
Improved Methodology for Evaluating Adversarial
Robustness in Deep Neural Networks

by

Kyungmi Lee

B.S., Seoul National University (2018)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Science in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2020

c○ Massachusetts Institute of Technology 2020. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 15, 2020

Certified by. .
Anantha P. Chandrakasan

Vannevar Bush Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by .
Leslie A. Kolodziejski

Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students

2

Improved Methodology for Evaluating Adversarial Robustness

in Deep Neural Networks

by

Kyungmi Lee

Submitted to the Department of Electrical Engineering and Computer Science
on May 15, 2020, in partial fulfillment of the

requirements for the degree of
Master of Science in Electrical Engineering and Computer Science

Abstract

Deep neural networks are known to be vulnerable to adversarial perturbations, which
are often imperceptible to humans but can alter predictions of machine learning systems.
Since the exact value of adversarial robustness is difficult to obtain for complex deep
neural networks, accuracy of the models against perturbed examples generated by
attack methods is empirically used as a proxy to adversarial robustness. However,
failure of attack methods to find adversarial perturbations cannot be equated with
being robust. In this work, we identify three common cases that lead to overestimation
of accuracy against perturbed examples generated by bounded first-order attack
methods: 1) the value of cross-entropy loss numerically becoming zero when using
standard floating point representation, resulting in non-useful gradients; 2) innately
non-differentiable functions in deep neural networks, such as Rectified Linear Unit
(ReLU) activation and MaxPool operation, incurring “gradient masking” [2]; and
3) certain regularization methods used during training inducing the model to be
less amenable to first-order approximation. We show that these phenomena exist
in a wide range of deep neural networks, and that these phenomena are not limited
to specific defense methods they have been previously investigated for. For each
case, we propose compensation methods that either address sources of inaccurate
gradient computation, such as numerical saturation for near zero values and non-
differentiability, or reduce the total number of back-propagations for iterative attacks
by approximating second-order information. These compensation methods can be
combined with existing attack methods for a more precise empirical evaluation metric.
We illustrate the impact of these three phenomena with examples of practical interest,
such as benchmarking model capacity and regularization techniques for robustness.
Furthermore, we show that the gap between adversarial accuracy and the guaranteed
lower bound of robustness can be partially explained by these phenomena. Overall,
our work shows that overestimated adversarial accuracy that is not indicative of
robustness is prevalent even for conventionally trained deep neural networks, and
highlights cautions of using empirical evaluation without guaranteed bounds.

3

Thesis Supervisor: Anantha P. Chandrakasan
Title: Vannevar Bush Professor of Electrical Engineering and Computer Science

4

Acknowledgments

First of all, I would like to thank Prof. Anantha P. Chandrakasan for advising

this thesis and giving me the opportunity to join his research group two years ago.

Anantha introduced me to the concept of adversarial robustness, and his advice

provided important directions to this thesis. I deeply appreciate Anantha’s support

and encouragements while working on this thesis.

Next, I would like to thank current and previous members of AnanthaGroup

for enjoyable and welcoming atmosphere in the lab. I thank Vipasha for chats and

discussions we had on courseworks and adapting to MIT in general. Also, thank you

Taehoon, Wanyeong, and Jongchan for coffee runs and chats. Thanks Utsav and

Miaorong for being both labmates and TAs, and bearing with my frequent questions.

And to Preet, who organized online coffee hours and birthday parties that brought

the group members together during this highly unusual time.

I am grateful to MIT Jacobs Presidential Fellowship, Korea Foundation for Ad-

vanced Studies, and Siebel Scholars Foundation for the fellowships that supported my

graduate studies. Also, I would like to thank NXP and DARPA for sponsoring this

research.

Finally, I would like to thank my parents for their love and support. Their

encouragements to pursue my dreams and unconditional love made me the person I

am today. Thank you for everything.

5

6

Contents

1 Introduction 17

1.1 Motivation . 17

1.2 Adversarial examples in machine learning 19

1.3 Difficulties of evaluating adversarial robustness 22

1.3.1 Gradient masking affects attack methods 23

1.3.2 Verification . 25

1.4 Relationship to energy-efficient deep neural networks 26

1.5 Thesis overview and contributions . 27

2 Analysis on Failure Cases of Attack Methods 29

2.1 Zero loss . 30

2.1.1 Analysis . 30

2.1.2 Compensation methods: increasing loss 32

2.1.3 Impact on measurement of robustness 33

2.1.4 Connection to other attack methods 34

2.2 Innate non-differentiability . 37

2.2.1 Analysis . 38

2.2.2 Compensation methods: approximating gradients 39

2.2.3 Impact on measurement of robustness 41

2.3 Requiring more iterations . 42

2.3.1 Analysis . 42

2.3.2 Compensation methods: approximating second-order information 44

2.3.3 Impact on measurement of robustness 47

7

2.4 Summary . 47

3 Case Studies 49

3.1 Model capacity and adversarial robustness 49

3.1.1 Overview of related works . 50

3.1.2 Training models with different capacity from scratch 51

3.1.3 Incrementally removing weights via pruning 56

3.2 Regularization techniques for robustness 58

3.2.1 Overview of techniques . 58

3.2.2 Experiments . 61

3.3 Impact on evaluation against black-box attacks 66

4 Comparison with verified lower bounds of robustness 71

4.1 Gap between verified lower bounds and empirically measured upper

bounds of robustness . 71

4.2 Sensitivity to attack configurations 73

5 Conclusion 75

5.1 Contributions . 75

5.2 Future work . 76

A Deep neural network architectures 79

B Experiment settings for Chapter 3 81

B.1 Compensation methods for attacks 81

B.2 Experiment settings for Section 3.1.1 83

B.3 Experiment settings for Section 3.1.2 83

B.4 Experiment settings for Section 3.2 84

C Experiment settings for Chapter 4 87

8

List of Figures

1-1 An illustration of adversarial perturbations in deep neural networks.

The image is sampled from Places365 dataset [55], and we generate the

adversarial perturbation (noise in the above figure) using Fast Gradient

Sign Method (FGSM) [15]. When an image is encoded in 8-bit (0-255),

the noise has the magnitude of 2. Thus, when an image is scaled to be

in the range [0, 1], the original example in the left and the adversarial

example in the right differs only by 2
255
≈ 0.0078 per pixel for each

channel in RGB. To visualize this small noise, we magnify it with the

factor 255
4

= 63.75. We use a pretrained ResNet 18 model provided by

Zhou et al., that has 53.17% of top-1 accuracy on this dataset. The

original example is correctly classified as “orchid” by this model, but

the adversarial example is wrongly classified as “amusement park”. . 18

2-1 Visualization of the value of cross-entropy loss (z-axis) evaluated for

points 𝑥* = 𝑥 + 𝜖1 · sign(𝑔) + 𝜖2 · sign(𝑔′), where 𝑔 is gradients of loss

with respect to the input sample computed on this model, and 𝑔′ is (a)

gradients computed from the surrogate model used for the black-box

attack, and (b) gradients computed using the second most likely class

as the target label when computing cross-entropy loss instead of the

ground truth label. 32

9

2-2 (a) Adversarial accuracy against perturbed examples generated by

a PGD attack (𝜖 = 0.5, 𝐿2, compensated for zero loss and non-

differentiability) of WRN models trained on CIFAR-10 with different

regularization conditions, as a function of the number of iterations

the attack uses. Shown in log-log scale. (b) Comparison of different

compensation methods (Eigen and BFGS) discussed in Section 2.3 on a

WRN model trained with excessive weight decay (same as in (a)), under

the same number of back-propagations required to find adversarial

perturbations. 43

3-1 Comparison of clean accuracy and accuracy against perturbed examples

generated by attack methods for (a) Simple, (b) Simple-BN, and (c)

WRN models with different relative widths , all trained on CIFAR-

10. We present difference of accuracy of these models with respect to

accuracy of the model with width 1 for Simple and Simple-BN and

width 2 for WRN. Dashed and solid line represent accuracy against

baseline and compensated attacks, respectively. 53

3-2 Accuracy difference (with respect to the accuracy of the model with

width=1 for Simple-BN and width=2 for WRN 28) of (a) Simple-BN

models and (b) WRN 28 models trained on SVHN with different relative

widths. Dashed and solid lines represent accuracy against baseline and

compensated attacks, respectively. 54

3-3 Accuracy difference (with respect to the model with width=1) of (a)

VGG 11 models, (b) VGG-BN 11 models, and (c) WRN 50 models

trained on TinyImageNet with different relative widths. Dashed and

solid lines represent accuracy against baseline and compensated attacks,

respectively. 55

10

3-4 Change of clean accuracy and accuracy against perturbed examples

generated by attack methods through iterative pruning on an over-

parameterized WRN 28 (trained on CIFAR-10), trained and finetuned

without explicit regularization (a) and with weight decay (b). Dashed

and solid lines represent accuracy against baseline attacks and compen-

sated attacks, respectively. The total number of back-propagations is

fixed to 9. 57

11

12

List of Tables

2.1 Characterizing input samples on which FGSM (𝜖 = 8
255

in 𝐿∞ norm)

succeeds and fails for the value of loss, size of gradients, and logit

statistics including margin and variance, for the example deep neural

network described in Section 2.1.1. 31

2.2 Accuracy against perturbed examples generated by different attack

types that are compensated for the zero loss phenomenon (in %). We

sweep a constant 𝑇 for rescaling logits, and target labels 𝑡′ for targeted

loss computation; ‘random’ sets 𝑡′ to be randomly sampled among all

possible classes, ‘least’ and ‘second’ indicate the least-likely and the

second most-likely classes, respectively. We also state the gap between

accuracies against the baseline and the compensated attacks. 34

2.3 The gap in accuracy against perturbed examples generated by attacks

(in %) when compensating for the zero loss phenomenon by changing

target labels 𝑡′ to be the second most likely classes. ‘No Reg’ represents

a deep neural network with Simple architecture trained without explicit

regularization (as in the example). ‘Weight Decay’ represents the same

model as ‘No Reg’, but trained with weight decay of 5× 10−4. ‘Width

x4’ represents a model with 4 times more neurons per layer compared

to ‘No Reg’. ‘Batch Norm’ indicates a Simple-BN model, which is same

as ‘No Reg’ except for batch normalization following each convolutional

layer. 35

13

2.4 Accuracy of neural networks against perturbed examples generated by

the first-order attack methods in the order of FGSM/R-FGSM/PGD

for 𝜖 = 4
255

in 𝐿∞ norm. We apply compensation methods for zero loss

and innate non-differentiability discussed in Sections 2.1 and 2.2. As

compensation methods are applied in cascading manner (i.e., samples on

which baseline attacks fail are subjected to compensation methods), we

set the number of random starts for baseline R-FGSM and PGD to be

same as the total number of evaluations compensation methods use for

fair comparison. All models are trained without explicit regularization

on the specified dataset. 36

2.5 Accuracy against perturbed examples generated by attacks (in %) of the

example deep neural network used for Sec 2.2.1, compensated for innate

non-differentiability using BPDA. We investigate three differentiable

functions for substituting ReLU: Softplus (𝛼 = 2, thresholded at 2),

CELU (𝛼 = 2), and ELU while fixing 𝐿𝑝-norm pool’s 𝑝 to be 5. Then,

we sweep for 𝑝 by fixing ReLU substitute function to be the one achieved

the best performance. 41

3.1 The number of parameters and the total number of multiplications

required for a single forward pass during inference. We show these

metrics for different deep neural network architectures used for each

dataset discussed in Section 3.1.2. Also, we compare these metrics

for the models with the same architecture, but with different widths

(showing the smallest and the largest width considered in Section 3.1.2

for each architecture). Note that parameters and multiplications for

batch normalization are not considered, as batch normalization can be

folded with preceding layer during the inference when implementing

the model. 51

14

3.2 Accuracy of WRN 28 models trained on CIFAR-10 using different

regularization techniques against perturbed examples generated by first-

order attack methods in the order of FGSM/R-FGSM/PGD for stated

perturbation sizes 𝜖 in 𝐿∞ norm (above) and 𝐿2 norm (below). We

compare the accuracy against baseline and compensated attacks. . . . 62

3.3 Accuracy of Simple and Simple-BN models trained on CIFAR-10 using

different regularization techniques against perturbed examples generated

by baseline and compensated attack methods, in the order of FGSM/R-

FGSM/PGD with 𝜖 = 4
255

in 𝐿∞ norm. Note that spectral normalization

for Simple-BN is same as that for Simple, as spectral normalization

layer is used instead of batch normalization layer. 64

3.4 Accuracy of Simple-BN and WRN 28 models trained on SVHN using

different regularization techniques against perturbed examples generated

by baseline and compensated attack methods, in the order of FGSM/R-

FGSM/PGD with 𝜖 = 4
255

in 𝐿∞ norm. 65

3.5 Accuracy of WRN 50 models trained on TinyImageNet using different

regularization techniques against perturbed examples generated by

baseline and compensated attack methods, in the order of FGSM/R-

FGSM/PGD with 𝜖 = 2
255

in 𝐿∞ norm. 65

3.6 Adversarial robustness of models with Simple architecture and differ-

ent relative widths (with fixed weight decay of 5 × 10−4) under the

black-box setting, where we craft perturbed examples using the source

model. We use PGD with 𝜖 = 4
255

in 𝐿∞ norm, and state accuracy

(%) against perturbed examples generated by baseline (before arrow)

and compensated (after arrow) attacks. Labels of rows and columns

indicate relative width. 66

15

3.7 Adversarial robustness of WRN 28 models with different regularization

techniques under the black-box setting, where adversarial examples are

crafted on the source model. These models are independently trained

under their own training conditions, but are identically initialized. We

use the same attack method as in Table 3.6 68

3.8 Adversarial robustness of models with different architectures (with fixed

weight decay of 5× 10−4) under the black-box setting. The Simple and

Simple-BN models have width 4, and the WRN 28 model has width 2.

Details of evaluation is same as in Table 3.6 69

4.1 Comparison of the lower bounds of robustness obtained with MILP

[48] and accuracy (%) against perturbed examples generated by the

baseline and the compensated PGD attacks (5 random starts for both;

the total number of back-propagations is 50 for MNIST and 10 for

CIFAR-10). Models are trained to be provably robust [50] in stated

𝜖-ball for 𝐿∞ norm. For each model, attacks use the same 𝜖 the model

has been trained for as the maximum perturbation size. 72

4.2 Accuracy (%) against perturbed examples generated by the baseline

PGD and the compensated PGD for MNIST-B for different pairs of

PGD configurations (step size 𝛼 and the number of iterations used by

PGD). 73

A.1 Description of architectures used in this paper. Convolution layers are

specified as (output channel, input channel, kernel height, kernel width,

stride, padding). Maxpool layers are in (kernel height, kernel width,

stride, padding), and fully connected (FC) layers are in (output channel,

input channel). 79

B.1 Training hyperparamters of models used in Section 3.1.1 83

B.2 Training hyperparameters of models used in Section 3.2 85

16

Chapter 1

Introduction

This thesis develops an empirical metric for evaluating “adversarial” robustness of deep

neural networks, based on the analyses of existing metrics and their limitations. In

this chapter, we introduce the concept of adversarial robustness and explain important

preliminaries and previous works, which this thesis builds upon.

1.1 Motivation

Deep neural networks achieved the state-of-the-art performances for various computer

vision benchmarks, such as image classification [19] and object instance segmentation

[20], that are relevant to real-world applications. However, recent studies showed that

deep neural networks are not robust to input perturbations that deviate from typical

“clean” input data distributions. Szegedy et al. found that small perturbations that

are often imperceptible to humans can fool the state-of-the-art image classifiers [47],

and described such perturbations “adversarial”, in that they are critical worst-case

input perturbations that are hard to be found randomly. Figure 1-1 illustrates how

adding an adversarial perturbation can change the prediction of a deep neural network,

although perceptionally the resulting adversarial example is highly similar to the

original example. Papernot et al. further showed that these adversarial perturbations

are transferable between different machine learning models, not limited to deep neural

networks.

17

Figure 1-1: An illustration of adversarial perturbations in deep neural networks.
The image is sampled from Places365 dataset [55], and we generate the adversarial
perturbation (noise in the above figure) using Fast Gradient Sign Method (FGSM)
[15]. When an image is encoded in 8-bit (0-255), the noise has the magnitude of
2. Thus, when an image is scaled to be in the range [0, 1], the original example in
the left and the adversarial example in the right differs only by 2

255
≈ 0.0078 per

pixel for each channel in RGB. To visualize this small noise, we magnify it with the
factor 255

4
= 63.75. We use a pretrained ResNet 18 model provided by Zhou et al.,

that has 53.17% of top-1 accuracy on this dataset. The original example is correctly
classified as “orchid” by this model, but the adversarial example is wrongly classified
as “amusement park”.

The vulnerability of deep neural networks to adversarial perturbations is concerning

when deep neural networks are to be deployed in critical real-world applications, since

raw inputs to those applications can be exposed to malicious attacks using adversarial

perturbations. For example, Athalye et al. realized physical 3-dimensional adversarial

examples that tricked image classifiers under different camera viewpoints and rotations

[1]; Sharif et al. constructed an eyeglass-shaped adversarial perturbation that could

be printed and wore to trick a face recognition system [43]; Eykholt et al. showed

that simple black-and-white tapes can be added to road signs to mislead a road sign

classifier used for autonomous driving [12].

Therefore, robustness of deep neural networks against adversarial perturbations

(often referred as ‘adversarial robustness’ in short) is becoming an important metric

for designing intelligent systems for security-critical applications. An essential but

challenging methodology for understanding adversarial robustness is precise measure-

ment of robustness for complex deep neural networks and high-dimensional input

samples. This thesis investigates the methodologies for evaluating adversarial robust-

18

ness, especially focusing on when those methodologies fail to indicate true robustness

of deep neural networks. In the subsequent sections, we explain preliminaries and

previous works, and concludes this chapter with the overview of this thesis.

1.2 Adversarial examples in machine learning

Adversarial examples that are crafted with the intention to trick machine learning

based decision making systems were introduced and studied since early 2000s [4]. For

instance, a linear classifier or a supporting vector machine used to filter spam mails

was shown to be vulnerable to intentional modifications that did not hinder readability

of spam contents [5].

More recently, adversarial examples have been discovered for complex deep neural

networks, initially from the perspective local generalization [47]. Szegedy et al.

questioned whether then state-of-the-art image classifiers can generalize well within

the local neighborhood of training examples, and used a non-linear optimization

method to solve it. In particular, let 𝑓(·) be a neural network model, and 𝑥 be a

sample that this model classifies correctly. Let 𝑧 = 𝑓(𝑥) denote output logits of this

model on an input sample 𝑥. Then, the predicted label is 𝑦 = arg max
𝑖

𝑧𝑖 where 𝑧𝑖 is

the value of logit for 𝑖th class. We can define a loss function (e.g., cross-entropy loss)

when the ground truth class is 𝑡, and denote it 𝑙(𝑧, 𝑡). Szegedy et al. solved following

optimization problem, and found that a small perturbation 𝑟 that alters the prediction

of the model on 𝑥 + 𝑟 to be the target class 𝑡⋆ ̸= 𝑡 exists:

minimize 𝑐 · ‖𝑟‖2 + 𝑙(𝑓(𝑥 + 𝑟), 𝑡⋆) (1.1)

such that 𝑥 + 𝑟 ∈ valid image domain (1.2)

where 𝑐 is a hyperparameter to scale the size of 𝑟 in the optimization objective. Szegedy

et al. used L-BFGS to solve the above optimization problem, and showed that a small

𝑟 exists for deep neural networks trained on ImageNet dataset [40].

Goodfellow et al. showed that adversarial examples can be more simply found

19

using first-order approximation for non-linear neural networks [15]. Main intuition

behind their approximation was that adversarial perturbations can exist even for

linear models when the dimension of input samples is sufficiently large. To find a

perturbation 𝑟 with maximum per-pixel distortion 𝜖, in other words ‖𝑟‖∞ ≤ 𝜖, they

proposed Fast Gradient Sign Method (FGSM) that chooses 𝑟 to be:

𝑟 = 𝜖 · sign(
𝜕𝑙(𝑓(𝑥), 𝑡)

𝜕𝑥
) (1.3)

For a linear model, the above perturbation 𝑟 maximizes the inner-product with the

weight vector of the model since its sign aligns with that of the weight vector, thus

maximizing the influence of the perturbation to the output. FGSM can be similarly

used to generate 𝑟 in different norms; for 𝐿2 norm, we can replace sign of Eq (1.3)

with division by ‖𝑔‖2 where 𝑔 = 𝜕𝑙(𝑓(𝑥),𝑡)
𝜕𝑥

for normalization.

These early works motivated subsequent research on developing attack methods

that find adversarial examples in computationally efficient manners. Notably, Basic

Iterative Method (BIM) [26] and Projected Gradient Descent (PGD) [29] iteratively

used first-order approximation. Specifically, PGD initializes a perturbation 𝑟 using a

vector 𝑢 that is randomly drawn from a distribution (e.g., 𝒩 (0, 𝐼), Unif[−1, 1]), and

updates 𝑟(𝑖) for 𝑖th iteration for ‖𝑟‖∞ ≤ 𝜖 as follows:

𝑟(0) = 𝜖 · sign(𝑢) (1.4)

𝑟(𝑖) = 𝑟(𝑖−1) + 𝛼 · sign(
𝜕𝑙(𝑓(𝑥 + 𝑟(𝑖−1)), 𝑡)

𝜕𝑟(𝑖−1)
) (1.5)

𝑟(𝑖) = clip(𝑥 + 𝑟(𝑖))− 𝑥 (1.6)

where 𝛼 is per-step update size in Eq (1.5) and clip is an operation that clips 𝑥+ 𝑟(𝑖)

to be in the valid image domain in Eq (1.6). BIM omits the random initialization

(Eq (1.4)). Computationally, these first-order attack methods require additional back-

propagations, and computation increases along with the number of iterations used by

the attack methods.

Carlini and Wagner reformulated the optimization objective for finding adversarial

20

examples (C&W attack), such that the objective is minimized only when a prediction

on a perturbed input is wrong [6]. While the high-level formulation is similar to

that of Szegedy et al., Carlini and Wagner replaced the loss term in Eq (1.1) with

𝑔𝑜𝑏𝑗(𝑥, 𝑡
⋆), where 𝑡⋆ is the desired target label that is not the ground truth 𝑡, such

that 𝑔𝑜𝑏𝑗(𝑥, 𝑡
⋆) < 0 only when the predicted label on 𝑥 is 𝑡⋆. The choice of 𝑔𝑜𝑏𝑗

affects the effectiveness of this attack method, and the authors found 𝑔𝑜𝑏𝑗(𝑥, 𝑡
⋆) =

max{max{𝑧𝑖; 𝑖 ≠ 𝑡⋆} − 𝑧𝑡⋆ ,−𝜅} works well when 𝑧 = 𝑓(𝑥) and 𝜅 is a constant for

controlling the ‘confidence’ of the prediction. They used gradient descent along with

binary search for the hyperparameter 𝑐 in the objective function to find adversarial

examples. Note that this method produces unbounded perturbations; that is, this

method aims to find the smallest possible 𝑟 for a given input sample 𝑥, but does not

essentially bound the size of 𝑟 as in FGSM or PGD.

Although the above-mentioned attacks were originally developed for attacking

image classifiers, other studies investigated adversarial examples for different tasks,

such as object detection [51], automatic speech recognition [7], and reinforcement

learning [22]. Furthermore, Papernot et al. showed that adversarial examples can be

crafted for a variety of machine learning models, not limited to linear classifiers or

deep neural networks, such as nearest-neighbor methods and decision trees [34].

The widespread existence of adversarial examples in machine learning motivated

research on improving adversarial robustness of models. In other words, obtaining

higher accuracy on adversarial examples (‘adversarial accuracy’ in short), not only on

clean input samples, has become an important factor in designing machine learning

system. Among many notable works, Goodfellow et al. and Madry et al. proposed to

train deep neural networks on examples generated by attack methods (‘adversarial

training’) as a defense against adversarial examples [15, 29]. While adversarial training

can be thought as an implicit regularization on models using data augmentation

or as an optimization technique for solving min-max problem, other approaches for

achieving robustness often add explicit regularization terms to a loss function. For

example, Ross and Doshi-Velez and Jakubovitz and Giryes adds a penalty term for the

size of gradients (i.e., gradients of a loss function with respect to inputs or Jacobian

21

of output logits with respect to inputs) to cross-entropy loss to enhance robustness for

classification tasks [39, 24].

These advances in attack methods provided practical methodologies for evaluating

adversarial robustness of deep neural networks for many empirical investigations.

For example, Su et al. benchmarked popular deep neural network architectures for

ImageNet classification challenge [40] for their adversarial robustness, using the above-

mentioned attack methods such as FGSM and C&W attack [45]. However, under-

standing adversarial robustness of complex deep neural networks can be challenging,

as the next part explains.

1.3 Difficulties of evaluating adversarial robustness

Suppose we want to know whether an adversarial example 𝑥′ = 𝑥 + 𝑟 exists in the

𝜖-ball in 𝐿𝑝 norm around an input sample 𝑥 (i.e., ‖𝑟‖𝑝 ≤ 𝜖) for a deep neural network

𝑓(·). If the distribution for input samples is discrete and low-dimensional, we can

consider a brute-force method for every possible perturbation 𝑟 with the size less

than 𝜖 to check the existence of adversarial perturbations. However, such brute-force

method cannot scale to continuous (or discrete but large number of possible values,

such as images encoded in 8-bit) and high-dimensional distributions, which are typical

for applications using deep neural networks.

One computationally feasible approach to solve this problem is to use attack

methods, such as FGSM or PGD discussed in Section 1.2, to generate a perturbation

𝑟, and empirically test whether this perturbation can alter the prediction of 𝑓(·). The

benefit of this empirical approach is that attack methods are computationally efficient

(e.g., FGSM only requires one additional back-propagation) and scalable to complex

deep neural networks as far as those models are differentiable. Additionally, these

attack methods can be easily accelerated using modern Graphic Processor Units and

popular numerical frameworks that support automatic differentiation, such as PyTorch

[37]. However, it is important to note that even if 𝑟 generated by attack methods does

not succeed in fooling the model, the real adversarial perturbation 𝑟⋆ can exist; in such

22

case, attack methods simply fail to find 𝑟⋆. Therefore, when extending this approach

to the entire dataset, we can obtain the upper bound of adversarial robustness of the

model 𝑓 on that dataset. Section 1.3.1 further explains when the discrepancy between

the upper bound obtained by this approach and the actual adversarial robustness goes

large, making evaluation difficult.

Another approach is to directly formulate this problem as an optimization problem,

and verify whether an adversarial perturbation exists using optimization solvers.

While this approach can guarantee the existence of adversarial perturbation, thus

has potential to prove exact adversarial robustness, an important challenge for this

approach is the non-convexity of deep neural networks. Typically, such non-convexity

is relaxed, and the resulting approach approximates the lower bound of adversarial

robustness. Section 1.3.2 introduces notable works related to this approach.

1.3.1 Gradient masking affects attack methods

Since first-order attack methods rely on accurate computation of gradients to generate

perturbations, sources of inaccurate gradient computation can inflate accuracy against

examples generated by attack methods. Consequently, defense methods relying on

those sources can appear to improve adversarial robustness. However, in-depth

investigation into those methods reveals that they do not fundamentally enhance

adversarial robustness.

Papernot et al. showed that Defensive Distillation [35], a defense method that

retrains a model using knowledge distillation [21], is vulnerable to transferred pertur-

bations that are generated from another model (also known as a ‘black-box’ attack),

despite high accuracy against perturbations generated using attack methods on itself

(’white-box’ attack in short) [36]. Carlini and Wagner identified that Defensive Distilla-

tion induces output logits to have large ‘margin’, saturating the value of cross-entropy

loss to zero numerically [6]. In such case, numerically computed gradients are not

accurate, hurting the performance of attack methods. Papernot et al. called this

phenomenon gradient masking, where empirical accuracy against attack methods is

inflated due to inaccurate computation of gradients.

23

Furthermore, Athalye et al. found that many defense methods relied on gradient

masking, and proposed new attack methods to circumvent such defense methods [2].

They identified that those defense methods rely on three mechanisms to obfuscate

gradients: 1) stochastic gradients, where defense methods use random noises or

inference-time drop-out [11] that cannot be deterministically predicted when computing

gradients, 2) gradient shattering, where non-differentiable operations, often in the form

of pre-processing functions [17], are in the computation graph for back-propagation,

and 3) gradient vanishing and exploding, where defense methods result in extremely

deep models when their computations are unrolled, as in the case of using generative

models [41]. On the other hand, they showed that adversarial training does not rely

on any of these three mechanisms, thus its benefit on adversarial robustness is not

inflated.

However, even adversarial training can suffer from gradient masking in a more

subtler manner. Tramèr et al. found that using FGSM, a single-step attack method,

for adversarial training results in a degenerate solution that increases local curvature

around input sample points [49]. Although computation of gradients itself is unaffected

by this degeneracy, a loss function (e.g., cross-entropy loss for classification tasks)

is not apt for local first-order approximation due to high curvature. Thus, while

accuracy against examples generated by FGSM goes high, the model is still vulnerable

to other attack methods and black-box attacks. To resolve a degeneracy, Tramèr

et al. proposed to add a random perturbation before computing gradients when using

FGSM for adversarial training, naming it Random-FGSM (R-FGSM):

𝑢 ∼ 𝒩 (0, 𝐼) (1.7)

𝑟 = 𝛼 · sign(𝑢) (1.8)

𝑟 ← (𝜖− 𝛼) · sign(
𝜕𝑙(𝑓(𝑥 + 𝑟), 𝑡)

𝜕𝑟
) + 𝑟 (1.9)

where notations follow those of Eq (1.3), and 𝛼 is a hyperparamter to set relative step

size for the random initialization.

These examples of gradient masking illustrate difficulties of empirically evaluat-

24

ing adversarial robustness using attack methods. The upper bound of adversarial

robustness is inflated by gradient masking, and taking the upper bound as a proxy for

true adversarial robustness results in large discrepancy in these examples. This thesis

builds on these exemplary works on understanding attack methods and implications

of using empirical accuracy as adversarial robustness. As we show in subsequent

chapters, we extend gradient masking beyond defense methods that make specific

modifications to training and inference, and show that this phenomenon exists even

for conventionally trained deep neural networks.

1.3.2 Verification

Finding an adversarial perturbation can be formally described as an optimization

problem, and many works used optimization techniques to evaluate adversarial ro-

bustness [50, 38, 44, 48]. Since non-linear activation functions popularly used in deep

neural networks violate convexity, this optimization-based approach often relaxes

non-convex elements to be convex. For example, Wong and Kolter relaxed Rectified

Linear Unit (ReLU) activation function as a bounded convex set that defines the outer

bound of ReLU, and applied Linear Programming (LP) to solve the resulting convex

optimization problem [50]. Often, using relaxation results in proving the lower bound

of adversarial robustness, because relaxed sets serve as the outer bound of the actual

space that adversarial perturbations can exist, as Wong and Kolter did.

Instead of approximating the lower bound, Tjeng et al. chose to use Mixed-Integer

Linear Programming (MILP) to verify the existence of an adversarial perturbation for

deep neural networks using ReLU as an activation function [48]. They utilized the

fact that ReLU is piecewise-linear, thus exact adversarial robustness can be obtained

(assuming computational complexity and numerical stability are not concerns) using

MILP.

A benefit of these verification methods is that the provable lower bound (or

often the exact value) of adversarial robustness is obtainable, thus resolving the

problem of overestimated adversarial robustness when using the empirical methods

(i.e., using first-order attack methods to generate perturbations). However, they are

25

typically more computationally demanding than attack methods, especially as the

lower bound becomes more tighter, and scaling them to large-scale datasets and models

is challenging. Consequently, the empirical methods are popularly used to benchmark

and numerically experiment adversarial robustness in practice; examples include

comparing different deep neural network architectures [45, 10], and model compression

techniques [28, 52], which are discussed in relation to hardware energy-efficiency in

Section 1.4.

1.4 Relationship to energy-efficient deep neural net-

works

Deep neural networks are computationally demanding compared to other machine

learning algorithms: deep neural networks typically have large number of parameters,

and the number of multiply-accumulate operations for a single inference can be in the

order of 109 ∼ 1010 [46]. Thus, reducing the computational footprint of deep neural

networks is essential for resource-constrained real-world applications, especially when

they run on embedded hardware platforms. One popular approach to achieve this is

to compress deep neural networks by pruning parameters and quantize the number of

bits used for computations, such that both memory and computational footprint can

be reduced [18].

While those compression methods are successful in reducing computations with-

out sacrificing clean accuracy, their influence on adversarial robustness is not well

understood. First, several studies postulate that deep neural networks with larger

capacity, as in more number of neurons per layer, have better adversarial robustness

[29, 10]. Furthermore, recent studies claim that model compression techniques might

degrade adversarial robustness, in the context of activation quantization [28] and

weight pruning [42]. These observations suggest that achieving energy-efficient deep

neural networks might be at odds with adversarial robustness, motivating further

investigation into what drives empirically measured adversarial robustness low for

26

compressed deep neural networks. Chapter 3 explains these prior works further, and

shows how overestimation of adversarial robustness affects these analyses when using

the empirical methods.

1.5 Thesis overview and contributions

This thesis investigates cases when bounded first-order attack methods, such as FGSM

and PGD, fail to find adversarial perturbations. Major contributions are

∙ Identify three cases when accuracy against examples generated by attack methods

is overestimated due to superficial reasons, not indicating true robustness.

∙ Propose compensation methods that can be easily combined with existing attack

methods for each of those cases, providing more precise metric for empirical

evaluation of adversarial robustness.

∙ Show how overestimation of adversarial robustness affects conventionally trained

deep neural networks, not limited to defense methods, and demonstrate the

impact on practically important studies, including the relationship between the

model capacity and adversarial robustness.

∙ Show how the three cases we identify can explain the gap between the lower

bound obtained with verification approaches and the upper bound obtained by

the attack methods.

This thesis is organized as follows. Chapter 2 analyzes when bounded first-order

attack methods fail to find adversarial perturbations, and provides compensation

methods when they fail for superficial reasons. Chapter 3 provides case studies to

illustrate how overestimated adversarial robustness affects wide range of deep neural

networks. Chapter 4 delves into the gap between the upper bound empirically obtained

with attack methods and the lower bound obtained by verification methods. Chapter 5

summarizes our contribution, and concludes this thesis with a short remark on future

work.

27

28

Chapter 2

Analysis on Failure Cases of Attack

Methods

This chapter analyzes three cases when untargeted, bounded first-order attack methods

fail to find adversarial perturbations: 1) cross-entropy loss becoming zero due to

numerical saturation of the loss value, 2) innate non-differentiability of deep neural

networks, induced by certain activation functions, and 3) certain training conditions

increasing the number of iterations used by iterative attack methods (i.e., PGD)

required to find adversarial perturbations. For each case, we provide compensation

methods that can be easily integrated with existing attack methods.

We describe these phenomena and analyze their causes using experimental exam-

ples. For examples used in this chapter, we consider following deep neural network

architectures: a Simple model with 4 convolutional layers and 2 fully-connected layers

with ReLU activations, a Simple-BN model that has a batch normalization [23] after

each convolutional layer in a Simple model, and a WideResNet (WRN) model with

28 layers [54]. Deep neural networks are trained on CIFAR-10 dataset [25] for the

image classification task, otherwise stated. Details of these architectures and training

hyperparameters are presented in Appendix A.

29

2.1 Zero loss

Cross-entropy loss gets closer to zero when the logit corresponding to the correct label

has larger gap with other logits. Since logits take real values in the range (−∞,∞),

cross-entropy loss is mathematically larger than zero unless other logits except for

the largest one are all −∞. However, standard computing has limited precision to

represent numbers, and logarithmic and exponential functions involved in cross-entropy

loss can numerically saturate small values close to zero. Numerically, when the value of

loss becomes zero, gradients computed on that loss is not meaningful. This becomes a

problem for first-order attack methods that rely on gradients to generate perturbations.

This section analyzes how this phenomenon exists in conventionally trained deep neural

networks, and proposes compensation methods to resolve this issue.

2.1.1 Analysis

Saturation of logarithmic and exponential functions in popular libraries

Cross-entropy loss combines softmax function that involves exponential with negative

log-likelihood. While standard 32-bit floating point format can represent wide range

of real values, cascading exponential and logarithmic functions can saturate the

resulting value in popular numerical computing libraries in Python, such as NumPy

[33] and PyTorch [37]. For example, consider the following expression that is similar

to cross-entropy loss:

𝑐 = − log(
exp 𝑎

exp 𝑎 + exp 𝑏
) (2.1)

The value of 𝑐 is larger than 0 unless 𝑏 = −∞, thus exp 𝑏 = 0. However, in NumPy

and PyTorch, 𝑐 becomes numerically zero when 𝑎− 𝑏 ' 18.

In case of actual cross-entropy loss computation for multi-class classification, the

divisor becomes the summation of exponential of logits, and the dividend becomes the

exponential of the ground truth label’s logit. Therefore, when the gap between logits

corresponding to the ground truth label and other labels increase, numerical value

of cross-entropy loss can become zero. This numerical saturation problem can more

frequently occur when one uses low precision for faster training or inference, such as

30

half precision (16-bit) floating point format.

Example

We illustrate how the numerical saturation of cross-entropy loss occurs in a conven-

tionally trained deep neural network. Consider a deep neural network with a Simple

architecture described in the beginning of this chapter. We train this model without

any explicit regularization technique.

First, we measure accuracy of this model on perturbed examples generated by

FGSM (𝜖 = 8
255

in 𝐿∞ norm), which is 14.04%. We characterize the value of cross-

entropy loss, the size of gradients (in 𝐿2 norm), and the ‘margin’ of logits (the gap

between logits corresponding to the most likely and the second most likely label) for

this model, and separately analyze for input samples on which the attack succeeds

and fails (Table 2.1). Observe that the average value of cross-entropy loss on input

samples on which the attack fail is smaller (0.0011), and the average logit margin on

those samples is 18.73. Note that this large value of logit margin can result in the

numerical saturation of cross-entropy loss, as discussed in the above part. However,

the average logit margin on input samples on which the attack succeeds is 7.20, and

the size of gradients is large for these samples. Therefore, we can suspect that zero

loss occurs for the samples on which the attack fails in this example.

Table 2.1: Characterizing input samples on which FGSM (𝜖 = 8
255

in 𝐿∞ norm)
succeeds and fails for the value of loss, size of gradients, and logit statistics including
margin and variance, for the example deep neural network described in Section 2.1.1.

Attack succeed Attack fail

Loss 0.0643 0.0011
Gradient 2.0686 0.0339

Logit margin 7.20 18.73
Logit variance 73.44 142.19

Second, we measure accuracy of this model on a black-box attack using the model

with the same architecture, but independently trained using weight decay regularization

with strength 5 × 10−4, as a substitute model on which FGSM (same 𝜖 as above)

generates perturbations. The accuracy in this case is 13.22%, lower than 14.04% of

31

above. A black-box attack resulting in lower accuracy than a white-box attack signals

gradient masking; it represents that using the exact gradient of the model is somehow

less effective than directions not related to the gradient (e.g., perturbations transferred

from a substitute model) [2].

Then, for more in-depth inspection, we visualize how the value of cross-entropy

loss changes as perturbations are added to the original input sample (Fig 2-1). The

input sample is randomly chosen among samples on which the white-box FGSM fails

to find adversarial perturbations. The sample used in Fig 2-1 has numerically zero

cross-entropy loss. Observe that increasing the size of perturbation along the direction

of this model’s own gradient does not increase loss, but orthogonal directions (e.g.,

gradient obtained from a substitute model) easily increase loss. This example shows

how gradients computed on this model do not result in a meaningful perturbation

direction when the value of loss is zero (or close to zero).

(a) (b)

Figure 2-1: Visualization of the value of cross-entropy loss (z-axis) evaluated for points
𝑥* = 𝑥 + 𝜖1 · sign(𝑔) + 𝜖2 · sign(𝑔′), where 𝑔 is gradients of loss with respect to the
input sample computed on this model, and 𝑔′ is (a) gradients computed from the
surrogate model used for the black-box attack, and (b) gradients computed using the
second most likely class as the target label when computing cross-entropy loss instead
of the ground truth label.

2.1.2 Compensation methods: increasing loss

Since the cause for inaccurate gradient computation is small value of loss that numeri-

cally saturates to zero, ensuring the value of cross-entropy loss to be sufficiently large

32

can circumvent this problem.

Rescaling logits

First, we consider rescaling logits 𝑧 by a constant 𝑇 . Then, cross-entropy loss is

computed as 𝑙(𝑓(𝑥)
𝑇

, 𝑡): when 𝑇 > 1, absolute values of logits decrease, leading to the

larger value of cross-entropy loss. The attack methods, such as FGSM or PGD, can

be applied as usual on this loss.

Targeted objective

Second, suppose we compute cross-entropy loss using another label 𝑡′ as a target

instead of the ground truth label 𝑡. Naturally, this turns the attack to be targeted

towards the label 𝑡′. However, note that although we change 𝑡 to 𝑡′, our objective

is still finding an untargeted perturbation. Since the value of loss with respect to

the ground truth label 𝑡 is small, changing the target label when computing loss will

increase the value of loss.

2.1.3 Impact on measurement of robustness

We test the effectiveness of the proposed compensation methods on wide range of

deep neural networks and datasets. First, the results on the model used in the above

example is shown in Table 2.2. We find that changing the target label 𝑡′ to be the

second most likely label gives the best compensation (e.g., brings down accuracy

against perturbed examples the most).

Then, we compare different choices of architectures for how they are affected by

the zero-loss phenomenon (Table 2.3). Observe that the model trained with weight

decay regularization is less affected by this phenomenon, as manifested by the smaller

gap in accuracy against the baseline and the compensated attacks using the targeted

objective with 𝑡′ as the second most likely classes. This observation can be explained

by weight decay’s effect on weight matrices of the model; weight decay penalizes

the Frobenius norm of weight matrices, inducing weights to have small magnitude.

Naturally, the magnitude of output logits decrease when weights that are used to

33

Table 2.2: Accuracy against perturbed examples generated by different attack types
that are compensated for the zero loss phenomenon (in %). We sweep a constant 𝑇
for rescaling logits, and target labels 𝑡′ for targeted loss computation; ‘random’ sets
𝑡′ to be randomly sampled among all possible classes, ‘least’ and ‘second’ indicate
the least-likely and the second most-likely classes, respectively. We also state the gap
between accuracies against the baseline and the compensated attacks.

Rescaling TargetedEvaluation type Baseline
𝑇 = 10 𝑇 = 50 𝑇 = 100 Random Least Second Gap

Clean 84.75 - - - - - - -

FGSM 19.50 13.77 15.24 15.38 14.59 17.62 10.79 8.71
R-FGSM 29.81 30.35 30.44 30.46 30.02 30.73 29.11 0.70𝐿∞, 𝜖 = 4

255
PGD 2.55 2.06 2.26 2.26 2.03 2.67 1.68 0.87

FGSM 14.04 3.51 4.40 4.51 4.20 6.52 3.08 10.96
R-FGSM 15.03 9.58 11.29 11.50 11.12 13.78 7.23 7.80𝐿∞, 𝜖 = 8

255
PGD 0.24 0 0.01 0.01 0.01 0.08 0 0.24

FGM 23.18 20.45 21.46 21.54 20.77 22.67 18.10 5.08
R-FGM 39.64 40.09 40.23 40.26 39.81 40.33 39.08 0.56𝐿2, 𝜖 = 0.5
PGD 6.67 5.06 5.68 5.75 5.25 6.85 3.83 2.84

FGM 17.75 7.75 9.37 9.56 9.03 12.32 6.14 11.61
R-FGM 19.84 17.88 18.96 19.04 18.36 20.32 15.24 4.60𝐿2, 𝜖 = 1.0
PGD 3.82 0.11 0.28 0.28 0.25 1.39 0.03 3.79

produce those logits have small magnitude, reducing the margin in logits. Other

remark is that the model with larger ‘width’, as in the number of neurons per layer,

or with batch normalization suffers more from the zero-loss phenomenon.

Finally, we benchmark how this zero-loss phenomenon affects wide range of deep

neural network architectures and datasets (Table 2.4, Column Zero loss). We compare

accuracy against perturbed examples generated by the baseline and the compensated

attacks, with targeting to the second most likely labels as the compensation method

for the zero-loss phenomenon. We find that this phenomenon exists among diverse

conventionally trained deep neural networks.

2.1.4 Connection to other attack methods

Gradient masking induced by zero-loss was previously observed by Carlini and Wagner.

Carlini and Wagner found that Defensive Distillation [35] increases the margin in

logits, as Defensive Distillation uses temperature softmax (essentially same as rescaling

logits) during retraining [6]. Carlini and Wagner showed that the value of cross-

entropy loss saturates to zero for the models using Defensive Distillation, but their

34

Table 2.3: The gap in accuracy against perturbed examples generated by attacks
(in %) when compensating for the zero loss phenomenon by changing target labels
𝑡′ to be the second most likely classes. ‘No Reg’ represents a deep neural network
with Simple architecture trained without explicit regularization (as in the example).
‘Weight Decay’ represents the same model as ‘No Reg’, but trained with weight decay
of 5 × 10−4. ‘Width x4’ represents a model with 4 times more neurons per layer
compared to ‘No Reg’. ‘Batch Norm’ indicates a Simple-BN model, which is same as
‘No Reg’ except for batch normalization following each convolutional layer.

Evaluation type No Reg Weight Decay Width x4 Batch Norm

𝐿∞, 𝜖 = 4
255

FGSM 8.71 4.48 19.48 18.73
R-FGSM 0.70 0.59 5.78 9.36

PGD 0.87 0.19 4.51 6.16

𝐿∞, 𝜖 = 8
255

FGSM 10.96 8.12 18.43 19.99
R-FGSM 7.80 3.89 17.75 15.68

PGD 0.24 0.15 1.20 2.05

𝐿2, 𝜖 = 0.5
FGM 5.08 2.41 16.54 16.78

R-FGM 0.56 0.63 2.72 5.64
PGD 2.84 0.57 15.29 12.68

𝐿2, 𝜖 = 1.0
FGM 11.61 7.91 27.34 21.02

R-FGM 4.60 1.73 16.24 15.51
PGD 3.79 2.14 19.62 9.45

attack method is capable of finding adversarial perturbations even for those models.

Our work contributes further by finding that the zero-loss phenomenon also affects

conventionally trained models, not confined to specific defenses that intentionally

caused this phenomenon.

We also analyze how the zero-loss phenomenon affects C&W attack depends on

the choice of 𝑔𝑜𝑏𝑗 that serves as an alternative loss function. We find that choosing

𝑔𝑜𝑏𝑗 that directly uses logits, instead of softmaxed logits or the value of cross-entropy

loss, makes C&W attack more resilient to the zero-loss phenomenon. For example,

the default choice of 𝑔𝑜𝑏𝑗,

𝑔𝑜𝑏𝑗(𝑥, 𝑡) = max{−max{𝑧𝑖; 𝑖 ̸= 𝑡}+ 𝑧𝑡,−𝜅} (2.2)

achieves 100% success rate of finding adversarial perturbations for the example deep

neural network using Simple architecture described above. Note that we flipped the

signs of max{𝑧𝑖; 𝑖 ̸= 𝑡} and 𝑧𝑡 from those in the objective function introduced in

Chapter 1, since we are considering an untargeted attack where 𝑡 is the ground truth

35

Table
2.4:

A
ccuracy

ofneuralnetw
orks

against
perturbed

exam
ples

generated
by

the
first-order

attack
m

ethods
in

the
order

of
FG

SM
/R

-FG
SM

/P
G

D
for

𝜖
=

4
2
5
5

in
𝐿
∞

norm
.

W
e

apply
com

pensation
m

ethods
for

zero
loss

and
innate

non-differentiability
discussed

in
Sections

2.1
and

2.2.
A

s
com

pensation
m

ethods
are

applied
in

cascading
m

anner
(i.e.,sam

ples
on

w
hich

baseline
attacks

failare
subjected

to
com

pensation
m

ethods),w
e

set
the

num
ber

ofrandom
starts

for
baseline

R
-FG

SM
and

P
G

D
to

be
sam

e
as

the
totalnum

ber
ofevaluations

com
pensation

m
ethods

use
for

fair
com

parison.
A

llm
odels

are
trained

w
ithout

explicit
regularization

on
the

specified
dataset.

D
ataset

A
rchitecture

A
ccuracy

(%
)

C
lean

A
ttack

B
aseline

Zero
loss

N
on-differentiability

B
oth

C
IFA

R
-10

Sim
ple

84.75
19.50

/
29.81

/
2.55

10.79
/

29.11
/

1.68
18.41

/
29.17

/
2.54

8.74
/

28.31
/

1.67
Sim

ple-B
N

87.09
28.66

/
28.39

/
6.26

9.93
/

19.03
/

0.10
26.92

/
28.05

/
6.11

6.89
/

17.93
/

0.07
W

R
N

28
91.65

21.90
/

20.79
/

0.02
11.34

/
13.46

/
0

15.87
/

19.76
/

0.02
5.94

/
11.25

/
0

SV
H

N
Sim

ple-B
N

94.29
28.60

/
43.36

/
2.80

23.81
/

42.21
/

2.59
24.35

/
42.60

/
2.60

19.10
/

41.31
/

2.38
W

R
N

28
95.42

49.74
/

58.22
/

4.06
45.46

/
57.04

/
3.73

39.69
/

56.70
/

3.79
34.30

/
55.05

/
3.69

T
inyIm

ageN
et

V
G

G
11

50.32
11.32

/
20.16

/
7.94

7.44
/

16.56
/

4.10
11.30

/
20.62

/
7.98

7.44
/

16.86
/

4.22
V

G
G

-B
N

11
50.72

4.16
/

11.68
/

0.64
3.22

/
10.70

/
0.48

3.82
/

11.80
/

0.68
3.06

/
11.00

/
0.48

W
R

N
50

57.24
19.78

/
23.40

/
2.02

3.36
/

9.86
/

0.40
18.24

/
23.48

/
1.58

2.88
/

10.02
/

0.36

36

label. Also, we set 𝜅 = 0 for this experiment. However, when we choose 𝑔𝑜𝑏𝑗 to be

𝑔𝑜𝑏𝑗(𝑥, 𝑡) = 1− 𝑙(𝑓(𝑥), 𝑡) (2.3)

the attack succeeds only for 88.62% of input samples (in other words, the model shows

11.38% of accuracy against perturbed examples generated by this attack configuration).

We observe that input samples on which the later 𝑔𝑜𝑏𝑗, which directly operates on

cross-entropy loss 𝑙(𝑧 = 𝑓(𝑥), 𝑡), fails to find adversarial perturbations have small

value of cross-entropy loss, leading to the zero-loss phenomenon. Although we do not

investigate unbounded attacks, such as C&W attack, in depth, this analysis reveals

that the choice of the optimization objective function affects the vulnerability of

attack methods against the zero-loss phenomenon, and that the objective function

that directly operates on logits is more beneficial to prevent the zero-loss phenomenon.

2.2 Innate non-differentiability

During back-propagation, gradients cannot be computed for non-differentiable func-

tions if they are in the computation graph. When non-differentiable functions are used

for defense methods, such as in the form of pre-processing operation [17], they make the

computation of gradients inaccurate and result in a form of gradient masking known

as gradient shattering [2]. While gradient shattering has been previously identified,

we show that innate non-differentiability in popular deep neural network architectures,

such as ReLU activation and MaxPool, can result in inaccurate computation of gradi-

ents as well. In this section, we analyze how ReLU and MaxPool can cause gradient

shattering, and propose to extend Backward Pass Differentiable Attack (BPDA) [2]

for approximating gradients through ReLU and MaxPool.

37

2.2.1 Analysis

Switching of ReLU and MaxPool

ReLU is a piecewise linear function:

ReLU(𝑥) = max{𝑥, 0} (2.4)

and is only non-differentiable at 𝑥 = 0. During usual training where back-propagation

is used, this non-differentiability rarely becomes a problem since neurons do not

become exactly zero. However, this non-differentiability can be concerning when

computing gradients for attacks.

During back-propagation, gradients are not passed through negative-valued neurons,

as they are set to zero by ReLU. Therefore, the computed gradients are actually the

gradients of the sub-model comprising positive-valued neurons. For training, this

property results in sparse gradients, but non-differentiability at zero does not become

a problem itself since the values of neurons are not exactly zero. However, for attack

methods, we add perturbations using these gradients and forward-propagate them

to evaluate the success of attack methods. These added perturbations can “switch"

some of previously negative-valued neurons to take positive values, and vice versa. In

such case, the sub-model that contributes to the final prediction changes, as effective

neurons that are non-zero after ReLU are different due to added perturbations, and

the computed gradients are no longer accurate.

MaxPool chooses the maximum-valued neuron among all neurons in a given window.

For example, if MaxPool uses a window size of 2-by-2,

MaxPool(𝑥𝑖,𝑗, 𝑥𝑖+1,𝑗, 𝑥𝑖,𝑗+1, 𝑥𝑖+1,𝑗+1) = max{𝑥𝑖,𝑗, 𝑥𝑖+1,𝑗, 𝑥𝑖,𝑗+1, 𝑥𝑖+1,𝑗+1} (2.5)

and gradients only flow through the maximum-valued neuron in this window. Thus,

MaxPool has similar “switching" problem as ReLU, when added perturbations changes

the maximum-valued neuron in a given window to another neuron that was previously

ignored when computing gradients.

38

Example

We measure how frequently switching occurs when perturbations generated by attack

methods are added to input samples. We use the same deep neural network used for

the example in Sec 2.1 for the analysis here. When perturbations generated by FGSM

(𝜖 = 8
255

in 𝐿∞ norm) are added to input samples, we observe that 7.73% of neurons

using ReLU as an activation function switch, and that 20.60% of neurons resulting

from MaxPool operation switch.

2.2.2 Compensation methods: approximating gradients

Athalye et al. proposed Backward Pass Differentiable Attack (BPDA) to approximate

gradients through non-differentiable functions when defense methods use such functions

[2]. When ℎ(𝑥) is a non-differentiable function, and 𝑓1(𝑥) and 𝑓2(𝑥) are differentiable

functions that are cascaded with ℎ(𝑥) as 𝑓1(ℎ(𝑓2(𝑥)) in the computation graph, BPDA

uses a differentiable function 𝑔(𝑥) ≈ ℎ(𝑥) and uses gradients through 𝑔(𝑥) during

back-propagation, although forward-propagation uses ℎ(𝑥) [2]. Thus, when computing

gradients through 𝑓1, it uses the output of ℎ(𝑥) computed during forward-propagation,

while gradients through ℎ(𝑥) is replaced by gradients through 𝑔(𝑥).

While Athalye et al. used BPDA to break defense methods relied on explicitly

non-differentiable operations, we adopt BPDA to approximate gradients through ReLU

and MaxPool. In the following part, we discuss differentiable approximation functions

for ReLU and MaxPool.

ReLU

Softplus function smoothly approximates ReLU as

softplus(𝑥) =
1

𝛽
· log(1 + exp(𝛽 · 𝑥)) (2.6)

where 𝛽 scales how similar softplus function gets to ReLU. For example, as 𝛽 →∞,

softplus will be more similar to ReLU, with sharper transition around zero.

39

Exponential Linear Unit (ELU) [9] models the leakage when an input is negative,

instead of setting the output as zero. Specifically,

ELU(𝑥) =

⎧⎪⎨⎪⎩𝑥 𝑥 > 0

exp𝑥− 1 𝑥 ≤ 0

(2.7)

and we can easily see that ELU is left-differentiable and right-differentiable at 𝑥 = 0,

and they are the same:

lim
𝑥→0−

(exp𝑥− 1)− (exp 0− 1)

𝑥
= lim

𝑥→0+

𝑥− 0

𝑥
= 1 (2.8)

Thus, the first-order derivative for ELU exists at 𝑥 = 0.

Finally, we consider Continuously-differentiable ELU (CELU) [3] that modified

ELU as

CELU(𝑥) =

⎧⎪⎨⎪⎩𝑥 𝑥 > 0

𝛽 · (exp 𝑥
𝛽
− 1) 𝑥 ≤ 0

(2.9)

where 𝛽 controls the slope of exponential decay when 𝑥 < 0. As 𝛽 → 0, CELU gets

closer to ReLU. Note that when 𝛽 = 1, CELU is essentially same as ELU.

MaxPool

MaxPool can be thought as 𝐿∞ norm pooling, and natural approximation for MaxPool

would be 𝐿𝑝 norm pooling with sufficiently large 𝑝. That is, for pooling operation in a

2-by-2 window as in Eq (2.5),

𝐿𝑝Pool(𝑥𝑖,𝑗, 𝑥𝑖+1,𝑗, 𝑥𝑖,𝑗+1, 𝑥𝑖+1,𝑗+1) = 𝑝

√︁
𝑥𝑝
𝑖,𝑗 + 𝑥𝑝

𝑖+1,𝑗 + 𝑥𝑝
𝑖,𝑗+1 + 𝑥𝑝

𝑖+1,𝑗+1 (2.10)

is used to approximate gradients for MaxPool.

40

Table 2.5: Accuracy against perturbed examples generated by attacks (in %) of
the example deep neural network used for Sec 2.2.1, compensated for innate non-
differentiability using BPDA. We investigate three differentiable functions for substi-
tuting ReLU: Softplus (𝛼 = 2, thresholded at 2), CELU (𝛼 = 2), and ELU while fixing
𝐿𝑝-norm pool’s 𝑝 to be 5. Then, we sweep for 𝑝 by fixing ReLU substitute function to
be the one achieved the best performance.

ReLU Substitute 𝐿𝑝-norm PoolEvaluation Type Baseline Softplus CELU ELU 𝑝 = 2 𝑝 = 5 𝑝 = 10
Gap

Clean 84.75 - - - - - - -

FGSM 19.50 18.41 18.93 18.68 18.58 18.41 18.44 1.09
R-FGSM 29.81 29.17 30.51 29.92 30.26 29.17 29.15 0.66𝐿∞, 𝜖 = 4

255
PGD 2.55 2.54 2.54 2.50 2.57 2.50 2.47 0.08

FGSM 14.04 12.33 12.06 12.15 11.85 12.06 12.11 2.19
R-FGSM 15.03 14.88 14.95 14.72 15.03 14.72 14.78 0.31𝐿∞, 𝜖 = 8

255
PGD 0.24 0.21 0.15 0.16 0.22 0.15 0.13 0.11

FGM 23.18 21.07 22.43 22.22 21.66 21.07 20.59 2.59
R-FGM 39.64 38.85 40.05 39.72 39.77 38.85 35.67 3.97𝐿2, 𝜖 = 0.5
PGD 6.67 6.68 6.57 6.55 6.56 6.55 6.64 0.12

FGM 17.75 16.07 16.04 16.25 15.87 16.04 15.78 1.97
R-FGM 19.84 18.69 19.66 19.39 19.06 18.69 17.98 1.86𝐿2, 𝜖 = 1.0
PGD 3.82 3.90 3.64 3.63 3.58 3.63 3.67 0.24

2.2.3 Impact on measurement of robustness

First, we test the effectiveness of using BPDA to generate more accurate perturba-

tions for adversarial attacks. Table 2.5 shows the example model’s accuracy against

perturbed examples generated by different attack methods and BPDA approximation

functions for ReLU and MaxPool. We find that using BPDA can decrease accuracy

against the perturbed examples subtly, usually by 1-3% for this example model. Gen-

erally, we observe that single-step attacks, such as FGSM and R-FGSM, are more

affected by using BPDA compared to PGD, which is an iterative method. This can

be understood from the fact that PGD has smaller effective step size 𝛼 compared to 𝜖

of single-step attacks. If the step size is small, then fewer number of neurons with

ReLU or MaxPool will switch.

Furthermore, we benchmark how innate non-differentiability affects accuracy

against perturbed examples generated by attack methods for various architectures

and datasets, for the same setting as in Table 2.4 (Column ‘Non-differentiability’).

For this analysis, we fix the approximation functions for BPDA as Softplus for ReLU

and 𝑝 = 5 for MaxPool. Similar as the example model discussed above, compensating

41

for the non-differentiability phenomenon with BPDA gives subtle differences (1-3%) in

the accuracy for various architectures and datasets. However, there exist certain cases

where the difference is more significant, such as a WRN model trained on SVHN for

which using BPDA gives 10% difference in accuracy against FGSM. Also, note that

combining the compensation methods for both the zero loss and the non-differentiability

phenomena gives better attack success rate (Table 2.4, Column ‘Both’).

2.3 Requiring more iterations

We observe an interesting phenomenon that training a deep neural network with

certain regularization techniques, such as weight decay, increases the number of

iterations used by PGD to find adversarial perturbations. That is, the apparent

accuracy of such model against perturbed examples generated by PGD with small,

limited iterations appears to be higher than that of another model not using those

regularization techniques. In this section, we provide examples of this phenomenon,

and suggest using the second-order information to reduce the number of iterations

required.

2.3.1 Analysis

We train three deep neural networks with WRN architecture under different regu-

larization scheme: 1) no explicit regularization, 2) fixed weight decay regularization

with strength 5 × 10−4 throughout all 100 epochs, and 3) excessive weight decay

regularization with increasing strength, starting with 1× 10−4, and multiply this value

with factor of 10 every 40 epochs. In the last scenario, weight decay regularization gets

stronger towards the later stage of training, ending up with final strength of 1× 10−2.

Other than regularization scheme, all training conditions are the same for these three

models. Then, we evaluate these three models for their accuracy against perturbed

examples generated by PGD (𝜖 = 0.5 in 𝐿2 norm) while sweeping the number of

iterations of PGD (Figure 2-2 (a)).

Observe that the model with excessive weight decay regularization shows higher

42

1 5 10 50 100
Number of back-propagations (iterations)

0.1

0.5

1

5

10

50

Ad
ve

rs
ar

ia
l a

cc
ur

ac
y

(%
)

No Regularization
Weight decay
Weight decay excess

(a)

3 5 10 20
Number of back-propagations

0.1

0.5

1

5

10

50

Ad
ve

rs
ar

ia
l a

cc
ur

ac
y

(%
)

Baseline PGD
PGD + Eigen
PGD + BFGS

(b)

Figure 2-2: (a) Adversarial accuracy against perturbed examples generated by a PGD
attack (𝜖 = 0.5, 𝐿2, compensated for zero loss and non-differentiability) of WRN
models trained on CIFAR-10 with different regularization conditions, as a function
of the number of iterations the attack uses. Shown in log-log scale. (b) Comparison
of different compensation methods (Eigen and BFGS) discussed in Section 2.3 on a
WRN model trained with excessive weight decay (same as in (a)), under the same
number of back-propagations required to find adversarial perturbations.

43

accuracy when PGD uses few iterations (< 10), while the other models show less than

0.1% of accuracy. However, as PGD uses more iterations, accuracy of the model with

excessive weight decay regularization degrades and ultimately reaches less than 0.1% of

accuracy, similar as the other models, when PGD uses 100 iterations. This observation

can be concerning when one uses PGD with small number of iterations, which is

common when evaluating complex models where back-propagation is computationally

consuming, to compare these regularization techniques for adversarial robustness.

In such scenario, one can be misled by higher accuracy of the model with excessive

weight decay regularization to conclude that this regularization technique provides

robustness.

For the model with excessive weight decay regularization, we characterize cases

when PGD with small number of iterations fails. We observe two behaviors: 1) random

initialization (Eq (1.4)) affects the success of PGD, such that re-starting PGD from

different initialization often succeeds in finding adversarial perturbations despite earlier

attempt failed, and 2) successful initialization, from which PGD iterations (Eq (1.5))

succeed to find adversarial perturbations, yields higher increase in loss and the size of

gradients per iteration. The first observation is a well-known reason for using multiple

re-starts when evaluating adversarial robustness using attacks with stochasticity, such

as random initialization. While these observations themselves can be trivial, they

hint that initialization matters when using PGD, and that initializing to the points

where the size of gradients increases rapidly, thus with high curvature, might help

subsequent PGD iterations.

2.3.2 Compensation methods: approximating second-order in-

formation

Although using sufficiently large number of iterations (e.g., 100) for PGD is an uncom-

plicated method to avoid being misled by this phenomenon, we consider two methods

to reduce the number of iterations needed by PGD to find adversarial perturbations to

better understand why this phenomenon occurs. We hypothesized above that initializ-

44

ing to the points with high curvature might benefit PGD to easily find adversarial

perturbations. To experimentally test this hypothesis, we consider two methods that

consider the curvature of the objective function, which is loss on a given input sample,

to initialize PGD. Using either of the following methods to initialize, we run PGD

iterations as usual to obtain perturbations.

Eigen: Approximating the Principal Eigenvector

The principal eigenvector of the Hessian matrix, 𝐻 = ∇∇𝑥𝑙(𝑓(𝑥), 𝑡), is the eigenvector

associated with the maximum eigenvalue of 𝐻. The principal eigenvector indicates the

direction associated with the highest curvature. Initializing along the direction of this

principal eigenvector can set subsequent first-order iterations to have rapid increase

in the value of loss. However, obtaining 𝐻 requires second-order derivatives that are

numerically challenging to obtain for complex deep neural networks. Therefore, we

consider approximating the principal eigenvector of 𝐻, using the method proposed

by Miyato et al. [31]. First, for a matrix 𝐴, power iteration method can be used to

approximate the principal eigenvector 𝑢:

𝑢← 𝐴 · 𝑢
‖𝐴 · 𝑢‖2

(2.11)

where the initial 𝑢 is randomly sampled from some distribution (e.g., 𝒩 (0, 𝐼)) assuming

that it has non-zero projection to the actual 𝑢. For our case, 𝐴 = 𝐻, and we have to

approximate 𝐻 · 𝑢 as well, since the exact 𝐻 is unattainable. Miyato et al. proposed

to use finite difference method to approximate 𝐻 · 𝑢:

𝐻 · 𝑢 =

𝜕𝑙(𝑓(𝑥′),𝑡)
𝜕𝑥′

⃒⃒⃒
𝑥′=𝑥+𝛿𝑢

− 𝜕𝑙(𝑓(𝑥′),𝑡)
𝜕𝑥′

⃒⃒⃒
𝑥′=𝑥

𝛿
(2.12)

We adopt these two approximation methods to obtain 𝑢, in particular with a single-

step power iteration (Eq (2.11)) to keep the computational overhead of using this

method low. Back-propagations are incurred when computing 𝐻 · 𝑢, where finite

difference method (Eq (2.12)) uses two evaluation of gradients to approximate this

45

value. Therefore, a single-step power iteration incurs two additional back-propagations.

BFGS: Pseudo-Newton Direction

Broyden–Fletcher–Goldfarb–Shanno algorithm (BFGS) [13] is a second-order optimiza-

tion method that approximates the Newton direction 𝐻−1 · 𝑔, where 𝐻 is the Hessian

matrix and 𝑔 is the first-order gradients. BFGS iteratively approximates the inverse

of Hessian, 𝐻−1, and updates the parameters subjected to the optimization using the

Quasi-Newton direction 𝐻−1 · 𝑔 using the line search to obtain the step size. For our

purpose, we are interested in finding a Quasi-Newton direction that incorporates the

second-order curvature information only for initialization, instead of full second-order

optimization. Thus, we omit the line search, and instead use the Quasi-Newton

direction 𝐻−1 · 𝑔 for initializing with the fixed vector size 𝜖. Furthermore, similar as

in the case for Eigen, we only use a single-step approximation for 𝐻−1 to limit the

computational overhead. As such, the resulting computation is:

∆𝑔 =
𝜕𝑙(𝑓(𝑥′), 𝑡)

𝜕𝑥′

⃒⃒⃒
𝑥′=𝑥+𝑑

− 𝜕𝑙(𝑓(𝑥′), 𝑡)

𝜕𝑥′

⃒⃒⃒
𝑥′=𝑥

(2.13)

𝐻−1 = (𝐼 −
𝑑∆𝑇

𝑔

∆𝑇
𝑔 𝑑

)(𝐼 − ∆𝑔𝑑
𝑇

∆𝑇
𝑔 𝑑

) +
𝑑𝑑𝑇

∆𝑇
𝑔 𝑑

(2.14)

where 𝑑 ∼ 𝒩 (0, 𝐼) and scaled to have a size 𝛿 (i.e., ‖𝑑‖2 = 𝛿). Note that Eq (2.13)

requires two back-propagations, similar to Eq (2.12). However, unlike approximating

the principal eigenvector, where intermediate values are vectors (𝑢 or 𝑔) or inner-

products of matrices and vectors (𝐻 · 𝑢), this method directly computes the inverse of

the Hessian matrix, 𝐻−1, incurring additional memory consumption. For example,

when a flattened (e.g., convert a 3-dimensional input sample to a 1-dimensional vector)

input sample has the size of 𝑚, this method needs additional 𝑚2 memory space to

store 𝐻−1. Therefore, using BFGS might limit the size of batch during evaluation.

46

2.3.3 Impact on measurement of robustness

We test the effectiveness of these two initialization methods under the same number

of total back-propagations. That is, for 𝑛 (𝑛 > 2) total back-propagations, PGD

with random initialization uses 𝑛 first-order iterations (Eq (1.5)), and PGD using

either of these initialization methods uses 2 back-propagations for initialization and

𝑛− 2 first-order iterations. Figure 2-2 (b) shows accuracy against perturbed examples

generated by PGD with different initialization methods, as a function of the number

of total back-propagations. Observe that the proposed initialization methods, Eigen

and BFGS, provide stronger attack success rate. For example, when using only 5

back-propagations, PGD with Eigen and PGD with BFGS result in the accuracy of

4.82% and 3.60%, respectively, while the original PGD results in the acuracy of 7.11%.

Therefore, exploiting the second-order information for initialization can reduce the

number of total back-propagations needed by PGD to find adversarial perturbations

when the model trained with specific regularization techniques boosts the apparent

accuracy.

2.4 Summary

In this chapter, we analyzed three phenomena that inflates adversarial accuracy of

deep neural networks. These phenomena affect many conventionally trained deep

neural networks, not limited to those using specific defense methods. To summarize,

we identify: 1) the zero loss phenomenon caused by numerical saturation of loss;

2) innate non-differentiability of popularly used ReLU activation and MaxPool

operation; 3) certain training conditions increasing the number of iterations used

by PGD to successfully find adversarial perturbations. For each case, we provide

the compensation methods that assist attack methods to compute gradients more

accurately and efficiently.

47

48

Chapter 3

Case Studies

This chapter demonstrates how the three phenomena leading to overestimation of

adversarial robustness, discussed in Chapter 2, affect broad range of deep neural

networks and obscure analyses on practically important cases, such as comparing

adversarial robustness of models with different capacity and regularization techniques.

To illustrate the impact of these three phenomena, we compare the accuracy against

perturbed examples generated by the conventional attack methods and the compen-

sated attack methods from Chapter 2. For the comparison, both the conventional and

the compensated attack methods are set to have the same number of back-propagations

and the number of effective re-starts if stochasticity is involved. Appendix B details

the settings for how the compensation methods are applied in cascading manner.

3.1 Model capacity and adversarial robustness

In this section, we explore the relationship between model capacity and adversarial

robustness. As briefly discussed in Section 1.4, recent works suggest that larger model

capacity can benefit adversarial robustness. We investigate this relationship for two

settings of scaling model capacity: 1) training deep neural networks with the same

architecture, but with different number of neurons per layer (in short, we will refer

it as ‘width’) from the scratch, and 2) pruning weights with small magnitude [18]

from a pre-trained model with large capacity. We begin this section by summarizing

49

previous works that studied on this relationship. Then, we analyze the two settings

and reveal how overestimated adversarial robustness can confuse the understanding of

this relationship.

3.1.1 Overview of related works

Madry et al. observed that a model with more neurons per layer shows higher accuracy

against perturbed examples generated by FGSM and PGD [29]. They found that this

observation holds for both the conventionally trained models and the adversarially

trained models. For example, they showed that a ResNet model with 10 times larger

number of filters for convolutional layers has 3 − 5% better adversarial accuracy

against FGSM and PGD compared to the baseline ResNet model [29]. In such case,

the number of total parameters used in convolutional layers will increase by 102, since

the number of filters in the layer 𝑖 becomes the number of input channels in the layer

𝑖+ 1. Similar results have been reported by Deng et al., who investigated the trade-off

between clean accuracy and adversarial robustness. These works trained models under

the same condition except for their widths, and empirically measured adversarial

robustness with accuracy against perturbed examples generated by attack methods.

We adopt this experimental framework for Section 3.1.2.

The impact of pruning on adversarial robustness has been studied for the purpose

of reducing the computational overhead when using adversarial training. That is,

as Madry et al. identified, adversarial training often requires larger model capacity

to converge and achieve higher accuracy, and recent works focused on reducing the

capacity of adversarially trained models via pruning to mitigate the computational

burden. Ye et al. and Gui et al. proposed methods to impose pruning constraints (as in

the level of sparsity or the structure of sparsity) in adversarial training [52, 16]. On the

other hand, Sehwag et al. more recently argued that adversarial training or provably

robust training might not be compatible with pruning, and proposed a method to

preserve adversarial robustness while reducing the model capacity [42]. In our work,

we focus on benchmarking how pruning affects adversarial robustness of undefended,

conventionally trained models. This allows us to investigate the relationship between

50

Table 3.1: The number of parameters and the total number of multiplications required
for a single forward pass during inference. We show these metrics for different deep
neural network architectures used for each dataset discussed in Section 3.1.2. Also, we
compare these metrics for the models with the same architecture, but with different
widths (showing the smallest and the largest width considered in Section 3.1.2 for
each architecture). Note that parameters and multiplications for batch normalization
are not considered, as batch normalization can be folded with preceding layer during
the inference when implementing the model.

CIFAR10, SVHN TinyImageNet

Simple (BN) WRN 28 VGG 11 (BN) WRN 50

𝑤 = 1 𝑤 = 16 𝑤 = 2 𝑤 = 10 𝑤 = 1 𝑤 = 4 𝑤 = 1 𝑤 = 5

Parameters (M) 0.13688 34.6149 1.46761 36.4792 12.5788 157.140 23.9178 333.030
Multiply (G) 0.00183 0.41460 0.21435 5.24333 0.61441 9.70163 1.30608 18.1001

the model capacity and inherent adversarial robustness of the model without deploying

defense methods. We use iterative weight pruning that removes weights with smallest

magnitude [18] in Section 3.1.3.

3.1.2 Training models with different capacity from scratch

We benchmark accuracy of models with different widths against perturbed exam-

ples generated by attack methods, for diverse architectures and datasets. ‘Width’

determines the number of output neurons in each layer; for example, the width of

convolutional layer is determined by the number of filters. Note that if the width of a

model is multiplied by 𝑁 , the number of parameters in that model will be roughly

multiplied by 𝑁2. This is because the number of output filters in the 𝑖th layer becomes

the number of input channels in the 𝑖 + 1th layer. Exceptions are the first and the

last layer, where the input to the first layer is fixed as the input sample’s dimension

and the output of the last layer is fixed as the total number of classes.

Generally, we observe that the three phenomena can inflate the accuracy of mod-

els with larger capacity more frequently, and that using the compensation methods

can reduce the gap in the accuracy between small and large models. However, this

observation does not homogeneously hold for all datasets and architectures, and we

explain the relationship between the model capacity and adversarial robustness for

51

CIFAR-10 [25], SVHN [32], and TinyImageNet [40] datasets. In order to provide

a sense for how small and large these models are, we present the number of pa-

rameters and the total number of multiplications required for a single forward pass

during the inference, for each model architecture we consider in this section (Table 3.1).

CIFAR-10

Figure 3-1 shows the relationship between the model capacity and adversarial ro-

bustness for Simple (a), Simple-BN (b), and WRN (c) architectures. The figure

describes the difference in clean and adversarial accuracy of the models with different

relative widths, with respect to the accuracy of the model with the smallest relative

width. We find that larger models have better adversarial accuracy, coherent with

previous observations. However, the gap in adversarial accuracy between models with

different capacity is actually smaller after compensating for the zero-loss and the

non-differentiability phenomena. For example, PGD with 𝜖 = 1.0 in 𝐿2 norm gives

10.14% difference in adversarial accuracy between Simple models with width 1 and

16, but compensated PGD gives only 0.41% difference under the same conditions.

Similar observations hold for Simple-BN and WRN models. For models trained on

CIFAR-10, we observe that the zero-loss phenomenon mostly accounts for overesti-

mated adversarial robustness of models with larger capacities. These observations

imply that the benefit of using larger models for higher adversarial accuracy could

have been overestimated due to these two phenomena.

SVHN

Figure 3-2 shows the same relationship for models with Simple-BN (a) and WRN (b)

architectures trained on SVHN dataset. Unlike the models trained on CIFAR-10, we

observe that the compensated attack methods do not decrease the gap in the accuracy

between large and small models. Rather, we find that the gap between models with

different widths is small from the first place, and that compensating often increases the

gap. In other words, adversarial accuracy of the smaller models is more overestimated

compared to that of the larger ones for SVHN.

52

1 2 4 8 16
Relative model width

0

5

10

15

20

25

Ac
cu

ra
cy

 d
iff

er
en

ce
 (%

)

Clean
FGSM, = 4

255 , L

PGD, = 4
255 , L

FG(S)M, = 1.0, L2
PGD, = 1.0, L2

(a)

1 2 4 8 16
Relative model width

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Ac
cu

ra
cy

 d
iff

er
en

ce
 (%

)

Clean
FGSM, = 4

255 , L

PGD, = 4
255 , L

FG(S)M, = 1.0, L2
PGD, = 1.0, L2

(b)

2 5 10
Relative model width

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Ac
cu

ra
cy

 d
iff

er
en

ce
 (%

)

Clean
FGSM, = 4

255 , L

PGD, = 4
255 , L

FG(S)M, = 1.0, L2
PGD, = 1.0, L2

(c)

Figure 3-1: Comparison of clean accuracy and accuracy against perturbed examples
generated by attack methods for (a) Simple, (b) Simple-BN, and (c) WRN models with
different relative widths , all trained on CIFAR-10. We present difference of accuracy
of these models with respect to accuracy of the model with width 1 for Simple and
Simple-BN and width 2 for WRN. Dashed and solid line represent accuracy against
baseline and compensated attacks, respectively.

53

1 2 4 8 16
Relative model width

0

2

4

6

8

10

12

Ac
cu

ra
cy

 d
iff

er
en

ce
 (%

)

Clean
FGSM, = 2

255 , L

PGD, = 2
255 , L

FG(S)M, = 0.5, L2
PGD, = 0.5, L2

(a)

2 5 10
Relative model width

4

2

0

2

4

6

8

Ac
cu

ra
cy

 d
iff

er
en

ce
 (%

)

Clean
FGSM, = 2

255 , L

PGD, = 2
255 , L

FG(S)M, = 0.5, L2
PGD, = 0.5, L2

(b)

Figure 3-2: Accuracy difference (with respect to the accuracy of the model with
width=1 for Simple-BN and width=2 for WRN 28) of (a) Simple-BN models and (b)
WRN 28 models trained on SVHN with different relative widths. Dashed and solid
lines represent accuracy against baseline and compensated attacks, respectively.

TinyImageNet

For TinyImageNet dataset, which is a downscaled dataset from ILSVRC classification

dataset [40], we experiment on three different architectures, VGG with depth of 11,

VGG-BN with depth of 11, and WRN with depth of 50. Figure 3-3 shows the result

on these architectures. We find that models with VGG and VGG-BN architectures

show similar behavior as models trained on CIFAR-10; that is, robustness of the larger

models are overestimated and the compensation methods reduce the gap between small

and large models. However, models with WRN architecture behave like models trained

on SVHN, without significant difference in robustness between models with different

54

1 2 4
Relative model width

0

5

10

15

20

25

Ac
cu

ra
cy

 d
iff

er
en

ce
 (%

)

Clean
FGSM, = 4

255 , L

PGD, = 4
255 , L

FG(S)M, = 0.5, L2
PGD, = 0.5, L2

(a)

1 2 4
Relative model width

0

1

2

3

4

5

Ac
cu

ra
cy

 d
iff

er
en

ce
 (%

)

Clean
FGSM, = 4

255 , L

PGD, = 4
255 , L

FG(S)M, = 0.5, L2
PGD, = 0.5, L2

(b)

1 2 5
Relative model width

3

2

1

0

1

2

Ac
cu

ra
cy

 d
iff

er
en

ce
 (%

)

Clean
FGSM, = 4

255 , L

PGD, = 4
255 , L

FG(S)M, = 0.5, L2
PGD, = 0.5, L2

(c)

Figure 3-3: Accuracy difference (with respect to the model with width=1) of (a) VGG
11 models, (b) VGG-BN 11 models, and (c) WRN 50 models trained on TinyImageNet
with different relative widths. Dashed and solid lines represent accuracy against
baseline and compensated attacks, respectively.

55

widths. Overall, these experiments show that the relationship between model capacity

and adversarial robustness might not be homogeneous across different architectures

and datasets, and that the source of overestimation of adversarial robustness might

differ as well.

3.1.3 Incrementally removing weights via pruning

We consider weight pruninig, a popular technique to reduce the number of parameters

in a model by removing weights deemed less important, and its relationship with

adversarial robustness. For the experiment, we first train a deep neural network with

WRN architecture and large width (𝑤 = 10) on CIFAR-10 dataset. Then, we prune

this model by removing weights with small magnitudes and finetune the resulting

sparse model for few epochs. We repeat this process until we remove 92.5% of weights

from the initial model. We measure clean accuracy and accuracy against perturbed

examples generated by PGD for the original dense model and the sparse models

(Figure 3-4). We experiment for two different regularization schemes, one without any

explicit regularization technique (a), and one with weight decay regularization during

training and finetuning (b).

Without weight decay

We observe that accuracy against perturbed examples generated by the conventional

PGD significantly deteriorates (> 25%) as the level of sparsity increases, although

clean accuracy only drops about 1% (Figure 3-4 (a)). However, we find that the adver-

sarial accuracy of the dense model is inflated mostly due to the zero-loss phenomenon,

thus using the compensation methods reveals that the accuracy drops only by 1%.

In this case, one might wrongly conclude that pruning harms adversarial robustness

without proper compensation methods.

With weight decay

Unlike the case without weight decay, we observe that the accuracy against perturbed

examples slightly increases along with the level of sparsity (Figure 3-4 (b)). For

56

100.0 75.0 56.2 42.2 31.6 23.7 17.8 13.3 10.0 7.5
Surviving weights (%)

25

20

15

10

5

0
Ac

cu
ra

cy
 d

iff
er

en
ce

 (%
)

-1.01%

-27.63%

-1.00%

-25.69%

-0.04%

Clean
PGD, = 0.3, L2
PGD, = 0.5, L2

(a)

100.0 75.0 56.2 42.2 31.6 23.7 17.8 13.3 10.0 7.5
Surviving weights (%)

1

0

1

2

3

Ac
cu

ra
cy

 d
iff

er
en

ce
 (%

)

-0.39%

3.52%

0.38%

1.09%

0.30%

Clean
PGD, = 0.3, L2
PGD, = 0.5, L2

(b)

Figure 3-4: Change of clean accuracy and accuracy against perturbed examples
generated by attack methods through iterative pruning on an over-parameterized
WRN 28 (trained on CIFAR-10), trained and finetuned without explicit regularization
(a) and with weight decay (b). Dashed and solid lines represent accuracy against
baseline attacks and compensated attacks, respectively. The total number of back-
propagations is fixed to 9.

57

example, the accuracy evaluated using PGD with 𝜖 = 0.3 in 𝐿2 norm increases by

3.52% compared to the original dense model at the end of pruning. While this behavior

seems contradictory to the case without weight decay discussed above, we find that

compensating for the three phenomena, especially using the second-order initialization

method for PGD, brings this increase in accuracy down to 0.40%. During iterative

pruning and finetuning of the resulting model, finetuning can add up significant

number of epochs (e.g., 10 epochs per finetune × 10 pruning iterations→ 100 epochs).

We think using weight decay for 100 additional epochs can act similar as excessive

weight decay regularization discussed in Section 2.3, inflating the apparent accuracy

when PGD uses fixed number of iterations as in this case. Therefore, although pruning

does not significantly improve or harm adversarial robustness for this WRN model

trained on CIFAR-10 dataset, overestimated empirical robustness can confuse the

conclusion.

3.2 Regularization techniques for robustness

In this section, we investigate regularization techniques that have been proposed for

better generalization or robustness, on whether the accuracy on perturbed examples

is overestimated due to the three phenomena discussed in Chapter 2. This case study

can guide which regularization techniques to use for adversarial robustness, and help

understanding characteristics of those techniques. We first introduce regularization

techniques we explore in this section (Section 3.2.1) and show experiments on those

techniques (Section 3.2.2).

3.2.1 Overview of techniques

Regularization can exist in various forms, from explicit penalty term added to loss

function to data augmentation and pre-processing. In this section, we focus on few

among them that claims to improve generalization or robustness. Some of them

explicitly add penalty term to loss function, while some others can be thought as data

augmentation.

58

Weight Decay

Weight decay penalizes the Frobenius norm of weight matrices, reducing the magnitude

of weights in effect. The resulting loss function 𝑙′(𝑓, 𝑥, 𝑡) during training where 𝑓 is

the model with 𝐿 layers, 𝑥 is the input sample, and 𝑡 is the ground truth label is:

𝑙′(𝑓, 𝑥, 𝑡) = 𝑙(𝑓(𝑥), 𝑡) + 𝜆

𝐿∑︁
𝑖=1

‖𝑊𝑖‖2𝐹 (3.1)

𝑊𝑖 represents the weight matrix of the 𝑖th layer of 𝑓 . 𝜆 controls the strength of the

penalty term. Weight decay can be thought as 𝐿2 penalty on weights, but note that

it cannot be directly associated with margins of classification boundaries as in the

case of linear models.

Spectral Normalization

Spectral normalization [30] is designed to set the Lipschitz constant of each layer to

be 1, to stabilize the training of Generative Adversarial Networks [14] and to improve

generalization of models. Miyato et al. proposed to update the approximation of the

singular value 𝜎(𝑊𝑖) of each layer 𝑊𝑖 (𝑖 = 1, ..., 𝐿) throughout the training phase, and

divide the weight matrix of each layer with the corresponding 𝜎(𝑊𝑖). Also, similar

form of regularization that penalizes large 𝜎(𝑊𝑖) was used to improve generalization

of deep neural networks and reduce sensitivity to small input perturbations [53]. In

our work, we use spectral normalization following each convolutional or linear layer,

except for those in residual connections of WRN and the last linear classification

layer. Also, spectral normalization is used instead of batch normalization in case batch

normalization is originally used for that layer.

Orthonormal Regularization

Orthonormal regularization [8] has similar motivation as Spectral normalization, such

that it also aims to keep the Lipschitz constant to be 1 to prevent amplification

of noise through layers. Orthonormal regularization induces weight matrices to be

59

orthonormal, such that eigenvalues of 𝑊 𝑇
𝑖 𝑊𝑖 would all become 1. The resulting loss

function is:

𝑙′(𝑓, 𝑥, 𝑡) = 𝑙(𝑓(𝑥), 𝑡) + 𝜆

𝐿∑︁
𝑖=1

‖𝑊 𝑇
𝑖 𝑊𝑖 − 𝐼‖2𝐹 (3.2)

where 𝐼 is an identity matrix with the same size as 𝑊 𝑇
𝑖 𝑊𝑖. Note that this orthonormal

regularization is part of Parseval training proposed by Cisse et al., but we do not con-

sider other elements of Parseval training [8], such as sampling and other regularization

methods for convexity.

Jacobian & Input Gradient Regularization

Jacobian regularization [24] or input gradient regularization [39] can be thought as

a method to reduce the first-order term in the Taylor’s expansion. For small 𝑟 (e.g.,

‖𝑟‖ ≪ 1), the Taylor’s expansion is

𝑙(𝑓(𝑥 + 𝑟), 𝑡) ≃ 𝑙(𝑓(𝑥), 𝑡) + 𝑟𝑇 · ∇𝑥𝑙(𝑓(𝑥), 𝑡) + 𝑂(‖𝑟‖2) (3.3)

For Jacobian regularization, the first-order term is the Jacobian matrix, and we have

to compute 𝜕𝑧𝑖
𝜕𝑥

= [𝜕𝑧𝑖
𝑥1
, ..., 𝜕𝑧𝑖

𝑥𝑚
]𝑇 for all 𝑖 where 𝑧 is the output logits and 𝑚 is the

dimension of the flattened input sample 𝑥. The resulting loss function is

𝑙′(𝑓, 𝑥, 𝑡) = 𝑙(𝑓(𝑥), 𝑡) + 𝜆

⎯⎸⎸⎷ 𝐶∑︁
𝑖=1

𝑚∑︁
𝑗=1

(
𝜕𝑧𝑖
𝜕𝑥𝑗

)2 (3.4)

where 𝐶 is the number of class, or the dimension of 𝑧. Because most libraries for

automatic differentiation, such as PyTorch, support differentiation on the scalar value,

using Jacobian regularization requires 𝐶 back-propagations to compute the penalty

term. For datasets with large 𝐶, such as ImageNet with 1000 classes and TinyImageNet

with 200 classes, this property can be computationally consuming.

Input gradient regularization similarly penalizes the first-order term, but directly

use the gradients of loss with respect to input samples. Thus, this method only

requires one additional back-propagation to compute the penalty term. The resulting

60

loss function is:

𝑙′(𝑓, 𝑥, 𝑡) = 𝑙(𝑓(𝑥), 𝑡) + 𝜆
𝑚∑︁
𝑗=1

(
𝜕𝑙(𝑓(𝑥), 𝑡)

𝜕𝑥𝑗

)2 (3.5)

We use input gradient regularization for our experiments.

Adversarial Training

As briefly introduced in Chapter 1, adversarial training uses perturbed examples as

input samples during the training to improve adversarial robustness of the model.

Goodfellow et al. proposed to use perturbed examples as a form of data augmentation,

and trained models using both clean input samples and perturbed examples [15].

Madry et al. interpreted adversarial training in the perspective of robust optimization

[29]. They showed that adversarial training solely using perturbed examples can be

thought as solving the following min-max optimization problem where the model 𝑓 is

parameterized with 𝜃:

𝜃* = arg min
𝜃

𝑙(𝑓𝜃(𝑥𝑎𝑑𝑣), 𝑡) = arg min
𝜃

max
𝑥′

𝑙(𝑓𝜃(𝑥
′), 𝑡) (3.6)

where 𝑥′ is constrained to be within the neighborhood (e.g. 𝜖 distance) of the clean

sample 𝑥. In this formulation, attack methods are the approximation of the inner

maximization problem.

3.2.2 Experiments

First, we train models with WRN architecture on CIFAR-10 dataset using different

regularization techniques. Details of the training hyperparameters are presented

in Appendix B. Then, we measure each model’s accuracy on perturbed examples

generated by attack methods, with and without using the compensation methods

(Table 3.2). The table displays adversarial accuracy against attacks with different

perturbation size 𝜖 and the norms (𝐿2, 𝐿∞). We observe that adversarial accuracy of

the model trained with input gradient regularization or adversarial training is least

affected by the compensation methods. That is, improved adversarial robustness

61

Table
3.2:

A
ccuracy

ofW
R

N
28

m
odels

trained
on

C
IFA

R
-10

using
different

regularization
techniques

against
perturbed

exam
ples

generated
by

first-order
attack

m
ethods

in
the

order
ofFG

SM
/R

-FG
SM

/P
G

D
for

stated
perturbation

sizes
𝜖

in
𝐿
∞

norm
(above)

and
𝐿
2

norm
(below

).
W

e
com

pare
the

accuracy
against

baseline
and

com
pensated

attacks.

R
egularization

C
lean

𝜖
=

2
2
5
5

𝜖
=

4
2
5
5

𝜖
=

8
2
5
5

B
aseline

C
om

pensated
B

aseline
C

om
pensated

B
aseline

C
om

pensated

N
one

91.65
33.20

/
46.17

/
1.59

16.48
/

36.06
/

1.23
21.90

/
23.78

/
0.02

5.94
/

11.25
/

0
17.57

/
7.51

/
0

3.36
/

1.30
/

0
W

eight
decay

93.64
40.27

/
49.01

/
2.24

35.50
/

47.26
/

2.00
31.47

/
29.69

/
0.02

20.31
/

27.32
/

0.02
24.78

/
13.62

/
0

6.62
/

9.24
/

0
W

eight
decay

excess
91.52

46.45
/

53.60
/

8.68
46.45

/
53.60

/
5.12

47.83
/

45.48
/

1.85
36.46

/
41.58

/
0.63

42.91
/

33.05
/

0.32
16.90

/
24.24

/
0.01

Spectral
norm

87.31
42.64

/
58.19

/
25.62

33.52
/

57.66
/

23.50
31.50

/
40.79

/
7.50

9.86
/

31.67
/

2.25
21.10

/
27.45

/
1.77

1.46
/

7.84
/

0.01
O

rthonorm
al

93.47
36.54

/
48.34

/
2.48

25.91
/

44.66
/

2.40
27.19

/
27.29

/
0.03

13.25
/

19.76
/

0.01
21.78

/
10.97

/
0

8.42
/

5.18
/

0
Input

G
radient

89.75
55.06

/
74.21

/
49.14

53.52
/

73.72
/

48.93
24.93

/
53.03

/
12.80

23.18
/

52.14
/

12.79
7.51

/
20.72

/
0.33

3.56
/

19.86
/

0.25
A

dv
T
raining

82.67
75.44

/
78.87

/
75.03

74.97
/

78.76
/

74.64
67.62

/
75.11

/
65.58

66.46
/

74.81
/

64.82
54.03

/
66.93

/
46.89

52.18
/

66.13
/

45.80

R
egularization

C
lean

𝜖
=

0
.3

𝜖
=

0
.5

𝜖
=

1
.0

B
aseline

C
om

pensated
B

aseline
C

om
pensated

B
aseline

C
om

pensated

N
one

91.65
49.86

/
53.78

/
26.29

19.59
/

38.64
/

0.83
47.30

/
47.11

/
21.47

11.72
/

21.93
/

0.01
45.33

/
39.07

/
15.20

7.30
/

7.73
/

0
W

eight
decay

93.64
48.53

/
55.92

/
1.82

41.84
/

54.56
/

1.56
41.81

/
45.10

/
0.07

28.21
/

42.17
/

0.02
35.43

/
28.88

/
0

11.26
/

20.55
/

0
W

eight
decay

excess
91.52

56.10
/

57.61
/

9.21
51.12

/
56.10

/
4.55

53.23
/

53.74
/

2.79
44.23

/
50.97

/
0.75

50.48
/

44.72
/

0.92
26.82

/
37.35

/
0.09

Spectral
norm

87.31
43.34

/
58.44

/
28.15

33.51
/

57.80
/

22.25
38.30

/
45.49

/
21.52

16.43
/

39.40
/

4.45
34.96

/
36.50

/
18.72

4.48
/

15.39
/

0.03
O

rthonorm
al

93.47
43.24

/
53.37

/
2.30

29.43
/

47.18
/

1.73
36.75

/
41.29

/
0.15

19.83
/

31.24
/

0.02
30.57

/
25.51

/
0.05

13.16
/

14.42
/

0
Input

G
radient

89.75
54.07

/
74.04

/
48.41

52.46
/

73.48
/

48.10
32.67

/
60.09

/
19.55

30.69
/

59.20
/

19.51
10.32

/
30.43

/
1.90

6.38
/

29.31
/

1.16
A

dv
T
raining

83.07
73.87

/
78.35

/
73.36

73.40
/

78.21
/

73.00
67.27

/
75.27

/
65.56

66.58
/

75.08
/

64.98
52.33

/
67.14

/
47.23

50.61
/

66.52
/

46.31

62

when using these regularization techniques is not overestimated due to the three

phenomena we discussed in Chapter 2. However, adversarial accuracy can be partially

overestimated for other regularization techniques, such as weight decay and spectral

normalization. For example, for PGD with 𝜖 = 4
255

in 𝐿∞ norm, the model with

spectral normalization shows 5.25% drop in the accuracy against perturbed examples

generated by this PGD when the compensation methods are applied. Nevertheless,

the models with weight decay and spectral normalization show superior robustness

compared to the model with no explicit regularization even after compensating for

the three phenomena.

Another observation to note is that the drop in adversarial accuracy when using

the compensation methods is often smaller for attacks with small 𝜖 (e.g., 𝜖 = 2
255

for

𝐿∞ norm or 𝜖 = 0.3 for 𝐿2 norm) compared to that of attacks with larger 𝜖. This

is evident for the models whose adversarial accuracy against attacks with larger 𝜖 is

comparable to that with smaller 𝜖. For example, the model trained with weight decay

regularization shows 4.77% drop in adversarial accuracy against FGSM with 𝜖 = 2
255

in 𝐿∞ norm. However this model shows 11.15% drop when 𝜖 = 4
255

, and 21.42% drop

when 𝜖 = 8
255

for the same attack and compensation methods. Therefore, one has to

be more cautious when evaluating adversarial robustness for larger 𝜖.

We repeat this experiment for Simple and Simple-BN architectures (Table 3.3).

Observe that the Simple models trained with weight decay and spectral normalization

show less drop in adversarial accuracy compared to the WRN models with the same

regularization techniques. Furthermore, adversarial accuracy of Simple models is

generally less affected by the compensation methods compared to the case of Simple-

BN and WRN models. For example, Simple models’ adversarial accuracy against

PGD changes only about 1% with the compensation methods.

Furthermore, the regularization techniques show different behaviors for different

datasets as well (Table 3.4, Table 3.5). For example, adversarial accuracy of the

WRN models trained with input gradient regularization drops when the compensation

methods are applied in the case of TinyImageNet. On the other hand, the models

trained on SVHN do not show large drop in adversarial accuracy when the compensa-

63

Table 3.3: Accuracy of Simple and Simple-BN models trained on CIFAR-10 using
different regularization techniques against perturbed examples generated by baseline
and compensated attack methods, in the order of FGSM/R-FGSM/PGD with 𝜖 = 4

255

in 𝐿∞ norm. Note that spectral normalization for Simple-BN is same as that for
Simple, as spectral normalization layer is used instead of batch normalization layer.

Regularization Simple

Clean Baseline Compensated

None 84.75 19.50 / 30.78 / 2.55 8.74 / 28.31 / 1.58
Weight decay 85.06 17.74 / 35.30 / 3.40 11.08 / 33.35 / 3.08

Weight decay excess 84.92 15.14 / 36.30 / 3.29 11.64 / 34.22 / 3.20
Spectral norm 81.47 22.33 / 47.20 / 13.32 20.29 / 45.96 / 13.20
Orthonormal 84.82 16.38 / 39.05 / 5.12 12.89 / 37.01 / 5.21
Input gradient 84.26 24.98 / 50.24 / 14.91 22.81 / 48.86 / 14.84
Adv training 67.04 54.14 / 60.61 / 53.48 52.95 / 60.05 / 52.19

Regularization Simple-BN

Clean Baseline Compensated

None 87.09 28.66 / 29.81 / 6.26 6.89 / 17.93 / 0.07
Weight decay 89.84 13.62 / 18.32 / 0.13 4.69 / 15.15 / 0.01

Weight decay excess 87.58 6.10 / 16.80 / 0.03 4.90 / 15.33 / 0.03
Spectral norm - - -
Orthonormal 88.59 9.53 / 18.92 / 0.07 4.05 / 16.25 / 0.06
Input gradient 84.67 26.74 / 50.98 / 15.02 23.71 / 49.68 / 15.00
Adv training 70.91 57.40 / 64.07 / 56.48 56.36 / 63.54 / 55.43

64

Table 3.4: Accuracy of Simple-BN and WRN 28 models trained on SVHN using
different regularization techniques against perturbed examples generated by baseline
and compensated attack methods, in the order of FGSM/R-FGSM/PGD with 𝜖 = 4

255

in 𝐿∞ norm.

Regularization Simple-BN

Clean Baseline Compensated

None 94.29 28.60 / 45.39 / 2.80 19.10 / 41.31 / 2.38
Weight decay 95.37 28.06 / 51.61 / 4.57 23.90 / 49.64 / 4.64

Weight decay excess 92.85 26.76 / 51.31 / 6.51 22.56 / 49.19 / 6.33
Spectral norm 88.26 32.83 / 59.93 / 22.83 29.45 / 57.95 / 22.50
Orthonormal 94.89 24.37 / 46.15 / 1.72 15.24 / 40.82 / 1.66

Input Gradient 91.43 39.50 / 65.73 / 25.52 34.64 / 63.38 / 24.99
Adv training 83.75 66.63 / 74.87 / 63.41 64.07 / 74.34 / 61.95

Regularization WRN 28

Clean Baseline Compensated

None 95.42 49.74 / 60.31 / 4.06 34.30 / 55.05 / 3.65
Weight decay 96.38 63.99 / 70.25 / 8.71 56.25 / 68.12 / 7.31

Weight decay excess 95.03 57.56 / 66.51 / 13.86 51.95 / 64.31 / 12.14
Spectral norm 94.63 40.91 / 63.94 / 22.05 37.03 / 61.84 / 21.97
Orthonormal 96.25 56.78 / 65.28 / 5.78 39.59 / 59.80 / 4.87
Input gradient 95.45 50.22 / 76.16 / 35.49 46.49 / 74.80 / 35.13
Adv training 91.91 78.27 / 85.15 / 75.58 76.16 / 84.76 / 74.47

Table 3.5: Accuracy of WRN 50 models trained on TinyImageNet using different
regularization techniques against perturbed examples generated by baseline and
compensated attack methods, in the order of FGSM/R-FGSM/PGD with 𝜖 = 2

255
in

𝐿∞ norm.

Regularization Clean Baseline Compensated

None 57.24 24.38 / 27.90 / 8.50 10.40 / 23.76 / 5.30
Weight decay 55.22 5.80 / 14.22 / 0.68 4.68 / 13.30 / 0.64

Weight decay excess 57.54 9.56 / 19.88 / 2.06 7.04 / 17.64 / 1.84
Input gradient (𝜆 = 0.01) 53.70 24.66 / 27.96 / 12.94 10.76 / 24.88 / 6.68
Input gradient (𝜆 = 0.05) 55.58 24.56 / 28.62 / 14.52 12.50 / 26.94 / 8.66

65

tion methods are applied, even for the model trained with no explicit regularization

that typically showed large drop in other datasets. Therefore, whether adversarial

robustness of a regularization technique is overestimated depends on the architecture

of the model and the dataset on which the model has been trained.

3.3 Impact on evaluation against black-box attacks

In this section, we analyze whether the three phenomena that inflates empirical

adversarial robustness affect the black-box attack scenarios, where one generates

perturbations using attack methods on the substitute model without direct access

to the target model. From the following experiments, we show that the transferred

examples can be less effective when the substitute model suffers from those three

phenomena, and that using the proposed compensation methods can be beneficial for

the black-box scenarios as well.

We experiment for the following black-box scenarios: 1) the substitute model has

the same architecture as the target model, but has different width and is independently

trained (Table 3.6), 2) the substitute model has the same architecture and width, but

is trained independently using different regularization technique (Table 3.7), and 3)

the substitute model has different architecture from that of the target model (Table

3.8). For all scenarios, we train models on CIFAR-10. We observe that black-box

adversarial accuracy is overestimated when the substitute model suffers from the

three phenomena, such as the model without explicit regularization in Table 3.7.

Table 3.6: Adversarial robustness of models with Simple architecture and different
relative widths (with fixed weight decay of 5×10−4) under the black-box setting, where
we craft perturbed examples using the source model. We use PGD with 𝜖 = 4

255
in

𝐿∞ norm, and state accuracy (%) against perturbed examples generated by baseline
(before arrow) and compensated (after arrow) attacks. Labels of rows and columns
indicate relative width.

Source Target 1 2 4 8 16
1 - 51.80 → 46.05 61.55 → 56.30 64.33 → 59.29 62.82 → 57.11
2 40.12 → 34.67 - 48.55 → 42.28 50.23 → 44.17 50.49 → 44.26
4 39.83 → 35.55 37.23 → 32.51 - 38.59 → 33.48 39.29 → 34.42
8 38.15 → 33.40 33.24 → 29.04 32.62 → 28.33 - 28.70 → 25.26
16 32.33 → 27.36 30.89 → 26.55 30.08 → 26.26 25.60 → 22.53 -

66

Therefore, this experiment emphasizes that overestimated adversarial robustness is

also problematic for black-box attack scenarios, although we analyze and develop

these phenomena and the compensation methods under the white-box scenario.

67

T
able

3.7:
A

dversarial
robustness

of
W

R
N

28
m

odels
w

ith
different

regularization
techniques

under
the

black-box
setting,

w
here

adversarialexam
ples

are
crafted

on
the

source
m

odel.
T

hese
m

odels
are

independently
trained

under
their

ow
n

training
conditions,but

are
identically

initialized.
W

e
use

the
sam

e
attack

m
ethod

as
in

Table
3.6

Source T
arget

N
one

W
eight

decay
W

eight
decay

excess
Spectral

O
rthonorm

al
Input

gradient
A

dv
train

N
one

22
.5
7
→

9
.5
4

1
9.2

8
→

7.9
2

7
7
.5
1
→

7
4
.7
8

2
8
.04
→

13
.99

80
.28
→

75.61
81

.34
→

81
.12

W
eight

decay
2
5
.37
→

1
9
.5
7

2
3
.7
2
→

1
8
.6
9

7
9
.9
4
→

7
6
.4
0

2
5
.61
→

19
.58

82
.73
→

78.36
81

.49
→

80
.87

W
eight

decay
excess

3
6
.27
→

2
9
.1
7

39.1
7
→

3
0
.3
4

8
1
.5
6
→

7
9
.2
9

4
5
.89
→

35
.75

84
.66
→

81.55
81

.68
→

81
.08

Spectral
5
9
.91
→

5
6
.3
3

68.5
9
→

6
6
.0
3

6
5
.3
4
→

6
2
.7
5

7
0
.20
→

68
.18

72
.95
→

70.76
80

.40
→

79
.89

O
rthonorm

al
2
6
.85
→

1
2
.2
6

21
.0
4
→

7
.7
2

2
6
.6
4
→

1
1
.8
6

7
9
.9
7
→

7
7
.9
6

82
.43
→

79.11
81

.53
→

81
.16

Input
gradient

2
6
.21
→

2
4
.0
3

33.5
9
→

3
1
.3
1

3
2
.7
3
→

3
0
.1
6

5
2
.6
1
→

4
8
.7
1

3
6
.90
→

34
.40

79
.41
→

78
.47

A
dv

train
8
2
.54
→

8
1
.3
4

86.2
5
→

8
5
.5
5

8
3
.4
6
→

8
2
.4
0

7
6
.8
4
→

7
5
.0
4

8
6
.07
→

85
.24

80
.34
→

79.53

68

Table 3.8: Adversarial robustness of models with different architectures (with fixed
weight decay of 5 × 10−4) under the black-box setting. The Simple and Simple-BN
models have width 4, and the WRN 28 model has width 2. Details of evaluation is
same as in Table 3.6

SourceTarget Simple Simple-BN WRN 28
Simple 51.61→ 47.81 65.82→ 62.48

Simple-BN 69.34→ 66.19 37.96→ 31.28
WRN 28 78.54→ 74.23 62.15→ 45.60

69

70

Chapter 4

Comparison with verified lower

bounds of robustness

This chapter investigates input samples on which verification methods discussed in

Section 1.3.2 find adversarial perturbations within the 𝜖-ball, while first-order attack

methods fail to do so. We find that the three phenomena discussed in Chapter 2 can

partially explain such difference, and demonstrate how the compensation methods

can reduce the gap between the verified lower bound and the empirically measured

upper bound of adversarial robustness. Finally, we show how such gap changes as we

sweep for different configurations of PGD, such as PGD’s step size 𝛼 and the number

of iterations it uses.

4.1 Gap between verified lower bounds and empiri-

cally measured upper bounds of robustness

Verification methods provide the provable lower bound of robustness, but usually

there exists a gap between the lower bound and the upper bound obtained from

the accuracy against perturbed examples generated by attack methods. This gap

is generally expected for verification methods that adopt approximations, such as

relaxations for non-convex elements in deep neural elements. However, there still

71

Table 4.1: Comparison of the lower bounds of robustness obtained with MILP [48]
and accuracy (%) against perturbed examples generated by the baseline and the
compensated PGD attacks (5 random starts for both; the total number of back-
propagations is 50 for MNIST and 10 for CIFAR-10). Models are trained to be
provably robust [50] in stated 𝜖-ball for 𝐿∞ norm. For each model, attacks use the
same 𝜖 the model has been trained for as the maximum perturbation size.

Model Lower bound Adversarial accuracy

Baseline Compensated

MNIST-A, 𝜖 = 0.4 52.401 54.96 54.09
MNIST-B, 𝜖 = 0.3 75.812 78.96 77.35
CIFAR-A, 𝜖 = 2

255 49.802 50.95 50.28
CIFAR-B, 𝜖 = 8

255 22.402 23.13 22.46
1 Exact robustness obtained with MILP [48]
2 Values directly taken from Tjeng et al. (2019)

exists a discrepancy even when the verification method is capable of computing the

exact robustness, as in the case of MILP [48] that handle ReLU with Mixed-Integer

Programming. Therefore, this gap indicates that attack methods miss some input

samples although they are not robust within the 𝜖-ball.

We experiment on whether the compensation methods proposed in Chapter 2 can

reduce this gap by tightening the upper bound. In doing so, we can reveal whether

the gap can be explained by the three phenomena that inflates empirical adversarial

robustness. We evaluate the models that are trained to be provably robust using LP

with relaxations [50], and obtain their lower bounds with MILP [48]. For the upper

bounds, we compare accuracy against perturbed examples generated by the baseline

PGD and the compensated PGD. Details of these models are explained in Appendix

C.

Table 4.1 shows the result of comparing the lower bounds and the upper bounds.

First, observe that there is 0.73%-3.15% gap between the lower bounds (an exact

bound for MNIST-A) and the accuracy against perturbed examples generated by

the baseline PGD. Second, using the compensation methods can reduce this gap to

0.06%-1.69%. The major source of difference is the non-differentiability phenomenon

for the models MNIST-A and MNIST-B, and the zero-loss phenomeon for the models

72

Table 4.2: Accuracy (%) against perturbed examples generated by the baseline PGD
and the compensated PGD for MNIST-B for different pairs of PGD configurations
(step size 𝛼 and the number of iterations used by PGD).

PGD Configurations
(Step Size, Number of Iter) Baseline Compensated

(0.01, 30) 80.29 79.82
(0.05, 30) 78.78 76.64
(0.10, 30) 79.42 76.67
(0.01, 50) 78.96 77.35
(0.05, 50) 78.76 76.67
(0.10, 50) 79.16 76.64
(0.01, 100) 78.35 76.66
(0.05, 100) 78.77 76.64
(0.10, 100) 79.35 76.67

CIFAR-A and CIFAR-B. Therefore, identifying the sources of overestimation when

using attack methods and compensating for the causes can tighten the approximation

for the upper bounds of adversarial robustness.

4.2 Sensitivity to attack configurations

In this section, we analyze sensitivity of the accuracy against perturbed examples

for different configurations of PGD. Since PGD’s step size 𝛼 that controls the per-

iteration update in Eq (1.5) and the number of iterations are pre-defined, these

configurations can affect the performance of PGD. In Table 4.2, we report the accuracy

for 9 different configurations (𝛼 = {0.01, 0.05, 0.10}, iter = {30, 50, 100}). We can see

that the compensated PGD consistently provides tighter upper bounds compared to

the baseline PGD. The baseline PGD achieves the best performance of 78.35% when

it uses 𝛼 = 0.01 and 100 iterations, and the compensated PGD tightens the upper

bound by 1.69% for this configuration.

73

74

Chapter 5

Conclusion

5.1 Contributions

Overestimated adversarial robustness has been mainly investigated in the context of

defense methods [36, 2, 49]. However, we demonstrate that the sources of overestimated

adversarial robustness exist in more broader range of deep neural networks, across

different architectures and datasets. Also, those sources of overestimation are not

results of intentional design to obfuscate gradients or induce attacks to be less efficient,

unlike defense methods that relied on similar mechanisms to increase their apparent

adversarial robustness. Thus, our work highlights cautions of using the empirical

approach to evaluate adversarial robustness for more general applications.

To summarize, we identify the three phenomena that inflate the model’s accuracy

against perturbed examples generated by bounded first-order attack methods:

1. Zero loss when the value of cross-entropy loss numerically saturates to zero

(Section 2.1)

2. Innate non-differentiability of ReLU and MaxPool causing gradient shatter-

ing (Section 2.2)

3. Requiring more iterations to find adversarial perturbations when using PGD

on the model trained with certain regularization techniques, such as weight

decay regularization (Section 2.3)

75

For each phenomenon, we provide easy-to-use compensation methods that can be

combined with existing first-order attack methods, such as FGSM, R-FGSM, and

PGD, to sharpen the empirical evaluation metric.

We illustrate consequences of these three phenomena using the case studies with

practical interest (Chapter 3). In particular, we show how the relationship between the

model capacity and adversarial robustness can be misled by these three phenomena

(Section 3.1), and how evaluation of regularization techniques for their benefit on

adversarial robustness can be affected (Section 3.2) as well. Furthermore, we extend

our analyses to the black-box attack scenarios (Section 3.3). Among the observations

we made in Chapter 3, we emphasize that using the compensation methods can change

the analyses on the relationship between the model capacity and adversarial robustness.

Therefore, our proposed compensation methods can be beneficial when benchmarking

energy-efficiency of deep neural networks in relation to their adversarial robustness.

Finally, we explain the gap between the verified lower bounds and the upper

bounds that are empirically measured using the accuracy against perturbed examples

with these three phenomena. We demonstrate using the compensation methods for

these three phenomena can tighten the upper bounds for the models that are trained

to be provably robust (Chapter 4).

5.2 Future work

First, the three phenomena we describe in our work might not be an exhaustive list

responsible for overestimated adversarial robustness. For example, there is still a gap

between the exact value of robustness obtained by MILP and the accuracy against

perturbed examples, even after the compensation in the case of MNIST-A in Table

4.1. There might exist another phenomenon that can explain this gap although we

have not captured them in this work.

Second, there can be better compensation methods for the phenomena we describe

here. Note that our compensation methods involve many heuristics, such as how to

change the target label when compensating for the zero loss phenomenon and choosing

76

the approximation function to be used for BPDA. Therefore, it is possible that our

compensation methods are not optimal.

Third, our analyses are based on empirical observations and experiments, but lack

theoretical groundings. Although the zero loss phenomenon is not a theoretically

expected behavior since it is caused by numerical precision, other two phenomena

might have theoretically grounded explanations.

Lastly, applying our proposed empirical metric using the compensation methods

to practically important domains, such as understanding the impact of other model

compression techniques on adversarial robustness and exploring the optimal architec-

ture considering adversarial robustness, can be valuable. Since these practical studies

often use complex models and datasets, verification methods might be hard to scale

and using precise empirical metric can be important.

77

78

Appendix A

Deep neural network architectures

Simple and Simple-BN architectures are explained in detail in Table A.1. For WRN

28, we modify the number of output channels and pooling window size to fit with

smaller input dimension of CIFAR-10 and SVHN compared to ImageNet. For VGG

and WRN used for TinyImageNet, we use the architectures defined in TorchVision,

and only modify final pooling and fully connected layer’s dimension to fit downscaled

TinyImageNet (3× 64× 64 with 200 classes).

Table A.1: Description of architectures used in this paper. Convolution layers are spec-
ified as (output channel, input channel, kernel height, kernel width, stride, padding).
Maxpool layers are in (kernel height, kernel width, stride, padding), and fully connected
(FC) layers are in (output channel, input channel).

Model Type Description (𝑤: width scaling factor)

Simple

Conv1 : (𝑤 × 8, 3, 3, 3, 1, 1)
Conv2 : (𝑤 × 8, 𝑤 × 8, 3, 3, 1, 1)
MaxPool: (2, 2, 2, 0)
Conv3 : (𝑤 × 16, 𝑤 × 8, 3, 3, 1, 1)
Conv4 : (𝑤 × 16, 𝑤 × 16, 3, 3, 1, 1)
MaxPool: (2, 2, 2, 0)
FC1 : (𝑤 × 128, 𝑤 × 16× 8× 8)
FC2 : (10, 𝑤 × 128)

Simple-BN
Convolution and FC layers are same as in Simple,
but Batch Normalization layer follows each
Convolution layer.

As a default setting, a model is train for 100 epochs using Stochastic Gradient

79

Descent (SGD) with momentum of 0.9 for CIFAR-10 and SVHN. For Simple-BN and

WRN 28, we use starting learning rate of 0.1 and decay it by factor of 10 for every 40

epochs. For Simple, we start with learning rate of 0.01. Models for TinyImageNet

are trained with Adam (𝛽1 = 0.9, 𝛽2 = 0.99), with starting learning rate of 0.001.

Learning rate decay is applied in the same manner. Default batch size is 128, unless

GPU memory is insufficient. Different training conditions deviating from the default

setting, including specific regularizations, are described in Appendix B.

For the datasets, we use CIFAR-10 [25], SVHN [32], and TinyImageNet (a down-

sampled dataset from Russakovsky et al. (2015) [40]). The images are normalized

to the range [0, 1] for both training and testing, and further pre-processing includes

random crop and flips during training. We randomly split 10% of training samples

for validation purpose. For Chapter 4, we additionally use MNIST [27] and follow

pre-processing of Wong and Kolter (2017) for MNIST and CIFAR-10.

80

Appendix B

Experiment settings for Chapter 3

B.1 Compensation methods for attacks

Accuracy against perturbed examples generated by the compensated attacks is mea-

sured in a cascading manner, in which samples that survived the previous stage (i.e.,

an attack fails on that sample to find an adversarial perturbation) are subjected to

the next compensation method. For a single-step attack, such as FGSM or R-FGSM,

we cascade compensation methods in following steps:

1. Apply an attack without any compensation methods.

2. Apply a compensation method for the zero loss phenomenon (default: change

target labels to the second most likely classes)

3. Apply a compensation method for the non-differentiability phenomenon (default:

BPDA with softplus as a substitute for ReLU and 𝐿𝑝 norm pooling with 𝑝 = 5

for max pooling)

4. Apply both compensation methods in 2 and 3 together

This scheme results in 4 effective evaluations, and baseline attacks with stochasticity

(e.g. R-FGSM) are set to have 4 random starts (i.e., a sample has to survive all four

attempts to be considered accurate; in other words, this is equivalent to 4 cascading

81

attacks but without compensation methods) for fair comparison. For iterative attacks,

such as PGD, we cascade as:

1. Apply an attack without any compensation methods (e.g., plain PGD).

2. Apply PGD with an initialization method proposed in Sec 2.3 (default: PGD +

Eigen)

3. Apply a compensation method for the zero loss phenomenon with plain PGD

(default: change target labels to the second most likely classes)

4. Apply both compensation methods in 2 and 3 together

5. Apply a compensation method for the non-differentiability phenomenon along

with compensation methods in 2 and 3 (default: BPDA with softplus as a

substitute for ReLU and 𝐿𝑝 norm pooling with 𝑝 = 5 for max pooling)

Note that for iterative attacks, we do not test for every possible combination of

compensation methods for the three phenomena. Resulting scheme has 5 effective

evaluations, and baseline attacks are set to have 5 random starts. For PGD attacks

in subsequent experiments, we use total 9 back-propagations (9 iterations without

initialization methods of Sec 2.3 or 7 iterations with those initialization methods)

as a default value. When a compensation method is not effective for a given model,

just using another random start can be more effective than using that compensation

method. In such case, accuracy against the baseline attacks can be lower than accuracy

against the compensated attacks.

82

B.2 Experiment settings for Section 3.1.1

Table B.1: Training hyperparamters of models used in Section 3.1.1

Dataset Architecture Training condition

CIFAR-10,
SVHN

Simple

Epochs: 100, Batch size: 128
Optimizer: SGD with momentum of 0.9
Learning rate: start with 0.01, decay by factor of 10 every 40 epochs
Regularization: fixed weight decay of 5× 10−4

Simple-BN,
WRN 28

Epochs: 100, Batch size: 128
Optimizer: SGD with momentum of 0.9
Learning rate: start with 0.1, decay by factor of 10 every 40 epochs
Regularization: fixed weight decay of 5× 10−4

TinyImageNet
VGG 11

Epochs: 100, Batch size: 128 (96 for scale factor 4)
Optimizer: Adam (𝛽1 = 0.9, 𝛽2 = 0.99)
Learning rate: start with 10−4. decay by factor of 10 every 40 epochs
Regularization: none

VGG-BN 11

Epochs: 100, Batch size: 128 (96 for scale factor 4)
Optimizer: Adam (𝛽1 = 0.9, 𝛽2 = 0.99)
Learning rate: start with 10−3. decay by factor of 10 every 40 epochs
Regularization: none

WRN 50

Epochs: 100, Batch size: 128
Optimizer: Adam (𝛽1 = 0.9, 𝛽2 = 0.99)
Learning rate: start with 10−3. decay by factor of 10 every 40 epochs
Regularization: fixed weight decay of 5× 10−4

B.3 Experiment settings for Section 3.1.2

For weight pruning, we initially train a WRN 28 model with width scale factor of

10. The model is trained for 100 epochs using SGD with momentum of 0.9 as an

optimizer, with starting learning rate of 0.1, which is decayed by factor of 10 every 40

epochs. We use early stopping based on the validation accuracy. Batch size is fixed

to 128. To compare the impact of using weight decay, we train two models with and

without weight decay of 5× 10−4 with otherwise same training conditions as stated.

We iteratively remove weights with small magnitude as in typical weight pruning.

To be specific, in each pruning iteration, we remove 25% of total weights from

convolution layers based on their magnitude, and finetune for 10 epochs with learning

rate of 0.001. Otherwise, finetuning conditions are same as training conditions.

83

However, note that the optimizer is initialized at each pruning iteration so that the

momentum term from previous iteration (which contains information on removed

weights) does not affect current finetuning. We iterate this process for 9 cycles, and

the proportion of surviving weights at the final stage is 7.5%.

B.4 Experiment settings for Section 3.2

Details of training conditions for the models used in Section 3.2 are presented in Table

B.2.

84

Table B.2: Training hyperparameters of models used in Section 3.2

Dataset Architecture Regularization
(𝜆 if applicable) Other training conditions

CIFAR-10

Simple
(width=4)

None
Epochs: 100,
Batch size: 128,
Optimizer: SGD (momentum=0.9),
Learning rate: start with 0.01,
decay by 10 / 40 epochs

Weight decay, 𝜆 = 5× 10−4

Weight decay excess
Spectral normalization
Orthonormal, 𝜆 = 1× 10−4

Input gradiet, 𝜆 = 1.0
Adversarial training,
for 𝐿∞ norm: 𝜖 = 8

255
, 7 iterations

for 𝐿2 norm: 𝜖 = 1.0, 7 iterations
Apply fixed weight decay of 𝜆 = 5× 10−4

Simple-BN
(width=4)

None

Learning rate: start with 0.1
Otherwise same as above

Weight decay, 𝜆 = 5× 10−4

Weight decay excess
Orthonormal, 𝜆 = 1× 10−3

Input gradiet, 𝜆 = 1.0
Adversarial training,
for 𝐿∞ norm: 𝜖 = 8

255
, 7 iterations

for 𝐿2 norm: 𝜖 = 1.0, 7 iterations
Apply fixed weight decay of 𝜆 = 5× 10−4

WRN 28
(width=2)

None
Weight decay, 𝜆 = 5× 10−4

Weight decay excess
Spectral normalization
Orthonormal, 𝜆 = 1× 10−3

Input gradiet, 𝜆 = 1.0
Adversarial training,
for 𝐿∞ norm: 𝜖 = 8

255
, 7 iterations

for 𝐿2 norm: 𝜖 = 1.0, 7 iterations
Apply fixed weight decay of 𝜆 = 5× 10−4

SVHN

Simple-BN
(width=4)

None Epochs: 100,
Batch size: 128,
Optimizer: SGD (momentum=0.9),
Learning rate: start with 0.1,
decay by 10 / 40 epochs

Weight decay, 𝜆 = 5× 10−4

Weight decay excess

Spectral normalization
Optimizer: Adam (𝛽1 = 0.9, 𝛽2 = 0.99)
Learning rate: start with 10−4

Otherwise same as above.
Orthonormal, 𝜆 = 1× 10−3

Same as those for ‘None’ (see above)Input gradiet, 𝜆 = 1.0
Adversarial training,
for 𝐿∞ norm: 𝜖 = 8

255
, 7 iterations

for 𝐿2 norm: 𝜖 = 1.0, 7 iterations
Apply fixed weight decay of 𝜆 = 5× 10−4

Optimizer: Adam (𝛽1 = 0.5, 𝛽2 = 0.5)
Learning rate: start with 10−3

Otherwise same as above.

WRN 28
(width=2)

None Epochs: 100,
Batch size: 128,
Optimizer: SGD (momentum=0.9),
Learning rate: start with 0.1,
decay by 10 / 40 epochs

Weight decay, 𝜆 = 5× 10−4

Weight decay excess
Spectral normalization
Orthonormal, 𝜆 = 1× 10−3

Input gradiet, 𝜆 = 1.0
Adversarial training,
for 𝐿∞ norm: 𝜖 = 8

255
, 7 iterations

for 𝐿2 norm: 𝜖 = 1.0, 7 iterations
Apply fixed weight decay of 𝜆 = 5× 10−4

Optimizer: Adam (𝛽1 = 0.5, 𝛽2 = 0.9)
Learning rate: start with 10−3

Otherwise same as above.

TinyImageNet WRN 50
(width=1)

None Epochs: 100,
Batch size: 128,
Optimizer: Adam (𝛽1 = 0.9, 𝛽2 = 0.99),
Learning rate: start with 0.1,
decay by 10 / 40 epochs

Weight decay, 𝜆 = 5× 10−4

Weight decay excess

Input gradiet, 𝜆 = 0.01 Batch size: 64
Otherwise same as above.Input gradiet, 𝜆 = 0.05

85

86

Appendix C

Experiment settings for Chapter 4

Here we elaborate on the experimental setup for Chapter 4. We introduce each model

considered, and methods to obtain the lower bound of each model. We follow data

preprocessing of Wong and Kolter (2017) for MNIST and CIFAR-10 dataset, which

additionally includes normalization in case of CIFAR-10; the size of perturbation 𝜖 is

scaled according to the normalization so that the pixel level perturbation size (which

assumes 0-255 RGB image encoded with 8-bit) can be preserved.

∙ MNIST-A, 𝜖 = 0.4 : this model uses ‘small’ model of Wong and Kolter

(LP𝑑-CNN𝐴 of Tjeng et al.), and is trained with the code publicly available made

by Wong and Kolter (https://github.com/locuslab/convex_adversarial).

Training hyperparameters are: cascade=1, epochs=200, schedule_length=20,

norm_type=l1_median, norm_eval=l1, starting_epsilon=0.01, verbose=200,

batch_size=20, test_batch_size=10, eps=0.4. To obtain the lower bound

of this model, we use verification method with MILP, with publicly available

code provided by Tjeng et al. (https://github.com/vtjeng/MIPVerify.jl).

We measure for untargeted adversarial robustness with 𝜖 = 0.4 in 𝐿∞ norm, and

find that MILP can provide exact robustness (that is, there is no gap between

upper and lower bounds obtained by MILP) for this model.

∙ MNIST-B, 𝜖 = 0.3 : this model is ‘large’ model of Wong and Kolter (LP𝑑-CNN𝐵

of Tjeng et al.), and is directly obtained from repository of Wong and Kolter

87

(‘mnist_large_0_3.pth’). The lower bound of robustness is directly taken

from Tjeng et al.; because they measure lower and upper bounds of error, we

take (100%− upper bound of error) from Tjeng et al. as the lower bound of

robustness.

∙ CIFAR-A, 𝜖 = 2
255

: this model is ‘small’ model for CIFAR-10 of Wong and

Kolter (LP𝑑-CNN𝐴 of Tjeng et al.), and is directly obtained from repository of

Wong and Kolter (‘cifar_small_2px.pth’). The lower bound of robustness is

directly taken from Tjeng et al., as MNIST-B.

∙ CIFAR-B, 𝜖 = 8
255

: this model is ‘ResNet’ model for CIFAR-10 of Wong and

Kolter (LP𝑑-RES of Tjeng et al.), and is directly obtained from repository of

Wong and Kolter (‘cifar_resnet_8px.pth’). The lower bound of robustness

is directly taken from Tjeng et al., as MNIST-B.

Adversarial accuracy is measured using a PGD attack with stated 𝜖 for each model

in 𝐿∞ norm. Baseline attacks use 5 random starts to have the same number of

evaluations as compensated attacks.

88

Bibliography

[1] Anish Athalye, Logan Engstrom, Andrew Ilyas, and Kevin Kwok. Synthesizing
robust adversarial examples, 2017.

[2] Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give a
false sense of security: Circumventing defenses to adversarial examples, 2018.

[3] Jonathan T. Barron. Continuously differentiable exponential linear units, 2017.

[4] Battista Biggio and Fabio Roli. Wild patterns: Ten years after the rise of
adversarial machine learning. Pattern Recognition, 84:317–331, Dec 2018. ISSN
0031-3203. doi: 10.1016/j.patcog.2018.07.023. URL http://dx.doi.org/10.
1016/j.patcog.2018.07.023.

[5] Battista Biggio, Giorgio Fumera, Ignazio Pillai, and Fabio Roli. A survey and
experimental evaluation of image spam filtering techniques. Pattern Recognition
Letters, 32(10):1436–1446, 2011.

[6] Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural
networks. 2017 IEEE Symposium on Security and Privacy (SP), May 2017. doi:
10.1109/sp.2017.49. URL http://dx.doi.org/10.1109/sp.2017.49.

[7] Nicholas Carlini and David Wagner. Audio adversarial examples: Targeted
attacks on speech-to-text. 2018 IEEE Security and Privacy Workshops (SPW),
May 2018. doi: 10.1109/spw.2018.00009. URL http://dx.doi.org/10.1109/
SPW.2018.00009.

[8] Moustapha Cisse, Piotr Bojanowski, Edouard Grave, Yann Dauphin, and Nicolas
Usunier. Parseval networks: Improving robustness to adversarial examples, 2017.

[9] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate
deep network learning by exponential linear units (elus), 2015.

[10] Zhun Deng, Cynthia Dwork, Jialiang Wang, and Yao Zhao. Architecture selection
via the trade-off between accuracy and robustness, 2019.

[11] Guneet S. Dhillon, Kamyar Azizzadenesheli, Jeremy D. Bernstein, Jean Kossaifi,
Aran Khanna, Zachary C. Lipton, and Animashree Anandkumar. Stochastic
activation pruning for robust adversarial defense. In International Conference

89

http://dx.doi.org/10.1016/j.patcog.2018.07.023
http://dx.doi.org/10.1016/j.patcog.2018.07.023
http://dx.doi.org/10.1109/sp.2017.49
http://dx.doi.org/10.1109/SPW.2018.00009
http://dx.doi.org/10.1109/SPW.2018.00009

on Learning Representations, 2018. URL https://openreview.net/forum?id=
H1uR4GZRZ.

[12] Kevin Eykholt, Ivan Evtimov, Earlence Fernandes, Bo Li, Amir Rahmati, Chaowei
Xiao, Atul Prakash, Tadayoshi Kohno, and Dawn Song. Robust physical-world
attacks on deep learning models, 2017.

[13] Roger Fletcher. Practical methods of optimization. John Wiley & Sons, 2013.

[14] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets.
In Advances in neural information processing systems, pages 2672–2680, 2014.

[15] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and
harnessing adversarial examples. arXiv preprint arXiv:1412.6572, 2014.

[16] Shupeng Gui, Haotao Wang, Chen Yu, Haichuan Yang, Zhangyang Wang, and
Ji Liu. Model compression with adversarial robustness: A unified optimization
framework, 2019.

[17] Chuan Guo, Mayank Rana, Moustapha Cisse, and Laurens van der Maaten.
Countering adversarial images using input transformations. In International
Conference on Learning Representations, 2018. URL https://openreview.net/
forum?id=SyJ7ClWCb.

[18] Song Han, Huizi Mao, and William J. Dally. Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman coding,
2015.

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), Jun 2016. doi: 10.1109/cvpr.2016.90. URL
http://dx.doi.org/10.1109/CVPR.2016.90.

[20] Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross Girshick. Mask r-cnn.
2017 IEEE International Conference on Computer Vision (ICCV), Oct 2017. doi:
10.1109/iccv.2017.322. URL http://dx.doi.org/10.1109/ICCV.2017.322.

[21] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a
neural network, 2015.

[22] Sandy Huang, Nicolas Papernot, Ian Goodfellow, Yan Duan, and Pieter Abbeel.
Adversarial attacks on neural network policies, 2017.

[23] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep
network training by reducing internal covariate shift, 2015.

[24] Daniel Jakubovitz and Raja Giryes. Improving dnn robustness to adversarial
attacks using jacobian regularization, 2018.

90

https://openreview.net/forum?id=H1uR4GZRZ
https://openreview.net/forum?id=H1uR4GZRZ
https://openreview.net/forum?id=SyJ7ClWCb
https://openreview.net/forum?id=SyJ7ClWCb
http://dx.doi.org/10.1109/CVPR.2016.90
http://dx.doi.org/10.1109/ICCV.2017.322

[25] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from
tiny images. Technical report, Citeseer, 2009.

[26] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial examples in the
physical world, 2016.

[27] Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner, et al. Gradient-
based learning applied to document recognition. Proceedings of the IEEE, 86(11):
2278–2324, 1998.

[28] Ji Lin, Chuang Gan, and Song Han. Defensive quantization: When efficiency
meets robustness. In International Conference on Learning Representations, 2019.
URL https://openreview.net/forum?id=ryetZ20ctX.

[29] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and
Adrian Vladu. Towards deep learning models resistant to adversarial attacks.
arXiv preprint arXiv:1706.06083, 2017.

[30] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral
normalization for generative adversarial networks. In International Conference
on Learning Representations, 2018. URL https://openreview.net/forum?id=
B1QRgziT-.

[31] Takeru Miyato, Shin-Ichi Maeda, Masanori Koyama, and Shin Ishii. Virtual
adversarial training: A regularization method for supervised and semi-supervised
learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 41
(8):1979–1993, Aug 2019. ISSN 1939-3539. doi: 10.1109/tpami.2018.2858821.
URL http://dx.doi.org/10.1109/TPAMI.2018.2858821.

[32] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and
Andrew Y Ng. Reading digits in natural images with unsupervised feature
learning. 2011.

[33] Travis E Oliphant. A guide to NumPy, volume 1. Trelgol Publishing USA, 2006.

[34] Nicolas Papernot, Patrick McDaniel, and Ian Goodfellow. Transferability in
machine learning: from phenomena to black-box attacks using adversarial samples,
2016.

[35] Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha, and Ananthram Swami.
Distillation as a defense to adversarial perturbations against deep neural networks.
2016 IEEE Symposium on Security and Privacy (SP), May 2016. doi: 10.1109/
sp.2016.41. URL http://dx.doi.org/10.1109/sp.2016.41.

[36] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z. Berkay
Celik, and Ananthram Swami. Practical black-box attacks against machine
learning. In Proceedings of the 2017 ACM on Asia Conference on Computer
and Communications Security, ASIA CCS ’17, page 506–519, New York, NY,

91

https://openreview.net/forum?id=ryetZ20ctX
https://openreview.net/forum?id=B1QRgziT-
https://openreview.net/forum?id=B1QRgziT-
http://dx.doi.org/10.1109/TPAMI.2018.2858821
http://dx.doi.org/10.1109/sp.2016.41

USA, 2017. Association for Computing Machinery. ISBN 9781450349444. doi:
10.1145/3052973.3053009. URL https://doi.org/10.1145/3052973.3053009.

[37] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,
Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer.
Automatic differentiation in PyTorch. In NIPS Autodiff Workshop, 2017.

[38] Aditi Raghunathan, Jacob Steinhardt, and Percy Liang. Certified defenses against
adversarial examples, 2018.

[39] Andrew Slavin Ross and Finale Doshi-Velez. Improving the adversarial robustness
and interpretability of deep neural networks by regularizing their input gradients,
2017.

[40] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean
Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexan-
der C. Berg, and Li Fei-Fei. ImageNet Large Scale Visual Recognition Challenge.
International Journal of Computer Vision (IJCV), 115(3):211–252, 2015. doi:
10.1007/s11263-015-0816-y.

[41] Pouya Samangouei, Maya Kabkab, and Rama Chellappa. Defense-GAN: Pro-
tecting classifiers against adversarial attacks using generative models. In
International Conference on Learning Representations, 2018. URL https:
//openreview.net/forum?id=BkJ3ibb0-.

[42] Vikash Sehwag, Shiqi Wang, Prateek Mittal, and Suman Jana. On pruning
adversarially robust neural networks. ArXiv, abs/2002.10509, 2020.

[43] Mahmood Sharif, Sruti Bhagavatula, Lujo Bauer, and Michael K. Reiter. Ac-
cessorize to a crime: Real and stealthy attacks on state-of-the-art face recogni-
tion. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’16, pages 1528–1540, New York, NY, USA,
2016. ACM. ISBN 978-1-4503-4139-4. doi: 10.1145/2976749.2978392. URL
http://doi.acm.org/10.1145/2976749.2978392.

[44] Aman Sinha, Hongseok Namkoong, and John Duchi. Certifying some distribu-
tional robustness with principled adversarial training, 2017.

[45] Dong Su, Huan Zhang, Hongge Chen, Jinfeng Yi, Pin-Yu Chen, and Yupeng Gao.
Is robustness the cost of accuracy? - a comprehensive study on the robustness of
18 deep image classification models. ArXiv, abs/1808.01688, 2018.

[46] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S. Emer. Efficient processing
of deep neural networks: A tutorial and survey. Proceedings of the IEEE, 105(12):
2295–2329, Dec 2017. ISSN 1558-2256. doi: 10.1109/jproc.2017.2761740. URL
http://dx.doi.org/10.1109/JPROC.2017.2761740.

92

https://doi.org/10.1145/3052973.3053009
https://openreview.net/forum?id=BkJ3ibb0-
https://openreview.net/forum?id=BkJ3ibb0-
http://doi.acm.org/10.1145/2976749.2978392
http://dx.doi.org/10.1109/JPROC.2017.2761740

[47] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru
Erhan, Ian Goodfellow, and Rob Fergus. Intriguing properties of neural networks,
2013.

[48] Vincent Tjeng, Kai Y. Xiao, and Russ Tedrake. Evaluating robustness of neural
networks with mixed integer programming. In International Conference on
Learning Representations, 2019. URL https://openreview.net/forum?id=
HyGIdiRqtm.

[49] Florian Tramèr, Alexey Kurakin, Nicolas Papernot, Ian Goodfellow, Dan Boneh,
and Patrick McDaniel. Ensemble adversarial training: Attacks and defenses,
2017.

[50] Eric Wong and J. Zico Kolter. Provable defenses against adversarial examples
via the convex outer adversarial polytope, 2017.

[51] Cihang Xie, Jianyu Wang, Zhishuai Zhang, Yuyin Zhou, Lingxi Xie, and Alan
Yuille. Adversarial examples for semantic segmentation and object detection.
2017 IEEE International Conference on Computer Vision (ICCV), Oct 2017. doi:
10.1109/iccv.2017.153. URL http://dx.doi.org/10.1109/ICCV.2017.153.

[52] Shaokai Ye, Xue Lin, Kaidi Xu, Sijia Liu, Hao Cheng, Jan-Henrik Lambrechts,
Huan Zhang, Aojun Zhou, Kaisheng Ma, and Yanzhi Wang. Adversarial robustness
vs. model compression, or both? 2019 IEEE/CVF International Conference
on Computer Vision (ICCV), Oct 2019. doi: 10.1109/iccv.2019.00020. URL
http://dx.doi.org/10.1109/ICCV.2019.00020.

[53] Yuichi Yoshida and Takeru Miyato. Spectral norm regularization for improving
the generalizability of deep learning, 2017.

[54] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks, 2016.

[55] Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva, and Antonio Torralba.
Places: A 10 million image database for scene recognition. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2017.

93

https://openreview.net/forum?id=HyGIdiRqtm
https://openreview.net/forum?id=HyGIdiRqtm
http://dx.doi.org/10.1109/ICCV.2017.153
http://dx.doi.org/10.1109/ICCV.2019.00020

	Introduction
	Motivation
	Adversarial examples in machine learning
	Difficulties of evaluating adversarial robustness
	Gradient masking affects attack methods
	Verification

	Relationship to energy-efficient deep neural networks
	Thesis overview and contributions

	Analysis on Failure Cases of Attack Methods
	Zero loss
	Analysis
	Compensation methods: increasing loss
	Impact on measurement of robustness
	Connection to other attack methods

	Innate non-differentiability
	Analysis
	Compensation methods: approximating gradients
	Impact on measurement of robustness

	Requiring more iterations
	Analysis
	Compensation methods: approximating second-order information
	Impact on measurement of robustness

	Summary

	Case Studies
	Model capacity and adversarial robustness
	Overview of related works
	Training models with different capacity from scratch
	Incrementally removing weights via pruning

	Regularization techniques for robustness
	Overview of techniques
	Experiments

	Impact on evaluation against black-box attacks

	Comparison with verified lower bounds of robustness
	Gap between verified lower bounds and empirically measured upper bounds of robustness
	Sensitivity to attack configurations

	Conclusion
	Contributions
	Future work

	Deep neural network architectures
	Experiment settings for Chapter 3
	Compensation methods for attacks
	Experiment settings for Section 3.1.1
	Experiment settings for Section 3.1.2
	Experiment settings for Section 3.2

	Experiment settings for Chapter 4

