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Abstract

The first two chapters of this dissertation study models of markets for financial assets
which are not perfectly liquid. Trade in these markets is costly; agents would strictly
prefer not to trade than buying one unit and then selling one unit, Agents’ behavior
and the prices of the assets are thus not determined according to the “frictionless”
Walrasian model.

Chapter 1 considers a market with some large traders whose trades affect prices.
These traders, willing to reduce the price impact of their trades, will behave strate-
gically, spreading trades over time, Chapter 1 studies their behavior and shows that
when most of the trading volume comes from smaller non-strategic traders, large
traders trade quickly and do so at a decreasing rate over time. Otherwise they trade
slowly at an increasing and then decreasing rate. If large traders account for most
of the trading volume, risk-sharing is much more inefficient than what static dou-
ble auction models predict (the gains from trade are realized very slowly) and the
outcome departs significantly from the Walrasian outcome. Chapter 1 concludes by
studying how large traders’ behavior and welfare change when the market clears more
frequently, and whether large traders are better off if the information regarding their
trading needs is publicly known.

Chapter 2 (co-authored with Jean-Luc Vila) studies the impact of (exogenous)
transactions costs on the prices of financial assets, It is assumed that there are two
assets, the “liquid” asset and the “illiquid” asset. The liquid asset is traded without
costs, while trading the illiquid asset entails proportional costs, Transactions costs
naturally create a “liquidity premium”: the illiquid asset becomes cheaper than the
liquid asset. The main result of chapter 2 is that with transactions costs the liquid
asset becomes more expensive (in the absolute) while the illiquid asset may become
cheaper or more expensive. Chapter 2 also shows that the effects of transactions
costs on the liquidity premium and on the price of the liquid asset are stronger if the
fraction of illiquid assets in the economy is higher.

Chapter 3 (co-authored with Diego Rodriguez) is an essay on the theory of the
firm. It considers a multidivisional firm whose divisions make substitute (and po-
tentially competing) products and studies whether top management would find it
optimal to decentralize decision-making authority to the divisions. It is shown that



when a division is given the right to market its product to customers of the other
division, its manager has an incentive to increase product quality. At the same time
divisions locate their products too close together, Top management may or may not
want to restrict competition, by controlling the access of divisions to customers, but
even if competition is desirable, it may not be credible due to top management’s
temptation to intervene “ex-post”.

Thesis Supervisor: Jean Tirole
Title: Professor of Economics
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Introduction

A large body of research on financial markets assumes that these markets are perfectly
liquid. Trade is costless in the sense that agents are indifferent between not trading,
and buying one unit and then selling one unit. This assumption is significantly
violated, however, in many financial markets.

Consider, for instance, the sale of a large block of stock. This sale will generally
depress the stock price for two reasons. First, many agents simply do not know that
a block is being sold and do not take the other side of the transaction. Second,
even some of the agents who are aware of the sale do not know whether this sale is
motivated by bad news about the stock’s value or not. The seller of the block, willing
to reduce its price impact, may incur additional costs such as searching for buyers
and not completing the sale immediately. Finally, he has to pay transactions taxes
and exchange fees.

With costly trade, agents’ behavior and asset prices may be substantially different
than what predicted by the Walrasian model of perfectly liquid markets. The first
two chapters of this dissertation study how agents’ behavior and asset prices are
determined in illiquid markets.

Chapter 1 studies a market with some large traders whose trades affect prices.
Its focus on the strategic behavior of large agents is shared with the literature on
insider trading.! Papers in this literature have studied in detail the trading behavior
of informed agents, but have considerably simplified the behavior of agents who trade

2

because of non-informational reasons.? Chapter 1 focuses instead on the trading

!See Kyle (1985) and (1989) for seminal papers in this literature,
*There are some exceptions. See for instance Admati and Pfleiderer (1988).
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behavior, in a dynamic setting, of agents who do not have an informational motive
to trade but rather trade to hedge their positions.?

Large traders, willing to reduce the price impact of their trades will behave strate-
gically and spread them over time. The rest of the market, knowing that large traders
spread their trades over time, will use current prices to forecast their future trades as
well as future prices. Large traders will, in turn, take this into account when choosing
their trading strategy. Chapter 1 shows that when most of the trading volume comes
from smaller non-strategic traders, large traders trade quickly at a decreasing rate
over time. Otherwise they trade slowly at an increasing and then decreasing rate.
These trading strategies are substantially different than the ones obtained in insider
trading models. Chapter 1 also studies the efficiency of the market allocation (which
is related to the speed at which large traders hedge their positions). It shows that
when large traders account for most of the trading volume, risk sharing is much more
inefficient than what static double auction models predict.?

Chapter 2 studies the impact of transactions costs on asset prices in a general
equilibrium framework. It considers an infinite horizon economy with finitely-lived
agents. Agents buy assets for life-cycle purposes. There are two otherwise identical
assets: “liquid” assets which are traded without costs, and “illiquid” assets whose
trade entails costs. The costs of trading the illiquid asset are exogenous to the model
and, for simplicity, are assumed to be proportional to the quantity traded (they may
be due to transactions taxes or exchange fees).

As it is well-known transactions costs create a “liquidity premium”: the illiquid
asset becomes cheaper than the liquid asset. The main result of chapter 2 is that
with transactions costs the liquid asset becomes more expensive (in the absolute).

The price of the illiquid asset varies then in an ambiguous direction since it decreases

3Chapter 1 is also related to the literature on optimal portfolio rebalancing with transactions
costs, (See, for instance, Dumas and Luciano (1991) and Fleming et al, (1992).) Indeed, papers in
this literature also study optimal investor behavior in illiquid markets. These papers assume that
illiquidity takes the form of proportional transactions costs (say a transactions tax) and consider an
exogenous price process, By contrast, chapter 1 assumes that trading costs are quadratic (i.e. are
market impact costs) and endogenizes the price process,

4See McAfee and McMillan (1987) and Wilson (1990) for surveys of the literature on double
auctions,
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relative to the price of the liquid asset, but the liquid asset becomes more expensive,
There are cases where transactions costs actually raise the price of the illiquid asset.
Chapter 2 also shows that the effects of transactions costs on the liquidity premium
and on the price of the liquid asset are stronger if the fraction of the illiquid asset
in the economy is higher. These results suggest that when studying how a change in
transactions costs on a fraction of the assets in the economy® will affect the prices of
these assets, one should not take the prices of the other assets as given, especially if
the fraction of the first group of assets is high.

Chapter 3 is an essay on the theory of the firm, It studies how decision-making
authority should be allocated in a multidivisional firm whose divisions make substitute
(and potentially competing) products. In particular, should top management control
the design and pricing of these products, thus centralizing decision making, or is it
better that divisions decide which products to make and how to sell them? These
questions are clearly of great concern to many large firms,

Chapter 3 considers a firm which is composed by top management and two divi-
sions which design horizontally differentiated products, characterized by their “loca-
tion” and their “quality”, and then sell them to customers. It focuses, for simplicity,
on the allocation of decision rights at the price setting stage. More precisely, top
management can restrict the set of customers with whom a division can deal, thus
prohibiting competition for customers, or it can allow both divisions to approach all
customers.

It is shown that when top management decentralizes decision-making authority
to the divisions, the latter, aiming also at “stealing” euch other’s customers, offer
higher quality products. However, for the same reason they locate these products
too close together. Top management may or may not want to restrict competition,
by controlling the access of divisions to customers, Even if competition is desirable,
it might not be credible due to top management’s temptation to intervene “ex-post”
and mandate the allocation of customers. Chapter 3 suggests that in this case top

management would prefer to commit not to intervene by not collecting precise infor-

8Such as imposing transactions taxes in the stock market.
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mation on customers’ characteristics and thus being unable to allocate customers to

divisions.
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Chapter 1

A Dynamic Model of an
Imperfectly Competitive Bid-Ask
Market

1.1 Introduction

In this chapter we study a dynamic model of a financial market. This market is
imperfectly competitive: some traders are large and take into account their eftect on
prices.

Large traders play an increasingly important role in modern financial markets;
institutional investors, large dealers and mutual fund managers are obvious examples.
These agents execute large trades and, as it has widely been documented, their trades
have a significant price impact.! These trades may be informationally motivated:
large traders may trade in order to benefit from inside information about assets’
fundamental values. Their trades thus affect prices since they signal some of this
information to the rest of the market, The strategic behavior of large insiders has
been very well studied since the pioneering work of Kyle (1985).

Large traders also have non-informational motives to trade: they may want to

!See Kraus and Stoll (1972), Holthausen, Leftwich and Mayers (1987), and Chan and Lakonishok
(1992),
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rebalance their portfolios for instance, Their trades may still affect prices if the
market cannot distinguish them from informationally motivated trades. In addition,
even if the market correctly does not attribute them to inside information, large non-
informational trades can have a significant price impact. This will be the case if there
is only a small number of (risk-averse) agents present in the market,? Indeed, by
taking the other side of these trades, risk-averse market participants take large risky
positions; they will do so only if the price changes in a way which is favorable to
them.,

It seems likely that large traders whose trades, although not informationally mo-
tivated affect prices (for one of the two reasons outlined above) will also behave
strategically. In particular they will not find it optimal to complete their trades im.-
mediately, even though this is efficient for risk-sharing purposes: doing this would
affect prices too much. They will find it more advantageous to spread their trades
over time. The rest of the market, knowing that large traders follow such a strategy,
will use current prices to forecast their future trades as well as future prices. Large
traders will in turn, take this into account when choosing their trading strategy.

Chan and Lakonishok (1993) study the trading behavior of large investment man-
agement firms. Their finding that these firms trade in a correlated manner over time?
implies that large orders are indeed split into smaller pieces, and is very consistent
with the preceeding discussion. They also find that the stocks in which these firms
traded did not experience any abnormal returns after the firms completed their trades.
This suggests (but does not imply) that these firms did not trade because of superior
information,

In this chapter we study the dynamic behavior of large traders who have non-
informational motives to trade. We assume for simplicity that no insiders operate in

the market so that their trades are not attributed to inside information, Rather, large

2Although there may be a very large number of risk-averse agents in the economy, fixed costs of
information gathering and market participation will imply that only a small number of them will be
present in the market to take the other side of large trades, at least in the short-run, See Grossman
and Miller (1988),

3These firms may be trading in the same direction for more than seven days,
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trades affect prices because there is a small number of risk-averse market participants
to take the other side of these trades. We address questions such as;: What determines
large traders’ strategies and what are the equilibrium patterns of trade? Should we
expect to observe larger quantities to be exchanged at the beginning of the trading
session or does trade start slowly and most of it occurs well after the market opens?
How efficient is the market allocation? In other words do large traders trade quickly
so that most of the gains from risk-sharing are realized, or are we very far from the
competitive outcome (where the gains from trade are realized immediately)?

In view of the increasing importance of large traders in modern financial mar-
kets, an understanding of their dynamic behavior may be useful for studying issues
concerning the design and operation of these market:, We examine two such issues.?

The first issue is the frequency of market clearing. Many exchanges face the
trade-off of whether to operate continuously over the trading day or whether to hold
auctions at discrete points in time, at a given frequency. Increasing the frequency of
market clearing has some costs such as operating costs but would probably attract
more trade. An analysis of large traders’ dynamic behavior is helpful in answering the
complementary question of how the efficiency of the market allocation® varies with
the market clearing frequency.

The second issue is the extent to which information about large trades is made
public. Large traders sometimes voluntarily “preannounce” their trades, i.e. publicly
reveal information about the trades that they wish to do in the future, It is of interest
to know whether they are always hurt if information regarding their future trades is
publicly known (since prices immediately adjust to this information) or whether they
would ever benefit if the market has this information.®

In nur model, a risky asset is exchanged for the numéraire, Trade takes place at a

4See Cohen et al (1986) for a description of the the operation of different financial exchanges. See
also Pagano and Roéll (1990) for a discussion of the costs and benefits of recent reforms in many
European stock markets,

SEfficiency is measured by the ratio of realized gains from trade over total potentially realizable
gains from trade,

®If insiders operate in the market, large non-information traders may benefit if the rest of the
market is aware of their trades because these trades will not be attributed to insiders, See Admati
and Pfleiderer (1991),
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discrete number of dates.” As it was said before, we assume that no market participant
has inside information about asset payofls; rather this information is publicly revealed
over time. There are two types of traders. Large traders are risk-averse and initiate
trades for hedging (or portfolio rebalancing) purposes. Their hedging demands are
private information. They also act as speculators absorbing trades initjated by other
large traders or by small traders. Since there is a finite number of large traders, the
risk-absorption capacity of the market is finite: any trade affects prices even if no
market participant has private information about asset payoffs. Large traders willing
to minimize the price impact of their trades will not complete them immediately,
They will thus bear the cost of holding unhedged positions since information about
asset payoffs is gradually revealed. In addition the allocation of risk in the market
will not be efficient. Small traders are also present in the market, We assume for
simplicity that at each date they submit an exogenous, random, independent over time
quantity of market orders. Because of these orders, market inferences about trades
coming from large traders are imperfect, Small traders are assumed to behave exactly
as the noise traders in the models of trade between asymmetrically informed agents,
It is important to note that in contrast to the above models, the quantity of trade in
our model does not go to zero as the quantity of market orders coming from small
traders goes to zero. The reason why we introduce small traders is rather because
it is very realistic to assume that the market does not make perfect inferences about,
the quantity of trades coming from large traders. We also get a much richer model,
We finally assume that all traders can buy or sell many units of the risky asset and
that the irading mechanism at each date js Walrasian auction, where large traders
submit limit orders (demand functions) and small traders submit market orders,
The brief description of the model given above, makes it clear that our work js
closely related to the literature on double auctions with private values (i.e. auctions
where there are many buyers and sellers, each of whom having a privately known will-

ingness to trade).® Most of the papers in that literature (Satterthwaite and Williams

"We also consider the continuous-time limit,
®For surveys of this literature see McAfee and McMillan (1987) and Wilson (1990),
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(1989) and Wilson (1985) among others) have studied the one-shot double auction
where risk-neutral buyers (sellers) have 0-1 demands (supplies), These papers have
studied the importance of the welfare loss due to imperfectly competitive behavior
and the speed at which this loss goes to zero as the number of participants becomes
large. The main difference between our work and these papers is that we consider a
dynamic model. As it is well-known, conclusions of static models ahout the efficiency
of trade may change substantially in a more realistic (at least in our case) dynamic
framework.

There are very few papers that study dynamic models of double auctions. Wil-
son (1986) considers a continous-time model of a bid-ask market where risk-neutral
buyers and sellers have 0-1 demands. (See also the discussion in Wilson (1987).) He
conjectures an equilibrium where buyers and sellers trade successively in the order
of their respective valuations and costs, and derives the equations characterizing it,
Our work is different than his in many respects. First, our traders are risk-averse,
trade for hedging purposes and have multi-unit demands. Second, we introduce the
small traders who add some “noise” to the inference process. These assumptions,
which are more realistic in a financial market framework, enable us to examine some
interesting questions that cannot be addressed in Wilson’s framework. In particular,
we can study how large traders spread their trades and how the noise in the inference
process (which is related to the ratio of trades coming from small traders to trades
coming from large traders) affects the patterns of trade and the efficiency of the mar-
ket allocation. A third difference is that we also consider the welfare implications of
alternative trading systems. Finally we get a more tractable model that has a simple
structure and that can be solved by a straightforward numerical algorithm,

Our work is also related to the literature on dynamic insider trading. Following
Kyle’s work (1985), papers in this literature (for example Foster and Viswanathan
(1992) and Holden and Subrahmanyam (1992)) have studied how quickly private in-
formation about an asset’s payoff gets incorporated into prices, In those papers a

small number of risk-neutral insiders® benefit from their informatiou, trading with

®See also Vives (1992) and Wang (1989), (1991) for models where there is a very large number
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some risk-neutral uninformed market-makers, Marke.-makers accept to trade only
because there is some chance that the orders they receive come instead from unin-
formed “noise” traders who trade for liquidity purposes, These papers study the
strategic behavior of insidexs while we study the behavior of agents who do not have
an informational motive to trade. In addition, the assumptions of these papers, by
allowing them to focus on the speed of information dissemination, make the ques-
tion of the efficient realization of the gains from trade (which is the main focus of
our work) trivial. Indeed, the risk-neutrality of the insiders and the market-makers
implies that the only gains from trade in the market come from the liquidity traders.
Since the latter are always assumed to have inelastic demands, the market outcome
is efficient in the sense that all the gains from trade are realized.

There are however some similarities between the dynamic behavior of our large
traders and, say, Kyle’s (1985) monopolistic insider. Indeed, both have private infor-
mation about future prices and choose their current trades knowing that the market
makes (noisy) inferences from current prices about that information. At the same
time there are two important differences: First, our large traders have private infor-
mation about future prices only because they decide to carry out some of their trades
in the future. The magnitude of the adverse selection problem is thus endogenous;
it depends on large traders’ strategies. By contrast, Kyle’s insider has an informa-
tional advantage because he is the first to learn some news about the asset’s payoffs.
Therefore, the magnitude of the adverse selection problem is exogenously determined
by the impact that these news will have on the asset’s price. The second difference is
that our risk-averse large traders, bearing the cost of holding unhedged positions,!®
are impatient. Their impatience endogenously determines the speed at which trade
takes place and information is revealed. On the contrary, Kyle’s risk-neutral insider
can costlessly delay his trades until the date at which his information is made public.
Therefore the speed of information revelation crucially depends on that exogenously

given date. As it will be clear later, trading patterns in the two models are indeed

of informed agents who do not take into account their effect on prices.
19Since information about the risky asset’s payoffs is gradually revealed over time,
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very different.

Our main results are the following, First, we find that the noise in inference
process (which is related to the importance of small traders in the market) is a major
determinant of large traders’ behavior, and by consequence of trading patterns and
welfare. As one might expect by extrapolating Kyle’s analysis, if there are many small
traders in the market, large traders trade faster. The result that noise is an important
determinant of large traders’ strategies is not true in a static model. Indeed, in the
static version of our model large traders’ strategies are independent of noise.!! This
illustrates well the interest of studying a dynamic model instead.

We find that when small traders account for a substantial fraction of the trading
volume, large traders trade at a decreasing rate over time, while in the opposite case
they start trading slowly, with most trade taking place well after the beginning of
the trading session and decreasing afterwards. By contrast, Kyle’s insider keeping
market liquidity constant, trades larger and larger quantities as time passes. We also
find that when there are few small traders, the outcome can be substantially more
inefficient than what static double auctions models would predict.

Our result that when there are few small traders the outcome is much more in-
efficient than what a static model would predict, has a natural counterpart when
studying how the frequency of market clearing affects efficiency. As one might ex-
pect, when there are few small traders, large traders trade more slowly if the market
clears more frequently. By contrast, if there are many small traders and the market
clearing frequency increases, large traders complete their trades within a shorter time
after the market opening.

We finally find that if large traders account for a substantial fraction of the trading
volume, they are better off if information regarding their hedging demands is publicly
known.!?

The rest of the chapter is structured as follows: In section 1.2, we present the

model. In section 1.3, we study the case where there are only two trading dates, This

The static version of our model is a particular case of Madhavan's (1990) model where there is
no private information about the asset's payoff. See also Kyle (1989),
12This holds for any value of their hedging demands,
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case is relatively simple to analyse and helpful for exhibiting the basic structure of
the model. The more interesting multiperiod case is studied in section 1.4 and the
efficiency of the market allocation is examined in section 1.5. In section 1.6, we study
the effects of varying the market clearing frequency and give a heuristic analysis of
the continuous-time limit. Section 1.7 examines whether large traders benefit if the
market has exact information about their trading needs and section 1.8 concludes,

All proofs are in the appendix.

1.2 The Model

We consider an economy where a risky asset is exchanged for the numeéraire, Time,
denoted by t, is continuous and runs from 0 to 1.)* Trade takes place at a finite
number of equally spaced dates between these two times. There are L such dates

denoted by ! (I = 1...L). Trading date ! corresponds to time t = L. Times will

L1

always be in parentheses, while dates will be in superscripts.

The risky asset (that in our finite-horizon economy can be best thought of as
a futures contract) pays a liquidating dividend d(1) at time 1. At time 0, d(1) is
normally distributed with mean d and variance £2, Without loss of generality we
will assume that d = 0. Information about d(1) is publicly revealed over time at a
constant rate. In other words, d(t) = E(d(1)|(t)) is a Brownian motion, where Q(t)
represents information known as of time t. (The drift of this Brownian motion is 0
and its variance £?.) For convenience, we define d' = d(i7) and 0% = —Iﬁr—’l Holdings
of the numéraire are reinvested at an interest rate equal to 0 after each trading date

and are consumed at time 1 together with the risky asset’s payoffs.

There are two types of traders: large and small.

e Large traders are present in the market at all trading dates. Their number is

N. They are risk-averse and their preferences over time 1 consumption, (1),

!3Time 0 can be naturally interpreted as the time when the market opens at a given day,
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are described by a negative exponential utility function

—exp(—aC(1)).

They trade because of a hedging motive revealed to them at time 0. It is
assumed that at time 0 large trader 7 is endowed with e; units of the asset.!?
The fact that e; is different for each ¢ implies that the initial allocation is not
optimal and that there are gains from trade, Iiaders with high endowmnents
will want to sell and traders with low endowments will want to buy, for hedging
purposes. e; is private information to trader ¢, The e;'s are assumed to be
normally distributed, independent of each other, each with mean 0 and variance

Y215 Indexes concerning traders will always be in subscripts.

e Small traders submit at each period an exogenous, random, independent over
time quantity of market orders. The existence of small traders implies that
information about the trading needs of the large traders is not revealed very
quickly. As stated in the introduction, trade can occur in our model even in
the absence of small traders. We introduce them because it is very realistic to
assume that the market does not make perfect inferences about the quantity
of trades coming from large traders and because the model is much richer, It
is assumed that the cumulative quantity of market orders (executed or not)
due to small traders follows a Brownian motion with drift 0 and variance X2,
Therefore, the quantity of market orders to be executed at date [, which are due

to small traders, is normally distributed with mean 0 and variance o2 = I%-"'T

I

This quantity will be denoted by u!, with the convention that u! > 0 corresponds

to sell orders.

Finally, all traders can buy or sell many units of the risky asset and the trading

mechanism at each date is a Walrasian auction, where large traders submit limit

14¢; may also be interpreted as trader i’s holdings of a different asset which is c\ rrelated with the
asset which is traded in the market we are considering,
15Negative values for the ¢;’s can be interpreted as short positions,
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orders (demand functions) and small traders submit market orders.

Before leaving this section we discuss some of the assumptions. An important
assumption is that the parameter e; describing the portfolio preferences of large trader
i does not change over time. In other words, large traders do not have constantly
changing demands; rather they experience an once and for all change to their portfolio
preferences. Therefore in the beginning of the trading session there is a large quantity
of trades to be done, and this quantity decreases over time. This assumption stands
in contrast to the corresponding one for small traders: the latter have constantly
changing demands. One could envision constructing a model where large traders
have constantly changing demands, too. This model might also have the advantage
of being stationary. We believe that many of the results of this model would be true
in that model too. Moreover, market openings are natural examples of the situation
that we describe (i.e. where a large quantity of trades to be done has accumulated),
Finally, a model where large traders have constantly changing demands is much more
difficult to solve than this one.

We also briefly discuss the somewhat rudimentary way to capture the behavior
of the small traders. It was assumed for tractability, that small traders submit an
exogenous quantity of market orders which is independent over time. Therefore small
traders are not allowed to provide liquidity to the market, helping to absorb trades
coming from large traders or from other small traders, and cannot postpone their own
trades. If their objectives were more fully specified, for example if they were assumed
to be risk-averse traders who traded for hedging purposes, the risk-absorption capacity
of the market would simply be bigger. Moreover, given that each of them has a cost
of postponing his own trades and a very small benefit, since these trades affect prices
very little, he would not postpone them. It is thus clear that the results would not

be very different.
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1.3 The Two-Period Case

In this section we assume that there are only two trading dates. The analysis is then
relatively simple and illustrates well why large traders do not carry all their trades at
the first date and how the rest of the market responds to their strategy. The impact
of the noise in the inference process, due to the small traders, can also be studied in
this simplified framework.

We will restrict attention to linear symmetric Markov (LSM) equilibria. In sub-
section 1.3.1 we describe LSM equilibria in order to introduce some notation. In
subsection 1.3.2 we show that there exists a unique such equilibrium and we discuss
the equations characterizing it. Finally, in subsection 1.3.3 we study the impact of

noise on large traders’ strategies.

1.3.1 Some Preliminary Analysis

In a LSM equilibrium, large trader ¢’s date 1 demand has the form

zj(p') = A — B'p' - a'e} (1.3.1)

) t

where we set e} = e; for trader i’s endowment before trade at date 1 and p! for the
date 1 price. In words, trader i’s date 1 demand depends only on the date 1 price,
p', and on his initial endowment, e}. A!, B!, a! are parameters to be determined.

Market clearing requires that

N
dozi(p') —u' =0. (1.3.2)
=

Equations 1.3.1 and 1.3.2 imply that trader i’s purchase at date 1 is

N el 1
z! =a1(z+1-\;-—’-e})+'j—‘v-. (1.3.3)

Therefore in equilibrium, after trade at date 1, trader ¢’s new asset holdings are
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1N 1 1
a Ej:l ej +u

e} +z; =(1—a')e} + 7

(1.3.4)

Equation 1.3.4 shows that after date 1 trade, trader i’s asset holdings are a fraction
(1 —a?) of his initial asset holdings plus 1/N’th of the total quantity of the asset that
has been supplied at that date: a? TN, e} + ul.

We will set

e? = (1 —a')e} (1.3.5)

11

for the part of trader i's asset holdings which are “diosyncratic” to him, and

1NV 1 1
éz_a‘ Y6 tu

o (1.3.6)

for the part of trader i’s asset holdings which are common to all traders.

In a hypothetical competitive world where traders do not take into account their
impact on price, a’ = 1. All large traders would then have exactly the same asset
holdings after trade at date 1 and the allocation of risk would be efficient. However,
because of imperfectly competitive behavior it will be the case that 0 < a' < 1.
Although the dispersion of large traders’ asset holdings decreases, it does not become
0. The parameter a! measures how much this dispersion decreases and how efficient
is trade at date 1. Since a'! < 1, large traders’ asset holdings are still different after
date 1 trade and there are incentives to further share risk at date 2.

After date 1 trade all traders know the realization of & i.e. the total quantity
of the asset that has been supplied. Each of them uses this information as well as
his knowledge of his own date 1 trade to form expectations about the future trades

2 is obviously correlated with these future

coming from the other large traders. &
trades but not perfectly, because of the date 1 trades due to small traders. We now
describe how these expectations are formed.

To fix ideas consider trader ¢. As the rest of the market, he observes . His
expectations about }°;.; e3/N, which is related to the future trades coming from the

other large traders are
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& e} ul

el el
pE e, = (- apG - S = (- DR S (3)
where 8 € (0,1) is defined by
(a'l)zzf(N — 1) (1.3,8)

P = @ysN -1+ 2
and is related to the signal-to-noise ratio of &2/a® — e} /N i.e. of ¥4, €j/N +ul/a'N.
Denoting (1 — a!)B&?/a® by s?, (s for “signal”) and using equation 1.3.5, we can

rewrite equation 1.3.7 as

N . e? 2
E(Zg;ev, €] Iéz?et!) = g2 ﬂ%' (1.3.9)

Equation 1.3.9 shows that each trader’s expectations depend on his own “idiosyn-
cratic” asset holdings and the “signal” s? which is common to all traders, Therefore

in a LSM equilibrium, trader i’s date 2 demand will have the following form

z}(p?) = A? — B*p* — a’e} — A}s” — AjE’. (1.3.10)

His demand is a function of the date 2 price, p?, his “idiosyncratic” asset holdings,
e?, the “signal” s? which is related to his beliefs about other large traders’ hedging
needs, and the “common” asset holdings &. A?, B, a?, and A? and A? are parameters
to be determined.'®

Equations 1.3.1 and 1.3.10 describe traders’ behavior in equilibrium, It is impor-
tant to note that if trader i deviates from equilibrium at date 1 by, say, buying one
more unit, the other traders will still believe that he traded according to equilibrium
but that the total hedging demand was different, Therefore at date 2 each of them

will still submit a demand function determined by equation 1.3.10 (but using different

10Gince s? and & are perfectly correlated, it might seem that the parameters A? and A} in
equation 1,3,10 cannot be identified. We can, however, identify A2 by computing the change in
traders’ demands in the hypothetical case where the asset holdings of each of them, after date 1
trade, increase by the same amount for an exogenous reason,
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values of s? and &2),

1.3.2 Equilibrium

We are now ready to characterize equilibrium, i.e. determine the parameters of equa-
tions 1.3.1 and 1.3.10. In Lemma 1.3.1 (proven in appendix 1.A) we characterize

equilibrium at date 2.

Lemma 1,8.1 There exists a unique date 2 equilibrium in which traders’ demands
have the form given by equation 1.8.10. In this equilibrium, the parameters A?, B2,

a%, A? and A? are given by

i d? (1.3.11)
—g—z— = ac?. (1.3.12)
x—:—%% = ao? (1.3.13)
A2 =0 (1.3.14)
and

a’ = % (1.3.15)

Moreover, the price is given by
p’=d* - aa‘z—z—%\;—% ~ ag?e? — aa‘zx : ;-}L\; (1.3.16)

This equilibrium is a special case of the equilibrium derived by Madhavan in
(1990) when there is no private information. (See also Kyle (1989).) As in (1990),
a linear symmetric equilibrium exists for N > 2, If N = 2 there is not enough
competition, and the only candidate equilibrium has large traders submitting price-
inelastic demands (i.e. B* = 0), so no market clearing price exists, From now on it
will be assumed that N > 2,

Equations 1.3.11 to 1.3.13 are easy to interpret, The constant term in traders’
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demands, A%, is related to the expected asset payoff and is such that the constant term
in the price, A%/B?, is exactly this expected payoff. The coefficient of &* in traders’
demands, A2, is such that the coefficient of &% in the price, A2/ B?, is exactly the same
as in the hypothetical case where traders did not take into account their effect on the
price (the competitive case). This is clear: € is an endowment common to all traders,
therefore if it changes trades will remain the same and the price change will reflect the
change in the marginal valuation of any trader. Finally, the sensitivity of demands
to price, B?, is inversely related to traders’ risk-aversion and asset risk (term ao?),
and is smaller than its value in the competitive case, by the term (N — 2)/(N — 1),

We now come to equation 1.3.14, The coefficient of s?, A2, is equal to 0. In other
words, traders when forming their demands do not use their information concerning
other traders’ hedging needs, The reason for this is that we are in the last trading date
and there is no more trade to take place. Large traders are then treated exactly in
the same way as small traders. This will obviously not be the case in the multiperiod
model studied in section 1.4,

Finally, the coefficient of e?, a?, which is related to the efficiency of trade at date
2, is smaller than 1 by the term (IV —2)/(N —1) as equation 1.3.15 shows. The reason
is that large traders, like textbook monopsonists (or monopolists), take into account
their effect on the price and restrict their trades.

We characterize equilibrium at date 1 in Proposition 1.3.1 (proven in appendix

1.A).

Proposition 1.3.1 There ezists a unique date 1 equilibrium in which traders’
demands have the form given by equation 1.3.1. In this equilibrium,the parameters

Al, B! and a' are given by

1
£ aa

N-21

N 15t =2a¢72+(1-—a1)§-Q3 (1.3.18)
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and
N-1
N-2

—1)2a0” = —(1 - a') Qs ng = 12\’((1;,\’——12))ﬂ)

(e’

(1.3.19)

where Q3 is a positive constant determined in appendiz 1.A, In particular 0 < a! <

N-2
N-1'

Equation 1.3.17 corresponds to equation 1.3.11 of Lemma 1,3.1. However, equa-
tion 1.3,18 is not the exact equivalent of equation 1,3.13 because of the term (1 —
a')(B/a')Qs. If large traders completed all their trades at date 1 (i.e. if a' = 1)
this term would be zero. The price-sensitivity of demands, B!, would then be in-
versely related to traders’ risk-aversion and assct risk in a straightforward way, as in
equation 1.3.13. However large traders do not complete their trades at date 1, this
term is positive, and demands are less price-sensitive (i.e. the market is less liquid),
Indeed, suppose that a higher than expected quantity is supplied, The market will
require a larger price fall to absorb this quantity because it may have come not only
from the small traders but from a large seller as well, who is likely to sell more in the
future. Equation 1.3.18 also shows that if market inferences are not very noisy (i.e.
B is large), demands are less price-sensitive and the market is less liquid, as intuition
suggests.

As in Lemma 1.3.1 we find that trade at date 1 is inefficient, i.e. a' < 1. Even
if no future trading opportunities existed, large traders would restrict their trades in
order to execute them at better prices, exactly as they do at date 2. The existence
of one more trading opportunity (date 2) induces them to restrict their trades even
more (a! < (N —2)/(N —1)). Indeed, large traders’ benefit of trading less at date 1,
which is that their remaining date 1 trades will be executed at better prices, remains
unchanged. By contrast the cost of restricting their date 1 trades is now smaller since
they can still cover their unhedged positions at date 2.

We now briefly discuss the determination of large traders' strategies. A more
detailed discussion as well as the actual derivation of these strategies can be found in
appendix 1.A.

For concreteness we consider trader ¢ and we assume that he is a buyer. As it
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was said before, he completes only a fraction of his purchases at date 1, and carries
out some more at date 2. Suppose now that he reduces his date 1 purchases by a
small quantity dz and increases his date 2 purchases by the same quantity, Then the

following will happen:

¢ He will benefit since the price at which the rest of his date 1 purchases are
executed will decrease. This is why he does not complete all his purchases at
date 1 in the first place. The price at date 2 will rise, due to the imperfectly

competitive behavior of the other traders, but this effect is much smaller,!?

¢ He will bear the cost of holding a larger unhedged position between dates 1 and
2,

* He will bear an additional cost which is the following: Since he already carries
out some purchases at date 2, he knows that the expected price at that date
will be higher than the expected price at date 1, If he thus postpones some
additional purchases for date 2, these purchases will be executed at a higher

price,

This basic tradeoff determines the strategy of large buyer 1.

1.3.3 The Impact of Noise

In this subsection we will study how the noise in the inference process, which is related
to the importance of small traders in the market, affects large traders’ strategies,

In appendix 1.A we show that if there are fewer small traders large traders trade
less at date 1. There are three reasons for this. First, with fewer small traders, an
additional trade at date 1 will affect Prices more since it will be mostly attributed to
large traders and will signal many more future trades in the same direction, Therefore
if a Jarge trader Postpones some additional trades for date 2, the price at which the

rest of his date 1 trades are to be executed will significantly improve since the market

V7If the other traders were behaving as perfect competitors and trader i bought one unit less at
date 1 and one unit more at date 2, the expected price at date 2 would remain the same,
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will believe that there are fewer similar trades to follow. This trader will thus have a
larger benefit to postpone trades for date 2, Second if there are fewer small traders
the cost of postponing trades is smaller. Indeed, since there is less noise the market
has betier information about large traders’ hedging demands and date 2 trades and
the date 1 price better reflects these trades. Therefore, a large trader will not find the
date 1 price inuch more advantageous than the date 2 price and postponing trades for
date 2 will not be so costly. The third reason is that with fewer small traders, date
2 prices are less volatile and the risk of trading at date 2 instead of date 1 is simaller.

This reasoning is very similar to the one that explains why an insider trades less
aggressively when there are fewer noise traders in the market.!® As it was stated in
the introduction, here the importance of large traders’ information (which is related
to their date 2 trades) is endogenous. In particular if there are fewer small traders,
large traders trade less at date 1. The price may then become more sensitive to
an additional trade since this trade signals many more future trades in the same
direction. This decrease in market liquidity may induce large traders to trade even
less. Liquidity may then further decrease and so on.

We should also note that in a static model large traders’ strategies would not
depend on the importance of small traders in the market. Indeed, in Lemma 1.3.1 we
found that a? = (N —2)/(N —1) independently of how many trades come from small
traders. By contrast if trade takes place over time, large traders will find it profitable
to spread their trades. It will thus make a difference for them whether the rest of the
market can easily “detect” them.

The analysis of the two-period case is helpful for understanding why large traders
spread their trades over time and how noise affects their strategies, It is however
clear that any application of the model involves more than two dates, in fact a very
large number of them. Therefore by studying the multiperiod case (i.e. increasing
the market-clearing frequency) we can get a more realistic idea of how quickly trade
takes place, and how efficient is the market allocation. In addition, in a multiperiod

model we can carry a more detailed analysis of large traders’ strategies and of the

18The two-period version of our model is analogous to a static model of insider trading,
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process by which prices adjust to reflect demand and supply, i.e. the price discovery

process. In the next section we study the multiperiod case,

1.4 The Multiperiod Case

In this section we study the general case where there is any number of trading dates,
We first generalize the notation of the previous section in subsection 1.4.1, In subsec-
tion 1.4.2 we characterize the equilibrium outcome and in subsection 1.4,3 we describe

traders’ strategies,

1.4.1 Some Preliminary Analysis

As trade proceeds over time, the dispersion of large traders’ asset holdings decreases,
As the discussion at the beginning of the previous section suggests, in a LSM equilib-
rium before date [ trade, trader i’s asset holdings can be decomposed into two parts,
The first part, el, is “idiosyncratic” to him and the second part, &, is common to all
traders. In addition as time passes the market obtains better information about large
traders’ hedging needs and remaining trades. This information is summarized in a

signal s'. In a LSM equilibrium, trader i’s date ! demand has the form

zi(p') = A' — B'p' —alel — Als' — AlE. (1.4.1)

His demand is thus a function of the date ! price, p', his “idiosyncratic” asset holdings,
e!, the “common” asset holdings, &, and the “signal” s'. A}, B!, !, and A} and Al
are parameters to be determined.®

As in the previous section we find that after trade at date !, trader ¢’s asset

holdings are

IsN {
{+a§:j___1ej+u
' N ’

(1.4,2)

It is thus clear that

19Equation 1.4.1 is also valid for I = 1, since s/ = 0 and &' =0,
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eit! = (1 - a')el (1.4.3)

and

d TN e +ul

a1 _ g
€ + N '

(1.4.4)

We now describe how traders form expectations about others’ hedging needs.
After trade at date I’ < [, all traders observe the total quantity of the asset that has
been supplied at that date, a* ):}Ll e“,-' + u’f. Therefore, before trade at date ! they
obviously know & which is the sum of these quantities over all dates I' < [ divided
by N.2° Moreover, each of them forms expectations about others’ hedging needs at
date [, i.e. their “idiosyncratic” asset holdings, using all these quantities as well as
his knowledge of his own trades.

In appendix 1.A we show that trader ¢’s expectations about the “idiosyncratic”

asset holdings of the other large traders are given by

Z,;e;

v !
[a "2’"1 : +—]u<u &) = -"—(ﬂ"l'l+ﬂ"1'2+"'+ﬂ‘"l‘l—l)%' (1.4.5)

E( |

Equation 1.4.5 generalfzes equation 1.3.9. As before, we find that trader i’s ex-
pectations depend on his “idiosyncratic” asset holdings at date /, and on a signal s'.

s! is given by

PU =(1—a1)(1—a,2)--(1 )[ﬂ‘ llnl_l_ﬂl -1,2 2 ﬂl ~1=1 l 1] (1.4.6)

and is common to all traders. The expressions for the 7i'’s and the A'~M"'s (I' < I)
are given below.

When forming his expectations, a trader uses his knowledge of the total quantities

20T'his is a direct consequence of equation 1.4.4,
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supplied at each date, a’ N | e} +u'". He has to normalize these quantities (divided
by N), in terms of the first period asset holdings, for instance, To do this normaliza-
tion, he has to divide the quantity supplied at date I', by (1—a')(1—a?)..-(1—a"~')a".

Indeed it a straightforward implication of equation 1.4.3 that

el =(l—al)(l—az)---(l—a""l)e}. (1.4.7)

The 7l"’s are these normalized quantities, and are given by

ll

i €] u
— J J +

n N (1—a)(1-a?)...(1—aV-1)a"N’ (1.4.8)

These normalized quantities are weighted by the §'~2"’s, These are given by

- (1 —a})*(1 —a?)?.. (1 —a"1)*a")’DYN — 1)
g = Sral(I— @)% — a2)? ... (1 — a'-1)2(al)2|22(N — 1) + o2’ (1.4.9)

B'-4!' measures the importance of date I’ trades for forming expectations at date
l. It is large if the trades coming from large traders at date I’, which are a fraction
a! of their current asset holdings and a fraction (1 — a!)(1 — a?)- .- (1 — a/~1)a" of
their initial asset holdings, are important relative to all trades until date /.

Finally, these normalized quantities are multiplied by (1 — a')(1 —a?).--(1 —a/~?)
to reflect asset holdings before date ! trade. This gives us equation 1.4.6.

It is easy to see that s't! is obtained recursively as a function of s* and the quantity

traded at date ! in the following simple manner

!

TN e U
41 _ (1 _ D1 _ Al o ald 1
M= (1 (1 - M)l 4 LS g )

Equation 1.4.10 shows that s'+! is a weighted average of s and T, e} /N+u//a! N,

(1.4,10)

multiplied by 1 — @/, the fraction of the unrealized trades coming from large traders
at date [, The weights reflect the importance of what is learned at date [ relative to

what was known before that date.
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1.4.2 Equilibrium

We are now ready to characterize the equilibrium outcome. This is done in Proposi-

tion 1.4.1,

Proposition 1.4.1 In a LSM equilibrium, the parameters A', B!, ¢!, A and A}

of equation 1.4.1 are given by

5= d' (1.4.11)
%if =(L+1~1)ad? (1.4.12)
- I 1l
H% =(L+1-1ac®+(1- a‘)i—,(Q';rlu — a‘)-i—,ﬁ +Q5™) (1.4.13)
A' 1l 1
== -AN@I - g T @) (144)
and
_ L
(a'x — ; —1)(L+1-Dac? = —(1-d)Q5*(1 - a')FNL—T + Q5™)
1 1 I 2(N-1)
(1- (1= p" = =gt 4 ) 2)/8”) (1.4.15)

where Q5! and Q4! are determined in appendiz 1.A.

Proposition 1.4.1 (proven in appendix 1.A) generalizes Lemma 1.3.1 and Propo-
sition 1.3.1,

The interpretation of the first two equations (1.4.11 and 1.4.12) is straightforward.
It is important to note that the price impact of the “common” asset holdings (A./B')
decreases with I, Indeed, as we approach time 1, there is less risk to be borne.

As in Proposition 1.3.1 we find that demands are less price-sensitive that what

they would be if large traders completed all their trades at date [, Indeed, as equation
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1.4.13 shows, B! is highest when a! = 1. It is also clear that if trade at date ! is very
informative about large traders’ hedging needs, i.e. @ is bigger, demands are less
price-sensitive and the market is less liquid.

Equation 1.4.14 shows that traders when forming their demands at date ! would
not use their information concerning others’ hedging needs if trade at that date were
efficient, (i.e. A, would be 0 if ¢! = 1). Indeed, in this case large traders are treated
exactly as small traders. However information about large traders’ hedging needs is
used at each date (except the last), since the latter do not not complete all their
trades at that date and postpone some for future dates. If for instance, it is believed
that there are some large sellers in the market, each trader decreases his demand for
a given price since he expects to be buying in the future,

Large traders’ strategies are determined by considerations similar to those of the
previous section. More precisely, if at date [ large trader ¢ who for concreteness is a
buyer postpones some of his purchases for date ! + 1, his payoff will change because
of the three reasons outlined in the previous section, In the multiperiod case his
payoff will change because of an additional reason, namely that from date ! + 1 on,
the beliefs of the other traders about the total hedging demand will in general be
different. Their demands will change too and so will the prices at which at which the
remaining purchases of large trader i will be executed. Suppose, for example, that
large traders are expected in equilibrium to trade more at date [ than at date [ + 1.
If trader ¢ postpones some of his purchases for date ! + 1, then from that date on
the other traders will believe that there is less buying pressure. Their demands will
thus be lower and trader i’s remaining purchases will be executed at lower expected

prices.

1.4.3 Trading Patterns

In this subsection we describe large traders’ strategies. At this stage this description
is not supported by formal proofs. It is rather based on the intuition that that an
analysis of the equations characterizing equilibrium provides and on many numerical

simulations.
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We first note that the impact of noise is the same as in the two-period case:
with fewer small traders, large traders trade more slowly. Indeed, their benefit of
postponing trades at a given date is larger since by doing so they give a strong
signal to the market that fewer trades in the same direction will follow. As a result
the price at which the rest of their trades at that date are executed significantly
improves. In addition their cost of postponing trades is smaller since the market has
better information about their hedging needs and the current date’s price reflects
more accurately the impact of their trades on next date’s price. Therefore trading at
the current date is not much more advantageous than trading at the next date.

We now describe large traders’ strategies and the time variation of the trading
volume. Suppose first that large traders account for a small fraction of the trading
activity. Then the benefit of postponing trades is small. Indeed, the market does
not regard current trades as good signals of future ones and prices do not respond
much to these trades. In addition the cost of trading later is important since the
market receives little information about large traders’ hedging needs, and the current
date’s price does not reflect the impact of their trades on next date’s price, This
cost of postponing trades together with the cost due to worse hedging outweigh the
benefit of trading later due to signalling and large traders trade at a decreasing rate
over time. Suppose now that large traders account for most of the trading activity.
Then prices adjust very quickly to reflect their hedging needs. However, even if the
market can predict relatively accurately the total hedging demand, current trades
remain valuable signals of future ones for a longer period.?! During that period, the
benefit of postponing trades due to signalling outweighs the cost of doing so due to
worse hedging and large traders trade at a increasing rate. As time passes and more
information is accumulated, the signalling value of an additional trade decreases and
so does the benefit of postponing trades. The hedging cost of trading later dominates

then and large traders trade at a decreasing rate.

21The fact that the market puts significant weight on trades even though it can already predict
relatively accurately the total hedging demand may seem counterintuitive, In fact, it is not, If
one successively receives good signals about an unkown random variable, he can quickly predict it
accurately, but he puts substantial weight on future signals,
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The above trade patterns indeed appear in numerical simulations.?? These sim-
ulations are made under a simplifying assumption. It is assumed, quite realistically,
that price movements coming from fundamentals (informatioi. about the liquidating
dividend) are much larger than price movements due to the trades of the different
market participants. Price movements due to fundamentals have a variance of the
order of X? while price movements due to agents’ trades have a variance of the or-
der of o?Z* max(X2/N,X2/N?).2® Therefore, price movements due to fundamentals
dominate if large traders’ risk-aversion is small (a small), or fundamentals not too
volatile (22 small), or trade needs not too large (I2 and 12 small) or N big.

We make this assumption in order to abstract away from the complicated interac-
tion between traders’ risk-aversion and the price uncertainty due to their trades. The
equations then simplify considerably and become exactly the same as in the fictitious
case where traders are risk-neutral and have a constant per-period cost of holding the
asset which is quadratic in the amount that they are holding. (This cost corresponds
to their aversion to fundamental risk).?

Under this assumption the equilibrium outcome depends only on N, the number
of large traders, L, the number of trading dates and L2/NXZ, the ratio of trades
coming from small traders to trades coming from large traders. (It does not depend
on a and X2 for instance.) Figures 1.1 to 1.3 illustrate our results for L = 120 trading

dates and for various values of N and X2/NXZ, (denoted by “noise”).

1.5 Allocative Efficiency

In this section we study the efficiency of the market allocation, We first define total

welfare as well as a measure of efficiency. We then present some numerical results

22The algorithm that we use to solve the (polynomial) equations characterizing equilibrium is
similar in spirit to the one followed in Kyle (1985). See Appendix 1,A for details,

33To understand why this is so, consider, for example, equation 1,3,16 giving the price at date 2.
The variance of the first term, which corresponds to fundamentals is of the order of ©2, while the
variance of the second, third and fourth term, which correspond to different agents’ trades is of the
order of a?%% max(X2/N,L2/N?),

24The simplification of the equations does not matter much for the simulations, It rather facilitates
the analysis of these equations so that the simulation results are easier to understand,
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and compare them to the results obtained in static double auction models.

To derive the welfare of a large trader we proceed in two steps. First we take his
initial endowment of risky asset as given, and find his (“interim”) expected utility
at time 0. We then find his “ex-ante” utility taking expectations with respect to his
initial endowment and we calculate his welfare in certainty equivalent terms. This
computation is particularly simple if we assume, as before, that price movements
coming from fundamentals dominate price movements due to the trades of the dif-
ferent market participants. All the results of this subsection are derived under this
assumption.

The derivation of small traders’ welfare is trickier since we have not specified their
objectives. Following papers in the market microstructure literature that examine
welfare issues, for example Admati and Pfleiderer (1991), we assume that small traders
care only about the expectation of their proceeds from selling the asset and their
expenses incurred in buying it. (We refer to these as “trading proceeds”.) We believe
that a model in which small traders’ objectives were more fully specified?® would not
produce a very different expression for their welfare, However in such a model small
traders would also care about the variability of their trading proceeds and about
the speed at which they can trade. (This speed is related to the market-clearing
frequency.) It is not clear how taking into account these factors would affect welfare
comparisons when the market-clearing frequency is kept constant. However, small
traders’ preferences for fast execution would certainly play a role in the comparison
of trading systems that operate at different frequencies.

Under the above assumptions we get a very simple expression for total welfare,
In appendix 1.B we show that welfare, W, is given by
1
2

aX?2?(1 + u(1 +(1-a)+. 4+ (l=a')? .. (1 -al)?)

W=- L+1

2
NZ22(L +1)

+ ] (1.5.1)

251f for instance they were assumed to be risk-averse traders who traded for hedging purposes,
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where the a'’s (I € [1, L)) have their equilibrium values,

It is easy to see that welfare is always smaller than the value W, that the above
expression would take if a' were equal to 1 i.e, large tradems.completed all their
trades at date 1. Simple algebra?® shows that in the competitive case where large
traders indeed complete their trades at date 1, total welfare is equal to W,. We thus
naturally find that welfare is highest in the competitive case and use this case as
a benchmark. Moreover, equation 1.5.1 shows that welfare decreases if trade takes
place more slowly, (and (1—a')?...(1—a')? is higher for each !) as intuition suggests,

To determine how efficient is the market outcome we need to subtract total welfare
given in equation 1.5.1 from its value in the competitive case and see how small the
difference is. We also need some measure of the total realizable gains from trade in
order to express this difference in relative terms. We define the total realizable gains
from trade as the difference between W, and the value of welfare given by equation
1.5.1 if all the a'’s were equal to 0, i.e. large traders did not trade between them.?’

In the following table we present some values of the unrealized gains from trade
as a percentage of total realizable gains from trade, obtained in our model, as well as
analogous values obtained in static double auctions models. In the first three rows
we report results that we get in our model for I = 120 trading dates and for various
values of X2 /NX2, the ratio of trades coming from small traders to trades coming
from large traders (denoted by “noise”). In the fourth row we report the results of our
static model (where large traders’ strategies and market efficiency are independent of
noise). Finally, in the fifth row we present results obtained in static double auctions
models where traders are risk-neutral, have 0-1 demands or supplies and there is no

noise,

20t is straightforward to solve the model in the competitive case,

*7Since we do not know small traders’ surpluses we can not define total realizable gains from trade
as the difference between W, and total welfare if there is no trade at all, The normalization chosen
is not important for the following discussion since our point is that the market outcome is not very
efficient when there are few small traders in the market,
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N=4 | N=8 [ N=16 | N=24
dynamic, noise 30 4,21 | 255 | 1.62 | 1.23
dynamic, noise 4 8.04 | 5.17 | 3.31 | 2,51
dynamic, noise 0.1 25,8 | 15.7 [ 9.13 | 6.47
static (our model) 11,11 | 2,04 | 0.44 | 0.18
static (other models) [ 5.6 1.5 0.4 0.2

As our previous analysis suggests, the market outcome is more efficient if there
are more large traders in the market, for a given amount of “noise”, and if there
is more “noise”. Moreover, looking at the above table we can make two important
observations.

First, when there is little noise, the outcome is substantially more inefficient that
what static models predict. (This is true for both the static double auction models
with risk-neutral traders and 0-1 demands as well as for the static version of our
model.)?® As the analysis of section 1.3 suggested, if the market is open for more
dates than one, large traders will trade less at the first date, Indeed, by doing so they
get a better price for their remaining trades at that date and are still able to cover
their unhedged positions trading at later dates. When there is little noise the market
strongly reacts to their strategy. Date 1 demands become less price-sensitive since
an additional trade signals many more future ones, As a result large traders want to
postpone their trades even more, this reinforces the above market reaction, and so
on.

Second, the rate of convergence to the competitive outcome is much smaller in a
dynamic model than in a static model, (This is, again, true for both static models.)
If, for example, N increases from 4 to 16, unrealized gains from trade as a percentage
of total realizable gains from trade are divided by at most 3 in the dynamic model

and by more than 12 in both static models, As Satterthwaite and Williams (1989)

28Note, however, that at the end of the trading session much more trade has taken place in a
dynamic model than in a static model, This result is analogous to Kyle's (1985) result that when
trade ends, prices reflect all the insider’s information in a continuous-time model and only half of it
in a static model,
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have indeed shown, in the one-shot buyer’s bid double auction (where risk-neutral
traders have 0-1 demands and supplies) the rate of convergence to the competitive
outcome is of the order of §z?® We conjecture that the rate of convergence in our
dynamic model (at least in its continuous-time version) is of the order of ; and hope

to establish this result in future work.

1.6 The Effects of More Frequent Market Clear-

ing

In this brief section we study how the efficiency of the outcome, or equivalently
the difference in relative terms between total welfare, W¢, in the competitive case
and total welfare, W, in equilibrium, varies with the frequency of market clearing,
Obviously, if the market clears more frequently (L is higher) W¢ will be higher since
large traders will start trading earlier (at time 1/(L + 1)).3° Here we address the
complementary question of how the difference between W<¢ and W will change.

Although at this stage we have not proven a general result, the numerical sim-
ulations that we have performed suggest that if the market clears more frequently
large traders trade faster if there are many small traders and vice-vzrsa. The reason
why increasing the market clearing frequency can imply that large traders trade more
slowly is similar to why a dynamic model can predict a less efficient outcome than a
static model, If the market clears more frequently, large traders spread their trades
more over the larger number of dates. By doing so, they obtain a better price at each
of the initial dates but can still hedge their positions through more frequent trading,
Since large traders trade less at a given date and more in the future, market liquidity
may be lower at that date since an additional trade signals many more future ones,

Moreover, all demands are adjusted taking into account the fact that more trades will

29Gresik and Satterthwaite {1989) peform a analysis for optimal trading mechanisms with similar
results,

80There will be some additional welfare gains because small traders will be able o trade more
quickly after they experience a need to do so, However, as it was stated in the previous section our
measure for welfare does not capture this effect,
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follow and prices at the initial dates are not very different.?’ Because of the above
market reactions, large traders will postpone their trades even more and so on,

To understand why an increase of the frequency of market clearing can induce
large traders to trade faster, suppose that X? is zero (i.e. large traders are not
expected to initiate any trades) and that there are many trading dates, A large
trader who happens to have a non-zero hedging demand will obviously trade a small
(and decreasing) quantity at each date, Suppose now that the number of trading
dates increases. In this case it will not be optimal for him to complete his trades
in the same calendar time. Indeed, since his trades are very small, the reduction in
the price impact caused by further spreading them over the larger number of trading
dates is very small. However, the gain due to impatience in completing trades faster
is not so small. The above intuition is supported by a heuristic analysis that shows
that if 32 = 0, o' varies in 1/V/L. Therefore the calendar time in which large traders
complete almost all their trades converges to 0 as L gets large.

In other words, large traders will trade faster when the market clearing frequency
increases, if the market does not strongly react to the fact that they spread their
trades more. This will be the case if they initiate a small fraction of trades (which
we assumed 0 in the above example).

Our heuristic analysis also shows that if £2 # 0, a! varies in 1/L and the calendar
time in which large traders complete a given amount of their trades converges to a
non-zero limit as L gets large. We hope to make this heuristic analysis rigorous in

future work,

31Suppose, for instance, that the market believes that there is buying pressure, Suppose also that
buyers instead of carrying all their trades at the current date postpone some of them, Then all
traders will submit higher demands for a given price at the current date, (In terms of the model A,
will be positive instead of 0,) This will imply that the current price will not be very different even
though buyers buy less,
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1.7 The Case where Large Traders’ Hedging De-
mands are Public Information

In this section we analyse large traders’ welfare if information regarding their trading
needs is publicly known. More precisely, we will study the market outcome when all
initial endowments e; are public information (we call this case the public information
case) and compare it to the outcome studied in the rest of the chapter where initial
endowments were private information (the private information case), We will be
particularly interested in knowing whether large traders can ever benefit if the rest
of the market has information about their hedging demands. Although this does not
necessarily imply that large traders would individually prefer to reveal information
about their demands (i.e. preannounce), it suggests that this might be the case.??
For simplicity, we assume that there are only two trading dates, We characterize the
equilibrium and discuss large traders’ welfare,
If the e;’s are publicly known, the date 1 demand of large trader i has the form
2,{'\':1 e}-

zi(p) = A’ — B'p' —a'e} — A= (1.7.1)

where A', B!, a', and A} are, again, parameters to be determined. Note that in con-
trast to the private information case, demands contain the extra term Al Zﬁ_‘l e;/N
since hedging demands are known at date 1.

As in the private information case, we find that trader i's asset holdings after date

1 trade can be decomposed into the “idiosyncratic” part
el = (1 —a')e! (1.7.2)
and the “common” part

al N el 4 q!

=2 __ J=1%J

& = .
N

(1.7.3)

32We hope to saxdy individual incentives to preannounce in future work,
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Moreover, trader i’s date 2 demand will have the following form

o
w‘?(pZ) — Az - szz _ aze? — Af',_J_jvl_J . Agéz (1.7'4)

where A2, B% a?, A? and A? are parameters to be determined.

As the analysis of section 1.3 suggests, the date 2 equilibrium is exactly the same
as in the the private information case. Indeed, at date 2 no trader uses his information
concerning others’ hedging needs. We prove this result in appendix 1.C.

Proposition 1.7.1 (proven in appendix 1.C) characterizes equilibrium at date 1.

Proposition 1.7.1 There ezists a unique date 1 equilibrium in which traders’
demands have the form given by equation 1.7.1, In this equilibrium,the parameters

Al, B!, a! and A} are given by

Al
N——-TBI = 2a0 (17.6)
A,

A (1.1.)

and
N-1

(a'N — 1)2a0? = —(1 — a')Q3 (1.7.8)

where Q3 is a positive constant determined in appendiz 1,C, In particular 0 < a! <
N2
-1’

The important difference with the private information case is that demands are
more price-sensitive (i.e. the market is more liquid). Indeed, a price which is lower
than expected can be attributed only to small traders (and not to large traders as
well, as in that case). However in the public information case, at date 1 traders have
information about others’ hedging needs and use this information when forming their
demands (i.e. A; > 0). If, for example, they know that there are some large sellers

in the market, they decrease their demands because they know that they will also be

47



buying in the future.

In the appendix we show that in the public information case large traders may
trade faster or more slowly than in the private information case (i.e. a! may be higher
or lower). The reason is that in the public information case an additional date 1 trade
will affect prices less since it will not be attributed to large traders and will not be
interpreted as a signal of more trades in the same direction. Large traders benefit
thus less from postponing their trades. However, the cost of postponing trades is
also smaller since the date 1 price perfectly reflects large traders’ hedging needs and
date 2 trades and is not more advantageous than the date 2 price. Not surprisingly,
if there are few small traders in the market large traders trade faster in the public
information case and vice versa. (This is proven in appendix 1.C.)

As equation 1.5.1 shows, total welfare is lower in the private information case if
there is less trade at date 1 (a! smaller).?® In appendix 1.C we provide an example
where large traders’ welfare (both in the “interim” sense, for all values of their initial
endowment and in the ex-ante sense) is also lower. This is the case because, although
they obtain a better price at date 1 than in the public information case, they trade

much less at this date facing a less liquid market.

1.8 Conclusion

In recent years there has been substantial progress in understanding the behavior
of large agents in financial markets, Most of the papers in this area have focused
on the strategic behavior of large agents who have inside information about assets’
fundamental values and trade in order to benefit from that information. To do so in
a simple manner they have considerably simplified the behavior of agents who trade
because of non-informational reasons.®® Qur work shows that these agents may also
have incentives to behave strategically and examines their dynamic behavior as well

as the efficiency of the market allocation.

83Bquation 1.5.1 is also valid for the public information case. See appendix 1,C.
84There are some exceptions, See for instance Admati and Pfleiderer (1988),
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In a world with no insiders but with large traders whose trades are not informa-
tionally motivated, many conclusions concerning the design of trading systems may
be different from the ones obtained in a world with insiders.

Consider for instance the transparency of the trading system, i.e, how much
information about the trading process is revealed to the market participants. In a
world with insiders it seems natural that as much information about the trading
process as possible should be made public, so that the differences in information
about assets’ fundamental values are attenuated. This might no longer be the case
in a world with large “informationless” traders. Indeed in a transparent market,
information about their remaining trades would be quickly revealed and prices would
adjust to reflect these trades. These traders would then find the liquidity of the market
substantially reduced and would reduce their trades to slow down the revelation of
information. In addition they would have a smaller ex-ante incentive to participate
in this market. We believe that this as well as other market microstructure issues can

be addressed in this model and we hope to do so in future research.
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1.A Appendix: Proofs of Results of Sections 1.3
and 1.4

1.A.1 Notation and Preliminary Derivations

In this subsection we will motivate equation 1.4.1 which gives a trader’s demand at
date [. Doing so we will introduce some notation and derive some equations which
will be useful later.

Suppose that until date [ — 1 all traders’ demands have the form of equation
1.4.1 (written for these dates). Then, in equilibrium, before date ! trade the asset
holdings of trader i’s can be decomposed into two parts: the “idiosyncratic” part, e,
and the “common” part, &. In addition trader : forms expectations about others’
“idiosyncratic” asset holdings at that date. When forming his expectations, he uses
his information about his own hedging demand (i.e. €} or equivalently e!) as well as

N e +u' for I' < 1.

his knowledge of the total quantities supplied at each date, o' =165

It is a matter of algebra to show that conditional on his information, trader 1

believes that 3°;; e /N is normally distributed with mean

N l' ‘
E:(LJ;\&; eJ) — 8! _ (ﬂl—l.l + . +ﬂl—1.l—l)_}fv;_ (1.A.1)
and variance
—al)2, . (1 _ pl-1)2y2 _ 2
v (1—a')?. (1 —al1)2EYN - 1)o? 1 (1.A.2)

" Suall = {1 = R VISHN ~ 1) 4 o2 N7

Equation 1,A.1 shows that in equilibrium a trader’s expectations about others’
“idiosyncratic” asset holdings at date ! depend on his own “idiosyncratic” asset hold-
ings at that date, as well as on a signal s' which is common to all traders. It is thus
natural to look for an equilibrium where at date ! his demand has the form given by
equation 1.4.1. Since we always refer to trader ¢ we drop the subscript ¢ from the E's
that denote expectations.

In equation 1.A.1 s! is given by
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3‘=(1—-a1)~ ( )[ﬂl 11 1 ,3! -1,l-1 l—l]' (1.A.3)

The B'-1#"s are given by

(L-a!)?- (1o’ )a"PRE(N — 1)
T Sl ey (@ -yt A

ﬂl -1l _

Finally the 7{"’s are given by

Zl'v=1 € u'
I __ J J
gl = N + (1—a‘)-~-(1—a"-1)a,l'N' (1.A.5)

nl' is the quantity supplied at date !, L AR J u¥, divided by N as well as

by (1 —a') ... (1 —a""')a", i.e. it is normalized in terms of the first period asset
holdings.
It is also easy to show that s'*! is obtained recursively as a function of s* and the

quantity traded at date ! in the following simple manner

v e u!
= (1= (1= et L ) (1A6)
We can similarly find the following recursive relation
el ! | 1
141 i &) (1 _ Al il i & L g€ U
B(EEE) o (1 )1 - BB 4 guZit s | oy (1)

1.A.2 Derivation of Traders’ Value Functions and Charac-
terization of Equilibrium

We will now assume that all traders submit their equilibrium demands and will re-
cursively derive their value functions. As a byproduct we will derive necessary and
sufficient conditions for an equilibrium.

In order to evaluate a trader’s incentives to deviate from equilibrium, we must

compute his value function after any sequence of actions that he may take, including
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actions that heis not supposed to take in equilibrivan, After a deviation by this trader
the other large traders will however still helieve that everybody acled aceording (o
equilibrium but that the total hedging demand was different. At the following dates
they will thus still submit their equilibrium demands given by equation L. 1 (written
for these dates) but they will use different. values of s and .

We will now prove the following result.

Theorem 1.A.1 Supposc that we are at date l before trade fakes place, Suppose
that trader i has deviated from equilibrium at the previous dales so thal his asscl
holdings are higher by Ac! than what they would be if he had ncver deviated, (Each
other large trader’s asset holdings are thus lower by Ael/(N — 1) and they all belicoe
that & is lower by this quantity.) Suppose also that the other large traders believe that

s' is lower by As'. Then the ezpecled ulility of trader i (i.c. his value function) is

—exp(—a (M,v' +d'(el+ &+ Acf-) - %cmz(L — L4+ 1)(el+ &+ Aef)2

Tl el Sl e
HAUB(ZT) 4 F - el — (@A + QAL (B2 4 2 )
+QUAS + Qad) + QLad A+ QL) (1AS)

M are trader i’s holdings of the numéraire.®® Qi (k € 1..7) are constants, e and

b jzi €5/ N have their equilibrium values.

The rest of this subsection is devoted to the proof of Theorem 1.A.1, In proving
this theorem we will also derive necessary and sufficient conditions for an equilibrium
and prove Proposition 1.4.1, We do not state these conditions at this stage in order
not to lenghten the appendix,

We will prove Theorem 1.A.1 by induction. The theorem is obviously true al date

L4 1. At that date all the uncertainty has been resolved and a large trader's niiliey

¥Since we always refer to trader i we drop the subseript i from the M s,



—exp(—a(MEH? 4 dlti(elt? 4 ghtt 4 Aefth))

which is equation 1.A.8 with the Q,’s equal to 0.

Suppose now that equation 1.A.8 holds for date [ + 1 and let us show that it holds
for date I. We will proceed in three steps. First we will use the induction hypothesis
to simplify trader ¢’s expected utility at date [, Second we will determine the solution
to his maximization problem at that date. Finally we will plug this solution back into
the expression for his expected utility and show that the induction hypothesis holds
for date l.

Step 1

We denote trader i’s purchases at date [ > [ by =!. (Since we always refer to

trader i we drop the subscript ¢.) His final consumption is

Z +d1e+ +Ae5+2m{)
I> >
C(1) is of course random and we have to take expectations. Applying the law of

iterative expectations we thus get for trader i’s expected utility before trade at date

l

E' — ezp(—al(1)) = E' - exp(—a (M‘ - Zp[:c[+ d'(el + & + Ael + Zw[)) )

> >

= E'EM' — ezp(—a (M' — Y plel + di(el + & + Ael + Zwr)) ). (L.A.9)
> >

We now apply the induction hypothesis for date [ + 1. At that date M!'t! =
M' — p'z!, and trader i’s asset holdings are: el + & + Ae + z!. We use the natural
notation, Ael*?, for the difference between these asset holdings and his asset holdings
if he had not deviated from equilibrium at the previous dates. We also denote by
As't! the “misperceptions” of the other traders about s'*?, Expression 1.A.9 together

with the induction hypothesis give us then for trader i’s expected utility
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E'—ca:p(—a (/\l' p.r'-l d'(e +é iAr {.r)

2 +1 Y
(L= D)(eh b e A 4412 rcz’“w’“(‘“”fv )yl ety
+1 ot
(Q"“As'“ QI+IACI+I)(EI+I(‘-JJ?‘]'VJ )+ -. C£_+|)
-I-Q:'H(A.S"H)z-I-Q’S'H(AGS'H)Z+QS+IAS‘+1A€£+1 +Q{'_-H))‘ (l.A.lO)

d't! and the information about the {otal hedging demand revealed when trading
at date ! (and contained in z/ and E''(¥,, et'/N)) are independent. Noting in
addition that conditional on date ! information d'+! is normally distributed with mean

d' and variauce o2, expression 1.A.10 can be transformed into
E' - exp(~a (M' - plat 4 d’(ef- +é + Aef- + z')

2 l+1
~5 (L =14 1)(el +€ + Ael 4 2!)? +Q'“(E’“(E”" ) 4 e et

. .c.+1 1
~(QETAM + QM A (BT L S _ )

+ Qg (As'H)? 4 QL (Aeltt)? 1 QLI A Al 4 Q’;f‘) ) (LA.11)

Step 2

Trader ¢ maximizes expression 1.A.11 w.r.t. «'. To simplify later notation we

define Az! by

(A | i (]
! ahi#iej-ivu a'c; \
T = nt -ac 4 Axl, A2
N N ( )

A! represents thus trader i's deviation from his cquilibrium strategy, which is fo
l [
buy (' T e L4 u')/N +alcd/N - of ¢!

Before solving the optimization problem we express some variables present in
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1.A.11 in terms of a smaller set of “independent” variables.

Since all other traders submit demand functions given by equation 1.4.1 and trader
i buys z!, the market clearing condition together with equation 1.A.12 imply that the
price p' is given by

Al d T e +ul alel Al Aé Azt
1 _ 2 J#i 7j _ s — gl i
=B NB' NB ( ad) - mC -yt o B
(LA.13)

The difference between trader ¢ asset holdings at date [+ 1 (and before trade takes
place) and his asset holdings if he had not deviated from equilibrium at the previous
dates, which was denoted by Ael™! is clearly equal to Ae} + Az',

We now come to As‘t! i.e. the “misperceptions” of the oter traders about s'*!
Since large trader i deviates from his equilibrium strategy at date ! by buying Az
more, each other trader buys Az!/(N — 1) less. They thus believe that the total
quantity supplied at date ! is lower by Az!N/(N — 1) Equation 1.A.6 implies then
that

ﬂ” Azl
TN 1)

Using equations 1.A.1, 1.A.7, 1.A.13, 1.A.12 and 1.A.14 as well as the expression

As't! = (1 - d)[(1 - pY)As + (1.A.14)

for Aelt! we can rewrite expression 1.A.11 as

A d e+ del 4

| _ _ L _ (4 _ J#i ) _ i _

E' — ezp(—a(M (B‘ NE! NP~ Bl 224 - A
Al d_ Aef Az! a Y e +ul alel

B It -1)B‘>( Nty Coetas

dYjgies+ul ale
N TN

+d! (efv +é+ Aef- + - a‘e’,v + Am')

ac?

Iy, el + ol lol
‘_(L—1+1)(€';+é‘+Ae§+aZJFte,'i'u a'e;

N t N

2
—ae +A:c)

+Q§+1(1 _ al)z ((1 _ ﬂl,l)(sl _ (ﬁl—l,l NI +ﬂ,—1'l—l)%
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EJ#: J

! el ?

ﬂA:c

- (Q'z“(l - a)[(1 - g")As! + 7]+ Q5 (Aei + Aw')) (1-af)

el el !
((1 _ ﬁl,l)(sl _ (ﬂl-l,l 4o _,‘_ﬁl—l.l—l)_I_\tr) + ﬁl.l(EJX; €j + alN) 4 =L €; l)

141 12 WAt B A ’ 141 AL 12
+Qi(1-a)* ((1-BY)As + Tr = | + @67 (Aei + Ac')

+ Qb (1~ ) ((1 - pyast + Bp o 1) (Ack +Aa) £ Q). (LAIB)

It is well-known (see Kyle (1989)) that since trader i conditions his demand on
price, he can choose Az! as if he knew the information about the total hedging demand
revealed at date /. He thus maximizes expression 1.A.15 w.r.t. Az for any value of
the quantity that the other market participants supply at date [, a! T, €} +u', The
first-order condition of the above problem can be derived in a straightforward manner

and is omitted. It is also easy to show that the second-order condition is

2

S=w -

2 1 (A1 2
+ac®(L+1-1)-2Q(1-d) (Ea’—(N“l))

To derive necessary conditions for an equilibrium we suppose that trader ¢ has not

> 0. (1.A.16)

deviated from equilibrium at the previous dates, i.e. As' =0 and Ae} = 0. Then, he
should not have an incentive to deviate at date ! (i.e. Az' = 0) for any values of d',
@ sl +ut, €, o' and &', We thus set As' =0, Ael = 0 and Az! = 0 in the first-
order condition and identify terms in &/, a' 30 ;.; €, + ', €}, s and &, Identification of
the terms in d', ' T4, e} +u!, s' and & gives us equations 1.4.11 to 1.4.14. Identifying

l

terms in e; we get

:,a;l —ac’(L+1-1)(1 - Nl\jlal)_l.(l )(Qm(l_a)ﬂa‘-‘N +Q:+1)
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(NI;T- 1 + ..IIV(]_ — ﬂl,l)(ﬂl—l,l + . +ﬂl—1,l—-1)) =0. (1.A.17)

Equation 1.A.17 together with equation 1.4,13 give us equation 1.4,15. We can also
combine equation 1,A.17 with equation 1,4,14 to get the following equation that will

be useful later

24! A'. I-1,1 I-14-1 2 N-1,
NB;+NB((¢B +"'+ﬂ )—QO'(L-l-l—l)(l-— N a)
g1 -1
+(1-d") (Q‘;f‘(l - a‘)—,N — Q‘*‘) 7 =0 (1.A.18)

Finally, using the necessary conditions we can derive Az!" (i.e. the optimum value
of Az') from the first-order condition (written now for any values of As! and Ae}),
We find

. Al AL Ael
Azl = S(B:A'+BtN—1+aU(L+1—’)Ae QiH(1-a')*(1-p4)

%Nl— _As' - 2Q4 Adk - Q(1 - d)[(1 - B)AS ﬁ'l' - Ae,]) (1.A.19)

Before proceeding to step 3 of the proof we briefly discuss the optimization problem
of trader ¢ when he has not deviated from equilibrium at the previous dates, i.e,
expression 1.A.15 for As' = 0 and Ae! = 0. For concreteness we suppose that this
trader is a buyer in equilibrium and considers deviating from his equilibrium strategy
reducing his purchases by a small quantity. If the market were not open in the future,
his payoff would change because (i) the price at which the rest of his purchases are
executed would fall, (ii) he would not pay for that quantity and (iii) he would not
receive the hedging benefit of having that quantity as well as the final payoff it
provides, These effects appear by differentiating the first four lines of expression
1.A.15. Since the market is open in the future, the value of buying less is larger.
First, trader 7 can also hedge at a future date and buying more now has less hedging

value, In addition other traders’ future demands are lower for two reasons. First they

are more willing to sell having sold less, and second they expect to be selling less in
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the future too (since they believe that s'*! is higher), Trader i’s future purchases are
thus executed at lower expected prices., These effects appear by differentiating the
seventh and eighth lines of expression 1,A,15% and their interpretation will become

clear with the recursive relations for the Q\’s derived at the end of this subsection,

Step 3

We will now rewrite expression 1.A.15 for the value of Az' that maximizes it,

Az". Since this expression is quadratic in Az!, we get®

—_ — a'e

- i’_a'z#‘.eg..;.u‘_ a'e} __/1‘._31_/155: a‘2j¢iel,'+u‘+a’e§ 1
B! NB NB B T B N N i

a Yk +ub alel
+d (e{- +é + Ael + Z#I‘VJ + a;‘ - a‘eﬁ)

2
ATt de l.)

ao® [ !
—T(L—l-i-l)(e,-—i-e +Ae'+ N N

el ol , 2
+Qi (1 - a')? ((1 - B R g Tty ey 8 ')

A AL Aé a‘ZJ#,-e‘,-Jru‘ a'el !
"(FA’ TBN-1 Y A

-~

— (@41 (1 - a)(1 - B)AS + QE Acl) (1~ o)

((1 -y ey puZat ) 8 ‘)
+Q41(1- o) (1~ B)AL)" + QL (Ael)” + Q4 (1 - )1 - B)As A}
+ Qi + Ls(ae (1.4.20)

Using the first-order condition written for As' = 0 and Ae! = 0, we now eliminate

36The fifth and sixth lines are constant w.r.t, Az! and the last two lines are in (Aa')?2,
37The expression A + Bz — (1/2)Ca?,C > 0 is maximum for @* = B/C. This maximum is equal
to A + B?/2C or, equivalently, 4 + (1/2)C(=*)?.
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the price at date [,

A d Y +ul e AL A,

B NB ~“NB B "’ETe

in expression 1,A.20. We get

2
d'(el + & + Ael) - ﬁg—(L — 14 1)(e + & + Ael)?

1 1 a' Y. e+ ub 1,0 2
¥ ((N Tt (s l)> ( Z:mI‘\’J + -l

i 2
+Q11+l(1 _ al)2 (( pll)El(ZJ# J)+ﬂll(21¢' J + :"Ilv) + ;& _es)

¥ ] ' ‘c
+ (Q’z“(l ~ay et '“) (1-d) ((1 - BRI

ki l alz ‘el,*_ul alel
ﬂ”( J# J+ IN)+ J#N + Nt li

l l l l 1ol
) (%%Aa% ﬁz NAe +aa'~’(L+1-l)Ae) (a it t H)

- (@ (1 - a')(1 - B)As + Qi1 Ae) (1 - o)

! ! | !
by gy 2od#i & WDt | u & _
(0-pom Bty g Bagith ) 1 2 )

FQE (L= ) (1= B)As) " + QI (Ach)? + Q4(1 - a)(1 - pY)Asl Al

QY + 25(Ash ) (L.A.21)

Finally we have to take expectations w.r.t. the quantity that market participants,

except trader ¢, supply at date [ i.e. o i e} + u!. Conditional on trader i's in-

formation before date [ trade, (¢! ¥;4; €} + «!)/N is normally distributed with mean
a'E'Y;4; €, /N and variance (a')?V! + ¢2/N?, To take expectations we define ¢ by

al Y€ +u! _ A BV i €
N N

€=
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and rewrite expression 1,A.21 separating terms that do not depend on ¢, terms in ¢

and terms in €2, We then use the formula

2

/_ exp(—a(Ne + De ))ea!p(—ziaz-)de

E (emp(—a(./\fe + 'De’))) =

2mo,

2N2
" L+ 2aDa? (2(1 + 2fwv”))

Straightforward algebra shows that trader i’s expected utility has the form given

(1.A.22)

in the statement of Theorem 1.A.1 and that the induction hypothesis holds. The Qs

are given by the following equations
1
Qi = (W +35 010'2(13 +1- )) (a')? + Qit'(1 - d')?

aN? ( a')2v! + N”')
2(1 + 20D ((a)2V! + %))

' (Q'z“(l o) g + 0 ) (- e - (1.4.23)
aN Ny ((al)zyl + 'ﬁ#)

_ eV _ally
Qz +Q (1 a)( p) (1+2a'D((a’)2V‘+ﬁy))

(1.A.,24)

aMNs (()2V! + F)
(1+ 20D ((a)2V! + i ))

Qs = (’;‘z N — t+acX(Lt1- )) a'+Q5t (1-a")~ (1.A.25)
Q(AS)? + Q4(Aeh? + QbAs Act = Q4 ((1 - a')(1 - p4)As)" + QEH(Ael)?

a(NpAst + NoAel)? ((a)2V! + #4)
2(1 + 24D ((@)2V! + %))

1@ (1-d! )(l—ﬂ"‘)As'AeH%S(Am")z— (1.A.26)
and

1
\/(1 +2aD ((a))2V! + ,‘5%))

ezp(~aQy) = ezp(-aQ7™) (1.A.27)

M, N2, N3 and D are given by
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1 1 W
M =2 (—, + EQUZ(L +1- l)) a +2Qit (1 - a‘)z-ﬂ—aT

(N-1)B
N 1 ! 1
+ (Q‘z“(l )t Q’“) (1-a)(1+8") (1.A.28)
= (% + o - - gy (1.A.20)
Ns = (2', ~— Facd(L+1-1)+ Q41 - a‘)%) (1.A.30)

and

0 2
D= (W—I_I)ET +raor (41— l)) + QL1 = aty? (%-)

+(Q‘;l<1 LA Q‘*‘)(l ot (1.4.31)

We briefly discuss equations 1.A.24 and 1.A.25 in order to interpret the coefficients
Q@2 and Q3. As it was stated before, in a dynamic model trader ¢ who, for instance,
is a buyer benefits more by buying less at a given date than in a static model. First,
this trader can also hedge at a future date and buying more now has less hedging
value. Jn addition other traders’ future demands are lower for two reasons, First they
are more willing to sell having sold less, and second they expect to be selling less in
the future too (since they believe that s is higher). Trader i’s future purchases are
thus executed at lower expected prices.

The term in @, in the value function captures this last benefit of buying less,
i.e. to “manipulate” others’ beliefs. This term is proportional to the other traders’
“misperceptions” of s and to trader ¢’s expected future purchases. As equation 1.A.24
shows Q) is higher if the market attributes a high weight on s, i.e. if AL/B' is high,
and if the benefit of “manipulating” others’ beliefs from date ! 4+ 1 on, Q4! is high.
The last term in this equation implies that the benefit of buying less and manipulating

others’ beliefs is lower. The reason is that this benefit is risky; it is higher when there
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is substantial (unexpected) hedging demand at future dates, the price is low and
trader ¢ buys more i.e. exactly when his payoff is high. This last term disappears
if we assume that price movements coming from fundamentals are much larger than
price movements coming from the trades of the different market participants.

The term in Q3 in the value function captures the first two benefits of buying less
(relative to a static model). The discussion is very similar in spirit to the one given
above and is omitted.

Theorem 1.A.1is now proven, At the same time we derived necessary and sufficient
conditions for an equilibrium and proved Proposition 1,4.1. Parameters 4', B!, o, A!
and Al (for 1 <1 < L) define equilibrium demands only if there exist Q5 and Q4!
so that equations 1.4.11 to 1.4.15 hold. In addition @}, @ and @} are linked to their
values at date ! + 1 by equations 1.A.23, 1.A.24 and 1,A.25. Moreover Q1! = 0,

L+1 = 0 and Qi = 0.

We have also derived sufficient conditions. If the second-order condition 1.A.16
holds, then parameters A', B!, a!, A} and Al (that satisfy the necessary conditions)
define equilibrium demands. The relations between @, Q% and Q% and their values
at date [ + 1 as well as @', Q4! and Q4! can be derived from equation 1.A.26. In
addition, QX! =0, Qf*' = 0 and QL*! = 0.

In the multiperiod case we have neither shown that an equilibrium exists i.e.
that the necessary conditions admit a solution which also satisfies the second-order
conditions, nor that an equilibrium is unique. In all the numerical simulations that we
have carried out the second-order condition was satisfied, We have shown existence
and uniqueness in the two-period case (studied in subsection 1.A.5) and we hope to

generalize these results to the multiperiod case.

1.A.3 A Numerical Algorithm for Solving the Model

In this subsection we present the numerical algorithm that we used to determine a
solution to equations 1.4.11 to 1.4.15 and 1.A.23, 1,A.24 and 1.A.25, This algorithm
is similar in spirit to the one followed in Kyle (1985).

We first set QFt! = 0, QL*! = 0 and QZ*' = 0. We now have to go backwards.
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First, knowing Q4! and Q4! we determine o' from equation 1.4,15, We then use
Q4, Q4! and o to determine A', B!, A} and A! from equations 1.4.11 to 1.4,14.
Finally, we determine @, @} and Q) from equations 1.A.23, 1.A.24 and 1.A.25.

In order to do this, however, we need to know the 3’s at date [ as well as V!, This

is equivalent to knowing

F'=(1-a')--(1-d"?) (1.A.32)

and

U= Y [(1—a')?- - (1-a"1)*(a")?. (1.A.33)

<l
These can also be defined recursively but from date 1 (not date L + 1).

Since we want to start from date L + 1 we will take arbitrary values for F'~t! and
ULtl, The B’s at date | and V! can easily be expressed as a function of F't! [/'t!
and a'. For instance

2
) (@)ZyN -1

ﬂl,l — (
UR52(N 1)+ a2

Given thus Q5!, @4, F'*! and U1, we solve for a!. Then we proceed as outlined
above. We can also derive F! and U’ from F't!, U't! and a!. Indeed, equations 1.A,32

and 1.A.33 imply that

Fl+1

F' =
1—al

and

2
U! — Ul+1 _ FH-I al .
1-—a

We repeat this operation until F! = 1 and U! = 0.

1.A.4 An Alternative Characterization of Equilibrium

In this subsection we present an alternative way of characterizing equilibrium, In

subsection 1.A.2 we wrote that the expected utility of trader ¢ did not change when
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~ he modified his current trades but kept future trades the same, Here we will use the
results of that subsection and write that trader i’s expected utility remains the same
when he modifies his trades at the current date by a given quantity and his trades at
the next date by the opposite quantity. This is thus equivalent to combining two of
the first-order conditions derived in subsection 1.A.2 at successive dates.

The equations that we will derive have not been used much in proofs. We believe
however that they better illustrate agents’ tradeoffs; this is why the discussion in
sections 1,3 and 1.4 was based on these equations.

We assume that we are at date [, trader ¢ has not deviated at the previous dates
and considers modifying his trades at that date by Az! and his trades at date ! + 1
by —Agz'!. Proceeding as in the derivation of equation 1.A.11 (but going until date
l + 2) we find that his expected payoff is

B _ exp(—a (M’ _ pzwz _ p‘“m’“ + dl+l(e£ + &+ + :n’“)

_%aaz(L _ l)(eﬁ + él + wl + ml+1)2 + Qll+2(El+2(

142 142
Z,-;e,- ej+ )+ ei+ _ e’-+2)2
N N !

_QLF2ASH? 4 QU (ASM2)? 4 Q{(+2)), (1.A.34)

In contrast to equation 1.A.11 there are no terms in Ae{t?, This happens because

trader i conducts two trades in the opposite direction so that Aelt? = 0.

1

z! and z't! represent trader ¢’s purchases at date [. As before, we have

IS et el
m,=aZﬁJ¢;,+u +"'Af*_a‘ef.+Arc’ (1.A.35)

and

I+1 5y, i+l I4+1 141 041
ICARP YL i + 2 Ve gitigtt _ gt (1.A.36)
' . . .

41
* N N

The price, p', is given by equation 1.A.13, for Ae} =0 and As' = 0. p't! is given
by the same equation with Aelt! = Az!/(N —1), As"*t! = (1-a')(B"/a')Ax!/(N -1)

and Az!t! = —Ag!.
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I'inally, use of the recursive equation 1,A.6 for s shows that

I I+1,0+1 1
2 (] g (1 = al)(1 — gty B _ BT Az
Ast?=(1-a™)((1-2a)(1-5 ) = prre b v

141, I+1,041 Awl
=(1_a'+1)((1-a')ﬂa, ~ﬂa,+l T (1.A.37)

Plugging !,

1.A.7, we get

z!t1, p', p'*! and As'*t? back in expression 1.A.34 and using equation

A d e +ut dlel Al A’ Ac!
— - l J#L7J _ Lo g L&l
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1 a1y, ehtl 4 g i+t 141 041
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In equilibrium trader ¢ does not have an incentive to modify his trades and this
expression is maximum for Az! = 0 for any value of the quantity that the other
market participants supply at date [, o' T°;; €} + u!. The first-order condition of the
above problem is

A+l gt Tini ef,-“ + ut? al+1e€+1 ALt

it I+1
E" - ezp[-a(- (B"l'l - N BIH - NB+ T giF?

I+1 1, oltl I+1 I+1
-5 ém) (a Yjgie) tutl gltlelt _ gl
Bl+1 N N !

1
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N N

1
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N N

igie
=5 )

2
a
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I+1 I+1
u h
L] - ei,""l ] = 0.

(h—ﬁ'“"“)E‘“(L’*' e TaET |y o

(1.A.39)

In equation 1.A.39, E** denotes expectations taken after the information about
the total hedging demand at date [ has been revealed.

The second term in brackets (i.e. the last seven lines of equation 1.A.39) represents
the change in trader i's trading proceeds when he modifies his date [ trades by Az
and his date [ + 1 trades by —Ax'. This change is evaluated for all realizations of the
uncertainty which in turn can be decomposed into uncertainty about fundamentals
(term A!'t!'/B't! = d!*1) and into uncertainty about the quantity that the other
market participants supply at date ! + 1, o't 3, €i*! + u/t!, Equation 1,A.39
states that the product of trader i’s marginal utility (which is the term inside the
exponential) times the change in his trading proceeds is, in expectation, zero.

To evaluate this expectation we first transform the term inside the exponential
eliminating the price at date [ + 1 exactly as we did to derive expression 1.A.21. We

then define € by

— 141 I+1
al-l-l Lj#t cJ'+ + u‘+1 _ aH-l El-l-l Zj;‘-‘l' ej+
N N

as in subsection A.2. We finally rewrite equation 1.A.39 separating terms which are
known at I*, terms in d't! — d', terms in € and terms in ¢* and compute the various
integrals, These computations are very simple and require use of formula 1.A.22 and

of the follwing formula

oo 2
E (emp(—a(./\/e + 'Dez))e) = \/;;a' /_w exp(—a(Ne + 'Dez))e:cp(—-z—%;)ede
1 aNa? a’Nig? (1.A.40)

) V1 + 20Da? (1 +2aDog) o (2(1+207?0’))

We thus get, rearranging terms

! ATt de i
(N-1)F N N o
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+ —€;
N TR 1+ 2aD ((a""l)zV““ + ﬁ;&))
N, and D are defined by equations 1.A.28 and 1.A.31, by substituting { + 1 for I,
We will slightly transform equation 1.A.41 in order to interpret the various terms.

Equations 1.4.13 and 1.4.14, written for date ! + 1 imply that

N-2 1 , , A 1 g
N_1B+ (L —l)ac® + Bi+1]1 — gi+Li+1  gltl (1.A42)
Equation 1.A.42 together with equation 1.4.12 imply that
1+1 141 1l
1 _ A, 1 4 (l—a')ﬂ——1—=
(N-1)Bit1  BWHIN -1 B at N-1
1 Al,'H 1 ] ﬂl+1.l ﬂl+1.l+l 1
(N = 1)2Bi+1 ~ Bit11 — gL+l ((1 - a) d  att N1 (1.A.43)

Using equations 1.A.24, 1.A.29 and 1.A.43, equation 1.A.41 can be transformed

into
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N (1+ 20D ((@ )2V + 55))

We now use equation 1.A.44 to illustrate the discussion in sections 1.3 and 1.4.
Suppose that trader ¢ who for concreteness is a buyer reduces his date ! purchases by
a small quantity and increases his date [ + 1 purchases by the same quantity. Then

the following will happen:

e He will benefit since the price at which the rest of his date ! purchases are
executed will decrease, This effect corresponds to the first term in parentheses
in equation 1.A.44, At the same time the date [ + 1 price will increase because
of the imperfectly competitive behavior of the other traders. This latter effect
corresponds to the second term in parentheses and is IV — 1 times smaller than

the first effect.

e He will bear the cost of holding a larger unhedged position between dates [ and
[+ 1. Prices at date !+ 1 may change because of fundamentals and also because

of agents’ trades. The cost of bearing more fundamental risk corresponds to the
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term —ag?(eit! + &*1) in equation 1,A.44, The cost of bearing more risk of a
price change due to unexpected hedging demand corresponds to the last term in
equation 1.A.44. If we assume that price movements coming from fundamentals
are much larger than price movements coming from the trades of the different

market participants, this last term naturally disappears,

e He will buy the extra unit at the date [ + 1 price instead from the date [ price,
The third and fourth terms in parentheses in equation 1,A.44 correspond to the
difference between the expected date [ + 1 price and the date ! price. The date
| price does not fully reflect the impact of trader i’s date [ + 1 trades on the
date | + 1 price, a!t!elt! /N B!t

e By “manipulating” the market beliefs about the total hedging demand he will
affect the prices at which his future purchases are executed. Not surprisingly this
effect corresponds to the term in Q5! in equation 1,A.44, It is also proportional
to the market “misperceptions” which will be important if large traders are
expected to trade substantially different quantities at dates ! and [+ 1 so that

(1 - a)gH1/a! — B!t1i+1 /glt! s large in absolute value,

If we express E't! 5, elt?, elt!, o't and &1! as a function of date [ variables

and identify terms, we can get equations similar to 1.4.11 to 1.4.15.

1.A.5 The Two-Period Case

In this subsection we will prove Lemma 1.3.1 and Proposition 1.3.1, Having char-
acterized equilibrium in Theorem 1.A.1, we only need to prove that an equilibrium
indeed exists (i.e. the necessary conditions admit a solution which also satisfies the
second-order condition) and that it is unique.

Since the Q3’s are all zero, equation 1.4.15 implies that a® = (N —2)/(N - 1),
A?, B?, A? and A? are also clearly uniquely defined by equations 1.3.11 to 1.3.14, and

the second-order condition at date 2 obviously holds. Simple algebra shows that
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2 _ %3 _ 02 _ 42
Q=5 =9 AN 1)

-1

L (N=2,0 TN 1),
(1 teC N =) (N1 @R - Dt et T (1.A.45)

and that Q% = Q% = 0.
Going back to date 1, equation 1,3,19 can be written as
1_%_:_%01_N(N—2) N-—1+ Z(N._]_) (al)'.’nz(N__l)
1-al ~2N-1?\" N ' N(N-2)(@)BiN 1)+ 02

2 2 1 N-2,(1-a)?B¥N-1)02 ,\ | A6
(1+°“’N(N—2)[(N-1) (@ps2(N —D 4oz Tou) - (LA46)

The LHS function is continuously decreasing from (N — 1)/(N — 2) to —oo in
(—o00,1), its value is 1 at 0 and 0 at (N — 2)/(N ~ 1), In (1,00) it continuously
decreases from oo to (N — 1)/(N — 2). The RHS function is continuous, positive,
bounded above by N/2(N — 1) and increases in (0,1]. Since for N > 3 we have
N/2(N —1) < 1, equation 1,3.19 has a unique real solution, a® € (0,(N —2)/(N —1)).
Given Q%, Q% and a!, A! and B! are clearly uniquely defined by equations 1.3,17 and
1.3.18. The second-order condition at date 1 also holds since Q? < ac?/2.

Finally, if o2 decreases the RHS function increases uniformly. As a result a!

decreases,

1.B Appendix: Determination of Total Welfare

In this section we will determine total welfare. In subsection 1.B.1 we study large
traders’ welfare and in subsection 1.B.2 we study small traders’ welfare and derive

equation 1.5.1,
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1.B.1 Large traders’ welfare

To derive a large trader’s expected utility before trade at date 1 we use Theorem I,

Omitting numéraire holdings we get

- exp(~a(d'el - oo L(el) + @) (2= 2) (e + Qb)) (LB.1)

To derive the trader’s expected utility at time 0,38 in the “interim” sense (i.e. for
a given value of his initial endowment) we take expectations w.r.t. d'. Since as of

time 0, d! has zero mean, we get

- enp(~a(~5ac’(L+ 1)) + Q) (F) (@@ (1B2)

To derive expected utility in the “ex-ante” sense, we take expectations w.r.t. e},

Using equation 1,A,22 we get

1

— ezp(—aQ7) — (1.B.3)
V(1 - aac®(L +1) - 201 (22))22)
A large trader’s welfare in the “interim” sense is thus
1 2 ST 1
— 5er (L4 () + @ () (e + 3 (LB.4)
and in the “ex-ante” sense
sclog(1 ~ alas®(L +1) - 20} (Tt ) )52) + Q). (LB.5)

We will now assume that price movements coming from fundamentals dominate
price movements due to the trades of the different market participants, i.e. that terms
in a?0?X? and terms in a’0?02 are much smaller that 1, and derive expressions for

Q1 (step 1), Q7 (step 2) and “ex-ante” welfare (step 3).

Step 1 Q}

38Remember that date 1 is time L+H
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Under the above assumption, equation 1.A.23 simplifies to
Y 1 e _)zz 10 _ o2
Ql_((N—l)B‘+2aa (L+1=1))(a") +Q7 (1 -a)

W1
+ (Q'z“(l - a‘)'i—;'m + QS“) (1-d')d (1.B.6)
We will now prove the following result

Proposition 1.B.1 Q! is given by

N -1\? (1-d)?...(1-ad'"1)%d")2 N -1
(F7) @=- %

L5T>! NBY N
AI' ! ! ! ! 'N - 1
_ Z ) (ﬂl—ll_i_ +ﬂl o 1)( ) "'(l_al —1)2al _
L>U>I NB" N
S aot(Lr1-0) 5 (=)= - ) - 1ot
LoV3141 —130>
2 1 N-1\? 1 2
—--aa' 3 +(1—a) (1-a") i t+ 500 (L+1-1). (1.B.7)
L>1I'>1

We will prove Proposition 1.B.1 by induction, The proposition is obviously true
at date L + 1 since Q7' = 0. Assuming that the proposition is true at [ + 1 we will
show that it is true at [, To do this we will use the recursive equation 1,B.6 for Q}
and equation 1.A.18.

Multiplying both sides of equation 1.B.6 by ((N — 1)/N)?* and eliminating the
term in Q5 (1 — ah)B4 /a (N — 1) + Q4?, using equation 1.A.18, we get

N-1\* ,  (d)?N-1 A . ., oy N -1
(T) G=-§gx§ ~Fpal e tATTe T

aaz(L+1—z)a'NAj ~ ad*(L+1-1) ')2( o )+Q'+1( a’)z(N—A-[—l-)z.(l.B.S)

Using the induction hypothesis and adding and subtracting the term

—aa'z(L - l)a'[(l _ a‘)a""l doere (1 _ a‘)---(l al- l)aL]'Tz_l
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we get

(N—l)zq, . (1-d)? . (1-a"1)d")* N -1
N ¥ NBY N

A i 1=1,l'-1 2 ponye N -1
—L§le(ﬂ +eoot P J1—-a)*er(l—a"" ) e ——-

Y addL+1-0) Y (1-d)-(1-d"Ne")(1-d") (1~ a""l)a"!!]—\;-z-—l
L>UI>1+1 =131

+ac®(L - D)a'[(1 - d')at oo+ (1 =af) (1 - aL-l)aL]NN' L
1, 12 1 141 N -1)? 2 1N -1
—ac*(l —a’) (—+(1—a )o(l-a")——) +tac*(L+1-1)a
2 RN N N
2
- saoX(L+1- 1)(d)? (N—I;l) + 5a0X(L - D)(1-d)* (1.B.9)

It is then a matter of simple algebra to transform the last three lines the above of

equation so that it becomes exactly equation 1.B.7. ]

Step 2 Q1

Equation 1.A.27 similarly simplifies to

o2
Q=0 +D ((a‘VV‘ + m) - (1.5.10)
Before deriving an expression for Q%, we will derive an alternative expression for

@' in Proposition 1.B.2.

Proposition 1.B.2 Q! is given by

— a2, (1 — at'-1)2(al')2 I 4 '
Qllz E (1 a) (1 a )(a’) + Aa(l_al)2”.(1_al—1)2al+

I 1
Lol B L2221 B

S ad®(L+1-1) Z (1-d) - (1-a"Na")1-d)..(1- a'-1)a"

L>U'2141 -1>11>l1

L 3 (1_(1_a')...(1-a"))'. (1.B.11)
L>I'>1
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We also prove Proposition 1.B.2 by induction, The proposition is obviously true
at date L+1. Assuming that the proposition is true at ! + 1 we will show that it is
true at [. To do this we will use the recursive equation 1.B.6 for @} as before, and

equations 1.4.13 and 1.4.14,

Multiplying equation 1.4.13 by a' and adding it to equation 1.4.14 we get

N-2d

N et (L1t = (QUF(1—a)B/al(N-1)+@")(1~a'). (LB.12)

Using the above equation to eliminate the term in Q4(1—a')B"/d!(N — 1)+ Q5!

in the recursive equation for @}, 1.B.6, we obtain

Qi = (—BL + ﬁ: a %ad’(b +1-1)(a)* + Q1 (1 - d')". (1.B.13)

We now use the induction hypothesis and add and subtract the term
ac®(L - Da'[(1 - d)a'*' + oo + (1 —al) oo (1 = a®1)al).

Equation 1.B.13 then becomes

1—a')2..(1 - a'""1)2(al")? A ] ‘
Q= . ( ) (Bu Sle) + Y B"(l d)?..(1-d""1)%d
L2v21 L>I>1
+ Z ac? (L+1- l’)( Z (1- a a’""‘)a’")(l _ at) (1 - al’—l)al'
L21'>1+1 1>w>1

—ac?(L - )a'[(1 - a')a!*! 4 .- 4 (1 - al). (1~ @l )al]

- -;-aaz(l —d)? Y (1-(-d*t).1- al'))2 - %aa’(L +1-1)(a")? (1B.14)
LU>141
It is again very simple to transform the last two lines of the above equation so

that it becomes exactly equation 1.B.11. O
We finally establish the following result

Proposition 1.B.3 Q} is given by
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Q=Y (—1— - -1-a02(L +1- l')) i7—',::‘-+
T BU 2 N2

LIl

( > (1_al)zm(,lg;a,'—l)z(au)z—-;-aa’ Y (1--d)a-a) '+

A I ANTPY

Y oad(L+1-1) Y (1-d').(1-d"N)e")1-4d") (1~ a"-l)a") V!

L3141 1121

ll

+ > é—,’-,— ((1 —ad')?.. (1-d""1)2'V! - a"V") ] (1B.15)
L21>141

Proposition 1.B.3 will also be proven by induction, The proposition is obviously
true at date L+1, Assuming that the proposition is true at [ 4+ 1 we will show that it

is true at /. For this we will use the recursive equation 1.B.10 for @, and equation

1.4.13.
We first eliminate the term in Q4t!(1 — a')8%/d'(N —1) + Q4! in equation 1.B.10
using equation 1.4.13. We get

AN
Q= (3},_ - -;-aa'z(L +1- 1')) ((a')zv‘ + %—) +Q4(1-d')? (i—,) +Q41. (1.B.16)

Using the induction hypothesis as well as the expression for Q'*! derived in Propo-

sition 1.B.2. we obtain

2 )2
Q4 = Z ('Ell—' - -;-aaz(L +1- l')) 1—‘:’-‘52- + ((aB‘) - -;-aaz(L +1- l)(a‘)z) v

L>I'>1
2
+ ((1 - a')? (%) ((a‘)zv‘ + ;—'2‘2) + V’“)

( D i i Ul G SO (1- (1= a*).(1-a")"+

‘l
L3141 B 2 L3141
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S ac)(L+1-0U( >, (1-dt).(1-d"Na")(1-d"). (1~ a"~1)a")

LoI'>1+2 1=1>11>141

s sy (22) (104 3) a
+BH'1 ( a ) al (a ) Nz + LZ“ZZH.z BY
((1 _ al+l)2 A(1- al'—l)zal' ((1 _ al)z (%) ((al)zvl ) + VH-I) _ al’vl') .

(1.B.17)
Equation 1.B.17 can be simplified noting that

((1 ~ a!)? (%:)2 (( a')?V! + ;;2‘) V‘“) = (1 -a")*V, (1.B.18)

We can derive this equation by using the expressions for the B’s and the V’s

obtained in subsection 1.A.1 or, more directly, by writing that

141
2 i#i €

_gltl 1+1
N ) = var'(E‘“(M)) + Ez(varm(&;e, ).

N N

varl(

Using equation 1.B.18 and proceeding as in the proof of proposition 1.B.2 we can
easily transform equation 1.B.17 so that it becomes equation 1.B.15. 0O

Before deriving “ex-ante” welfare we write equation 1.B.15 for | = 1. Noting that

V! = B3N — 1)/N? we get

(Lz‘: (1—al)z..(]‘.B;al'-—l)2(al')2-_-%aa.2 Z (1—(1—-0.1)-"(1—0-"))2-}-
>'>1

o ac(L+1-0U) Y. (1-a').(1-a"1)a")(1-a). (1~ a"")d"

L>1'>2 l=1>11>1
4 2 _
+ z %(ﬂ""”+ +ﬁl' ~1,l'- )(1 al)z'”(l_all_l)zau &%—2—1). (1.B.19)
L>1'>2

Step 3 “Ex-ante’” welfare
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Assuming thal terms in 20282 and terms in oFata? are mueh smaller that 1,

expression 1.B.5 simplifies to

=Lz o (M ')222 0! (1.13.20)
2 / e I( N ¢ T A=

Using equation 1.B.7 for I = 1 as well as equation 1,B.19 we can rewrite expression

1.B.20 as

1 1 al 1
3 (B" aaz(L +1- l’)) N 2002E3 (l +

et o),

L>I'>1
(1.B.21)
1.B.2 Small Traders’ Welfare and Total Welfare
The welfare of small traders is
E'(p'u' 4 ... + pPul). (1.B.22)

Since ! is independent of all information before date [, this expression simplifies

to

-y T (1.B.23)

Multiplying expression 1.B.21 by IV (siuce there are N large traders) and adding
expression 1.B3.23 we get the RS of equalio’n L.5.1. This equation shows that fofal
welfare decreases if trade takes place more slowly. The speed of trade is the anly
factor that aflects wellare; the riskiness of transfers among the various agents due
to hedging demand uncertainty does not play a role.  Our asswmptions that price
movements due to fundamentals are much more important than price movements due

to the trades of the different market participants and that small traders care only
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about the expectation of their trading proceeds are crucial to this result.

1.C Appendix: The Public Information Case

1.C.1 Proof of Proposition 1.7.1

In order to prove Proposition 1.7.1. we will first derive traders’ value functions as
well as necessary and sufficient conditions for an equilibrium. For generality we will
consider the case where there is any number of trading dates (i.e. not just two), The
analysis parallels that of subsection A.2 and most of it will be omitted. We will then

show that in the two-period case there exists a unique equilibrium.

Derivation of Traders’ Value Functions and Characteriza-

tion of Equilibrium

It seems natural to look for an equilibrium where trader i’s date [ demand has the
form
CXie

zi(p') = A' — Blp! — dlel - A’,—N— — Alé. (1.C.1)

This equation is similar to equation 1.4.1 which gives trader i’s demand in the private
information case. The difference is that s' is replaced by its “true” value, TV, €.

Theorem 1.C.1 is the counterpart of Theorem 1.A.1.

Theorem 1.C.1 Suppose that we are at date | before trade takes place. Suppose
that trader i has deviated from equilibrium at the previous dates so that his asset
holdings are higher by Ae! than what they would be if he had never deviated. (Each
other large trader’s asset holdings are thus lower by Ael/(N —~ 1) and they all believe
that & is lower by this quantity.) Then the ezpected utility of trader i (i.e. his value
function) is

aoc?

—ezp(—a (M‘ +d'(e + & + Ael) - — (L =1+ 1)(el + & + Ael)?
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21- J' E.11.1

+QUE -l - Giad(ERY ) Qiadr + @) (102)

Q) (k€ 1,3,5,7) are constants. The e!’s have their equilibrium values,
Theorem 1.C.1 is again proven by induction. The proof is very similar to that
of Theorem 1.A.1 and is thus omitted. We only give the necessary and sufficient

conditions for an equilibrium,

The parameters A', B!, a', A}, and A! are given by

l
% =d (1.C.3)
Al

B =(L+1-1)ac? (1.C.4)
—x:ii}i =(L+1-1)as? (1.C.5)

Al
F; = (I -d")Qs (1.C.6)

and
lN -1 2 1 Y
(a N3 WL +1-1)ac? = —(1-a")Qs. (1.C.7)
The second-order condition is

SE'(TV'—_z:lTl--Faa'z(L'l'l—l)—Zle-H >0. (1.0.8)

Finally, the Q’s are given by the following equations

Q! = ((T_II_)B, + 500 (L4 1-1)) (@) + Qi (1 - o}

N2
L1(1 - l)al - —ZTLRY i 1.C.9
+Qs" (1-a)a 2(1+ 2aD % ) ( )

A1 oMy Na 2
Y el 2 _ ! l —_ oy 1 am
Qs = (B, y_7ter’(L+1 l))a +Q5t'(1-d) (142007 (1.C.10)
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1 2
oo gty ($wstortEr1i-0-208") ampsh (Lot
4 (whym +@o2(L+1-1)-2Q4") (1 +2aD5H)

and

ezp(—aQ}) = exp(~aQ@ht) S (1.C.12)
V(14 20D %)
N1,N; and D are given by

N—2( 1 Lo (L+1-1))d + Q41 (1 - d 1.C.13
1= m+§aa(+—)a+Q3(—a) (1.C.13)
No=Be 1 orpe1- 1.C.14
a_B‘N—1+aa(+ ) (1.C.14)

and

1 1,

D= m + EQO’ (L+ 1- l). (1.0.15)

The Two-Period Case

Equations 1.C.3 to 1.C.7 and 1.C.8 imply that the parameters characterizing equi-
librium at date 2 are exactly the same as in the private information case and that

the second-order condition holds. Simple algebra shows that

2 -
Q: = % =Q%= aa'zN(N 2) ! - (1.C.16)
2 2(N - 1)2 1 + aza'zwz%"_—zs
Going back to date 1, equation 1.7.8 can be written as
1 - f=ta! _ NN -2 1 (1,0.17)
1—atl 2(N -1)21 + az"’zm%r"?zj'

A similar argument to the one given in subsection A.5 shows that equation 1,C.17
has a unique real solution, a! € (0,(N —2)/(N —1)), that A, B! and A] are uniquely

defined and that the second-order condition at date 1 also holds.
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We finally compare a! with its counterpart in the private information case. Sup-
pose first that o2 is high. Since a! € (0,(N — 2)/(N — 1)) and is thus bounded, the
RHS of equation 1.A.46 is smaller than the RHS of equation 1.C.17. Given that the
LHS of both equations is the same and decreasing in a', a! is higher in the private
information case.

Suppose now that o2 is small. We first “extend” equation 1.A.46 to the case

02 = 0in the natural way

1-43¢ N

1-a'  2(N-1) (1.C.18)

This equation admits a unique solution aj > 0. The implicit function theorem
guarantees that this solution can be continuously extended for o2 > 0.%® Of course,
by uniqueness, this extension coincides with the solution a' that we already have
found. Since N/2(N — 1) > N(N — 2)/2(N — 1)%, a} and the solution of equation

1.A.46 for o2 small, is smaller than the solution of equation 1.C.17 for o2 small.

1.C.2 Welfare

In this subsection we will determine large traders’ welfare and provide an example
where where their welfare in both the “interim” and the “ex-ante” sense is lower in
the private information case than in the public information case. We, again, consider
the multiperiod case.

Using Theorem 1.C.1 and proceeding as in subsection 1.B.1 we find that a large

trader’s expected utility at time 0 is

1, 1\2 1 29{_._16} 1 i 1
— eap(a(~3ac?(L + 1)(e})* + Q! (T—e;) FQL). (LC19)

To derive expected utility in the “interim” sense, we take expectations w.r.t

39The difference between the RHS and the LHS of equation 1,A.46 viewed as a function of a! and
o} is continuously differentiable in a neighborhood of (a},0) and has a non-zero partial derivative
w.r.t. al,
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i e}/N. Using equation 1.A.22 we get

1 2 1 2 ( ) e 2 1
~ezp(—a(—gao (L+1)(e;)"+ 1+2aQ% Iy +Q))\/1+2aQ}",’v,‘2= (1.0.20)

To derive expected utility in the ex-ante sense, we take expectations w.r.t. e}.

Using equation 1.A.22 we get

1 1
— exp(—aQ}) TN )’ .
\/1+2an Nt ¥z ‘/(1 — afao?( L+1)_21-|-_2a(Q_1:'w—',)-'-F)22)

A large trader’s welfare in the “interim” sense is thus

2
Qi () (e
1+ 2aQ1 85 %2

— %aa’ (L +1)(e})* + + ——log(l + 2¢J:Q1 122) + Q1 (1.C.22)

and in the “ex-ante” sense

N-
—log(l + 20:Q1 22) + %log(l —o(ac?(L +1) - 21 n 2a(QNN')' )22) + Q3.
Ni
(1.C.23)

Having derived expressions 1.C.22 and 1.C.23 we now give an example where the
welfare of a large trader in both the “interim” and the “ex-ante” sense is lower in the
private information case than in the public information case. We assume that N = 5,

L =2,%2/NX? = 0.01 and that terms in a’?0?2? and a’0?0?2 are much smaller that

1, We then find that in the private information case “interim” welfare is given by

aZ?(~0.311(e})? + 0.0478%?)
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while in the public information case it is given by
aX?(—0,304(e})? + 0,0547%2),

Ex-ante welfare is also clearly lower in the private information case,
The derivation of equation 1.5.1 in the public information case is similar in spirit

to the one in the private information case and is thus omitted,
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Chapter 2

Equilibrium Interest Rate and
Liquidity Premium Under

Proportional Transactions Costs

2.1 Introduction

Although most of asset pricing theory assumes frictionless markets, transactions costs
are ubiquitous in financial markets. Transactions costs can be decomposed into (i) di-
rect transactions costs such as brokerage commissions, exchange fees and transactions
taxes, (ii) bid-ask spread, (iii) market impact costs and (iv) delay and search costs.!
Aiyagari and Gertler (1991), report that typical (retail) brokerage costs for common
stocks average 2% of the dollar amount of the trade while the bid-ask spread for
actively traded stocks averages around .5%. Moreover, transactions costs vary across
assets and over time. Money market accounts are clearly more liquid than stocks.
In addition, deregulation as well as changes in information technology have reduced
(but not eliminated) transactions costs.

Empirica;.l work on transactions costs documents not only their magnitude but

their important effect on rates of return. Amihud and Mendelson (1986) show that

!See Amihud and Mendelson (1991a).
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the risk-adjusted average return on stocks is positively related to their bid-ask spread.
Even more direct evidence can be found by comparing two assets with exactly the
same cash flows but different liquidity: (i) restricted ("letter”) stocks which cannot
be publicly vraded for 2 years sell at a 35% discount below regular stocks? and (ii) the
average yield differential between Treasury Notes close to maturity and more liquid
Treasury Bills is about .43%.% 4

The evidence above shows that liquidity is an important determinant of assets’
returns and should be incorporated into asset pricing theory. Understanding the
impact of transactions costs on assets’ returns will shed some light on some policy
issues as well. Transactions taxes and differential taxation of long and short-term
capital gains both reduce liquidity and therefore affect assets’ returns, As a result,
investment decisions will change with additional welfare implications,

In this chapter we analyze the impact of transactions costs on the rates of return
on liquid and illiquid assets, in a general equilibrium framework. We are interested in
questions such as: On what characteristics of the economy dces the liquidity premium
(the difference between the rates of return on illiquid and liquid assets) depend? How
do transactions costs affect the rates of return on liquid and illiquid assets? Are these
effects first or second order effects?

Despite their importance for asset pricing, these questions have so far not been
satisfactorily addressed in the theoretical literature. A major reason is that to an-
swer them, one has to move away from the basic model of asset pricing, namely the
representative agent model, (One cannot understand the impact of trade frictions in
a model where there is no trade.) Unfortunately, models with heterogeneous agents
(and trade), tend to be quite intractable analytically,

Since our objective is to understand the effects of asset liquidity on asset pricing,
we take risk out of the picture: All the assets that we consider (liquid or illiquid) pay
a constant stream of dividends. The analysis of the joint effects of risk and liquidity

is an interesting question that we leave for futuie research.

2See Silber (1991).
8See Amihud and Mendelson (1991a),
“More evidence is also presented in Boudoukh and Whitelaw (1991),
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There are many ways to construct a deterministic economy with heterogenous
agents. Agents may trade because of differences in preferences or endowments, that
is, they may have different preferences for current versus future consumption, or they
may have different labor income paths.® In our economy both motives exist, More
precisely, our economy is a tractable version of a multiperiod overlapping generations
economy, the perpetual youth economy, first studied by Blanchard ( 1985). We believe,
however, that our results on the effects of transactions costs on asset returns could
appear in other contexts as well.

In our model, agents face a constant probability of death (this is the key assump-
tion that makes things tractable), and the population is kept constant by an inflow of
new arrivals. Agents start with no financial wealth and receive a decreasing stream
of labor income over their lifetimes. In addition they can invest in long-term assets
which pay a constant stream of dividends. There are two such assets, the liquid asset
and the illiquid asset. The liquid asset is traded without transactions costs, while
trading the illiquid asset eutails proportional transactions costs. Neither asset can be
sold short. In this economy agents buy and sell assets for life-cycle motives. In fact,
they accumulate the higher yielding illiquid asset for long-term investment purposes
and the liquid asset for short-term investment needs.

We find that when transactions costs increase, the rate of return on the liquid
asset decreases while the rate of return on the illiquid asset may increase or decrease.
We also find, quite naturally, that the liquidity premium increases, The effects of
transactions costs on both the rate of return on the liquid asset and the liquidity
premium, are stronger the higher the fraction of the illiquid asset in the economy.
Finally, transactions costs have first order effects on asset returns and on the liquidity
premium,

The reason why the rate of return on the liquid asset falls in response to an
increase in transactions costs, can be briefly summarized as follows: Suppose that

transactions costs increase from 0 to € and that the rate of return on the liquid asset

%In a stochastic economy, differential information together with liquidity shocks may also generate
trade (see Wang (1992)),
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stays the same in equilibrium. Then, in equilibrium, the rate of return on the illiquid
asset must increase (by the liquidity premium) which implies that this asset becomes
cheaper. Agents now consume more since they face better investment opportunities
(they have the liquid asset at the same rate as before, and an additional investment
opportunity). Moreover, they substitute consumption over time so that they buy
more of the cheaper illiquid asset and hold it for a longer period. Thus, they will
demand more securities for two reasons. The first reason is that they have to finance
higher future consumption, selling the cheaper illiquid asset and paying transactions
costs. The second reason is that, by substitution, they want to buy more of the
cheaper illiquid asset and hold it for a longer period. As a result, total asset demand
goes up. The rate of return on the liquid asset has to fall to restore equilibrium.
In addition, if there are more illiquid assets in the economy, total asset demand will
increase more, and the rate of return on the liquid asset will have to fall by more,

We cannot infer whether the rate of return on the illiquid asset will increase or
decrease, by a similar reasoning. Indeed, suppose that transactions costs increase from
0 to ¢ and that the rate of return on the illiquid asset in unaffected in equilibrium,
The rate of return on the liquid asset then has to fall by an amount equal to the
liquidity premium, This time agents face worse investment opportunities since (i)
the price of the liquid asset increases and (ii) trading in the illiquid asset is subject
to transactions costs. Agents’ consumption shifts down uniformly. Furthermore, by
substitution they accumulate less of the illiquid asset, but hold it for a longer period.
They also accumulate less of the liquid asset. The effect on the total demand® for
securities is ambiguous, First, agents have to finance Jower future consumption selling
the more expensive liquid asset but they pay transactions costs when selling the
illiquid asset. Second, agents buy less of the liquid and illiquid assets, but hold the
illiquid asset for a longer period.

Finally, the liquidity premium depends on the minimum holding period of the
illiquid asset. It increases with the fraction of illiquid assets in the economy, since

this period gets shorter.

%In number of shares,
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There is a growing literature studying asset market frictions such as transactions
costs, short sale constraints or borrowing constraints, This literature addresses three
basic questions. The first question is to find the optimal consumption/investment
policy given price processes and imperfections. The objectives of the body of literature
addressing this question are: (i) to derive the asset demand for a particular price
process and (ii) to evaluate the cost that market imperfections impose upon market
participants (given the price process), The answer to (ii) sheds some light upon the
“equilibrium implications” of market frictions.” The equilibrium determination of
prices in markets with frictions, taking the financial structure (and the imperfections,
in particular) as given, is the second question raised in the literature on market
frictions. It is also the question addressed here. Finally, the third question addressed
by the literature on market frictions is to endogenize the financial structure®, While
we consider this question to be a fundamental one we do not address it here i.e. we
take the financial structure as given.

Most of the work on the equilibrium implications of market frictions, considers
either a static framework along the lines of the Capital Asset Pricing Model (see
among others, Brennan (1975), Goldsmith (1976), Levy (1978) and Mayshar (1979)
and (1981) for a partial equilibrium analysis, and Fremault (1991) and Michaely
and Vila (1992) for a general equilibrium treatment) or an overlapping generations
economy where agents live for only two periods (Pagano (1989)). Although these
models give us useful insights, they are not adequate for answering several of the
questions we are interested in. In static models, assets are not sold but only liquidated,
Moreover, in a static model (as well as in a two period overlapping generations model),
agents cannot choose when to buy or sell assets, and the holding period is the same
for all assets, It is thus clear that many of our results would not appear in that

simplified framework.

"See for instance, Constantinides (1986), Davis and Norman (1990), Duffie and Sun (1989),
Dumas and Luciano (1991), Fleming et al. (1992), Grossman and Vila (1992), Tuckman and Vila
(1992), Vila and Zariphopoulou (1990), among many others,

8See for instance Allen and Gale (1988), Boudoukh and Whitelaw (1992), Duffie and Jackson
(1989) and Ohashi (1992).
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In a context directly related to our work, Amihud and Mendelson (1986) consider
a dynamic model where investors have different horizons, They argue that investors
with, say, an investment horizon of 4 years who face a 2% roundtrip transactions
cost when buying and selling assets, will lose approximately 2/4% (.5%) per year
because of the transactions cost. Hence, they will require a rate of return of .5%
higher on illiquid assets than on liquid assets. Consequently, the liquidity premium
on assets which appeal to investors with a 4 year horizon must be approximately
.5%. The above reasoning implies that investors with longer horizons are less affected
by transactions costs and would select higher yielding illiquid assets. By contrast,
investors with shorter horizons select low yield liquid assets. This clientele effect
explains the empirical fact that the cross-sectional relation between transactions costs
and asset returns is concave.? The analysis above, while insightful, takes investors’
horizons as given and does not explain how they change in response to an increase in
transactions costs. Moreover since, as in the previous papers, the rate of return on
the liquid asset is assumed for simplicity to be fixed, only the effect of transactions
costs on the differentials of rates of return and not on their levels can be examined.

Two recent papers, one by Aiyagari and Gertler (1991), and one by Heaton and
Lucas (1992) consider dynamic models where investors’ horizons are endogenous. In
their models, agents are infinitely lived, face labor income uncertainty, and trade
assets for consumption-smoothing purposes. These papers seek to solve the equity
premium puzzle (see Mehra and Prescott (1985)), i.e. to explain the differential rates
of return between the stock and the bond market. Aiyagari and Gertler (1991) argue
that differential transactions costs between these two markets account for part of
the equity premium. In their model (as in ours), the ’stock’ is riskless and therefore
the equity premium is due to transactions costs and not to risk. Hence their model
explains the fraction of the equity premium which is in fact a liquidity premium.
They do not however analyze the effect of transactions costs on the level of rates of
return as they take the rate of return on the liquid asset as given. By contrast with

Aiyagari and Gertler (1991), Heaton and Lucas (1992) allow for a truly risky asset

®By contrast, if all investors had the same horizon this relation would be linear.
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as well as for aggregate labor income uncertainty, They argue that transactijons costs
prevent investors from reducing the variability of their consumption by intertemporal
smoothing thereby raising the equity premium, In addition, they endogenize the rate
of return on the liquid asset and find that it falls in response to increased transactions
costs,

While in our model agents save for life-cycle purposes rather than because of labor
income uncertainty, our results are consistent with the numerical simulation results of
the above two papers. We find in particular that transactions costs create a liquidity
premium, as in Aiyagari and Gertler (1991), and that they cause the rate of return on
the liquid asset to fall, as in Heaton and Lucas (1992). The contribution of our work
is twofold: First, our closed form analysis allows us to precisely identify the different
effects of transactions costs on asset demands and on rates of return. Second, we are
able to easily perform and interpret various comparative statics,

The remainder of the chapter is structured as follows: In section 2.2, we describe
the model. We determine asset returns when there are no transactions costs in section
2.3. In section 2.4, we consider the case where there are transactions costs, In section
2.5, we illustrate our general results with some numerical examples. Section 2.6

contains concluding remarks and all proofs appear in the appendix.

2.2 The Model

To analyze the impact of transactions costs on the return on assets and on the liquidity
premium, we have adapted Blanchard’s (1985) model of perpetual youth. A simplified
exposition of the original model can be found jn Blanchard and Fisher (1989),

We consider a continuous time overlapping generations economy with a contin-
uum of agents with total mass equal to 1. An agent in this economy faces a constant
probability of death per unit time, ), In addition, we assume that death is inde.
pendent across agents and that agents are born at a rate equal to \. Therefore the
population is stationary, with total mass equal to one and the distribution of age, t,

has a density function equal to dexp(—\t). Although agents can live arbitrary long
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lives in this economy, their life expectancy is bounded and equal to 1/),
Agents are born with zero financial wealth and receive an exogenous lahor income

y: over their lifetimes. We assume that y, declines exponentially with age ¢

ye=ge% 6§20 (2.2.1)

The aggregate labor income Y is constant and equal to

co A
— —At —_ =
Y = /(; Ae My dt = Y13 6y (2.2.2)

The financial structure in this economy is given as follows, All assets in this
economy are real perpetuities which pay a constant flow of dividends D per unit
time. The total supply of perpetuities is normalized to one so that D is also the
aggregate dividend. There are two such perpetuities. The liquid asset, in total supply
1 —k (0 <k < 1), can be exchanged without transactions costs. The price of the
liquid asset is denoted by p and the rate of return on liquid assets is denoted by
r = D/p. The illiquid asset, in total supply of k, has a price equal to P and a rate of
return equal to R = D/P!°, Trading in the illiquid asset is subject to proportional
transactions costs: when buying (or selling) z shares of the illiquid asset the agent
must pay ex P transactions costs. Because of transactions costs, the rate of return on

the illiquid asset and on the liquid asset will be different. The liguidity premium p is
defined as

p=R-r (2.2.3)

Finally, rone of these assets can be sold short,!!
Over the course of their lives, agents accumulate both assets. Since death is

stochastic it imposes a financial risk upon the agents namely that of losing their

19Note that we have defined R as the rate of return before transactions costs. The rate of return
net of transactions costs depends upon the holding period and is therefore investor specific,

111f short sales were costless agents would not sell the illiquid asset but would short the liguid
asset instead, Our results do not change if we assume that the cost of short selling is higher than
€, which is a reasonable assumption (see for instance Boudoukh and Whitelaw (1991) and Tuckman
and Vila (1992) for evidence on short sale costs),
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accumulated holdings.'> We assume that this risk is fully and costlessly insurable
in the following way: there exist insurance companies which pay shares of assets
to the living participants in exchange for a claim on theijr estate, For example an
insurance company that insures one share of, say, the liquid asset will pay a premium
of 7dt additional shares of the liquid asset per unit time df to a living participant,
Its compensation is to collect the share in the event of death, We assume that (i)
the insurance market is perfectly competitive, (ii) insurance companies transfer assets
costlessly'® and (iii) death is an idiosyncratic risk, As a result, the premium 7df must
be equal to the probability of death Adt, for both the liquid and illiquid asset, Finally
since, as previously indicated, agents do not derive any utility from their estate they
will purchase full insurance.

We assume that agents maximize at time 0 the expected value of a time separable

utility function of their consumption i,e,

E [ /0 ” u(ct)e"”dt] . (2.2.4)

Since the only uncertainty comes from the possibility of death we can write equa-

tion 2,2,4 asl4

/ ~ ufeg)e B+ gy, (2.2.5)
(1]

We also assume that the utility function exhibits a constant elasticity of substi-

tution equal to 1/4 i.e,

1
u(c) = - Ac’"“'.“‘ (2,2.6)

We focus on the stationary equilibria of this economy, In a stationary equilibrium,

the rates of return r and R are constant, We seek to understand the determination

2 Agents do not leave any heir behind and care only about themselves,

¥The introduction of insurance companies is a convenient way to close the model, Our discussion
in the introduction suggests that our results would carry through in a multi-period overlapping
generations model with deterministic death, The latter is much more difficult to solve analytically,

'4See Blanchard and Fisher (1989) for details,

1¥The case A=1 corresponds to u(c) = loge.
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of r, R and p as functions of the parameters of the model: ¢, k, A, 6, 8, A, Y and D,

2.3 The No Transactions Costs Case

In this section, we analyze the determination of the interest rate in the henchmark
case when transactions costs are equal to zero, In this case there is no difference

between the liquid asset and the illiquid asset: » = R and p = 0,

2.3.1 The consumer’s problem

The financial wealth w, of the consumer at date t is defined as the value of the
consumer’s assets, That is if @, is the number of shares that the consumer owns at

date ¢

wy = px;. (2.3.1)

At date t, the consumer receives a labor income y, per unit time, His financial
income (per unit time) entails Dz, in dividend income plus Az, shares worth Apa,.

Since he consumes ¢, per unit time the dynamics of his wealth are

dw; = Dzdt + Apz,dt + (y, — ¢;)dt = (7 + ANwedt + (y, — ¢;)dt

Y

20, we=0; 1w >0, (2.3.2)

From equations 2.2.5 and 2.3.2, the consumer’s problem is the optimization prob-
lem of an infinitely lived consumer with discount factor # 4+ A who faces a constant
interest rate. This constant interest rate equals the rate of return on the perpetuity, r,
plus the premium paid by the insurance company, A. Hence the consumer’s problem

can be written as

!~ Ae(PHA)t g

oo oo 1
=B+t gt — /
maw‘/o u(ce)e dt = mazx T
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s.t, / cre~ Tt = mawf yee~ N w, >0,
0 0

The problem 2.3.3 above admits the following solution®

ct=ﬂ%e—”‘
with
w = ﬂ; r
p=r+A+8
and
1/) =7+ /\ + w,

Finally, the consumer’s financial wealth at date t equals

e~wt e—Jt

¢

'lUg=g

2.3.2 Equilibrium

In equilibrium the aggregate financial wealth

o
/ Ae~Mw,dt
0

equals the market value of the perpetuities i.e. p = D/r.

(2.3.3)

(2.3.4)

(2.3.5)

(2.3.6)

Using equation 2.3.5 we can show that the equilibrium interest rate solves the

equation

(6 — w*)

mé-w) _D
¢*(A+w) Y

(2.3.7)

18To calculate this solution we have assumed that the borrowing constraint is not binding, i.e,
6§ >w=(B-r)/A, and that the maximum in 2,3.3 is finite, i.e. ¥ = P+ A+w > 0. Both restrictions

hold in equilibrium. (See appendix 2.A for details,)
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where 7*, w*, ¢* and 9* denote the equilibrium values or r, w , ¢ and 1, respectively,

Equation 2.3.7 determines the interest rate 7* uniquely. As expected the interest
rate goes up with the discount factor 3, the probability of death A and the ratio
of aggregate financial income over aggregate labor income D/Y. The interest rate
goes down with the rate of decline of labor income, 8, since an increase in § leads to
greater incentives to save, Finally if the coefficient of elasticity of substitution, 1/A4,
goes up the interest rate goes down provided that r* be greater than 5. Otherwise
the interest rate goes up.

In equilibrium, agents use the financial markets to smooth their consumption over
their lifetime: they buy assets when they are young and begin selling assets at age 7*

where 7* solves

r'wro + Yre — Cre = 0.17 (2.3.8)

From 2.3.5, 7* is given by

. Wit ’\) . (2.3.9)

_ L
U A WS

The aggregate dollar volume in this economy equals

— L]
oWttt (2.3.10)

T= /w Ae M|rw, + yp — ¢|dt = 2 w,.e” " =2V
0

2.4 Transactions Costs and Assets’ Returns

In this section, we determine the rate of return on the liquid asset, r, the rate of return

on the illiquid asset, R, and the liquidity premium g in the presence of transactions

17Note that we do not consider the payment of shares by insurance companies to be a trade, Hence
although the agent’s portfolio may still be growing (dW; > 0), the agent is considered a seller if his
portfolio grows at a rate lower than A , In the absence of transactions costs, this assumption simply
amounts to defining who is called a seller and who is not, With transactions costs, however, matters
are different. Since we have assumed that insurance companies pay living participants shares of
assets as opposed to cash and that this transfer is costless, our definition of a seller is the correct
one,
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costs. We will consider the case of small transactions costs and focus on their first

order effect on equilibrium variables, For this purpose we write

r(e) =7* + (b —m*)e + oe)
R(e) = r* + be + o(¢)
1(€) = m*e + o(e)
where b and m* are the first order equilibrium effects that we seek to calculate. We
consider the case where the supply of the illiquid asset, k, is less than one so both
assets are available to consumers. The case where all assets are illiquid, i.e, k = 1, is
somewhat different and is studied in appendix 2.E,

Before proceeding with the formal derivations, it is useful to show that in equilib-
rium the liquidity premium per unit of transactions costs /e must be greater than
the rate of return on the liquid asset, r, or equivalently R > r(1+ ¢). This is because,
since agents are born without any financial assets, in equilibrium they must buy the
illiquid asset at some point in their lives. Now consider an agent who buys for one

dollar worth of asset inclusive of transactions costs at date ¢ and sells it At periods

later. If he buys the liquid asset his cash flows are

-1 at date ¢

rds for s between t and ¢ + At and
+1 at date t + At.
If he buys the illiquid asset, given the transactions costs he will get 1/[P(1 + ¢)]

shares, Hence his cash flows are

-1 at date ¢

R/(1 4 €)ds for s between t and t + At and
(1 —€)/(1 +¢€) at date t + AL,

If R <r(l+e¢),ie if p < re, then buying the liquid asset always dominates
buying the illiquid asset. Hence
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p > retd (2.4.1)

In particular, this means that the effect of transactions costs on the liquidity pre-
mium is at least a first order effect. With this a priori information about equilibrium
prices, we next characterize the investor’s demand for liquid and illiquid assets when

K> Te,

2.4.1 'The consumer’s problem

With transactions costs, the consumer’s financial wealth w; is the sum of the value of
his liquid portfolio, denoted by a;, and of the value of his illiquid portfolio, denoted
by A;. Denoting by i, (respectively I;) the incremental dollar investment in the liquid

asset (respectively illiquid asset), the dynamics of a, and A, are given by
d(lg = /\agdt + igdt; Qg = 0; a; 2 0

dAg = AAgdt + Igdt; A.o = 0; Ag Z 0 (2-4-2)
¢t =y +rar+ RA, — iy — I — €|1y; ¢ >0,

From 2.4.2 above, we can see that the agent’s consumption equals the labor income
Yt, plus the dividend income ra; + RA;, minus purchases of liquid assets i,, minus
purchases of illiquid assets I,, minus transactions costs €|l;|.

With transactions costs, the consumer’s problem becomes far more complex.
Proposition 2.4.1 (proven in appendix 2.B) describes the optimal policy of the con-
sumer for small transactions costs and for a subset of values of r and R that are of

interest, i.e. such that their equilibrium values belong to this subset.

Proposition 2.4.1 For ¢ small and for r and R belonging to a subset of their

possible values, the optimal policy has the following form: The consumer buys the

18This lower bound is reached asymptotically when the holding period of illiquid assets goes to
infinity, that is when the fraction of illiquid assets, k, goes to zero,

104



tlliquid asset until an age 71, He then buys the liquid asset, He nezt sells the liquid
asset until an age 7, + A, At age 71 + A, he does not own any share of the liquid

asset, He then start selling the illiquid asset until he dies.

We find that in equilibrium, agents will buy high yield illiquid assets for long-term
investment and low yield liquid assets for short-term investment. This fairly intuitive
result is consistent with the analysis of Amihud and Mendelson (1986). The clientele
for the illiquid asset are the agents of age less that 7, while the clientele for the liquid
asset are the agents of age between 7, and the age at which they begin to sell it, The
marginal investor is the investor who buys the illiquid asset at date 7, and sells it
at date 7, + A. As in Amihud and Mendelson (1986), this investor determines the
liquidity premium (see below).

The liquid and illiquid portfolios as function of age ¢ are plotted in figure 2.1,

Proposition 2.4,1 presents the qualitative properties of the optimal consump-
tion/investment policy. In what follows, these qualitative properties will allow us
to calculate consumption at date ¢, ¢;, as a function of the initial consumption, co.
We will also show how the intertemporal budget equation, properly modified to ac-
count for transactions costs, leads to the determination of the initial consumption ¢o.
Finally, we will show how the parameter A can be easily calculated as function of
the rate of return on the liquid asset, r, the liquidity premium, p, and the level of
transactions costs, €. For the sake of the presentation, all technical details have been
sent to appendix 2.B.

Over the course of his life the agent faces three interest rates.

First until age 7;, the interest rate which is relevant for the consumption-savings

decision is

R
RL+)\—-IT;-I-)\.

Indeed, consider a consumer who at ¢ € [0,7;] decides to consume $1 less, but
wants to have the same wealth after ¢ +dt. He then buys 1/P(1+ ¢) illiquid securities.
At s between t and t+dt, he consumes the extra dividend flows (D/P(1+¢))e**~*) and
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at ¢ + dt, he consumes the proceeds from avoiding to buy (1/P(1 + €))e*® securities,
ie e**, Hence by foregoing $1 at ¢ he gets $1 + Adt + (R/(1 + €))dt + o(dt) between
t and ¢ + dt. Therefore, for R given, higher transactions costs increase the desire to
consume earlier rather than later. The reason is that the consumer has to buy an
asset which is more expensive, but pays the same dividend.

Second, between ages 7, and 7, + A, the consumer invests in the liquid assets and
therefore faces the interest rate r + ).

Third and finally, after age 7, + A, when the consumer is divesting out of the

illiquid assets, he faces a higher rate

R

— €

Rg+ A= + A

Indeed, suppose that at t € [y + A, 00) he decides to consume $1 less but wants
to have the same wealth after ¢ 4 dt. He sells 1/P(1 ~ ¢) less illiquid securities. At
s between t and t + dt, he consumes the extra dividend flow (D/P(1 — ¢€))e**~*) and
at ¢ + dt he consumes the proceeds from selling (1/P(1 — €))e® securities i.e. e,
Hence by foregoing $1 at t he gets $§1 + Adt + (R/(1 — €))dt + o(dt) between ¢ and
t + dt. For R given, higher transactions costs increase the desire to consume later
rather than earlier. The reason is that the consumer has to sell a cheaper asset that
pays the same dividend. |

We denote by 4(t) the interest rate relevant for date ¢ i.e.

p(t)=Rp+ Afort <m
pt)=r+Aform <t<m+A

p(t)=Rp+ Aform + A<t

and by p(t) the discount rate between date 0 and date t i.e.

t
p(t) = [ ps)ds.
In appendix 2.B, we indeed show that the optimal consumption must satisfy
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¢, = coe™ () (2.4.3)

with

w(t) - (B + /\3: — p(t)

where the consumption at birth ¢ is derived from the intertemporal budget constraint
presented below.
Given proposition 2.4.1 and equation 2.4.2, it can easily be shown that the con-

sumption path ¢, must satisfy the intertemporal budget equation

L +A B
/oﬂ '!I; — te—r(t) gt -|-/ ! (ye + (R - T)A: — ct)e =o(t) 4t + / o _:‘e—p(t)dt =0
T -
(2.4.4)
with
A = A ef\(t—ﬂ) — eA(t-Tl)/ __& P(Tl) p(")d‘9

Equation 2.4.4 says that the Net Present Value of lifetime savings net of transac-
tions costs must equal zero, where we define savings as total income minus consump-
tion minus what must be reinvested in order for financial wealth to grow at the rate
p(t). Between periods [0,71[ and [ry + A, 0o[, this latter quantity equals the dividend
income and therefore savings equal y, — c;. Between 7; and 1 + A, only a fraction
rA; of the dividends from the illiquid portfolio must be reinvested and thus savings
equal labor income, y;, minus consumption c; plus ezcess dividends ( R —17)A,. Finally
savings are adjusted for transactions costs.

We now show how the minimum holding period of the illiquid asset, A, can be
calculated as a function of r, i and e, Consider a consumer at age 71. dince 1; and
A are optimally chosen, this consumer must be indifferent between investing in the
illiquid asset and not doing so. Given that he starts selling the illiquid asset at 7, + A

his change in utility if he buys one unit of the illiquid asset at 7 is
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+A
— (e )(1 + €)P + u'(cry4a)(1 — €)Pe™PA + ‘/Tl u'(c;)De~Pt-1)dt = 0. (2.4.5)
T

Use of equation 2.4.3 and simple algebra show that the above equation can be

rewritten as

1+ e—rA
1 —e-ra’

o =

=7 (2.4.6)

Equation 2.4.6 shows that the minimum holding period of the illiquid asset, A,
is decreasing in its excess rate of return over the liquid asset, u, and increasing in
transactions costs, €.1®

From equation 2.4.6 it follows that the intertemporal budget constraint, for an
optimal choice of 7, and A, states that the Net Present Value of consumption equals

the Net Present Value of income where the discount factor is p(t), i.e.

/0 " (9e = c)e~"®dt = 0. (2.4.7)

The initial consumption, co can be derived from equations 2.4.3 and 2.4.7.
Having characterized the solution to the consumer’s problem we turn to the equi-

librium determination of » and R.

2.4.2 Equilibrium

In equilibrium, the dollar demands for liquid and illiquid assets
/w )\e"’“agdt
0

and:
/ * Ne~MA,dt
0

19We can also derive equation 2,4.6 by noting that between 7, and 1, + A the consumer invests
in the liquid asset, Therefore the Net Present Value rule applies, and the Net Present Value of
investing in the illiquid asset between these two dates is zero.
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equal the assets’ market value, (1 — k)D/r and kD/R respectively.
As we stated in the beginning of this section, we will consider small transactions
costs (small values of €), and find their first order effects on r, R and x. Recall that

we have defined b and m* by

r(e) =7+ (b—m*)e+ o(e) (2.4.8)
R(e) = 7* + be + o(e) (2.4.9)
p(e) = m*e + o(e) (2.4.10)

and that r*, w*, ¢* and * are the equilibrium values of r, w, ¢ and 3 for € = 0.

We also define by 71(¢) and A(e) as the equilibrium values of 7, and A as a function
of ¢, and by 7 and A* the respective limits of 7(¢) and A(e) as € goes to zero. (Note
that when ¢ equals zero, the liquid asset and the illiquid asset are the same asset and
therefore the holdings a; and A, are not well defined.) In other terms, 77 and A* are
the zero-th order effects of transactions costs on holding periods.

The next proposition characterizes the equilibrium values of m and b.

Proposition 2.4.2 There ezists an equilibrium where r, R and p have the form of
equations 2.4.8, 2.4.9 and 2.4.10. In equilibrium the first order effect of transactions
costs on the liquidity premium, m*, is positive while the first order effect on the rate
of return on the liquid asset, b — m*, is negative. The first order effect on the rate of

return on the illiquid asset, b, has an ambiguous sign.

The rigorous derivations of b — m*, b and m*, as well as explicit formulae are
presented in appendix 2.C.

Proposition 2.4.2, that we discuss in detail next, states that transactions costs
decrease the rate of return on the liquid asset but have an ambiguous effect on the
rate of return on the illiquid asset.

We discuss the results of proposition 2.4.2 in subsections 2.4.2.1., 2.4.2.2. and
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2.4.2.3. In subsection 2.4.2.1, we characterize the parameters 77 and A* i.e. the
zero-th order effect of transactions costs on optimal consumption/savings policies. In
subsection 2.4.2.2 we go over the determination of the liquidity premium, and in the
rather long subsection 2.4.2.3 we discuss the determination of the rates of return (or,

more accurately, the first order effects of transactions costs on these variables.)

Optimal Switching Times

The age at which agents switch from the illiquid asset to the liquid asset, 7 and the
age at which they start selling the illiquid asset, 7 + A®, can be easily interpreted
from the limit case as € goes to zero. Indeed consider the accumulation equations
2.4.2 with e =0 and » = R = r*. Given the investor’s total wealth w, = a, + A,, the

values of the liquid and illiquid pertfolios over time are given by
A, = w, and a; = 0 for t < tau}
Ay = weXT) and a; = wp — wyp M) for 7 < E < TP 4 AT
Ay =w, and ¢, =0 for 7 + A* < ¢t.

It follows that the values of 77 and A* can be calculated by noting (i) that total

financial wealth w; grows by exzp(AA*) between 7 and 77 + A* i.e.

wfl"i'A' = w,.l-e’\A.‘ (2,4.11)

and (ii) that aggregate liquid financial wealth must equal the supply of liquid assets

i.e.

.+A. .+A. R
/ T NeMaydt = / T NeM(w, — we et = (1 - k)g. (2.4.12)
g

.
1 m

Using the expression for w; from equation 2.3.5 as well as equations 2.4.11 and

2.4.12 above we obtain the values of 7 and A*.
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Liquidity Premium

In appendix 2.C we show that the first order effect of transactions costs on the liquidity

premium, m, is given by

(2.4.13)

It is fairly easy to understand the determination of m*. Equation 2.4,6 implies
that if m* were different from its value in equation 2.4.13, (i.e. if ¢ were different in
the first order), there would be a zero-th order change in A, Therefore, there would a
zero-th order change in the demand for liquid versus illiquid assets. (Although there

would only be a first order change in total asset demand.)

I" :tes of Return

The reasoning for the rates of return is more involved. To determine the parameter
b (and b — m*) we will make the following exercise: We will assume that for fixed
r transactions costs increase, In order to preserve equilibrium, R has to increase by
m*e, for m* given by equation 2.4.13. We will then find by how much total asset
demand and supply change in the first order and infer & — m* by the equation that
states that total asset demand equals total asset supply:

/o " Xe"M(a, + Ay)dt = fo ” XeMwdt = (1~ k)D/r + kD/R. (2.4,14)

Since this exercise is useful for understanding why the rate of return on the liquid
asset decreases when transactions costs increase, we go over it in some detail,

To determine total asset demand, we must first understand how the consumption
path of the agent is modified by the change in transactions costs and asset returns that
we are considering. Lemma 2.4.3 (proven in appendix 2.C) gives us the consumption

of the agent at age 0.

Lemma 2.4.3 The consumption at date zero, co is given by
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co = ﬂ% + eCw + €C, + o(€) (2.4.15)

where Cw is given by

O =75 ((—“1)/ (A + 8)e™#t = (A w)e™¥" 1t

t (T— + 1) fr caclA T 0)e (A +w')e-'/’"]dt) (2.4.16)

1

or alternatively

eVt _ ot 4.1
i ( )dt) (2.4,17)

0+A-

and Cs is given by

1 ¢. . . Tl‘ "".b.t . . o —',b.t
= g - . 4.1
Cs T ((m r)/(l e™Vtdt + (m +r)/n.+me dt (2.4.18)

The terms Cw and Cs have a very intuitive interpretation, First, Cy can be

interpreted as a wealth effect, For this we need to note that

g+ 8)e®t — (A + w*)em¥"|
¢t

is the present value of the dollar amount of transactions between T and 7 + dr in the
case € = 0, The consumer when buying the illiquid asset between 0 and 7, pays the
transactions costs but pays a lower price, When selling the illiquid asset (from 7 + A
until he dies), he pays the transactions costs and receives a lower price. The term
Cw is equal to the present discounted value of these “extra”?® cash flows, times 3*,

as expression 2.4.16 shows. Clearly, since the rate of return in the liquid asset is kept

20Compared to the case ¢ = 0,
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constant, the consumer can only be better off compared to the case ¢ = 0, and this
term is positive as we can see in expression 2,4.17,

The term Cs can be interpreted as a substitution effect. Since R/(1+¢€) > r, saving
is more attractive from 0 to 7,, (Agents buy the illiquid asset paying transaction
costs but at a lower price which more than compensates them,) It is also clear that
R/(1 — €) > r, therefore deferring consumption for later is also more attractive from
71 + A until death. Thus this term is negative.

Having interpreted the expression for ¢o, we can briefly describe how the con-
sumption path changes compared to the case € = 0, Because the consumer has better
investment opportunities, (i.e, he has the liquid asset at the same price as before, and
the illiquid asset), his consumption path goes up uniformly. (This is the wealth effect.)
Because the illiquid asset is available at a lower price (which more than compensates
transactions costs), and because the proceeds from selling it are lower (lower price
plus transactions costs), the consumer changes the slope of the consumption path
so that he buys more of the illiquid asset and holds it for a longer period, In other
words, he buys more in the beginning of his life (he saves more) and he sells it at a
lower rate (he defers consumption for later). This is the substitution effect,

In lemma 2.4.4 (proven in appendix 2,C) we determine total asset demand.

Lemma 2.4.4 Total asset demand is given by

§—
(TJ%M'Y + eWw + €W, + o(e) (2.4,19)

where Wy and W are given by

Ww = 2%:?&”‘“'“"? — e+ _ Z:— f,,m Ae™M Aydt+

._./\__L#" » " i -yt -¢*t . . * -yt ~¢*t
(At w*) grre ((m -1 )/0 (e — e ®h)dt + (m* + r*) r”A’(e — e ®t)dt
(2.4.20)

and

113



1 A gy

YA e

((m' ~7*) /OTI [e=OH™) — e~¥"tdt 4 (m* + %) /,:A.(e'(“"‘")‘ ~ e ¥")dt
1
(2.4'21)

The term Wy represents the additional demand for wealth (in the first order) of
the consumer if the latter changes only the level but not the slope of his consumption
path (i.e. if the wealth effect is present, but not the substitution effect) in response
to the change in transaction costs and asset returns that we are studying, This
additional demand for (dollar) wealth has an ambiguous sign because, on the one
hand, higher future consumption to be financed and transactions costs to be paid
when selling assets require more wealth, but on the other hand illiquid assets are
cheaper,

The term W corresponds to the substitution effect: Indeed as it was said befor2
the consumer changes the slope of his consumption path so that he buys more of the
illiquid asset and holds it for a longer period. This implies more wealth accumulation,
This term is positive and its magnitude depends on the elasticity of intertemporal
substitution,

Finally total asset supply (in the first order) is;

D m* oo D .
e /0 A At = = — Wouppty (2.4.22)

It decreases since the illiquid asset is cheaper.

The difference between total asset demand and supply is Ww + Ws + Wouppy
and is always positive. It is easy to understand why this is so, based on our earlier
discussion, Higher future consumption to be financed by selling the cheaper illiquid
asset and paying transactions costs requires a larger number of securities to be held,
(Although the dollar amount may be lower.) In addition, the agents change the slope

of tLeir consumption paths in order to buy more of the illiquid asset and hold it for a
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longer period, making the imbalance between asset demand and supply even higher.

The value of b — m* is then easily deduced, and is negative.

The above discussion which explained why the rate of return on the liquid asset
falls, can be summarized as follows: Suppose that transactions costs increase from
0 to € and that the rate of return on the liquid asset stays the same in equilibrium.
Then, (in equilibrium) the rate of return on the illiquid asset must increase (in the
first order) by m*e. Agents’ consumption paths will shift uniformly up because there
are more investment opportunities (wealth effect), and their slope will change so that
they buy more of the illiquid asset and hold it for a longer period (substitution effect).
Agents will thus demand more securities for two reasons. First, because they have
to finance higher future consumption by selling the cheaper illiquid asset and paying
transaction costs. Second, because they want to buy more of the illiquid asset and
hold it for a longer period.

Although the first order effect of transactions costs on the rate of return on the
liquid asset is unambiguous (b — m* is negative), the first order effect on the rate
of return on the illiquid asset (i.e. the sign of b) is ambiguous, In what follows, we
replicate (more briefly) the above exercise, assuming that this time, as transactions
costs increase, R stays the same and r decreases in the first order, as determined
above (r decreases by m*e).

This time, agents face worse investment opportunities, The price of the liquid
asset increases while trading the illiquid asset entails transactions costs. This (wealth)
effect implies then that their consumption paths shift down uniformly. On the other
hand, by substitution, agents accumulate less of both assets but hold the illiquid
asset for a longer period. The effect on the total demand for securities is ambiguous,
Indeed, the future consumption to be financed is lower and the liquid asset is more
expensive, but on the other hand transactions costs have to be paid. In addition,
agents buy less of the liquid and illiquid assets, but hold the illiquid asset for a longer

period.
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2.4.3 Comparative Statics

In this subsection we study how the effects of transactions costs on assets’ returns
depend on the parameters of the model. (More precisely, we find how m*, b and
b — m* depend on these parameters,) The parameter that is of greatest interest is k,
the fraction of illiquid assets to the total stock of assets. In lemma 2.4.5 (proven in

appendix 2.D) we examine how m*, b and b — m* depend on k.

Lemma 2.4.5 m* increases in k, b — m* decreases in k while the dependence of

b in k is ambiguous.

We briefly discuss the results of this Lemma.,

The dependence of m* on k is relatively simple to understand. More illiquid assets
in the economy imply that the minimum holding period of an illiquid asset becomes
shorter. The liquidity premium must increase so that consumers are willing to hold
illiquid assets for shorter periods.

The dependence of b—m* on k can be explained in the light of the analysis of the
previous subsection. There it was argued that to understand why the rate of return
on the liquid asset falls in response to increased transactions costs, we could make
the following experiment: We could suppose that transactions costs increased from
0 to € and that the rate of return on the illiquid asset had to increase (in the first
order) by m*e. We could then study the difference between demand and supply of
total wealth and infer the direction of change of the rate of return on the liquid asset.
In fact, we can also infer the magnitude of change of the rate of return on the liquid
asset, studying the magnitude of the difference between total asset demand and total
asset supply.

As k increases, m* increases, therefore both the wealth effect and the substitution
effect are stronger. This implies that the difference between asset demand and supply
is greater, and the first order effect on r (i.e. b — m*) is bigger (in absolute value).

The effects of the other parameters on m*, b and b — m* are of less interest and

are not reported here.
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2.5 Numerical Examples

In this section we present some numerical examples to illustrate the results of the
previous sections, In all these examples we assume that A =1 (u(c) = loge) and
that the level of transactions costs € equals 3% which is consistent with empirical
evidence (see Aiyagari and Gertler (1991) for instance). In all figures 2.2 to 2.4, we
plot various rates of return as a function of k, the supply of the illiquid asset. These
figures are consistent with the results in proposition 2.4.2 and lemma 2.4.5, namely
that (i) the liquidity premium is positive, (ii) the rate of return on the liquid asset
goes down, (iii) the rate of return on the illiquid asset can go up or down, (iv) the
effect of transactions costs on the liquidity premium and the rate of return on the
liquid asset is large when k is close to 1.

The main quantitative observations are as follows: (i) When k is close to 1, the
liquidity premium is significant (about 10% of the level of the rates of return). (ii)
When k is close to 1, transactions costs cause a non-trivial fall in the rate of return on
the liquid asset while the rate of return on the illiquid asset remains almost constant.

These quantitative results have important practical applications, To understand
the impact of a change in transactions costs in the economy, it is important to un-
derstand how assets are differently affected by this change. A technological change,
such as a reduction in computer cost, can be assumed to reduce transaction costs for
all assets and in our model corresponds to the case k=1. Our results suggest that
rates of return will not change much. By contrast, a reduction of transactions costs
on one single asset (e.g. by the introduction of a derivative security) will increase
the price of this asset without any significant impact on the other assets. Finally, a
transaction tax on a significant subset of existing assets (stocks, real estate ) will
lower their value by an amount less than suggested by a simple partial equilibrium

analysis which takes the rates of return on the other assets as given,
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2.6 Conclusion

In this work we have constructed a fairly simple general equilibrium model of an
imperfect capital market. Our main result is that while transactions costs tend to
push the rate of return on illiquid assets upward, there is a general equilibrium effect
which tends to lower rates of return. The net result is that the rate of return on liquid
assets goes down while the rate of return on illiquid assets may go up or down. We
believe that these results are robust to the specification of (i) the trading motives:
life cycle, labor income shocks?! or taste shocks and (ii) the preferences,??

Our model endogenously generates clienteles for assets with differential liquid-
ity. This clientele effect is consistent with previous work by Amihud and Mendelson
(1986). In fact, if we generalized our model to allow for many assets with different
transactions costs, we would obtain the concave relationship between rates of return
and transactions costs derived by these authors.

If transactions costs instead of being a pure destruction of resources, as we assumed
here, were due to a transaction tax whose proceeds were redistributed to the agents,
the results would be similar, Amihud and Mendelson (1990b) argue that, holding the
risk free rate constant, a .5% transaction tax would lower the market value of the
NYSE stocks by 13.8%. While we do not dispute the fact that a small transaction
tax will increase the liquidity premium significantly, our results suggest that the risk
free rate will fall so that the stock price fall is likely to be somewhat smaller.

This line of research can be pursued in (at least) two directions. First, the in-
terection between risk and liquidity is not fully understood. It would be interesting to
construct tractable models to analyze the interaction between transactions costs and
risk and examine in particular whether, as it has been argued, illiquid markets are

more volatile since investors find it more costly to absorb liquidity shocks. Second and

?1See for instance Amihud et al. (1992),

22The treatment of the perpetual youth model for a general utility function seems to us analytically
intractable, In a companion note, we consider a two-period overlapping generations model similar in
spirit to the model herein. This model is simpler but also much less rich, In particular, the holding
period is the same for all assets and as a result the liquidity premium is fixed, In this simple model
the results are independent of the functional form of preferences,
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more importantly, very little is known about the determination of the level of trans-
actions costs as well as the financial structure created to deal with these transactions

costs.
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2.A Appendix: The No Transactions Costs Case

This appendix considers the case when transactions costs are zero. We will first
prove that in equilibrium § > w and ¥ =7 + A +w > 0. We will then prove that the
equilibrium is unique,

We must first calculate the optimal policy which entails solving

co ) 1
' ~(B+Nt It = mas / — A (BTt
maxv/o u(ce)e dt = maz L T-a¢ e

s.t. fm cee "t = maz /w yee~ Tkt we > 0, (2.A.1)
0 ()

From He and Pages (1991), we know that a bounded value for 2.3.3 above exists
provided that

bortAtw>0, (2.4.2)
In that case, He and Pages show that
c. =y, forevery tif w=(8—7)/A > 6 and

ce = (Jib/p)e v for every t if w < 6, with ¢ =1 + X + 6.

If ¥ < 0, then the value of 2.3.3 is co. We show below that this cannot be the
case in equilibrium.

In equilibrium, the resource constraint implies that

A<Dty (2.A.3)
0

Hence the equilibrium utility of the representative agent is bounded by the solution

to the program below

® 1 a4 —(a+a
t
maw/o TT Ac e d
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st [ “ NeMeydt = D + Y, (2.A.4)
0

It is easy to show that 2.A.4 has a finite value,
If w > 6 then the agent does not buy any asset and therefore w, = 0. Obviously,

this is not consistent with the equilibrium condition

/.m e Mw,dt = 2 (2.A.5)
0 T

Hence § must be larger than w in equilibrium.

From the expression for ¢, and 2.3.2 it follows easily that

e—wt _ e—&t

wy = F p (2.A.6)
Combining 2.A.5 and 2.A.6 yields the equilibrium condition
LT ¥ S s(o  B-r®
(6 — w*) (6 - &) ___2 (2.A.7)

FO+) (IO +ED) T Y
which must be solved for r*.
Simple algebraic manipulations show that 2.A.7 above has a unique positive solu-
tion 7*, that this solution is increasing in 8, A and D/Y and that it is decreasing in

6. It is increasing in A if 7* is greater than B and decreasing with A otherwise.

2.B Appendix: Proof of Proposition 2.4.1

The method of proof is as follows: We first define the control variables. We then
derive heuristic conditions for an optimal control. Next we construct a candidate

optimal control and show that is indeed optimal,

Step 1 The control problem

Recall that i, is the per unit time value of the liquid assets purchased at date ¢
and that I, is the per unit time value of the illiquid assets purchased at date t. Recall

also equations 2.4.2
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da; = Aa.dt + t,dt; ao = 0; a >0

dA; = AA.dt -+ 1, dt; Ag=0; A 20 (2.B.1)
¢t =Y +rar+ RA, — ¢, — I, — €|l}; ¢ > 0.

The control problem faced by the consumer is to maximize 2.2,6 with respect to
the controls i; and I, subject to the above dynamics of a, and A,.

Formally, we say that a control (i(), I()) is admissible if it is (i) piecewise contin-
uous (ii) it satisfies the no short sale constraints a, > 0 and A, > 0 as well as the
constraint ¢; > 0. We denote by C the set of admissible controls and by J(i(), I())
the payoff function, i.e. the utility that the consumer enjoys if he follows the controls

1, = i(t) and I, = I(t). Using the fact that

¢
a =/0 i,eMt=)ds (2.B.2)

and

t
A = /o LeXt-9ds (2.B.3)

the payoff function can be written as

o t t
J((),1() = /o w(ye + /o 1,eN=ds + R /o LeMt=9ds — i, — I, — e|I,|)e"Pt)tgt
(2.B.4)
Hence the control problem is to maximize J(i(),()) with respect to (¢(),1()) belong-
ing to C.

Step 2 Heuristic optimality conditions

To derive heuristic conditions for an optimal control, we take a candidate optimal
control (i(),I()), denote by ¢() the resulting consumption and consider the possible

perturbations:
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(1) Suppose first that a; > 0. Suppose that at t, the consumer changes his con-
sumption by a dollars (per unit time) and invests a more dollars in the liquid asset.
At s between t and t + dt, he consumes the extra dividend are*®-*) and at ¢ + dt

he sells ae’®. He does not change his investment decision thereafter. His payoff will

change by
o[ —u'(c;) + e~ PN (A 4 ndt)u!(crpar)).

Since (i(),1()) is optimal, the change in payoff must be non-positive for every o

and dt going to zero which yields the standard Euler equation

B (8- e (2.B.5)

ii) Suppose now that a; = 0. Then the consumer can only increase his investment
p

in the liquid asset and therefore condition 2.B.5 must be replaced by

du'(c,)
dt

< (8- r(a). (2.B.6)

(iii) Consider a policy where A, > 0 for every t, which will be the case in our
candidate policy.

(iiia) Suppose I7 > 0. If between ¢ and ¢ + dt, the consumer changes his consump-
tion by (1 + €) dollars (per unit time), invests & (with o + I} > 0) more dollars in
the illiquid asset and does not change his investment decision thereafter, his payoff

will change by
al-w'()(1+e)+ [ Ru'(e,)e*~ds]de
t
which must be non-positive for any a and so

u'(c)(1+¢€) = /;oo Ru'(c,)e Ple=t)ds, (2.B.7)

(iiib) Suppose now that I} < 0. If between ¢ and ¢ + dt the consumer changes his
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consumption by (1 — €)a dollars (per unit time), invests a (with a 4+ I} < 0) more
dollars in the illiquid asset and does not change his investment decision thereafter??

his payoff will change by
of-u(e)(1-e) + [ " Ru/(c,)eP-9ds)dt
t
which must be non-positive for any a and so

w'(ce)(1 — €) = /t ” Ru'(c,)ePVds. (2.B.8)

(iiic) If I, = 0, then the first order condition reads as
u'(c)(1 —€) < /m Ru'(c,)e"ﬁ('"‘)d.s < u'(e)(1 + €). (2.B.9)
¢

Step 3 Construction of the candidate policy

Given ¢g, 11 and A we define the candidate optimal censumption plan as in equa-

tion 2.4.3
¢, = coe~“®)

with

o) = EE=0lt)

This consumption plan will be completely defined once we specify co, 11 and A.
We now motivate our definition of these parameters. To finance this consumption
plan, the agent will buy shares of the illiquid asset from 0 to 7;. He will buy and then
sell shares of the liquid asset between 7, and 7, + A. Finally he will sell the illiquid

assets from 71 + A to oo. From equations 2.4.2 it follows that

33Note that this perturbation is feasible only if A, > 0 for every ¢, In the optimal policy, A, will
indeed be positive for every t. Howevera; = 0 for ¢t < 7, and ¢t > 1, + A, For this reason, the
optimality condition with respect to i; is written as an Euler equation (2,B.5 and 2.B.6) while the
optimality condition with respect to I, is an integral condition.
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f Yo — % po()-rlo)gs,  a, =0

fort<n

¢
A = Ar,e*("'"); a; = / (s — € + RA,)eP(‘)"P(")ds
n

formy <t<m + A and

Ap = Apyaef®-pnta) 4 /‘ Yo = G onlt)-rlo)dgs g, = 0
' Ti+A 1—c¢

form+ A<t

From the above equations together with the transversality condition

lim Aie="®) =0
t-- 00

we get

/ﬂ Ye = C —p(t) gt — oA / ST Ve o-nlt) gy (2.B.10)
o l+e nta 1 —e€

Finally

ni+aA
ar4a =0 = CP(TH-A)/
T

(e — e + RA,)e~?Mdt, (2.B.11)
We first define A by 2.4.6 that is

ST Tl era
or equivalently
R_1_
a_ylze (2.B.12)
- 1+e¢ .
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Adding equations 2,B.10 and 2,B.11 gives the intertemporal budget equation 2,4.4,
We define co (as a function of 71, ¢, 7 and R) from the intertemporal budget equation

2.4.4 which together with 2.4.6 yields the simpler equation 2.4.7 below

/“@V-qyﬂ“ut=o.
0

Finally we define 71 by equation 2,B.11.
We now show that this policy is well defined and admissible for ¢ small and for
r and R belonging to a subset of their equilibrium values, We will also show that it

varies smoothly with ¢, »r and m where m is defined by
R =17 + me,

We will show the following lemma

Lemma 2.B.1 Consider r, m and m* such that m*/r* > 1 (recall that r* is the

equilibrium interest rate when transactions costs are zero). There exists € such that

if
(1) 0<e<e

(@) |r* = 7| L €0, |m*" —m| < €

the consumption plan defined above, where R = r +me is well-defined and admissible,

Moreover, A, ¢ and 1y are infinitely differentiable (C*) in (¢,7,m).

Proof: The intuition for the proof is simple. If ¢ = 0, this consumption plan
collapses to the optimal one for € = 0. That plan is admissible, The admissibility of
the consumption plan for € > 0 will follow by continuity.

We first note that the equation defining A can be written as

m-—-r
e~ ™A —

= (2.B.13)
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Therefore A is uniquely defined, is C* in (¢,7,m) and verifies 0 < A A <A< 00
for € sufficiently small,

The equation giving ¢y can be written as

1 - e-(Ruttén + e~ (RL+A+8)n 1 - e-(rtAto)A + e~ (RutAté)n —-_-e—(r+k+6)A =
Rp+A+46 r+A+S Rp+A+4

o 4 = erBethrocin + e~ (BLtdtwr)n 1 - er(rtiwa + e~ (RetAtwr)n e~(rtitw)a
Br+Xd+wr rtAtw Rp + ) +wp

(2.B.14)
with

wL=%‘3£ande=%’31.

From equation 2.B.14, it is obvious that ¢y is uniquely defined and is C* in (¢, 7, m, 1)

It is fairly straightforward to show that we can restrict ¢, > 0 such that
|%2| < §K. in [0, €]

for all values of 7 and m in the set defined before, and for all 7, € [0, co[, where K,

is a positive constant.

We now turn to the equation defining 7,. This equation can be written as

1 (_]_ — e"'(RL""A'}'&)Tl 11— e"‘(RL"'*"'“’L)Tl)

1+e¢ R, +A+46 — ¢ Rp+ A+ wr .
1 e—(Mw)a e—(At6)Aa
“(Redtwp)n__ =~ s —(Rptdé)m ¢ T .B.
1—€(coe Re+Atws °° RB+A+5)' (2.8.15)

Straightforward algebra shows that we can rewrite this equation as

y Ty M,y €,T1)

(2.B.16)

e~ (rtA+6)m _ o=(r+Atw)n _ e~ (r+A+8) 1 ~(A+8)A _ o—(r+Atw)r —(Aw)a + f(%o

where f(.,.,.,.,.) i8 a C* function such that f = 0 for ¢=0 and
|3E] < Ky in [0, co]
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for all values of 7, m and 7 (restricting €o if necessary). Ky is a positive constant,

Consider equation 2.B.16 for ¢ = 0

e~ (AN _ o=(Mwn _ o=(r+2+6)(i+4) _ o~(r+rtw)(nitA) (2,B.17)

The function g(.) : t — e~(+Mt — e=(w+M)t has the following graph (see figure 2.5)

Therefore this equation has a unique solution 71 in (0,7*), It is easy to show
(given A > A > 0) that there exists { > 0 such that 7, < 7*—(and 7+ A > 7" + (.
Using the implicit function theorem, the fact that 0 < A < A < A < oo and the fact
that

35| < Ky in [0, o]

for all values of 7, m and 7,, we can show that we can define a C'* function 7y (¢, r,m)

for € < € and for all values of 7 and m. Moreover, it is easy to show that
182 < K, in [0, €

uniformly in 7 and m (restricting o if necessary). This implies in particular that
<7 —(/2and 1y + A > 7* + (/2, for € small.

Summarizing our discussion above, it can be seen that co(e,7,m) is close to its
¢ = 0 value. It is less straightforward to interpret the values of m(0,7,m) and
A(0,7,m). Indeed when ¢ = 0, all assets are liquid and the switching times do
not have any particular meaning., However, as seen above 1i(¢,r,m) and A(e,r,m)
have well-defined positive limits as ¢ goes to zero. As seen from 2.B.13, given m
is easy to calculate A(0,r,m) = A(e,r,m). Given m (or A), one can calculate
71(0,7,m) directly from the no transactions costs case. This value 7,(0,7,m) is the
time such that accumulated wealth (when ¢=0) grows at a rate A between 1(0,7,m)
and 7,(0,7,m) + A.

Therefore, the consumption plan is well-defined and A, co, 7, vary smoothly with
€7, m.

To show that it is admissible, we have to prove that I, > 0 in [0,7], I, < 0 in
[r1 + A,o00[ and a; > 0, A, > 0. We recall that
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dA
I = 'I{Ft — M.

We briefly sketch proofs of the above statements.

In [0,71], we have

I _RAi+y—c
- 1+e

It is easy to see that I, = Iy).=0 + g(¢,7,m,t) where g=0 for ¢=0 and
of
El < Ka

uniformly. Since 7, < 7* + (/2 and Iyje=0 = 8 > 0 in [0,7* — (/2], it follows that for
€ < €o (restricting again €), [y > 0, which implies that A, > 0.
In [r, 71 + A) again, a, and i, are very close to their € = 0 counterparts, We can

easily show by continuity that
a; > 0in [r* — (/4,7 + (/4]
i > 0in [r, 7 — (/4]

i <0in [7* + (/4,1 + A].

This implies that a; > 0 in [ry, 7 + A].

In [r; + A, 00|, simple calculations using

A, = /‘ = Lo = Ys p(e)-pla) g

— €

show that

1 A+ 6 _s A + wpg
I, = ge~ft - 1758 e wLTig~wA —wp(t-(ri+4)) )
t 1—€(RB+/\+5ye Re+A+wp © e )

The continuity argument can be applied in a compact set [r* + ¢/2,T] to show
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that I, < 0, while since § —wp > 7 > 0 for ¢ small, I; will be negative if T is large
enough. |

Finally

— 1 o —wrT ,—wA ~wp(t—(T1+4)) g _Jg)
A‘—I—C(RB+/\+UJBC ° e Re+A+6

and similar arguments show that A, > 0. Therefore the consumption plan is admis-

sible. This ends the proof of lemma 2.B.1. O

Step 4 Optimality of the control

Having shown that our candidate optimal control is well defined and admissible,
we will show that it is indeed optimal. For this purpose, we first show that it satisfies
2.B.5-2.B.9.

Lemma 2.B.2 OQur candidate control satisfies conditions 2,B.5-2.B.9,
Proof: It is obvious that

in [O,Tll

dlogu/(c,)

G =P Rspf-r
in (1,7 + A]
dlog‘;;’(ct) —f—r
and that in [r; + A, 0o
Lorle) g mp<p-v.

Hence 2,B.5-2.B.6 are satisfied.
Fort € [r + A, 00|

130



oo oo ! !
' -B(s-t) ' ~Rg(s—t) w'(e)  w(e)(l—c¢)
/; u'(ci)e ds=u (ct)[ e ds = Ry = 7 .

It follows that 2.B.8 is satisfied.
For t € [, 71 + A]

[ wle)ee=0ds = wi(c,) ( [ ere-0as I e"'(“*““)e'n"("(”+A))ds)
¢ t n+a

1 — e~T(nta~t) ~r(n+a-t)
(LT e,

In addition

l—c¢ 1 — e~r(n+a-t) e—T(n+a-t) 1 —eTA e-TA

R = - tl-g—Fp—<s——+0-9F3

From equation 2.B.12 we get that

1—e A e™  1+4e¢ ’
- — = . .B.18
—t (L—¢) i 2 (2.B.18)
The inequalities 2.B.9 follow,
Finally, for t € [0, 7], we have
bl 1 —_ e—"r-}'-!—q(rl-‘) R 1 — e—l‘A
/ w'(c)ePl=ds = w'(c,) | (1 + €) e Th(n-9____
t R r
-rA
_ __ﬁ(,.l_,)e r — 1 + €
+(1 — €)e™T R R
because of equation 2.B.18.
This proves equation 2.B.7 and ends our proof of lemma 2.B.2. O

We now show that the candidate policy is indeed optimal.
Lemma 2.B.3 The candidate policy is optimal,
Proof: To derive this lemma we shall show that no perturbation of the candidate
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policy can be utility enhancing.
Consider an alternative policy (;+ 62, I, +61;) which induces consumption c;+c;.
We know from equations 2.4.2, 2.B.2 and 2.B.3 that

t t
bep=r f 6i,e’t="ds + R / §1,eMt=2)ds — §i, — 61, — (|1, + 61| — |L)).
0 0
Using the concavity of u(c;), it follows that

u(ce + ce) < ulee) + u'(ce)

t t
(r /0 6i,eMt~")ds + R /o 61,eM=*)ds — &i, — 61, — (|1, + 81,| — |I| )) . (2.B.19)

We next multiply equation 2.B.19 by e~(At2) integrate from 0 to ¢, and get
¢ ¢
/0 u(e, +8e)e P Nds < [Cufe,)eB+Nds + Ki(t) + Ki(2)
0
with
t s
(t) = ! L eMe=Pdh — 81 ) e—(BtA)s
Ki(t) _./o u'(c,) (r/o dipe dh 61,) e ds
and
t L]
Ki(t) = [ w(e) (R [ 61neXe-Pdh — 61, - (|1, + 81| - |1 )) e (BtN)egs,

We will show that when t goes to infinity, K;(t) and K;(t) are asymptotically
non-positive.

Integrating the second term of K;(t) by parts, we get
4
/ u'(c,)8i,e~(BtAgg =
0

[ ([ dine ) -ﬁ'] / ([ Ginedn Wm.
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Therefore, K;(t) equals

du'(c,)

‘/nt (u’(c.)(r -B)+ 75 ) (/o. fine *dh)e~P*ds — (/: ise~*ds)u/(c,)ePt,
(2.B.20)

We note that
-8 — s 61 -Mh .
da,e /(; the”""dh

If a, > 0, then condition 2.B.5 holds and the integrand in the first term of 2.B,20

above must be zero. If a, = 0, then the short sale constraint §a, > 0 and condition
2.B.6 ensure that this integrand is non-positive. For t > 7, + A, a, = 0 and thus
6a, must also be greater or equal than 0. This implies that the second term is non-
positive, for t large enough. We have therefore proven that K;(t) is non-positive for
large t.

Consider now K/(t). Integrating by parts the first term, we get

t a
' A(a—h) ~(B+N)a g,
/o u (c,)(/0 §1ne dh)e' ds =

[_( /o "Iy dh) / ~ u’(c,,)e'p"dh)]; + /o f / ~ w(cp)ePhdh)sI,e~Mds.

Therefore K;(t) is equal to
¢ oo
fo ((—u’(c.) +R / w'(cn)e™PP=)dR)61, — ' (c,)e(|1, + 61,] — | I.l)) e~ (B+A)s g

oo ¢t
_ / -fBs —As
R(./; u'(c,)e ds)(/; 61,e7""ds). (2.B.21)
If1, >0, |1, + 61,| — |I,| > é1,, the integrand in 2.B.21 is less or equal to
(—-u’(c,)(l +¢€) + /oo Ru’(ch)e'p("“)dh) 6I,=0
by condition 2.B.7.
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1, <0,|I,+ 6| - |1, > —061,, the integrand is less or equal to

(—u’(c,)(l —€)+ /;oo Ru'(ch)e'p(""')dh) 6, =0

by condition 2.B.8.
If I, = 0 and 61, > 0, the integrand is

(—u'(c,)(l +o9+ [ Ru’(ch)e‘”(""’)dh) 61, <0

by condition 2.B.9,
If I, = 0 and 81, < 0, the integrand is

(—u'(c.)(l —€)+ /’m Ru’(ch)c'ﬁ("")dh) 81, <0

by condition 2.B.9.
Therefore the first term in K(t) is less or equal to 0.

For the second term, note that
64, = ["6Te-an
0

and that

1—¢

oo 1—c¢
/t‘ w'(c,)e™P?ds = u'(c,)e Pt 7

= e—P(t)

fort > m + A.
Since 64, > —A,, (6A.+ A, 2 0), A, ~ ezp(—wpt) and A + wg > n > 0 for ¢

small, it is clear that the term:

_R(‘/tcm u'(c,)e'p'ds)(/ot 61,e~*ds)

is smaller that an arbitrary ¢ > 0 for ¢ large enough. It follows that K(t) is asymp-
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totically non positive. This concludes the proof of lemma 2.B.3. a

2.C Appendix: Proofs of Proposition 2.4.2 and
Lemmas 2.4.3 and 2.4.4

2.C.1 Proof of Lemma 2.4.3

Suppose that r = 7* and that R = r* + m*e. From appendix 2.B, we know that for
e small, the optimal consumption at time 0 is given by equation 2.4.7, which as we

have seen can be rewritten as

+ e—(RL'l'A"‘G)TI

(1 SRk + e~ (RL+A+6)n 1 - e~(mHAth)a

e—(r"+A+8)A
Rp+A+6 At S R

Rp+A+46

+ e~ (Retitwr)n

0 (1 — eZ(Rution)n + e~ (RL+Atwp)m 1 - em(rHite)a

e—(r*+Atw)A
R+ A +wg ™+ Atw '

Rp+ A+ wp

The first term in brackets (divided by 7) can be written as

1 + e-(RL+A+6)r,( 1 _ 1 )
Rp,+)2+6 ™+A+6 Rp+A+6
. 1 1
—(RL4A+8)1 ,—(r°+A+6)A _ . 2.C.
Te ¢ -y wry Rl g vy 3 (2.6.1)

Straightforward algebra shows that this term can be written as

1 m* —r* m* —r* e m* 4 p* S LA®
— |1~ €+ ce™®TT 4+ ee”?(MTHA%) 4 o(e ) 2.C.2
2 ( r r # () @02

or equivalently, as

1 ' oo
- . _ . —P°t _ . . -t 1
& (1 e(m* —r )/o e dt — e(m* + 7 )-/;.‘+A' e"*tdt +o(e)) . (2.C.3)
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Similarly, the second term can be written as

~ e"”"dt) + o(e)) .

;b}: (1 —€(1 - %) ((m' - r")/:; e ¥t 4 (m* + r’)/;
(2.C0.4)

Ttas

Combining 2.C.3 and 2.C.4 we get equation 2.4.15 i.e.

co = 37% + €Cw + €C, + o(e)
with Cw and Cs given by 2.4.17 and 2.4.18. Integrating 2.4.17 by parts we get

T‘

0

) ([‘e""?e-(*w'ﬂ - )

r‘
Tl
/
0

|

7'.

e—m((/\ + §)e~(Mo)e _ (M + w')e'(““’"‘)dt)
r.

P +Ar

oo -r*t
+/‘ e ((A + 5)6—(A+6)t _ (/\ +w¢)e—(A+w-)t)dt) i
T

T+as r*
Using equations 2.4.11 (substituting w, from 2.3.5) and 2.4.13, we find that the
terms in brackets cancel out which yields equation 2.4.16. This concludes the proof

of lemma 2.4.3.

2.C.2 Proof of Proposition 2.4.2
Consider 7* and m* where

JA e A
1—e-ra*’

=

The results of Appendix 2.B imply that for ¢ sufficienty small and for 7 and m
belonging to a neighborhood of #* and m*, the consumption plan defined in Propo-

sition 2.4.1 is indeed well-defined, admissible and optimal, These results also imply

136



that
F :(e,r,m)— (/:o /\e"“atdt,[’ao Ae~M A, dt)

is C'® in these variables,
We know that
D
F(O,r",m*) = (1 - k)=, k2

r" r‘

)-
It is also easy to see that

OF _ oF,
%(Oyrim) = %(O,r,m) "Ié 0

(if € = 0, r is kept constant and m changes, it is as if the total wealth is kept constant

and the proportion of the wealth in liquid and illiquid assets changes) and that

OF;

dF.
or (Os"’m) + —E(O,r,m) 7& 0

or

(a change in interest rate has a non-zero effect on the total stock of wealth, at least

in the e=0 case). Therefore the Jacobian matrix

~

OF, OF; |
Or ar

55
55

|

is invertible and we can apply the implicit function theorem at the point (0,7*,m*).

E

It is thus clear that for € small there exists an equilibrium. Moreover, r and m
are C* in ¢, which establishes proposition 2.4.2.
We now calculate how total wealth changes when ¢ changes for fized r* and m*

and prove lemma 2.4.4.

137



2.C.3 Proof of Lemma 2.4.4

Adding the equations describing the evolution of a, and A, we get

ﬂa‘;t_—A‘)=/\(4145'|'1‘1t)'f“i¢'I'It

= (A + 7’)(0.: + At) + (R - T)Ag + Y — € — €I¢.

Multiplying by e~*!, integrating from 0 to co and using the fact (established in
appendix 2.B) that (a. + A;)e~* goes to zero as t goes to infinity, we get

7 Mai+ Aeat = % [ et b~y — (R-r)a)ds (2.05)

Equation 2.C.5 will allow us to calculate total wealth as a function of . We will

assume that we are at (¢,7*,m*).

® e _ [T e ifl_‘_ _[7 — At -‘-i—{-l—t— =
foe e|1,|dt_fo e e(dt ,\A,) /ﬁ_we e(dt M) =

6.4,-‘.(-3"\’". + eArl_+A.e—A(r;+A-) — 2€Arre—,\r; — 26%(e—(h+u°)r; _ e‘('\‘H)Tf) + o(e).
(2.C.6)
T +A

/ " eMeydt = co (/ T em(unlegy 4 g-(tur) / e~ )(E-1) gy
0 0 L

+e-(¢\+w;,)rl’e-(A+W°)A' ‘/w

e~(Mwn)(E=(rP+4%)) g4
T +A

= Co 1- e—('\'l""b)"'l. + e"(A'l-wL)'rl’l —_ e‘('\"‘“")A' + e-(/\+UL)Tfe—(,\+u.)A.
A+ wg A+ w* ) + wg

Co

A+ w

m*—r*1 oyoe m*+r*1 V(o LA®
(] — e~(twd)r L e~(Mtwt)(ri+A%) )
(1+€,\+w‘ A(l e :)-|-e/\+w‘ 1€ ¥ + o(¢)
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= o £ . e e~ (Mtw) " e—(Atw)e
-——-,\+w{1+‘4((m r)/; dt + (m* +r*) e dt)}+o(e).
(2.C.7)

Replacing for ¢y, we get

- o
/o Medt = ¢*(/\+w')

oA (e7¥'t — e"*")dt) +
1

{1 te ((m* -r') /:;(e""m — e ¥Ndt + (m* +1*) /:

7y ((m‘ = 1) [ (et~ et g (mt 4 1) /,,-+A.<E“*+“")‘ - e*"’""”‘) } +ole)
(2.C.8)

Using 2.C.5, 2.C.6 and 2.C.8, it is easy to find the sensitivity of total asset demand
Fy + F; to the transactions costs ¢, The equations in lemma 2.4.4 follow,
We next derive the expression for b — m*. For this purpose we differentiate the

equilibrium condition

R+R=A Mw@ﬁwwu=0~) +h+m€

with respect to ¢. Note that when e changes, the equilibrium values of v* and m*will

change. Hence we get

O(F + F,) (Iu + O(F + Fy) W R+ F) dm
Oe ,¢=0 + 'G—O(b ) + "a'm_'—|¢=0'_'d€—l¢=o
D . D o dm )
._(1 - k)?le:O(b -m ) - km|¢=o((b —-m ) + € Je |¢=0 +m ),

Using the fact that F) + Fj is independent of m for € = 0, we have

O(F, + F. O(F, + F. . D ow m*'. D
-_(1672)|¢=0 + (18—7'2)|¢=0(b -m ) —_— "F(b -m ) - Fk-r—‘.
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Using the notation of subsection 2,4.2.3 we get

O(F, + F. D
(b _ m‘) (.(%2).'!:0 + F) = —-(WW + Ws + Waupply)'

We can calculate

B(Fl + F2)'
—GT "le=0

from

6 —w
F1+F2=(—:\+—w)¢

and derive (b — m*).
The right-hand side is negative and it is easy to see that the coefficient of (b —m*)

is positive. Therefore (b — m*) is negative. 0

2.D Appendix: Proof of Lemma 2.4.5

If k increases, obviously A* decreases, Moreover 77 increases and 17 + A* decreases.
These can be seen from equations 2.4.11 and 2,4.12 with very simple algebra, Equa-
tion 2.4.13 implies then that m* increases.

Simple algebra then shows that (b — m*) which is proportional to:

-(WW + Ws + meplu)

decreases, i.e. the effect of ¢ on r* is stronger, (Note that the function g(.) : t —

exp(—(A 4 w)t) — exp(—(A + 8)t) increases in [0,7*] and that 7, < 7*).) m]
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2.E Appendix: The Case k=1

The case k = 1 is slightly different. We find, as before, that transactions costs have
a first order effect on the rate of return on the illiquid asset., The difference with the
case (0 < k < 1) is that if we introduce a liquid asset in this economy in zero supply,
that cannot be sold short, its return will be lower than the return on the illiquid asset
by zero-th order term. (i.e, we have a zero-th order liquidity premium,) The reason
for this result is that the minimum holding period has a first order length,

Since all of the consumer’s wealth is held in the form of the illiquid asset, we have:
A = w
The dynamics of w, are described by:
dw, = \w,dt + I, dt

Ct = Y + RQUJ‘ - It - ElItI (2.E,1)

Proposition 2.E.1 describes the optimal policy of the consumer for small trans-
actions costs and for a subset of values of R that are of interest, i.e, such that its

equilibrium value belong to this subset.

Proposition 2.E.1 For ¢ small and for R belonging to a subset of its possible
values, the optimal policy has the following form: The consumer buys the (illiquid)
asset until an age . He does nothing (i.e. he consumes his income y, + Rw,) from

71 until an age 11 + A when he starts selling the asset until he dies,

The proof of proposition 2.E.1 is analogous to the proof of proposition 2.4.1 and
is therefore omitted.

In what follows, we will (briefly) discuss the implications of proposition 2,E.1. We
will show how the consumption ¢; as well as the width of the inaction period A can

be derived.
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In the case k = 1, the expression for consumption ¢, must be changed from

equation 2.4.3 to
C = Coenw(t) tl<n

C = Rw, + Y n<t<n+ A (2.E.2)
C = Cn+A€“(T'+A)"“'(t) n+ALL

Again the initial consumption ¢y can be obtained from the intertemporal budget

equation which in this case can be written as

oo

Y g [ - c)er® et o(t)gs -
/0 1—|-ee dt-l-/;l (ye — c)e dt+[—,+A - e dt =0 (2.E.3)
where
ﬁ(t)=R5+)\f0rt<Tl
pt)=R+Aform <t<m+A
pity=Rp+Afor + A<t
and

o6) = [ #(s)ds.

This intertemporal budget equation is derived from the equation describing the
evolution of w;, using our results on the investment policy of the consumer, The
analysis is very similar to the case 0 < k < 1 and is omitted.

The parameter A condition is derived by the portfolio decision of a consumer of
age 71. This consumer is indifferent between investing in the illiquid asset and not
doing so. Given that he starts selling the illiquid asset at 7; + A, the change in his
utility if he buys one unit of the illiquid asset at 1, is also given by equation 2.,4.5 and
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is equal to zero. From equations 2.E.1?* and 2.E,2 w= get that the following relation

between consumption at age 7, and consumption at age 1, + A

Cr+d ~ Yn+a A _ fn T Yn _aa
= W = W, € = —e, 2.E-4
R n+4A ) R ( )

Equations 2.4.5 and 2.E.4 yield the following relation which shows that the mini-

mum period of holding the illiquid asset is of order e:

w2
A= BreE-w 4

Having characterized the solution to the consumer’s problem we turn to the equi-

+ o(€) (2.E.5)

librium determination of R,

In equilibrium, asset demand

/ /\e"’\“wtdt
0

equals asset market value, D/R.
As before, we will consider small transactions costs (small values of ¢), and find

their first order effects on R. We will thus write:

R(€) = r* + be + o(¢) (2.E.6)
and calculate b. Proposition 2.E.2 gives us b,

Proposition 2.E.2 In equilibrium, R is uniquely determined, It has the form of

equation 2.E.6, with b having an ambiguous sign,

The proof of proposition 2.E.2 as well as the analytic expression for b are again
omitted.
The discussion on the determination of b is similar to the discussion offered at the

end of subsection 2.4.2.2, (the effects are similar) and is omitted,

24Note that I, = 0 between 7, and 1y + A,
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Figure 2: Rates of return as functions of &

This figure plots the rates of return as a function of the fraction, k, of illiquid
assets. The solid line represents the bencmark case where there are no transactions
costs. The dotted line represents the rate of return on the illiquid asset while the
dashed line represents the rate of return on the liquid asset. For this figure we have

used the following parameter values:

AN=2%; 6§=4%; 0=02%; A=1; D/Y =50%: ¢ = 3%.
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Figure 3: Rates of return as functions of k

This figure plots the rates of return as a function of the fraction, k, of. illiquid
assets. The solid line represents the bencmark case where there are no transactions
costs. The dotted line represents the rate of return on the illiquid asset while the
dashed line represents the rate of return on the liquid asset. For this figure we have

used the following parameter values:

A=20%; §=40%; B =2%; 4 =1; D/Y =50%: ¢ = 3%.

Compared to the previous case, the agent is more impatient and has therefore a
shorter horizon. As a result, the interest rate and {he liquidity premium are higher

than in the previous figure. Qualitative results are however unchanged.
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Figure 4: Rates of return as functions of &

This figure plots the rates of return as a function of the fraction, k, of illiquid
assets, The solid line represents the bencinark case where there are no transactions
costs. The dotted line represents the rate of return on the illiquid asset while the
dashed line represents the rate of return on the liquid asset. For this figure we have

used the following parameter values:

A=2%; §=4%; f=0.2%; A=1; D/Y =300%: ¢=3%.

In this case (where financial income is much more important than labor income)
the following paradoxical phenomenon occurs: transactions costs lower the rates of

return on bolh assels,
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Chapter 3

Decentralization and the

Management of Competition

3.1 Introduction

Almost any large firm is a multiproduct firm. Some of its products are, in addition,
horizuntally or vertically differentiated i,e, are targeted to different customers but
are at the same time close substitutes for some of these customers. The design and
pricing of these products require thus considerable coordination among the firm'’s
units.

Lack of coordination in product design was a major concern of top management
at GM, before the radical reform of the company in the early 20’s,) According to
Sloan (1963), GM was extremely decentralized and was offering, as a result, too many

competing products.

In the middle [segment of the market], where we were concentrated with
duplication, we did not know what we were trying to do, except to sell cars

which, in a sense, took volume from each other,? 8

!See Sloan (1963) chapter 4,

ZSloan (1963) p.60

8 Another example of a firm centralizing decision-making to reduce competition among units is
described in Smith (1992) (see section 2 below). A major commercial bank in California centralized
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At the same time large firms may seek to promote competition among their units,
For instance, in the last decade IBM drastically decentralized its internal structure
allowing units to bargain on transfer prices and to trade with outside partners.® In

addition, under decentralization;

[Units] are free to compete with each other for business, even if this means

cannibalizing the sales of other IBM units,®

As the above examples suggest, the existence of units offering substitute products
within a firm raises a number of questions for organizational design. When should
top management control the design and pricing of these products, thus centralizing
decision-making, and when is it better to allow the units decide which products to
make and how to sell them? In the case where it is optimal to let the units decide (and
eventually compete) what prevents top management from inter\lrening and restricting
competition when the latter threatens to dissipate too many of tha firm’s profits?

In this chapter we develop a simple model to address the above questions, We
consider a firm which is composed by top management and two divisions. Divisions
design horizontally differentiated products, characterized by their “location” and their
“quality”, and sell them to customers. For simplicity, we focus on the allocation of
decision rights at the price setting stage, More precisely, top management can restrict
the set of customers with whom a division can deal, thus prohibiting competition for
customers, or can alternatively allow both divisions to approach all customers,

We argue that when a division is given the right to deal with all customers, it offers
a higher quality product. Indeed, by increasing the quality of its product it not only
can charge its own customers higher prices, but it also becomes a hetter competitor
of the other division. Using competition as a threat, it can extract concessions from

the other division, such as dealing with some of its customers.® However, higher

its operations, removing branch managers’ autonomy to sell loans to customers, Branch managers
had, instead, to refer customers to a center that coordinated trade,

4See Ferguson (1993) for a detailed description of the evolution of IBM,

5Ferguson p.61 and 62,

®In the model we assume, for simplicity, that divisions can make side-transfers so that concessions
can simply be these transfers,
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quality comes at a cost, A division aiming also at attracting the customers of the
other division, will opportunistically locate its product too close to the product of
the other division,

Top management will allow divisions to compete, i.e. will decentralize decision
making, when the benefits due to higher product quality outweigh the costs of in-
efficient locations, We argue that top management’s information about customers’
characteristics (i.e. their locations) crucially determines the credibility of its com-
mitment to competition among divisions, If it knows customers’ locations it can
efficiently allocate them to divisions (since in equilibrium it also knows the charac-
teristics of both products) without letting the divisions engage in bargaining and
eventually compete.”

We show that centralization of decision-making may or may not be optimal, If
divisional managers are very risk-averse, centralization dominates decentralization
since the benefit of increased incentives is small compared to the cost of inefficient
locations. Interestingly, the same conclusion holds when divisional managers’ risk-
aversion is low. Indeed, high-powered incentive schemes for improving product quality
can be provided at a small cost under centralization. Decentralization thus brings
small additional benefits and inefficient locations, Decentralization is a better solution
if the set of customers who desire both products is small so that divisional incentives to
locate products closer are small and locations are close to their first-best values. Costs
due to inefficient locations are in the second order, while product quality increases in
the first-order.

As we argued above, when a division is given the right to deal with all customers
it will offer a higher quality product. Indeed, by becoming a better competitor of
the other division, it can extract some concessions from it, Taking surplus away from
the other division does not have any social value and if divisional managers receive
very high-powered incentive schemes so that they become residual claimants, they

will overprovide quality. The idea that competing agents may overinvest in some

"In our model bargaining is costless, for simplicity, However, top management prefers to intervene
even for a very small cost of bargaining (which can easily be introduced in the model),
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activities is familiar in industrial organization; firms may offer too many products
because they are only “stealing” each other’s business and may spend too much on
R&D (Tirole (1988) Chs. 7 and 10). In our model competition is valuable because
agents’ incentives are initially too low.

The channel through which competition affects incentives in our work is differ-
ent than the one studied in the principal-agent literature, namely that competition
improves the information available for contracting, Papers in that literature have
shown that the performance of an agent can better be assessed if performance mea-
sures of competing agents are available and that, as a result, this agent can be given
a higher-powered incentive scheme.® Even if the principal does not have access to
performance measures of competing agents, competition may still improve the in-
formation available for contracting by making the agent's profits less variable (Hart
(1983), Scharfstein (1987)).

Rey and Tirole (1986) also address the question of whether a principal (in their
model a manufacturer) prefers to restrict competition among agents (retailers). A
monopoly retailer will charge a price which is too high form the manufacturer’s view-
point, as long as he does not buy from the manufacturer at marginal cost. Compe-
tition allows the manufacturer to resolve this moral-hazard problem (since retailers
will charge the price at which they are buying from the manufacturer) and at the
same time provides insurance to retailers making their profits less variable, as in Hart
(1983). When retailers compete they will thus charge lower prices (keeping the price
at which they are buying from the manufacturer constant) and will on average supply
the same quality. By contrast in our work, when divisions are allowed to compete,
they offer higher quality products and charge higher prices as a result. A second
difference with Rey and Tirole (1986) is that the cost of competition in their model
is the inability of retailers to price-discriminate, while in our model is the choice of
inefficient locations by the divisions.

Our work is also related to a recent paper by Holmstrom and Tirole (1991) study-

8For summaries of the literature on relative performance evaluation see, for instance, Holmstrom
and Tirole (1989) and Tirole (1988), Ch, “The Theory of the Firm”,
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ing transfer pricing within firms. They compare a regime of “exchange autonomy”
where top management allows divisions to trade with outside partners to a regime
where divisions can only trade internally (but can refuse to trade).? They show that
if divisions are allowed to trade with outside partners, they will offer higher quality
products but may choose a product design which is general purpose and not specific
to the needs of the other division. Holmstrom and Tirole's (1991) work and ours,
although considering different issues, share the feature that if divisions have more
decision rights, they will have more incentives but may also take decisions which are
not optimal from the firm's viewpoint,

The remainder of the chapter is organized as follows: In section 3.2 we describe
the model and in section 3.3 we derive the first-best. In sections 3.4 and 3.5 we study
the outcomes under decentralization and centralization, Section 3.6 compares the two

organizational forms. All proofs are in the appendix,

3.2 The Model

3.2.1 Supply and Demand

We consider a firm which is composed by top management and two divisions. Each
division makes one product. The potential buyers of these products (the “customers”)
are uniformly distributed in the interval [0,1). The product of division i (i = 1,2)
(referred to as product ¢) is characterized by its location, {;, and its “quality”, v;, We
assume that “transportation” costs are linear, so that the valuation of a customer

located at z for product ¢ is

vi(z) = v; — t|lz — 1] (3.2.1)

We also assume that the location of each customer is known to the divisions and that

the divisions can charge customer-specific prices,!®

®They also study the case where one division can order the other division to trade,
10We plan to study the case where customers’ locations are not known and divisions cannot price-
discriminate in future work,
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Product 1 can be located anywhere in [0,1/2] and product 2 can be located any-
where in [1/2,1]. The manager of division i can improve the quality of product i be

exerting effort e; at a non-monetary cost C(ei). We will assume that

v; = v + €, Vo > 0, (3.2.2)

and

C(es) = %C’ef. (3.2.3)

The marginal cost of each of the two products is zero,

For simplicity, we will restrict the parameter space assuming that only one product
cannot cover the whole market even if the manager of the corresponding division
exerts first best effort. Since the optimal effort level when the whole market is covered
by one product is & and the optimal location in order to cover the market is 3, our

assumption (“assumption A”) is equivalent to

Vo 1

—_— =<
LTI

)

N =

In words, product quality when effort is zero, vo, has to be small compared to
transportation costs, ¢, and the cost of exerting effort and improving quality, C, has

to be large,

3.2.2 Information Structure and Contracts

We assume that a divisional manager’s effort as well as the actions that he undertakes
to determine the location of his product are observed by the other divisional manager.
However, neither of these actions is verifiable, i.e. divisional managers cannot write
short-term contracts with each other that bind them to exert a given effort level or to
choose a particular location for their product. This will naturally be the case if, as we
will assume, top management does not perfectly understand product design (quality

and location) and cannot enforce such contracts. The non-verifiability of actions
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will imply in particular that divisions may not be able to coordinate on an efficient
choice of product locations. Finally, divisions are assumed to know the location of all
customers.

Top management is assumed to be less informed about both divisions’ environ-
ments than each divisional manager. In particular by not perfectly understanding
product design, top management does not observe effort levels (product quality) and
product location. We however assume that it knows the location of customers. Since
in equilibrium it also knows product quality and product location, it can infer which
product is better for a given customer. We briefly consider the case where top man-
agement does not know customers’ locations in section 3.6.

Divisional profits are partly generated by the revenues from dealing with cus-
tomers. We assume that they contain an additional component which is random,

! and are thus a noisy signal

normally distributed and independent across divisions,!
of the actions taken by divisional managers. Profits are the only variables in our
model which are verifiable by outside parties (such as courts).

We assume that divisional managers are given incentive schemes which depend
only the profits of their own division (and not on the profits of the other division) (This
assumption is more innocuous than it may seem. See the analysis of the centralized

firm in Section 3.5.) are linear and have the same slope which is between 0 and 1.

Denoting by m; the profits of division i, the manager of division 7 thus receives

Ar; + B;. (3.2.4)

We assume that both managers are risk-averse and have a negative exponential
VNM utility function with coefficient of absolute risk-aversion equal to &, Their
reservation levels are normalized to zero.

We consider two organizational forms, the decentralized firm and the centralized
firm. Top management allows divisions to compete for a given customer in the de-

centralized firm while it allocates customers to divisions in the centralized firm. We

111t can be due, for example to other divisional operations,
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assume that under decentralization divisions hargain efliciently so that competition
only defines the status quo in the hargaining game, and that bargaining power js
equal, Since the incentive schemes given to divisional managers have the same slope,
customers are allocated to divisions efliciently from the firm’s viewpoint.,

The timing is thus

Decentralized Firm

Incentive Divisional managers

contracts exert effort, e, Bargaining under
threat of competition. Profits realized.

Product sales.

signed. choose location, (.

Figure 1: Timing under Decentralizaf.ion

Centralized Firm

Incentive Divisional managers Top management
Product sales.

contracts exert effort, e, assigns customers

signed. choose location, I, to divisions. Profits realized.
| | l AN
| | | T/

Figure 2: Timing under Centralization

To illustrate our model, we consider the example of commercial banks in a large

city. There is demand for bank loans but different individuals are interested in
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loans with different characteristics (business are interested in short-term lending, en-
trepreneurs in funding a start-up venture, consumers need cash for acquiring durable
goods).1?

Managers sell loans to customers and can undertake two kinds of investments in

order to become more efficient:

¢ “Supply” Effort They can acquire a skill that is not specific to any kind
of loan, but rather improves the chances of striking deals in good terms (like
learning state of the art software to gather information in a timely fashion, or
information technology that improves readiness of on-line help to customers,
whatever the kind of loan they want to purchase), (The supply effort corre-

sponds to the investment e above.)

¢ “Demand” Effort They can become specialized in being particularly efficient
in customizing loans to a particular segment of the market (by learning detailed
information on a particular sector of the population or following more closely

the trends of an industry. (This corresponds to the location choice, [, above.)

The bank has two divisions in the city, that deal directly with customers. Each
division is run by one manager. Each manager has expertise in the business and is
able to assess the investment levels of the other manager. Top management is however
unable to measure those investment levels.!3

Top management can centralize or decentralize the firm'’s operations. gathering
more or less precise information about customers,

Under decentralization, divisional managers are not required to obtain approval
from top management to strike deals with customers. Under centralization divisional
managers transmit information on a potential deal with a customer to top manage-

ment, who either approves the deal or allocates the customer to the other division.!4

12Heterogeneity is large and it is therefore difficult to segment the market in non-arbitrary intervals
of potential customers.

'3A manager can infer the ability (investment) of the other manager because customers transmit
information from one office to another,

14The center is unable to separate the market geographically if, for instance, business have multiple
locations.
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Smith (1992) provides a case study of the reorganization of several divisions in
a major investment bank in California. She examines in particular'® the transition
from relative autonomy to a regime of centralization in a division cf the bank. The
manager of the division (referred to as L.) is being deprived of authority over some
actions that she previously controlled. The control is being recovered by the next

superior level in the hierarchy, the area management group (referred to as AMG.)

Branch top management centralized lending into specialized divisions, re-
flecting the bank’s commitment to targeting and profiting from stratified
market segments. The differentiation of the lending function into special-
ized units removed a significant source of L.’s authority. She no longer
had authority to make loans, nor did she manage loan personnel, [...]
L. forwarded [loan application] to the appropriate consumer, real state or

commercial loan center.[...] Her role was [now] strictly one of referral'®

Even when L. did tabulate statistical information, the role she once played
in evaluating and acting on that information had changed, Whereas for-
merly L. would have tracked branch information and used it to develop
an integrated picture of branch performance, the job of tracking various
kinds of information had been transferred into specialized sections in the

AMG.

The new PPCE and the extensive documentation it contained provided the
area manager with the information required for indirect management: in

other words, it gave area managers more control over individual branches.

15See Smith (1992), pp.95-101,

18In addition, it becomes clear that the transfer of authority required a redefinition of the infor-
mation flowing from lower level (L.) to upper level (the AMG). The information flow is defined in a
document of the corporation, the Performance Evaluation Plan (PPCE in the text),

17Smith (1992) p.97
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3.3 The First Best

In this section we derive the effort levels and product locations that maximize total
welfare, Total welfare (which is equal to top management’s payoff since the reservation

levels of the divisional managers are normalized to zero) is

/ maz(vy(z), va(z), )d:i:——C'(el + e?)

1 1
= / maz(v, — t|lz — |,v; — t|z — I3],0)dz — EC'(ef + e). (3.3.1)
0

Proposition 3.3.1, proven in Appendix 3.A, gives us the first best effort levels, e}

and e3, and locations I} and 3.
Proposition 3.3.1 The mazimum of ezpression 3.9.1 is achieved by choosing

.1
=3 !

o
Il

If 2v0/t +1/Ct < 1/2, €} and e} are given by

Cl
=t =u/ (5 -1)
and the firm does not sell to all customers (i.e. the market is not “covered”).
If 2vo/t + 1/Ct > 1/2, €} and e} are given by

1
2C"

‘ — . —
el = ez =
and the market is covered.

Assumption A makes the problem sufficiently concave so that it is not optimal to

require different effort levels (and product locations) from the two managers.

If the market is not covered (i.e. if product quality is low compared to trans-
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portation costs and the cost of improving it is large), total welfare is maximum for
any locations which imply non-overlapping sets of customers willing to buy a given
product and which are not too close to the extremes, 0 and 1. (So that each product
is located in the middle of its market segment - the set of customers who are buying
the product.) 1/4 and 3/4 always belong to the set of optimal locations. If the market
is covered, 1/4 and 3/4 are the unique optimal locations and each product is located
in the middle of its market segment. ([0,1/2] for product 1 and [1/2,1] for product
2.) In addition, since more customers buy the products if the market is covered, the

optimal effort levels are higher than if the market is not covered.

3.4 The Decentralized Firm

We now come to the analysis of the decentralized firm. In section 3.2 we assumed
that top management allows divisions to compete for a given customer. We then
assumed that divisions bargain efficiently so that competition only defines the status
quo of the bargaining game, and that bargaining power is equal.

Considering a customer located at z and assuming, for example, that v;(z) >
va(z) > 0, it is easy to see that division 1 deals with the customer and receives
v1(z) — vz(z)/2 while division 2 receives vy(z)/2.18

Aggregating over customers, division 1’s profits are given by

/.;, (maw(vl(w),o) - %maw(vz(m),O)) dz + f[O.l]\s, %maw(v,(w),ﬂ)dw -

/; (mam(vl —tlz —1,],0) - %maw(vz — tlz ~ lzl,O)) dz
1

1
+ /(o.u\s, Smas(v -tz - L], 0)dz (3.4.1)

where the set S; is defined by

181f there is competition, division 1 serves the customer charging the price v1(z) —v2(z). Its payoff
is thus v;(z) — va(2) while the payoff of division 2 is 0. Since bargaining power is equal, i.e, each
divisional manager makes a take-it-or-leave-it offer to the other divisional manager with probability
1/2, it is clear that the payoffs of the two divisions are given by the previous expressions.
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S1={z€[0,1] : vi(z) > vo(z)} = {z € [0,1) : vy — t|z — L] > v2 — t|z — L]}
(3.4.2)
and division 2’s profits are given by the symmetric expression.
Using equation 3.2.4 which gives managers’ incentive schemes, we get for the payoft

of the manager of division 1

1
A (/S; (maz(vl —tlz = 4],0) — Ema:c(vz —t|le — lz|’0)> dz

1 1.,
+ /[o,ll\s, Emaz(vl — t|lz - lll’o)d‘l’) + By — 5061. (3.4.3)

To determine the outcome under decentralization we proceed in two steps. In
Proposition 3.4.1, proven in appendix 3.B, we characterize pure-strategy equilibria of
the effort and location game taking incentive schemes as given. We then determine

the optimal value of A, the slope of the incentive schemes.

Proposition 3.4.1 There ezists a pure-strategy equilibrium in which locations

and effort levels are given by

case I 2vo/t + A/Ct < 1/2

o~
-
|
e
~N
|
] w

Ct
e1=e2=vo/(ﬂ—1)

and the market is not covered. In any other pure-strategy equilibrium effort levels and

payoffs are the same.

case IT 2vo/t + A/Ct > 1/2

- _(Liw),(3_A),1
"“1—""(4+2t)/(2_0t)24’



er=e3= 24/ = (5 +0) / (32—6} -1)

and the market is covered. This is the unique pure-strategy equilibrium.

In case I product quality, v, is low compared to transportation costs, ¢, the cost of
improving it, C, is high and the benefit, A, that divisional managers get is small. The
market is not fully covered and the divisions do not have incentives to offer products
that appeal to overlapping sets of customers,

By contrast, in case II divisions offer products which appeal to overlapping sets
of customers and whose distance is too small compared to the first best (I, > 1/4,
l; < 3/4). The private gain of each division to locate its product closer to the product
of the other division is larger than the social gain. Indeed, by locating its product
closer, the division better “penetrates” the market of the other division and becomes
a more serious potential competitor.’® The incentive to locate closer and becoming
a more serious potential competitor is clearly larger if there is a significant overlap
already (vo high, C small, A large).

Effort levels are higher in case II than in case I. Indeed, the manager of one division
by exerting more effort supplies a product which is valued more by the customers of
his division (who now have a larger mass) as well as by the customers of the other
division (so that this product can better compete with the product of the other
division).

It is straightforward to show that the top management’s payoff is given by

1
/; maz(v; — tlz — 4|, v2 — t|x — [;],0)dz — %C’(ef + €2) — A’ag? (3.4.4)

for the values of ey, e;, l;, I, determined in proposition 3.4.1. Expression 3.4.4 is

derived from expression 3.3.1 by subtracting the costs of having the divisional man-

190f course, (price) competition does not take place in equilibrium.
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agers bearing risk, The slope of the incentive scheme, A € [0, 1], is determined by the
maximization of expression 3.4,4, Expression 3,4.4 is not generally concave in A4 since
the responsiveness of effort to A increases with A,20 Although the characterization of
the optimal A is involved, it is easy to show (see appendix 3,B) that A decreases with
managers’ risk aversion, a, and the variance of the noise, o2, Comparative statics

w.r.t. vo, £ and C are ambiguous,

3.5 The Centralized Firm

In this section we study the centralized firm in which the general office allocates
customers to divisions. Each division charges its customers their valuations,

Since the sets
Si={z€[0,1]:v1 —tle — ]| > v, — t|z — L]}

Sz ={z €(0,1] :v; —t|lz — li| = vs — t|z — by}

and

.S'3={w€[0,1]:11,—tlw—ll|<vg—t|w—lz|}

are ordered, in the sense that V(z1,22,3) € S) X S x S5 o < mp < z3?!, top
management can achieve its maximum payoff by choosing a dividing point @ € (0,1]
such that customers with locations < % deal with division 1 and customers with
locations > Z deal with division 2. For simplicity we will consider only these strategies
for top management.

We will rule out a class of equilibria that exhibit an extreme lack of coordination,
In these equilibria top management allocates all customers to one division, say division
1, “shutting” division 2. The manager of division 1 is then very motivated while the

manager of division 2 does not exert any effort and may locate his product close

20If A is higher, increasing A will induce the managers to exert more extra effort since they will
receive the benefit of selling a better product to a larger market,
*1This is easy to check, using l; < I,
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enough to product 1 so that all customers prefer product 1 to product 2,
In proposition 3.5.1, proven in appendix 3,0, we characterize the remaining pure-

strategy equilibria.

Proposition 3.6.1 There exists a pure-strategy equilibrium in which locations

and effort levels are given by

case I 2vo/t+ A/Ct < 1/2

fon

1]
] =
g
n

1l
] w

Ct
€1=€2='Uo/('2—‘4"'—1)

and the market is not covered. In any other pure-strategy equilibrium, effort levels

and payoffs are the same.

case IT 2vo/t + A/Ct > 1/2

EN

and the market is covered. This is the unique pure-strategy equilibrium.

The outcome in case I is exactly the same as in proposition 3.4.1, In case II
where divisional products appeal to overlapping sets of customers, divisions choose
first best locations for their products, By being unable to deal with the customers
of the other division their private gain to locate their product closer to the product
to the other division coincides with the social gain. At the same time effort levels in
case II are lower than in proposition 3.4.1. When deciding to exert more effort or not,

the manager of a division considers only the increase in valuation of the customers of
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his own division and not of the customers of the other division,

Top management’s payoff is again given by expression 3,4.4 for the values of e,
€2, {1, {3 determined in proposition 3.5.1, In appendix 3,.C we determine A and show,
as before, that it decreases with a and o2,

Before leaving this section we discuss our assumption that divisional managers’
incentive schemes depend only on the profits of their own division and not on profits of
the other division, Consider the extreme case where each manager’s incentive scheme
depended only on the sum of the profits of the two divisions. In this case, a manager
would not attribute any value to his division becoming a more serious competitor of
the other division and to profits being transferred from that division to his division,
Locations and effort levels in both the decentralized and the centralized firm would
then be given by proposition 3.5.1. Since managers would have to be compensated for
bearing more risk, giving incentive schemes that depend on joint profits is dominated

by centralizing and giving incentive schemes that depend on individual profits,

3.6 Comparison of Organizational Forms

In this section we compare the decentralized and the centralized firm, As the analysis
of the previous sections showed, decentralization brings more incentives and higher
quality products together with inefficient locations for these products. Due to the
non-concavity of expression 3.4.4 w.r.t A in both the decentralized and the centralized
case, the analysis of top management’s welfare for general values of the parameters

vo, t, C, a and o2 is somewhat involved, However, the following intuitive results hold

o If divisional managers are very risk-averse (or the variance of the noise is large)
s0 that the slope of the incentive schemes is small, centralization improves
welfare. Indeed, the benefit of increased incentives is small compared to the
cost of ineflicient locations (provided that even if divisional managers exert

zero effort, products, when optimally located, appeal to overlapping sets of
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customers),??

o If divisional managers’ risk-aversion is small (or the variance of the noise is
small) centralization improves welfare, Indeed, high-powered incentives for im-
proving product quality can be provided at a small cost in the centralized firm,
Decentralization thus brings small additional benefits (there may even be over-
investment compared to the first best if incentives remain high-powered) at the

cost of inefficient locations.

o If for the optimal incentive scheme in the centralized case, the set of customers
who desire both products is small, decentralization improves welfare, Indeed,
decentralization will induce (slightly) more effort while locations will deviate
little from their first best values so that the costs induced by inefficient locations

are very small (in the second order).

These intuitive results are made precise and proven in appendix 3.D,

We finally discuss the feasibility of the two organizational forms, Until now we
have assumed that top management knows customers’ locations. Since in equilibrium
it also knows product quality and product location it can infer which product is better
for a given customer. If bargaining between the divisions is costly,?® top management
would strictly prefer to allocate customers to divisions without letting them bargain,
We thus see that decentralization may not be feasible,

Decentralization may become feasible if top management faces a cost to intervene,
for instance if it does not know customers’ locations. Bargaining among divisions
may then be a more attractive option than mandating a suboptimal allocation of
customers to divisions. We plan to study the feasibility of decentralization when top

management is less informed, in future work.,

32This result holds because divisional managers can choose any location for their products at the
same cost, If, instead, some locations are costlier to choose than others and incentive schemes have
a small slope, equilibrium locations may not differ much in the two organizational forms,

23We can easily introduce a small cost of bargaining in the model,
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3.A Appendix: Proof of Proposition 3.3.1
Writing that the left-derivative of expression 3.3,1 w.r.t €; is > 0 at e} we get

' , * 1
measure(S,) —Cej > 0 = e] < '(l;.‘mm(l, Vo -: el) < =

where
Sy =8 N{z€l0,1]:v] —tlz— 1| >0}

and S is the set defined in section 3.4 (for e}, e}, If, {3).
Therefore
v’='vo+e‘<vo+—-<£
! 1= ¢ "2
(and similarly for v3) by assumption A, and one product even if located at 1/2 cannot
cover the whole market, It is thus not optimal to offer two products such that all
customers (weakly) prefer one to the other,
We will now fix v; and v, (smaller that ¢t/2) and determine the optimal locations,
l; and [;,>* We will then determine the optimal effort levels, Our previous analysis
implies that /; and [, are such that each product is strictly better than the other for
some set of customers
Suppose that products do not overlap i.e,
V2

bt <b-= (3.A.1)

Suppose then that I} — v;/t < 0. It is then easy to show that the right-derivative

of expression 3.3.1 w.r.t {; (I; < 1/2 since l; — v, /t < 0) is —tl; + vy > 0.*® Therefore

- % >0 (3.A.2)

3MThese optimal locations exist since we maximize a continuous function over the compact set
[0,1/2]) x [1/2,1].
26We have to distinguish two cases I} + v/t <la —va/t and Iy + v/t = I3 — v3/t,
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and similarly

u+%5L (3.A.3)

Inequalities 3,A.1, 3,A.2 and 3.A.3 imply that (v, +v;)/t < 1/2, Expression 3,3,1
is then equal to

+ 1t 7 50 +e). (3.A.4)

Defining !} = 1/4 + (v; — v2)/2t and I, = 1/2 4 [,*® and using (v, + v;)/t < 1/2,
inequalities 3.A.1,3.A.2 and 3,A.3 are satisfied and payoff is the same as when locating
products at /; and .

Suppose now that products overlap i.e,

h+%>b—%. (3.A.5)

We denote by z, the location of the customer who is indifferent between the two
products ie, z, = (I3 +12)/2 + (v1 — v2)/2t. (I < &, < 1p)

Suppose then that I; — v/t > 0. It is then easy to show that the left-derivative of
expression 3.3.1 w.r.t [ (I; > 0 since l; —v;/t > 0) is —v; + (z, — l;) > 0.>” Therefore

h-%<o (3.A.6)
‘and similarly
h+%>L (3.A.7)

Inequalities 3,A.5, 3.A.6 and 3.A.7 imply that (v, + v)/t > 1/2,
The derivative of expression 3.3.1 w.r.t [ is —tl; + t(zx, — ;) (therefore /; > 0 and
l; < 1/2 and this derivation is meaningful). Similarly the derivative w.r.t {5 is —t(l, —

,) + (1 —lz). Setting these derivatives equal to zero we find I, = 1/4 + (v, — v;)/2t

28], € [0,1/2] since vy — va|/t < 1/2,
2"We again have to distinguish two cases Iy — v;/t > 0 and Iy — v, /t = 0,
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(11 € [0, 1/2]) and 12 = 1/2 + 11.
Expression 3.3.1 is then equal to

v + v ¢ (‘01 - ’02)2 1 .2 2
9 - 8 + 2%t 26(31 + ez)' (3'A'8)

To summarize, our above analysis implies that I, = 1/4 + (vi —v2)/2t and [, =
1/2 + 1, are always optimal locations. In addition if (v, + v,)/t < 1/2 payoff is given
by expression 3.A.4 while if (v; + v,)/t > 1/2 payoff is given by expression 3.A.8.

Assumption A implies 1/Ct < 1/2 which in turn implies the concavity of expres-
sions 3.A.4 and 3.A.8 w.r.t e; and e,. Since these expressions are symmetric in these
variables, the optimal e; and e, are equal and straightforward maximization gives us

proposition 3.3.1.

3.B Appendix: Proof of Proposition 3.4.1
We will first characterize pure-strategy equilibria and then show that they exist.

Characterization

Taking the left-derivative of expression 3.4.3 w.r.t e; and writing that the deriva-

tive is > 0 for the equilibrium value of e, we get

A(measure(S,) + %measure(S; US,))—Ce >0

A v+ e A
= e S Emm(l,—t—l) S_ _C'- (3.B.1)

where

Se=5N{z€[0,1):v ~tlz— 1] > 0}

and the Sy's are the sets defined in sections 3.4 and 3.5 (for the equilibrium values of
€1, €2, ll’ lz)
Therefore one product even if located at 1/2 cannot cover the whole market and

it is easy to check that no equilibrium in which all customers (weakly) prefer one
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product to the other, exists. (Otherwise the manager of the inferior product would
change its location so that customers strictly prefer his product,)

Suppose that in equilibrium products do not overlap i.e. inequality 3.A.1 holds,
A similar argument to that given in the proof of proposition 3.3,1, implies that
inequalities 3.A.2 and 3.A.3 hold.

The derivative w.r.t e; is A(vo + e1)/t — Ce; = 0.2® Therefore e, is given by its
expression in proposition 3.4.1, case I (as well as e;). Moreover, combining inequalities
3.A.1, 3.A.2 and 3.A.3 and using the expressions for e; and e;, we find that an

equilibrium with non-overlapping products exists only if

2‘00 A.
—_ —_—< . D,
ot S 12 (3.B.2)

Suppose now that products overlap i.e. inequality 3.A.5 holds. Defining z, as
before we can show that inequalities 3.A.6 and 3.A.7 hold.

The derivative of expression 3.4.3 w.r.t I is —tly + t(x, — L)) + 1/2(tly + vy — tz,)
(therefore I; > 0 and /; < 1/2 and this derivation is meaningful), Similarly the
derivative w.r.t I is —1/2(tx, — (tl — v;)) — t(ly — z,) + t(1 — l5). The derivatives
w.r.t e; and e; are z, 4 1/2(l; +v,/t — z,) and 1/2(xz, — (I — va/t)) + (1 — =,). Setting
these derivatives equal to zero we get the expressions in proposition 3.4.1 (case II),

Inequalities 3.A.5, 3.A.6 and 3.A.7 together with the expressions for e, and e,
imply that an equilibrium with overlapping products exists only if

200 A

e + E;Z > 1/2. (3.B.3)

Existence

Suppose that inequality 3.B.2 holds so that the only possible equilibria involve
non-overlapping products located in the middle of their market segments. We first

note that if we choose !; = 1/4 and I, = 3/4, inequalities 3.A.1, 3.A.2 and 3.A.3

28We again have to distinguish two cases according to whether I, + nft<l—vyftorly+u/t=
lz - Uz/t.
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are satisfied. We now show that a manager, say manager 1, does not get anything
by deviating. Consider a deviation (51,[1)- Equation 3.B.1 implies that € is always
smaller than its equilibrium value. Since a manager always prefers to offer a product
which does not overlap with the other product (provided that the product is always
located in the middle of its market segment and that product quality is kept constant)
the choice (é;,1;) is dominated by (€1,1/4) which is obviously dominated by (e1,1/4).

Suppose now that inequality 3.B.3 holds so that the only possible equilibrium is
the one described in proposition 3.4.1 (case II). Let us consider a deviation (é1,0)
by manager 1. If products do not overlap, using inequalities 3.A.1, 3.A.2 and 3.B.3
we find that v;/¢t < 1/4. This last inequality is not compatible with the first-order
condition for e, and inequality 3.B.3. Moreover, it is clearly not optimal for manager
1 to offer a product which all customers prefer to product 2 (since it would then have
to cover the whole market), nor to offer a product which all customers find inferior to
product 2, Finally, it is easy to check that manager 1’s payoff is concave in (e, 1) in

the domain of overlap, so that the first-order conditions are sufficient for optimality,

Incentive Schemes

If inequality 3.B.2 holds, the derivative of expression 3.3.1 (where ey, e,, I, [, are
given by proposition 3.4.1, case I), wr.t Ais
(%)
4(1 - A)Zr)s — 2(!0‘:/1. (3.B.4)
ot _

By contrast if inequality 3.B.,3 holds the derivative is

2<§+v0)(—3-3 [3(3(1_,4)_,1@%_%))_ LIS

— 2a02A. (3.B.5)

The derivative is not always decreasing in A, (It is easy to see that a sufficient
condition for the derivative to be decreasing in A is that 1/Ct < 1/6.) However,

the derivative is decreasing in ao and Topkis’s (1978) monotonicity theorem implies
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that the optimal A is decreasing in ao?.

3.C Appendix: Proof of Proposition 3.5.1

Equilibrium

Suppose that in equilibrium all customers (weakly) prefer the product of one
division, say division 1, to the product of the other division. Suppose first that the
two products are not the same. Then & > l,. If £ < 1, and since product 1 does
not cover the whole market (by assumption A), the manager of division 2 would have
an incentive to increase /. Therefore £ = 1. If both products are the same, we
can assume that £ > 1/2 and the same conclusion holds. Ruling out these equilibria
where top management allocates all customers to one division, consider an equilibrium
where products do not overlap. We then have

ll+?t—‘- <z< lz-vt—’. (3.C.1)

Following similar steps as in the proof of proposition 3.4.1, we can show that equations
3.A.2 and 3.A.3 hold and that e, and e, are given by their expressions in proposition
3.4.1 (case I). Combining inequalities 3,C.1, 3.A.2 and 3.A.3 and using the expressions
for e; and e;, we find that an equilibrium with non-overlapping products exists only if
inequality 3.B.2 holds. Clearly, any values l;, l; and # that satisfy inequalities 3.C.1,
3.A.2 and 3.A.3 are equilibrium values, and it is easy to check that setting {;, = 1/4,
l = 3/4 and & = 1/2, inequalities 3.C.1, 3.A.2 and 3.A.3 hold,

Suppose now that products overlap i.e. inequality 3.A.5 holds, Defining z, as
before, we have &, = & and we can show that inequalities 3.A.6 and 3.A.7 hold. The
derivatives of agents’ payoffs w.r.t I; and I, are —tl; + t(x, - [;) and —¢(l; — @,) +
(1 —l2) and w.r.t e, and e, are Az,/t — Cey and A(1 — z,)/t — C'ea. Setting these
derivatives equal to zero we get the expressions in proposition 3.5.1 (case II), As
before, inequalities 3.A.5, 3.A.6 and 3.A.7 together with the expressions for e, and e,
imply that an equilibrium with overlapping products exists only if inequality 3.B.3
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holds. It is clear that managers cannot do better by deviating from equilibrium.

Incentive schemes

If inequality 3.B.2 holds, the derivative of expression 3.3.1 (where ey, ez, {1, [, are
given by proposition 3.5.1, case I), w.r.t A is the same as in expression 3.B.4.

By contrast if inequality 3.B.3 holds the derivative is

55 (1~ A) = 2a024. (3.C.2)

As before, the derivative is decreasing in A if 1/Ct < 1/6, and the optimal A ie

always decreasing in ac?.

3.D Appendix: Comparison of Organizational Forms
We will prove the following proposition

Proposition 3.6.1

Part 1 Suppose that vo/t > 1/4. Then if ac? is sufficiently large, welfare is higher

under centralization.

Part 2 Suppose that 2vo/t+1/Ct > 1/2. Then if ac? is sufficiently small, welfare

is higher under centralization,

Part 3 Suppose that the optimal A under centralization verifies 2vo/t + A/Ct =
1/2. Then, welfare is higher under decentralization and under some cases is strictly

higher,
Proof:

Part 1

Since vo/t > 1/4, inequality 3.B.3 holds for any value of A. Expression 3.B.5
shows then that the optimal A can be made arbitrarily small if ao? is sufficiently
large. Proposition 3.4.1 implies then that e; and e; can be made arbitrarily close to

zero and I, and 1 — [, arbitrarily close to 1/6 + vo/3t (which is strictly larger than
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1/4 since vo/t > 1/4). Since in the centralized firm effort levels are positive, welfare

is higher under centralization for ac? sufficiently large.

Part 2

Welfare under centralization is larger than its value for A = 1, which in turn can
be made arbitrarily close to welfare under the first best for ao? sufficiently small, By
contrast, welfare under decentralization cannot be made arbitrarily close to welfare
under the first best for ao? sufficiently small, Indeed, since 2vo/t+1/C't > 1/2, effort
levels are strictly smaller than first best effort levels for A such that 2v, J/t+ A/Ct <
1/2, and by continuity for A slightly larger. For A even larger, effort levels may
approach first best effort levels but the welfare loss due to inefficient locations is

bounded away from zero.

Part 3

If the optimal A under centralization, say A., verifies 2vo/t + A/Ct = 1/2, de-
centralization can only improve welfare since welfare under decentralization for A, is
equal to the maximum welfare under centralization, To provide parameter values such
that welfare is strictly higher in the decentralized firm assume that 1/C't < 1/6 so that
welfare in the centralized firm is concave in A and assume that the right-derivative of
welfare in the centralized firm w.r.t A, i.e. expression 3.C.2, is zero for A..?® Simple
algebra shows that expression 3.B.5 is always strictly larger than expression 3.C.2 for
values of A such that 2ve/t + A/Ct = 1/2 (and for A, in particular). Therefore for
A slightly higher than A. welfare under decentralization is strictly higher than the
maximum welfare under centralization. (Obviously this result is not “knife-edge” and

holds even if the optimal A is close to an A that verifies 209/t + A/C't = 1/2.)

?®*Welfare in both the centralized and the decentralized firm is not differentiable for values of A
such that 2vp/t + A/Ct = 1/2 so if such a value is optimal, the right-derivative is not necessarily
zero,
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