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Abstract

The finite element method has become a fundamental analysis tool for modern sci-
ences and engineering. Despite the great improvement in theory and application over
the past decades, the need for regular conforming meshes in finite element analysis
still requires much human effort in engineering practice. In this thesis we focus on
designing novel finite element procedures to reduce the meshing effort expended on
constructing a finite element model for solids and structures.

The new meshing paradigm of “automatic meshing with overlapping and regular
elements”, the AMORE paradigm, has recently been formulated. In this paradigm,
the finite elements interior to the domain of interest are undistorted traditional ele-
ments and overlapping of elements is used for the discretization near the boundaries.
The overlapping of elements gives much freedom to the meshing procedure and results
in a much reduced meshing effort. Two types of overlapping are investigated.

In the first case we consider the overlapping of individual polygonal elements and
propose new quadrilateral overlapping finite elements. The new formulation combines
advantageous aspects from both traditional finite elements and meshless methods.
The new overlapping finite elements, being insensitive to mesh distortions and giving
high-order accuracy, are used to mesh the boundary regions. Such use leads to an
effective meshing procedure as desired.

In the second case we study the overlapping of conforming finite element meshes.
Each individual mesh is spanned over a regular subdomain and is allowed to overlap
with other meshes in any geometric form. Local fields on individual meshes are then
assembled using a partition of unity to give the global compatible field. This new
scheme allows very convenient local meshing and enriching so that the meshes can be
easily adapted to various geometric features and solution gradients with a reasonable
computational expense.

We formulate new schemes, analyze their convergence properties, and demonstrate
their performance and their use in AMORE in the solution of various problems.

Thesis Supervisor: Klaus-Jürgen Bathe
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Chapter 1

Introduction

The finite element method has become a fundamental analysis tool for modern sci-

ences and engineering [1]. Despite the great improvement in theory and application

over the past decades, the use of finite element methods is still much restricted due

to the need of much human effort in meshing the analysis domain.

Meshing becomes a crucial step for finite element analysis because traditional

elements are very sensitive to mesh distortions. A much distorted mesh can lead

to excessive solution error and the solution procedure may even abort because of

numerical issues. Although meshes consisting of simplicial elements can be effectively

generated with reasonable mesh quality, such meshes are not preferred in engineering

practice due to the poor accuracy of simplicial elements.

To reduce the meshing effort, the overlapping finite elements, overlapping finite el-

ement meshes, and a new solution scheme referred to as AMORE (automatic meshing

with overlapping and regular elements) have been proposed [2, 3, 4, 5, 6, 7, 8].

1.1 Overlapping elements and overlapping meshes

The main idea of these new schemes is to formulate interpolations by considering the

overlapping of elements.

In the earlier development, these overlapping elements were disks (in two-dimensional

problems and spheres in three-dimensional problems) [9, 10, 11, 12] and the global
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interpolation was constructed using the Shepard functions. Since the method of fi-

nite spheres, despite being one of the most effective meshless methods, is still too

computationally expensive to solve engineering problems on its own, the interior do-

main was discretized using regular 4-node finite elements and an effective coupling

scheme between disk elements and finite elements was proposed [2, 3]. However,

the numerical integration in the method of finite spheres is still too costly for the

scheme to be practical and the bandwidth is too large to have reasonable solution

expense. The concept of overlapping finite elements was then improved to combine

advantageous aspects from traditional finite element interpolations and meshless in-

terpolations [4, 5, 7]. Based upon the new concept, new triangular overlapping finite

elements were formulated and the computational efficiency was investigated [5, 7].

The original formulation was then modified to formulate quadrilateral overlapping

elements and more details in the use of overlapping elements were discussed [6].

Given a conforming mesh of the analysis domain using triangles and quadrilater-

als, (triangular and quadrilateral) overlapping finite elements are formulated as the

overlapped regions of polygonal elements. A polygonal element is formally just the

collection of elements coupling into the same node. On each polygonal element, a

local interpolation is established using the method of finite spheres, but with the

Shepard functions interpolated using traditional high-order interpolations. The final

interpolation of overlapping elements is then the weighted average of local fields with

the weights being traditional low-order shape functions. Since in the interpolation

of the method of finite spheres each node is assigned a nodal unknown function, the

overlapping elements also have functions as the nodal unknowns instead of single

nodal values. In general, polynomial functions are used as the nodal degrees of free-

dom (dofs). For particular problems, some other functions can be added into the

nodal unknowns, e.g. trigonometric functions can be included for the solution of

wave propagation problems [13]. The final form of the overlapping interpolation is

very similar to the traditional interpolation, i.e. each nodal function contributes to

the final field via a shape function, where the expression for the shape function is

however much more complicated. The new interpolation therefore leads to a similar

16



bandwidth structure in the global stiffness matrix as in traditional finite element anal-

ysis, and since the shape functions are interpolated as polynomial functions of local

coordinates, the numerical integration effort is significantly less than that of meshless

methods. In addition to the reduced bandwidth and numerical integration effort, the

overlapping finite elements can always exactly resolve the functions used as degrees

of freedom, which renders the overlapping elements insensitive to mesh distortions.

The use of overlapping elements, which are formulated as the overlapped regions

of individual elements, enables more effective meshing procedures because the mesh

quality requirement is much relaxed. However, a conforming mesh is still needed.

By considering the overlapping of conforming finite element meshes, a more general

scheme – the method of overlapping finite element meshes – was proposed [8], and

in this scheme elements from different meshes can overlap in any geometric form to

further reduce the meshing effort. In the scheme of overlapping meshes, the complete

analysis domain is discretized by several independent regular finite element meshes.

A local compatible field is interpolated on each individual mesh using any existing

compatible interpolation scheme. These local fields are finally assembled to form a

continuous global interpolation. To do so, continuous weight functions are formulated

upon the mesh overlay to represent the contributions of different meshes. Since these

weight functions are designed to satisfy the partition of unity property, many desired

properties, e.g. convergence and local enriching, of the interpolation can be derived.

An effective implementation of this new scheme relies on the algorithms to com-

pute the mesh overlay structure with reasonable computational cost, which were well

studied by the community of computational geometry. Since each individual mesh

governs the local solution accuracy, we use a low-order mesh for the interior region

where a small solution gradient is expected and high-order meshes are spanned along

the boundaries or near some locations of particular interest to resolve the boundary

curvature and local stress concentrations.

These novel interpolation schemes play central roles in the AMORE paradigm,

see the next section.

17



1.2 The AMORE paradigm

The AMORE (automatic meshing with overlapping and regular elements) paradigm

is a general solution procedure for any CAD representations of engineering objects

or models from a computerized scan [2, 3, 4, 5, 6, 7, 8]. In this solution approach,

mostly undistorted low-order finite elements are used to discretize the interior part

of the domain and the novel overlapping procedures are used to mesh the boundary

regions.

Traditional finite elements are most effective in their undistorted configurations,

among which 4-node quadrilateral elements (for two-dimensional problems) and 8-

node hexahedral finite elements (for three-dimensional problems) are most preferred

due to their efficiency, so these undistorted elements are used to discretize the main

part (interior) of the domain with the element size determined by the geometric

features and the requirement on solution accuracy. To mesh the boundary regions,

the boundaries are discretized in such a way to neglect all deficiencies in the geometry.

The remaining part of the domain is then meshed using novel schemes. In the case

of overlapping elements, the boundary regions are meshed with distorted overlapping

elements. Being insensitive to mesh distortions, these overlapping elements still lead

to reasonable local solutions. In the case of overlapping meshes, boundary meshes are

spanned along the discretized boundaries, and these meshes overlap with the interior

regular mesh and with each other. Since overlapping is allowed, each mesh can be

quite regular and therefore traditional finite elements can be used and demonstrate

their optimal performance. In practical applications in solids and structures, these

boundary meshes are chosen to have high-order interpolations, for the reasons given

in the previous section.

1.3 Thesis outline

In this chapter, we introduce the main difficulty in the practical application of finite

element methods. To tackle this difficulty, novel schemes featuring overlapping ele-

18



ments and overlapping meshes were proposed and their use in the AMORE paradigm

is explained.

In Chapter 2, we introduce some related work in the effort of reducing meshing

expense, e.g. the Chimera grids, meshless methods, the analytical trial function

method, the generalized finite element method, Nitche’s method, the fictitious domain

method, etc.

In Chapter 3, the new quadrilateral overlapping elements are formulated. In ad-

dition, the boundary conditions, a coupling scheme between overlapping and regular

elements, and an analysis on the mesh distortion sensitivity are presented.

In Chapter 4, the method of overlapping finite element meshes is formulated.

Details are given on the construction of weight functions. And conditions for the

solvability of discretized equations are introduced.

In Chapter 5, the proposed schemes are analyzed to give the error bounds and

convergence rates. We discuss the effect of the overlapping sizes on the solution error

using two numerical examples. A one-dimensional case is also studied to reveal a

special error bound in the limit case.

In Chapter 6, the actual implementations of overlapping elements and overlapping

meshes are introduced in details. Several simple problems are solved to illustrate the

performance of the new methods. These new methods are also used in the solution

of several more practical problems with AMORE to demonstrate their potential in

general.

In Chapter 7, we summarize the main contributions and limitations of the current

work. Based on these limitations, several future research directions are suggested.
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Chapter 2

Related Work

The idea of allowing “elements” or “cells” to overlap can also be found in the commu-

nity of computational fluid mechanics, in which the Chimera grids and other over-

set grids have been proposed for finite difference methods and finite volume meth-

ods [14, 15, 16]. Just as the overlapping finite element meshes, these overset grids

enable convenient local refinements near obstacles and boundaries, hence can well re-

solve the local solutions. Although the concepts look very similar to overlapping finite

element meshes, the method of overlapping meshes is in essence different as we build

in this method a global compatible field, which is not required in the discretizations

using finite difference methods or finite volume methods.

For finite element methods, the issue of meshing has been addressed from multiple

perspectives.

The method of finite spheres that is used to formulate local fields in the overlapping

elements belongs to a large family of meshless methods, in which the global solution

fields are constructed using scattered points [9, 10, 17, 18, 19, 20, 21, 22, 23, 24, 25,

26, 27, 28, 29]. Among many meshless methods, the main idea is almost the same

but the implementations can vary, due to the choices of shape functions, quadrature

schemes, etc. Since a conforming mesh is no longer needed, the discretization is much

easier. However, to ensure solution stability without additional numerical stabiliza-

tion and for a reasonable accuracy, the numerical integration in meshless methods is

computationally expensive [10, 22, 23, 25, 26]. These methods are consequently not
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widely used in engineering practice.

As we see for the overlapping elements, by formulating distortion insensitive in-

terpolations, the meshing effort for a given accuracy can be much reduced. In the

analytical trial function method, the interpolation is established upon some basic

solutions of the underlying governing equation [30, 31, 32, 33, 34, 35]. Such interpo-

lations can be exact as long as the exact solution is contained in the interpolation

bases and the interpolation bases are to some degree independent of the element con-

figuration. For this reason, elements based on this method show certain immunity to

mesh distortions.

In the method of overlapping finite element meshes, the complete analysis domain

is divided into subdomains. The similar idea is also seen in domain decomposition

methods [36, 37]. Using domain decomposition techniques, the original problem is

converted to coupled problems on these subdomains, which can be solved iteratively

in a divide-and-conquer manner. As a result, such methods are very suitable for

parallel machines. Although sharing some similarities, they are not the interpolation

schemes that are being pursued.

The generalized finite element method [38, 39, 40], Nitsche’s method [41, 42, 43,

44], and the fictitious domain method [45, 46] handle complex geometries in more di-

rect ways. In the generalized finite element method, a larger regular mesh is spanned

to cover the analysis domain and the interpolation is established based on this mesh,

but the integration is only performed over the physical domain. The numerical in-

tegration is achieved using an adaptive scheme with fast remeshing. A similar idea

was already proposed in Reference [47]. However, if the mesh overlaps the Dirichlet

boundary, the solution accuracy can be poor because the essential boundary con-

ditions are directly imposed by zeroing all dofs that have support overlapping the

boundary. Overlapping meshes are also seen in Nitsche’s scheme, but the overlapped

regions are actually cut off to have non-matching meshes and the interface condi-

tions are imposed via a penalty term. In the fictitious domain method, an extended

variational problem on a larger domain that contains the physical domain is solved,

and Lagrange multipliers are used to impose the original boundary conditions. These
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methods address the issue of meshing, but they are not widely accepted in the engi-

neering community for finite element analysis of solids and structures due to the loss

of several valuable aspects of traditional finite element methods.

In the generalized finite element method, a local approximation for each small

region of the analysis domain is first established using a linear combination of some

basic functions, and then these local fields are assembled using a partition of unity [38,

39, 40]. Polynomials, harmonic functions, and some handbook functions (for approx-

imating the solutions near corners, voids, and cracks) can be used as degrees of

freedom for each local field. This method has similar features as the overlapping

finite element method. However, the resulting stiffness matrices of the generalized

finite element method are generally only symmetric positive semi-definite. Hence,

special solvers are needed and bring extra computational expense, which makes the

generalized finite element method hardly effective or even applicable to large-scale

engineering problems [39, 40].

The idea of using special functions as local enrichments for finite element inter-

polations can be seen in many studies, e.g. the singularity enrichment for crack tip

elements [48], the ovalization enrichment for pipe elements [49], the discontinuity

enrichment for strain localization [50], and the discontinuity and singularity enrich-

ments in the extended finite element method [51, 52]. The schemes all aim to enrich

the interpolations and decrease the meshing effort, so that better solutions can be

obtained. Hence there are similarities among all these procedures. However, for en-

gineering problems, the details of enriching (i.e. what are the basic functions and

the enriching functions, how are the enrichments assembled to form a global field,

and how are the formulations implemented) are extremely important. These details

decide whether the scheme is stable, accurate, and effective for engineering analysis,

and whether the scheme will be used in engineering practice.

The schemes of overlapping finite elements and overlapping meshes focused upon

in this thesis are novel procedures based on valuable features seen in the above sur-

veyed schemes, and these approaches enable stable, accurate, and computationally

effective engineering solutions.
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Chapter 3

Quadrilateral Overlapping Finite

Elements

In this chapter, we present the formulation of new quadrilateral overlapping finite ele-

ments which are formulated as the overlapped regions of polygonal elements [6]. The

new interpolation scheme can be regarded as a combination of the traditional finite

element methods and the method of finite spheres. Inheriting advantages from both

traditional interpolations and meshless interpolations, the new elements are much

more effective than meshless methods. A schematic description of the idea can be

seen in Figure 3-1. A local interpolation is established for each polygonal element, e.g.

𝐷𝐼 , using the method of finite spheres (disks in two-dimensional analyses) with the

centers of the disks at the nodes. The final displacement field in each quadrilateral is

then the weighted average of the four method-of-finite-spheres fields on the polygonal

elements corresponding to the four nodes of the element. Traditional shape functions

are used as the weight functions. These concepts have been used to formulate the

triangular overlapping finite elements [5, 7], and are modified here to formulate the

new 4-node quadrilateral overlapping finite elements.
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Figure 1: Description of the quadrilateral overlapping finite elements
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(a) A typical 9-node polygonal element 𝐷𝐼 and its local support 𝑆𝐼
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Figure 1: Description of the quadrilateral overlapping finite elements
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(b) A typical quadrilateral element obtained as the overlapped region 𝜀𝑒

Figure 3-1: A 4-node quadrilateral overlapping finite element
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3.1 The interpolation

We consider a well-posed problem in two-dimensional linear elasticity and introduce

the interpolation of one displacement component 𝑢 (e.g. the 𝑥-displacement). This

interpolation technique can of course be used for other suitable problems as well.

The final interpolation in a quadrilateral element is given by

𝑢(x) =
4∑︁

𝐼=1

𝜌𝐼(x)𝑢𝐼(x) (3.1)

where 𝜌𝐼(x) is the new interpolation function to be detailed in subsequent sections.

In traditional finite element analysis, 𝑢𝐼 is the nodal value of the field 𝑢 at node 𝐼.

However, in the new scheme, 𝑢𝐼 is a function and usually a polynomial function given

in the local Cartesian coordinate system x = (𝑥, 𝑦) at node 𝐼:

𝑢𝐼(x) = 𝑎𝐼1 + 𝑎𝐼2𝑥+ 𝑎𝐼3𝑦 + · · · (3.2)

We suggest using the quadratic basis, i.e. 𝑢𝐼(x) = 𝑎𝐼1 + 𝑎𝐼2𝑥 + 𝑎𝐼3𝑦 + 𝑎𝐼4𝑥
2 +

𝑎𝐼5𝑥𝑦 + 𝑎𝐼6𝑦
2. Since local Cartesian coordinates are used, 𝑎𝐼1 = 𝑢𝐼(0). In following

sections, we will see that 𝜌𝐼 is a cubic function in each of the isoparametric coordinates

(𝑟, 𝑠). We note that cubic or even higher-order bases might also be used. In these

cases, additional studies would be needed to assess the computational effort required

for a given accuracy. For special problems, other suitable functions can be added into

the nodal basis as interpolation enrichments, e.g. trigonometric functions can be used

for wave propagation problems [13].

It can be seen from Equation 3.1 that the bandwidth structure due to nodal cou-

pling is similar to that in traditional finite element analysis, while in many meshless

methods the bandwidth is very large. As a result, the discretization using Equa-

tion 3.1 is computationally effective from the perspective of solution effort, see also

Reference [5].

The expression for the new shape functions in Equation 3.1 can be formulated
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from (see Figure 3-1)

𝑢 =
4∑︁

𝐼=1

ℎ𝐼𝜓𝐼 (3.3)

where ℎ𝐼 is the traditional shape function for a 4-node quadrilateral element, and

𝜓𝐼 is the local interpolation function that we establish in 𝐷𝐼 using the method of

finite spheres. The final field 𝑢 in each element is formulated as a weighted average

of four local fields 𝜓𝐼 . Since the traditional interpolation functions ℎ𝐼 (𝐼 = 1, 2, 3, 4)

are continuous and vanish outside 𝐷𝐼 , the final field 𝑢 in Equation 3.3 is compatible

provided each function 𝜓𝐼 is continuous in the corresponding polygonal element 𝐷𝐼 .

The construction of 𝜓𝐼 is detailed in following sections.

3.2 The function 𝜓𝐼

To construct the function 𝜓𝐼 for each node 𝐼, we consider the polygon formed by all

basic elements (triangles and quadrilaterals) coupling into node 𝐼. This polygon is

formally regarded as a polygonal element and a typical polygonal element 𝐷𝐼 is shown

in Figure 3-2. The support set 𝑁𝐼 for node 𝐼 is defined as the set of all neighboring

nodes including node 𝐼. The support radius 𝑟𝐼 is defined as the radius of a disk that

contains 𝑁𝐼 .

I

rI : Support radius

: Neighboring nodes

NI : Support set (Set of all neighboring nodes

including node I)

Figure 3-2: A polygonal element and its local support

We suggest using

𝑟𝐼 = max
𝐽∈𝑁𝐼

‖x𝐼 − x𝐽‖ (3.4)
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which is the minimum support radius, and we also define another radius for each node

by

𝑟*𝐼 = min
𝐽∈𝑁𝐼 ,𝐽 ̸=𝐼

‖x𝐼 − x𝐽‖ (3.5)

The ratio 𝑟𝐼/𝑟*𝐼 will be used as a local indicator of the mesh regularity. With 𝑟𝐼 given

the local field 𝜓𝐼 is expressed as

𝜓𝐼 =
4∑︁

𝐾=1

𝜑𝐼
𝐾(x)𝑢𝐾(x) (3.6)

where we use for 𝜑𝐼
𝐾 the Shepard functions, but interpolated over the 4-node element

of interest in such a way to provide compatibility and to reduce the numerical inte-

gration effort and the solution effort. Of course, the support radii are used in the

expression of 𝜑𝐼
𝐾 .

The Shepard functions are widely used for interpolations of scattered data, and

they also play an important role in meshless methods. Since these are non-polynomial

functions in the form of a quotient of some weight functions, their use in meshless

techniques, e.g. the method of finite spheres, is computationally expensive due to the

need of a very large number of quadrature points in the numerical integration [9].

Therefore the Shepard functions are further interpolated using isoparametric polyno-

mials to improve the computational efficiency.

3.3 The interpolation of Shepard functions

We use some mid-edge nodes (see Figure 3-3) to obtain an accurate polynomial rep-

resentation of the Shepard function in the isoparametric coordinates:

𝜑𝐼
𝐽(x) =

8∑︁

𝑖=1

ℎ̂𝑖(x)𝜑𝐼
𝐽𝑖 (3.7)

where 𝜑𝐼
𝐽(x) is the approximation of the Shepard function, 𝜑𝐼

𝐽𝑖 (𝑖 = 1, . . . , 8) are

constant coefficients to be determined, and ℎ̂𝑖(x) (𝑖 = 1, . . . , 8) are the traditional

shape functions of an 8-node quadrilateral element. A similar interpolation was used
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to formulate triangular overlapping elements [5].
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of Shepard functions
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Figure 7: Interpolation of the Shepard functions on overlapping region "e

3 1 (I)

2

6

5 4

rI

: Neighboring nodes

: Additional nodes for interpolation

of Shepard functions

"e

Figure 8: Interpolation of the Shepard functions on overlapping region "e

to reduce the size of the support set for each local field. The interpolation of the

Shepard functions on triangles has been studied before [15], thus it is not repeated

here.

We assume that the interpolated Shepard functions '̂I
IJ

(J = 1, 2, . . . 4) are in the

form of

'̂I
IJ

(x) =
8X

K=1

ĥK(x)'̂I
IJK , J = 1, 2, . . . 4 (10)

10

Figure 3-3: Nodal positions (nodes 1 – 4) of the Shepard functions and nodes used
for interpolation of Shepard functions (nodes 1 – 8) for the quadrilateral element 𝜀𝑒

These coefficients 𝜑𝐼
𝐽𝑖 (𝑖 = 1, . . . , 8) are designed to satisfy the following criteria:

1. The interpolated Shepard functions should result in a compatible final field.

To satisfy this condition, 𝜑𝐼
𝐽 (or equivalently 𝜑𝐼

𝐽) needs to be continuous in the

polygonal element 𝐷𝐼 .

2. The interpolated Shepard functions should satisfy the partition of unity prop-

erty, i.e.
∑︀

𝐽 𝜑
𝐼
𝐽 = 1. As a result, the convergence and the distortion insensitiv-

ity can be concluded.

3. The element interpolation should involve only the four weight functions (see be-

low) and the four nodal polynomials at the four corner nodes of the quadrilateral

element, in order to reduce the bandwidth.

The coefficients given in Table 3.1 satisfy all these conditions, where 𝑊𝐽 is the

quartic spline weight function:

𝑊𝐽(x) =

⎧
⎪⎨
⎪⎩

1 − 6𝑠2𝐽 + 8𝑠3𝐽 − 3𝑠4𝐽 , 0 ≤ 𝑠𝐽 < 1

0, 𝑠𝐽 ≥ 1

(3.8)
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Table 3.1: Interpolation of the Shepard functions on a quadrilateral element (see
Figure 3-3)

𝜑𝐼
1 =

8∑︀
𝑖=1

ℎ̂𝑖𝜑
𝐼
1𝑖

𝜑𝐼
11 𝜑𝐼

12 𝜑𝐼
13 𝜑𝐼

14

1 𝑊1

𝑊1+𝑊2

⃒⃒
⃒
x2

0 𝑊1

𝑊1+𝑊4

⃒⃒
⃒
x4

𝜑𝐼
15 𝜑𝐼

16 𝜑𝐼
17 𝜑𝐼

18

𝑊1

𝑊1+𝑊2

⃒⃒
⃒
x5

𝑊1

𝑊1+𝑊2+𝑊3

⃒⃒
⃒
x6

𝑊1

𝑊1+𝑊3+𝑊4

⃒⃒
⃒
x7

𝑊1

𝑊1+𝑊4

⃒⃒
⃒
x8

𝜑𝐼
2 =

8∑︀
𝑖=1

ℎ̂𝑖𝜑
𝐼
2𝑖

𝜑𝐼
21 𝜑𝐼

22 𝜑𝐼
23 𝜑𝐼

24

0 𝑊2

𝑊1+𝑊2

⃒⃒
⃒
x2

0 0

𝜑𝐼
25 𝜑𝐼

26 𝜑𝐼
27 𝜑𝐼

28

𝑊2

𝑊1+𝑊2

⃒⃒
⃒
x5

𝑊2

𝑊1+𝑊2+𝑊3

⃒⃒
⃒
x6

0 0

𝜑𝐼
3 =

8∑︀
𝑖=1

ℎ̂𝑖𝜑
𝐼
3𝑖

𝜑𝐼
31 𝜑𝐼

32 𝜑𝐼
33 𝜑𝐼

34

0 0 1 0

𝜑𝐼
35 𝜑𝐼

36 𝜑𝐼
37 𝜑𝐼

38

0 𝑊3

𝑊1+𝑊2+𝑊3

⃒⃒
⃒
x6

𝑊3

𝑊1+𝑊3+𝑊4

⃒⃒
⃒
x7

0

𝜑𝐼
4 =

8∑︀
𝑖=1

ℎ̂𝑖𝜑
𝐼
4𝑖

𝜑𝐼
41 𝜑𝐼

42 𝜑𝐼
43 𝜑𝐼

44

0 0 0 𝑊4

𝑊1+𝑊4

⃒⃒
⃒
x4

𝜑𝐼
45 𝜑𝐼

46 𝜑𝐼
47 𝜑𝐼

48

0 0 𝑊4

𝑊1+𝑊3+𝑊4

⃒⃒
⃒
x7

𝑊4

𝑊1+𝑊4

⃒⃒
⃒
x8
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where 𝑠𝐽 = 𝑑𝐽(x)/𝑟𝐽 is the scaled distance, and 𝑑𝐽(x) is the Euclidean distance

between the point x and the node 𝐽 . The weight functions of two neighboring nodes

can be seen in Figure 3-4.

I

K

rI

I

K rI

rK

WI

WK

Figure 3-4: Two weight functions

To take mesh distortions into consideration, and noticing that 𝑟𝐼/𝑟*𝐼 measures the

local mesh distortion around node 𝐼, the final interpolated Shepard function is given

by

𝜑𝐼
𝐽 =

√︀
𝑟*𝐼√

𝑟𝐼 +
√︀
𝑟*𝐼
𝜑𝐼
𝐽 +

√
𝑟𝐼√

𝑟𝐼 +
√︀
𝑟*𝐼
𝛿𝐼𝐽 (3.9)

where 𝑟𝐼 and 𝑟*𝐼 are the radii defined in Equations 3.4 and 3.5, respectively, and 𝛿𝐼𝐽 is

the Kronecker delta. If the local mesh near node 𝐼 is severely distorted, we have 𝑟𝐼 ≫
𝑟*𝐼 , which yields 𝜑𝐼

𝐽 ≈ 𝛿𝐼𝐽 and 𝜓𝐼 ≈ 𝑢𝐼(x). It follows that the formulation (locally)

reduces to using finite elements with interpolation covers [5, 53]. The elements with

interpolation covers can exactly represent polynomial fields that are one order higher

than the nodal basis functions, hence better local accuracy can be achieved. However,

quadrilateral finite elements enriched by interpolation covers may lead to only positive

semi-definite stiffness matrices due to the linear dependency of interpolation functions.

For this reason, a reasonable conditioning of the formulation is achieved using the

weight coefficients in Equation 3.9.

We see from Equations 3.1, 3.3 and 3.6 that

𝜌𝐼 =
4∑︁

𝐽=1

ℎ𝐽𝜑
𝐽
𝐼 (3.10)
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Having contributions from both traditional and meshless interpolations, the new

shape functions combine valuable aspects of mesh-dependent and mesh-independent

methods. As a result, the new displacement interpolation gives accurate and distor-

tion insensitive numerical solutions, which is illustrated in the analyses and numerical

results in Section 3.6, Section 5.2, and Section 6.1.

3.4 The Dirichlet boundary conditions

In the overlapping finite element method, natural boundary conditions are imposed

weakly as in traditional finite element methods [1]. The formulation is a direct result

of the principle of virtual work. Due to the special form of the interpolation, the

Dirichlet boundary conditions are imposed using the technique of interpolation covers

in local coordinates [4, 53].

We consider here two different cases, as shown in Figure 3-5. If the boundary is

smooth, a local coordinate system can be established at a boundary node 𝐼4, with one

axis along the boundary and another perpendicular to the boundary. If the boundary

has a sharp corner, the local axes are oriented along the edges, and in such a case we

have a local affine coordinate system instead of a local Cartesian coordinate system.

In the first case, assuming the 𝐼3 − 𝐼4 edge is constrained (see Figure 3-5a), we

use

𝜓𝐼4(𝑟, 𝑠) = 𝑢𝐼4 = 𝑎𝐼41 + 𝑎𝐼42𝑟 + 𝑎𝐼43𝑟𝑠+ higher-order terms (3.11)

and similarly for 𝜓𝐼3 . Thus, the local fields 𝜓𝐼3 and 𝜓𝐼4 become constant along the

constrained edge, where 𝑟 = 0. The final interpolation (see Equation 3.3) is then

constrained as desired. Of course, such constraints are only exact if the boundary is

flat, otherwise discretization errors occur.

In the second case, a special 𝜓 function is constructed upon the local affine coordi-

nates at the corner node. In Figure 3-5b, the edges of a corner node 𝐼4 are constrained,

and we use

𝜓𝐼4 = 𝑢𝐼4 = 𝑎𝐼41 + 𝑎𝐼42𝑟𝑠+ higher-order terms (3.12)
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Figure 3-5: The local coordinate systems
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where the affine coordinates 𝑟 and 𝑠 are oriented along the corner edges. It is then

seen that if 𝑟 = 0 or 𝑠 = 0, 𝜓𝐼4 becomes a constant 𝑎𝐼41.

It can be seen that the new shape functions already satisfy the Kronecker-delta

property (see Section 5.2), hence the displacement boundary conditions can actually

be imposed by prescribing nodal polynomials instead of local fields. However, the

special boundary interpolation proposed in this section gives slightly better numerical

solutions.

3.5 The coupling between overlapping elements and

traditional elements

The coupling between overlapping elements and traditional elements plays a key role

in the AMORE paradigm as these two types of elements are used in different parts

of the analysis domain. Here we introduce a continuous coupling interpolation.

In overlapping elements, each node corresponds to an unknown polynomial func-

tion. A coupling element touches both overlapping and traditional elements, so it has

both overlapping element nodes and finite element nodes, see Figure 3-6.

: Finite element nodes

: Overlapping element nodes

: Traditional elements

: Coupling elements

: Overlapping elements

Figure 10: Coupling of overlapping elements and finite elements

triangle) are finite element nodes, this element is a pure finite element. If both over-

lapping element node(s) and finite element node(s) are contained in one quadrilateral,

this element is a coupling element.

The global field for a coupling element is still given by Equation 4, but the local

interpolations are defined in a di↵erent manner. For a coupling element, we denote

�FE the set of finite element nodes, and �OFE the set of overlapping element nodes.

Of course, the union of these two sets is the set of all nodes in this element. Then,

the local interpolation for each node of this coupling element is given by

 I(x) =

8
<
:
 :=

P
K2�OFE

hKuK1 +
P

K2�FE
hKuK , I 2 �FEP

K2�OFE
'̂I

KuK +
P

K2�FE
'̂I

K , I 2 �OFE

(15)

It is noted that uK1 is the constant part of the nodal unknown polynomial for node

K, and it can also be seen that
P

K2�OFE
hKuK1 +

P
K2�FE

hKuK is independent

of the index I, thus it is denoted by  . If �FE = ;, the interpolation for coupling

elements coincides with that for overlapping elements.

2.6 Mesh distortion sensitivity and convergence rates

First we need to prove that the overlapping finite elements with the k-th order basis

are able to exactly represent the complete k-th order polynomials no matter whether

the mesh is distorted or not, which is due to the fact that the new shape functions

are still partition of unity functions on each element.

15

Figure 3-6: Coupling between overlapping elements and finite elements

To obtain a continuous coupling interpolation, it is sufficient to require the local

field 𝜓𝐼 to be continuous in the corresponding polygonal element 𝐷𝐼 . If node 𝐼 is a
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node of a coupling element, the function 𝜓𝐼 is given by

𝜓𝐼 =

⎧
⎪⎨
⎪⎩
𝛼, 𝐼 ∈ ΛFE

∑︀
𝐾∈ΛOFE

𝜑𝐼
𝐾𝑢𝐾 +

∑︀
𝐾∈ΛFE

𝜑𝐼
𝐾𝛼, 𝐼 ∈ ΛOFE

(3.13)

where ΛFE and ΛOFE are the set of finite element nodes in this element and the set

of overlapping element nodes in this element, respectively. The function 𝛼 is defined

by

𝛼 =
∑︁

𝐾∈ΛOFE

ℎ𝐾𝑎𝐾1 +
∑︁

𝐾∈ΛFE

ℎ𝐾𝑢𝐾 (3.14)

where 𝑎𝐾1 is the constant part of the nodal polynomial at node 𝐾, and ℎ𝐾 is the

bilinear shape function in 4-node finite elements.

The function 𝜓𝐼 is actually consistent with the interpolations of pure overlap-

ping elements and pure finite elements. If ΛFE = ∅, Equation 3.13 degenerates to

Equation 3.6. On the other hand, if ΛOFE = ∅, the final interpolation becomes the

isoparametric interpolation since
∑︀

𝐾 ℎ𝐾 = 1.

To see the continuity of the coupling interpolation, the continuity of 𝜓𝐼 in 𝐷𝐼 can

be verified using the coefficients listed in Table 3.1. Indeed, on an element edge 𝐼−𝐽 ,

the local fields 𝜓𝐼 and 𝜓𝐽 are unambiguously determined by the nodal unknowns 𝑢𝐼

and 𝑢𝐽 . Hence, the final interpolation is continuously defined.

It is important to note that the coupling interpolation is able to reproduce an

arbitrary linear field. Let 𝑝1(x) be a linear field. We simply assign nodal unknowns

by

𝑢𝐼 =

⎧
⎪⎨
⎪⎩
𝑝1(x), 𝐼 ∈ ΛOFE

𝑝1(x𝐼), 𝐼 ∈ ΛFE

(3.15)

Then, 𝛼 = 𝑝1(x) and the final interpolation reproduces the linear field. It is therefore

seen that the coupling scheme passes the constant stress patch tests. We show in

the next section that the overlapping element interpolation is able to reproduce even

higher-order polynomial fields, which is an important reason why the overlapping

elements are less sensitive to mesh distortions [1, 54].
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3.6 The mesh distortion sensitivity and convergence

rates

Assume the 𝑘th order basis is used in overlapping elements. Given an arbitrary 𝑘th

order polynomial function 𝑝𝑘, we can choose all nodal polynomials to be 𝑝𝑘 and the

final interpolation in an element becomes

𝑢 =
4∑︁

𝐼=1

𝜌𝐼𝑝𝑘 (3.16)

The new shape functions 𝜌𝐼 still satisfy the partition of unity property as
∑︀4

𝐼=1 𝜌𝐼 =
∑︀4

𝐼=1

∑︀4
𝐽=1 ℎ𝐽𝜑

𝐽
𝐼 = 1, where we use

∑︀4
𝐼=1 𝜑

𝐽
𝐼 = 1. Therefore, 𝑢 = 𝑝𝑘 holds over the

analysis domain. Note that this result does not rely on any assumption on the mesh

regularity. As a result, the proposed elements show less mesh distortion sensitivity

than traditional high-order finite elements, especially elements in the Serendipity

family [1, 54].

Since the overlapping elements with the 𝑘th order basis equipped can exactly solve

any 𝑘th order polynomial, it is naturally expected that the corresponding convergence

rate is 𝑘. Indeed, assuming that the exact solution is smooth enough, the 𝑘th order

basis is used, and the mesh is reasonably regular, the convergence rate with respect to

the energy norm is 𝑘. A detailed discussion on the convergence is given in Chapter 5.

3.7 The use of overlapping elements in AMORE

The AMORE paradigm aims to enable efficient and automatic meshing of a geometry

obtained by any CAD program or by a computerized scan. Overlapping elements play

a key role as they are insensitive to mesh distortions. They can be used in areas that

are difficult to mesh with traditional elements.

The use of overlapping elements in AMORE involves the following steps:

1. The analysis domain is covered by a Cartesian grid. After this step, the interior

of the analysis domain is divided into regular cells.
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2. The boundaries are discretized. The cells located outside the domain or cut-

ting the boundaries are deleted. The discretized boundaries work as seeds for

discretizing the boundary regions.

3. The remaining Cartesian cells are converted into traditional elements.

4. Now the boundary regions are empty. We can fill in these regions using over-

lapping elements based on the discretized boundaries.

In the last step, the boundary regions can be meshed easily with a relaxed regu-

larity requirement since overlapping elements can still perform well in distorted con-

figurations. In the solution stage, the program automatically identifies all coupling

elements and uses the coupling interpolation upon them. Some coupling elements can

actually become pure overlapping elements. As mentioned in Section 3.5, the coupling

interpolation then automatically degenerates into the overlapping interpolation.

A numerical example illustrating the use of overlapping elements in AMORE is

given in Section 6.1.5.
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Chapter 4

Overlapping Finite Element Meshes

In the previous chapter, the overlapping finite element is formulated as the overlapped

region of several polygonal elements. Although attractive aspects of meshless methods

and traditional elements are adopted, conforming meshes are still required throughout

the solution procedure.

To further reduce the meshing effort, we present a method of overlapping finite

element meshes [8]. In this new scheme, elements from different meshes can overlap

freely, as shown in Figure 4-1. The complete analysis domain is first divided into

several subdomains, each of which is then meshed independently. Even though the

whole analysis domain may be of complex shape, since subdomains are allowed to

overlap, each of them can be of regular shape and hence discretized easily using

a regular conforming mesh. For each subdomain and the mesh on it, we can use

any compatible interpolation as the local field. The final stage is to combine these

interpolations together to form a global compatible field. As in the formulation of

quadrilateral overlapping elements, we establish continuous weight functions as a

partition of unity for the analysis domain according to the domain decomposition.

The weighted average of local fields is then the final interpolation.

To render the scheme effective, the construction of weight functions must be

achieved with reasonable computational effort. We use in this thesis the plane sweep

algorithm to calculate the mesh overlay structure and build upon the mesh overlay

the weight functions.
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Figure 4-1: Overlapping of meshes

In the following sections, we introduce the method of overlapping finite element

meshes for static problems in two-dimensional linear elasticity. The technique is

essentially an interpolation scheme and can be readily used for other problems.

4.1 The domain decomposition

We first introduce the notations used. The analysis domain is denoted by Ω, which

is decomposed into several subdomains Ω𝑖 (𝑖 = 1, . . . ,𝑚). These subdomains over-

lap and satisfy Ω = ∪𝑚
𝑖=1Ω𝑖. The overlapped regions cannot degenerate into a curve

because each subdomain is regarded as an open set which does not contain its bound-

ary. We will also see that the minimum overlapping size (see Section 5.3) enters the

error bound so it cannot be too small compared with the element sizes. Although

theoretically there is still no guarantee of convergence as the overlapped regions de-

generate, we are interested in such a limit case where the overlapping meshes become

non-matching meshes. A discussion is given in Section 5.3.

The boundary of the analysis domain is denoted by 𝜕Ω, and, similarly, 𝜕Ω𝑖 is the

boundary of the subdomain Ω𝑖. The boundary 𝜕Ω𝑖 can be divided into the interior
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part Γ*
𝑖 = 𝜕Ω𝑖 ∩ Ω and the exterior part Γ𝑖 = 𝜕Ω𝑖 ∩ 𝜕Ω. This decomposition is used

for formulating weight functions.

An example domain decomposition can be seen in Figure 4-2, in which the analysis

domain is decomposed into three subdomains. In most practical problems, the number

of meshes need not exceed three. Actually, each single mesh can be disconnected,

which means that several connected meshes can be combined and regarded as a single

mesh, as long as these meshes do not overlap with each other. We will see examples

of disconnected meshes in Section 6.2. The conforming mesh on subdomain Ω𝑖 is

denoted by 𝒯𝑖. Since each subdomain is discretized independently, each mesh has its

own nodes and degrees of freedom (dofs). In other words, two nodes from different

meshes may have the same coordinates but they never share dofs.

The meshes of the subdomains form a mesh overlay for the analysis domain.

As mentioned in the beginning of this chapter, we use the information of the mesh

overlay to establish continuous weight functions corresponding to different meshes.

The efficiency of this process relies on the algorithms and data structures used for

calculating and storing the mesh overlay. We suggest here using a modified version of

the plane sweep algorithm [55, 56]. The algorithms used are also briefly introduced

in Appendix B.

4.2 The weight functions

If an element is not overlapping with other meshes, we want the final interpolation

in this element to be identical to the local field. The weight functions are designed

to meet this property and represent the contributions of different meshes. Let 𝑤𝑖(x)

(𝑖 = 1, . . . ,𝑚) be the weight functions. The following conditions should be satisfied:

1. The weight functions are continuous and non-negative over the analysis domain.

2. The weight function 𝑤𝑖 vanishes outside the corresponding subdomain Ω𝑖.

3. The partition of unity property is satisfied by weight functions, i.e.
∑︀𝑚

𝑖=1𝑤𝑖(x) =

1 holds on Ω.
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Figure 4-2: An example of the domain decomposition, 𝑚 = 3
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Assume on each mesh 𝒯𝑖 a local field u𝑖 is interpolated, the final interpolation is

then the weighted average
∑︀𝑚

𝑖=1𝑤𝑖u𝑖. Since the weight functions are continuous and

satisfy the partition of unity property, the final interpolation is continuous and can

exactly solve any linear field as long as each local field u𝑖 is continuous (in Ω𝑖) and

contains an arbitrary linear field. In other words, the constant stress patch tests are

passed and the convergence is concluded.

Now we suggest a formulation of the weight functions using the mesh overlay

structure. On the subdomain Ω𝑖, we construct a function 𝑃𝑖(x) =
∑︀

𝑗 ℎ
𝑖
𝑗(x)𝑝𝑖𝑗, where

ℎ𝑖𝑗 is the shape function used in low-order finite elements, 𝑗 is a node of the mesh

𝒯𝑖, and 𝑝𝑖𝑗 is the nodal weight at the node 𝑗. We use here low-order shape functions,

e.g. bilinear shape functions for quadrilateral elements and linear shape functions

for triangular elements, to ensure that the function 𝑃𝑖 is non-negative if all nodal

weights are chosen to be non-negative. Since 𝑤𝑖 is required to be continuous and

vanish outside its subdomain, we assign 𝑝𝑖𝑗 = 0 if the node 𝑗 is on the closure of Γ*
𝑖 .

All other nodal values 𝑝𝑖𝑗 are assigned 1, as shown in Figure 4-2c. It can be seen

that the functions 𝑃𝑖 (𝑖 = 1, . . . ,𝑚) now satisfy the first two conditions. The weight

functions can then be obtained by normalizing 𝑃𝑖:

𝑤𝑖(x) =
𝛼𝑖𝑃𝑖(x)∑︀
𝑗 𝛼𝑗𝑃𝑗(x)

(4.1)

where 𝛼𝑖 (𝑖 = 1, . . . ,𝑚) are constants used in the actual implementation. In the

present scheme, the first mesh consisting of regular 4-node finite elements is used to

discretize the interior domain, and higher-order elements are used in other meshes to

resolve the boundary stress concentrations and the boundary curvature. We therefore

use 𝛼1 = 1 and 𝛼2 = · · · = 𝛼𝑚 = 9 as the interpolation can put more weight on the

higher-order interpolation on an overlapped region.

In a reasonable mesh, 𝑃𝑖 is strictly positive in Ω𝑖. Since Ω = ∪𝑚
𝑖=1Ω𝑖,

∑︀
𝑖 𝛼𝑖𝑃𝑖 >

0 in the analysis domain Ω and the weight functions are well defined in Ω. We

will introduce an example of invalid meshes in Section 4.5, where 𝑃𝑖 is not strictly

positive in Ω𝑖. Such invalid meshes should of course be avoided and the meshes can
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be easily checked before the solution process can continue. We note that such an

invalid mesh will not occur if the mesh is reasonably fine. In addition, we assume the

weight functions are well defined at all boundary nodes. This assumption actually

corresponds to non-zero overlapping sizes, see Section 5.3.

The weight functions defined in Equation 4.1 are rational functions, which may

lead to expensive numerical integration of the stiffness matrix. In the actual im-

plementation, we further interpolate the weight functions over triangles by linear

functions, see Section 6.2. The re-interpolation allows for more effective numerical

integration while all requirements for 𝑤𝑖 (𝑖 = 1, . . . ,𝑚) are still satisfied.

4.3 The interpolation

On each subdomain Ω𝑖 and the mesh 𝒯𝑖, we can use any compatible interpolation

technique to obtain a local field u𝑖(x), e.g. the isoparametric interpolations [1], the

finite elements enriched by interpolation covers [53], and the overlapping finite ele-

ments [2, 3, 4, 5, 6, 7]. We use here the traditional isoparametric interpolations for

the sake of simplicity. Let

u𝑖(x) = H𝑖(x)q𝑖 (4.2)

be the local interpolation on subdomain Ω𝑖, where H𝑖 is the corresponding shape

function matrix, and q𝑖 is a vector of degrees of freedom. The final interpolation is

the weighted average of local fields, i.e.

u(x) =
𝑚∑︁

𝑖=1

𝑤𝑖(x)u𝑖(x) =
𝑚∑︁

𝑖=1

𝑤𝑖(x)H𝑖(x)q𝑖 (4.3)

whence we have the strain interpolation

𝜀(x) =
𝑚∑︁

𝑖=1

B𝑖(x)q𝑖 =
[︁
B1 · · · B𝑚

]︁
⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

q1

...

q𝑚

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

(4.4)
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with

B𝑖 =

⎡
⎢⎢⎢⎣

𝜕
𝜕𝑥

0

0 𝜕
𝜕𝑦

𝜕
𝜕𝑦

𝜕
𝜕𝑥

⎤
⎥⎥⎥⎦ [𝑤𝑖(x)H𝑖(x)] (4.5)

The stiffness matrix is then given by

K =

∫︁

Ω

[︁
B1 · · · B𝑚

]︁⊤
C
[︁
B1 · · · B𝑚

]︁
dΩ (4.6)

where C is the elastic stress-strain matrix. The stiffness matrix adopts a block struc-

ture K = [K𝑖𝑗] with

K𝑖𝑗 =

∫︁

Ω

B⊤
𝑖 CB𝑗dΩ =

∫︁

Ω𝑖∩Ω𝑗

B⊤
𝑖 CB𝑗dΩ (4.7)

where we use the fact that B𝑖 vanishes outside Ω𝑖.

Since the displacement interpolation is only piecewise smooth, the integrand of

the stiffness matrix is piecewise defined and piecewise continuous on the mesh overlay.

The discontinuity makes the numerical integration much more challenging than that

of conventional finite elements. Instead of integrating over each single element, we

now need to integrate over each polygon induced by the overlapping meshes. To do

so, we first establish the geometric structure of the mesh overlay and then triangulate

the polygons in the overlapped regions. Quadrature schemes for triangles can then

be used [1, 57, 58]. A detailed discussion of the numerical integration is given in

Section 6.2.

4.4 The boundary conditions

We consider here the common displacement boundary conditions and force bound-

ary conditions. On the displacement boundary 𝑆𝑢, usually the displacement or a

component of the displacement is prescribed. In such cases, we require each local

field to satisfy the same constraints if the corresponding subdomain touches 𝑆𝑢. The

final interpolation will then automatically satisfy the given displacement boundary
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conditions since the weight functions form a partition of unity.

The force boundary conditions are imposed weakly via the variational form, or

the principle of virtual work, i.e.

⎡
⎢⎢⎢⎣

𝛿q1

...

𝛿q𝑚

⎤
⎥⎥⎥⎦

⊤

F =

∫︁

Ω

𝛿u · bdΩ +

∫︁

𝑆𝑓

𝛿u · fd𝑆 +
∑︁

𝑐

𝛿u(x𝑐) ·P𝑐 (4.8)

where F is the vector of equivalent nodal forces, 𝛿 is the variational symbol, b is the

vector of external body forces, 𝑆𝑓 is the force boundary, f is the vector of boundary

tractions, and P𝑐 denotes a concentrated external force at point x𝑐. The virtual

displacement can be directly obtained from Equation 4.3:

𝛿u(x) =
𝑚∑︁

𝑖=1

𝑤𝑖(x)H𝑖(x)𝛿q𝑖 (4.9)

Since several meshes may overlap at a location, an external force can contribute to

several meshes at one time as can be readily seen from the above equations.

4.5 The solvability and convergence

Direct sparse solvers for symmetric positive definite systems are usually preferred in

the solution of problems in solid mechanics. In this section, we analyze the conditions

for the stiffness matrix to be symmetric positive definite after imposing essential

boundary conditions, and briefly introduce the convergence rate of the method of

overlapping meshes.

For static problems in linear elasticity, the bilinear form of the variational problem

is bounded and coercive, provided that the material parameters and displacement

boundary conditions are proper. As a result, solution to the variational problem

always exists and is unique [1, 59, 60, 61]. However, the resulting stiffness matrix can

still be singular (positive semi-definite) if two assignments of degrees of freedom may

correspond to the same displacement field. For the discretized equations to have a
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unique solution of the degrees of freedom, there must be a one-to-one correspondence

between the displacement field and the total vector of degrees of freedom. If such

a correspondence exists, the stiffness matrix is guaranteed to be symmetric positive

definite after imposing essential boundary conditions. We therefore have the following

condition for solvability:

Condition 1 (Necessary and Sufficient). Assume the weight functions 𝑤𝑖 are well

defined and further interpolated by linear functions over triangles (see Section 6.2 for

more details). The equation
∑︀𝑚

𝑖=1𝑤𝑖H𝑖q𝑖 = 0 has only the unique solution q𝑖 = 0

(𝑖 = 1, . . . ,𝑚).

Unfortunately, this condition cannot be used directly to give constraints on the

overlapping meshes without running the actual solution procedure. Ideally we want

a procedure to quickly check if a given mesh overlay leads to a well-posed system of

equations. We hence introduce some more practical criteria that should be satisfied

by the overlapping meshes.

We first consider the issue mentioned in Section 4.2. We require the function 𝑃𝑖 to

be strictly positive inside the subdomain Ω𝑖. However, in some case, this condition is

not met, see for example Figure 4-3. The function 𝑃𝑖 vanishes on element 𝑒 because

all four nodes of this element are located on Γ*
𝑖 . It is then seen that 𝑤𝑖 also vanishes on

element 𝑒. The degrees of freedom at nodes 2 and 3 have no contribution to the final

interpolation since the weight 𝑤𝑖 vanishes on the support of nodes 2 and 3. Therefore,

the assignment of dofs for nodes 2 and 3 can be arbitrary and Condition 1 cannot

be satisfied. This type of invalid meshes can be easily checked using a program by

examining all elements after the mesh overlay is established. It is also seen that such

an invalid mesh only occurs if the mesh is very coarse. Actually, if the element 𝑒 is

further divided into 4 elements, the issue no longer exists.

It is then necessary to avoid such invalid meshes. In other words, the following

condition on weight functions 𝑤𝑖 should necessarily be satisfied in order to obtain a

solvable interpolation:

Condition 2 (Necessary). Each 𝑤𝑖 is strictly positive in Ω𝑖. Here we consider the
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Figure 4-3: An invalid mesh

weight functions defined by Equation 4.1.

In addition, to avoid non-trivial solutions for
∑︀𝑚

𝑖=1𝑤𝑖H𝑖q𝑖 = 0, any weighted

displacement interpolation of one mesh cannot be contained in the linear combina-

tion of weighted interpolations of other meshes. Due to the piecewise definition of

isoparametric interpolations, this is achieved by preventing nodes from overlapping

each other except for some boundary nodes.

Note that the weight functions satisfy the partition of unity property. Further-

more, each weight function vanishes outside its subdomain. The global interpolation

error has contributions from each individual local field and the convergence rate of

the numerical solution is dominated by the lowest-order mesh used. Each individual

mesh is responsible for its own subdomain and the local interpolation error can be

reduced by using higher-order elements locally. Since, in the problems considered, the

solution error in the energy norm is usually of the most interest, the derivatives of

weight functions contribute to the global solution error. As a result, the derivatives

of weight functions cannot grow too fast, which actually corresponds to requiring

reasonably thick overlapped regions.

It is seen already that the final interpolation can exactly solve an arbitrary linear

field provided that each local field contains an arbitrary linear field. Hence, the

scheme should converge with at least the first order convergence.

A detailed discussion on an error estimate and the effect of overlapping sizes is

given in Section 5.3.
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4.6 The use of overlapping meshes in AMORE

In AMORE, a regular traditional mesh is used for the interior domain and higher-order

elements are used near the boundaries to resolve the boundary stress concentrations

and boundary curvature. In the case of overlapping meshes, independent meshes can

be spanned for different parts of the analysis domain and they are free to overlap.

We suggest the following meshing steps using traditional finite elements:

1. A regular Cartesian grid is spanned over the complete domain of interest.

2. The cells located outside the domain or cutting the boundaries are removed.

The remaining cells are converted into 4-node traditional elements, which form

the first mesh and the interior subdomain.

3. The boundary regions are divided into several regular subdomains and each

subdomain is meshed with 9-node traditional elements.

The meshing procedure is compatible with any reasonable representation of the

geometry. Since subdomains or meshes are allowed to overlap freely, the subdomains

can all be chosen to be quite regular and the meshes can be simply spanned by

procedures such as the coordinate mapping. Although we use traditional elements in

the present scheme, the poor performance of them in distorted meshes is effectively

avoided since the new meshing procedure and the use of overlapping meshes lead to

good quality of each individual mesh.

Several illustrative examples of overlapping meshes in practical engineering prob-

lems are given in Section 6.2.
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Chapter 5

Convergence of the Methods

We have introduced the formulations of quadrilateral overlapping finite elements and

the method of overlapping finite element meshes in preceding chapters. These new

methods involve new interpolation techniques and the resulting fields are continuous.

In this chapter, we use the mathematical theorems of conforming finite elements to

establish error estimates for these proposed schemes.

Our discussion focuses on a well-posed static problem in two-dimensional linear

elasticity.

5.1 Preliminaries

Let Ω be a bounded open connected subset in R2 with a Lipschitz-continuous bound-

ary 𝜕Ω. Let 𝑆𝑢 be a subset of 𝜕Ω with strictly positive measure, and 𝑆𝑓 = 𝜕Ω − 𝑆𝑢.

The stress tensor is denoted by 𝜏𝑖𝑗, and the strain tensor is denoted by 𝜖𝑖𝑗. We con-

sider the solution of the displacement field u = (𝑢1, 𝑢2) in the following system of

differential equations:

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

𝜏𝑖𝑗,𝑗(u) + 𝑓𝑖 = 0

𝜏𝑖𝑗(u) = 𝜆𝜖𝑘𝑘(u)𝛿𝑖𝑗 + 2𝜇𝜖𝑖𝑗(u)

𝜖𝑖𝑗(u) =
1

2
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖)

(5.1)
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with boundary conditions ⎧
⎨
⎩
u = 0 on 𝑆𝑢

𝜏𝑖𝑗(u)𝑛𝑗 = 𝑔𝑖 on 𝑆𝑓

(5.2)

where the Einstein summation convention is used, 1 ≤ 𝑖, 𝑗 ≤ 2 are indices, 𝜏𝑖𝑗,𝑗(u) =

𝜕𝜏𝑖𝑗(u)

𝜕𝑥𝑗
, 𝑢𝑖,𝑗 = 𝜕𝑢𝑖

𝜕𝑥𝑗
, n = (𝑛1, 𝑛2) is the unit outer normal of 𝜕Ω, f = (𝑓1, 𝑓2) is the

body force vector, g = (𝑔1, 𝑔2) is the vector of boundary tractions, and 𝜆 and 𝜇 are

material constants.

In following discussions, we denote ‖ · ‖𝑘,Ω the 𝐻𝑘 norm over Ω and | · |𝑘,Ω the 𝐻𝑘

semi-norm over Ω. Whenever the domain Ω is clear, we simply write ‖ · ‖𝑘 and | · |𝑘.

It is well known that the exact displacement solution yields a minimum potential

energy of the system among all kinematically admissible displacements, which is called

the principle of minimum potential energy. Let V = {(𝑣1, 𝑣2) | 𝑣𝑖 ∈ 𝐻1(Ω) and 𝑣𝑖 =

0 on 𝑆𝑢} be the space of kinematically admissible displacements equipped with the

product norm ‖v‖1 =
(︀∑︀2

𝑖=1 ‖𝑣𝑖‖21
)︀1/2

. The space V is a Hilbert space. The potential

energy functional 𝐽 is given by

𝐽(v) =
1

2
𝑎(v,v) − 𝑓(v) (5.3)

where 𝑎(·, ·) is a bilinear form representing the strain energy, and −𝑓(·) is a linear

form representing the potential energy of external forces. It can be seen that

𝑎(u,v) =

∫︁

Ω

{𝜆𝑢𝑖,𝑖𝑣𝑗,𝑗 + 2𝜇𝜖𝑖𝑗(u)𝜖𝑖𝑗(v)} dΩ (5.4)

and

𝑓(v) =

∫︁

Ω

f · vdΩ +

∫︁

𝑆𝑓

g · vd𝑆 (5.5)

in which we assume in addition 𝑓𝑖 ∈ 𝐿2(Ω) and 𝑔𝑖 ∈ 𝐿2(𝑆𝑓 ) for 𝑖 = 1, 2 so that the

integrations are well defined and the linear form 𝑓(·) is continuous. It is also clear that

𝑎(·, ·) is continuous. Using Korn’s Inequality ‖v‖1 ≤ 𝐶(Ω)
(︁∑︀2

𝑖,𝑗=1 |𝜖𝑖𝑗(v)|20 +
∑︀2

𝑖=1 |𝑣𝑖|20
)︁1/2

,

where 𝐶(Ω) is a constant dependent only on the domain Ω, it can be further proved

that the bilinear form is coercive, provided the material parameters are reasonable
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and the displacement boundary 𝑆𝑢 has a strictly positive measure [1, 59, 60, 62].

Therefore, the energy norm ‖v‖𝑒 =
√︀
𝑎(v,v) is equivalent to the 𝐻1 product norm,

𝑎(·, ·) defines an inner product, and V is also a Hilbert space with respect to the

energy norm. In addition, the energy norm is also equivalent to the 𝐻1 product

semi-norm |v|1 =
(︀∑︀2

𝑖=1 |𝑣𝑖|21
)︀1/2

.

Minimization of the potential energy equivalently yields the principle of virtual

work, i.e. the exact solution u satisfies 𝑎(u,v) = 𝑓(v) for all v ∈ V. This principle

indicating a balance between the internal virtual work and the external virtual work

is called a variational form corresponding to the original boundary value problem. It

is an immediate result of the Lax-Milgram lemma that the variational problem adopts

a unique solution [59, 60, 61].

The main idea of conforming finite element methods is to use a finite-dimensional

subspace Vℎ ⊂ V to approximate the original space, and find an approximation

in the subspace in the sense of the variational problem. The subspace, being finite-

dimensional, is also a Hilbert space with respect to the same norm and inner product.

Therefore all of our discussions on the space V still hold on the subspace Vℎ. Our

main focus is to find a displacement field uℎ ∈ Vℎ such that

𝑎(uℎ,vℎ) = 𝑓(vℎ), ∀ vℎ ∈ Vℎ (5.6)

The approximation space Vℎ, being a subspace of V, leads to some restrictions

on the actual interpolation used. We consider, for simplicity, the interpolation using

straight-edge polygons. In other words, the whole analysis domain is discretized into

non-overlapping (closed) polygons 𝐾𝑖, whose boundaries are assumed to be piecewise

straight and therefore Lipschitz-continuous. To satisfy ∪𝑖𝐾𝑖 = Ω̄, the domain needs

to be polygonal. It is then a basic result that if the interpolation is piecewise smooth

and continuous over the analysis domain, the finite-dimensional approximation space

is a subspace of V [59, 60, 61].

Our discussion focuses on the new interpolation schemes and therefore ignores

other non-essential factors. For example, the effect of numerical integration is ignored.
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The accuracy of the numerical approximation uℎ depends on the accuracy of

the interpolation. In general, let u be the exact solution and uℎ be the numerical

solution, the solution error ‖u − uℎ‖ ≤ 𝐶 infvℎ∈Vℎ
‖u − vℎ‖, provided the bilinear

form 𝑎(·, ·) is continuous and coercive, and 𝐶 is a constant determined by the bilinear

form [59, 60, 61]. This result is called Céa’s lemma. The ‖ · ‖ represents any norm

equivalent to the 𝐻1 product norm. In following sections we consider the 𝐻1 product

semi-norm. Since the solution error is bounded by the interpolation error, we focus in

subsequent sections on the interpolation error using the proposed new interpolations.

To further simplify our discussion, we consider the interpolation of one displacement

component 𝑢.

In following sections, we use without proof some classical interpolation theorems

for traditional finite elements. The detailed discussions can be found in References [59,

60, 61, 63].

Throughout the following sections, we use 𝐶 as a generic constant independent of

the element size.

5.2 Convergence of the overlapping elements

5.2.1 Properties of the interpolation

Recall that the interpolation on each element is given in the form 𝑢(x) =
∑︀

𝐼 𝜌𝐼(x)𝑢𝐼(x),

where 𝜌𝐼(x) is the new shape function and 𝑢𝐼(x) is a nodal polynomial. The dis-

placement interpolation is formulated as the weighted average of several local fields

interpolated by the method of finite spheres.

As mentioned in Chapter 3, the interpolation is continuous over the whole domain

since each local interpolation 𝜓𝐼 is continuous in its corresponding polygonal element

𝐷𝐼 and each traditional shape function ℎ𝐼 is continuous over the whole domain and

vanishes outside its corresponding polygonal element 𝐷𝐼 , see Equation 3.3. It is seen

from Table 3.1 that each 𝜑𝐼
𝐽 is continuous in 𝐷𝐼 . Since the added 𝛿𝐼𝐽 term does not

influence the continuity, each 𝜑𝐼
𝐽 is also continuous in the polygonal element 𝐷𝐼 . It
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is therefore concluded from Equation 3.6 that the local field 𝜓𝐼 is continuous in 𝐷𝐼 .

In addition, the final interpolation is by definition smooth on each element, provided

that elements are not severely distorted. We see that the overlapping finite elements

are conforming.

It follows from the continuity of the interpolation that each 𝜌𝐼 is continuous and

vanishes outside its corresponding polygonal element𝐷𝐼 . If we make all nodal polyno-

mials zero except for 𝑢𝐼 = 1, the displacement field is 𝑢 = 𝜌𝐼 , hence 𝜌𝐼 is continuous.

It is also directly seen from the interpolation that each 𝑢𝐼 has influence only on its

adjacent elements, i.e. the support of 𝜌𝐼 is in 𝐷𝐼 . As a result, 𝜌𝐼 must vanish on the

boundary 𝜕𝐷𝐼 .

The above discussion also holds for any constrained node on the boundary. For

imposing boundary displacement constraints, we use a special form for the local fields

at constrained boundary nodes. We see from Section 3.4 that 𝜑𝐼
𝐽 = 𝛿𝐼𝐽 holds for a

constrained node 𝐼, and, being a special form of the interpolation when 𝑟𝐼 ≫ 𝑟*𝐼 , 𝜌𝐼

is still continuous and vanishes outside 𝐷𝐼 in this case.

We have shown in Section 3.6 that the new shape functions 𝜌𝐼 satisfy the partition

of unity property, which is actually a crucial fact for proving the error bound, as

presented in the next section.

5.2.2 The convergence rate

An interesting feature of the overlapping finite elements is that the interpolation con-

sists of two components, the shape functions and the nodal polynomials, which are

constructed in different coordinate systems. The new shape functions have contri-

butions from both traditional and meshless interpolations, see Equation 3.10. How-

ever, the Shepard functions are further interpolated using traditional interpolations.

Therefore the new shape functions are essentially defined in the local coordinates.

On the contrary, the nodal polynomials are directly defined in the (local) Cartesian

coordinates.

In traditional finite element analysis, any element in the physical domain is mapped

from a fixed reference element. The error bound is also built upon the interpolation
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error in this reference element. Since the new interpolation scheme adopts a mixed

form using both local (isoparametric coordinates for quadrilaterals and area coordi-

nates for triangles) and Cartesian coordinates, it is actually much more convenient

to directly approximate the interpolation error in the global coordinate system. For

simplicity, we assume the exact solution 𝑢 has bounded derivatives up to the order

(𝑘 + 1), where 𝑘 is the order of nodal polynomials.

As argued in the previous section, we assume the domain is polygonal so that the

overlapping finite elements are conforming. In addition, we consider a shape regular

and quasi-uniform mesh, that is to say, all elements are of regular shape and their

sizes are all close.

For a point x in the polygonal element 𝐷𝐼 , since the polygonal element 𝐷𝐼 consists

of all triangles and quadrilaterals coupling into node 𝐼, the line segment adjoining

node 𝐼 and the point x is contained in the analysis domain. We can therefore use the

Taylor series expansion along this line to find a local polynomial approximation 𝑢*𝐼 of

order 𝑘 such that ⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

|𝑢(x) − 𝑢*𝐼(x)| ≤ 𝐶𝑟𝑘+1
𝐼⃒⃒

⃒⃒𝜕[𝑢(x)−𝑢*
𝐼 (x)]

𝜕𝑥

⃒⃒
⃒⃒ ≤ 𝐶𝑟𝑘𝐼⃒⃒

⃒⃒𝜕[𝑢(x)−𝑢*
𝐼 (x)]

𝜕𝑦

⃒⃒
⃒⃒ ≤ 𝐶𝑟𝑘𝐼

(5.7)

holds for all x ∈ 𝐷𝐼 , where 𝑟𝐼 is the support radius for 𝐷𝐼 (see Equation 3.4), and 𝐶

is a generic constant independent of the element size.

Since the mesh is shape regular and quasi-uniform, we assume that

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

|𝜌𝐼(x)| ≤ 𝐶
⃒⃒
⃒𝜕𝜌𝐼(x)𝜕𝑥

⃒⃒
⃒ ≤ 𝐶

𝑟𝐼⃒⃒
⃒𝜕𝜌𝐼(x)𝜕𝑦

⃒⃒
⃒ ≤ 𝐶

𝑟𝐼

(5.8)

holds for all x ∈ 𝐷𝐼 .

Now we take 𝑢* =
∑︀

𝐼 𝜌𝐼𝑢
*
𝐼 and estimate the interpolation error in the 𝐻1 semi-
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norm

|𝑢− 𝑢*|21 =

∫︁

Ω

{︃⃒⃒
⃒⃒ 𝜕
𝜕𝑥

(𝑢− 𝑢*)

⃒⃒
⃒⃒
2

+

⃒⃒
⃒⃒ 𝜕
𝜕𝑦

(𝑢− 𝑢*)

⃒⃒
⃒⃒
2
}︃

dΩ

=

∫︁

Ω

⎧
⎨
⎩

⃒⃒
⃒⃒
⃒
𝜕

𝜕𝑥

∑︁

𝐼

𝜌𝐼(𝑢− 𝑢*𝐼)

⃒⃒
⃒⃒
⃒

2

+

⃒⃒
⃒⃒
⃒
𝜕

𝜕𝑦

∑︁

𝐼

𝜌𝐼(𝑢− 𝑢*𝐼)

⃒⃒
⃒⃒
⃒

2
⎫
⎬
⎭ dΩ

(5.9)

where we use 𝑢 =
∑︀

𝐼 𝜌𝐼𝑢 since
∑︀

𝐼 𝜌𝐼 = 1.

On each quadrilateral or triangular overlapped element, the summation over 𝐼

involves at most four non-zero items because the element interpolation is dependent

only on all nodal dofs of this element. Since the mesh is shape regular and quasi-

uniform, denoting by ℎ = max𝐼{𝑟𝐼} the maximum element size, we have 𝑟𝐼 ≥ 𝛾ℎ for

some positive constant 𝛾. Consequently, the integrand in Equation 5.9 is bounded by

𝐶ℎ2𝑘 due to Inequalities 5.7 and 5.8. We therefore have

|𝑢− 𝑢*|21 ≤ 𝐶ℎ2𝑘 (5.10)

and conclude from Céa’s lemma that the overlapping finite elements with the 𝑘th

order basis yield a convergence rate of 𝑘.

We note that the above convergence rate may still be proved if we only assume 𝑢 ∈
𝐻𝑘+1(Ω). In fact, assuming the bounds in Inequality 5.8, we only need to show that a

local polynomial 𝑢*𝐼 exists satisfying inequalities similar to those in Inequality 5.7 but

in the 𝐿2(𝐷𝐼) norm. This may be achieved in the standard way using the Deny-Lions

Inequality [59, 60, 61] and considering the errors in a reference element with unit

support radius. One may refer to References [27, 28] for the idea of the proof.

A numerical example illustrating the convergence rates is given in Section 6.1.3.
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5.3 Convergence of the overlapping meshes

5.3.1 Properties of the interpolation

In the method of overlapping finite element meshes, the analysis domain Ω is de-

composed into 𝑚 subdomains Ω𝑖 (𝑖 = 1, . . . ,𝑚). Each subdomain Ω𝑖 is then meshed

with its own conforming mesh 𝒯𝑖 and traditional finite element interpolations are

used to give a local interpolation 𝑢𝑖. On each subdomain Ω𝑖, a non-negative weight

function 𝑤𝑖 is constructed using low-order finite element interpolations. These weight

functions form a partition of unity for the whole analysis domain and are by con-

struction continuous with supp(𝑤𝑖) ⊂ Ω̄𝑖. The final interpolation is the weighted

average 𝑢 =
∑︀

𝑖𝑤𝑖𝑢𝑖. To integrate the stiffness matrix, the mesh overlay structure

is computed and stored, and the overlapped regions are divided into triangles. The

weight functions are further interpolated by linear functions over each triangle with-

out violating any requirement.

Since the local interpolation 𝑢𝑖 is continuous over Ω𝑖, and 𝑤𝑖 is continuous over Ω

and vanishes outside Ω𝑖, the final field is continuous. The overlapped regions of over-

lapping meshes are divided into triangles. Clearly, the final interpolation is piecewise

smooth in each of these triangles. It follows that the interpolation space is a subspace

of the original space and the method is conforming. We assume again the domain is

polygonal and the space discretization is exact. In addition, each of these overlapping

meshes is shape regular and quasi-uniform. The maximum element size of mesh 𝒯𝑖 is

denoted by ℎ𝑖. An important advantage of the method of overlapping meshes is that,

as subdomains are allowed to overlap freely, each subdomain can in practice have a

regular shape and be meshed with regular finite elements. Therefore, the assumptions

we have here are reasonable and can be fulfilled in engineering practice without much

computational overhead.

In Chapter 4 and Chapter 6, we suggest an effective implementation of the method

of overlapping meshes following the idea of AMORE. A regular 4-node finite element

mesh is used to discretize the interior subdomain and higher-order finite element

meshes are spanned over boundary regions to resolve the boundary stress concen-
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trations and boundary curvature. On an overlapped region between meshes with

different interpolation orders, it is then reasonable to put more weight on the higher-

order interpolation. This is achieved by the constants 𝛼𝑖 (𝑖 = 1, . . . ,𝑚) as seen in

Equation 4.1.

5.3.2 The convergence rate

We still consider the interpolation error of a displacement component in the 𝐻1

semi-norm. If an element in mesh 𝒯𝑖 does not overlap with any other element from

other meshes, the weight function 𝑤𝑖 = 1. It follows that all other weight functions

must vanish on this element, and the element interpolation degenerates to the local

interpolation used. The interpolation error can of course be dealt with using the

well-established theory for traditional finite elements. The total interpolation error

over non-overlapping elements is then dominated by the lowest-order finite element

mesh, which is usually a 4-node finite element mesh for the interior subdomain.

It therefore suffices for us to focus on the interpolation error over the overlapped

regions, where the weight functions come into play. Before estimating the interpola-

tion error, we focus on the weight functions and their derivatives.

The weight functions, being non-negative, necessarily range between 0 and 1.

Their first order derivatives with respect to 𝑥 and 𝑦 are however difficult to bound.

Without extensively studying the details of the complicated overlapped regions, we

propose a reasonable assumption that is clearly true for many typical overlapping

meshes.

Since each weight function 𝑤𝑖 vanishes outside Ω𝑖, we see that
∑︀

𝑗 ̸=𝑖𝑤𝑗 vanishes

outside ∪𝑗 ̸=𝑖Ω𝑗. It follows that 𝑤𝑖 = 1 on the interior boundary of ∪𝑗 ̸=𝑖Ω𝑗, i.e.

[𝜕 (∪𝑗 ̸=𝑖Ω𝑗)]∩Ω, and 𝑤𝑖 = 0 on the interior boundary of Ω𝑖, i.e. (𝜕Ω𝑖)∩Ω. Let ℎ*𝑖 be the

shortest distance between these two interior boundaries (see for example Figure 5-1)

and let ℎ = min𝑖{ℎ*𝑖 } be the smallest overlapping size. As 𝑤𝑖 is continuously defined,

and further interpolated by linear functions, we assume
⃒⃒
𝜕𝑤𝑖

𝜕𝑥

⃒⃒
≤ 𝐶

min{ℎ𝑖,ℎ*
𝑖 }

≤ 𝐶
min{ℎ𝑖,ℎ}

and
⃒⃒
⃒𝜕𝑤𝑖

𝜕𝑦

⃒⃒
⃒ ≤ 𝐶

min{ℎ𝑖,ℎ*
𝑖 }

≤ 𝐶
min{ℎ𝑖,ℎ} , where ℎ𝑖 is the maximum element size of 𝒯𝑖. Here

the ℎ𝑖 enters due to the piecewise interpolation for 𝑃𝑖. It is mentioned in Chapter 4
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that the subdomains should overlap rather than just touch each other. We therefore

assume that there exists a positive constant 𝛾 such that 𝛾ℎ𝑖 ≤ ℎ ∀𝑖, i.e. the overlapped

regions are thick enough.

Ω2

Ω1

Ω3

h1
*

∂Ω

Figure 5-1: The overlapping size ℎ*1 (the domain decomposition is given in Figure 4-2)

Now each subdomain Ω𝑖 contains a non-overlapping part Ω𝑖,1 and an overlapping

part Ω𝑖,2 that satisfy Ω𝑖,2 = Ω𝑖 ∩ (∪𝑗 ̸=𝑖Ω𝑗) and Ω𝑖,1 = Ω𝑖 − Ω𝑖,2. Let 𝑘𝑖 be the

(maximum) order of finite elements in mesh 𝒯𝑖. Assume the exact solution 𝑢 satisfies

‖𝑢‖max𝑖{𝑘𝑖+1},Ω ≤ +∞ as in classical interpolation theory. On each subdomain we can

find an interpolation 𝑢*𝑖 satisfying

|𝑢− 𝑢*𝑖 |21,Ω𝑖
= |𝑢− 𝑢*𝑖 |21,Ω𝑖,1

+ |𝑢− 𝑢*𝑖 |21,Ω𝑖,2
≤ 𝐶ℎ2𝑘𝑖𝑖

‖𝑢− 𝑢*𝑖 ‖20,Ω𝑖
= ‖𝑢− 𝑢*𝑖 ‖20,Ω𝑖,1

+ ‖𝑢− 𝑢*𝑖 ‖20,Ω𝑖,2
≤ 𝐶ℎ2𝑘𝑖+2

𝑖

(5.11)

where 𝐶 is a generic constant independent of the element size [59, 60, 61, 63].

Let 𝑢* =
∑︀

𝑖𝑤𝑖𝑢
*
𝑖 be a global interpolation. The interpolation error in the 𝐻1

semi-norm satisfies

|𝑢− 𝑢*|21,Ω = |𝑢− 𝑢*|21,∪𝑖Ω𝑖,2
+
∑︁

𝑖

|𝑢− 𝑢*|21,Ω𝑖,1

= |𝑢− 𝑢*|21,∪𝑖Ω𝑖,2
+
∑︁

𝑖

|𝑢− 𝑢*𝑖 |21,Ω𝑖,1

≤ |𝑢− 𝑢*|21,∪𝑖Ω𝑖,2
+ 𝐶

∑︁

𝑖

ℎ2𝑘𝑖𝑖

(5.12)
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where the second term on the right-hand side represents the error over non-overlapping

parts and the remaining is the error over the overlapped regions. The first term can

be rewritten as

|𝑢− 𝑢*|21,∪𝑖Ω𝑖,2
=

∫︁

∪𝑖Ω𝑖,2

{︃[︂
𝜕(𝑢− 𝑢*)

𝜕𝑥

]︂2
+

[︂
𝜕(𝑢− 𝑢*)

𝜕𝑦

]︂2}︃
dΩ

=

∫︁

∪𝑖Ω𝑖,2

{︃[︂
𝜕
∑︀

𝑖(𝑤𝑖(𝑢− 𝑢*𝑖 ))

𝜕𝑥

]︂2
+

[︂
𝜕
∑︀

𝑖(𝑤𝑖(𝑢− 𝑢*𝑖 ))

𝜕𝑦

]︂2}︃
dΩ

(5.13)

where we use 𝑢 =
∑︀

𝑖𝑤𝑖𝑢. Since

[︂
𝜕
∑︀

𝑖(𝑤𝑖(𝑢− 𝑢*𝑖 ))

𝜕𝑥

]︂2
=

[︃∑︁

𝑖

𝜕𝑤𝑖

𝜕𝑥
(𝑢− 𝑢*𝑖 ) +

∑︁

𝑖

𝑤𝑖
𝜕(𝑢− 𝑢*𝑖 )

𝜕𝑥

]︃2

≤
[︃∑︁

𝑖

⃒⃒
⃒⃒𝜕𝑤𝑖

𝜕𝑥
(𝑢− 𝑢*𝑖 )

⃒⃒
⃒⃒ +

∑︁

𝑖

⃒⃒
⃒⃒𝑤𝑖

𝜕(𝑢− 𝑢*𝑖 )

𝜕𝑥

⃒⃒
⃒⃒
]︃2

≤ 2𝑚

[︃∑︁

𝑖

⃒⃒
⃒⃒𝜕𝑤𝑖

𝜕𝑥
(𝑢− 𝑢*𝑖 )

⃒⃒
⃒⃒
2

+
∑︁

𝑖

⃒⃒
⃒⃒𝑤𝑖

𝜕(𝑢− 𝑢*𝑖 )

𝜕𝑥

⃒⃒
⃒⃒
2
]︃

(5.14)

where we use the Cauchy-Schwarz Inequality and 𝑚 is the number of meshes. Simi-

larly we can bound
[︁
𝜕
∑︀

𝑖(𝑤𝑖(𝑢−𝑢*
𝑖 ))

𝜕𝑦

]︁2
. Substituting these inequalities back into Equa-

tion 5.13 and using the local error bounds in Inequality 5.11 together with the bounds

for 𝑤𝑖 (𝑖 = 1, . . . ,𝑚) and their derivatives yields

|𝑢− 𝑢*|21,∪𝑖Ω𝑖,2
≤ 𝐶

∫︁

∪𝑖Ω𝑖,2

{︃∑︁

𝑖

(︂
𝜒Ω𝑖,2

1

min{ℎ𝑖, ℎ}2
|𝑢− 𝑢*𝑖 |2

)︂

+
∑︁

𝑖

[︃
𝜒Ω𝑖,2

⃒⃒
⃒⃒𝜕(𝑢− 𝑢*𝑖 )

𝜕𝑥

⃒⃒
⃒⃒
2
]︃

+
∑︁

𝑖

[︃
𝜒Ω𝑖,2

⃒⃒
⃒⃒𝜕(𝑢− 𝑢*𝑖 )

𝜕𝑦

⃒⃒
⃒⃒
2
]︃}︃

dΩ

≤ 𝐶
∑︁

𝑖

(︂
1

min{ℎ𝑖, ℎ}2
‖𝑢− 𝑢*𝑖 ‖20,Ω𝑖,2

)︂
+ 𝐶

∑︁

𝑖

|𝑢− 𝑢*𝑖 |21,Ω𝑖,2

≤ 𝐶
∑︁

𝑖

(︂
ℎ2𝑖

min{ℎ𝑖, ℎ}2
ℎ2𝑘𝑖𝑖

)︂
+ 𝐶

∑︁

𝑖

ℎ2𝑘𝑖𝑖

(5.15)

where the function 𝜒Ω𝑖,2
is 1 on Ω𝑖,2 and 0 elsewhere. Using the assumption 𝛾ℎ𝑖 ≤ ℎ

∀𝑖 gives |𝑢 − 𝑢*|21,∪𝑖Ω𝑖,2
≤ 𝐶

∑︀
𝑖 ℎ

2𝑘𝑖
𝑖 . Combining the interpolation errors over non-
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overlapping parts and overlapped regions then leads to

|𝑢− 𝑢*|21,Ω ≤ 𝐶
∑︁

𝑖

ℎ2𝑘𝑖𝑖 (5.16)

Due to Céa’s lemma, we have the same asymptotic bound for the numerical solution

error. As expected, the global convergence rate is determined by the lowest-order

finite element mesh if all element sizes from different meshes are close.

Notice that if several meshes overlap at a location and the elements involved are

not on interior boundaries, each weight function 𝑤𝑖 is locally a constant. As a result,

the global interpolation is (locally) a linear combination of local fields with constant

coefficients. In such a case, we can get rid of the derivatives of 𝑤𝑖 in the interpolation

error. Because the procedure puts more weight on higher-order interpolations, the

local error is then very close to the error of the higher-order interpolations. Such ob-

servation allows us to use high-order meshes overlaying a low-order base mesh as local

enrichments. However, it is even more effective if the local high-order elements are

non-overlapping so the accuracy of high-order interpolations is completely retained.

We briefly study the effectiveness of different overlapping meshes in several numerical

examples, as given in Section 6.2. It is found that the overlapped regions, which are

assumed to be thick enough for the error bound to hold, should not be too large, and

the number of meshes overlapping at a location should remain small, so as to save

computational effort. Indeed, Inequality 5.15 indicates that the coupling interpola-

tion somewhat deteriorates the accuracy of high-order elements. Small overlapped

regions are also advantageous from the viewpoint of solvability, since any single mesh

interpolation is not contained in the interpolation of other meshes in such cases, see

Section 4.5.

5.3.3 The limit case

The error bound given in the last section relies on an assumption 𝛾ℎ𝑖 ≤ ℎ ∀𝑖, i.e.

the overlapped regions cannot be too thin. However, whether the solution converges

if we let ℎ → 0 while keeping all ℎ𝑖 (𝑖 = 1, . . . ,𝑚) finite cannot be predicted using
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Inequality 5.15. Alternatively, it would be valuable to give an error bound that

is independent of the overlapping sizes. Such a limit case is similar to using non-

matching grids so it is interesting to see if the solution really converges to the solution

obtained with some scheme for non-matching grids. For this purpose, we study two

numerical examples.

A thin beam

We consider in the first example the problem described in Figure 5-2. This slender

beam has a free end deflection at 0.1081, which can be calculated using Timoshenko

beam theory [64]. Note that we are not interested in this problem in whether the

numerical solution converges to the reference solution as the mesh is refined – because

we know it does from the last section – but the convergence as ℎ→ 0 with ℎ𝑖 (𝑖 = 1, 2)

staying finite. This thin beam is solved now using two overlapping 9-node finite

element meshes, which can be seen in Figure 5-3. The overlapping size is denoted by

ℎ.

(0, 0) (6, 0)

(6, 0.2)(0, 0.2)

p

E = 107

⌫ = 0.3

Thickness = 0.1

Plane stress

(a) Problem description

Figure 1: Cantilever beam – Quadrilateral meshes

(0, 0) (35, 0)

(35, 13)(0, 13)

(10, 7.5)

(25, 5)

r = 2

r = 3

p = 4000
132 y(13 � y)

E = 2 ⇥ 109, ⌫ = 0.3, Thickness = 1, Plane stress

Figure 2: Beam with holes

ABC abc Something very very very very very very very very very very very very

very very very very very very very very very very very very very very very very

very very very very very long

3

Figure 5-2: The thin beam problem, total applied force = 1

In the overlapping meshes, all elements have the same length 1 except for the

leftmost element in the red mesh. The overlapping meshes therefore, in geometry,

degenerate to a uniform conforming mesh with six 9-node finite elements, if ℎ → 0.

The numerical solutions of the tip deflection and the energy are listed in Table 5.1,

where ℎ = 0 represents the solutions obtained with a uniform conforming mesh with

six 9-node finite elements. It is seen that the solutions converge to the solutions

obtained with a uniform conforming mesh.
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Separate Meshes

h

Input Mesh

Figure 5-3: Two overlapping 9-node finite element meshes

Table 5.1: Numerical solutions at different overlapping sizes ℎ

ℎ 0.5 0.1 0.01

Tip deflection 0.106946 0.107049 0.107040

Energy 5.34726E−2 5.35241E−2 5.35194E−2

ℎ 0.001 0.0001 0

Tip deflection 0.107035 0.107034 0.107034

Energy 5.35174E−2 5.35168E−2 5.35167E−2
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A thick beam

In this example, we consider a thick beam described in Figure 5-4a. The meshes

overlap now in a more complex way, as shown in Figure 5-4b. There are two param-

eters 𝑎 and 𝑏 representing the overlapping size. By definition we have ℎ = min{𝑎, 𝑏}.
The numerical solutions of the energy are given in Table 5.2. A reference solution

2.45995E+1 has been obtained using the gluing mesh feature in ADINA.

(0, 0) (3, 0)

(3, 2)(0, 2)

E = 1, ⌫ = 0.3

Thickness = 1, Plane stress

�xx = 2, �yy = 1, �xy = �1

px = 1, py = �1

px = �1, py = 1

px = 2, py = �1

px = �2, py = 1

Figure 3: Patch Test

(0, 0) (2, 0)

(2, 1)(0, 1)

E = 1, ⌫ = 0.3

Thickness = 1, Plane stress py = �1

Figure 4: Test of the convergence
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(a) Problem description
Input Mesh

a

b

(1, 1)

(1, 0)

(2, 0.75)

(2, 0.25)

(1.5, 0)

(1.5, 1)

(b) Overlapping meshes

Figure 5-4: A thick beam and the overlapping meshes

If we focus on the diagonal entries of the table, we see that as ℎ = 𝑎 = 𝑏 → 0

the energy solution does not increase or decrease monotonically. In addition, there

is no evidence showing that the solution converges to the gluing mesh solution in
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ADINA, although it is still possible that the limit solution corresponds to a specific

scheme for non-matching grids. Actually, if we further reduce the overlapping size,

the solution is 2.45603E+1 when ℎ = 𝑎 = 𝑏 = 0.00001. The convergence is at least

not as obvious as in the first example. We note that the energy solutions are not

symmetric with respect to 𝑎 and 𝑏 because the triangulation used for the overlapped

region is asymmetrical, see Appendix B for details.

Table 5.2: Numerical solutions of the energy at different parameters (𝑎, 𝑏)

𝑏

𝑎
0.2 0.1 0.01 0.001 0.0001

0.2 2.46632E+1 2.46658E+1 2.46530E+1 2.46269E+1 –

0.1 2.46779E+1 2.46891E+1 2.46877E+1 2.46692E+1 –

0.01 2.46844E+1 2.47027E+1 2.47020E+1 2.46839E+1 –

0.001 2.46672E+1 2.46904E+1 2.46863E+1 2.46484E+1 –

0.0001 – – – – 2.45857E+1

Discussion

It is seen from these two examples that, although there is no solid evidence support-

ing the claim that the overlapping meshes correspond to a certain non-matching grid

scheme in the limit case, this property may hold in some special cases. In addition,

we see that, at least for these example problems, the solution error does not increase

without bound in the limit case. For this reason, in practical problems, overlapping

meshes with very thin overlap may still be used and the solution may still be rea-

sonable. It would be of much value to improve the existing error bound, in order

to precisely predict the behavior of solutions in such limit cases. The interpolation

error over overlapped regions is now estimated quite roughly. Therefore a better er-

ror bound is also needed for us to better understand the extra error induced by the

coupling.
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For conforming finite elements, the energy norm of any numerical solution is less

than or equal to the energy norm of the exact solution, since 𝑎(𝑢 − 𝑢ℎ, 𝑢 − 𝑢ℎ) =

𝑎(𝑢, 𝑢) − 𝑎(𝑢ℎ, 𝑢ℎ) ≥ 0. A larger energy therefore indicates less solution error. How-

ever, it is seen in Table 5.2 that as ℎ becomes very small, the energy starts to decrease.

It is thus possible for the solution to get worse in the limit case. In addition, the al-

most vanishing overlapped region may yield very small entries in the stiffness matrix,

and the condition number of the discretized equations can become prohibitively large.

For the thick beam problem, the 1-norm condition numbers of the stiffness matrices

obtained with different overlapping sizes are listed in Table 5.3. It can be seen that

the condition number increases rapidly as the overlapping size decreases. We there-

fore do not suggest using the present scheme in overlapping meshes with very thin

overlapped regions.

Table 5.3: 1-norm condition numbers of the stiffness matrices obtained with different
overlapping sizes (ℎ = 𝑎 = 𝑏)

ℎ = 𝑎 = 𝑏 0.2 0.1 0.01 0.001 0.0001

Condition number 8110 9154 74838 737597 7350116

5.3.4 A discussion on one-dimensional overlapping meshes

Although there is still no evidence showing that the solution error of overlapping

meshes remains well bounded in the limit case, the one-dimensional counterpart does

have such a property. This also partially explains the convergence for the thin beam

problem, in which the overlapping is essentially one-dimensional, and the error bound

can be proved using an argument similar to the following.

In the one-dimensional case we still consider a well-posed second order elliptic

problem, e.g. Poisson’s equation with vanishing boundary values. All the properties

mentioned in Section 5.1 still hold. We hence can still focus on the interpolation error

in the 𝐻1 semi-norm.
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Element 1
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x
0

Figure 2: A one-dimensional example.

(Note that we always use lower-order elements to construct weight functions) which is 1 at
x = 7/4 and 0 at x = 3/4. Now we can use Equation 4 and note also that we use linear
functions to further interpolate the weight functions on the overlap. The final weight functions
are plotted in Figure 3.

Figure 3: The weight functions.

The interpolation we have on Mesh 1 is given by u1 = a1h1 + a2h2, where a1, a2 are coe�-
cients and h1, h2 are linear interpolation functions. Similarly, we use quadratic interpolation on
the 2nd mesh, and have u2 = a3h̃3 +a4h̃4 +a5h̃5, where h̃i (i = 3, 4, 5) are the quadratic shape
functions. According to the global interpolation given in Equation 1, the final interpolation is
given by

u = ⇢1(a1h1 + a2h2) + ⇢2(a3h̃3 + a4h̃4 + a5h̃5) (5)

The new shape functions are ⇢1h1, ⇢1h2, ⇢2h̃3, ⇢2h̃4, and ⇢2h̃5. Their graphs are presented
in Figure 4. It can be seen that the new shape functions do not satisfy the Kronecker-Delta
property, since these fields are coupled over the overlap.

4

Figure 5-5: The overlapping of a linear element and a quadratic element

h

Figure 5-6: The weight functions in one-dimensional overlapping meshes
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For simplicity, we consider the overlapping of a linear element mesh 𝒯1 and a

quadratic element mesh 𝒯2. The weight functions are still constructed using the

low-order finite element interpolation, that is, the linear interpolation, and then nor-

malized. Similarly, the weight functions are interpolated over each overlapped line

segment using linear functions. As argued for the two-dimensional case, we focus

here on the interpolation error over an overlapped region. We show in Figure 5-5

the overlapping of a linear element and a quadratic element. The overlapping size is

denoted by ℎ. The (interpolated) weight functions are plotted in Figure 5-6. Since

the weight functions are linear functions, the slopes can be easily calculated and we

have ⃒⃒
⃒⃒d𝑤𝑖

d𝑥

⃒⃒
⃒⃒ =

1

ℎ
(𝑖 = 1, 2) (5.17)

Let 𝑓 : [𝑎, 𝑏] → R be a target function with derivatives up to the order (𝑘+ 1). A

polynomial interpolation 𝑃𝑘 of order 𝑘 satisfies 𝑓(𝑥𝑖) = 𝑃𝑘(𝑥𝑖) (𝑖 = 0, 1, . . . , 𝑘) with

𝑎 = 𝑥0 < 𝑥1 < · · · < 𝑥𝑘 = 𝑏. It is a classical result that

𝑓(𝑥) − 𝑃𝑘(𝑥) = 𝑓 (𝑘+1)(𝜉)
𝑤𝑘(𝑥)

(𝑘 + 1)!
(5.18)

where 𝑥 ∈ [𝑎, 𝑏], 𝑤𝑘(𝑥) = Π𝑘
𝑖=0(𝑥−𝑥𝑖), and 𝜉 is a point in (𝑎, 𝑏). Such an interpolation

necessarily yields 𝑓 ′(𝑦𝑖) = 𝑃 ′
𝑘(𝑦𝑖) (𝑖 = 1, . . . , 𝑘) and each 𝑦𝑖 ∈ (𝑥𝑖−1, 𝑥𝑖). Let 𝑤*

𝑘−1(𝑥) =

Π𝑘
𝑖=1(𝑥− 𝑦𝑖). There exists a point 𝜉* ∈ (𝑎, 𝑏) such that

𝑓 ′(𝑥) − 𝑃 ′
𝑘(𝑥) = 𝑓 (𝑘+1)(𝜉*)

𝑤*
𝑘−1(𝑥)

𝑘!
(5.19)

∀𝑥 ∈ [𝑎, 𝑏].

To use the classical interpolation error bounds, we assume the exact solution has

bounded derivatives up to the third order. For simplicity we only consider the case

where ℎ is very small compared with the element sizes. On the overlapped region we
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can find interpolations 𝑢*1 and 𝑢*2 satisfying

|𝑢− 𝑢*1| ≤ 𝐶ℎ1ℎ

|𝑢− 𝑢*2| ≤ 𝐶ℎ22ℎ⃒⃒
⃒⃒ d

d𝑥
(𝑢− 𝑢*1)

⃒⃒
⃒⃒ ≤ 𝐶ℎ1

⃒⃒
⃒⃒ d

d𝑥
(𝑢− 𝑢*2)

⃒⃒
⃒⃒ ≤ 𝐶ℎ22

(5.20)

where ℎ𝑖 is the maximum element size in 𝒯𝑖. It follows that

|𝑢*1 − 𝑢*2| ≤ 𝐶(ℎ1, ℎ2)ℎ (5.21)

on the overlapped region, where 𝐶(ℎ1, ℎ2) is a constant dependent only on ℎ1 and ℎ2.

The global interpolation is taken as 𝑢* = 𝑤1𝑢
*
1 +𝑤2𝑢

*
2, and the interpolation error

over the overlap is

|𝑢− 𝑢*|21,Ω1∩Ω2
=

∫︁

Ω1∩Ω2

⃒⃒
⃒⃒ d

d𝑥
(𝑢− 𝑢*)

⃒⃒
⃒⃒
2

d𝑥 (5.22)

Noticing 𝑢 = 𝑤1𝑢+𝑤2𝑢, it can be seen that the integrand in Equation 5.22 is bounded,

since ⃒⃒
⃒⃒ d

d𝑥
(𝑢− 𝑢*)

⃒⃒
⃒⃒ =

⃒⃒
⃒⃒ d

d𝑥
[(𝑤1 + 𝑤2)(𝑢− 𝑢*1) + 𝑤2(𝑢

*
1 − 𝑢*2)]

⃒⃒
⃒⃒

=

⃒⃒
⃒⃒ d

d𝑥
[(𝑢− 𝑢*1) + 𝑤2(𝑢

*
1 − 𝑢*2)]

⃒⃒
⃒⃒

≤
⃒⃒
⃒⃒ d

d𝑥
(𝑢− 𝑢*1)

⃒⃒
⃒⃒ +

⃒⃒
⃒⃒ d

d𝑥
[𝑤2(𝑢

*
1 − 𝑢*2)]

⃒⃒
⃒⃒

≤ 𝐶(ℎ1, ℎ2)

(5.23)

where we use Equation 5.17 and Inequalities 5.20 and 5.21. An error bound inde-

pendent of the overlapping size ℎ can then be obtained. The crucial observation is

to show that |𝑢*1 − 𝑢*2| is well bounded on the overlapped region by the overlapping

size ℎ. A similar argument can be used to prove an error bound independent of the

overlapping sizes for two-dimensional overlapping meshes, provided that the overlap-

ping elements are well aligned. However, the error bound in general cases remains an
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outstanding problem.
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Chapter 6

Numerical Solutions

In this chapter, several numerical examples are solved using the proposed schemes for

a better understanding of their numerical performance.

6.1 Numerical solutions using the overlapping finite

elements

6.1.1 The numerical implementation

In the overlapping finite element method, the nodal unknowns are polynomial func-

tions. And these polynomial coefficients are solved for numerically in the imple-

mentation stage. The stiffness matrix can be ill-conditioned as different polynomial

terms can vary significantly in magnitude. To avoid stability issues, the system of

discretized equations can be normalized by rewriting the nodal polynomials as

𝑢𝐼 = 𝑎*𝐼1 + 𝑎*𝐼2
2𝑥

𝑟𝐼
+ 𝑎*𝐼3

2𝑦

𝑟𝐼
+ 𝑎*𝐼4

4𝑥2

𝑟2𝐼
+ 𝑎*𝐼5

4𝑥𝑦

𝑟2𝐼
+ 𝑎*𝐼6

4𝑦2

𝑟2𝐼
+ . . . (6.1)

where 𝑟𝐼 is the support radius for node 𝐼. The system of equations corresponding to

the new unknown coefficients 𝑎*𝐼𝑖 has a much better conditioning.

For the numerical integration, we require the integration to be exact when the

elements are not distorted [1, 59]. Specifically, for the overlapping elements with
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quadratic basis, we use the 16-point quadrature rule (see References [1, 57, 58]) for

triangular overlapping elements (see Appendix A), and the 6 × 6 Gauss quadrature

rule for the quadrilateral overlapping elements.

In practical applications, the numbers of quadrature points may be reduced, as

5 × 5 quadrature points for quadrilateral elements and 12 quadrature points for tri-

angles lead to almost the same solutions in the tested problems, and no spurious

mode is observed. Unlike many meshless methods, the numerical integration effort is

insignificant in the proposed scheme [5, 13]. Therefore, we still suggest using the full

integration schemes.

Several example solutions using the new overlapping finite elements are given in

the following sections.

6.1.2 A thin beam problem for testing trapezoidal elements

This thin beam problem shown in Figure 5-2 was studied by MacNeal. It was found

that no traditional 4-node finite element would well resolve the trapezoidal locking in

this problem, as well as passing the constant stress patch tests [65]. Table 6.1 lists the

numerical solutions of the tip deflection at the free end obtained with quadrilateral

overlapping elements, 4-node elements with incompatible modes [66], and traditional

4-node finite elements. The meshes used can be seen in Figure 6-1. The reference so-

lution 0.1081 has been obtained using Timoshenko beam theory [64]. In the solutions,

a mesh is refined by dividing each element edge into equal line segments.

45◦

45◦

Figure 6-1: Meshes used for the thin beam problem
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The incompatible element performs well when the mesh is regular since it is de-

signed in the rectangular configuration by adding bending solutions into the inter-

polation. However, we see that incompatible elements suffer from the trapezoidal

locking although the convergence is still observed. In this problem, the proposed new

overlapping elements are more effective, especially when the mesh is distorted. The

4-node finite element, as expected, performs poorly due to the shear locking and mesh

distortions.

Table 6.1: Numerical solutions for the thin beam problem (Reference solution =
0.1081)

1 × 6 Mesh 2 × 12 Mesh 3 × 18 Mesh 4 × 24 Mesh

Overlapping finite elements (Quadratic basis)

Rectangular 0.1069 (156 dofs) – – –

Parallelogram 0.1072 (156 dofs) – – –

Trapezoidal 0.1070 (156 dofs) – – –

Incompatible elements

Rectangular 0.1073 (24 dofs) – 0.1076 (144 dofs) 0.1077 (240 dofs)

Parallelogram 0.0675 (24 dofs) – 0.1056 (144 dofs) 0.1072 (240 dofs)

Trapezoidal 0.0049 (24 dofs) – 0.0964 (144 dofs) 0.1044 (240 dofs)

4-node finite elements

Rectangular 0.0101 (24 dofs) – – 0.0671 (240 dofs)

Parallelogram 0.0037 (24 dofs) – – 0.0395 (240 dofs)

Trapezoidal 0.0029 (24 dofs) – – 0.0502 (240 dofs)

6.1.3 Convergence study for an ad-hoc problem

The convergences of different elements in an ad-hoc problem are investigated. In this

problem, the displacements are prescribed and the applied body forces are calculated
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using the equations of equilibrium, as shown in Figure 6-2 along with the meshes

used. The exact strain energy is about 5.9414 × 108.

x, u

y, v

(−1, −1) (1, −1)

(1, 1)(−1, 1)

N elements per side, N = 2, 4, 8, . . .

E = 2 × 105, ν = 0.3

u = (1 − x2)(1 − y2)e5y cos 5x

v = (1 − x2)(1 − y2)e5y sin 5x

Unit thickness

Plane stress

(a) Problem description

(b) Regular mesh

(−1, −0.4)

(1, 0.4)

(c) Distorted mesh

Figure 6-2: The ad-hoc problem

It is seen in Figure 6-3 that the convergence rates agree with our discussion in

Chapter 5, where ℎ overall represents the element size, i.e. diameter of the smallest

circle encompassing the element [1].

6.1.4 Bending beam problems for studying the effects of mesh

distortions

It is mentioned in Chapter 3 that the overlapping finite elements are insensitive to

mesh distortions because they are able to reproduce an arbitrary 𝑘th order polynomial
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Figure 6-3: Convergence rates of elements for the ad-hoc problem
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irrespective of the mesh distortions, where 𝑘 is the order of basis functions. We

demonstrate the mesh distortion insensitivity using a pure bending beam and a linear

bending beam given in Figure 6-4. The analytical solutions [54] for these problems

are

Pure bending: 𝑢 =
120𝑥− 120𝑥𝑦

𝐸

𝑣 =
60𝑥2 + 18𝑦2 − 36𝑦

𝐸

Linear bending: 𝑢 =
6𝑥2𝑦 − 4.6𝑦3 − 6𝑥2 − 120𝑥𝑦 + 13.8𝑦2 + 120𝑥− 9.2𝑦

𝐸

𝑣 =
−2𝑥3 − 1.8𝑥𝑦2 + 60𝑥2 + 3.6𝑥𝑦 + 18𝑦2 + 9.2𝑥− 36𝑦

𝐸

(6.2)

where 𝑢 denotes the 𝑥-displacement and 𝑣 denotes the 𝑦-displacement.

(0, 0) (10, 0)

(10, 2)(0, 2)

(5, 0)

(5, 2)e

e 120

−120 E = 1 × 107

ν = 0.3

Unit thickness

Plane stress

(a) Pure bending

(0, 0) (10, 0)

(10, 2)(0, 2)

(5, 0)

(5, 2)e

e

P
E = 1 × 107

ν = 0.3

Unit thickness

Plane stress
P

M

M : distributed as fx = 120y − 120

P : distributed as fy = 12y − 6y2

(b) Linear bending

Figure 6-4: Two bending beams

Table 6.2 and Table 6.3 list the numerical solutions of the vertical displacement

at the corner point (10, 0) as the distortion parameter 𝑒 increases. These numeri-

cal solutions with traditional 4-node finite elements and incompatible elements are

obtained by refining the given meshes into 4 × 4 × 2.
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As expected, the quadratic overlapping elements give the exact solution for the

pure bending beam irrespective of the mesh distortion. For this constant bending

case, the incompatible elements give the exact solution when elements are regular

since the added interpolation functions are bending solutions in this case. However,

the solution accuracy using incompatible elements decreases as 𝑒 increases. The 4-

node finite elements are most sensitive to the mesh distortion because only the linear

field can be exactly reproduced. For the linear bending case, the quadratic overlapping

finite elements still give very accurate numerical solutions for different values of 𝑒,

although the analytical displacement field, being a cubic polynomial, can no longer

be exactly resolved by these elements.

Table 6.2: The vertical displacement 𝑣 at (10, 0): The pure bending beam (OFE:
overlapping finite elements; FE: finite elements)

𝑒 = 0 𝑒 = 2 𝑒 = 4 𝑒 = 4.9

Quadratic OFE (65 dofs) 6.0000E−4 6.0000E−4 6.0000E−4 6.0000E−4

Incompatible FE (84 dofs) 6.0000E−4 5.9741E−4 5.4826E−4 4.8066E−4

4-node FE (84 dofs) 5.1861E−4 3.3018E−4 1.6362E−4 1.2214E−4

Reference 6.0000E−4

Table 6.3: The vertical displacement 𝑣 at (10, 0): The linear bending beam

𝑒 = 0 𝑒 = 2 𝑒 = 4 𝑒 = 4.9

Quadratic OFE (69 dofs) 4.0874E−4 4.0886E−4 4.0899E−4 4.0931E−4

Incompatible FE (87 dofs) 4.0766E−4 4.0573E−4 3.7196E−4 3.2252E−4

4-node FE (87 dofs) 3.5059E−4 2.4361E−4 1.3642E−4 1.0495E−4

Reference 4.0920E−4
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6.1.5 The AMORE paradigm in the analysis of a bracket prob-

lem

We present in Section 3.7 a general framework for using overlapping elements in

the AMORE paradigm. In this section, we give a detailed example and discuss the

numerical solutions.

(10, −24)
(0, −24)

(0, 24)
(10, 24)

(27, 0)
r = 3

r = 9

p

pmax = 2

3π

E = 100

ν = 0.3

Unit thickness

Plane stress

Figure 6-5: A bracket problem

The bracket, which is fixed on the left boundary and loaded on its hole, can be

seen in Figure 6-5. In the AMORE paradigm, both overlapping elements and reg-

ular finite elements are used to mesh the complete analysis domain. Regular finite

elements, being very effective, are spanned over the interior part of the domain. Over-

lapping elements, being accurate and mesh distortion insensitive, are used to fill in

the boundary regions. The new meshing procedure is described in Figure 6-6. In Fig-

ure 6-6d, overlapping elements are red, regular finite elements (4-node incompatible

elements) are blue, and coupling elements are filled in with green.

In this problem, we use both quadrilateral and triangular overlapping finite ele-

ments. The triangular overlapping elements are more suitable for the boundary with

large curvature. We note that the formulation of triangular overlapping elements is
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(a) Step 1: The analysis domain is covered
by a Cartesian grid

(b) Step 2: The boundary is discretized; The
cells outside or cutting the boundaries are
deleted

(c) Step 3: The empty boundary regions are
meshed with overlapping elements

(d) The AMORE mesh (1936 dofs)

Figure 6-6: The AMORE paradigm in the solution of a bracket problem
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Figure 6-7: A traditional 9-node element mesh (2558 dofs)

slightly different from an earlier formulation [5, 7] in order to obtain compatibility

between quadrilateral and triangular overlapping elements. The new formulation of

triangular overlapping elements is given in Appendix A.

A traditional 9-node element mesh is used for comparison, and is shown in Fig-

ure 6-7. A reference solution has been obtained with a very fine 9-node element

mesh in ADINA. The solutions of the horizontal displacement 𝑢, the stress 𝜏𝑥𝑦, and

the effective stress 𝜏 are presented in Figure 6-8. From the perspective of overall

accuracy, the AMORE paradigm and traditional mesh both give reasonable energy

predictions with about 0.2% relative error. Although the traditional mesh leads to

satisfying overall accuracy and displacement results, the AMORE paradigm shows

better local stress solutions. The AMORE scheme has this advantage since the local

stress concentrations are well resolved by using efficient overlapping elements in the

boundary regions.

82



(a) Left: AMORE mesh (𝑢max = 0.05224, 𝑢min = −0.06284); Middle: Traditional mesh
(𝑢max = 0.05224, 𝑢min = −0.06298); Right: Reference (𝑢max = 0.05231, 𝑢min = −0.06312)

Figure 6-8: Numerical solutions for the bracket problem

6.2 Numerical solutions using the overlapping meshes

6.2.1 The numerical implementation

The use of overlapping meshes in AMORE is introduced in Section 4.6. The analysis

domain is decomposed into an interior subdomain and several boundary subdomains.

For the interior subdomain, 4-node elements with or without incompatible modes are

used [1, 66]. If a 4-node element is overlapping with elements from other meshes, the

incompatible modes are removed. Although finite elements with incompatible modes

generally perform better, the present overlapping interpolation requires compatibility

of all local fields. For the boundary meshes, 9-node finite elements are used.

A cantilever plate with two holes can be seen in Figure 6-9. In engineering prob-

lems, there are usually fillets to avoid large stress concentrations, and the fillets are

also considered here. This analysis domain is decomposed into two subdomains, and

the red subdomain is disconnected. As in many AMORE meshes, the interior sub-

domain (blue) is discretized using 4-node elements, and 9-node elements are used in

the boundary subdomain (red) to resolve the boundary stress concentrations and the

boundary curvature at the fillets and holes.

As introduced in Chapter 4, the key of an effective implementation of the method
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(b) Left: AMORE mesh (𝜏𝑥𝑦max = 0.4728, 𝜏𝑥𝑦min = −1.4525); Middle: Traditional mesh
(𝜏𝑥𝑦max = 0.4625, 𝜏𝑥𝑦min = −1.3187); Right: Reference (𝜏𝑥𝑦max = 0.4680, 𝜏𝑥𝑦min =
−1.4604)

(c) Left: AMORE mesh (𝜏max = 2.6681); Middle: Traditional mesh (𝜏max = 2.3358); Right:
Reference (𝜏max = 2.5800)

Figure 6-8: Numerical solutions for the bracket problem (continued)
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E = 2 ⇥ 109, ⌫ = 0.3, Thickness = 1, Plane stress

Figure 4: Beam with holes and fillets

5

(a) Problem description

Figure 6-9: A plane stress plate problem and the overlapping meshes

of overlapping meshes is to effectively integrate the stiffness matrix. We propose here

an integration procedure based on efficient calculation and storage of the mesh overlay

structure. A mesh overlay is formally defined as the planar subdivision induced by

several overlapping meshes. It is seen in Figure 6-9c that the mesh overlay consists

of general polygons. These polygons can be quite arbitrary due to the arbitrariness

of the overlapped regions.

For a practical numerical integration scheme, the mesh overlay is calculated to

give a list of polygons (for overlapped regions) and a list of non-overlapping elements.

Each polygon is then triangulated. The mesh overlay corresponding to Figure 6-9 is

shown in Figure 6-10. In this figure, red quadrilaterals are non-overlapping elements

and blue triangles represent the result of the triangulation. Over each triangle, the

weight functions are interpolated by linear functions using their values on vertices.

Quadrature schemes for triangles are then used to evaluate the contribution of the

stiffness matrix from each triangle [1, 57, 58]. All elements overlapping at a location

couple in the stiffness matrix, therefore we also maintain for each triangle pointers to
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Separate Meshes

Separate Meshes

(b) The individual meshes used (not to scale)

Figure 6-9: A plane stress plate problem and the overlapping meshes (continued)
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Input Mesh

(c) Overlapping meshes

Figure 6-9: A plane stress plate problem and the overlapping meshes (continued)
Filled Mesh

Filled Mesh

Figure 6-10: A mesh overlay and the triangulation
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its incident elements. Although many triangles in Figure 6-10 are severely distorted,

we note that they are not triangular finite elements and are merely used for numerical

integration. The distortion hence causes no harm to the numerical solution. For all

non-overlapping elements, it is known from Chapter 4 that 𝑤𝑖 = 1 holds for some 𝑖.

The local interpolation is identical to a traditional interpolation and these elements

are integrated as traditional elements.

The plane sweep algorithm and a simple triangulation algorithm are used in the

proposed implementation. A detailed introduction can be found in References [55, 56],

while a brief introduction of the algorithms is also given in Appendix B. Let 𝑛 be the

total complexity of the mesh overlay, i.e. the total number of polygons, vertices, and

edges. The computational expense for the mesh overlay processing is 𝑂(𝑛 ln𝑛). Such

time complexity can be practical for engineering applications. In the plane sweep

algorithm, a sweep line moves towards a specific direction over the whole domain to

find all intersections and at the same time the algorithm calculates the mesh overlay

structure. However, in the scheme proposed, several meshes may have overlapping

edges and edges parallel to the sweep line. Special attention is needed to avoid

detrimental effects of rounding errors in these cases. Therefore, it may be more

suitable to use other algorithms [67, 68, 69] to achieve the similar or even better

efficiency for engineering problems.

The numerical integration schemes used in the present scheme are exact when

each of the overlapping meshes is not distorted [1, 59]. For the coupling of two 4-

node bilinear elements, the integrand in Equation 4.7 is of order 4. We thus use

6 quadrature points. In the case of a coupling triangle of a 4-node element and a

9-node element, the integrand is of order 6, which requires 12 quadrature points.

Similarly, the overlapping of two 9-node elements requires 16 quadrature points to

exactly integrate the 8th order integrand [57, 58].

A summary of the proposed procedure is given in Table 6.4. In following sections,

the performance of the method of overlapping finite element meshes is demonstrated

by some example solutions. Traditional finite element solutions using ADINA are

presented for comparison.
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Table 6.4: The procedure to compute the stiffness matrix and load vector of overlap-
ping meshes

Procedure The method of overlapping meshes (2D linear elasticity)

1. Input: Material properties, domain Ω, and boundary conditions

2. Decompose Ω into 𝑚 subdomains Ω𝑖 (𝑖 = 1, . . . ,𝑚).

3. Mesh each subdomain Ω𝑖 into a traditional, conforming mesh 𝒯𝑖.

4. Calculate the mesh overlay structure. Let 𝑇 be the list of triangles, 𝑄 be
the list of non-overlapping elements, 𝑉 be the list of vertices, and 𝐸 be the
list of edges.

5. Initialize all nodal values of 𝑃𝑖 (𝑖 = 1, . . . ,𝑚) to 1.

6. For each edge in 𝐸:

∙ If the edge is on the closure of some interior boundary Γ*
𝑖 :

– For each of the two end points of the edge: If the end point is a
node in 𝒯𝑖, set 𝑃𝑖 to 0 at this point.

7. For each vertex in 𝑉 : Calculate and store the values of weight functions 𝑤𝑖

(𝑖 = 1, . . . ,𝑚).

8. For each element in 𝑄: Calculate the element stiffness matrix as in tradi-
tional finite element analysis.

9. For each triangle in 𝑇 :

∙ For each pair of incident elements:

– Interpolate the corresponding weight functions using their values
on vertices.

– Evaluate the strain matrices at the quadrature points (see Equa-
tion 4.5).

– Numerically integrate the sub-matrix in Equation 4.7 over this
triangle.

10. Assemble the global stiffness matrix.

11. Calculate the force term using Equation 4.8.
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6.2.2 The patch test

In Chapter 4, we have mentioned that the proposed scheme passes the constant stress

patch tests given proper local interpolations. The problem and overlapping meshes

shown in Figure 6-11 are mainly used for validating the code. The rectangular domain

is discretized using a blue mesh, a red mesh, and a green mesh. 4-node elements are

used in the blue mesh and 9-node elements are used in other two meshes. In this

example, the proposed numerical integration scheme fails to yield exact integrations

because the meshes used are distorted. The stress solutions give a maximum relative

error smaller than 0.03%.

6.2.3 A thin beam problem

In this section, we discuss some solutions using different simple overlapping meshes

in a thin beam problem introduced in Section 6.1.2. The beam is given in Figure 5-

2. We consider the tip deflection of the free end of the beam, and the Timoshenko

beam theory [64] gives a reference solution 0.1081. The numerical solution using six

identical regular 4-node elements is 0.0101, which is very inaccurate due to the shear

locking. The solution given by six identical regular 9-node finite elements, 0.1070, is

much more reasonable.

Coupling of meshes used in different regions

It is reasonable to use a low-order mesh for the region with small stress gradients and

a high-order mesh for the region with large stress gradients. Following this idea, we

use the overlapping meshes shown in Figure 6-12a. The numerical solution of the tip

deflection is 0.1072.

Higher-order elements as enrichments

We also consider placing a higher-order mesh upon a complete mesh of the analysis

domain to improve the local accuracy. The overlapping meshes in Figure 6-12b give

a tip deflection solution at 0.1044. It is seen that the performance of the 4-node
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Figure 3: Patch Test
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(a) Problem description
Separate Meshes Separate Meshes Separate Meshes

(b) Individual meshes
Input Mesh

(c) Overlapping meshes

Figure 6-11: A patch test problem and the overlapping meshes
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Separate Meshes

Input Mesh

(a) Coupling of two meshes, tip deflection = 0.1072

Separate Meshes

Input Mesh

(b) Higher-order elements as enrichments, tip deflection = 0.1044

Separate Meshes

Input Mesh

(c) Completely overlapping meshes, tip deflection = 0.1074

Figure 6-12: Different overlapping meshes for the thin beam problem
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element mesh is much improved due to the coupling to a higher-order mesh. On the

other hand, coupling with lower-order elements actually deteriorates the accuracy of

the higher-order mesh. In this example, the coupling interpolation fails to exactly

solve an arbitrary quadratic field, while the 9-node element mesh is able to. From

the viewpoint of computational efficiency, such use of overlapping meshes is not eco-

nomical and attractive. However, the convenience of improving the local solution

without modifying the base mesh may be promising for adaptation and other special

applications.

Completely overlapping meshes

As a special case, if the weight functions all become constants, the final interpolation

is just a linear combination of local interpolations with these constant weights. The

coupling interpolation now achieves its optimal performance as being more accurate

than any individual local interpolation. This case corresponds to using meshes that

are completely overlapping, e.g. the meshes shown in Figure 6-12c. The resulting

numerical solution is 0.1074.

When a direct sparse solver for symmetric positive definite matrices is preferred,

such use should be avoided because the condition we present in Section 4.5 for solv-

ability may be violated.

6.2.4 The AMORE paradigm in the analysis of a plate with

two holes

We discuss the numerical solutions to the problem shown in Figure 6-9. The problem

and meshes used have been introduced in Section 6.2.1.

Numerical solutions obtained with a traditional 9-node finite element mesh in

ADINA are used for comparison. The traditional mesh is given in Figure 6-13 and

the solutions are referred to as the “FE solution” in Table 6.5. The reference solutions

were calculated in ADINA using a very fine 9-node finite element mesh.
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Figure 6-13: A traditional free-form 9-node finite element mesh
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We consider in this problem two different choices for the non-overlapping 4-node

elements. In the first case we use 4-node finite elements and the solutions are re-

ferred to as “AMORE-FE”. In the second case 4-node elements with incompatible

modes [1, 66] are used instead and the solutions are named “AMORE-ICM”. Some

numerical solutions can be seen in Table 6.5 and Figure 6-14, where 𝑢 is the horizontal

displacement component, 𝜏𝑥𝑥 is the 𝑥𝑥-stress component, and 𝜏 represents the von

Mises effective stress. We note that all stress solutions using AMORE are plotted

without stress smoothing.

Table 6.5: Numerical solutions for the plate with two holes

AMORE-FE AMORE-ICM FE solution Reference

Energy 1.9891 1.9922 1.9870 1.9962

𝑢max 0.11313E−3 0.11332E−3 0.11325E−3 0.11352E−3

𝑢min −0.10349E−3 −0.10364E−3 −0.10353E−3 −0.10377E−3

𝜏𝑥𝑥max 18.190E+3 18.205E+3 18.017E+3 19.135E+3

𝜏𝑥𝑥min −18.284E+3 −18.295E+3 −18.013E+3 −19.181E+3

𝜏max 19.124E+3 19.135E+3 18.935E+3 19.673E+3

Number of dofs 3,070 3,070 7,724 >98,000

NNZ* 120,769 120,769 120,690 >1,602,000

*NNZ: Number of non-zero sparse matrix entries

A very important feature of AMORE is that most of the analysis domain is dis-

cretized using regular low-order finite elements. In this problem, Figures 6-9 and 6-10

show that most of the analysis domain is discretized by non-overlapping 4-node el-

ements. As a result, the increase in solution effort due to the overlapped regions is

reasonable. Indeed, the coupling between meshes results in a larger bandwidth and

an increase of the number of non-zero entries in the stiffness matrix (NNZ). If the

overlapped regions constitute a small part of the analysis domain – which is the case

here – the scheme is quite effective for a given accuracy. We also see from Table 6.5
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that the local stress concentrations are well captured by the proposed scheme, since

9-node element meshes are used at these locations to resolve the boundary stress con-

centrations and curvature. As expected, we see that 4-node incompatible elements

are preferred for the non-overlapping part of the interior subdomain.

6.2.5 The AMORE paradigm in the analysis of bracket prob-

lems

The suitable number of overlapping meshes generally depends on the geometry and

stress distribution of a given problem. Using more meshes gives more freedom so

that the meshing effort is further reduced. In this section, we present the solutions to

bracket problems using more than two overlapping meshes. However, we note that the

increase of number of meshes overlapping at a location may deteriorate the efficiency

of the scheme.

A bracket with a hole

We consider in this section an elastic bracket fixed on the left boundary and loaded

on its hole. The problem description and meshes used are given in Figure 6-15. A

4-node incompatible element mesh is used for the interior subdomain. And two 9-

node finite element meshes are used to discretize the boundary layers. Recall that the

incompatible modes are removed for overlapping elements. The proposed numerical

solutions are named “AMORE-ICM”. For comparison, solutions obtained with 4-node

incompatible elements in ADINA are presented, which are named “ICM solution”.

The reference solutions were calculated using a very fine 9-node element mesh in

ADINA. These solutions are given in Table 6.6 and visualized in Figure 6-16.

It is seen from Table 6.6 that the ICM solutions are reasonably accurate. Using

a comparable number of dofs, the AMORE-ICM scheme leads to slightly better so-

lutions and the overall performance of AMORE-ICM is promising. The prediction of

the maximum effective stress is however not better. Actually, since all stress results

are not smoothed using AMORE-ICM, the maximums and minimums are calculated
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(a) Solutions of 𝑢 (Top: AMORE-ICM; Middle: FE solution; Bottom: Reference)

Figure 6-14: Numerical solutions for the plate with two holes
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(b) Solutions of 𝜏𝑥𝑥 (Top: AMORE-ICM; Middle: FE solution; Bottom: Reference)

Figure 6-14: Numerical solutions for the plate with two holes (continued)
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(c) Solutions of 𝜏 (Top: AMORE-ICM; Middle: FE solution; Bottom: Reference)

Figure 6-14: Numerical solutions for the plate with two holes (continued)
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Figure 5: The bracket problem: 1
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Figure 6: The bracket problem: 2
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(a) Problem description
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(b) Individual meshes (not to scale)

Figure 6-15: A bracket with a hole
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Input Mesh

(c) Overlapping meshes

(d) Traditional mesh of 4-node incompatible elements

Figure 6-15: A bracket with a hole (continued)
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directly from the displacement solutions, while in ADINA the stress fields are extrap-

olated from solutions at Gauss points.

Although the AMORE-ICM scheme uses a comparable number of dofs, the number

of non-zero sparse matrix entries (NNZ) is much larger, which corresponds to an

increase of the solution effort. As discussed before, such increase of NNZ is due to

the fact that at most three meshes now overlap at a location. It would be valuable if

the scheme can be improved to reduce the NNZ. However the current scheme is still

advantageous as an effort to reduce the human effort for meshing.

Table 6.6: Numerical solutions for the bracket with a hole

AMORE-ICM ICM solution Reference

Energy 1.0617 1.0551 1.0630

𝑣min −0.29732E−3 −0.29597E−3 −0.29777E−3

𝜏𝑥𝑦min −1.4079E+3 −1.3531E+3 −1.4560E+3

𝜏max 2.5129E+3 2.5560E+3 2.5732E+3

Number of dofs 2,156 2,480 >166,000

NNZ* 94,750 22,516 >2,722,000

*NNZ: Number of non-zero sparse matrix entries

A bracket with an inclusion

We also illustrate the potential of using overlapping meshes to simplify the meshing

of an analysis domain consisting of different materials. In traditional finite element

analysis, the regions of different materials are meshed and these meshes usually match

on the interfaces. Schemes involving Lagrange multipliers (like the mesh gluing fea-

ture in ADINA) or penalty terms also allow for using non-matching meshes on the

interfaces [70, 71, 72]. The proposed scheme may be an interesting alternative.

The bracket considered in this section is geometrically similar to the bracket in

the last section. Instead of having a hole, the bracket has a stiff inclusion and is

102



(a) Solutions of 𝑣 (Left: AMORE-ICM; Middle: ICM solution; Right: Reference)

(b) Solutions of 𝜏𝑥𝑦 (Left: AMORE-ICM; Middle: ICM solution; Right: Reference)

Figure 6-16: Numerical solutions for the bracket with a hole
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(c) Solutions of 𝜏 (Left: AMORE-ICM; Middle: ICM solution; Right: Reference)

Figure 6-16: Numerical solutions for the bracket with a hole (continued)

loaded by a concentrated force at the center of the inclusion. The problem and

corresponding meshes can be seen in Figure 6-17. We again use a traditional mesh of

4-node incompatible elements in ADINA for comparison. In this problem, an interface

mesh is created along the interface, and overlaps with other meshes that do not touch

the interface. For the interior mesh of the inclusion, we use a fine 9-node element

mesh.

Solutions to this problem are given in Table 6.7 and Figure 6-18. The reference

solutions have been obtained using a very fine 9-node element mesh in ADINA. Of

course this problem involves a stress singularity caused by the concentrated external

force. Comparing stress solutions at the singularity may be impractical since this can

be avoided in engineering by design. However, the distribution of effective stress 𝜏

near the loading point may still be interesting, and we see from Figure 6-18 that the

proposed scheme leads to a reasonable local solution for the effective stress while the

fine traditional mesh of 4-node incompatible elements performs poorly. Since different

meshes are independently spanned, we can easily adjust the mesh density inside the

inclusion. If the local solution is not important, we can use a coarser interior mesh for

the inclusion so as to save computational effort. In this problem, we still have at most

three meshes overlapping at a location and as a result, the NNZ using overlapping
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Figure 6-17: A bracket with a stiff inclusion
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(d) Traditional mesh of 4-node incompatible elements

Figure 6-17: A bracket with a stiff inclusion (continued)
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meshes is much larger.

Table 6.7: Numerical solutions for the bracket with a stiff inclusion

AMORE-ICM ICM solution Reference

Energy 0.82215 0.81867 0.83044

𝑣min −2.4056E−4 −2.4052E−4 −2.4069E−4

𝜏max 5.0424E+4 1.5969E+4 23.921E+4 (+∞)

Number of dofs 3,806 3,934 >331,000

NNZ* 210,690 36,577 >5,443,000

*NNZ: Number of non-zero sparse matrix entries

107



(a) Solutions of 𝑣 (Left: AMORE-ICM; Middle: ICM solution; Right: Reference)

(b) Solutions of 𝜏 inside the inclusion (Left: AMORE-ICM; Middle: ICM solution; Right:
Reference)

Figure 6-18: Numerical solutions for the bracket with a stiff inclusion
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Chapter 7

Conclusions

In this thesis, we proposed two new schemes for finite element analysis in order to

reduce the human effort needed for meshing the analysis domain. The new schemes

are based on the AMORE paradigm, i.e. regular traditional finite elements are used

for the interior of the domain and novel overlapping schemes are used near the bound-

aries. The new schemes presented mainly serve as alternatives to effectively mesh the

boundary regions. With these new interpolation schemes the complete mesh can be

generated highly automatically, because, in the first scheme the overlapping elements

are insensitive to mesh distortions so that the boundary regions can be meshed with

simple rules, and in the second scheme the individual meshes are allowed to over-

lap freely so that each single mesh can be quite regular and effectively meshed with

existing procedures.

7.1 Contributions

1. In the first method, each quadrilateral in the discretized space is formulated as

the overlapped region of four polygonal elements. A local field is interpolated

on each polygonal element using the method of finite spheres but the Shepard

functions are now interpolated using the traditional high-order interpolation to

render the numerical integration effective. The re-interpolation also reduces the

bandwidth of the final stiffness matrix as the interpolation on each (quadrilat-

109



eral) element is now only dependent on its nodal dofs. The final interpolation

is the weighted average of four local interpolations on each quadrilateral, with

the weight functions being the traditional bilinear shape functions. It is seen

that the new interpolation scheme combines advantageous aspects from both

traditional finite elements and meshless methods, i.e. the elements are insensi-

tive to mesh distortions, the numerical integration effort is much less than that

of meshless methods, and the bandwidth structure of the final stiffness matrix

is similar to that of traditional elements. The final form of the interpolation

is very close to the traditional interpolations, but a major difference is that

the nodal knowns in the new scheme are polynomial or other suitable functions

instead of single nodal values. Analysis shows that the new interpolation can

exactly reproduce high-order polynomial fields provided the basis order is high

enough. As a result, the new elements are insensitive to mesh distortions. Con-

sequently, these elements can be used in AMORE to allow fast meshing for the

boundary regions. The overlapping elements are indeed seen to be insensitive

to mesh distortions and give accurate solutions for the several tested problems.

2. Instead of the overlapping of individual finite elements, we studied in the second

scheme the overlapping of complete finite element meshes. In this scheme, the

analysis domain is decomposed into several regular subdomains that overlap.

On each subdomain, a conforming mesh is spanned and the traditional finite

element interpolations are used to construct a local field. In addition, con-

tinuous weight functions are automatically computed and form a partition of

unity for the complete domain. The final interpolation is the weighted average

of local fields and it is compatible. We suggested an efficient implementation

based on the plane sweep algorithm. The mesh overlay structure is calculated,

the overlapped regions are divided into triangles, and then quadrature schemes

for triangles are used. The weight functions are further interpolated by linear

functions on each triangle to reduce the numerical integration expense. In the

suggested implementation, an undistorted low-order traditional element mesh
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is used for the interior subdomain and higher-order meshes are used near the

boundaries so as to resolve the boundary stress concentrations and the bound-

ary curvature. Since these meshes (subdomains) are allowed to overlap freely,

the meshing process can be highly automated and the local refinement can

be achieved efficiently. We see from the solutions of numerical examples that

overlapping meshes lead to reasonable overall and local solution accuracy with

a reasonable computational effort. We used in the thesis traditional finite ele-

ments in each individual mesh. However, the use of more advanced interpolation

techniques may make the overlapping meshes more effective.

3. The convergence of new methods was studied. The error bounds provide the-

oretical evidence for the methods to work in the solution of general problems.

In the case of overlapping meshes, it is also seen from the error bound that the

overlapped regions should be moderately thick, i.e. the overlapping sizes should

be comparable to the overall element size, for the scheme to reach its optimal

performance.

7.2 Limitations and outlook

There are still several unsolved problems due to the restricted amount of time.

1. The low-order (first-order) overlapping elements suffer from locking as tradi-

tional low-order finite elements. This issue may be tackled by the MITC in-

terpolation technique [1] or other existing techniques for eliminating locking

problems. Such techniques may also be used for high-order overlapping ele-

ments to further improve the performance. Although the proposed quadratic

overlapping elements show no locking in the tested problems, a comprehensive

study should be pursued and a mixed formulation may be used to reach an

interpolation free from any locking phenomenon.

2. We suggested an implementation for the use of overlapping meshes. The pro-

cedure calls the plane sweep algorithm to effectively compute the mesh overlay
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structure. In an actual discretization of engineering problem, many overlapping

edges and horizontal edges may be found in the overlapping meshes. In such

a case, the use of the plane sweep algorithm requires attention on rounding

errors. For this reason, the proposed implementation may not be optimal from

the practical point of view. Other geometric algorithms [67, 68, 69] should be

investigated.

3. We gave simple error bounds for the methods. However, the error bound for

overlapping meshes involves the overlapping sizes. While the error bound pre-

dicts an increasing solution error for decreasing overlapping sizes, it is found

from numerical examples that the solution may converge in the limit case. The

current error bound for overlapping meshes is also too rough to explain the

coupling effect. A better error bound would be very valuable. In addition,

an adaptive refinement procedure using overlapping elements or overlapping

meshes may be developed based on a suitable a posteriori error estimate. Al-

though it can be seen that the solution error is bounded in some cases as the

overlapping sizes tend to zero, we still do not know if the solution of overlapping

meshes really converges to the solution of a certain scheme for non-matching

grids. Developing theoretical tools to solve these problems is important for both

the completeness of theory and using it to guide applications.

4. We see that, as the overlapping sizes tend to zero, the condition number of

the resulting stiffness matrix may grow rapidly. Improving the overlapping

interpolation so that the solution procedure remains stable in the limit case is

also of much value.

5. The use of overlapping meshes, although saving much human effort for meshing,

leads to a larger number of non-zero sparse matrix entries in the stiffness matrix,

and thus a larger solution effort. We see that if the number of overlapping

meshes remains small and the overlapped regions constitute a small part of

the analysis domain, the increase of solution effort is reasonable. In addition,

depending on the global numbering, the coupling entries in the stiffness matrix
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follow some specific pattern. Special sparse solvers may be developed to make

the scheme more effective.

6. Stress recovery procedures are very useful for improving the stress solutions

of displacement-based finite elements. In traditional finite elements, the stress

solutions at specific local coordinates give higher-order stress accuracy. The

new schemes may have similar properties and the corresponding stress recovery

procedures should be formulated.

7. The current implementation of overlapping meshes relies on a triangulation of

the overlapped regions and quadrature schemes for triangles are used. However,

using such quadrature schemes for quadrilaterals is not very effective. A better

numerical integration procedure should be pursued.

8. The proposed methods should also be extended for solutions of three-dimensional

problems, non-linear problems, fluid and multi-physics problems.
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Appendix A

Triangular Overlapping Finite

Elements

The triangular overlapping finite elements were first proposed by Zhang et al. [5].

Here we give a new formulation as a direct application of the concepts introduced in

Chapter 3. In addition, the new triangular overlapping elements achieve the global

compatibility when they are used together with quadrilateral overlapping elements.
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Figure 7: Interpolation of the Shepard functions on overlapping region "e
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Figure 8: Interpolation of the Shepard functions on overlapping region "e

to reduce the size of the support set for each local field. The interpolation of the

Shepard functions on triangles has been studied before [15], thus it is not repeated

here.

We assume that the interpolated Shepard functions '̂I
IJ

(J = 1, 2, . . . 4) are in the

form of

'̂I
IJ

(x) =
8X

K=1

ĥK(x)'̂I
IJK , J = 1, 2, . . . 4 (10)

10

Figure A-1: Interpolation of the Shepard functions on a triangular element 𝜀𝑒

The formulation is very similar to what we have for quadrilateral overlapping

elements. Each triangle is formulated as the overlapped region of three polygonal

elements. In each polygonal element 𝐷𝐼 , a local field 𝜓𝐼 is given using the method
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of finite spheres, and finally three local fields are combined using traditional shape

functions to give the final interpolation on a triangle, i.e.

𝑢 =
3∑︁

𝐼=1

ℎ𝐼𝜓𝐼 (A.1)

where ℎ𝐼 is the traditional shape function for 3-node triangular element. The local

field 𝜓𝐼 is interpolated using the (interpolated) Shepard functions:

𝜓𝐼(x) =
3∑︁

𝐾=1

𝜑𝐼
𝐾(x)𝑢𝐾(x) (A.2)

where 𝜑𝐼
𝐾 is the interpolated Shepard function. As for quadrilateral elements, we

use mid-edge nodes to achieve the interpolation (see Figure A-1). The interpolated

Shepard functions are given by

𝜑𝐼
𝐽 =

√︀
𝑟*𝐼√

𝑟𝐼 +
√︀
𝑟*𝐼
𝜑𝐼
𝐽 +

√
𝑟𝐼√

𝑟𝐼 +
√︀
𝑟*𝐼
𝛿𝐼𝐽 (A.3)

where the radii 𝑟𝐼 and 𝑟*𝐼 are defined similarly as for quadrilateral elements, 𝛿𝐼𝐽 is the

Kronecker delta, and

𝜑𝐼
𝐽(x) =

6∑︁

𝑖=1

ℎ̂𝑖(x)𝜑𝐼
𝐽𝑖 (A.4)

where ℎ̂𝑖 is a shape function for the 6-node triangular finite element, and the coeffi-

cients are listed in Table A.1. These coefficients are determined based on the criteria

given in Chapter 3. In addition, the coefficients lead to a continuous interpolation if

triangular and quadrilateral overlapping elements are used in the same mesh, e.g. an

AMORE mesh with both types of overlapping elements.
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Table A.1: Interpolation of the Shepard functions on a triangular element (see Fig-
ure A-1)

𝜑𝐼
1 =

6∑︀
𝑖=1

ℎ̂𝑖𝜑
𝐼
1𝑖

𝜑𝐼
11 𝜑𝐼

12 𝜑𝐼
13

1 𝑊1

𝑊1+𝑊2

⃒⃒
⃒
x2

𝑊1

𝑊1+𝑊3

⃒⃒
⃒
x3

𝜑𝐼
14 𝜑𝐼

15 𝜑𝐼
16

𝑊1

𝑊1+𝑊2

⃒⃒
⃒
x4

𝑊1

𝑊1+𝑊2+𝑊3

⃒⃒
⃒
x5

𝑊1

𝑊1+𝑊3

⃒⃒
⃒
x6

𝜑𝐼
2 =

6∑︀
𝑖=1

ℎ̂𝑖𝜑
𝐼
2𝑖

𝜑𝐼
21 𝜑𝐼

22 𝜑𝐼
23

0 𝑊2

𝑊1+𝑊2

⃒⃒
⃒
x2

0

𝜑𝐼
24 𝜑𝐼

25 𝜑𝐼
26

𝑊2

𝑊1+𝑊2

⃒⃒
⃒
x4

𝑊2

𝑊1+𝑊2+𝑊3

⃒⃒
⃒
x5

0

𝜑𝐼
3 =

6∑︀
𝑖=1

ℎ̂𝑖𝜑
𝐼
3𝑖

𝜑𝐼
31 𝜑𝐼

32 𝜑𝐼
33

0 0 𝑊3

𝑊1+𝑊3

⃒⃒
⃒
x3

𝜑𝐼
34 𝜑𝐼

35 𝜑𝐼
36

0 𝑊3

𝑊1+𝑊2+𝑊3

⃒⃒
⃒
x5

𝑊3

𝑊1+𝑊3

⃒⃒
⃒
x6
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Appendix B

Geometric Algorithms

B.1 The doubly-connected edge list

In traditional finite element analysis, the nodes and elements are linked via a connec-

tivity list. A finite element mesh can be simply stored as a list of nodes and a list of

elements. In the method of overlapping finite element meshes, more information is

maintained in order to effectively compute the mesh overlay structure.

For simplicity, we consider a mesh as a collection of straight line segments. Calcu-

lating the intersection of two curved edges is not considered in the proposed scheme

because it is reasonable to assume that curved edges only occur on boundaries. Each

finite element mesh contains nodes, edges, and elements. To generalize the concept

of node, a vertex is defined to be a finite element node from some mesh, or an in-

tersection of edges from different meshes. Generally, a face is a maximal connected

subset of the plane that does not contain any point from an edge or a vertex. Each

element can be seen as a face in its own mesh. The exterior domain is also a face by

definition. The planar subdivision induced by several overlapping meshes is therefore

composed of polygons (polygonal faces). This planar subdivision is referred to as the

mesh overlay. We say a vertex and an edge are incident to each other if the vertex is

an end point of the edge. Similarly, an edge or a vertex on the boundary of a face is

incident to this face, and vice versa.
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Figure B-1: The doubly-connected edge representation of a planar subdivision

We adopt the doubly-connected edge representation of a mesh in order to con-

veniently access the incident edges of a vertex, incident faces of an edge, etc. A

doubly-connected edge list is defined as follows. As can be seen from Figure B-1,

each edge is represented by a pair of directed edges, which are of opposite orienta-

tions. Each directed edge is called a half edge, and the pair of half edges is called

twins. Each half edge of course has an origin and a destination. Furthermore, each

half edge has a pointer to its twin half edge. Since we split an edge into two half

edges, we define that each half edge is only incident to the face on its left. Similarly,

a half edge is only incident to its origin. In order to have each loop of half edges

represent a face, we also maintain for each half edge a next half edge and a previous

half edge. By doing so, we can traverse the boundary of a face by starting from an

arbitrary incident half edge and iteratively visiting the next half edge till some edge

is repeated.

In summary, each vertex has pointers to its coordinates and one of its incident

half edges; each half edge has pointers to its twin, incident face, origin, destination,

next half edge, and previous half edge; each face has a pointer to one of its incident

half edges. In addition, we need to store all incident elements for each face, i.e. all

elements that are coupling on this face.
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B.2 The plane sweep algorithm

As usual, we define a Cartesian coordinate system (𝑥, 𝑦) for the plane, where the

𝑥-axis points to the right and the 𝑦-axis points to the top. The idea of the plane

sweep algorithm is to imagine a line sweeping towards a fixed direction and visiting

all vertices one-by-one. In this section, we assume that the sweep line is horizontal

and moves from the top to the bottom. Whenever the sweep line visits a node or an

intersection, the algorithm tries to find some new intersections that are to be visited.

It can be proved that all intersections will be found when the algorithm terminates [55,

56]. If additional work is done at each vertex, the algorithm further returns a valid

doubly-connected edge representation for the mesh overlay of overlapping meshes.

In the algorithm, we maintain a set of points called the event queue 𝑄, of which the

members are called event points, and a set of line segments called the status 𝑆. The

event queue initially contains all nodes from the overlapping meshes. As the algorithm

runs, new intersections are found and added into the event queue. Whenever the

sweep line visits an event point, this point is removed from 𝑄. Therefore, all current

members of 𝑄 are below the sweep line. The set 𝑆 contains all edges that currently

intersect with the sweep line. A brief example is shown in Figure B-2.
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′v

Figure B-2: An example for the plane sweep algorithm

We see from Figure B-2 that the red sweep line arrives at the vertex 𝑣. The current

status contains three edges 𝑒1, 𝑒2, and 𝑒3. The algorithm tests several neighboring

edges of 𝑣 in 𝑆 and decides if any pair of edges have a new intersection below the sweep

line. In this simple example, the intersection 𝑣′ of edges 𝑒1 and 𝑒2 is found. This new

intersection is then added into the event queue and the sweep line moves downwards
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to the next position. Some vertices may have exactly the same 𝑦-coordinate. For such

a special case, we imagine that the sweep line is slightly slanted and has a positive

infinitesimal slope. Vertices with the same 𝑦-coordinate are then visited from the

left to the right. Formally, we are defining an order relation: we say two vertices

𝑣1 = (𝑥1, 𝑦1) and 𝑣2 = (𝑥2, 𝑦2) satisfying 𝑣1 < 𝑣2 if 𝑦1 < 𝑦2 or 𝑦1 = 𝑦2 and 𝑥1 > 𝑥2.

The data structure in 𝑄 is required to support fast operations including searching

an event point, inserting new event points, and extracting the maximum element

currently in 𝑄, i.e. the next position to visit. The event queue can be implemented

using an AVL tree or any other suitable balanced binary search tree [73]. Similarly,

the edges in 𝑆 are ordered by their intersections with the sweep line because we

need to test if any pair of adjacent edges near the current event point have a new

intersection below the sweep line. Whenever the horizontal line leaves its current

position and visits a new event point, some edges in 𝑆 no longer intersect the sweep

line and should be removed from 𝑆. At the meanwhile, some edges should be added

into 𝑆. For maintaining the order relation of members in 𝑆 as well as enabling fast

operations including searching neighboring edges, inserting edges, and deleting edges,

the AVL tree can also be used for implementing 𝑆. Note that some edges in 𝑆 may

intersect the horizontal line at the same position. In this case, the order is defined

by the intersections after moving the sweep line infinitesimally forward. The slopes

of these edges thus come into play.

So far we have only introduced how all intersections are found. To obtain a

valid doubly-connected edge representation for the mesh overlay, we need to fix the

connectivity at each event point so that each loop of half edges still represents a face

in the mesh overlay. As can be seen in Figure B-3, on the blue mesh, the next half

edge of 𝑒1 is 𝑒2. However, in the mesh overlay, the next half edge of 𝑒1 is actually the

edge 𝑒3 (in the red mesh).

Since we need to calculate the incident elements of each polygon in the mesh

overlay, additional information is stored for each event point 𝑣. This additional

information is an 𝑚-dimensional array named LeftList, where each entry corresponds

to a mesh. If a mesh is involved at 𝑣, i.e. there exists an edge touching 𝑣 from
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this mesh, one of the half edges originating from 𝑣 and from this mesh is stored

in the corresponding entry of LeftList. If a mesh is not involved at 𝑣, we define

𝑆𝑖 = {𝑒 | 𝑒 ∈ 𝑆 and 𝑒 is an edge in the 𝑖th mesh}. Then we store in the 𝑖th entry of

LeftList the edge in 𝑆𝑖 that locates immediately to the left of 𝑣. The use of LeftList

for obtaining the information of incident elements is straightforward. Such additional

information can be collected during the main algorithm.

The algorithm for computing a mesh overlay induced by overlapping meshes is

summarized in Table B.1.
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Figure B-3: Fixing the connectivity of half edges

B.3 A simple algorithm for polygon triangulation

Triangulating a simple polygon is a classical problem in computational geometry.

The difficulty is only addressed when the number of vertices is very large. In fact, a

polygon with𝑚 vertices can be triangulated within 𝑂(𝑚 ln𝑚) time [55]. This actually

ensures that the total runtime for calculating the mesh overlay and the triangulation

can be achieved within 𝑂(𝑛 ln𝑛) time, where 𝑛 is the complexity of the mesh overlay.

However, a polygon occurring in a mesh overlay of overlapping finite element

meshes does not tend to have many vertices as long as all overlapping meshes have

close element sizes. Noticing this, we use a simple 𝑂(𝑚2) algorithm to triangulate
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Table B.1: The plane sweep algorithm for computing the mesh overlay of overlapping
meshes

Algorithm Mesh overlay

1. Input: Several conforming finite element meshes

2. Convert the meshes into their doubly-connected edge forms.

3. Add all finite element nodes into the event queue 𝑄. Initialize the status
𝑆 to an empty set. Initialize the set 𝑉 of visited event points to an empty
set.

4. While 𝑄 is not empty:

∙ Extract the maximum event point 𝑣 from 𝑄 (and remove it from 𝑄).

∙ Insert 𝑣 into 𝑉 .

∙ Initialize the array LeftList of 𝑣 to an array with 𝑚 empty entries.

∙ Let 𝐿(𝑣) be the set of edges that have 𝑣 as a lower (less in the special
order) end point. Let 𝑈(𝑣) be the set of edges that have 𝑣 as a higher
(greater in the order) end point. Let 𝐶(𝑣) be the set of edges that
have 𝑣 in the interior.

∙ For each edge in 𝐶(𝑣):

– Split the edge at 𝑣 into two edges, and update 𝐿(𝑣) and 𝑈(𝑣)
accordingly.

∙ Fill in the array LeftList using these involved edges in 𝐿(𝑣) ∪ 𝑈(𝑣).
[Note that for each mesh, we just choose an arbitrary involved (half)
edge originating from 𝑣. Some meshes are not involved at 𝑣, so some
entries in LeftList have not yet been filled in.] Store in remaining
entries the edges that locate immediately to the left of 𝑣 from these
meshes, as explained. [Some entries may still be empty.]

∙ Delete edges in 𝐿(𝑣) from the status.

∙ Insert edges in 𝑈(𝑣) into the status.
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Table B.1: The plane sweep algorithm for computing the mesh overlay of overlapping
meshes (continued)

Algorithm Mesh overlay

4. ∙ If 𝑈(𝑣) is empty:

– Find the edge in 𝑆 that locates immediately to the left of 𝑣. Find
the edge in 𝑆 that locates immediately to the right of 𝑣. Test if
these two edges have an intersection less than 𝑣. If they have and
the intersection is not currently in 𝑄, insert it into 𝑄.

Else:

– Find the leftmost edge in 𝑈(𝑣) and the edge in 𝑆 that locates
immediately to the left of 𝑣. Test if these two edges have an
intersection less than 𝑣. If they have and the intersection is not
currently in 𝑄, insert it into 𝑄.

– Find the rightmost edge in 𝑈(𝑣) and the edge in 𝑆 that locates
immediately to the right of 𝑣. Test if these two edges have an
intersection less than 𝑣. If they have and the intersection is not
currently in 𝑄, insert it into 𝑄.

5. For each vertex in 𝑉 :

∙ Modify the connectivity between half edges at this vertex as explained.

6. Traverse all half edges to find loops. [Each loop represents a polygon in
the mesh overlay.] Create a new (polygonal) face for each loop and use the
arrays LeftList to find the set of incident elements for each polygon.
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each polygon [55]. As can be seen in Figure B-4, we first find the maximum vertex 𝑣

of the polygon. Denote by 𝑣′ and 𝑣′′ the two neighboring vertices of 𝑣. If the edge 𝑣′𝑣′′

is contained in the polygon, the original polygon is divided into two smaller polygons

by the edge 𝑣′𝑣′′. If 𝑣′𝑣′′ is not contained in the polygon, some vertices must be inside

the triangle ∆𝑣𝑣′𝑣′′. Assume 𝑣′′′ is the vertex in ∆𝑣𝑣′𝑣′′ that is the farthest away from

the line through 𝑣′𝑣′′. It can be seen that the edge 𝑣𝑣′′′ must be completely contained

in the polygon. In either case, we succeed in dividing the polygon into two smaller

polygons. Recursively doing so yields a triangulation of the polygon. The runtime is

𝑂(𝑚2) since each split costs linear time and we can draw at most 𝑂(𝑚) additional

edges. The recursive algorithm is summarized in Table B.2.
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Figure B-4: A simple algorithm for polygon triangulation
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Table B.2: The algorithm for polygon triangulation

Algorithm Polygon triangulation

1. Input: Doubly-connected edge representation of a polygon

2. If the polygon is a triangle, return.

3. Find the maximum vertex 𝑣 and its two neighboring vertices 𝑣′ and 𝑣′′.

4. Find all vertices insider the triangle ∆𝑣𝑣′𝑣′′ (see Figure B-4) and calculate
their distances to the line through 𝑣′𝑣′′.

5. If no vertex locates inside the triangle ∆𝑣𝑣′𝑣′′:

∙ Split the polygon into two polygons by the edge 𝑣′𝑣′′.

Else:

∙ Find among all vertices inside the triangle ∆𝑣𝑣′𝑣′′ the vertex 𝑣′′′ that
is the farthest away from the line through 𝑣′𝑣′′.

∙ Split the polygon into two polygons by the edge 𝑣𝑣′′′.

6. Recursively call the algorithm on these two smaller polygons.
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