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Connected Factory: Real Time Data Analysis for Manufacturing Efficiency 

By Caitlin Mary Butala 

Submitted to the department of Mechanical Engineering and the Sloan School of Management 

on May 08, 2020, in partial fulfillment of the requirements for the degree of Master of Science in 

Mechanical Engineering and Master of Business Administration 

Abstract  
Pratt and Whitney is expecting an increase in demand for new engines and for parts 

supportive of aftermarket service, maintenance, and repair. To avoid expensive capital 

investments in additional production capacity, Pratt is taking several approaches to better utilize 

existing capacity. In a business where historically margins have been high, demand was flat, and 

in some years decreasing, and staffing had relatively low turnover, conditions were not forcing 

leaders to focus on identifying ways to eliminate waste or adapt cutting edge manufacturing 

analytics. With the introduction of new and innovative products, Pratt & Whitney is quickly 

approaching conditions where demand will outpace capacity. Additionally, demographics of the 

employee base has started to hit a point where many key and tenured employees have started to 

and will continue to retire leaving a knowledge gap behind.  

To attack this growing problem, Pratt is taking several approaches to win more efficiency 

and effectiveness out of existing capacity. These include lean initiatives supported by connected 

and real time manufacturing technologies. Sensors and monitors are primarily used to gather data 

about machine condition and performance which is fed back to calculate Overall Equipment 

Effectiveness (OEE), a lean metric used to identify waste in the manufacturing process. The 

production team in Columbus has done a lot over the past few years to increase production, but 

as utilization rates increase, they are looking for new ways to expand capacity.  The problem 

faced by management is identifying and reacting to losses as they occur, rather than 

retroactively, which is caused, in part, by inadequate access to the data. This problem of reacting 

timely to losses is exacerbated by attrition of experienced workers who had tribal knowledge of 

the processes and how to react, whereas newer employees have not developed those reactionary 

instincts yet.   

Pratt & Whitney in Columbus has been collecting and storing data from their forge 

presses for years; accessing and analyzing that data in real time and integrating decision making 

based off that data has not been a part of their process. Using machine state tags, that is logic 

based off Programable Logic Controllers (PLCs) to tell users if the machine is in a run state, 

going through a changeover, or sitting idle, management can view the state of machines 

anywhere they can access the Pratt network. This data has also been used to calculate production 

efficiencies by part number by asset by calculating actual cycle times and comparing them to the 

engineering design time per part. This is fed as an input to the new scheduling tool developed 

over the past few months which is meant to capture the intricacies of how different materials 

perform on different presses and optimize total production time by maximizing tool life among 

the presses.  

I have identified key inputs and business analytics processes to evaluate suboptimal 

efficiencies in the production process. This has affected the manner in which Pratt & Whitney in 

Columbus conducts business and permeated throughout the management structure to be included 

in events from daily production meetings all the way up to weekly executive report outs. Initial 

results show scheduling efficiency would improve output up to 8%, and the data has been 

utilized to uncover other areas for efficiency gains amounting to a 25% go get by the end of the 

year. This research has shown that a data rich environment can present you with a vast array of 



 

 

opportunities if the data can be aggregated and interpreted timely enough to feed the decision-

making process of production and if the organization has a culture to embrace it.  
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Chapter 1 Introduction 
This thesis seeks to help develop the next generation manufacturing operating system by 

capturing production data in real time and delivering it to the point of use to inform the decision-

making process to identify opportunities and improve efficiencies. By evaluating the inputs and 

outcomes of the manufacturing process, the right indicators and metrics can be identified and 

delivered to the production and leadership teams to inform the decision-making process. This 

chapter focuses on outlining the problem statement and project motivation. I introduce the 

hypothesis tested, my research methodology, and provide a structure to introduce the content of 

the rest of this document.  

1.1 Problem Statement and Motivation  

Pratt & Whitney is expecting an increase in demand for new engines and for parts supportive 

of aftermarket service, maintenance, and repair. In a business where margins are historically high, 

demand was contracting, and staffing had relatively low turnover, conditions were not conducive to 

adopting manufacturing analytics. With the introduction of new and innovative products, Pratt & 

Whitney is quickly approaching conditions where demand will outpace capacity. An additional point 

of context that heightened the need for new processes are the shifting demographics of the employee 

base. The average age of shop floor employees has hit a point where many key and tenured 

employees have started to and will continue to retire leaving a knowledge gap as demonstrated in 

figure 1.1. 



 

 

 

Figure 1.1 Columbus Forge Disk Retirement Horizon   

At the Columbus GA site, home to the isothermal forging center, this means an increased 

demand of 2X for isothermal forged disks over 3 years. In a process that is capital intensive, Pratt & 

Whitney is investing in connected factory opportunities to supplement capacity expansion. In 

Georgia, a new iso-thermal press was installed this past year to increase capacity, but this expansion 

of capacity does not double throughput, therefore tools and processes must be put in place to enable 

additional production throughput. These connected factory opportunities include sensors monitoring 

live production data, Programable Logic Controller (PLC) on production equipment feed machine 

states to factory visualization software, and a combination of internal and third-party solutions to 

plan capacity and production through the value stream.  

For Pratt & Whitney’s site in Columbus GA, this is critical. Columbus Forge Disk 

(referred to as Columbus Forge or Columbus Forge Disks (CFD)) is commonly recognized as a 

bottleneck of the engine production process and management at the plant is relatively new, 

almost all coming within the past 2 years. Additionally, attrition in staffing on the production 

floor has been picking up in the past 2 years. As a result, true causes of loss in the production 

process is not always fully understood.  Currently, the focus of management and of this analysis 

has been on the efficiencies of the machines themselves. The human element of production 

comes in if operators have not completed their tasks on schedule, but because machines and not 

operator time is the bottleneck in the process, focus has been on the machines. 



 

 

1.2  Hypothesis 

The hypothesis tested within this thesis is that by gathering and analyzing production data 

in real time, the management and production teams will understand and be able to react to losses 

at a faster pace, improve efficiencies, and therefore the throughput of the cell. This project is 

focused not only on sharing data with management but driving a culture of analytics throughout 

the plant and specifically to the hands of the operators so that data is part of the processes driving 

decision making and not a supplement to production.   

1.3 Research Methodology 

Research was primarily conducted through informational interviews with plant 

management, analysis of historical production data, and interactions with the shop floor. To 

visualize the hypothesis, a capacity simulation of the shop has been developed using the Overall 

Equipment Efficiency (OEE) data manually gathered in a current state analysis. Projected 

improvements from this hypothesis were modeled in to estimate gains and projects to test this 

hypothesis were implemented. An optimization model for production planning has been 

developed, supplemented by tools providing directional data of real time performance for the 

forge cell to utilize and to maximize throughput. The remainder of this thesis will evaluate the 

process of implementing these changes and highlight the results. 

1.4 Scope and Limitation 

This thesis is limited to the scope of the production process within Columbus Forge Disks 

(CFD), Pratt & Whitney’s plant in Columbus GA. The research is further narrowed down to 

implementations within the isothermal forging cell in order to test the hypothesis described 

above. Provided that the hypothesis proves to be true, Pratt & Whitney intends to deploy similar 

analytics and processes throughout the rest of the value chain. The phases of data analysis and 



 

 

implementation can be broken down into three distinct categories: retrospective analysis, real 

time monitoring, and proactive planning. Each of these phases can be described as follows: 

• Retrospective Analysis – the foundational steps that allowed the team to identify 

trends within the production process and route out systemic and part specific loss 

drivers.  

• Real Time Monitoring – the implementation of tools and dashboards that 

delivered data to the production floor and notified management of abnormal 

conditions within the production environment. 

• Proactive Planning – the utilization of data collected throughout this process to 

identify sub-optimal efficiencies and optimize the production schedule.  

1.5 Thesis outline 

Chapter 2 provides an overview of Pratt & Whitney. More specifically the Columbus 

Forge site from a political, cultural, and strategic design perspective.   

Chapter 3 provides a summary of literature around the implementation of real time data 

analytics across a variety of industries and the use of overall equipment effectiveness to improve 

production throughput.  

Chapter 4 dives into the project context and provides background on how Columbus 

Forge Disks prepared to make this transition to implementing real time data analysis 

Chapter 5 outlines how we went about implementing change within the facility and how 

we transformed the way Columbus Forge Disks looks at data.  

Chapter 6 provides an analysis of results of this thesis and the drivers behind these results 

as well as source of error that could obscure these results.  



 

 

Chapter 7 outlines future recommendations for continued work and highlights and 

lessons learned throughout this implementation.  

  



 

 

Chapter 2 Company Overview 
This chapter provides an overview of Pratt & Whitney’s background relevant to the 

motivation for this thesis, namely the increase in production due to the introduction of the Gear 

Turbofan Engine Family. This chapter also narrows down and provides a three-lens analysis of 

Pratt & Whitney in the context of the Pratt & Whitney plant in Columbus, Georgia as it is related 

to the connected factory implementation.  The three lens analysis is a management tool studied 

by John Carroll of the MIT Sloan School of Management to understand the cultural, political, 

and organizational structural dynamics of an organization.[1] This will be pertinent background 

to better understand the following chapters on project context and the discussion of results.  

2.1 Company Background 

Pratt & Whitney, a Connecticut based manufacturer, has been a major player, both in 

terms of size of the business and longevity in the aviation industry since the 1920’s.  Pratt & 

Whitney has had a long history of serving both the military and commercial aviation sectors. 

With new technologies coming into service over the past two years, their production forecasts 

are increasing significantly over the traditional year over year marginal growth.  

Since the mid 1990’s Pratt has invested $10 Billion in the development of the new Gear 

Turbofan Technology (GTF) This engine represents a fundamental shift in design as it allows the 

fan to spin at a different speed than the turbine. This shift is the result of adding a gear ratio that 

allows the fan to spin slower than the turbine so that speeds can be optimized. Previously the fan 

and turbine spun on the same shaft, requiring each component to compromise performance in 

order to work together. While gear ratios to proportionally alter the speed between the fan and 

turbine is a fundamental engineering concept, implementing this technology in the high 

temperature environment of a jet engine requires a high level of thermodynamic and materials 



 

 

expertise.[3] Providing this technology to their customers sets Pratt & Whitney apart from their 

competitors who have not developed a product with this capability to date. Figure 2.1 shows a 

cross section of a Pratt & Whitney Gear Turbofan engine highlighting the added gearbox.  

 

Figure 2.1 Cross Section of Pratt & Whitney Gear Turbofan Engine[4] 

 

With an engine where the fan can spin slower than the turbine, Pratt & Whitney has been 

able to offer an engine with improved performance.[5] This new technology entered into service 

in 2016 and has demonstrated its ability to, “reduce fuel burn by 16 percent, reduce NOx 

emissions by 50 percent to the regulatory standard, and lower the noise footprint by 75 

percent.”[6]  

Starting in 2016, Pratt & Whitney was faced with a ramp to double production output 

over five years. At that time, they had 7000 orders in hand totaling $18 Billion for the Gear 

Turbofan engine family alone.[7] To meet this demand Pratt & Whitney is working with its 

suppliers to prepare for the launch and is investing $1.3 Billion in internal facilities to meet this 

GTF Gearbox 



 

 

demand. They committed to investing over $400 million to expand their Connecticut facilities, 

open a new facility in Lansing, MI and invest $451 million in the expansion of the facility in 

Columbus GA.[5] The facility in Columbus GA, which among other components, supplies the 

turbine disks and compressor rotors. These components are made on isothermal vacuum forge 

presses, a process whose capacity is critical to supporting the company’s increase in 

production.[8] This thesis focuses on the potential value of real time data analysis on the 

improvement of performance metrics of the isothermal forging process in Columbus, GA.  

2.2 Three Lens Analysis of Columbus Forge Disk Plant 

As a team member of the corporate connected factory team, which operates out of 

Connecticut, I was based at a plant in Columbus Georgia.  The connected factory initiative was 

critical for Columbus because it was believed implementing connected factory tools there would 

expand the capacity of the overall value stream. This put me in a unique position to observe and 

participate in this transformation. In order to successfully complete this transformation, an 

environment where information and expectations are flowing freely in a collaborative way is 

required between executive and support groups in Connecticut and the production team in 

Georgia.  

2.2.1 Strategic Design Lens 

Pratt & Whitney operates using a matrix structure. As an intern, I was part of the 

corporate connected factory team, which is based out of Connecticut, but I sat in a plant in 

Columbus Georgia. I was the only member of the team not located in Connecticut, and my role 

was to act as a bridge between the connected factory team and the plant. Connected factory 

reports up through the organization through Operational Excellence to the VP of Operations. 

Operations in the plant reports up through a separate chain of command to the VP of Operations, 



 

 

as a result, the priorities of the two groups are not always aligned. The effect of this structure is 

that the top priorities of the connected factory team become secondary to the operations team 

behind meeting the production commits of the current month.  

Connected Factory is intended to be a support group helping to enable connected factory 

tools across all production facilities within Pratt. Two Georgia employees were identified to be 

connected factory leads from the plant’s perspective, and my role was intended to represent 

connected factory from corporate’s perspective. As discussed in the results section, having a 

person on-site with the bandwidth and capabilities to focus on connected factory initiative was 

critical to success.  

2.2.2 Cultural Lens 

Pratt & Whitney is a large organization that has been operating since the first half of the 

20th century, as a result, they have a very strong and pervasive culture. Many of the company’s 

employees throughout all levels of the organization, from the shop floor to C-Suite level 

management, are retired US military personnel and veterans, which has manifested in the culture. 

Examples of this manifestation are both visual artifacts, such as the wall of veterans showing 

images of employees who have been deployed overseas, as well as in the operations, where a 

strict adherence to procedure is required.  As a company that operates in the aerospace industry 

and works on many military contracts, the culture is understandably conservative and, like many 

large organizations, slower to change. As a profitable company, Pratt & Whitney knows how to 

produce engines and knows how to do it well. Over the course of this thesis, I experienced what 

happens when one tries to “break” from the cultural norms. To the credit of the organization, I 

never heard a hard NO, but many reviews and approvals were required to implement change 

within the system. This was especially true for bringing new technology enabled solutions to the 



 

 

manufacturing process. All hardware had to be acquired through regimented and tightly 

controlled process for the safety of company protected data. As with any system that is 

regimented and tightly controlled, adding and changing processes required approvals that took 

weeks or months to acquire.  

Pratt & Whitney has a strong history routed in lean production under the UTC program 

ACE, which stands for Achieving Competitive Excellence. With the goal of the connected 

factory team being to gather more data, using digital solutions inform business decisions and 

support continuous improvement, this goal is conducive to the norms and values of ACE. In fact, 

many times we were review digital dashboards, employees would comment, “we used to do this 

under ACE.” Leveraging that experience helped gained acceptance of the connected factory 

tools.  

2.2.3 Political Lens 

The individual with the most political influence in this transformation was the VP of 

Operational Excellence. He came to Pratt & Whitney a little more than a year prior to this thesis 

from the automotive industry, which is well known for being one of the leaders in the Lean 

Manufacturing space. His mandate was to revamp operations at Pratt & Whitney to get the 

organization ready to handle influx of demand that has been forecasted. His goal, to expand 

capacity as cost effectively as possible, is supported by the other executives across the 

organization.  

The effort required to implement his initiatives falls heavily on the plant level employees 

who are already stretched thin. While there is a dedicated connected factory team to support this 

initiative, much of the implementation requires the expertise of those most familiar with the 

production process, the employees at the plant. Though the end state of having a “connected 



 

 

factory” should remove some burden from the plants, the implementation process adds more 

requirements on the plant in the short term. It is the  role of the VP of Operational Excellence to 

challenge the organization to incorporate these tools but he creates friction in the short term. If it 

were not for his influence, Pratt & Whitney would be much farther behind in the connected 

factory space.  

  



 

 

Chapter 3 Literature Review 
A substantial amount of study and literature of Lean Manufacturing and the use of 

Overall Equipment Effectiveness (OEE) as a tool to achieve greater operational output has been 

written over the past 20-40 years. Over the past 10 more work has been done to study the 

contributions and effects of organizational structure and management support on the successful 

implementation and use of these tools. Additionally, more focus on real time data and the use of 

digitalization and analytics in the manufacturing systems has emerged and been published in 

recent years, but little empirical research has been published studying the effects of real time data 

on the driving factors of OEE. This chapter aims to provide an overview of relevant research in 

the application of Overall Equipment Effectiveness and real time data analysis in manufacturing 

environments. The remainder of the thesis focuses on the application and effects of real time data 

analysis on the underlying components of OEE and specifically performance.  

3.1 Lean Manufacturing  

With ever growing applications of technology and globalization in the manufacturing 

space, companies feel the pressure to improve throughput and reduce costs[9]. This pressure has 

led to the implementation of Lean Manufacturing strategies. Lean is commonly defined as a 

manufacturing strategy the focus on continuous improvement and the elimination of waste. 

Many researchers have studied lean, and the Toyota Production System (TPS), which is the 

genesis of the lean manufacturing movement.  

While many companies aim to implement lean principles within their process, many also 

fail to achieve the same success that Toyota enjoys.[10] In their study of “Decoding the DNA of 

the Toyota Production System” Spear and Bowen highlight that many observers confuse the 

tools and practices they see as the system itself, rather than the approach managers and operators 



 

 

take to manage complex operations so feedback is pervasive, fast and frequent.[10]  Spear and 

Bowen conclude that many lean initiatives focus on manufacturing flow and process controls and 

the lack of attention to the cultural aspects of implementing a mindset focused on continuous 

improvement. This prevents the business from making a lasting change within the organization. 

It is ironic to go back and examine the original source material on TPS, Taiichi Ohno’s 

book Toyota Production System: Beyond Large Scale Production. Ohno, an industrial engineer 

from Toyota considered to be the father of TPS, starts out by stating, “We kept reminding 

ourselves, however, that careless imitation of the American system could be dangerous.” [11] 

This statement indicates that he realized that replicating the actions of the American system 

would not make them successful, that there was something beyond what could be documented 

and that Toyota had to develop their own process in order to succeed. The irony lays in the fact 

that 40 years later, American companies spend money and time every year implementing TPS 

tools and practices.  

 These identified implementation shortcomings, both the operational and cultural may be 

impacted by the utilization of real time data in the manufacturing process. This thesis not only 

tested the effects of real time data within the manufacturing system but studied the effects of 

implementing a culture of analytics within a manufacturing environment and how that aligns 

with the principles of Lean and TPS.  

With the implementation of these strategies often comes the question of how one 

quantifies and measure these initiatives within a factory. Both researchers highlight the 

importance of measurement within a lean manufacturing strategy. As Spear and Bowen point 

out, one foundation of the Toyota Production System is the use of the scientific method within 

production, where the ability to quantify and measure is critical to the process. Use of the 



 

 

scientific method allow practitioners to both make a strong declaration of what is expected to 

happen, testing that prediction, and generate data to confirm or refute that declaration.[13] 

“Seeing what happens” is discouraged in change events such as kaizens because knowledge and 

information is gathered from examining the process.   

Operations teams within manufacturers have turned to many metrics to evaluate their 

processes. Some of the most common metrics include on-time delivery, process lead time, total 

cost, quality yield, inventory turns, utilization, travel distance, and productivity. Applications of 

six sigma have also been employed to control processes and measure performance. Another 

common metric used to evaluate performance is Overall Equipment Effectiveness (OEE) which I 

will explore further in this review.  

3.2 Overall Equipment Effectiveness 

Overall Equipment Effectiveness is a way to measure how well organizations are using 

equipment in the time it is scheduled to run. OEE ties together a machine’s performance, 

availability and quality to calculate total effectiveness. As a tool, OEE ”indicates a single piece 

of equipment's actual contribution as a percentage of its potential to add value to the value 

stream”.[9] Using this tool, organizations aim to minimize inputs and maximize their output.[14] 

Figure 3.2 below provides a summary published by Sciichi Nakajima, the inventor or the term 

OEE, illustrating how these inputs and outputs intersect. OEE focuses on the center column to 

capture the effectiveness of the machines. The following sections explain how the metric is 

calculated and quantified as well as explores data gathered from a variety of manufacturers 

utilizing OEE and summarizes lessons learned and best practices for using the tool. In this way, 

OEE is both a policy, a multi-dimensional measurement tool, and a result, the calculated 

effectiveness. 



 

 

 
Figure 3.2 Relationship Between Input and Output in Production Activities[14, p. 13] 

 

3.2.1 Defining Losses 

OEE aims to eliminate the six big losses contributing to lost efficiency in production 

equipment. Nakajima defines them as: 

Downtime: 

1. Equipment failure from breakdowns 

2. Setup and adjustment from changeover 

Speed losses: 

3. Idling and minor stoppages where there is waiting to load or unload a machine 

4. Reduced speed where the actual speed is longer than the designed speed 

Defect:  

5. Process defects due to scrap and quality 

6. Reduced yield from machine startup and ramp to stable production 



 

 

3.2.2 Calculating OEE 

OEE is calculate using the following formula:  

OEE = Availabity ∗ Performance Efficiency ∗ Rate of Quality Production 

Availability: 
(Net available time per period−planned downtime)− downtime

Net available time per period−planned downtime
∗ 100% 

Equation 3-1 

Availability is calculated from the planned time of the machine, less lost time due to breakdowns 

and changeover activity.  

Performance Efficiency: 
amount processed ∗ ideal cycle time

operation time
∗ 100% 

Equation 3-2 

Performance efficiency is calculated taking the ratio of how long it should have taken for a given 

run to the actual time of that run.  

Rate of Quality Production:  

Processed amount − defect amount

Processed amount
∗ 100% 

Equation 3-3 

Rate of quality production is a straightforward percentage calculation of defect free parts to total 

parts. Figure 3.3 below shows the figure outlined by Nakajima. 



 

 

 

Figure 3.3 OEE Computation and Procedure[12, p. 25] 

3.2.3 Management’s Role in OEE and Successful Applications of the 

Tool 

In a review of management’s role in successful implementation and use of OEE in the 

manufacturing space, a study published in the International Journal of Production Research,  

across 139 different respondent across a range of companies in size, geographic location, and 

industry provides some of the first empirical research of the managerial implications of 

implementing and utilizing OEE in a manufacturing organization.[15]  

A few of key findings important to this thesis are:  

• The use of OEE is linked to the use of other lean manufacturing techniques 

• Awareness training and operator attitude rank higher in importance than management 

support within an organization, meaning engagement with the workforce is critical to 

success 



 

 

• Understanding loss drivers is more important to success than understanding the 

calculations 

• OEE data is used for a variety of purposes across the organization. For example: real time 

analysis, capacity planning, and financial decision making 

The findings of this study are consistent with the research on lean manufacturing done by 

Spear, Bowen, and Feld which makes sense given the first point that OEE is typically 

implemented in organizations that are also utilizing other lean manufacturing techniques. The 

study concludes that operator attitude and awareness training are bigger factors to successful 

implementation than the management support, additionally they found an operator’s 

understanding of equipment stoppages and loss categories to be more important than a deep 

understanding of the calculation of OEE. Both these findings provide further evidence that 

the culture and environment are critical to successful implementation of this tool and would 

bring an appreciation of the importance of OEE to the organization.[15] 

3.2.3 Use of OEE 

OEE data is used in a variety of ways across organizations, but all for the common goal 

of improved business performance. The study of managerial factors affecting the 

implementation of OEE found that while companies use the data to identify improvement 

projects, it is also used for benchmarking and a way to track equipment status.[15] This data 

is used for performance optimization to defer capital expenses, reduce changeover time, 

overtime expenses, and process variation all in the pursuit of cost reduction.[9] As shown in 

the study of business performance from the perspective of manufacturing strategies, 

summarized in the table 3.1,  correlation can be found between the use of Fit manufacturing, 

which encompasses lean manufacturing, OEE, and improved business performance.[9] 



 

 

 

Table 3.1 Support for Relationships between Fit Manufacturing OEE and Business 

Performance[9] 

3.3 Real Time Data  

A range of literature has been written about the digitalization of industries and the 

emerging Industrial Internet of Things (IIoT), also commonly referred to as Industry 4.0. In an 

article written in 2018 focused on integrating real time data analysis in industry 4.0 applications 

researcher propose a framework for the implementation of a true IIoT called Intelligent Data 

Analysis with Real Time Supervision (IDARTS) with data processing, analysis, and automated 

decision making iterations happening within the manufacturing environment.[16]   While this 

paper proposes as system more advanced than tested in this thesis, their research has the same 

fundamental building blocks that motivate this thesis. They conclude that “there is still a clear 

need to further combine real-time streams of data from the shop-floor with historical data at both 

the resource and system levels”[16] across the manufacturing environment.  In another article 

focused on the effects of digitalization on different aspects of an organization researchers discuss 

the benefits to internal efficiencies and conclude that “digitalization enables better real time 

review of operations and results, by integrating structured and unstructured data.”[17] 

Both these studies highlight the importance of real time data. Combining this with lean 

principles results in Lean Automation. In a research paper from the German Research Center for 

Artificial Intelligence, the authors emphasize that combining automation technology with Lean 



 

 

Production enables faster response and more direct flow of information.[18] Developments of 

these frameworks are still ongoing, and with the ever changing landscape of digital technology in 

the manufacturing space these frameworks will change over time.  

3.4 Tying It All Together 

From this background research, it is clear that an extensive amount of research has been 

done in the areas of Lean Manufacturing and the tools that support it. More specifically, much 

research has been done on Overall Equipment Effectiveness, its use, and effects of management 

structure and support on effective use of this tool. Furthermore, as the world of manufacturing 

becomes more data rich and more importantly that data is accessed and utilized by organizations, 

this will become a more important differentiator in who wins in competitive industries. The 

remainder of this thesis will outline the case study of applying real time data analysis on 

production data to influence the performance efficiency component of overall equipment 

effectiveness in pursuit of better business performance.  

 

  



 

 

Chapter 4 Project Context 
This chapter aims to outline the steps CFD went through to enable this thesis. The effort 

that went into starting this connected factory journey is not trivial, and in fact set the groundwork 

to introduce the tools outlined in the remaining chapters.  

4.1 Timeline of Connected Factory Implementation 

In the summer of 2018 action was put in place to build the infrastructure needed to test 

the hypothesis of this thesis, that by automating data aggregation and analysis, and by providing 

visual insights into the process data, the production team  will be able to respond more quickly, 

driving up performance, and therefore the throughput of the cell. An industrial automation 

software system was put in place to pull data and signals from the shop floor and convert them to 

event tags, which is fed into a visualization software.  The visualization software uses these 

event tags to provide a front-end display of the state of machines across the plant.  

The CFD team began using the data off these events to evaluate production and use a 

Lean Tool called Overall Equipment Effectiveness (OEE) to highlight losses in the system in 

August of 2018. The scope of tracking OEE started with 17 production towers across the whole 

plant, but the area with the most attention and visibility of executive management is the 

isothermal forge cell, whose presses made up 3 of those production towers. As with any new 

process, CFD went through waves of growing pains trying to decipher how this tool would work 

best for their business and processes. Each tower faced their own challenges when it came to 

data collection, but by November, the forging towers, C1, C2, and C4, commonly recognized as 

the pacing step in the plant’s operations had a robust process with high fidelity data on loss 

drivers being collected.  



 

 

The cadence developed by the team was to collect data in weekly buckets with a 

combination of event data pulled off the presses, supplemented by turn back sheets that operators 

would fill out on pen and paper describing what types of breakdowns were occurring, or why 

parts were running slower than normal. The results were combined manually and reviewed in a 

cross functional meeting between production, engineering, and operations. Projects were 

identified for issues causing the top losses each week, and projects were tracked by the industrial 

engineering manager. This process continued for six months. When reflecting on this experience, 

the business unit manager described it saying, “our discussions were data based, but all 

reactionary and led to a whack-a-mole approach.”  It was about four months into this process that 

I joined the team. The process we went through to utilize, understand, and integrate the data is 

outlined in chapter 5. 

4.2 Machine State 

The goal of creating a connected and visual factory is to better utilize the rich volumes of 

data streaming off the machines throughout the production process. The focus of this project is 

primarily around the isothermal forging cell, which, as stated before, is the pacing component of 

the Columbus Forge Disk (CFD) plant. Collecting data off the forges in nothing new for CFD. 

For years the presses have been wired with thermocouples and switches which relay events off 

the presses to a PLC on the machine. That data is relayed to a database either directly or through 

a pass through system that converts the data to the acceptable format for the database.  

Historically, this is where the flow of data stopped.  

The database was accessed frequently, and data would be pulled for specific projects by 

industrial and mechanical engineers. Production would use the database to confirm part 

quantities and verify that part completes were accurate in the ERP system, and temperature data 



 

 

was accessed to flag parts that needed quality inspection, referred to as METCHEMs, but a 

robust systematic approach for operations to breakdown how parts were running and where 

losses were occurring based off of data did not exist.  

While machine state is just the first stage of the connected factory vision, it is the focus of 

the CFD initiative right now. Beyond just identifying whether a machine is running or not, 

machine state aims to capture the machine in each of the six loss categories of OEE with detailed 

descriptions causing those losses.  

4.3 Implementation of Machine State at Pratt and Whitney 

Implementing the monitoring of machine state at CFD was not as simple as the flip of a 

switch. As described by the business unit manager, “One of our biggest struggles was data 

collection. The machine events were the easy part, changing the culture to identify and collect 

turnbacks was the most difficult piece.” Driving a culture integrated with data has been the most 

interesting aspect of this project and is a journey CFD is still very much in the middle of.  

4.3.1 Evolution of the Process to Compile Data 

When this process started in the summer and fall of 2018, details of the loss buckets were 

being captured, complied, and analyzed by teams of manufacturing engineers, industrial 

engineers, and production supervisors. As described by the industrial manager, “so much of our 

focus in the beginning was on collecting and compiling data into our templates and creating 

projects.” In an operations environment that runs 24/7 the team ended up investing a camera 

system that helped record data on the process, so that they could capture cycle times on external 

processes, such as manual inspections of parts outside the presses, as well as go back and 

understand loss drivers from evening shifts and weekends as a stop gap while the process for 

operators to capture and submit data on each of the loss categories was rolled out. These cameras 



 

 

continue to be valuable to the process as time studies continue to be captured with them as well 

as EH&S issues that need to be addressed.  

At the same time I joined the team, a group of contract employees were brought on board 

as data techs to aid the process until the reporting could be automated. Now that a process to 

collect and compile the data had been developed, the goal was to transition the responsibility of 

creating those OEE reports away from the engineers and supervisors so that they could focus on 

the value added tasks of working projects to address losses and prevent future losses.  Within 

that transition, one manager noted, “the challenge the data techs faced was coming up to speed 

on what we do here at CFD, while at the same time learning what OEE was and how to identify, 

quantify, and qualify losses.”  Several months later, an employee enrichment program was 

established to get operators exposure to how OEE is calculated and used by the management 

team. High potential employees from the operator level were identified an invited to work as data 

techs for 6 months to learn the process and understand what was driving it. These individuals 

would gain exposure to how data being captured by operators directly affected the decisions and 

projects management focused on. The idea was that their experience would be relayed 

throughout the organization and a new group of operators would join the team as the first 

returned to the operations team.   

4.3.2 OEE Command Center 

At a testament to the importance Columbus has placed on the learnings and opportunities 

around machine state, they have dedicated an entire 20 ft X 30 ft room, a valuable commodity in 

a manufacturing environment, to be the central hub of data in the facility.  Each of the now 23 

towers that are tracked for Machine State have a dedicated spot around the room where losses 

and projects are documented. Leadership teams of each area meet in the room once a week to 



 

 

review their data and projects. The room is also frequently used for brainstorming sessions and 

after action reviews of implementations, SMED and Kaizen events, and monthly production 

reviews. Figure 4.1 shows an example of this room in use.  

Unfortunately, the proximity of the command center to the shop floor is not ideal. The 

room sits in the main admin building, so operator do not pass it and see the work that is being 

done each day. Opportunities exist to get the shop floor more involved in the command center 

and are discussed in the chapter on recommendations and future work.  

 

Figure 4.1 OEE Command Center 

 

4.3.3 How Machine State is perceived at the shop floor level 

Data collected from informational interviews with working leads and operators 

throughout the shop shows that the workforce attitude towards the implementation of machine 

state and tracking of OEE has been generally positive.  OEE was introduced to the floor as a tool 

that would be utilized to justify investment in additional capital. As one working lead described 



 

 

it, “most operators like OEE because they can tell their side of the story of what is really going 

on at the press.” 

While the attitude is mostly positive and accepting, each interview noted some frustration 

with the communication loop within the plant. One operator noted, “There is a disconnect 

between supervisors and shop employees. Management is all focused on that room and operators 

feel smaller problems get swept under the rug.” But he went on to continue that most employees 

view it as a ”platform to point out problems that supervisors would normally be too busy to pick 

up on.” 

4.3.4 Automating Machine State 

Concurrent to all the processes described above to qualify this quantitative data with root 

causes, the core connected factory team, based out of Connecticut, was traveling down to 

Columbus week after week to help validate machine event tags as they were translated over to 

the plant visualization platform. The process to capture this was several months of effort, but 

would enable the capability to communicate machine state throughout the organization and 

generate OEE reports that were, and are still are, being created manually. The step required to 

close out the process and transition to automated reporting of machine state and OEE loss drivers 

is collecting that qualitative data on what breakdowns were occurring and why parts are running 

over cycle times etc.  

4.4 What Does This Mean 

This chapter is meant to illustrate the effort that went into introducing the plant 

management and operators to OEE as a tool and set this project up to focus on how do we use 

and integrate this data, rather than having to socialize what is the tool among the operations 

team. The following chapters describe how we implemented the data and preliminary results.  



 

 

Chapter 5 Data Analysis: Transforming How 
We Look at Data 

This chapter outlines the current state of the CFD plant manufacturing when this analysis 

was started, the three phases of data integration into the management of the plant to test the 

hypothesis of this thesis.  

5.1 Current State Model 

Using the data collected from the Fall of 2018-Spring of 2019, a simulation of the current 

state production model was constructed using CellSim.  CellSim is a software built by John 

McClain at Cornell University which is a discrete event simulation tool. The tool runs in Excel 

and models machines and buffers with processing time, mean time to fail (MTTF), and mean 

time to repair (MTTR) distributions modeled in.[19]  Maintenance log data was used to calculate 

MTTF and MTTR for each production cell. This data along with information on changeover 

times, design cycle times, and trends of performance collected from OEE tracking were used to 

inform adjustments to cycle times.  This data was used to build a one-year simulation and 

produced an output for deliveries that within 0.5% of actuals for the CFD plant production in 

2018. This model shows that the process bottleneck occurs at the Forge Cell, which is reinforced 

by the buildup of inventory prior to this step and the fact that there is no outsourcing option for 

this process. A snipping of the simulation output can be found in figure 5.1. 



 

 

 

Figure 5.1 Current State CellSim Model Output 

 

5.2 Phase 1: Retrospective Analysis  

The use of OEE and analysis of machine state was a process to provide business leaders 

with a concrete set of data to better inform business decisions and highlight waste in the process. 

With several months of data to analyze and trend, CFD took an introspective look at the drivers 

behind OEE.  The data was analyzed and interpreted in two ways, big buckets of data where 

losses were aggregated over many months, as well as a trend analysis that looked at week over 

week trends in each of the loss categories.  

One of the team’s concerns with creating problem statements for top loss drivers each 

week was that smaller but persistent losses were getting overlooked. Data was aggregate together 

for each press, figure 5.2 and figure 5.3 are examples of the analysis for one of the presses. This 

analysis allowed the team to align the weekly projects to the top drivers over a longer period of 

time and refocus efforts on persistent problems.  



 

 

 

Figure 5.2 Waterfall Chart of OEE Losses Over Longer Time Horizon 

 

 

Figure 5.3 Pareto Charts of Losses in Each OEE Category 

 

The second way the data was analyzed was by plotting the data on a week over week 

basis. This presented a startling realization that the effectiveness of the forge cell was not 

improving, and in fact, it was declining. A decline of 12%-30% was seen across each of the 

presses and displayed in figure 5.4. Further analysis showed how each of the categories used to 



 

 

calculate OEE were trending.  While some categories were improving others were not. As this 

was the first time the data had been trended since tracking of OEE and losses had begun, 

management was concerned.  

 

Figure 5.4 Trend in OEE For Each Press 

 

The team decided to take a strategic pause to evaluate what was diving this consistent 

decline in efficiency especially considering so much attention was being put on projects to 

improve efficiency. Comprehensively, it was found that many of the losses that had the biggest 

effects were part specific and resulted from inefficiencies from running specific parts on specific 

presses. An example of one of these breakdowns is displayed in Figure 5.5. This led to the need 

for a schedule and allocation optimization tool that is discussed in chapter 5.4.   

 

Figure 5.5 Trends Within Loss Categories for One of The Presses 



 

 

 

5.3 Phase 2: Real Time Monitoring  

The limitation to the retrospective analysis, was that by the time losses had been 

identified, part runs had concluded and the operations team was focused on running new parts, 

while the losses that were being discussed were for parts that may not run again for several 

months or even a year.  It is the hypothesis of this thesis that by incorporating the data that is 

being collected into the production process, through daily Gemba walks and production 

meetings, an improvement in efficiency will occur. As with the process to pull data for OEE 

reporting, the process started out manually. Because the data was already being collected in the 

database and maintained for reporting of machine state, the team was able to transition to an 

automated report, accessible by all operations working leads and supervisors and added to the 

Gemba board on the shop floor for operator to access. This report breaks down the machine time 

to show average load to load and load to unload cycle times by press by shift and by part number 

allowing each operator and each shift to be accountable for his or her performance. Figure 5.6, 

Figure 5.7, and Figure 5.8 show examples of these reports. Figure 5.9 shows the deployment of 

these reports to the floor so operators can monitor stats in real time.  



 

 

 

Figure 5.6 Daily Shift Report High Level View 

 

 

 

 



 

 

 

Figure 5.7 Daily Shift Report Breakdown of One Part on One Shift (1) 

 

Figure 5.8 Daily Shift Report Breakdown of One Part on One Shift (2) 

 

 

 

 



 

 

 

Figure 5.9 Deployment of Forge Shift Report to the Production Floor 

 

5.4 Phase 3: Proactive Planning  

Pratt & Whitney had recently built a team dedicated to scheduling the value stream called 

the Integrated Business Planning team (IBP). An observer to this process may ask, why the 

Company is not using MRP to plan their production. Historically, Pratt & Whitney had been in a 

environment where orders were relatively flat year over year, or in some cases declining and they 

were going through capacity and footprint reduction. During this period, time to deliver an 

engine or spare was modeled as the time to take to produce that product. In essence, infinite 

capacity is modeled in the MRP system. Because the business cycle is now going through a 

period of expansion, the demand out of MRP is too high for the plants to meet. Projects are in 

place to update the ERP system and bring the inputs for the MRP system up to date. In the short 

to medium time horizon, the IBP team was established to prioritize and balance demand. 

The team published the first schedule in September of 2018 using mixed integer linear 

programing to build a plan in order to optimize the entire values stream from raw materials to 

engine delivery, giving each node in the chain their required deliveries for the month. Because 

the plan gets so much visibility among executive leadership within the company, capacity that is 

modeled in is meant to be realistic, but conservative. Additionally, the plan developed by the IBP 

group did not originally give a press by press plan, just a total expected production level from the 

forge cell.  



 

 

This gives the internal team an opportunity to build a detailed schedule by press that is a 

stretch goal while feeling confident that they can at least meet the plan. In order to maximize 

total pieces out of production in the forge cell, an optimization tool was built as part of this thesis 

project. More importantly, this tool allowed the CFD team to run forecasts of production given 

different inputs that helped better understand the effect of mix on production output. Relaying on 

the data gathered from the enhanced monitoring of the production processes, a tool was built 

using the following constraints and optimization function using mixed integer linear programing 

in OpenSolver:  

Constants 

.i=part number 

.j=month 

.p=press 

. 𝑡𝑖𝑗𝑝= Time to produce each part in each month on each press 

. 𝑐𝑖𝑗𝑝= changeover time for each part each month on each press 

. 𝑘𝑖𝑗𝑝= parts that can be made per changeover each month on each press 

 

Decision variables 

.𝑥𝑖𝑗= quantity of each part number to make each month on each press 

. 𝑦𝑖𝑗= number of changeovers for each part in each month on each press 

 

Objective Function: 

Min T = ∑ 𝑥𝑖𝑗𝑝𝑡𝑖𝑗𝑝 + 𝑐𝑖𝑗𝑝𝑦𝑖𝑗𝑝 

Equation 5-1 



 

 

 

Constraints 

For each month j, for each part i : 
𝑥𝑝

𝑘𝑝
, ≤ 𝑦𝑝 

. 𝑦𝑖𝑗𝑝 𝑚𝑢𝑠𝑡 𝑏𝑒 𝑎𝑛 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 

For each month j on each press p:   ∑ 𝑥𝑖𝑡𝑖+𝑦𝑖𝑐𝑖 ≤ 𝑡𝑖𝑚𝑒 𝑖𝑛 𝑡ℎ𝑎𝑡 𝑚𝑜𝑛𝑡ℎ 

For each month j, For each part i: ∑ 𝑥𝑗
𝑗
1 ≥ 𝑝𝑎𝑟𝑡𝑠 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑖𝑛 𝑡ℎ𝑎𝑡 𝑚𝑜𝑛𝑡ℎ 

 Developing the tool and iterating though to include the caveats and nuances known by the 

schedulers was relatively quick and straight forward. The process to get the tool integrated in the 

decision making of the team was slow to adoption. The scheduler encompassed the sentiment of 

the plant best when describing the process. He said, “Honestly I didn’t think it could capture all 

the inputs for it to work and we would constantly have to double check it” 

What this tool provided was better planning to reduce the number of changeovers 

required to meet demand. In a process where changeovers take 12-36 hours to complete and 

production runs last 1-5 days, reducing the number of changeovers and maxing out the life to 

tools can improve the efficiency of the system. The initial project was outlined by management 

at the end of February with a mandate to reduce changeovers by optimizing the scheduling 

process. The tool was built throughout March, with the first run scheduling for the month of 

April. While the results were looked at, it was considered as an afterthought, and the scheduler 

did not run the tool himself. It was during the month of May that the tool was utilized by the GM 

and Business Unit Manager to develop a forecast to communicate to executive management for 

output of the plant for the remainder of the year. As the GM described it, “The optimizer was a 

prioritization of demand for a final output, but the forge schedule tool optimized the forge 

output, and this is what helps us maximize our final output. Presenting to management, we 



 

 

needed a data drive tool to make commitments rather than strictly going off gut feel. Having this 

tool gives us a chance to see how inputs affect the overall output at the Pratt level.”  

 After management’s experience with the tool successfully helped develop a forecast for 

the year, the business unit manager started pushing his scheduler to utilize the tool to build the 

month’s schedule. His encouragement helped galvanize the team to familiarize themselves with 

the tool and its functionality. It was my perception that the ultimate success for utilization of the 

tool came from top down pressure in the organization. The plant general manager and business 

unit manager were the first people to vocally support the tool in the operations team and my 

hypothesis was that their direction to the staff and operators motivated the others to get on board. 

To test this hypothesis, I asked the scheduler when, if ever, did he start to see value in the tool, 

his response was, “When we ran it and had a 95% match to my manual schedule but it brought in 

more volume.” While the hypothesis for why the tool had been accepted was wrong, it is 

evidence that a culture open to and embracing analytics was forming.  

 As a testament to the tool’s success, other production cells within the plant asked for help 

building allocation tools for their area. For example, the last major production cell before 

delivery in the plant is sonic inspection. Their schedule is typically a flow down from the 

previous stage in production, but they were looking for a tool to automate the decision-making 

process of sending parts out to vendors or running them internally and then the further 

determination of which parts to running in each inspection tank. This marks a major success for 

the intent of this thesis project. Here the production team was asking for a tool to automate and 

quantify the planning process, transferring the work of developing a schedule each day across 11 

different assets, from tribal knowledge in the minds of the supervisors and working leads to 

institutional knowledge documented in a tool and standard work. One of the most impactful 



 

 

ways to illustrate the power of the tool was to show the working leads and supervisors the 

proliferation of the tool as we look at longer and longer time horizons. Figure 5.10 illustrates 

how the number of decision variables expand as the tool looks farther into the future. 

Highlighting that the tool would help them gain back the time and mental effort of building a 

schedule each day resonated with the team. Chapter 6 analyzes the preliminary results of 

implementing real time data on the production floor and using optimization to plan the 

production schedule.  

 
Figure 5.10 Decision Variables as a Function of Time Horizon 
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Chapter 6 Results and Analysis 
This chapter outlines the findings which demonstrate the improved efficiencies in the 

overall equipment effectiveness and scheduling process within the Columbus Forged Disk plant. 

First, we quantify the improvement gains observed within the isothermal forging cell and 

compare the scheduling optimization model performance to historical data. We will then perform 

an analysis on the drivers of OEE demonstrating the expected gains of a shop operating at 85% 

efficiency in the performance metrics of OEE and complete a sensitivity analysis.   Next, we will 

discuss the impact of mix on our findings. Finally, we discuss the impact on the operations team 

of the process changes within the facility.  

6.1 Demonstrated Results 

This section demonstrates the high-level trends we observed in OEE of each of the 

isothermal presses and dives into the trends of the six factors driving OEE for each of the 

presses. This section also highlights the improved throughput achievable if parts are scheduled 

on their optimal presses based on demand quantity and overall part mix.  

6.1.1 Isothermal Forging OEE 

Figure 6.1-Figure 6.4 demonstrate the weekly measured performance of OEE from the 

time data started to be collected in November of 2018 through the end of this study in August of 

2019. Positive trends in these graphs signal improvement to the OEE of the presses. The major 

changes to the operation’s process outlined in chapter 5, namely the review of live data in the 

morning production meeting, were implemented at the end of May 2019. OEE of each of the 4 

presses achieves a noticeable uptick. The C1 press saw a 1% average increase in OEE comparing 

the weekly average OEE from April -May to that of June-July. The C2 press saw a 12% average 

increase in OEE comparing the weekly average OEE from April -May to that of June-July. The 



 

 

C4 press saw a 2% average increase in OEE comparing the weekly average OEE from April -

May to that of the end of July (C4 was down for a major maintenance event for 4 weeks between 

June and July). The C5 press saw a 9% average increase in OEE comparing the weekly average 

OEE from April -May to that of June-July. 

 
Figure 6.1 C1 OEE Actuals November 2018-August 2019 
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Figure 6.2 C2 OEE Actuals November 2018-August 2019 

 

 
Figure 6.3 C4 OEE Actuals November 2018-August 2019 
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Figure 6.4 C5 OEE Actuals March 2019-August 2019 

 

6.1.1.1 C1 Trends 

Figures 6.5-6.10 demonstrate the trend in each of the six drivers of OEE. Unlike the 

graphs above, negative trends denote a positive signal and highlight improvement within that 

category. We see a decline in the amount of time attributed to changeovers, first pass yield and 

delta cycle time, while the other three categories, breakdowns, waiting to load/unload, and 

preventive maintenance see flat to increasing percentages of time attributed to each category. 

The overall OEE of C1 saw slight improvement in section 6.1.1, the deeper analysis below 

shows the biggest difference being the amount of time spent on changeovers and delta cycle time 

before and after the changes were implemented. Changeovers can be influenced by the 

scheduling of the presses, and more immediate intervention of the process to reduce delta cycle 

C5 OEE

Actual Rolling Average

Real Time Monitoring Pilot Started 



 

 

time can result from real time monitoring. These results may indicate improvement from the 

changes implemented and are analyzed further in sections 6.1.2 and section 6.3.  

 

  

Figure 6.5 C1 Breakdown Trend        Figure 6.6 C1 Changeover Trend 

Figure 6.5 shows the trend in percent of time spent in breakdown week over week for C1. 

What is most interesting is that in the time period after the implementation of real time data 

analysis (end of May onward) the percent of time spent in breakdown is increasing, which 

suggests that improvements in other categories are being offset by more breakdowns. Figure 6.6 

shows the trend in percent of time spent in changeover week over week for C1. What is most 

interesting is that during the months of June and July, the percent of time spent in changeover is 

decreasing, which suggests that results from the schedule optimization tool could be generating a 

positive effect. This is explored in more detail in section 6.1.2.  
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Figure 6.7 C1 Planned Maintenance Trend       Figure 6.8 C1 First Pass Yield Trend 

Figure 6.7 shows the trend in percent of time spent in planned maintenance week over 

week for C1. What is observed here is that there is an increase in percent of time spent in 

planned maintenance, this trend is mostly influence by two weeks of planned maintenance in 

May and is a result of the preventive maintenance schedule rather than the work of the operations 

team. Figure 6.6 shows the trend in percent of time attributed to first pass yield week over week 

for C1. The trend observed here is a decline in time attributed to first pass yield, which suggests 

a tighter adherence to the quality specifications by the operations team.  
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Figure 6.9 C1 Waiting to Load/Unload Trend      Figure 6.10 C1 Delta Cycle Time Trend 

Figure 6.9 shows the trend in percent of time spent in waiting to load/unload week over 

week for C1. What is most interesting is that in the time period after the implementation of real 

time data analysis (end of May onward) the percent of time spent in waiting to load/unload 

initially drops but then trends upward again. This prompts the question of whether the results 

observed are indicative of the performance of the operations team or the mix of parts run in each 

week. This is explored further in section 6.3. Figure 6.10 shows the trend in percent of time spent 

in delta cycle time week over week for C1. What is most interesting is that during the months of 

June and July, the percent of time spent in delta cycle time is decreasing, which suggests that the 

intervention from the operations team based on real time data could be generating a positive 

effect.  

 

6.1.1.2 C2 Trends 

Figures 6.11-6.16 demonstrate the trend in each of the six drivers of OEE for the C2 

press. Unlike the graphs in section 6.1.1, negative trends denote a positive signal and highlight 
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improvement within that category. We see a decline in the amount of time attributed to each of 

the drivers except delta cycle time, which increased 1% from April-May compared to June-July. 

The overall OEE of C2 saw the most improvement in section 6.1.1 and the three drivers which 

saw the most improvement were breakdown, changeovers, and waiting to load/unload which 

declined 7%, 4%, and 3% respectively.   

  
Figure 6.11 C2 Breakdown Trend        Figure 6.12 C2 Changeover Trend 

 

Figure 6.11 shows the trend in percent of time spent in breakdown week over week for 

C2. Figure 6.11 shows the percent of time spent in breakdown is decreasing in the months of 

June and July, this category is not directly tied to the actions of real time data monitoring, but 

could be positively affected by the increased diligence of the operations team and other projects 

outside this thesis. Figure 6.12 shows the trend in percent of time spent in changeover week over 

week for C2. What is most interesting is that during the months of June and July, the percent of 

time spent in changeover is decreasing, which suggests that results from the schedule 

optimization tool could be generating a positive effect. This is explored in more detail in section 

6.1.2.  
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Figure 6.13 C2 Planned Maintenance Trend       Figure 6.14 C2 First Pass Yield Trend  

 

Figure 6.13 shows the trend in percent of time spent in planned maintenance week over 

week for C2. The trend here is relatively flat as the preventive maintenance plan for this press 

was light in the time period observed.  Figure 6.14 shows the trend in percent of time attributed 

to first pass yield week over week for C2. The trend observed here is a decline in time attributed 

to first pass yield, which suggests a tighter adherence to the quality specifications by the 

operations team and projects run outside of this thesis.  
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Figure 6.15 C2 Waiting to Load/Unload Trend      Figure 6.16 C2 Delta Cycle Time Trend 

Figure 6.15 shows the trend in percent of time spent in waiting to load/unload week over 

week for C2. What is most interesting is that in the time period after the implementation of real 

time data analysis (end of May onward) the percent of time spent in waiting to load/unload 

decreases. This trend coupled with the decrease in delta cycle time observed in figure 6.16 for 

the same time period suggests the changes implemented are having a positive effect on 

performance.  

 

6.1.1.3 C4 Trends 

Figures 6.17-6.22 demonstrate the trend in each of the six drivers of OEE for the C4 

press. Unlike the graphs in section 6.1.1, negative trends denote a positive signal and highlight 

improvement within that category. We see a decline in the amount of time attributed to waiting 

to load/unload and first pass yield, while the other four categories, preventative maintenance, 

delta cycle time, changeovers, and breakdown see flat to increasing percentages of time 

attributed to each category. The overall OEE of C4 saw as slight improvement in section 6.1.1 

and of the two categories that drive this improvement, while waiting to load/unload is impacted 
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by the changes implemented, first pass yield is not directly affected.   It is also important to 

reiterate that the C4 press was down for several weeks between June and July for major 

maintenance outside of the normal preventive maintenance schedule which skews trends in this 

data.  

   
Figure 6.17 C4 Breakdown Trend        Figure 6.18 C4 Changeover Trend 

 

Figure 6.17 shows the trend in percent of time spent in breakdown week over week for 

C4.  What is most interesting is that in the time period after the several week shut down, the 

average percent of time spent in breakdown is roughly similar to the percent of time spent in 

breakdown before the shutdown. This is difficult to interpret since there are only a few weeks of 

data points in the post shutdown period which can be tainted by startup interruptions. Figure 6.18 

shows the percent of time spent in changeover is decreasing in the months of June and July. This 

suggests that results from the schedule optimization tool could be generating a positive effect. 

This is explored in more detail in section 6.1.2.  
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Figure 6.19 C4 Planned Maintenance Trend       Figure 6.20 C4 First Pass Yield Trend  

 

Figure 6.19 shows the trend in percent of time spent in planned maintenance week over 

week for C4. The trend here is relatively flat as the preventive maintenance plan for this press 

was light in the time period observed. As stated earlier, the maintenance shutdown in June and 

July was not part of the preventive maintenance plan and not reflected here.  Figure 6.20 shows 

the trend in percent of time attributed to first pass yield week over week for C4. The trend 

observed here is a decline in time attributed to first pass yield, which suggests a tighter 

adherence to the quality specifications by the operations team and projects run outside of this 

thesis.  
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Figure 6.21 C4 Waiting to Load/Unload Trend      Figure 6.22 C4 Delta Cycle Time Trend 

Figure 6.21 shows the trend in percent of time spent in waiting to load/unload week over 

week for C4, and figure 6.22 shows delta cycle time for this press. What is interesting is that in 

the time period after the implementation of real time data analysis and the shutdown, the percent 

of time spent in both of these categories is roughly similar with waiting to load showing slight 

improvement and delta cycle time showing an uptick in percent of time allocated.  

 

6.1.1.4 C5 Trends 

Figures 6.23-6.28 demonstrate the trend in each of the six drivers of OEE for the C5 

press. Unlike the graphs in section 6.1.1, negative trends denote a positive signal and highlight 

improvement within that category.  We see a decline in the amount of time attributed to each of 

the drivers except breakdown and first pass yield, which each increased 1% from April-May 

compared to June-July. The overall OEE of C5 saw a 9% improvement in section 6.1.1 and 

while this is one of the better performance improvements observed, the results were affected by 
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major breakdowns more than 2 standard deviations higher than average in the last two weeks of 

July.    

  
Figure 6.23 C5 Breakdown Trend        Figure 6.24 C5 Changeover Trend 

 

Figure 6.23 shows the trend in percent of time spent in breakdown week over week for 

C5.  What is most interesting is that in the time period after the implementation of real time data 

monitoring at the end of May, there is a spike in breakdowns. This category is not directly tied to 

the actions of real time data monitoring, but it is expected to be affected by the increased 

diligence of the operations team and other projects outside this thesis. Figure 6.24 shows the 

percent of time spent in changeover is decreasing in the months of June and July. This suggests 

that results from the schedule optimization tool could be generating a positive effect. This is 

explored in more detail in section 6.1.2.  
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Figure 6.25 C5 Planned Maintenance Trend       Figure 6.26 C5 First Pass Yield Trend  

 

Figure 6.25 shows the trend in percent of time spent in planned maintenance week over 

week for C5. The trend here is relatively flat as the preventive maintenance plan for this press 

was light in the time period observed.  Figure 6.26 shows the trend in percent of time attributed 

to first pass yield week over week for C5. The trend observed here is a decline in time attributed 

to first pass yield, which suggests a tighter adherence to the quality specifications by the 

operations team and projects run outside of this thesis.  
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Figure 6.27 C5 Waiting to Load/Unload Trend      Figure 6.28 C5 Delta Cycle Time Trend 

Figure 6.27 shows the trend in percent of time spent in waiting to load/unload week over 

week for C5. What is interesting is that in the time period after the implementation of real time 

data analysis the percent of time spent in waiting to load/unload decreases. This trend is also 

seen in delta cycle time, figure 6.28, for the same time period. Both these trends suggest that the 

changes implemented as part of this these are having a positive effect on performance.  

 

6.1.2 Isothermal Forging Scheduling Capacity 

Using integer linear programing as outlined in chapter 5.4, CFD was able to find the 

optimal path for every part given the mix and part availability. Using the actual OEE breakdown 

percentages for the first five months of the year and inputting the actual mix of parts produced as 

the demand for that time period, using the optimal paths expanded production capacity without 

adding assets. Comparing the tool’s recommendation to actual production shows potential for 5-

7% capacity gain, given material availability. Table 6.1 Shows the comparison of the number of 

pieces recommended by the tool and the number of pieces produced by CFD.    
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Jan Feb March April May 

Actual Pieces Produced % of 

Optimal Capacity 

90% 99% 85% 91% 99% 

Potential Opportunity 10% 1% 15% 9% 1% 

Table 6.1 Comparison of Actual Production To Schedule Optimization tool 

Recommendation  

 Looking at this from a changeover perspective, the intuition would be number of 

changeovers should go down. Figure 6.29 shows that the number of changeovers on C1 and C2 

did decline while the number of changeovers on C4 and C5 went up. Heuristically, this makes 

sense as the length of a changeover requires a fifth of the amount of time on C4 and C5 than it 

does on C1 and C2. With only one month of improvement of part allocation it is difficult to 

definitively declare success.  

 
Figure 6.29 Number of Changeovers by Press 

 

6.2. Future State Plant Simulation 

 As part of the capacity expansion in the plant, anther isothermal press was purchased and 

set up this year, that is why C5 data starts in March of 2019. The major question facing the 

operations team was whether this asset, coupled with the internal improvements of operations 
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would be enough to meet demand in coming years. This question was especially critical because 

the timeline to purchase, install and test another press was two years. Updating the current state 

model reviewed in chapter 5 to include the extra press, and updating the performance aspects of 

OEE, that is waiting to load/unload and delta cycle time, to be 85% efficient across the plant 

shows a 58% improvement in output. This is roughly the output required for peak production 

forecasts but leaves no room for error. Figure 6.30 shows the result of a discrete event simulation 

of one year’s production at 85% performance efficiency across all In order to meet demand, CFD 

must achieve 85% efficiency in the performance metrics.  

 

Figure 6.30 Future State CellSim Model Output 

Competing a sensitivity analysis found that incremental improvement in simulated output slows 

as performance efficiencies approaches 80%. Table 6.2 shows sensitivity analysis output 

improvement between 70%-90% efficiencies in performance metrics. This data is graphed in 

figure 6.31 While projected demand can be met at these levels, improvements in availability 

metrics would be required to exceed the projected demand, improving performance will not be 

enough.  

 

Performance Efficiency  Increase in Simulated Output 

70% 39.5% 

75% 47.6% 



 

 

80% 57.4% 

85% 58.4% 

90% 58.5% 

Table 6.2 Sensitivity Analysis of Performance Efficiency  

 
Figure 6.31 Graph of Simulated Output as a Function of Performance Efficiency  

 

6.3 Analysis: Effects of Mix on Throughput 

The process of monitoring machine state and classifying losses along with utilizing the 

Forge Solver Optimization Tool brought to light several key realizations to the team. Most 

notably, that product mix has a much bigger effect on efficiency loss than the team realized. The 

biggest drivers to fluctuations in OEE in the forge cell are breakdowns, changeovers, delta cycle 

time, and waiting to load. The mix demanded by the optimizer each month directly effects the 

number of changeovers required to meet demand. While the Forge Solver Optimization Tool 

compensates for some of that by extending batch sizes, the plant is still completing more 

changeovers than they have done historically. Historically, Columbus Forge Disk had been the 

bottleneck of the entire engine production process, so they would run parts for the life of the tool 

to get the most throughput out of the plant. With the added capacity of C5, the bottleneck has 

shifted downstream to other processes, driving the IBP plan to demand smaller runs on the forge 
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cell, which benefits the company overall, but impacts the efficiency and quantity output 

capabilities of Columbus forge disk.   

Delta cycle time and waiting to load are two other components of OEE that are directly 

impacted by mix. Some of the roughly 150 parts that run through the forge cell run very close to 

the engineering design times while others either run slower than the design times, or are 

constrained by an upstream or downstream processes. Because one to five different parts will run 

on a given press in a single week, sometimes the losses due to DCT or WTL will be large and 

sometimes they will have very little effect on efficiency. The internal Forge Solver Optimization 

Tool provides the benefit of utilizing the demonstrated cycle times by part by press, so inherently 

it will schedule parts to the press they run most efficiently on, rather the business relying on the 

scheduling team to look up every parts performance on each press every time they go to schedule 

a part. This fluctuation in mix driving nonlinear losses week over week makes communicating 

past, current, and future performance to executive management and other departments difficult 

for the CFD team.  

The remaining major driver to OEE, breakdowns is less mix dependent than the other 

three loss buckets, but some correlation between increased frequency of changeovers and 

number of breakdown has been observed. The team is investigating if thermal fatigue, due to the 

increased number of times the press is heated up and cooled down for changeovers, is leading to 

this correlation.  

 In an effort to isolate out whether changes implemented to bring real time data to the 

production floor had a positive or negative impact to the performance metrics of delta cycle time 

and waiting to load/unload, I isolated part numbers that ran at least 25 pieces before the change 

at the end of May and at least 25 pieces over the summer months to compare the average cycle 



 

 

times and determine if there had been a reduction. We found an overall improvement in cycle 

times of parts that met these criteria on C1 and C2. C4’s cycle times remained flat overall and C5 

saw a slight uptick in cycle time. Tables 6.2-6.5 summarize the results. Parts with black text 

represent instances where there was a statistically significate change in the mean cycle times 

between the two time periods when evaluated using the two sample T test at an alpha of 0.05.  

C1 Average Load to Load Times 
 

Part Prior to Real Time 
Data (Prior to June 

1) 

After Real Time 
Data (After June 

1) 

P Value 

Part A 81 68 0.0600 

Pat B 81 57 0.0003 

Table 6.2 C1 Average Load to Load Cycle Times 

 
C2 Average Load to Load Times 

 

Part Prior to Real Time 
Data (Prior to June 1) 

After Real Time 
Data (After June 1) 

P Value 

Part F 38 36 0.1000 

Part G 40 42 0.2000 

Part H 47 48 0.7000 

Part E 52 46 0.2000 

 

Table 6.3 C2 Average Load to Load Cycle Times 

 
C4 Average Load to Load Times 

 

Part Prior to Real Time 
Data (Prior to June 1) 

After Real Time 
Data (After June 1) 

P Value 

Part C 57 46 0.0400 

Part D 29 31 0.5000 

Part E 43 37 0.2000 

Table 6.4 C4 Average Load to Load Cycle Times 

 
C5 Average Load to Load Times 

 

Part Prior to Real Time 
Data (Prior to June 1) 

After Real Time 
Data (After June 1) 

P Value 

Part I 24 29 0.2000 

Part C 40 39 0.8000 

Part J 27 41 0.0000 

Part K 28 31 0.0090 

Part L 29 26 0.0090 

Part F 27 26 0.3000 

Part M 40 34 0.0005 

Part C 40 39 0.6000 

Table 6.5 C5 Average Load to Load Cycle Times 



 

 

 

6.4 Operational Impact 

A lot was learned throughout the process of integrating OEE with the production process 

and conditions at the onset were not always ideal. As one of the engineers described it, “Our 

biggest mistake was choosing the two best months in the year as our baseline. Also, at that point, 

we were too subjective because the company didn’t have the shop floor discipline needed to put 

in technology and track OEE. Process and discipline need to proceed technology. We were 

building a building before the bricks were dry.” This is demonstrated in the data from chapter 

6.1.1, though improvement projects were being developed week over week, clear upward 

trajectory in OEE was not being observed. 

 The biggest advantage of the implementation and testing of this thesis was the granularity 

of the data the management team now had access to. The team’s effort to standardize and 

automate reporting shifted the operations and engineering teams’ efforts from compiling data to 

reacting to it. As with any new process, there is a learning curve the team faced but as a whole 

workers in all levels of the plant saw value in tracking OEE. As one supervisor described, ”Most 

operators like it because they can tell their side of the story of what’s going on in production.” 

Another operator described it as a  “platform for employees to point out problems that 

supervisors are too busy to pick up.”  

Through all the struggle, hard work, and iteration, the process to implement OEE has not only 

helped objectively to highlight and improve business results, it has been an effort from the 

operators on the floor to the GM of the plant to unify around. This was categorized best by the 

business unit manager of the forge cell who said, “OEE is not an individual sport, it’s a team 

sport. It’s the team that makes it successful.” 

 



 

 

Chapter 7 Conclusion and 
Recommendations 

7.1 Conclusions 

Testing the hypothesis of this thesis, that bringing real time data to the manufacturing 

floor would improve throughput, showed promising results comparing top line OEE metrics. In 

the two time periods compared, presses saw 1%-12% improvement in OEE. Digging deeper into 

those findings some improvements were driven by less preventative maintenance time which was 

not directly affected by the introduction of real time data. Other presses were more affected by 

improvements in the performance metrics of waiting to load/unload and delta cycle times, and 

breakdowns. These metrics are directly affected by real time data. Another concern was that the 

effect of mix from one time period to the other may skew results to look more or less favorable 

than they are. Isolating for parts that ran in both before and after real time data was introduced, 

11 of the 17 parts showed improvement in load to load cycle times.  

7.2 Recommendations  

 Outlined below are two recommendations the team should take into consideration as they 

continue the journey to develop a connected factory at Pratt & Whitney in Columbus GA. First, 

continuing to drive a culture of analytics for all employees is critical. Secondly, giving the team 

realistic and achievable goals is important, not just for moral, but accurate reporting of plant 

performance.  

7.2.1 Continue to Drive a Culture of Analytics 

CFD has come a long way over the 12-month journey to establish real time metrics tracking 

within their plant as part of the connected factory initiative at Pratt & Whitney.  With an 

organization as large as Pratt & Whitney change can be slow to take effect, but as they start to 



 

 

see incremental improvement in the performance metrics of OEE, supported by real time data on 

the shop floor, they need to keep that momentum going.  Continuing to integrate the shop floor 

in analysis of the data and decision-making process will instill a sense of ownership across the 

organization. Examples of ways to keep this integration going is (1) holding Toolbox Talks, 

weekly supervisor/operator meetings, in the OEE Room.  (2) Communicate the weekly OEE 

reports that are delivered to management with the shop floor. While real time data is available 

for exploration to the supervisors and operator, making sure a consistent message is translated to 

both the operators and executive management will be key. (3) Finally, Integrating OEE goals and 

metrics into incentives should further align the motivation of all team members. CFD has already 

taken a few steps to do this, holding ice cream socials when the plant met month end throughput 

targets. Making sure this, or other incentive options, are solidified and reinforced period to 

period is important.  

7.2.2 Align Design Cycle Times 

An important distinction that came to light through this process was the discrepancy of the 

engineering design times to the achievable design times of the operations team for select part 

numbers. It was discovered that the engineering design times were developed for the use of tools 

given a set number of parts expected from a given die. In many cases this was a low number, 

around 20 parts before a die had to be retooled. In practice, dies are often run with an expectation 

of 70-100 parts and as a result, operator run the tool at slower strain rates than were calculated in 

the engineering design time. To fairly evaluate the operations team, engineering design times 

need to match the parameters of operating conditions.  
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