 are equal to zero,

then for any constant 𝑟 > 0, consider the graphon 𝑊𝑟(𝑥, 𝑦) = (1− 𝑥)𝑟(1− 𝑦)𝑟. Since
the directional derivatives of 𝑊𝑟 at (0, 0) are at most − 𝑟√

2
, we have 𝑊 ≥ 𝑊𝑟 in some

neighborhood of (𝑎, 𝑎), up to translation of the domain. Thus, again by Lemma 3.2.5,

𝜔(G(𝑛,𝑊 )) ≥ (1− 𝑜(1))𝜔(G(𝑛,𝑊𝑟)−𝑂(log 𝑛)

And as above, this yields

𝜔(G(𝑛,𝑊 )) ≥ (1− 𝑜(1)) ·
(︀

1
12𝑒𝑟

)︀1/2 −𝑂(log 𝑛)

= (1− 𝑜(1))
(︀

1
12𝑒𝑟

)︀1/2 · √𝑛.

Then since we can choose 𝑟 arbitrarily small, we see that

𝜔(G(𝑛,𝑊 )) = 𝜔(
√
𝑛),

a.a.s., completing the proof of part (ii).

Just as a bound on the lower Dini derivatives of a graphon 𝑊 gives us a lower
bound on the clique number of a 𝑊 -random graph, a bound on the upper Dini
derivatives will give us an upper bound. Since we are proving an upper bound on the
clique number, we will add the assumption that the graphon under consideration is
only equal to 1 at a finite number of points (𝑎, 𝑎). Together with Lemma 3.1.6, the
following result will prove Theorem 3.1.5.

Lemma 3.3.6. Let 𝑊 : [0, 1]2 → [0, 1] be a graphon equal to 1 at some collection of
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points (𝑎1, 𝑎1), . . . , (𝑎𝑘, 𝑎𝑘), and essentially bounded away from 1 in some neighborhood
of each other point (𝑥, 𝑥) for 𝑥 ∈ [0, 1]. Then

(i) if all upper Dini derivatives of 𝑊 at (𝑎1, 𝑎1), . . . , (𝑎𝑘, 𝑎𝑘) are uniformly bounded
away from zero then 𝜔(G(𝑛,𝑊 )) = 𝑂(

√
𝑛) a.a.s., and

(ii) if all upper Dini derivatives of 𝑊 at (𝑎1, 𝑎1), . . . , (𝑎𝑘, 𝑎𝑘) are equal to −∞, then
𝜔(G(𝑛,𝑊 )) = 𝑜(

√
𝑛) a.a.s.

Before giving the proof, we briefly show how Theorem 3.1.5 follows as a direct
consequence of part (i) of this lemma, together with Lemma 3.1.6.

Proof of Theorem 3.1.5. If 𝑊 is equal to 1 at the points (𝑎1, 𝑎1), . . . , (𝑎𝑘, 𝑎𝑘), and
its directional derivatives exist and are uniformly bounded away from −∞ at these
points, then as argued in the proof of Lemma 3.1.6, 𝑊 is locally Lipschitz at these
points. Therefore, we can apply Lemma 3.1.6 and conclude that 𝜔(G(𝑛,𝑊 )) = Ω(

√
𝑛)

a.a.s.
Similarly, if the directional derivatives of 𝑊 are uniformly bounded away from 0 at

the points (𝑎1, 𝑎1), . . . , (𝑎𝑘, 𝑎𝑘), and if 𝑊 is essentially bounded away from 1 in some
neighborhood of each other point (𝑥, 𝑥) for 𝑥 ∈ [0, 1], then we may apply Lemma 3.3.6
(i) to obtain 𝜔(G(𝑛,𝑊 )) = 𝑂(

√
𝑛) a.a.s. Therefore 𝜔(G(𝑛,𝑊 )) = Θ(

√
𝑛) a.a.s., as

desired.

We now prove the lemma above.

Proof of Lemma 3.3.6. First, divide [0, 1] into subintervals so that each contains only
one point of interest; specifically, divide [0, 1] at each point 𝑎𝑖 and at an arbitrary
point between each pair 𝑎𝑖 and 𝑎𝑖+1. This will produce a partition of [0, 1] into a total
of 2𝑘 subintervals 𝐴1, . . . , 𝐴2𝑘 so that for each 𝐴𝑖, either the left or right endpoint
is one of the values 𝑎𝑗, and 𝑊 |𝐴𝑖×𝐴𝑖

is essentially bounded away from 1 in some
neighborhood of each other (𝑥, 𝑥) ̸= (𝑎𝑗, 𝑎𝑗). We will bound the clique number of
G(𝑛,𝑊 ) in terms of the subgraphons 𝑊 |𝐴𝑖×𝐴𝑖

. By Lemma 3.2.4 (i), a.a.s.,

𝜔(G(𝑛,𝑊 )) ≤ (1 + 𝑜(1))
[︀
𝜔(G(𝑛+

1 ,𝑊 |𝐴1×𝐴1)) + · · ·+ 𝜔(G(𝑛+
2𝑘,𝑊 |𝐴2𝑘×𝐴2𝑘

))
]︀

(3.8)

where each 𝑛+
𝑖 is of the form 𝑛+

𝑖 = (1 + 𝑜(1))𝜆(𝐴𝑖)𝑛, and is a function only of 𝑛 and
𝜆(𝐴𝑖), and not of 𝑊 (this fact follows from the proof of Lemma 3.2.4).

Now, to prove part (i), take any 𝐴𝑖, and suppose the upper Dini derivatives of
𝑊 |𝐴𝑖×𝐴𝑖

are at most −𝑐 at (𝑎, 𝑎), for the endpoint 𝑎 of 𝐴𝑖 at which 𝑊 (𝑎, 𝑎) = 1. For
any 0 < 𝜀 < 𝑐, take 𝑟 = 𝑐− 𝜀, and consider the graphon

𝑊𝑟(𝑥, 𝑦) = 𝑊𝑐−𝜀(𝑥, 𝑦) = (1− 𝑥)𝑐−𝜀(1− 𝑦)𝑐−𝜀,

as defined in Lemma 3.3.1. We have 𝑊𝑟(0, 0) = 1, and at the point (0, 0), all the
directional derivatives of 𝑊𝑐+𝜀 are at least −𝑟 = −𝑐 + 𝜀 (achieved in the directions
(0, 1) and (1, 0)). Therefore, up to translation and/or reflection of its domain, 𝑊 |𝐴𝑖×𝐴𝑖

is bounded above by 𝑊𝑟 in some neighborhood of (0, 0), and essentially bounded away
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from 1 near each (𝑥, 𝑥) ̸= (0, 0). The same statement also holds if we replace 𝑊𝑟 with
𝑊𝑟|[0,ℓ]2 , for ℓ = 𝜆(𝐴𝑖), and in this case, up to translation and/or reflection of the
domain, 𝑊 |𝐴𝑖×𝐴𝑖

and 𝑊𝑟|[0,ℓ]2 are graphons on the same interval. Therefore we may
apply Lemma 3.2.5 to conclude that

𝜔(G(𝑛+
𝑖 ,𝑊 |𝐴𝑖×𝐴𝑖

)) ≤ (1 + 𝑜(1)) · 𝜔(G(𝑛+
𝑖 ,𝑊𝑟|[0,ℓ]2)) +𝑂(log 𝑛+

𝑖 ) (3.9)

a.a.s. And by Lemma 3.2.4 (ii),

(1 + 𝑜(1)) · 𝜔(G(𝑛−
𝑖 ,𝑊𝑟|[0,ℓ]2)) ≤ 𝜔(G(𝑛,𝑊𝑟))

a.a.s. as well, where 𝑛−
𝑖 = (1− 𝑜(1))𝜆(𝐴𝑖)𝑛 = (1− 𝑜(1))𝑛+

𝑖 . Equivalently, rearranging
slightly,

𝜔(G(𝑛+
𝑖 ,𝑊𝑟|[0,ℓ]2)) ≤ (1− 𝑜(1)) · 𝜔(G(𝑛(1 + 𝑜(1)),𝑊𝑟))

≤ (1− 𝑜(1))
√︁

𝑒
𝑟
·
√︀

𝑛(1 + 𝑜(1)) (3.10)

= (1 + 𝑜(1))
√︁

𝑒
𝑟
·
√
𝑛, (3.11)

where (3.10) is a direct application of Lemma 3.3.2. Together, (3.9) and (3.11) imply
that

𝜔(G(𝑛+
𝑖 ,𝑊 |𝐴𝑖×𝐴𝑖

)) ≤ (1 + 𝑜(1))
√︁

𝑒
𝑟
·
√
𝑛 = 𝑂(

√
𝑛)

a.a.s. Since this is true for each 𝑖, equation (3.8) becomes.

𝜔(G(𝑛,𝑊 )) ≤ 2𝑘 ·𝑂(
√
𝑛) = 𝑂(

√
𝑛),

proving part (i).

To prove part (ii), recall that the directional derivatives of 𝑊𝑟 at (0, 0) are at least −𝑟,
as mentioned in the proof of part (i). So if the upper Dini derivatives of 𝑊 are −∞
at each of the points (𝑎𝑖, 𝑎𝑖), then for each 𝐴𝑖 and any 𝑟 > 0, we have (up to transla-
tion and/or reflection) 𝑊 |𝐴𝑖×𝐴𝑖

≤ 𝑊𝑟 locally on some neighborhood, and 𝑊 |𝐴𝑖×𝐴𝑖
is

essentially bounded away from 1 near each (𝑥, 𝑥) outside that neighborhood. Then
for any 𝑟 > 0, as argued in the proof of part (i), equations (3.9) and (3.11) hold here
as well, again implying that

𝜔(G(𝑛+
𝑖 ,𝑊 |𝐴𝑖×𝐴𝑖

)) ≤ (1− 𝑜(1))
√︁

𝑒
𝑟
·
√
𝑛

a.a.s. Then since we can choose 𝑟 arbitrarily large, we see that 𝜔(G(𝑛+
𝑖 ,𝑊 |𝐴𝑖×𝐴𝑖

))
= 𝑜(

√
𝑛) a.a.s. Substituting into (3.8), this gives

𝜔(G(𝑛,𝑊 )) ≤ 2𝑘 · 𝑜(
√
𝑛) = 𝑜(

√
𝑛)

a.a.s., completing the proof of (ii).
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3.4 A family of 𝑊 -random graphs with clique num-
ber Θ(𝑛𝛼)

As seen in the previous section, graphons 𝑊 with moderate local growth near points
where 𝑊 (𝑥, 𝑥) = 1 produce 𝑊 -random graphs with clique numbers Θ(

√
𝑛). In this

section, we prove Theorem 3.1.7, which introduces a family of graphons with clique
numbers Θ(𝑛𝛼) for any 𝛼 ∈ (0, 1). The members 𝑊 of this family corresponding
to 𝛼 ̸= 1

2
have directional derivatives either 0 or −∞ at points where 𝑊 (𝑥, 𝑥) = 1,

consistent with the results of the previous section. In this section, we also prove
Theorem 3.1.8, which characterizes a larger class of 𝑊 -random graphs with clique
numbers Ω(𝑛𝛼), and Proposition 3.1.9, which gives an example of a 𝑊 -random graph
with clique number 𝑛1−𝑜(1). We begin by proving Theorem 3.1.7, restated here for
the convenience of the reader.

Theorem 3.1.7. For any constant 𝑟 > 0, define the graphon

𝑈𝑟(𝑥, 𝑦) := (1− 𝑥𝑟)(1− 𝑦𝑟).

The random graph G(𝑛, 𝑈𝑟) a.a.s. has clique number Θ(𝑛
𝑟

𝑟+1 ).

We will prove Theorem 3.1.7 in very much in the same way as Lemma 3.3.1;
first, we prove an upper bound on the clique number of G(𝑛, 𝑈𝑟) by the first moment
method.

Lemma 3.4.1. For any 𝑟 > 0, the clique number of the random graph G(𝑛, 𝑈𝑟) is at
most (1 + 𝑜(1)) ·

(︀
Γ
(︀
1 + 1

𝑟

)︀
𝑒
)︀ 𝑟

𝑟+1 · 𝑛
𝑟

𝑟+1 = Θ(𝑛
𝑟

𝑟+1 ) a.a.s.

Proof. For any 𝑟 > 0, write 𝑋𝑘 for the number of cliques of size 𝑘 in G(𝑛, 𝑈𝑟).
By Markov’s inequality, the expected clique number of any random graph is a.a.s.
bounded above by any value of 𝑘 for which E[𝑋𝑘] = 𝑜(1). And for any 𝑘,

E[𝑋𝑘] =

(︂
𝑛

𝑘

)︂∫︁
[0,1]𝑘

∏︁
ℓ,𝑚∈[𝑘], ℓ ̸=𝑚

(1− 𝑥𝑟
ℓ) · (1− 𝑥𝑟

𝑚) 𝑑�⃗�

=

(︂
𝑛

𝑘

)︂(︂∫︁ 1

0

(1− 𝑥𝑟)𝑘−1 𝑑𝑥

)︂𝑘

.

Using the change of variables 𝑢 = 𝑥𝑟, this expression becomes(︂
𝑛

𝑘

)︂(︂
1

𝑟
·
∫︁ 1

0

𝑢
1
𝑟
−1(1− 𝑢)𝑘−1 𝑑𝑢

)︂𝑘

=

(︂
𝑛

𝑘

)︂(︂
1

𝑟
·
Γ(𝑘)Γ(1

𝑟
)

Γ(𝑘 + 1
𝑟
)

)︂𝑘

,

where the last equality follows from the definition of the beta function, and its rela-
tionship to the gamma function (see, for example, Definition 1.1.3 and Theorem 1.1.4
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in [AAR99]). Simplifying slightly, we obtain

E[𝑋𝑘] =

(︂
𝑛

𝑘

)︂(︂
Γ(𝑘)Γ(1 + 1

𝑟
)

Γ(𝑘 + 1
𝑟
)

)︂𝑘

. (3.12)

And for any 𝑘 that is 𝜔(1) but sublinear, we have
(︀
𝑛
𝑘

)︀
=
(︀
𝑒𝑛
𝑘
(1− 𝑜(1))

)︀𝑘; thus (3.12)
becomes

E[𝑋𝑘] =
(︁𝑒𝑛
𝑘
(1− 𝑜(1))

)︁𝑘 (︂Γ(𝑘)Γ(1 + 1
𝑟
)

Γ(𝑘 + 1
𝑟
)

)︂𝑘

.

To obtain explicit asymptotics for this expression, we use Stirling’s formula for the
gamma function (for example, Theorem 1.4.1 in [AAR99]), which states that for
𝑥 → ∞,

Γ(𝑥) = (1 + 𝑜(1))
√
2𝜋 𝑥𝑥−1/2𝑒−𝑥.

From this, for any fixed 𝑟 > 0 and 𝑘 → ∞, it follows that

Γ(𝑘)

Γ(𝑘 + 1
𝑟
)
= (1 + 𝑜(1))𝑘− 1

𝑟 .

Substituting this into (3.12), we see that

E[𝑋𝑘] =
(︁𝑒𝑛
𝑘
(1− 𝑜(1))

)︁𝑘 (︁
(1 + 𝑜(1))𝑘− 1

𝑟 · Γ(1 + 1
𝑟
)
)︁𝑘

=

(︂
𝑒𝑛 · Γ(1 + 1

𝑟
)

𝑘1+ 1
𝑟

(1 + 𝑜(1))

)︂𝑘

.

Therefore the cutoff at which E[𝑋𝑘] goes from asymptotically 0 to asymptotically
infinity is when 𝑘1+ 1

𝑟 ∼ 𝑒𝑛 · Γ(1 + 1
𝑟
), or equivalently, 𝑘 ∼

(︀
Γ
(︀
1 + 1

𝑟

)︀
𝑒
)︀ 𝑟

𝑟+1 · 𝑛
𝑟

𝑟+1 .
Hence, with probability 1− 𝑜(1), the clique number of G(𝑛, 𝑈𝑟) is at most

𝑘 = (1 + 𝑜(1)) · (Γ
(︀
1 + 1

𝑟

)︀
𝑒)

𝑟
𝑟+1 · 𝑛

𝑟
𝑟+1 = Θ(𝑛

𝑟
𝑟+1 ).

Now we will prove a lower bound on the clique number of G(𝑛, 𝑈𝑟) – as in the
previous section, it will match the upper bound up to a constant.

Lemma 3.4.2. The clique number of G(𝑛, 𝑈𝑟) is a.a.s. at least 1
2
· 𝑒−

2
1+𝑟 · 𝑛

𝑟
𝑟+1 .

Proof. As in the proof of Lemma 3.3.3, we will directly compute a lower bound on
the expected clique number for G(𝑛, 𝑈𝑟) by guessing which vertices are most likely
to form a large clique (after a few problematic vertices are greedily deleted), and
showing that this does in fact happen with high probability. Suppose that there are
𝑠𝑛

𝑟
𝑟+1 vertices less than 𝑡𝑛− 1

𝑟+1 . (Note that the expected number of such vertices is
𝑛 ·𝑡𝑛− 1

𝑟+1 = 𝑡𝑛
𝑟

𝑟+1 .) By Lemma 3.2.1, for any constant 𝑠, there is some 𝑡 = (1+𝑜(1))𝑠,
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such that this will occur with probability 1 − 𝑜(1). Then, given a set of 𝑠𝑛
𝑟

𝑟+1 such
vertices, what is the probability that the subgraph they induce is missing at most 𝑘
edges? The probability that any fixed set of 𝑘 potential edges is missing is at most∏︁

𝑘 edges

[︁
1− (1− (𝑡𝑛− 1

𝑟+1 )𝑟)(1− (𝑡𝑛− 1
𝑟+1 )𝑟)

]︁
=
[︁
1− (1− (𝑡𝑛− 1

𝑟+1 )𝑟)2
]︁𝑘

=
[︁
𝑡𝑟𝑛− 𝑟

𝑟+1

(︁
2− 𝑡𝑟𝑛− 𝑟

𝑟+1

)︁]︁𝑘
≤
(︁
𝑡𝑟𝑛− 𝑟

𝑟+1 · 2
)︁𝑘

.

Then, by a union bound, the probability that there exists any set of 𝑘 edges missing
from the induced subgraph on these 𝑠𝑛

𝑟
𝑟+1 vertices is(︂(︀𝑠𝑛 𝑟

𝑟+1

2

)︀
𝑘

)︂
·
(︁
𝑡𝑟𝑛− 𝑟

𝑟+1 · 2
)︁𝑘

≤

(︃
𝑒(𝑠2𝑛

2𝑟
𝑟+1/2)

𝑘

)︃𝑘

·
(︁
𝑡𝑟𝑛− 𝑟

𝑟+1 · 2
)︁𝑘

=

(︃
𝑒𝑡𝑟𝑠2𝑛

𝑟
𝑟+1

𝑘

)︃𝑘

.

If we choose 𝑘 to be, for example 1
2
𝑠𝑛

𝑟
𝑟+1 , then this is equal to (2𝑒𝑡𝑟𝑠)

1
2
𝑠𝑛

𝑟
𝑟+1 . As long

as 2𝑒𝑡𝑟𝑠 = 1−Ω(1), or equivalently, 𝑠1+𝑟 = 1−Ω(1)
2𝑒

, we will have (2𝑒𝑡𝑟𝑠)
1
2
𝑠𝑛

𝑟
𝑟+1

= 𝑜(1).
Taking any constant 𝑠 < (2𝑒)−

1
1+𝑟 suffices, for example 𝑠 = 𝑒−

2
1+𝑟 . Therefore, for

such a constant 𝑠, the induced subgraph on the 𝑠𝑛
𝑟

𝑟+1 vertices under consideration
is missing at most 𝑘 = 1

2
𝑠𝑛

𝑟
𝑟+1 edges with probability 1 − 𝑜(1). Deleting one vertex

from each of these non-edges, we obtain a clique of size at least 𝑠𝑛
𝑟

𝑟+1 −𝑘 = 1
2
𝑠𝑛

𝑟
𝑟+1 =

1
2
· 𝑒−

2
1+𝑟 · 𝑛

𝑟
𝑟+1 a.a.s.

Notice that, as in Lemma 3.3.3, this does not quite match the upper bound of
(Γ
(︀
1 + 1

𝑟

)︀
𝑒)

𝑟
𝑟+1 ·𝑛

𝑟
𝑟+1 ; we could narrow the gap somewhat by optimizing parameters in

the proof just given, but not to the point of closing it entirely. And as in Section 3.3,
the number of cliques of any size of the order Θ

(︀
𝑛

𝑟
𝑟+1

)︀
in G(𝑛, 𝑈𝑟) has quite high

variance, which tells us that we cannot directly apply the second moment method to
show that the lower bound we have given is tight (as indeed, it may not be). This
argument is fleshed out more fully in Appendix A, with a variance bound given by
Corollary A.0.5 ((ii)).

We now use Theorem 3.1.7 to prove Theorem 3.1.8, restated below. But first, we
briefly discuss the continuity hypothesis in Theorem 3.1.8.

Definition 3.4.3. A graphon 𝑊 is locally 𝛼-Hölder continuous at (𝑎, 𝑎) if there
exists some neighborhood 𝑈 of (𝑎, 𝑎) and some constant 𝐶 > 0 such that for all points
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(𝑎, 𝑎) + (𝑥, 𝑦) ∈ 𝑈 , ⃒⃒
𝑊
(︀
(𝑎, 𝑎) + (𝑥, 𝑦)

)︀
−𝑊 (𝑎, 𝑎)

⃒⃒
< 𝐶‖(𝑥, 𝑦)‖𝛼, (3.13)

where ‖ · ‖ may be taken to represent any fixed norm on R2.

Typically, local 𝛼-Hölder continuity is defined only for 𝛼 ∈ [0, 1]; however, ev-
erything we do here will in fact hold and have meaning for larger 𝛼 as well. On an
interval, 𝛼-Hölder continuity with 𝛼 > 1 holds only for a constant function, but this is
not the case for local 𝛼-Hölder continuity at a single point, which may be achieved by
a non-constant function whose derivatives are equal to zero at the point in question.

Theorem 3.1.8. Let 𝑊 : [0, 1]2 → [0, 1] be a graphon equal to 1 at some point (𝑎, 𝑎).
If 𝑊 is locally 𝛼-Hölder continuous at (𝑎, 𝑎) for some constant 𝛼, then 𝜔(G(𝑛,𝑊 )) =
Ω(𝑛

𝛼
𝛼+1 ) a.a.s.

Proof of Theorem 3.1.8. If 𝑊 is 𝛼-Hölder continuous at (𝑎, 𝑎), then there exist 𝐶 > 0
and a neighborhood 𝑈 of (𝑎, 𝑎) such that (3.13) is satisfied. For convenience, we will
use the infinity norm. Then, since 𝑊 (𝑎, 𝑎) = 1, (3.13) becomes

1−𝑊
(︀
(𝑎, 𝑎) + (𝑥, 𝑦)

)︀
< 𝐶 ·max(𝑥, 𝑦)𝛼. (3.14)

With this in hand, we will prove a lower bound on the clique number of 𝑊 by
bounding 𝑊 from below locally by a slightly modified member of the family {𝑈𝑟}.
Assume without loss of generality that the constant 𝐶 is at least 1. Then we define

𝑈𝛼,𝐶(𝑥, 𝑦) =

{︃
(1− 𝐶𝑥𝛼)(1− 𝐶𝑦𝛼) for 𝑥, 𝑦 ∈ [0, 1

𝐶1/𝛼 ], and
0 otherwise.

Notice that for 𝑥, 𝑦 ∈ [0, 1
𝐶1/𝛼 ],

1− 𝑈𝛼,𝐶(𝑥, 𝑦) = 1− (1− 𝐶𝑥𝛼)(1− 𝐶𝑦𝛼)

= 𝐶𝑥𝛼 + 𝐶𝑦𝛼(1− 𝐶𝑥𝛼)

≥ 𝐶𝑥𝛼

Similarly, we have 1 − 𝑈𝛼,𝐶(𝑥, 𝑦) ≥ 𝐶𝑦𝛼; thus 1 − 𝑈𝛼,𝐶(𝑥, 𝑦) ≥ 𝐶 · max (𝑥, 𝑦)𝛼.
Therefore, by (3.14), we can write

1−𝑊
(︀
(𝑎, 𝑎) + (𝑥, 𝑦)

)︀
< 𝐶 ·max(𝑥, 𝑦)𝛼 ≤ 1− 𝑈𝛼,𝐶(𝑥, 𝑦).

for (𝑥, 𝑦) in some neighborhood of (0, 0). So up to translation, 𝑊 is bounded below
by 𝑈𝛼,𝐶 in some neighborhood of (𝑎, 𝑎). (To be precise, we have only shown this in
one quadrant, but this is sufficient for our purposes here.)

And indeed, the clique number of G(𝑛, 𝑈𝛼,𝐶) is Θ(𝑛
𝛼

𝛼+1 ), as with 𝑈𝛼 (given in
Theorem 3.1.7). To see this, first notice that in G(𝑛, 𝑈𝛼,𝐶), there will be some random
number 𝑁 of vertices selected from [0, 1

𝐶1/𝛼 ], and they will be uniform on this interval,
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while all other vertices of G(𝑛, 𝑈𝛼,𝐶) will be isolated. If 𝑥 and 𝑦 are uniform on
[0, 1

𝐶1/𝛼 ], then 𝐶1/𝛼𝑥,𝐶1/𝛼𝑦 are uniform on [0, 1]. And for 𝑥, 𝑦 ∈ [0, 1
𝐶1/𝛼 ], we have

𝑈𝛼,𝐶(𝑥, 𝑦) = 𝑈𝛼(𝐶
1/𝛼𝑥,𝐶1/𝛼𝑦) by definition. So G(𝑛, 𝑈𝛼,𝐶) has the same distribution

as G(𝑁,𝑈𝛼) together with 𝑛 − 𝑁 isolated vertices (which will not contribute to the
size of the largest clique). And by Lemma 3.2.1, we will have 𝑁 = (1 + 𝑜(1)) 1

𝐶1/𝛼𝑛

a.a.s. Thus by Theorem 3.1.7, the clique number of G(𝑁,𝑈𝛼) is Θ(𝑁
𝛼

𝛼+1 ) = Θ(𝑛
𝛼

𝛼+1 )
a.a.s. Therefore, we have 𝜔(G(𝑛, 𝑈𝛼,𝐶)) = Θ(𝑛

𝛼
𝛼+1 ) a.a.s.

Now, given that 𝑊 is locally bounded below by 𝑈𝛼,𝐶 at (𝑎, 𝑎), and that G(𝑛, 𝑈𝛼,𝐶)
has clique number Θ(𝑛

𝛼
𝛼+1 ), we may use the same argument as in Lemma 3.3.5;

namely, we apply Lemma 3.2.5, which gives

𝜔(G(𝑛,𝑊 )) ≥ (1− 𝑜(1)) · 𝜔(G(𝑛, 𝑈𝛼,𝐶))−𝑂(log 𝑛) = Θ(𝑛
𝛼

𝛼+1 )

a.a.s. Therefore 𝜔(G(𝑛,𝑊 ) = Ω(𝑛
𝛼

𝛼+1 ) a.a.s.

We end this section with a proof of Proposition 3.1.9, restated here.

Proposition 3.1.9. For the graphon 𝑊 : [0, 1]2 → [0, 1] defined by

𝑊 (𝑥, 𝑦) = (1− 𝑓(𝑥))(1− 𝑓(𝑦)), where 𝑓(𝑥) =

{︃
𝑒−1/𝑥2

𝑥 ̸= 0

0 𝑥 = 0
,

the clique number of G(𝑛,𝑊 ) is both 𝑛1−𝑜(1) and 𝑜(𝑛) a.a.s.

Proof. We begin by proving the 𝑜(𝑛) bound. For any 𝜀 > 0, define the graphon

𝑊𝜀(𝑥, 𝑦) =

{︃
1 if (𝑥, 𝑦) ∈ [0, 𝜀]2

0 otherwise
.

Clearly, 𝑊 is bounded above by 𝑊𝜀 on the set [0, 𝜀]2, and observe also that 𝑊 is
bounded away from 1 in some neighborhood of each point (𝑥, 𝑥) ̸= (0, 0). Therefore
we may apply Lemma 3.2.5 to conclude that a.a.s.,

𝜔(G(𝑛,𝑊 )) ≤ (1 + 𝑜(1)) · 𝜔(G(𝑛,𝑊𝜀)) +𝑂(log 𝑛). (3.15)

Notice that the clique number of G(𝑛,𝑊𝜀) is simply the number of vertices sampled
from the interval [0, 𝜀], as all edges among these vertices are present deterministically.
And with probability 1 − 𝑜(1), the number of such vertices will be (1 + 𝑜(1))𝜀𝑛 (by
Lemma 3.2.1). Thus (3.15) becomes

𝜔(G(𝑛,𝑊 )) ≤ (1 + 𝑜(1)) · 𝜀𝑛+𝑂(log 𝑛)

= (1 + 𝑜(1)) · 𝜀𝑛.

Since this holds a.a.s. for any choice of 𝜀 > 0, we see that 𝜔(G(𝑛,𝑊 )) = 𝑜(𝑛) a.a.s.
We now prove the lower bound of 𝑛1−𝑜(1). Our proof will consist of two parts:

first, for each 𝑟 ∈ N, we will show that 𝑊 is bounded below by 𝑈𝑟 locally in some
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neighborhood of (0, 0). We will then use Lemma 3.2.5 and the bound on 𝜔(G(𝑛, 𝑈𝑟))
given by Lemma 3.4.2 to give a lower bound on 𝜔(G(𝑛,𝑊 )).

We begin by looking at the (two-variable) Taylor polynomial of 𝑊 (𝑥, 𝑦) about
(0,0) of order 𝑟, for 𝑟 ∈ N. It is well known that 𝑓(𝑥), as defined above, is smooth on
R; this implies that 𝑊 is smooth on R2 as well. Thus Taylor’s theorem tells us that

𝑊 (𝑥, 𝑦) =
∑︁

0≤𝑖+𝑗≤𝑟

(︂
𝜕𝑖+𝑗𝑊

𝜕𝑥𝑖𝜕𝑦𝑗
(0, 0) · 𝑥

𝑖𝑦𝑗

𝑖!𝑗!

)︂
+𝑅𝑟(𝑥, 𝑦), (3.16)

where the remainder term 𝑅𝑟(𝑥, 𝑦) is bounded in absolute value by

|𝑅𝑟(𝑥, 𝑦)| ≤ 𝐶 ·max(𝑥, 𝑦)𝑟+1 (3.17)

for some constant 𝐶 = 𝐶(𝑊, 𝑟). (Note: we may obtain a more precise bound on the
remainder as a function of (𝑥, 𝑦), but the bound above will be sufficient here.) It is
also well known that 𝑓 (𝑛)(0) = 0 for all 𝑛 ∈ N; thus for all 𝑖, 𝑗 ≥ 1,

𝜕𝑖+𝑗𝑊

𝜕𝑥𝑖𝜕𝑦𝑗
(0, 0) =

(︀
−𝑓 (𝑖)(0)

)︀
·
(︀
−𝑓 (𝑗)(0)

)︀
= 0.

In fact, if either 𝑖 ≥ 1 or 𝑗 ≥ 1, this will hold. So the only nonzero term of the sum
in (3.16) is

𝜕0𝑊

𝜕𝑥0𝜕𝑦0
(0, 0) = 𝑊 (0, 0) = 1.

Therefore, (3.16) becomes
𝑊 (𝑥, 𝑦) = 1 +𝑅𝑟(𝑥, 𝑦).

Now recall that

𝑈𝑟(𝑥, 𝑦) = (1− 𝑥𝑟)(1− 𝑦𝑟) = 1− (𝑥𝑟 + 𝑦𝑟 − 𝑥𝑟𝑦𝑟).

For any (𝑥, 𝑦) ∈ [0, 1]2, we have 𝑥𝑟 + 𝑦𝑟 − 𝑥𝑟𝑦𝑟 ≥ 0. So in order to show that 𝑊 is
bounded below by 𝑈𝑟 in some neighborhood of (0, 0), it will be sufficient to show that
|𝑅𝑟(𝑥, 𝑦)| ≤ 𝑥𝑟 + 𝑦𝑟 − 𝑥𝑟𝑦𝑟 for (𝑥, 𝑦) in the same neighborhood. And observe that

𝑥𝑟 + 𝑦𝑟 − 𝑥𝑟𝑦𝑟 = 𝑥𝑟 + 𝑦𝑟(1− 𝑥𝑟) ≥ 𝑥𝑟.

Similarly, 𝑥𝑟 + 𝑦𝑟 − 𝑥𝑟𝑦𝑟 ≥ 𝑦𝑟; thus

𝑥𝑟 + 𝑦𝑟 − 𝑥𝑟𝑦𝑟 ≥ max(𝑥, 𝑦)𝑟. (3.18)

We may combine this with the bound on |𝑅𝑟(𝑥, 𝑦)| given by (3.17) after making one
last observation: for any constant 𝐶 = 𝐶(𝑟,𝑊 ), if (𝑥, 𝑦) is sufficiently close to (0, 0),
then 𝐶 · max(𝑥, 𝑦) ≤ 1. Therefore, for (𝑥, 𝑦) sufficiently close to (0, 0), combining
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(3.17) and (3.18), we obtain

𝑥𝑟 + 𝑦𝑟 − 𝑥𝑟𝑦𝑟 ≥ max(𝑥, 𝑦)𝑟

≥ 𝐶max(𝑥, 𝑦) ·max(𝑥, 𝑦)𝑟

≥ |𝑅𝑟(𝑥, 𝑦)|.

Thus, as argued above,

𝑊 (𝑥, 𝑦) ≥ 𝑈𝑟(𝑥, 𝑦)

for (𝑥, 𝑦) in some neighborhood of (0, 0). Therefore, we may apply Lemma 3.2.5, and
conclude that

𝜔(G(𝑛,𝑊 )) ≥ (1− 𝑜(1)) · 𝜔(G(𝑛, 𝑈𝑟))−𝑂(log 𝑛)

≥ (1− 𝑜(1)) · 1
2
· 𝑒−

2
1+𝑟 · 𝑛

𝑟
𝑟+1

a.a.s., where the last line is the lower bound on 𝜔(G(𝑛, 𝑈𝑟)) from Lemma 3.4.2. Then,
since 𝑟 can be chosen to be arbitrarily large, we obtain

𝜔(G(𝑛,𝑊 )) = 𝑛1−𝑜(1)

a.a.s., as desired.

3.5 Graphons equal to 1 at infinitely many points
In this section, we prove Proposition 3.1.11, and discuss other directions in which this
work could be extended. We have described the clique number of a wide variety of 𝑊 -
random graphs where 𝑊 (𝑎, 𝑎) = 1 for a finite number of 𝑎 ∈ [0, 1]. We could also ask
for some characterization of clique numbers of 𝑊 -random graphs when 𝑊 (𝑎, 𝑎) = 1
at an infinite number of points, either countable or uncountable. For example, what
is the clique number of G(𝑛,𝑊 ) for the following graphon 𝑊?

Example 3.5.1. Let 𝑊 (𝑥, 𝑦) =
(︀
1− 𝑥 sin2

(︀
1
𝑥

)︀)︀
·
(︀
1− 𝑦 sin2

(︀
1
𝑦

)︀)︀
.

In this case, we have 𝑊 (𝑎, 𝑎) = 1 at a countably infinite number of points, namely
for all 𝑎 with 1

𝑎
= 𝑘 ·𝜋 for 𝑘 ∈ N. If we define 𝑊 (0, 0) = 1, we may also show that 𝑊

is locally Lipschitz at (0, 0), giving 𝜔(G(𝑛,𝑊 )) = Ω(
√
𝑛). The upper Dini derivatives

of 𝑊 at (0, 0) are 0, however, so we cannot use Lemma 3.3.6 to give an upper bound.
It could be interesting to find the correct order of growth of the clique number for
this and other examples with a countably infinite number of points with 𝑊 (𝑎, 𝑎) = 1.

Proposition 3.1.11 (restated here) gives a rough estimate of the order of growth of
𝜔(G(𝑛,𝑊 )) for a graphon 𝑊 with 𝑊 (𝑎, 𝑎) = 1 on an interval; the following graphon
is equal to 1 along the line 𝑥 = 𝑦 and drops off away from that line.

Proposition 3.1.11. Let 𝑊 (𝑥, 𝑦) = 1 − |𝑥 − 𝑦|. The clique number of G(𝑛,𝑊 ) is
𝑛1/2+𝑜(1) a.a.s.
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Before proving this proposition, let us note one difficulty in analyzing this and
other graphons that are equal to 1 on a positive-measure portion of the line 𝑥 = 𝑦.
Namely, to obtain an upper bound on the clique number of such a graphon 𝑊 , we will
not easily be able to use the first moment method as with 𝑊𝑟 and 𝑈𝑟 in Sections 3.3
and 3.4. In order to do so, we would need to compute

E[𝑋𝑘] =

(︂
𝑛

𝑘

)︂∫︁
[0,1]𝑘

∏︁
ℓ̸=𝑚∈[𝑘]

𝑊 (𝑥ℓ, 𝑥𝑚) 𝑑�⃗�,

where 𝑋𝑘 is the number of cliques in G(𝑛,𝑊 ) of size 𝑘. For 𝑊𝑟 and 𝑈𝑟, we were able
to simplify this integral by using the fact that 𝑊𝑟(𝑥, 𝑦) and 𝑈𝑟(𝑥, 𝑦) are of the form
𝑓(𝑥)𝑓(𝑦) for some function 𝑓 . Graphons of this form are called “rank-1”, and we can
think of the 𝑊 -random graphs that they produce as a more limited generalization of
Erdős-Rényi random graphs than those produced by graphons generally; in a rank-
1 graphon, edge probabilities are not fixed as in the Erdős-Rényi model, but the
likelihood of each pair of vertices to be connected by an edge is determined only
by how well-connected these vertices are overall, and not on any more complicated
relationship between vertex weights.

The graphon 𝑊 in the proposition above is not rank-1, so we cannot simplify the
first moment calculation above by the same method we used for 𝑊𝑟 and 𝑈𝑟. More
generally, any rank-1 graphon that is equal to 1 on some positive-measure portion of
the line 𝑥 = 𝑦 is in some sense trivial; if we have a graphon 𝑊 with 𝑊 (𝑥ℓ, 𝑥𝑚) =
𝑓(𝑥ℓ)𝑓(𝑥𝑚) and 𝑊 (𝑎, 𝑎) = 1 for all 𝑎 in some positive-measure 𝐴 ⊆ [0, 1], then
𝑓(𝑎) = 1 for 𝑎 ∈ 𝐴. This would imply that 𝑊 evaluates to 1 on the positive-measure
set 𝐴× 𝐴, and thus G(𝑛,𝑊 ) has a linear-size clique number.

Here, to obtain the rough order of growth of G(𝑛,𝑊 ) for 𝑊 in Proposition 3.1.11,
we will use a more direct approach; we expect that any set of vertices forming a large
clique in G(𝑛,𝑊 ) would be sampled from a relatively small interval, as two vertices
𝑥𝑖 and 𝑥𝑗 are only likely to be connected in G(𝑛,𝑊 ) if |𝑥𝑖 − 𝑥𝑗| is small. However,
Lemma 3.2.2 tells us that a.a.s. there will be no very large set of vertices sampled
from a very small interval. We then take a union bound over all sufficiently large sets
of vertices (which must each be spread over a not-too-small interval) to show that
a.a.s. we will not obtain a “large” clique. Following are the details of that argument.

Proof of Proposition 3.1.11. First, observe that 𝑊 is locally Lipschitz at, for example,
the point (0, 0); all directional derivatives exist there and are bounded between −1
and 0. So by Lemma 3.1.6, G(𝑛,𝑊 ) = Ω(

√
𝑛) a.a.s. Now we compute an upper

bound on the clique number, using the method outlined in the previous paragraph.
Consider any set 𝑆 of 𝑘 = 3𝛿𝑛 vertices in G(𝑛,𝑊 ), with 𝛿 = 𝜔

(︀
1√
𝑛

)︀
to be chosen

later; we wish to show that no such set will form a clique. Partition 𝑆 into 𝑆1, 𝑆2,
and 𝑆3, namely the first 𝛿𝑛 vertices, the middle, and the last, respectively, as they are
ordered on the unit interval. By Lemma 3.2.2, with probability 1− 𝑜(1), the vertices
in each set, and in particular in 𝑆2, occupy an interval of length at least 𝛿

2
(1− 𝑜(1)).

Therefore each vertex in 𝑆1 is at distance at least 𝛿
2
(1− 𝑜(1)) from each vertex in 𝑆3,

and hence by the definition of W, the probability that every such pair of vertices is
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connected is at most (︂
1− 𝛿

2
(1− 𝑜(1))

)︂(𝛿𝑛)2

,

which gives an upper bound on the probability that 𝑆 is a clique. Taking a union
bound over all sets of 3𝛿𝑛 vertices in G(𝑛,𝑊 ), the probability that there exists a
clique of size 𝑘 = 3𝛿𝑛 in G(𝑛,𝑊 ) is at most(︂

𝑛

3𝛿𝑛

)︂(︂
1− 𝛿

2
(1− 𝑜(1))

)︂(𝛿𝑛)2

≤
(︁ 𝑒𝑛

3𝛿𝑛

)︁3𝛿𝑛(︂
1− 𝛿

2
(1− 𝑜(1))

)︂(𝛿𝑛)2

≤ 𝑒3𝛿𝑛·log
𝑒
3𝛿 · 𝑒−(𝛿𝑛)2 𝛿

2
(1−𝑜(1))

= 𝑒
𝛿𝑛

(︁
3 log 𝑒

3𝛿
− 𝛿2𝑛

2
(1−𝑜(1))

)︁
.

This will be 𝑜(1) if 3 log 𝑒
3𝛿

≤ 𝛿2𝑛
2
(1 − Ω(1)), which is satisfied, for example, for

𝛿 = 1√
𝑛
log 𝑛 = 𝑛−1/2+𝑜(1) (but not, say, for 𝛿 = 1√

𝑛
(log 𝑛)1/4). So with probability

1− 𝑜(1), the clique number of G(𝑛,𝑊 ) is at most 3𝛿𝑛 = 𝑛−1/2+𝑜(1) ·𝑛 = 𝑛1/2+𝑜(1).
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Chapter 4

Resilience of rank in random matrices

4.1 Introduction

This chapter is based on the paper [FLM19], joint with Asaf Ferber and Kyle Luh.
Let 𝑀𝑛,𝑚 denote an 𝑛×𝑚 matrix with independent entries chosen uniformly from

{±1}. For any matrix with entries in {±1}, we define its “resilience” as follows.

Definition 4.1.1. Given an 𝑛×𝑚 matrix 𝑀 with entries in {±1}, and with 𝑚 ≥ 𝑛,
we denote by Res(𝑀) the minimum number of sign flips necessary in order to make
𝑀 of rank less than 𝑛.

Note that this quantity is always at most 𝑚/2, since for any two rows 𝑎, 𝑏 ∈
{±1}𝑚, one can achieve either 𝑎 = 𝑏 or 𝑎 = −𝑏 by changing at most 𝑚/2 entries.
Here we show that when 𝑚 is slightly larger than 𝑛, this upper bound is essentially
tight.

Theorem 4.1.2. For every 𝜀 > 0 and 𝑚 ≥ 𝑛+ 𝑛1−𝜀/6, a.a.s. we have

𝑅𝑒𝑠(𝑀𝑛,𝑚) ≥ (1− 𝜀)𝑚/2.

Our proof strategy roughly goes as follows: Consider an outcome 𝑀 of 𝑀𝑛,𝑚.
Note that if the rank of 𝑀 is less than 𝑛, then in particular, writing 𝑚′ = 𝑚−𝑛1−𝜀/6,
there exists an 𝑛×𝑚′ submatrix 𝑀 ′ of 𝑀 with rank less than 𝑛. Moreover, as 𝑀 ′ is
not of full rank, there exists 𝑎 ∈ R𝑛 ∖ {0} which lies in the left kernel of 𝑀 ′ (that is,
with 𝑎𝑇𝑀 ′ = 0). Our main goal is to show that for each such 𝑎 (if it exists), and for
a randomly chosen 𝑥 ∈ {±1}𝑛, the probability

𝜌(𝑎) := Pr[𝑎𝑇𝑥 = 0] (4.1)

is typically very small.
Next, observe that a vector 𝑎 will be in the left kernel of 𝑀 if and only if it is in

the left kernel of 𝑀 ′ and is also orthogonal to the remaining 𝑛1−𝜀/6 columns of 𝑀 .
With this in mind, using the bound on 𝜌(𝑎) and the extra 𝑛1−𝜀/6 columns of 𝑀 , we
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want to “boost” the probability and show that

Pr[∃𝑎 such that 𝑎𝑇𝑀 = 0] = 𝑛−(1/2−𝑜(1))𝑚. (4.2)

Then, notice that there are at most
∑︀

𝑠≤(1/2−𝑜(1))𝑚

(︀
𝑛𝑚
𝑠

)︀
≈ 𝑛(1/2+𝑜(1))𝑚 many ma-

trices that can be obtained from 𝑀 by changing 𝑠 ≤ (1/2− 𝑜(1))𝑚 entries, and there
are at most 2𝑚 = 𝑛𝑜(1)·𝑚 many choices for 𝑀 ′. Therefore, using the bound (4.2), we
can complete the proof by a simple union bound (after, of course, showing that the
𝑜(1) terms in (4.2) work in our favor).

The main challenge is to prove (4.2), as it involves a union bound over all possible
kernel vectors 𝑎 ∈ R𝑛. In order to overcome this difficulty, we use some recently
developed machinery introduced in [FJLS19]. Roughly speaking, we embed the prob-
lem into a sufficiently large finite field F𝑝. Then, as there are finitely many options
for 𝑎 ∈ F𝑝 in the left kernel of 𝑀 , we can use a counting argument from [FJLS19] to
bound the probability of encountering each possible kernel vector 𝑎 according to the
corresponding value of 𝜌(𝑎).

We mention that the approach of bounding 𝜌(𝑎) for possible null-vectors in the
context of singularity is not new (see for example [KKS95, Ngu13, RV08, TV09,
Ver14]). The novelty of our argument is that we utilize the methods from [FJLS19]
to obtain the bound (4.2). Most of the previously used arguments yield exponential
or polynomial probabilities which would only tolerate a sublinear number of modifi-
cations to the matrix. Although it is possible to modify these arguments to generate
super-exponential bounds, the exact constant of 1/2 in (4.2) seems to be difficult to
achieve via other arguments.

Lastly, we mention that the method in [FJLS19] has already been successfully
applied to a variety of combinatorial problems in random matrix theory [CMMM19,
FJ18, Jai19a, Jai19b, LMN19].

The remainder of this chapter is organized as follows. In Section 4.2, we pro-
vide the necessary background to state the counting lemma from [FJLS19]. In Sec-
tion 4.2.3, we provide a convenient interface to apply this counting lemma. This
is drawn from [FJLS19] as well. Finally, in Section 4.3, we provide the proof of
Theorem 4.1.2.

4.2 Auxiliary results

Here we review some auxiliary results and introduce convenient notation to be used
in the proof of our main result.

4.2.1 Halász inequality in F𝑝

Let 𝑎 := (𝑎1, . . . , 𝑎𝑛) ∈ (Z ∖ {0})𝑛 and let 𝜖1, . . . , 𝜖𝑛 be independent and identically
distributed (i.i.d.) Rademacher random variables; that is, each 𝜖𝑖 independently takes
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values ±1 with probability 1/2 each. We define the largest atom probability 𝜌(𝑎) by

𝜌(𝑎) := sup𝑥∈Z Pr (𝜖1𝑎1 + · · ·+ 𝜖𝑛𝑎𝑛 = 𝑥) .

Similarly, if we are working over some finite field F𝑝, let

𝜌F𝑝(𝑎) := sup𝑥∈F𝑝
Pr (𝜖1𝑎1 + · · ·+ 𝜖𝑛𝑎𝑛 = 𝑥) ,

where, of course, the arithmetic is done over F𝑝.
Now, let 𝑅𝑘(𝑎) denote the number of solutions to ±𝑎𝑖1 ± 𝑎𝑖2 · · · ± 𝑎𝑖2𝑘 ≡ 0, where

repetitions are allowed in the choice of 𝑖1, . . . , 𝑖2𝑘 ∈ [𝑛]. A classical theorem of Halász
[Hal77] gives an estimate on the atom probability based on 𝑅𝑘(𝑎). Here we need the
following, slightly different version of this theorem, which can be applied to the finite
field setting.

Theorem 4.2.1 (Halász’s inequality over F𝑝; Theorem 1.4 in [FJLS19]). There exists
an absolute constant 𝐶 such that the following holds for every odd prime 𝑝, integer 𝑛,
and vector 𝑎 := (𝑎1, . . . , 𝑎𝑛) ∈ F𝑛

𝑝 ∖ {0}. Suppose that an integer 𝑘 > 0 and positive
real 𝑀 satisfy 30𝑀 ≤ | supp(𝑎)| and 80𝑘𝑀 ≤ 𝑛. Then,

𝜌F𝑝(𝑎) ≤
1

𝑝
+

𝐶𝑅𝑘(𝑎)

22𝑘𝑛2𝑘 ·𝑀1/2
+ 𝑒−𝑀 .

The proof of this theorem, which is essentially the same as the original one by
Halász, can be found in [FJLS19].

4.2.2 Counting Lemma

In this section we state a counting lemma from [FJLS19] which plays a key role in
our proof. First, we need the following definition:

Definition 4.2.2. Suppose that 𝑎 ∈ F𝑛
𝑝 for an integer 𝑛 and a prime 𝑝 and let 𝑘 ∈ N.

For every 𝛼 ∈ [0, 1], we define 𝑅𝛼
𝑘 (𝑎) to be the number of solutions to

±𝑎𝑖1 ± 𝑎𝑖2 · · · ± 𝑎𝑖2𝑘 = 0 mod 𝑝

that satisfy |{𝑖1, . . . , 𝑖2𝑘}| > (1 + 𝛼)𝑘.

It is easily seen that 𝑅𝑘(𝑎) cannot be much larger than 𝑅𝛼
𝑘 (𝑎). This is formalized

in the following simple lemma, which is proved in [FJLS19] (a proof is also given here,
for the convenience of the reader).

Lemma 4.2.3. For all 𝑘, 𝑛 ∈ N with 𝑘 6 𝑛/2, and any prime 𝑝, vector 𝑎 ∈ F𝑛
𝑝 , and

𝛼 ∈ [0, 1],
𝑅𝑘(𝑎) ≤ 𝑅𝛼

𝑘 (𝑎) +
(︀
40𝑘1−𝛼𝑛1+𝛼

)︀𝑘
.

Proof. By definition, 𝑅𝑘(𝑎) is equal to 𝑅𝛼
𝑘 (𝑎) plus the number of solutions to ±𝑎𝑖1 ±

𝑎𝑖2 · · ·±𝑎𝑖2𝑘 = 0 that satisfy |{𝑖1, . . . , 𝑖2𝑘}| < (1+𝛼)𝑘. The latter quantity is bounded
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from above by the number of sequences (𝑖1, . . . , 𝑖2𝑘) ∈ [𝑛]2𝑘 with at most (1 + 𝛼)𝑘
distinct entries times 22𝑘, the number of choices for the ± signs. Thus

𝑅𝑘(𝑎) ≤ 𝑅𝛼
𝑘 (𝑎)+

(︂
𝑛

(1 + 𝛼)𝑘

)︂(︀
(1+𝛼)𝑘

)︀2𝑘
22𝑘 ≤ 𝑅𝛼

𝑘 (𝑎)+
(︀
4𝑒1+𝛼(1 + 𝛼)1−𝛼𝑘1−𝛼𝑛1+𝛼

)︀𝑘
,

where the final inequality follows from the well-known bound
(︀
𝑎
𝑏

)︀
6 (𝑒𝑎/𝑏)𝑏. Finally,

noting that 4𝑒1+𝛼(1 + 𝛼)1−𝛼 ≤ 40 for all 𝛼 ∈ [0, 1] completes the proof.

Given a vector 𝑎 ∈ F𝑛
𝑝 and a subset of coordinates 𝐼 ⊆ [𝑛], we define 𝑎𝐼 to be its

restriction to the coordinates in 𝐼; that is, 𝑎𝐼 = (𝑎𝑖)𝑖∈𝐼 ∈ F𝐼
𝑝. We write 𝑏 ⊆ 𝑎 if there

exists an 𝐼 ⊆ [𝑛] for which 𝑏 = 𝑎𝐼 . For 𝑏 ⊆ 𝑎 we let |𝑏| be the size of the subset 𝐼
determining 𝑏.

Now we are ready to state the counting lemma, which will allow us to give an
upper bound on the number of “bad” vectors defined in the next secion.

Theorem 4.2.4 (Theorem 1.7 in [FJLS19]). Let 𝑝 be a prime, let 𝑘, 𝑛 ∈ N, 𝑠 ∈ [𝑛],
𝑡 ∈ [𝑝], and let 𝛼 ∈ (0, 1). Denoting

𝐵𝛼
𝑘,𝑠,≥𝑡(𝑛) :=

{︂
𝑎 ∈ F𝑛

𝑝 : 𝑅𝛼
𝑘 (𝑏) ≥ 𝑡 · 2

2𝑘 · |𝑏|2𝑘

𝑝
for every 𝑏 ⊆ 𝑎 with |𝑏| ≥ 𝑠

}︂
,

we have
|𝐵𝛼

𝑘,𝑠,≥𝑡(𝑛)| ≤
(︁ 𝑠
𝑛

)︁2𝑘−1

(𝛼𝑡)𝑠−𝑛𝑝𝑛.

4.2.3 “Good” and “bad” vectors

The purpose of this section is to formulate easy-to-use versions of Halász’s inequality
(Theorem 4.2.1) and our counting theorem (Theorem 4.2.4). This follows [FJLS19]
closely, but requires a more delicate choice of parameters as we need to achieve the
bound in (4.2) (and crucially, the constant 1/2 in the exponent). We shall partition
F𝑛
𝑝 into “good” and “bad” vectors. We shall then show that, on the one hand, every

“good” vector 𝑎 has a small 𝜌(𝑎) and that, on the other hand, there are relatively few
“bad” vectors.1 The formal statements now follow. In order to simplify the notation,
we suppress the implicit dependence of the defined notions on 𝑛, 𝑘, 𝑝, and 𝛼.

Definition 4.2.5. Let 𝑝 be a prime, let 𝑛, 𝑘 ∈ N, and let 𝛼 ∈ (0, 1). For any 𝑡 > 0,
define the set 𝐻 𝑡 of 𝑡-good vectors by

𝐻 𝑡 :=

{︂
𝑎 ∈ F𝑛

𝑝 : ∃𝑏 ⊆ 𝑎 with | supp(𝑏)| ≥ 𝑛1−𝜀/2 and 𝑅𝛼
𝑘 (𝑏) ≤ 𝑡 · 2

2𝑘 · |𝑏|2𝑘

𝑝

}︂
.

1In fact, we shall only show that there are relatively few “bad” vectors that have some number
of nonzero coordinates. The number of remaining vectors (ones with very small support) is so small
that even a very crude estimate will suffice for our needs.
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The goodness of a vector 𝑎 ∈ F𝑛
𝑝 , denoted by ℎ(𝑎), will be the smallest 𝑡 such that

𝑎 ∈ 𝐻 𝑡. In other words

ℎ(𝑎) = min

{︂
𝑝 ·𝑅𝛼

𝑘 (𝑏)

22𝑘 · |𝑏|2𝑘
: 𝑏 ⊆ 𝑎 and | supp(𝑏)| > 𝑛1−𝜀/2

}︂
.

Note that if a vector 𝑎 ∈ F𝑛
𝑝 has fewer than 𝑛1−𝜀/2 nonzero coordinates, then

it cannot be 𝑡-good for any 𝑡 and thus ℎ(𝑎) = ∞. On the other hand, trivially
𝑅𝛼

𝑘 (𝑏) 6 22𝑘 · |𝑏|2𝑘 for every vector 𝑏, as there are 22𝑘|𝑏|2𝑘 total possible choices of
a sequence ±𝑏𝑖1 ± 𝑏𝑖2 ± · · · ± 𝑏𝑖2𝑘 . Thus every 𝑎 ∈ F𝑛

𝑝 with at least 𝑛1−𝜀/2 nonzero
coordinates must be 𝑝-good, that is, ℎ(𝑎) 6 𝑝 for each such 𝑎.

Having formalized the notion of a “good” vector, we are now ready to state and
prove two corollaries of Theorems 4.2.1 and 4.2.4 that lie at the heart of our approach.
(Note: the particular choice of parameters in Lemma 4.2.6 is made for convenience
in a later application.)

Lemma 4.2.6. Let 𝑎 ∈ 𝐻 𝑡, let 𝛼 ∈ (0, 1), and let 𝜀 < 1/100. Suppose that 𝑝 =

Θ(2𝑛
𝜀/3

) is a prime, 𝑡 ≥ 𝑛, and 𝑘 = Θ(𝑛𝜀/3). Then for sufficiently large 𝑛 we have

𝜌F𝑝(𝑎) 6
𝐶𝑡

𝑝𝑛
1
2
(1−5𝜀/6)

,

where 𝐶 = 𝐶(𝛼, 𝜀) is a constant depending only on 𝛼 and 𝜀.

Proof. As 𝑎 ∈ 𝐻 𝑡, we can find a subvector 𝑏 of 𝑎 such that | supp(𝑏)| > 𝑛1−𝜀/2 and
𝑅𝛼

𝑘 (𝑏) 6 𝑡 · 22𝑘 · |𝑏|2𝑘/𝑝. Set 𝑀 = ⌊𝑛1−𝜀/2/(80𝑘)⌋ = Θ(𝑛1−5𝜀/6) so that

max{30𝑀, 80𝑀𝑘} = 80𝑀𝑘 6 𝑛1−𝜀/2 6 | supp(𝑏)| 6 |𝑏|.

Thus we may apply Theorem 4.2.1 to obtain, for some absolute constant 𝐶0,

𝜌F𝑝(𝑏) 6
1

𝑝
+

𝐶0𝑅𝑘(𝑏)

22𝑘 · |𝑏|2𝑘 ·𝑀1/2
+ 𝑒−𝑀 .

Now, using Lemma 4.2.3 we can upper bound the right hand side by

𝜌F𝑝(𝑏) ≤
1

𝑝
+

𝐶0𝑅
𝛼
𝑘 (𝑏) + 𝐶0 (40𝑘

1−𝛼|𝑏|1+𝛼)
𝑘

22𝑘 · |𝑏|2𝑘 ·𝑀1/2
+ 𝑒−𝑀

≤ 1

𝑝
+

𝐶0𝑡 · 22𝑘 · |𝑏|2𝑘/𝑝+ 𝐶0 (40𝑘
1−𝛼|𝑏|1+𝛼)

𝑘

22𝑘 · |𝑏|2𝑘 ·𝑀1/2
+ 𝑒−𝑀

=
1

𝑝

(︂
1 +

𝐶0𝑡

𝑀1/2
+ 𝐶0

(︀
10(𝑘/|𝑏|)1−𝛼

)︀𝑘 · 𝑝

𝑀1/2

)︂
+ 𝑒−𝑀 .

Now we wish to show that, with the parameter assignments above, the dominant term
in this sum is 𝐶0𝑡

𝑝𝑀1/2 . To this end, we bound each of the other terms as follows. First,
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𝑒−𝑀 = 𝑒−Θ(𝑛1−5𝜀/6) = 𝑜(2−𝑛𝜀/3

) = 𝑜

(︂
1

𝑝

)︂
.

(Here we use the upper bound assumption on 𝜀.) Second,

𝐶0

(︀
10(𝑘/|𝑏|)1−𝛼

)︀𝑘 · 𝑝

𝑀1/2
≤ 𝐶0

(︁
10
(︀
𝑛𝜀/3−(1−𝜀/2)

)︀1−𝛼
)︁𝑘

· 𝑝

=
(︀
𝑛−Θ(1)

)︀Θ(𝑛𝜀/3) · 𝑝

= 2−Θ(𝑛𝜀/3 log𝑛) ·Θ(2𝑛
𝜀/3

)

= 𝑜(1).

And last, we observe that, as 𝑡 ≥ 𝑛,

𝐶0𝑡

𝑀1/2
≥ 𝑛

Θ(𝑛
1
2
(1−5𝜀/6))

= 𝜔(1).

Therefore the dominant term in the sum above is indeed 𝐶0𝑡
𝑝𝑀1/2 ; then, choosing the

constant 𝐶 = 𝐶(𝛼, 𝜀) > 𝐶0 sufficiently large, we obtain

𝜌F𝑝(𝑏) ≤
𝐶𝑡

𝑝𝑀1/2
≤ 𝐶𝑡

𝑝𝑛
1
2
(1−5𝜀/6)

as desired. (Note: in the last step, we have incorporated the implicit constant in
𝑀 = Θ(𝑛1−5𝜀/6) into the constant 𝐶.)

Lemma 4.2.7. For every integer 𝑛 and real 𝑡 > 𝑛,⃒⃒{︀
𝑎 ∈ F𝑛

𝑝 : | supp(𝑎)| > 𝑛1−𝜀/2 and 𝑎 ̸∈ 𝐻 𝑡

}︀⃒⃒
6 2𝑛

(︁ 𝑝

𝛼𝑡

)︁𝑛
· 𝑡𝑛1−𝜀/2

.

Proof. We may assume that 𝑡 6 𝑝, as otherwise the left-hand side above is zero; see
the comment below Definition 4.2.5. Let us now fix an 𝑆 ⊆ [𝑛] with |𝑆| > 𝑛1−𝜀/2 and
count only vectors 𝑎 with supp(𝑎) = 𝑆. Since 𝑎 ̸∈ 𝐻 𝑡, the restriction 𝑎𝑆 of 𝑎 to the
set 𝑆 must be contained in the set 𝐵𝛼

𝑘,𝑛1−𝜀/2,≥𝑡(|𝑆|). Hence, Theorem 4.2.4 implies
that the number of choices for 𝑎𝑆 is at most(︂

𝑛1−𝜀/2

|𝑆|

)︂2𝑘−1

(𝛼𝑡)𝑛
1−𝜀/2−|𝑆|𝑝|𝑆| ≤

(︁ 𝑝

𝛼𝑡

)︁𝑛
𝑡𝑛

1−𝜀/2

,

where the second inequality follows as 𝑛1−𝜀/2 ≤ |𝑆| ≤ 𝑛 and 𝛼𝑡 6 𝑡 6 𝑝. Since 𝑎𝑆

completely determines 𝑎, we obtain the desired conclusion by summing the above
bound over all sets 𝑆.
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4.3 Proof of Theorem 4.1.2

In this section we gradually construct the entire proof of Theorem 4.1.2.
For convenience, we introduce some notation to indicate the distance of two

Rademacher matrices.

Definition 4.3.1. For two matrices 𝑛 ×𝑚 matrices 𝑀,𝑀 ′ we let 𝑑(𝑀,𝑀 ′) denote
the number of entries where 𝑀 and 𝑀 ′ differ.

With this definition in hand, Theorem 4.1.2 can be stated as follows:

Theorem 4.3.2. For every 𝜀 > 0 and 𝑚 ≥ 𝑛+𝑛1−𝜀/6, a.a.s. we have 𝑟𝑎𝑛𝑘(𝑀 ′) = 𝑛
for all 𝑛×𝑚, ±1 matrices 𝑀 ′ with 𝑑(𝑀𝑛,𝑚,𝑀

′) ≤ (1− 𝜀)𝑚/2.

First, we will prove Theorem 4.1.2 under the assumption that 𝑚 = 𝜔(𝑛).

4.3.1 Proof of Theorem 4.1.2 under the assumption 𝑚 = 𝜔(𝑛)

Let 𝜀 > 0 be any fixed constant, and let 𝑚 ≥ 𝐶(𝜀)𝑛, where 𝐶(𝜀) is a sufficiently large
constant. We wish to show that a.a.s., 𝑀 = 𝑀𝑛,𝑚 is such that every 𝑛 ×𝑚 matrix
𝑀 ′ with 𝑑(𝑀,𝑀 ′) ≤ (1− 𝜀)𝑚/2 has rank 𝑛.

In order to do so, let us take (say) 𝑝 = 3 and work over F3. Observe that if the
above statement holds over F3 then it trivially holds over Z.

Let 𝑎 ∈ F𝑛
3 ∖ {0}, and note that for a randomly chosen 𝑥 ∈ {±1}𝑛 we have

Pr[𝑎𝑇𝑥 = 0 ] ≤ 1

2
.

Therefore, as the columns of 𝑀 are independent, it follows that the random variable
𝑋𝑎 = “the number of zeroes in 𝑎𝑇𝑀 ” is stochastically dominated by Bin(𝑚, 1

2
). Hence,

by Chernoff’s bound, we obtain that

Pr [𝑋𝑎 ≥ (1 + 𝜀)𝑚/2] ≤ 𝑒−𝐶1𝑚

for some 𝐶1 that depends on 𝜀. By applying the union bound over all 𝑎 ∈ F𝑛
3 ∖ {0}

we obtain that

Pr
[︀
∃𝑎 ∈ F𝑛

3 ∖ {0} with 𝑋𝑎 ≥ (1 + 𝜀)𝑚/2
]︀
≤ 3𝑛𝑒−𝐶1𝑚 = 𝑜(1),

where the last inequality follows from the fact that 𝑚 ≥ 𝐶(𝜀)𝑛 and 𝐶(𝜀) is sufficiently
large.

Thus 𝑀 is typically such that in every non-zero linear combination of its rows,
there are less than (1 + 𝜀)𝑚/2 many zeroes. In particular, since by changing at most
(1 − 𝜀)𝑚/2 many entries one can affect at most (1 − 𝜀)𝑚/2 columns, it follows that
for all 𝑀 ′ with 𝑑(𝑀,𝑀 ′) ≤ (1− 𝜀)𝑚/2, no non-trivial combination of the rows of 𝑀 ′

is the 0 vector. In particular, every such 𝑀 ′ is of rank 𝑛. This completes the proof
for this case.
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4.3.2 Proof of Theorem 4.1.2 under the assumption 𝑚 = 𝑂(𝑛)

In what follows we always assume that 𝑚 = 𝑂(𝑛). Therefore, whenever convenient,
in appropriate asymptotic formulas we may switch between 𝑚 and 𝑛 without further
explanation. This case is more involved than the case 𝑚 = 𝜔(𝑛) and it will be further
divided into a few subcases. From now on, we fix 𝑝 to be some prime 𝑝 = Θ(2𝑛

𝜀/3
),

and concretely, we write 𝑚 ≤ 𝐶(𝜀)𝑛 for some constant 𝐶(𝜀).
Now, write 𝑚′ = 𝑚− 𝑛1−𝜀/6 (the width of the matrix under consideration minus

the 𝑛1−𝜀/6 “extra” columns). In the following two subsections, we will show that with
high probability, for every 𝑎 ∈ F𝑛

𝑝 , if 𝑎𝑇𝑀 ′ = 0 for some 𝑛 × 𝑚′ matrix 𝑀 ′ with
𝑑(𝑀 ′,𝑀𝑛,𝑚′) ≤ (1 − 𝜀)𝑚/2, then 𝑎 has “many” nonzero entries, and is “pseudoran-
dom” in some sense (Lemmas 4.3.3 and 4.3.4). From here, we can apply the Halász
inequality (in the form of Lemma 4.2.6) almost directly, using the fact that there are
𝑚−𝑚′ ≥ 𝑛1−𝜀/6 extra columns, to conclude that for any such 𝑎, the probability that
𝑎𝑇𝑀𝑛,𝑚 = 0 is small.

Eliminating Small Linear Dependencies

First, we wish to show that if 𝑎𝑇𝑀 ′ = 0 (over F𝑝) for some 𝑀 ′ with 𝑑(𝑀𝑛,𝑚′ ,𝑀 ′) ≤
(1− 𝜀)𝑚/2, then 𝑎 has “many” non-zero entries (assuming 𝑎 ̸= 0 of course).

Lemma 4.3.3. Let 𝜀 > 0, let 𝑝 = Θ(2𝑛
𝜀/3

) be a prime, and let 𝑛 + 𝑛1−𝜀/6 ≤ 𝑚 ≤
𝐶(𝜀)𝑛. Write 𝑚′ = 𝑚 − 𝑛1−𝜀/6. Then, working in F𝑝, the probability there exists
a matrix 𝑀 ′ with 𝑑(𝑀 ′,𝑀𝑛,𝑚′) ≤ (1 − 𝜀)𝑚/2 and a nonzero vector 𝑎 ∈ F𝑛

𝑝 with
|supp(𝑎)| ≤ 𝑛1−𝜀/2 and with 𝑎𝑇𝑀 ′ = 0 is at most 2−Θ(𝑛).

Proof. Given a vector 𝑎 ∈ F𝑛
𝑝 , we let ℓ := |supp(𝑎)|. Note that for any 𝑎 ̸= 0 and a

uniformly chosen vector 𝑥 ∈ {±1}𝑛 we trivially have

Pr[𝑎𝑇𝑥 = 0] ≤ 1

2
.

Moreover, as we are only allowed to change at most (1− 𝜀)𝑚/2 coordinates of 𝑀𝑛,𝑚′ ,
it follows that at most (1 − 𝜀)𝑚/2 entries of 𝑎𝑇𝑀𝑛,𝑚′ can be altered. In particular,
if there exists a vector 𝑎 for which 𝑎𝑇𝑀 ′ = 0, where 𝑑(𝑀𝑛,𝑚′ ,𝑀 ′) ≤ (1 − 𝜀)𝑚/2,
then this implies that 𝑎𝑇𝑀𝑛,𝑚′ already contained at least 𝑚′− (1− 𝜀)𝑚/2 = (1+ 𝜀−
𝑜(1))𝑚/2 zero entries.

Now, since the random variable counting the number of 0 entries is stochastically
dominated by Bin(𝑛, 1

2
), by Chernoff’s bound we obtain that for a given 𝑎 ̸= 0, the

probability to have at least (1 + 𝜀 − 𝑜(1))𝑚/2 zeroes in 𝑎𝑇𝑀𝑛,𝑚′ is at most 2−𝑐(𝜀)𝑚,
where 𝑐(𝜀) is some constant depending only on 𝜀. Thus the probability that for a
given nonzero vector 𝑎, there exists some 𝑀 ′ with 𝑑(𝑀 ′,𝑀𝑛,𝑚′) ≤ (1 − 𝜀)𝑚/2 and
𝑎𝑇𝑀 ′ = 0 is at most 2−𝑐(𝜀)𝑚.

All in all, by applying the union bound over all 𝑎 ̸= 0 with ℓ ≤ 𝑛1−𝜀/2 nonzero

66



entries, the probability that we are seeking to bound is at most

𝑛1−𝜀/2∑︁
ℓ=1

(︂
𝑛

ℓ

)︂
𝑝ℓ2−𝑐(𝜀)𝑚 ≤

𝑛1−𝜀/2∑︁
ℓ=1

2ℓ log𝑛+ℓ𝑛𝜀/3−𝑐(𝜀)𝑚 = 2−Θ(𝑛)

where the last equality holds due to the assumption ℓ ≤ 𝑛1−𝜀/2.

Eliminating “bad” vectors

We now show that, almost surely, any vector 𝑎 with many non-zero entries and
with 𝑎𝑇𝑀 ′ = 0 for some 𝑀 ′ with 𝑑(𝑀 ′,𝑀𝑛,𝑚′) ≤ (1 − 𝜀)𝑚/2 will be “good” or
“unstructured”.

Lemma 4.3.4. Let 1/100 > 𝜀 > 0, let 𝑝 = Θ(2𝑛
𝜀/3

) be a prime, and let 𝑛+ 𝑛1−𝜀/6 ≤
𝑚 ≤ 𝐶(𝜀)𝑛. Write 𝑚′ = 𝑚− 𝑛1−𝜀/6. Then, working in F𝑝, the probability that there
exists a matrix 𝑀 ′ with 𝑑(𝑀 ′,𝑀𝑛,𝑚′) ≤ (1 − 𝜀)𝑚/2 and a vector 𝑎 ∈ F𝑛

𝑝 ∖𝐻𝑛 with
at least 𝑛1−𝜀/2 non-zero entries such that 𝑎𝑇𝑀 ′ = 0 is at most 2−Θ(𝑛 log𝑛).

Proof. Our first step is to take a union bound over choices of 𝑎; we wish to bound
the quantity∑︁

𝑎∈F𝑛
𝑝∖𝐻𝑛

| supp(𝑎)|≥𝑛1−𝜀/2

Pr[∃𝑀 ′ with 𝑑(𝑀 ′,𝑀𝑛,𝑚′) ≤ (1− 𝜀)𝑚/2 and 𝑎𝑇𝑀 ′ = 0]. (4.3)

Now we use the sets 𝐻 𝑡 to divide the vectors 𝑎 into different classes. As observed
after Definition 4.2.5, every 𝑎 ∈ F𝑛

𝑝 with at least 𝑛1−𝜀/2 nonzero entries is in 𝐻 𝑡 for
some 𝑡 ≤ 𝑝. Moreover, notice that 𝐻 𝑡 ⊆ 𝐻 𝑡+1 for any 𝑡 > 0. So we can write F𝑛

𝑝 ∖𝐻𝑛

as a union
⋃︀

𝑛+1≤𝑡≤𝑝𝐻 𝑡 ∖𝐻 𝑡−1. Therefore, taking a union bound over integers 𝑡 > 𝑛,
the probability Eq. (4.3) that we are trying to bound is at most

𝑝∑︁
𝑡=𝑛+1

⎛⎝ ∑︁
𝑎∈𝐻𝑡∖𝐻𝑡−1

Pr[∃𝑀 ′ with 𝑑(𝑀 ′,𝑀𝑛,𝑚′) ≤ (1− 𝜀)𝑚/2 and 𝑎𝑇𝑀 ′ = 0]

⎞⎠ .

Now, we take another union bound, this time over the possible edits to the matrix;
by changing at most (1− 𝜀)𝑚/2 entries, an adversary can form

(1−𝜀)𝑚/2∑︁
𝑖=0

(︂
𝑛𝑚′

𝑖

)︂
≤
(︂
(1 + 𝑜(1))

2𝑒𝑛

1− 𝜀

)︂(1−𝜀)𝑚/2

= 2(1−𝜀+𝑜(1))𝑚
2
log𝑛

many 𝑛×𝑚′ matrices. Thus Eq. (4.3) is at most

𝑝∑︁
𝑡=𝑛+1

⎛⎝ ∑︁
𝑎∈𝐻𝑡∖𝐻𝑡−1

2(1−𝜀+𝑜(1))𝑚
2
log𝑛 · Pr[𝑎𝑇𝑀𝑛,𝑚′ = 0]

⎞⎠ .
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(Note: this is possible because, by conditioning on the locations of the entries edited,
each altered matrix 𝑀 ′ is distributed identically to 𝑀𝑛,𝑚′ .)

We now wish to bound the probability that 𝑎𝑇𝑀𝑛,𝑚′ = 0 for any fixed 𝑎 ∈
𝐻 𝑡 ∖𝐻 𝑡−1. By Lemma 4.2.6 (as 𝑎 ∈ 𝐻 𝑡), and by the independence of the columns

in 𝑀𝑛,𝑚′ , this probability is at most
(︂

𝐶𝑡

𝑝𝑛
1
2 (1−5𝜀/6)

)︂𝑚′

. Therefore, Eq. (4.3) is at most

𝑝∑︁
𝑡=𝑛+1

⎛⎝ ∑︁
𝑎∈𝐻𝑡∖𝐻𝑡−1

2(1−𝜀+𝑜(1))𝑚
2
log𝑛 ·

(︂
𝐶𝑡

𝑝𝑛
1
2
(1−5𝜀/6)

)︂𝑚′
⎞⎠ .

We now bound the number of vectors 𝑎 in each 𝐻 𝑡∖𝐻 𝑡−1. By definition, 𝐻 𝑡∖𝐻 𝑡−1 ⊂
F𝑛
𝑝 ∖𝐻 𝑡−1, and by Lemma 4.2.7, the size of F𝑛

𝑝 ∖𝐻 𝑡−1 is bounded above by(︂
2𝑝

𝛼𝑡

)︂𝑛

· 𝑡𝑛1−𝜀/2

,

where 𝛼 ∈ (0, 1) is any fixed constant (note that the constant 𝐶 above depends on
𝛼). Thus Eq. (4.3) is bounded by the following explicit expression:

𝑝∑︁
𝑡=𝑛+1

(︂
2𝑝

𝛼𝑡

)︂𝑛

· 𝑡𝑛1−𝜀/2 · 2(1−𝜀+𝑜(1))𝑚
2
log𝑛 ·

(︂
𝐶𝑡

𝑝𝑛
1
2
(1−5𝜀/6)

)︂𝑚′

= 2(1−𝜀+𝑜(1))𝑚
2
log𝑛 · 𝑛−(1−5𝜀/6)𝑚

′
2 ·
(︂
2

𝛼

)︂𝑛

· 𝐶𝑚′
𝑝∑︁

𝑡=𝑛+1

(︂
𝑡

𝑝

)︂𝑚′−𝑛

𝑡𝑛
1−𝜀/2

.

Now, bounding each piece separately, and recalling that 𝑚′ ≥ 𝑛,(︂
2

𝛼

)︂𝑛

𝐶𝑚′
= 2𝑂(𝑛),

𝑝∑︁
𝑡=𝑛+1

(︂
𝑡

𝑝

)︂𝑚′−𝑛

𝑡𝑛
1−𝜀/2 ≤ 𝑝 · 1 · 𝑝𝑛1−𝜀/2

= 2𝑛
𝜀/3 · 2𝑛𝜀/3·𝑛1−𝜀/2

= 2𝑜(𝑛),

2(1−𝜀+𝑜(1))𝑚
2
log𝑛 · 𝑛−(1−5𝜀/6)𝑚

′
2 = 2−(1−𝑜(1)) 𝜀

12
·𝑚 log𝑛,

where in the last equality, we use the fact that 𝑚′ = 𝑚−𝑛1−𝜀/6 = (1− 𝑜(1))𝑚. Thus
in total, Eq. (4.3) is at most

2(−𝜀/12+𝑜(1))𝑚 log𝑛 = 2−Θ(𝑛 log𝑛).

This completes the proof of the lemma.
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Completing the proof

Given the assumption 𝑚 ≤ 𝐶(𝜀)𝑛, we will in fact prove something slightly stronger,
namely that Theorem 4.1.2 holds over F𝑝 for an appropriate choice of 𝑝. We wish to
bound the probability that there exists some nonzero vector 𝑎 ∈ F𝑛

𝑝 with 𝑎𝑇𝑀𝑛,𝑚 = 0,
even after at most (1−𝜀)𝑚/2 edits. Let 𝑝 = Θ(2𝑛

𝜀/3
) be prime. We begin by dividing

into “structured” and “unstructured” vectors; for brevity, given a nonzero vector 𝑎
and matrix 𝑀 , we denote by ℰ(𝑎,𝑀) the event that there exists a matrix 𝑀 ′ with
𝑑(𝑀 ′,𝑀) ≤ (1− 𝜀)𝑚/2 and 𝑎𝑇𝑀 ′ = 0.

Pr[∃𝑎 ∈ F𝑛
𝑝 with ℰ(𝑎,𝑀𝑛,𝑚)]

≤Pr[∃𝑎 ∈ 𝐻𝑛 with ℰ(𝑎,𝑀𝑛,𝑚)] (4.4)
+Pr[∃𝑎 ∈ F𝑛

𝑝 ∖𝐻𝑛 with ℰ(𝑎,𝑀𝑛,𝑚)], (4.5)

where 𝐻𝑛 is the set of “good” or “unstructured” vectors defined in Section 4.2.3. The
first summand (4.4) is bounded as follows: first, take a union bound over possible
edits to 𝑀𝑛,𝑚. There are

(1−𝜀)𝑚/2∑︁
𝑖=0

(︂
𝑛𝑚

𝑖

)︂
= 2(1−𝜀+𝑜(1))𝑚

2
log𝑛

possible choices for 𝑀 ′. Thus, for the first term (4.4), we obtain a bound of

2(1−𝜀+𝑜(1))𝑚
2
log𝑛 · Pr[∃𝑎 ∈ 𝐻𝑛 with 𝑎𝑇𝑀𝑛,𝑚 = 0].

(As in the proof of Lemma 4.3.4, this is possible because, by conditioning on the
locations of the entries edited, each 𝑀 ′ is distributed identically to 𝑀𝑛,𝑚.) And for
𝑎 ∈ 𝐻𝑛, and 𝑥 ∈ {±1}𝑛 chosen uniformly at random, Lemma 4.2.6 gives

Pr
[︀
𝑎𝑇𝑥 = 0

]︀
≤ 𝐶𝑛

𝑝𝑛(1/2−5𝜀/12)
<

𝑛

𝑝
.

So for 𝑀𝑛,𝑚 with 𝑚 ≥ 𝑛 + 𝑛1−𝜀/6 columns, the probability of having 𝑎𝑇𝑀𝑛,𝑚 = 0

is at most
(︁

𝑛
𝑝

)︁𝑛+𝑛1−𝜀/6

. Therefore, as there are at most 𝑝𝑛 vectors 𝑎 ∈ 𝐻𝑛, and as
𝑚 ≤ 𝐶(𝜀) · 𝑛, the first summand (4.4) is bounded by

2(1−𝜀+𝑜(1))𝑚
2
log𝑛 · 𝑝𝑛

(︂
𝑛

𝑝

)︂𝑛+𝑛1−𝜀/6

= 2(1−𝜀+𝑜(1))𝑚
2
log𝑛 · 𝑝−𝑛1−𝜀/6

𝑛𝑛+𝑛1−𝜀/6

= 2𝑂(𝑛 log𝑛) · 2−𝑛𝜀/3𝑛1−𝜀/6

= 2−Θ(𝑛1+𝜀/6).

Now we bound the second summand (4.5). We begin by restricting to the first 𝑚′ =
𝑚 − 𝑛1−𝜀/6 columns of 𝑀𝑛,𝑚. This gives a strictly larger probability, as it is more
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likely that there is a linear dependency among the rows of a matrix when we restrict
to only a subset of its columns. So (4.5) is bounded above by

Pr[∃𝑎 ∈ F𝑛
𝑝 ∖𝐻𝑛 with ℰ(𝑎,𝑀𝑛,𝑚′)]

≤Pr[∃𝑎 ∈ F𝑛
𝑝 ∖𝐻𝑛 with | supp(𝑎)| ≥ 𝑛1−𝜀/2 and ℰ(𝑎,𝑀𝑛,𝑚′)]

+Pr[∃𝑎 ∈ F𝑛
𝑝 ∖𝐻𝑛 with | supp(𝑎)| < 𝑛1−𝜀/2 and ℰ(𝑎,𝑀𝑛,𝑚′)]

And these are respectively the precise probabilities bounded in Lemmas 4.3.4 and
4.3.3. Therefore this is at most

2−Θ(𝑛 log𝑛) + 2−Θ(𝑛).

Thus in total, the probability that there exists a nonzero vector 𝑎 ∈ F𝑛
𝑝 with 𝑎𝑇𝑀𝑛,𝑚 =

0, even after at most (1− 𝜀)𝑚/2 edits is at most

2−Θ(𝑛1+𝜀/6) + 2−Θ(𝑛 log𝑛) + 2−Θ(𝑛) = 2−Θ(𝑛).
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Appendix A

Variance in number of cliques

In this section, we show that the numbers of 𝑘-cliques in G(𝑛,𝑊𝑟) and G(𝑛, 𝑈𝑟)
have high variance for 𝑘 within a reasonable range (Corollary A.0.5). This makes it
impossible to directly use the second moment method to find a useful lower bound
on the clique number of these graphs.

In more detail, our setting is as follows: given any graphon 𝑊 , we will write
𝑋𝑘 for the number of 𝑘-cliques in G(𝑛,𝑊 ). Suppose that, for a given graphon 𝑊 ,
we have found a cutoff value 𝑘 = 𝑘(𝑛) at which E[𝑋𝑘] goes from asymptotically
infinite to asymptotically zero, giving an upper bound of 𝜔(G(𝑛,𝑊 )) ≤ (1 + 𝑜(1))𝑘
with probability 1− 𝑜(1) by Markov’s inequality. In order to prove a matching lower
bound, we would like to show that the number of cliques of size (1−𝑜(1))𝑘 in G(𝑛,𝑊 )
is a.a.s. nonzero. Perhaps the simplest way to do this, and the technique used for
Erdős-Rényi random graphs in [GM75] and [Mat76], is the second moment method;
namely, Chebyshev’s inequality gives the bound

Pr[𝑋𝑘 = 0] ≤ Var(𝑋𝑘)

E[𝑋𝑘]2
=

E[𝑋2
𝑘 ]

E[𝑋𝑘]2
− 1 (A.1)

for any 𝑘. If Var(𝑋𝑘) = 𝑜(E[𝑋𝑘]
2), or equivalently E[𝑋2

𝑘 ] = (1 + 𝑜(1))E[𝑋𝑘]
2, then

this shows that 𝑋𝑘 ≥ 1 with probability 1− 𝑜(1), and thus 𝜔(G(𝑛,𝑊 )) ≥ 𝑘 a.a.s.
The entire challenge of applying the second moment method lies in obtaining a

good bound on the ratio E[𝑋2
𝑘 ]/E[𝑋𝑘]

2. The following lemma gives a slightly more
explicit expression for this quantity; it is a standard result adapted slightly for this
application (see Sections 4.3 and 4.5 of [AS08]).

Lemma A.0.1. Let 𝑊 be a graphon, and for 𝑆 ⊆ [𝑛], let 𝐴𝑆 be the event that the
elements of 𝑆 form a clique in G(𝑛,𝑊 ). Then

E[𝑋2
𝑘 ]

E[𝑋𝑘]2
=

𝑘∑︁
𝑖=0

(︀
𝑘
𝑖

)︀(︀
𝑛−𝑘
𝑘−𝑖

)︀(︀
𝑛
𝑘

)︀ ·
Pr[𝐴𝑆𝑖

∩ 𝐴[𝑘]]

Pr[𝐴[𝑘]]2
,

where 𝑆𝑖 is any subset of [𝑛] of size 𝑘 that intersects [𝑘] in exactly 𝑖 elements.

Proof. This lemma follows from a direct computation of the first and second moments;
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first, write
𝑋𝑘 =

∑︁
𝑆⊆[𝑛], |𝑆|=𝑘

𝐼𝑆,

where 𝐼𝑆 is the indicator variable for the vertices in 𝑆 forming a clique. With this
notation, we obtain

E[𝑋𝑘] =
∑︁

𝑆⊆[𝑛], |𝑆|=𝑘

E[𝐼𝑆] =
(︂
𝑛

𝑘

)︂
Pr[𝐴[𝑘]]. (A.2)

Similarly,

E[𝑋2
𝑘 ] =

∑︁
𝑆,𝑇∈[𝑛]
|𝑆|,|𝑇 |=𝑘

E [𝐼𝑆𝐼𝑇 ] =
∑︁

𝑆,𝑇∈[𝑛]
|𝑆|,|𝑇 |=𝑘

Pr[𝐴𝑆 ∩ 𝐴𝑇 ]. (A.3)

And notice that this last probability depends only on the size of the intersection of 𝑆
and 𝑇 ; thus we can group the terms of the sum above by the size 𝑖 of the intersection.
The number of ways to choose two sets of 𝑘 vertices that overlap in exactly 𝑖 elements
is
(︀
𝑛
𝑘

)︀(︀
𝑘
𝑖

)︀(︀
𝑛−𝑘
𝑘−𝑖

)︀
; so (A.3) becomes

E[𝑋2
𝑘 ] =

𝑘∑︁
𝑖=0

(︂
𝑛

𝑘

)︂(︂
𝑘

𝑖

)︂(︂
𝑛− 𝑘

𝑘 − 𝑖

)︂
Pr[𝐴[𝑘] ∩ 𝐴𝑆𝑖

]. (A.4)

And combining (A.2) and (A.3), we see that

E[𝑋2
𝑘 ]

E[𝑋𝑘]2
=

𝑘∑︁
𝑖=0

(︀
𝑘
𝑖

)︀(︀
𝑛−𝑘
𝑘−𝑖

)︀(︀
𝑛
𝑘

)︀ ·
Pr[𝐴𝑆𝑖

∩ 𝐴[𝑘]]

Pr[𝐴[𝑘]]2
,

as desired.

Now, in order to apply these results to any graphon 𝑊 , we need to compute the
sum given in the lemma above, and in particular, Pr[𝐴𝑆𝑖

∩𝐴[𝑘]]

Pr[𝐴[𝑘]]
2 . For 𝑊 of the right form,

we can obtain a more explicit expression:

Lemma A.0.2. For any graphon 𝑊 of the form 𝑊 (𝑥, 𝑦) = 𝑓(𝑥)𝑓(𝑦), i.e., for any
𝑊 that is rank-1,

Pr[𝐴𝑆𝑖
∩ 𝐴[𝑘]]

Pr[𝐴[𝑘]]2
=

(︂∫︁ 1

0

𝑓(𝑥)𝑘−1𝑑𝑥

)︂−2𝑖

·
(︂∫︁ 1

0

𝑓(𝑥)2𝑘−𝑖−1𝑑𝑥

)︂𝑖

,

where 𝐴𝑆 is the event that the elements of 𝑆 form a clique in G(𝑛,𝑊 ), and 𝑆𝑖 is any
subset of [𝑛] of size 𝑘 that intersects [𝑘] in exactly 𝑖 elements.

Proof. We begin by computing Pr[𝐴𝑆𝑖
∩𝐴[𝑘]], considering in three parts the edges of
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the graph consisting of a clique on [𝑘] and a clique on 𝑆𝑖. This is equal to

Pr[𝐴𝑆𝑖
∩ 𝐴[𝑘]] =

∫︁
[0,1]2𝑘−𝑖

(︃ ∏︁
ℓ̸=𝑚∈𝑆∖(𝑆∩[𝑘])

or [𝑘]∖(𝑆∩[𝑘])

𝑓(𝑥ℓ)𝑓(𝑥𝑚)

)︃
·

(︃ ∏︁
ℓ̸=𝑚∈𝑆∩[𝑘]

𝑓(𝑥ℓ)𝑓(𝑥𝑚)

)︃

·

(︃ ∏︁
ℓ∈𝑆∩[𝑘],

𝑚∈(𝑆∪[𝑘])∖(𝑆∩[𝑘])

𝑓(𝑥ℓ)𝑓(𝑥𝑚)

)︃
𝑑�⃗�

=

∫︁
[0,1]2𝑘−𝑖

(︃ ∏︁
ℓ∈(𝑆∪[𝑘])∖(𝑆∩[𝑘])

𝑓(𝑥ℓ)
𝑘−1

)︃
·

(︃ ∏︁
ℓ∈𝑆∩[𝑘]

𝑓(𝑥ℓ)
2𝑘−𝑖−1

)︃
𝑑�⃗�

=

(︂∫︁ 1

0

𝑓(𝑥)𝑘−1 𝑑𝑥

)︂2𝑘−2𝑖

·
(︂∫︁ 1

0

𝑓(𝑥)2𝑘−𝑖−1 𝑑𝑥

)︂𝑖

Without any further assumptions on 𝑓(𝑥), this is as far as Pr[𝐴𝑆𝑖
∩ 𝐴[𝑘]] can be

evaluated. To finish off, we compute

Pr[𝐴[𝑘]] =

∫︁
[0,1]𝑘

∏︁
ℓ̸=𝑚∈[𝑘]

𝑓(𝑥ℓ)𝑓(𝑥𝑚) 𝑑�⃗�

=

(︂∫︁ 1

0

𝑓(𝑥)𝑘−1 𝑑𝑥

)︂𝑘

.

Therefore

Pr[𝐴𝑆𝑖
∩ 𝐴[𝑘]]

Pr[𝐴[𝑘]]2
=

(︂∫︁ 1

0

𝑓(𝑥)𝑘−1𝑑𝑥

)︂−2𝑖

·
(︂∫︁ 1

0

𝑓(𝑥)2𝑘−𝑖−1𝑑𝑥

)︂𝑖

.

For the graphons 𝑊𝑟 and 𝑈𝑟, we can evaluate the integrals above and obtain more
explicit expressions:

Lemma A.0.3. Given any 𝑘 = 𝜔(1) and 1 ≤ 𝑖 ≤ 𝑘 − 1,

1. for the graphon 𝑊𝑟,
Pr[𝐴𝑆𝑖

∩ 𝐴[𝑘]]

Pr[𝐴[𝑘]]2
= (Θ(𝑘))𝑖 ,

2. and for the graphon 𝑈𝑟,

Pr[𝐴𝑆𝑖
∩ 𝐴[𝑘]]

Pr[𝐴[𝑘]]2
=
(︀
Θ(𝑘1/𝑟)

)︀𝑖
.

Proof. We begin with (1). For the graphon 𝑊𝑟(𝑥, 𝑦) = (1−𝑥)𝑟(1−𝑦)𝑟, Lemma A.0.2
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gives

Pr[𝐴𝑆𝑖
∩ 𝐴[𝑘]]

Pr[𝐴[𝑘]]2
=

(︂∫︁ 1

0

(1− 𝑥)𝑟(𝑘−1)𝑑𝑥

)︂−2𝑖

·
(︂∫︁ 1

0

(1− 𝑥)𝑟(2𝑘−𝑖−1)𝑑𝑥

)︂𝑖

=

(︂
1

𝑟(𝑘 − 1) + 1

)︂−2𝑖(︂
1

𝑟(2𝑘 − 𝑖− 1) + 1

)︂𝑖

= (Θ(𝑘))𝑖.

Now we prove (2). Again by Lemma A.0.2, for 𝑈𝑟(𝑥, 𝑦) = (1− 𝑥𝑟)(1− 𝑦𝑟), we have

Pr[𝐴𝑆𝑖
∩ 𝐴[𝑘]]

Pr[𝐴[𝑘]]2
=

(︂∫︁ 1

0

(1− 𝑥𝑟)𝑘−1𝑑𝑥

)︂−2𝑖

·
(︂∫︁ 1

0

(1− 𝑥𝑟)2𝑘−𝑖−1𝑑𝑥

)︂𝑖

.

And as computed in the proof of Lemma 3.4.1,∫︁ 1

0

(1− 𝑥𝑟)𝑘−1𝑑𝑥 =
Γ(𝑘) · Γ(1 + 1

𝑟
)

Γ(𝑘 + 1
𝑟
)

.

Applying this to the expression above, we obtain

Pr[𝐴𝑆𝑖
∩ 𝐴[𝑘]]

Pr[𝐴[𝑘]]2
=

(︂
Γ(2𝑘 − 𝑖)Γ(1 + 1

𝑟
)

Γ(2𝑘 − 𝑖+ 1
𝑟
)

)︂𝑖(︂
Γ(𝑘)Γ(1 + 1

𝑟
)

Γ(𝑘 + 1
𝑟
)

)︂−2𝑖

. (A.5)

Using the approximation Γ(𝑘)

Γ(𝑘+ 1
𝑟
)
= 𝑘− 1

𝑟 (1 + 𝑜(1)) obtained from Stirling’s formula,
(A.5) becomes

Pr[𝐴𝑆𝑖
∩ 𝐴[𝑘]]

Pr[𝐴[𝑘]]2
=
(︁
(2𝑘 − 𝑖)−

1
𝑟 · Γ(1 + 1

𝑟
)(1 + 𝑜(1))

)︁𝑖 (︁
𝑘− 1

𝑟 · Γ(1 + 1
𝑟
)(1 + 𝑜(1))

)︁−2𝑖

=

(︂
𝑘2/𝑟

Γ(1 + 1
𝑟
)(2𝑘 − 𝑖)1/𝑟

(1 + 𝑜(1))

)︂𝑖

=
(︀
Θ(𝑘1/𝑟)

)︀𝑖
.

We are now nearly ready to show that for the graphons 𝑊𝑟 and 𝑈𝑟, and for any
reasonably large 𝑘, the number of 𝑘-cliques in G(𝑛,𝑊 ) has large variance.

Theorem A.0.4. For any 𝑟 > 0 and any graphon 𝑊 , if

Pr[𝐴𝑆𝑖
∩ 𝐴[𝑘]]

Pr[𝐴[𝑘]]2
=
(︀
Ω(𝑘1/𝑟)

)︀𝑖
,

then for any 𝑘 = Θ
(︁
𝑛

𝑟
𝑟+1

)︁
, we have Var(𝑋𝑘) = 𝜔(E[𝑋𝑘]

2).
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Before proving the theorem, note that together with Lemma A.0.3, it directly
implies the following corollary.

Corollary A.0.5. Given 𝑟 > 0,

(i) for any 𝑘 = Θ(
√
𝑛), if 𝑋𝑘 is the number of 𝑘-cliques in G(𝑛,𝑊𝑟), then Var(𝑋𝑘)

= 𝜔(E[𝑋𝑘]
2), and

(ii) for any 𝑘 = Θ
(︁
𝑛

𝑟
𝑟+1

)︁
, if 𝑋𝑘 is the number of 𝑘-cliques in G(𝑛, 𝑈𝑟), then

Var(𝑋𝑘) = 𝜔(E[𝑋𝑘]
2).

Now we prove the theorem.

Proof of Theorem A.0.4. We will apply Lemma A.0.1 to show that E[𝑋2
𝑘 ]/E[𝑋𝑘]

2 =
𝜔(1), or equivalently, Var(𝑋𝑘) = 𝜔(E[𝑋𝑘]

2). Recall that, by Lemma A.0.1 and by
hypothesis,

E[𝑋2
𝑘 ]

E[𝑋𝑘]2
=

𝑘−1∑︁
𝑖=1

(︀
𝑘
𝑖

)︀(︀
𝑛−𝑘
𝑘−𝑖

)︀(︀
𝑛
𝑘

)︀ ·
(︀
Ω(𝑘1/𝑟)

)︀𝑖
.

We will show not only that this sum is 𝜔(1), but in fact, that it always contains a
term that is 𝜔(1). This comes down almost entirely to appropriately estimating the
three binomial coefficients appearing in the 𝑖th term of the sum above. First, for any
𝑘 that is 𝜔(1) but sublinear, (︂

𝑛

𝑘

)︂
=
(︁𝑛𝑒
𝑘

)︁𝑘
𝑒−𝑜(𝑘). (A.6)

Next, observe that for all 0 ≤ 𝑖 ≤ 𝑘, since 𝑘 = 𝑜(𝑛), we also have 𝑘− 𝑖 = 𝑜(𝑛− 𝑘). If
𝑖 = 𝜀𝑘 for some constant 0 < 𝜀 < 1, then (𝑘 − 𝑖) = 𝜔(1) as well, and we obtain(︂

𝑛− 𝑘

𝑘 − 𝑖

)︂
=

(︂
(𝑛− 𝑘)𝑒

𝑘 − 𝑖

)︂𝑘−𝑖

𝑒−𝑜(𝑘−𝑖)

≥
(︁𝑛𝑒
𝑘

)︁(1−𝜀)𝑘

𝑒−𝑜(𝑘). (A.7)

We also have (︂
𝑘

𝑖

)︂
≥
(︂
𝑘

𝑖

)︂𝑖

= 𝑒𝜀𝑘 log 1
𝜀 . (A.8)

Together, (A.6), (A.7), and (A.8) imply that for 𝑖 = 𝜀𝑘 = Θ(𝑘), the 𝑖th term of the
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sum above is(︀
𝑘
𝑖

)︀(︀
𝑛−𝑘
𝑘−𝑖

)︀(︀
𝑛
𝑘

)︀ ·
(︀
Ω(𝑘1/𝑟)

)︀𝑖 ≥ 𝑒𝜀𝑘 log 1
𝜀 ·
(︀
𝑛𝑒
𝑘

)︀(1−𝜀)𝑘
𝑒−𝑜(𝑘)(︀

𝑛𝑒
𝑘

)︀𝑘
𝑒−𝑜(𝑘)

·
(︀
Θ(𝑘1/𝑟)

)︀𝑖
= 𝑒𝜀𝑘 log 1

𝜀
−𝑜(𝑘)

(︁𝑛𝑒
𝑘

)︁−𝜀𝑘

·
(︀
Θ
(︀
𝑘1/𝑟

)︀)︀𝜀𝑘
= 𝑒𝜀𝑘 log 1

𝜀
−𝑜(𝑘)

(︁𝑛𝑒
𝑘

)︁−𝜀𝑘

·
(︁
Θ
(︁𝑛
𝑘

)︁)︁𝜀𝑘
, since 𝑘 = Θ

(︁
𝑛

𝑟
𝑟+1

)︁
= 𝑒𝜀𝑘(log

1
𝜀
−𝐶)−𝑜(𝑘)

for some constant 𝐶. Note that we can make 𝐶 as large as we want by controlling
the size of the implicit constant in 𝑘 = Θ(𝑛

𝑟
𝑟+1 ). However, for any fixed choice of

𝐶, we can find some small but constant 𝜀 = 𝜀(𝐶) such that log(1/𝜀) > log(𝐶). So
for some 𝜀, this expression will always be 𝜔(1). Therefore E[𝑋2

𝑘 ]/E[𝑋𝑘]
2 = 𝜔(1), or

equivalently Var(𝑋𝑘) = 𝜔(E[𝑋𝑘]
2), as desired.
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