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Abstract 
The development and application of single-cell technologies have revolutionized how we 
study health and disease. By deconstructing complex biological systems, like human 
tissues, into the fundamental building blocks of life, single cells, we can not only learn 
what makes each cell unique (intracellular circuitry) but also investigate how each 
interaction among them (intercellular circuits) lead to system-level functions. Single-cell 
approaches have the potential to be particularly crucial for precision medicine pipelines, 
where comprehensive cellular profiles of system-level functions could be leveraged to 
guide diagnosis and treatment of disease.  
 
Here, to demonstrate the promise of these new technologies, we have developed and 
implemented single-cell RNA-Sequencing (scRNA-Seq) techniques to profile low-input 
clinical samples across a multitude of diseases, providing critical insight into how patient-
specific scRNA-Seq profiles can help improve clinical treatment. More specifically, first, 
we applied scRNA-Seq to dissect the multicellular ecosystem of metastatic melanoma, 
profiling 4,645 single cells isolated from 19 patients to examine both malignant and non-
malignant phenotypes and their interactions, as well as to propose potential targets for 
new therapies. Next, to overcome the limitations of low-throughput scRNA-Seq platforms, 
we developed Seq-Well, a high-throughput platform for low-input clinical samples, that is 
not only competitive with other scRNA-Seq technologies but also significantly cheaper 
and portable, enabling the democratization of scRNA-Seq technologies by empowering 
scientists in high- and low-resource settings. Finally, we drastically improved the gene 
and transcript capture of Seq-Well by introducing a step called Second Strand Synthesis 
(S^3) into the protocol and applied it to construct an atlas of skin inflammation across five 
conditions, resolving previously unappreciated adaptive and innate cellular phenotypes, 
as well as propose potential targets for therapeutic intervention unique to each 
inflammatory disease. Collectively, our work demonstrates the power of scRNA-Seq 
technologies and how they can be implemented in precision medicine pipelines to 
improve clinical outcomes. 
 
Thesis Supervisor: Alex K. Shalek 
 
Title: Pfizer-Laubach Career Development Associate Professor of Chemistry 
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Lay Summary 
 
Humans consist of trillions of cells, yet we lack the tools to deeply characterize the 
immense space of cellular identity and behavior that defines health and disease. A wide 
range of methods exist for sampling tissues in many clinical contexts (e.g., infection, 
cancer, autoimmunity); however, without high fidelity, comprehensive strategies for 
profiling them, we are limited in our capacity to identify how constituent cells and their 
interactions impact prognosis, and to select and develop precision therapeutics based 
thereupon. One potential disruptive technology, capable of thoroughly examining cellular 
phenotypic diversity in these precious clinical isolates, is single-cell RNA-Sequencing 
(scRNA-Seq). The development of scRNA-Seq methodologies enables genome-wide 
molecular profiling of transcriptomes of individual cells from which we can identify, absent 
bias, the cellular players (i.e., types and states) in nearly any sample, and their molecular 
drivers. In the following work, we describe scRNA-Seq and how the power and limitations 
of low-throughput implementations motivated the development of massively parallel, 
high-throughput methods. Further, we discuss how their application in precision medicine 
pipelines can potentially improve clinical outcomes. 
 
To begin, we describe the application of a powerful low-throughput, plate-based method 
to construct single-cell profiles of the melanoma tumor microenvironment (chapter 2). 
Importantly, this work demonstrates how the complexity of diseases, like cancer, requires 
single-cell resolution to examine clinically relevant patient profiles. In melanoma, we 
showed that malignant cells exist on a spectrum of heterogeneity for the MITF and AXL 
expression programs, which are canonically thought to be separate programs based on 
bulk RNA-Seq profiles. This phenomenon potentially explains why targeted treatment of 
either tumor based on bulk profiles can lead to an outgrowth of drug-resistant tumor 
phenotypes. Moreover, our study highlights important limitations of low-throughput 
technologies, specifically the lack of scalability, high operational costs, and time-intensive 
protocols, thus necessitating the need for high-throughput assays.  
 
As one solution to this, as well as the limitations of existing high-throughput assays (i.e., 
Drop-Seq, inDrop, 10x Genomics), we developed Seq-Well, a massive-parallel, 
microwell-based platform for low-input clinical samples. We benchmarked this technology 
against other high-throughput platforms in terms of single-cell resolution (i.e., species-
mixing experiments), sensitivity (i.e., cell type resolution in peripheral blood mononuclear 
cells (PBMCs)), and portability. Importantly, we demonstrated the portability of Seq-Well 
by running the assay in a BSL3 facility, profiling macrophages exposed and unexposed 
to M. Tuberculosis (mTB) – the first scRNA-Seq experiment to examine the host response 
to mTB infection. By establishing a sensitive, portable, low-input platform, our work 
enabled the integration of scRNA-Seq technologies into precision medicine pipelines, 
reducing costs, and infrastructure requirements.    
 
Finally, to improve the power of Seq-Well to reliably phenotype unique and rare immune 
subsets, limiting its application in clinical contexts, we developed Seq-Well S^3 
(Second Strand Synthesis), a modified Seq-Well protocol with dramatically improved 
gene and transcript capture. Using this improved pipeline, we constructed an atlas of skin 
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inflammation, profiling immune, and parenchymal cell subsets. Importantly, with our 
improved sensitivity, we were able to profile previously unappreciated diversity in adaptive 
and innate immune subsets and identify phenotypes unique to the different inflammatory 
diseases. For example, we uncovered a population of dysfunctional T cells that were 
over-represented in patients with psoriasis. We were also able to propose biomarker 
targets, both unique and conserved across the inflammatory diseases, for therapeutic 
intervention. 
 
Overall, our work demonstrates the utility of scRNA-Seq technologies in precision 
medicine pipelines, and, more specifically, how they can be leveraged to provide not only 
critical diagnostic insight, but also reveal patient-specific biomarkers to be targeted for 
therapeutic intervention. 
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Chapter 1: The Development of Single-Cell RNA-
Sequencing Platforms for Clinical Application 

 

 
 
 
 
 
 
 
 
 

1.1 Single-Cell Sequencing Technologies: A Brief Overview 

The development and application of single-cell genomic technologies have revolutionized 

our understanding of complex biology systems1-32, enabling us to comprehensively 

deconstruct complex biological systems, like the human body, into the fundamental 

building blocks of life, the cell. With this resolution, we can understand not only what 

makes each cell unique (its intracellular circuitry), but also examine how each interacts 

with other cells (intercellular circuits) to drive system-level functions. To date, a wide 

variety of single-cell molecular profiling approaches have been developed1,23,27,32-46, 

allowing users to profile multiple different compartments (Figure 1). With these 

measurements, we can begin to better understand how certain cellular attributes link to 

others – e.g., genetic or epigenetic modifications to functional phenotypes (i.e., surface 

protein expression).47,48 One of the most widely used single-cell sequencing approaches 

is single-cell RNA-Sequencing (scRNA-Seq).49 This method captures the transcriptome 

of single cells by exploiting the 3’-polyadenylated tails of many ribonucleic acids (i.e., 

messenger RNA; mRNA). Using this information, we can view a ‘snapshot’ of the cell’s 

current intentions, allowing us to surmise which molecular circuits are current activated 

or deactivated and how this may lead to functional phenotypes.50-54 

 

By collecting this information from both healthy and diseased states, we can better identify 

how a disease perturbs a cell, allowing us to ultimately identify and propose biomarkers 

for therapeutic intervention.55 
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Figure 1 | Multi-omic single-cell technologies for integrated analysis. Adapted from Stuart et al.49, to 
date, there are a multitude of single-cell technologies for interrogating different compartments of a single 
cell. Each of these sequencing technologies can provide critical insight into the overall function of a single 
cell and how they respond in healthy and diseased states. These methods can be divided based on the 
cellular parameter they measure: Transcriptome (mRNA; Drop-Seq, InDrop, Smart-Seq2, MARS-Seq, 10x 
Genomics, SPIT-Seq, sci-RNA-Seq, and Seq-Well); Intracellular proteins (PEA);  Cell surface markers 
(CITE-Seq, REAP-Seq, FACS); Spatial Position (MERFISH, smFISH, and STARmap); Chromatin 
Accessibility (scATAC-Seq, sciATAC-Seq, scTHS-Seq, and 10x Genomics); Histone modification (scCHIP-
Seq); Genome Sequence (SNS, SCI-Seq); and DNA methylation (scBS-Seq, snmC-Seq, and sci-MET).  
 
The power of scRNA-Seq was first demonstrated in 2009 when Tang et al. leveraged 

their assay to profile single mouse blastomeres.32 Cells were manually picked, using a 

microscope, and then lysed, after which cDNA was generated via reverse transcription 

using poly(T) primers for Next-Generation Sequencing (NGS) library preparation. 

Importantly, they showed an increase of 85% in detected genes relative to microarray 

techniques, as well as the sensitivity necessary to detail transcript isoform usage.56 This 

seminal study was a springboard for the field, motivating experiments to capture and 

profile single cells more efficiently. Since, the field of scRNA-Seq has exploded, with the 

development of a wide range of strategies for isolating single cells and extracting their 

mRNA (Figure 2). Interestingly, a trend emerged in that, over time, with the development 



 13 

of new techniques, the number of single cells captured steadily increased. Nearly a 

decade after Tang et al.’s work, which studied a single cell, we can now capture tens of 

thousands of cells at once, powering the statistical analyses of these studies as well as 

better resolving unique and rare cellular phenotypes. Importantly, this improved statistical 

power and cellular resolution have enabled scientists to ask questions about health and 

disease previously unimaginable.  

 
Figure 2 | Developments in experimental single-cell RNA-Seq technologies. Adopted from the HCA 
Consortium white paper57, (A) Technologies developed for single-cell isolation. (B) Scatter plot showing the 
number of cells captured versus time for scRNA-Seq (gray circles) and scATAC-Seq (black circles) 
technologies (key methods indicated).  
 
For example, this technology development has helped catalyze a global effort called the 

Human Cell Atlas (HCA) Consortium,57 which seeks to realize a comprehensive reference 

map of all human cell types and properties to be leveraged in the understanding, 

monitoring, diagnosing, and treatment of human disease. Through an extensive 

international, collaborative effort, scientists are now actively leveraging these 

technologies to profile and categorize every human cell type in the body. 

 

The development of a Human Cell Atlas will revolutionize the way we study health and 

disease. From an academic standpoint, this reference will be pivotal for standardizing cell 

type classification and contextualizing how diseases perturb cellular circuits from a 

healthy, steady-state (i.e., cellular reference). From a translational one, by contextualizing 
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disease discoveries to a standardized reference, it has the potential to dramatically 

improve our ability to identify targets for drug validation and gene therapies (i.e., CRISPR-

cas9 and lentiviral).8,9,19 The HCA thus has the potential to bridge single-cell benchtop 

discoveries to translational treatments, becoming a powerful precision medicine pipeline 

for patient care.57 

 

In the following section, we will highlight powerful implementations of scRNA-Seq and the 

promise this technology has to transform clinical care.  

 

1.2 Implementation of low-throughput scRNA-Seq Technologies 

Following the demonstration of the power of scRNA-Seq technology, early efforts focused 

on scaling up so that multiple cells could be processed in parallel. The goals were two-

fold: 1. to increase throughput and 2. to decrease cost. Among these early efforts was the 

development of Smart-Seq2 (Switching Mechanism at the 5’End of RNA Templates) in 

2012, a plate-based method for capturing transcripts from single cells. Here, cells are 

flow-sorted into 96 or 384-well plates where they are lysed and immediately processed or 

flash-frozen and banked at -80oC. Compared with existing protocols, SMART-Seq had 

improved read coverage across transcripts, allowing users to generate genome-wide 

transcriptome profiles for cell types of interest, as well as detect alternative transcript 

isoforms and single-nucleotide polymorphisms (SNPs). This protocol was quickly 

optimized, and a second iteration was released in 2014 called Smart-Seq23; the result 

was improved detection, coverage, and accuracy while decreasing the 3’ coverage bias 

(Figure 3). Underlying these improvements were careful molecular manipulations. For 

example, in Smart-Seq2, Picelli et al. introduced a locked nucleic acid (LNA) at the 

template-switching oligo (TSO) three prime end to increase the thermal stability of the 

LNA:DNA base pairs, resulting in a substantial increase in cDNA yield post reverse 

transcription.3 

 

While these early studies were powerful demonstrations of the potential of scRNA-Seq, 

they did not motivate widespread application because, while profiling the transcriptome 

of single cells was impressive, it had yet to be shown why it was important. 
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This was realized in 2013 when 

Shalek et al. leveraged scRNA-

Seq, specifically Smart-Seq, to 

show that structure hidden within 

gene expression covariation 

across seemingly ‘identical’ 

dendritic cells (DCs) exposed to 

lipopolysaccharide (LPS) could be 

used to identify two distinct cell 

states and an interferon-driven 

antiviral circuit that they 

subsequently validated in 

knockout models.21 By increasing 

the throughput and control of this 

method with microfluidic cell 

preparation and isolation, Shalek 

et al further demonstrated that a 

rare (1-2%), transient subset of 

“precocious” cells are essential to 

activate this antiviral response and 

dampen inflammation across all 

DCs in the population.18 

Collectively, these studies  

showed the promise of scRNA-

Seq to uncover cell types/states, 

and circuity de novo, as well as 

rare cell populations that would go 

undetected as a result of being 

masked by the bulk profile.  

With increased throughput and 

improved sample recovery, 

Figure 3 | Overview of Smart-Seq2 Pipeline. Adopted from 
Trombetta et. al.1-3, cells are first lysed and mRNA transcripts 
captured with biotinylated poly-T SMART primers for reverse 
transcription (RT). Importantly, the RT enzyme deposits three 
ribosomal cytosines which are exploited to attach the TSO, 
generation full-length transcripts. Following complementary 
DNA (cDNA) generation, the product is amplified through PCR, 
tagmented by transposase (Illumina, Nextera) which deposits i7 
and i5 adapters that serve as priming sights for the P7 and P5 
primers. The quality of the library is validated using a 
BioAnalyzer (or Tape Station) and KAPA Quant. Once 
confirmed the library meets the necessary quality, it can be 
sequenced on an illumine instrument.  
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researchers began leveraging these techniques to study a wide variety of systems.58,59 

For example, there were early efforts to profile tumor biopsies, specifically to elucidate 

the cellular heterogeneity and the potential implications this may have for clinical 

outcomes. A powerful study that demonstrates this was published back in 2014, when 

Patel et al. leveraged scRNA-Seq to profile 430 cells from fiver primary glioblastomas, 

defining variability among transcriptional programs related to oncogenic signaling, 

proliferation, immune responses, and hypoxia.16 Critically, by scoring cells using existing 

glioblastoma subtype classification signatures, they showed that each of the five 

glioblastomas profiled actually consisted of cells defined by multiple different subtypes. 

The extensive genetic and functional intra-tumoral heterogeneity they observed within 

freshly resected human glioblastoma tumor cells suggested potential prognostic and 

therapeutic implications. This was another critical steppingstone that validated the utility 

of scRNA-Seq technology because it was one of the first single-cell genomic studies to 

show how cellular heterogeneity could reveal clinically important features that, without 

single-cell resolution, would be lost. However, this was an n=5 study, and in order to make 

scRNA-Seq more applicable in clinical settings, the field needed a standardized pipeline 

to collect, bank, and process single cells from individual patients. In other words, the field 

needed a precision medicine pipeline for patients.  

 

The development and application of this precision medicine pipeline, in which I took part 

(see Chapter 2), came to fruition in 2016 study where Tirosh et al. profiled tumor 

aggregates, and matched blood, from patients with metastatic melanoma.60 Overall, we 

profiled 4,632 cells across 19 metastatic melanomas, highlight similarities and differences 

between tumor and immune cell populations. For example, by studying malignant cells 

across patients, we showed, based on bulk RNA-Seq profiles, that two programs, MITF 

high and AXL high, which are canonically thought to be mutually exclusive, actually define 

a spectrum of intra-tumor heterogeneity. This observation helped to explain why targeted 

treatment of either of these tumor types based on bulk RNA-Seq profiling data alone 

would result in the outgrowth of drug-resistant tumor phenotypes. Further, we were able 

to study patterns of T cell exhaustion that correlated with tumor attributes, highlighting 

important T cell programs and how they relate to tumor burden. Overall, this study 
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proposed a robust precision medicine pipeline that could potentially help improve clinical 

treatment of metastatic melanomas, as well as served as a critical framework for a 

separate study where scRNA-Seq was leveraged to elucidate the developmental tumor 

cell hierarchy in oligodendrogliomas; this will be discussed in section 1.4.61 

 

In the following section, we will address the limitations of low-throughput methods and 

how this motivated the development of high-throughput platforms. 

 

1.3 Motivation and Development of High-Throughput scRNA-Seq Technologies 

While early applications of low-throughput pipelines were exciting, it quickly became 

apparent that critical limitations needed to be addressed to permit implementation in both 

high- and low-resource settings. For example, while Smart-Seq2 and other early 

microfluidic methods (e.g., Fluidigm62,63) were effective at single-cell isolation and 

processing, they were limited in the number of cells that could be processed at a time and 

cost per cell. This issue was compounded by the need for dedicated equipment for either 

cell isolation (i.e., Fluidigm instrumentation) and/or sorting (i.e., flow-cytometer for plate-

based sorting). As a result, to process the thousands of cells needed to power certain 

statistical analyses (i.e., profiling TCR clonality) was prohibitively expensive, thus 

complicating widespread adoption of scRNA-Seq methods for research application. 

 

To address these limitations, microfluidic, droplet-based methods were developed that 

leveraged the power of early bead-based barcoding35,36,38. Here, cells are co-

encapsulated in reverse-emulsion droplets where cells are lysed, and mRNA molecules 

are captured on uniquely barcoded oligo dT-capture beads. After each cell’s transcripts 

are capture with unique cellular tags, the beads can be pulled into a single tube for 

subsequent processing (where the tags are appended during reverse transcription), thus 

increasing throughput while decreasing reagent costs. For example, the cost/cell for 

plate-based platforms (i.e., Smart-Seq2) is between 12-15 USD, while massive-parallel 

techniques are between 5-10 cents.1,15,18,21,35 As a result of these improvements, tens of 

thousands of single cells could be captured and studied in a single experiment as 

opposed to hundreds in previous methods.2,3,18,21 While impressive, these technologies 



 
18 

were difficult to translate over to clinical specimens due to the need for several peripheral 

pieces of equipment  and sample capture efficiency issues. For example, in Drop-Seq36, 

beads and cells had to be loaded at specific concentrations to achieve double Poisson-

loading to ensure single bead-cell pairings; as a result, more than 80% of the sample is 

lost. Other droplet-based methods were either prohibitively expensive, like 10x  

Genomics, to scale up or not easily portably for clinical application. 

 

In response, I co-developed Seq-Well44, a microwell-based platform for processing low-

input clinical samples (Figure 4). This technology combines the power of bead-based 

barcoding with the simplicity and versatility of microwell arrays by co-encapsulating beads 

and cells in microwells. Critically, in Seq-Well, these wells are sealed with a semi-

permeable membrane, facilitating buffer exchange while containing biological 

macromolecules in their corresponding wells.  

 

This technology, along with other microwell implementations43,44,64,65, has expanded our 

ability to profile, with single-cell resolution, clinical samples previously unobtainable (i.e., 

Figure 4 | Overview of Seq-Well Pipeline. Adopted from Gierahn et. al.64, Following tissue dissociation 
and generation of a single cell suspension, uniquely-barcoded mRNA capture beads and single cells are 
loaded onto a functionalized Polydimethylsiloxane (PDMS) array. Critically, after beads and cells settle into 
wells, the array is sealed with a semi-permeable polycarbonate membrane that facilitates buffer exchange 
will keeping biological macromolecules e.g. RNA molecules) confined to their wells, preventing cross 
contamination. The mRNA molecules then hybridize to bead oligos, which are then recovered from the 
PDMS array and pooled for reverse transcription (RT). Following cDNA generation, the STAMPs (single-
cell transcriptomes attached to microparticles) undergo subsequent processing (i.e. whole transcriptome 
amplification (WTA) and library prep (i.e. Nextera XT)) to generate sequencing libraries. Once libraries pass 
the necessary quality controls metrics, libraries are then sequenced on an illumine instrument. 
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cerebral spinal fluid, sputum, gut-pinch biopsies). Also, because these platforms require 

minimal equipment and are relatively portable, it further reduces costs, democratizing 

scRNA-Seq technologies, and empowering researchers in low-resource settings. Thus, 

these technologies overcome the limitations of plate- and microfluidic-based technologies 

outlined in previous sections, making the implementation of a precision medicine pipeline 

more tangible. 

 

In the following section, we will address the outstanding challenges of integrating scRNA-

Seq technologies into precision medicine pipelines. 

 

1.4 Applications of Single-Cell Technologies in Precision Medicine Pipelines  

While there is a multitude of applications for single-cell technologies, an important 

implementation is in precision medicine pipelines, where these technologies can be used  

to build comprehensive cellular patient profiles. These profiles have the potential to 

pivotally guide the diagnosis and treatment of disease because they can be leveraged to  

find biomarkers and targets unique to that individual rather than based on a broader 

profile, thus overcoming current limitations both in disease treatment and drug 

development. For example, almost 90% of drugs developed are effective in less than 50% 

of patients55,66 ; as a result, this creates an enormous financial burden in the treatment of 

disease. As seen in previous sections, a potential reason for this inefficiency is the 

intrinsic cellular heterogeneity both within and between patients.16,29,61 

 

Single-cell technologies are a potential solution to this issue because they provide the 

necessary resolution to elucidate cellular heterogeneity in patient samples. Importantly, 

these tools let users profile multiple compartments within a cell (Figure 1), allowing one 

to study how changes at the genetic or epigenetic level can manifest in the transcriptome 

and proteome. While profiling each of these ‘-omes’ would be ideal, there are inherent 

limitations that prevent implementation. However, of the single-cell technologies at our 

disposal, scRNA-Seq is a major contender because of its scalability and relatively easy 

implementation.4,23,35,36,38,67-70 
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Early demonstrations of scRNA-Seq, to characterize diseased clinical samples, primarily 

focused on cancer. For example, scRNA-Seq was leveraged to study oligodendrogliomas 

to elucidate a developmental tumor cell hierarchy.61 Here, scientists showed that stem-

like cells could drive tumor growth and give rise to differentiated progeny, and ultimately 

proposed candidate gene targets for therapeutic potential. Recently, in melanoma, 

another scRNA-Seq study identified a resistance program expressed by malignant cells 

that are associated with T cell exclusion and immune evasion.71 The authors showed that 

this program is expressed prior to immunotherapy and can be used as a predictive 

program for clinical responses to anti-PD-1 therapy. Together, these studies demonstrate 

the functional role scRNA-Seq has in precision medicine pipelines. 

 

Finally, to successfully transition scRNA-Seq workflows from benchtop to bedside, there 

are still a series of challenges that need to be addressed. Foremost, there needs to be 

an efficient manner of accurately translating findings from scRNA-Seq studies to 

widespread clinical implementation. This is complicated by the technical (i.e., sample 

preparation and processing) and biological noise (i.e., stochastic biological signal) that is 

inherent to single-cell technologies.72,73 For example, a challenging aspect of single-cell 

technologies is ‘dropout’, which is a missing value in a dataset or, in this case, missing 

gene detection, and is the result of failed detection events (i.e., low transcriptome 

coverage as a result of the technique used).73 These technical challenges can be 

exacerbated by the stochastic nature of gene expression (i.e., transcriptional bursting) 

driven by biological, physical, and temporal properties of single cells73,74. While these are 

not major issues at the population level, it can have detrimental consequences at the level 

of a single cell, complicating cell type classification and subsequent phenotypic profiling.73 

However, high-throughput platforms help overcome the technical and biological noise 

inherent in single-cell measurements because, by increasing the number of cells 

sampled, high-throughput platforms allow users to study the distribution of a variable 

across a large population, resulting in a better profile of a system that is buffered against 

systematic (technical noise) and random (intrinsic noise) features.73,74 In parallel, new 

computational methods are being developed to process these high-dimensional datasets, 

as well as standardize the analysis workflow to make it easier for non-statisticians to 
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implement.75 Ultimately, what will catalyze widespread application of scRNA-Seq 

technologies in the clinic will be the completion of the HCA reference; through this effort, 

both technologies and sample processing pipelines will be optimized and standardized 

for clinical application.57 Also, through the completion of this reference, clinicians will have 

a reference to use and evaluate patient profiles, deconstructing complex, multifactorial 

diseases into their individual components; in doing so, it will provide a more 

comprehensive validation process of patient-specific features, thus transforming how 

disease is treated in the clinic. 

 
1.5 Contributions of this work to the field 

To date, scRNA-Seq technologies have empowered scientists around the world, 

providing unprecedented biological resolution of health and diseased systems and 

allowing scientists to ask hypotheses previously unimaginable.76 As a result, these new 

discoveries have both improved our understanding of various biological systems, as well 

as motivate the next generation of single-cell technologies.77 With respect to this, it is 

paramount to the field to understand what trends led to the technologies used today, and 

how that process can be optimized for future developments.78 

 

In the following work, we explore the motivation, development, and application of high-

throughput platforms for low-input clinical samples; from early demonstrations of Smart-

Seq2 to study the melanoma tumor microenvironment60 to the application of Seq-Well 

S^3 (Second Strand Synthesis) to build an atlas of skin inflammation and propose 

potential targets for therapeutic intervention79. Through these studies, we learn about the 

development of massively parallel scRNA-Seq technologies and how they can be 

implemented, in a clinical setting, to provide disease-specific profiles for drug 

development. 

 

In Chapters 2, we apply scRNA-Seq, specifically Smart-Seq22,3, to address several 

biological questions by profiling the genotypic and phenotypic states of melanoma tumor 

microenvironments. Leveraging scRNA-Seq, we show how intratumor heterogeneity has 
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important clinical implications, specifically in cancer treatment regimens, as previously 

mentioned. 

 

In Chapters 3 and 4, we develop, optimize, and apply Seq-Well to profile low-input clinical 

samples. As addressed in the previous sections, while plate-based techniques1-3 are 

powerful, they have inherent limitations that prevent widespread use for clinical samples. 

To address this, we developed Seq-Well (Chapter 3) and demonstrated both its utility for 

complex clinical samples, as well as it’s portability. Here, we benchmarked Seq-Well 

using cell lines (e.g., HEK293s and NIH/3T3s) against standards in the field (i.e., Drop-

Seq, inDrop, and 10x genomics), profiling human peripheral blood mononuclear cells 

(PBMCs) and capturing known cell populations, and finally profile macrophages exposed 

and unexposed to M. tuberculosis in a BSL3 facility to demonstrate the platforms 

portability. In Chapter 4, we introduce a substantially improved scRNA-Seq protocol we 

term Seq-Well S^3 (“Second Strand Synthesis”) that enables increased efficiency in gene 

and transcription detection, on a per-cell basis, than other high-throughput platforms. As 

a result, we can better classify subtle immune phenotypes (i.e., Th1, Th17 T cells, M1/M2-

like macrophages, etc.) than other best-in-class platforms. We demonstrate the power of 

this approach by examining five different inflammatory skin diseases, constructing an 

atlas of inflammation, and explore the breadth of potential immune and parenchymal cell 

states with improved resolution. 

 

Finally, in Chapter 5, we explore ongoing projects and the unique application of scRNA-

Seq technologies. To begin, we are leveraging Seq-Well S3 to profile the host/pathogen 

interactions in P. vivax infection to understand liver-stage infection better. With improved 

resolution, we can reconstruct the parasite lifecycle and work towards a comprehensive 

transcriptional profile of how a parasite commits to either becoming a hypnozoite (i.e., 

dormant-phase) or matured schizont. Critically, because we have both host and pathogen 

information, we can translate these parasite observations to the host environment and 

better understand how the host responds to hypnozoite and schizont development. 

Secondly, we are developing the next iteration of Seq-Well where we leverage the 

molecular biology of second-strand synthesis to generate sequencing libraries directly off 
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the beads. As a result, it reduces processing time and cost because Tn5 hyperactive 

transposase is not required to generate the library. In parallel, to expand the utility of Seq-

Well we are developing Nuc-Seq, a modified version of the Seq-Well platform that is 

compatible with nuclei. This modified pipeline will be compatible with previously difficult 

sample types (i.e., biobank frozen archived tissue) for Seq-Well, providing not only a cost-

effective alternative to commercially-available platforms, but also a pipeline to overcome 

the cell isolation-based transcriptional artifacts that can be introduced by cellular 

processing pipelines.80 Finally, we recently leveraged scRNA-Seq to elucidate the 

mechanisms of Bacillus Calmette-Guérin (BCG)-induced protection against pulmonary 

tuberculosis infection.81 Our initial study suggests that intravenous (IV) vaccination with 

BCG, when compared to the standard intradermal (ID) method, dramatically alters the 

protective outcome of Mtb infection. Compared to ID, IV immunization induced more 

antigen-responsive CD4 and CD8 T cells across all lung parenchymal tissues. 

Specifically, we observed an IV-BCG enriched module of correlated gene expression 

associated with T cell survival and effector function that is enriched among T cells with a 

Th1/Th17 phenotype. Currently, we are profiling the alveolar space of NHPs at different 

IV-BCG dosages to better resolve the cellular correlates of protection and how they 

change with respect to dosage concentration. 

 

As the dawn of precision medicine rapidly approaches, scRNA-Seq methods have 

emerged as a powerful set of tools to help facilitate this. It is through the significant 

contributions and developments from a wide range of biological, technology development, 

and computational fields that have empowered scRNA-Seq technologies and enabled the 

rapid development of both experimental and computational pipelines. As we begin to 

translate benchtop applications to bedside treatment options, we turn to the horizon and 

beyond as we explore the next steps of single-cell technology applications. 
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Chapter 2: Dissecting the Multicellular Ecosystem of 
Metastatic Melanoma by Single-Cell RNA-Seq 

 

This chapter is adapted in accordance with AAAS’s open access policy from the 

following article published in Science: 

 

Itay Tirosh*, Benjamin Izar*, Sanjay M. Prakadan, Marc H. Wadsworth II, Daniel Treacy, 

John J. Trombetta, Diana Lu, Asaf Rotem, Christine Lian, George Murphy, Ofir Cohen, 

Eli van Allen, Monica Bertagnolli, Alex Genshaft, Travis K. Hughes, Carly G. K. Ziegler, 

Samuel W. Kazer, Aleth Gaillard, Kellie E. Kolb, Judit Valbuena, Charles Yoon, Orit 

Rozenblatt-Rosen, Alex K. Shalek, Aviv Regev and Levi Garraway, “Dissecting the 

multicellular ecosystem of metastatic melanoma by single-cell RNA-seq,” Science, 352, 

(2016). 

* Denotes equal authorship 

 

Abstract 

Tumors are multicellular assemblies that encompass many distinct genotypic and 

phenotypic states. Here, we applied single-cell RNA-seq to examine 3,249 single cells 

isolated from 16 melanomas, profiling malignant, immune, stromal and endothelial cells. 

Malignant cells within the same tumor displayed transcriptional heterogeneity associated 

with the cell cycle, spatial context, and melanoma oncogenic programs. All tumors 

harbored malignant cells from two distinct transcriptional cell states, such that treatment-

naïve “MITF-high” tumors also contained “AXL-high” tumor cells, which have been 

implicated in resistance to RAF/MEK inhibition. Distinct immune and stromal cell types, 

meanwhile, are associated with prognosis and suggest specific interactions between 

components of the melanoma microenvironment. Finally, an analysis of tumor-infiltrating 

T-cell sub-types reveals that co- inhibitory T-cell exhaustion genes may be regulated 

through both T-cell activation dependent and independent mechanisms. This work begins 

to unravel the cellular ecosystem of tumors and shows that single cell genomics may offer 

new insights with implications for both targeted and immune therapies.   
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INTRODUCTION 
2.1 Background 

Tumors are complex ecosystems defined by spatiotemporal interactions between 

heterogeneous cell types, including malignant, immune, and stromal cells.1 Each tumor’s 

cellular composition, as well as the interplay between these components, may exert 

critical roles in cancer development.2 However, the specific components, their salient 

biological functions, and the means by which they collectively define tumor behavior 

remain incompletely characterized.  

 

Tumor cellular diversity poses both challenges and opportunities for cancer therapy. This 

is exemplified by the varied clinical efficacy achieved in malignant melanoma with 

targeted therapies and immunotherapies. Immune checkpoint inhibitors can produce 

clinical responses in many patients with metastatic melanomas3-7; however, the genomic 

and molecular determinants of response to these agents remain incompletely understood. 

Although tumor neoantigens and PD-L1 expression clearly correlate with this response8-

10, it is likely that other factors from subsets of malignant cells, the microenvironment, and 

tumor-infiltrating lymphocytes (TILs) also play essential roles.11 

 

Melanomas that harbor the BRAFV600E (V600E: Val600 à Glu600) mutation are commonly 

treated with inhibitors of rapidly accelerated fibrosarcoma kinase (RAF) and mitogen-

activated protein kinase (MEK), before or after immune checkpoint inhibition. Although 

this regimen improves survival, virtually all tumors eventually develop resistance to these 

drugs.12,13 Unfortunately, no targeted therapy currently exists for patients whose tumors 

lack BRAF mutations—including NRAS mutant tumors, those with inactivating NF1 

mutations, or rarer events (such as RAF fusions). Collectively, these factors highlight the 

need for a deeper understanding of melanoma composition and its effect on the clinical 

course.  

 

The next wave of therapeutic advances in cancer will probably be accelerated by 

technologies that assess the malignant, microenvironmental, and immunologic states 

most likely to inform treatment response and resistance. Ideally, we would be able to 
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assess salient cellular heterogeneity by quantifying variation in oncogenic signaling 

pathways; drug-resistant tumor cell subsets; and the spectrum of immune, stromal, and 

other cell states that may inform immunotherapy response. Toward this end, single-cell 

genomic approaches enable detailed evaluation of genetic and transcriptional features 

present in hundreds to thousands of individual cells per tumor.14-16 In principle, this 

approach may allow us to identify all major cellular components simultaneously, 

determine their individual genomic and molecular states15, and ascertain which of these 

features may predict or explain clinical responses to anticancer agents. To explore this 

question, we used single-cell RNA sequencing (RNA-seq) to examine heterogeneities in 

malignant and nonmalignant cell types and states and to infer their possible drivers and 

interrelationships in the complex tumor cellular ecosystem. 

 

RESULTS 

2. 2 Profiling individual cells from patient-derived melanoma tumors 

We measured single-cell RNA-seq profiles from 4,645 malignant, immune, and stromal 

cells isolated from 19 freshly procured human melanoma tumors that span a range of 

clinical and therapeutic backgrounds (Appendix A, Table S1). These included 10 

metastases to lymphoid tissues (9 to lymph nodes and 1 to the spleen), 8 to distant sites 

(5 to subcutaneous or intramuscular tissue and 3 to the gastrointestinal tract), and one 

primary acral melanoma. Genotypic information was available for 17 of the 19 tumors, of 

which 4 had activating mutations in BRAF and 5 in NRAS oncogenes; eight patients had 

BRAF/NRAS wild-type melanomas (Appendix A, Table S1).  

 

To isolate viable single cells that are suitable for high-quality single-cell RNA-seq, we 

developed and implemented a rapid translational workflow (Figure 1A).15 We processed 

tumor tissues immediately after surgical procurement and generated single-cell 

suspensions within ~45 min, using an experimental protocol optimized to reduce 

artifactual transcriptional changes introduced by dis- aggregation, temperature, or time.17 

Once in suspension, we recovered individual viable immune (CD45+) and nonimmune 

(CD45–) cells (including malignant and stromal cells) by flow cytometry (fluorescence-

activated cell sorting). Next, we pre- pared cDNA from the individual cells,  
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Figure 1 | Dissection of melanoma with single-cell RNA-seq. (A) Overview of workflow. WES, whole-
exome sequencing; RBC, red blood cell; FACS, fluorescence-activated cell sorting. (B) Chromosomal 
landscape of inferred large-scale CNVs allows us to distinguish malignant from nonmalignant cells. The 
Mel80 tumor is shown with individual cells (y axis) and chromosomal regions (x axis). Amplifications (red) 
or deletions (blue) were inferred by averaging expression over 100-gene stretches on the respective 
chromosomes. Inferred CNVs are concordant with calls from WES (bottom). (C and D) Single-cell 
expression profiles allow us to distinguish malignant and nonmalignant cell types. Shown are t-SNE plots 
of malignant (C), shown are the six tumors, each with >50 malignant cells] and nonmalignant (D) cells [as 
called from inferred CNVs as in (B)] from 11 tumors with >100 cells per tumor (see color code below the 
panels). Clusters of non- malignant cells [called by DBScan17] are marked by dashed ellipses and were 
annotated as T cells, B cells, macrophages, CAFs, and endothelial (Endo.) cells from preferentially 
expressed genes (Appendix A, Figure S2 and tables S2 and S3). NK, natural killer cells. 
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followed by library construction and massively parallel sequencing. The average number 

of mapped reads per cell was ~150,00017, with a median library complexity of 4659 genes 

for malignant cells and 3438 genes for immune cells, comparable to previous studies of 

only malignant cells from fresh glioblastoma tumors.15 

 

2.3 Single-cell transcriptome profiles distinguish cell states in malignant and 

nonmalignant cells  

We used a multistep approach to distinguish the different cell types within melanoma 

tumors on the basis of both genetic and transcriptional states (Figure 1, B to D). First, 

we inferred large-scale copy number variations (CNVs) from expression profiles by 

averaging expression over stretches of 100 genes on their respective chromosomes15 

(Figure 1B). For each tumor, this approach revealed a common pattern of aneuploidy, 

which we validated in two tumors by bulk whole-exome sequencing (WES) (Figure. 1B; 
Appendix B, Figure S1A). Cells in which aneuploidy was inferred were classified as 

malignant cells (Figure 1B; Appendix B, Figure S1).  

 

Second, we grouped the cells according to their expression profiles (Figure 1, C and D; 

Appendix A, Figure S2). To do this, we used nonlinear dimensionality reduction [t-

distributed stochastic neighbor embedding (t-SNE)]18, followed by density clustering.19 

Generally, cells designated as malignant by CNV analysis formed a separate cluster for 

each tumor (Figure 1C), suggesting a high degree of intertumor heterogeneity. In 

contrast, the nonmalignant cells clustered by cell type (Figure 1D; Appendix A, Figure 
S2), independent of their tumor of origin and metastatic site (Appendix A, Figure S3). 

Clusters of nonmalignant cells were annotated as T cells, B cells, macrophages, 

endothelial cells, cancer-associated fibroblasts (CAFs), and natural killer cells on the 

basis of their preferentially or distinctively expressed marker genes (Figure 1D; 
Appendix A, Figure S2 and tables S2 and S3).  
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Figure 2 | Single-cell RNA-seq distinguishes cell cycle and other states 
among malignant cells. (A) Estimation of the cell cycle state of individual 
malignant cells (circles) on the basis of relative ex- pression of G1/S (x axis) and 
G2/M (y axis) gene sets in a low-cycling tumor (Mel79, top) and a high- cycling 
tumor (Mel78, bottom). Cells are colored by their inferred cell cycle states: cycling 
cells, red; intermediate, pink; and noncycling cells, gray. Cells with high 
expression of KDM5B (z score > 2) are shown in green. N denotes number of 
cells. (B) Immunohistochemistry staining (40X magnification) for Ki67+ cells 
shows concordance with the signature-based frequency of cycling cells for Mel79 
and Mel78 (as for other tumors; fig S4C). (C) KDM5B and Ki67 staining (40X 
magnification) in corresponding tissue showing small clusters of KDM5B-high 
expressing cells negative for Ki67 (Appendix A, Figure S4). DAPI, 4′,6-diamidino-
2-phenylindole. (D) An expression program specific to region one of Mel79, 
identified on the basis of multifocal sampling. The relative expression of genes 
(rows) is shown for cells (columns) ordered by the average expression of the 
entire gene set. The region of origin of each cell is indicated in the top panel 
(Appendix A, Figure S5). 



 35 

2.4 Analysis of malignant cells reveals heterogeneity in cell cycle and spatial organization 

We next used unbiased analyses of the individual malignant cells to identify biologically 

relevant melanoma cell states. After controlling for inter- tumor differences17, we 

examined the six top components from a principal component analysis (PCA) (Appendix 
A, table S4). The first component correlated highly with the number of genes detected 

per cell and probably reflects technical aspects, whereas the other five significant 

principal components highlighted biological variability. 

The second component (PC2) was associated with the expression of cell cycle genes 

(Gene Ontology project: “cell cycle” P < 10−16; hyper- geometric test). To characterize 

cycling cells more precisely, we used gene signatures that have previously been shown 

to denote G1/S or G2/M phases in both synchronization20 and single-cell16 experiments 

in cell lines. Cell cycle phase–specific signatures were highly expressed in a subset of 

malignant cells, distinguishing cycling cells from noncycling cells (Figure 2A; Appendix 
A, Figure S4A). These signatures revealed variability in the fraction of cycling cells 

across tumors (13.5% on average, ±13 SD) (Appendix A, Figure S4B), allowing us to 

designate both low-cycling (1 to 3%, e.g., Mel79) and high-cycling tumors (20 to 30%, 

e.g., Mel78), consistent with Ki67+ staining results (Figure 2B; Appendix A, Figure 
S4C).  

A core set of cell cycle genes was induced (Appendix A, Figure S4D, red dots; and 
table S5) in both low-cycling and high-cycling tumors, with one notable exception: cyclin 

D3 (CCND3), which was induced in cycling cells only in high-cycling tumors (Appendix 
A, Figure S4D). In contrast, KDM5B (JARID1B) showed the strongest association with 

noncycling cells (Figure 2A, green dots), mirroring Patel et al.’s findings in glioblastoma 

(15). KDM5B encodes a H3K4 histone demethylase associated with a subpopulation of 

slow-cycling and drug-resistant melanoma stemlike cells21,22 in mouse models. 

Immunofluorescence (IF) staining validated the presence and mutually exclusive 

expression of KDM5B and Ki67. KDM5B-expressing cells were grouped in small clusters, 

consistent with observations in mouse and in vitro models21 (Figure 2C; Appendix A, 
Figure S4E).  
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Two principal components (PC3 and PC6) primarily segregated different malignant cells 

from one treatment-naïve tumor (Mel79). In this tumor, we analyzed 468 malignant cells 

from four distinct regions after surgical resection (Appendix A, Figure S5A). We 

identified 229 genes with higher expression in the malignant cells of region one compared 

with those of other tumor regions [Figure 2D, false discovery rate (FDR) < 0.05; and 

Appendix A, table S6]. A similar expression program was found in T cells from region 

one (Appendix A, Figure S6 and table S6), suggesting a spatial effect that influences 

multiple cell types. The genes with the highest preferential expression in region one are 

also generally coexpressed across melanoma tumors profiled in bulk in The Cancer 

Genome Atlas (TCGA)23 (Appendix A, Figure S6). Many of these genes encode 

immediate early-activation transcription factors linked to inflammation, stress responses, 

and a melanoma oncogenic pro- gram (e.g., ATF3, FOS, FOSB, JUN, JUNB). Several of 

these transcription factors (e.g., FOS, JUN, NR4A1/2) are regulated by cyclic adenosine 

monophosphate (cAMP) and cAMP response element–binding protein signaling, which 

has been implicated as a mitogen-activated protein kinase (MAPK)–independent 

resistance module in BRAF-mutant melanomas treated with RAF and MEK inhibition.24 

Other top genes differentially up-regulated in region one included those involved in 

survival (MCL1), stress responses (EGR1/2/3, NDRG, HSPA1B), and NF-kB signaling 

(NFKBIZ), which has also been associated with resistance to RAF and MEK inhibition.25 

Immunohistochemistry analysis confirmed the elevated NF-kB and JunB levels in cells of 

region one compared with cells in the other regions of this tumor (Appendix A, Figure 
S5B). 

2.5 Heterogeneity in the abundance of a dormant, drug-resistant melanoma 

subpopulation  

Collectively, the above observations imply that pretreatment melanoma tumors may 

harbor subsets of malignant cells that are less likely to respond to targeted therapy. The 

transcriptional programs associated with principal components PC4 and PC5 were highly 

correlated with expression of the MITF gene (microphthalmia-associated transcription 

factor), which encodes the master melanocyte transcriptional regulator and a melanoma 

lineage-survival oncogene.26 Scoring genes by their correlation to MITF across single 



 37 

cells, we identified a “MITF-high” program consisting of MITF itself and several MITF 

target genes, including TYR, PMEL, and MLANA (Appendix A, table S7). A second 

transcriptional program, negatively correlated with the MITF program and with PC4 and 

PC5 (Pearson correlation P < 10-24), included AXL and NGFR (p75NTR), a marker of 

resistance to various targeted therapies27,28 and a putative melanoma cancer stem cell 

marker29, respectively (Appendix A, table S8). Thus, these transcriptional programs 

resemble reported25,30-32 MITF-high, as well as MITF-low and AXL-high (“AXL-high”), 

transcriptional profiles that can distinguish melanoma tumors, cell lines, and mouse 

models. Notably, the AXL-high program has been linked to intrinsic resistance to RAF 

and MEK inhibition.25,30,31  

Although at the bulk tumor level each melanoma could be classified as MITF-high or AXL- 

high (Figure 3A), at the single-cell level every tumor contained malignant cells 

corresponding to both transcriptional states. Using single-cell RNA-seq to examine each 

cell’s expression of the MITF and AXL gene sets, we observed that MITF-high tumors, 

including treatment-naïve melanomas, harbored a subpopulation of AXL-high melanoma 

cells that was undetectable through bulk analysis, and vice versa (Figure 3B). The 

malignant cells thus spanned the continuum between AXL- high and MITF-high states in 

every investigated tumor (Figure 3B; Appendix A, Figure S7). We performed IF staining 

to further validate the mutually exclusive expression of the MITF-high and AXL-high 

programs in cells from the same bulk tumors (Figure 3C; Appendix A, Figure S8).  

Because malignant cells with AXL-high and MITF-high transcriptional states coexist in 

melanoma, we hypothesized that treatment with RAF and MEK inhibitors would increase 

the prevalence of AXL-high cells after the development of drug resistance. To test this, 

we analyzed RNA-seq data from a cohort13 of six paired BRAFV600E melanoma biopsies 

taken before treatment and after resistance to single-agent RAF inhibition (vemurafenib; 

1 patient) or combined RAF and MEK inhibition (dabrafenib and trametinib; 5 patients), 

respectively (Appendix A, tables S9 and S10). We ranked the 12 transcriptomes on the 

basis of the relative expression of all genes in the AXL-high program compared with those 

in the MITF-high program. In each pair, we observed a shift toward the AXL-high program 

in the drug-resistant sample [Figure 3D; P < 0.05 for same effect in six of six paired 
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samples, binomial test; P < 0.05 for four of six individual paired-sample comparisons 

shown by black arrows17]. RNA-seq data from an independent cohort33 also showed that 

a subset of drug-resistant samples exhibited increased expression of the AXL program 

(Appendix A, Figure S9). Other genes previously implicated in resistance to RAF and 

MEK inhibition were also increased in a subset of the drug-resistant samples. PDGFRB 

(platelet-derived growth factor receptor β)34 was up-regulated in a similar subset as the 

AXL program, whereas MET33 was up-regulated in a mutually exclusive subset 

(Appendix A, Figure S9), suggesting that AXL and MET may reflect distinct drug-

resistant states.  

 

To further assess the connection between the AXL program and resistance to RAF and 

MEK inhibition, we studied single-cell AXL expression in 18 melanoma cell lines from the 

Cancer Cell Line Encyclopedia35 (Appendix A, table S11). Flow cytometry analysis 

revealed a wide distribution of the proportion of AXL-positive cells, from <1 to 99% per 

cell line, which correlated with bulk mRNA levels and was inversely associated with 

sensitivity to small-molecule RAF inhibition (Appendix A, table S11).  

We treated 10 cell lines17 with increasing doses of a combination of RAF and MEK 

inhibitors (dabrafenib and trametinib) and found an increase in the proportion of AXL-

positive cells in 6 cell lines initially composed of a small (<3%) pretreatment AXL-positive 

population (Appendix A, Figure S10A). In contrast, cell lines with an intrinsically high 

proportion of AXL expression showed modest or no changes (Appendix A, Figure 
S10B). We obtained similar results by multiplexed quantitative single-cell IF, which also 

demonstrated that the increased fraction of AXL-positive cells after inhibition of RAF and 

MEK is associated with rapid decreases in extracellular signal–regulated kinase (ERK) 

phosphorylation (reflecting MAP kinase signaling inhibition) (Figure 3E; Appendix A, 
Figures S11 and S12). In summary, both melanoma tumors and cell lines demonstrate 

drug-resistant tumor cell sub- populations that precede treatment and become enriched 

after MAP kinase–targeted treatment.  
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Figure 3 | MITF- and AXL-associated expression programs vary between andwithin tumors, as well 
as after treatment. (A) Average expression signatures for the AXL program (y axis) or the MITF program (x 
axis) stratify tumors into MITF- high (black) or AXL-high (red) categories. (B) Single-cell profiles show a 
negative correlation between the AXL program (y axis) and the MITF program (x axis) across individual 
malignant cells within the same tumor. Cells are colored by the relative 
expression of the MITF (black) and AXL (red) programs. Cells in both states are found in all examined tumors, 
including three tumors (Mel79, Mel80, and Mel81) without prior systemic treatment, indicating that dormant 
resistant (AXL-high) cells may be present in treatment-naïve patients. (C) Mel81 and 
Mel80 IF staining of MITF (green nuclei) and AXL (red), validating the mutual exclusivity among individual 
cells within the same tumor (Appendix A, Figure S8). (D) Relative expression (centered) of the AXL program 
genes (top) and MITF program genes (bottom) in six matched pretreatment (white boxes) and post relapse 
(gray boxes) samples from patients who progressed through therapeutic RAF and MEK inhibition. Numbers 
at the top indicate patient index. Samples are sorted by the average relative expression of the AXL versus 
MITF gene sets. In all cases, the relapsed samples had an increased ratio of AXL-to-MITF expression 
compared with their pretreatment counterparts. This consistent shift of all six patients is statistically significant 
(P < 0.05, binomial test), as are the individual increases in AXL and MITF for four of the six sample pairs (P 
< 0.05, t test; black and gray arrows denote increases that are individually significant or nonsignificant, 
respectively). (E) Quantitative, multiplex single-cell IF for AXL expression (top y axes) and MAP kinase 
pathway inhibition (p-ERK levels, bottom y axes) in the example cell lines WM88 and MELHO treated with 
increasing concentrations (x axis) of either a RAF inhibitor alone (dark gray bars) or a combination of RAF 
and MEK inhibitors (light gray bars). We observed an increasing fraction of AXL-high cells (top panels) as 
well as a dose-dependent decrease of p-ERK (bottom panels). (Appendix A, Figures S11 and S12 show 
the results for additional cell lines). 



 
40 

2.6 Nonmalignant cells and their interactions within the melanoma microenvironment 

Various nonmalignant cells make up the tumor microenvironment. The composition of the 

microenvironment has an important effect on tumorigenesis and also in the modulation of 

treatment responses.1 Tumor infiltration with T cells, for example, is predictive for the 

response to immune checkpoint inhibitors in various cancer types.36 

To resolve the composition of the melanoma microenvironment, we used our single-cell 

RNA-seq profiles to define distinct expression signatures of each of five distinct 

nonmalignant cell types: T cells, B cells, macrophages, endothelial cells, and CAFs. 

Because our signatures were derived from single-cell profiles, we could avoid 

confounders and ensure that each signature is determined by cell type–specific profiles.17 

Next, we used these signatures to infer the relative abundance of those cell types in a 

larger compendium of tumors17 (Figure 4A; Appendix A,  Figure S13). We found a 

strong correlation (correlation coefficient R ~ 0.8) between our estimated tumor purity and 

that predicted from DNA analysis37 (Figure 4A, first lane below the heat map).  

We partitioned 471 tumors from TCGA into 10 distinct microenvironment clusters on the 

basis of their inferred cell type composition (Figure 4A). Clusters were mostly 

independent of the site of metastasis (Figure 4A, second lane), with some exceptions 

(e.g., clusters 8 and 9). Next we examined how these different microenvironments may 

relate to the phenotype of the malignant cells. In particular, CAF abundance is predictive 

of the AXL-MITF distinction, with CAF-rich tumors expressing the AXL-high signature 

(Figure 4A, bottom lane). Interestingly, an AXL-high program was expressed by both 

melanoma cells and CAFs. However, we distinguished AXL-high genes that are 

preferentially expressed by melanoma cells (“melanoma-derived AXL program”) from 

those that are preferentially expressed by CAFs (“CAF- derived AXL program”). Both sets 

of genes were correlated with the inferred CAF abundance in tumors from TCGA 

(Appendix A, Figure S14).38 Furthermore, the MITF-high program, which is specific to 

melanoma cells, was negatively correlated with inferred CAF abundance. Taken together, 

these results suggest that CAF abundance may be linked to preferential expression of 

the AXL-high over the MITF-high program by melanoma cells. Thus it is possible that 

specific tumor-CAF interactions may shape the melanoma cell transcriptome.  
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Interactions between cells play crucial roles in the tumor microenvironment.1 To assess 

how cell-to-cell interactions may influence tumor composition, we searched for genes 

expressed by cells of one type that may influence or reflect the proportion of cells of a 

different type in the tumor (Appendix A, Figure S15). For example, we searched for 

genes expressed primarily by CAFs (but not T cells) in single-cell data that correlated with 

T cell abundance (as inferred by T cell–specific genes) in bulk tumor tissue from the 

TCGA data set.23 We identified a set of CAF-expressed genes that correlated strongly 

with T cell infiltration (Figure 4B, red circles). These included known chemotactic 

(CXCL12 and CCL19) and immune-modulating (PD-L2) genes, which are expressed by 

both CAFs and macrophages (Appendix A, Figure S16). A separate set of genes, 

exclusively expressed by CAFs, that correlated with T cell infiltration (fig. S16) included 

multiple complement factors [C1S, C1R, C3, C4A, CFB, and C1NH (SERPING1)]. 

Notably, these complement genes were specifically expressed by fresh- ly isolated CAFs 

but not by cultured CAFs (Appendix A, Figure S17) or macrophages (Appendix A, 
Figure S16). These findings are intriguing, as studies have implicated complement 

activity in the recruitment and modulation of T cell–mediated antitumor immune 

responses [in addition to their role in augmenting innate immunity39].  

We validated a high correlation (R > 0.8) be- tween complement factor 3 (C3) levels (one 

of the CAF-expressed complement genes) and infiltration of CD8+ T cells. We performed 

dual IF staining and quantitative slide analysis of two tissue microarrays with a total of 

308 core biopsies, including primary tumors, metastatic lesions, normal skin with adjacent 

tumor, and healthy skin controls (Figure 4C; Appendix A, Figure S18).17 To test the 

generalizability of the association between CAF-derived complement factors with T cell 

in- filtration, we expanded our analysis to bulk RNA- seq data sets across all TCGA cancer 

types (Figure 4D). Consistent with the results in melanoma, complement factors 

correlated with inferred T cell abundance in many cancer types and more highly than in 

normal tissues (e.g., R > 0.4 for 65% of cancer types but only for 14% of normal tissue 

types). Although correlation analysis can- not determine causality, this indicates a 

potential in vivo role for cell-to-cell interactions.  
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Figure 4 | Deconvolution of bulk melanoma profiles reveals cell-to-cell interactions. (A) Bulk tumors 
segregate to distinct clusters on the basis of their inferred cell type composition. (Top panel) Heat map 
showing the relative expression of gene sets defined from single-cell RNA-seq, as specific to each of five cell 
types from the tumor microenvironment (y axis) across 471 melanoma TCGA bulk-RNA signatures (x axis). 
Each column represents one tumor, and tumors are partitioned into 10 distinct patterns identified by k-means 
clustering (vertical lines and cluster numbers at the top). Endo, endothelial cells; Macro., macrophages. 
(Lower panels, from top to bottom) Tumor purity estimated by ABSOLUTE (DNA) and RNA-seq analysis 
(RNA), specimen location (from TCGA), and AXL/MITF scores. Tumors with a high abundance of CAFs are 
correlated with an increased ratio of AXL-to-MITF expression (bottom). LN, lymph node. (B) Inferred cell-to-
cell interactions between CAFs and T cells. The scatter plot compares, for each gene (circle), the correlation 
of its expression with inferred T cell abundance across bulk tumors (y axis, from TCGA transcriptomes) to 
the specificity of its expression in CAFs (black) versus T cells (gray) (x axis, based on single-cell 
transcriptomes). Genes that are highly specific to CAFs in a single-cell analysis of tumors but are also 
associated with high T cell abundance in bulk tumors (red) are candidates for interaction between CAF cells 
and T cells. (C) Of the 90 samples, 80 tumor specimens (black dots) show a correlation (R = 0.86) between 
C3 and CD8 signals, as analyzed by quantitative IF. Ten normal control specimens (gray dots) are also 
shown (Appendix A, Figure S18, A to F, shows normalization and additional specimens). (D) Correlation 
coefficient (y axis) between the average expression of CAF-derived complement factors shown in (B) and 
that of T cell markers (CD3/D/E/G, CD8A/B) across 26 TCGA cancer types with >100 samples (x axis, left 
panel) and across 36 GTEx (Genotype-Tissue Expression Project) tissue types with >100 samples (x axis, 
right panel). Bars are colored on the basis of correlation ranges, as indicated at the bottom. 
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2.7 Diversity of tumor-infiltrating T lymphocytes and their functional states  

The activity of TILs, particularly CD8+ T cells, is a major determinant of successful 

immune surveillance. Under normal circumstances, effector CD8+ T cells exposed to 

antigens and costimulatory factors may mediate lysis of malignant cells and control tumor 

growth. However, this function can be hampered by tumor-mediated T cell exhaustion, 

such that T cells fail to activate cytotoxic effector functions.40 Exhaustion is promoted 

through the stimulation of coinhibitory checkpoint molecules on the T cell surface (PD-1, 

TIM-3, CTLA-4, TIGIT, LAG3, and others)41; blockade of checkpoint mechanisms has 

shown clinical benefit in subsets of melanoma and other malignancies.3,10,42,43 Although 

checkpoint ligand expression (e.g., PD-L1) and neoantigen load clearly contribute9,44,45, 

no biomarker has emerged that reliably predicts the clinical response to immune 

checkpoint blockade. We reasoned that single-cell analyses might yield features to 

elucidate response determinants and possibly identify new immunotherapy targets.  

Thus, we analyzed the single-cell expression patterns of 2068 T cells from 15 

melanomas. We identified T cells and their main subsets [CD4+, regulatory T cells 

(Tregs), and CD8+] on the basis of the expression levels of their respective defining 

surface markers (Figure 5A, top; Appendix A, table S12). Within both the CD4+ and 

CD8+ populations, a PCA distinguished cell subsets and heterogeneity of activation 

states on the basis of the expression of naïve and cytotoxic T cell genes (Figure 5, A and 
B; Appendix A, Figure S19). 

Next we sought to determine the exhaustion status of each cell from the expression of 

key coinhibitory receptors (PD1, TIGIT, TIM3, LAG3, and CTLA4). In several cases, these 

coinhibitory receptors were coexpressed across individual cells; we validated this 

phenomenon for PD1 and TIM3 by IF staining (Figure 5C). However, exhaustion gene 

expression was also highly correlated with the expression of both cytotoxicity markers 

and overall T cell activation states (Figure 5B). This observation resembles an activation-

dependent exhaustion expression program, such as those reported previously.46,47 

Accordingly, expression of coinhibitory receptors (alone or in combinations) may not be  
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Figure 5 | Activation-dependent and -independent variation in T cell exhaustion markers. (A) Single 
T cell stratification into CD4+ and CD8+ cells (top panel), CD25+FOXP3+ and other CD4 cells (middle 
panel), and their inferred activation state [lower panels, from average expression of the cytotoxic and 
naïve gene sets in (B)]. Th, T helper cells; Tregs; regulatory T cells. (B) (Top) Average expression of 
markers of cytotoxicity (Cyto.), exhaustion (Exhau.), and naïve cell states (rows) in (from left to right) 
Tregs, CD4+ T helper cells, and CD8+ T cells. CD4+ and CD8+ T cells are each further divided into five 
bins by their cytotoxic score (ratio of cytotoxic to naïve marker expression levels), showing activation-
dependent coexpression of exhaustion markers. (Bottom) Proportion of cycling cells (calculated as in 
Figure 2B). Asterisks denote significant enrichment or depletion of cycling cells in a specific subset, as 
compared with the corresponding set of CD4+ or CD8+ T cells (P < 0.05, hypergeometric test). (C) IF 
analysis of PD-1 (top, green), TIM-3 (middle, red), and their overlay (bottom) validates their coexpression. 
(D) Activation- independent variation in exhaustion states within highly cytotoxic T cells. The scatter plot 
shows the cytotoxic score (x axis) and exhaustion score (y axis, average expression of the Mel75 
exhaustion program as in Appendix A, Figure S21) of each CD8+ T cell from Mel75. In addition to the 
overall correlation between cytotoxicity and exhaustion, the cytotoxic cells can be subdivided into cells with 
high (red) and low exhaustion (green), based on comparison to a LOWESS (locally weighted scatter plot 
smoothing) regression (black line). (E and F) Relative expression (log2 fold-change) in high- versus low-
exhaustion cytotoxic CD8+ T cells from five tumors (x axis), including 28 genes that were significantly up-
regulated (P < 0.05, permutation test) in high-exhaustion cells across most tumors (E) and 272 genes that 
were variably associated with high-exhaustion cells across tumors (F). Three independently derived 
exhaustion gene sets were used to define high- and low-exhaustion cells (Mel75)17,46,48, and the 
corresponding results are represented as distinct columns for each tumor. (G) Expanded TCR clones. Cells 
were as- signed to clusters of TCR segment usage (dark gray bars) (Appendix A, Figure S23), and cluster 
size (x axis) was evaluated for significance by control analysis in which TCR segments were shuffled across 
cells (light gray bars). The percentage of Mel75 cells (y axis) is shown for clusters of small size (one to four 
cells) that probably represent nonexpanded cells, medium size (five or six cells) that may reflect expanded 
(continues onto the next page)  
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clones (FDR = 0.12), and large size (more than six cells) that most likely reflect expanded clones (FDR = 
0.005). (H) Expanded clones are depleted of nonexhausted cells and enriched for exhausted cells. Mel75 
cells were divided according to exhaustion score into categories of low exhaustion (green, bottom 25% of 
cells) and medium-to-high exhaustion (red, top 75%). Shown is the relative frequency of these exhaustion 
subsets (y axis) in each TCR-cluster group [x axis, as defined in (G)], defined as the log2 ratio of the 
frequency in that group compared with the frequency across all Mel75 cells. All values were significant (P 
< 10,, binomial test). 

sufficient by itself to characterize the salient functional state of tumor-associated T 

lymphocytes in situ or to distinguish exhaustion from activation.  

To define an activation-independent exhaustion program, we leveraged single-cell data 

from CD8+ T cells sequenced in a single tumor (Mel75, 314 cells). These data allowed 

cytotoxic and exhaustion programs to be deconvolved. Specifically, PCA of Mel75 T cell 

transcriptomes identified a robust expression module that consisted of all five coinhibitory 

receptors and other exhaustion-related genes, but not cytotoxicity genes (Appendix A, 
Figure S21 and table S13).  

We used the Mel75 exhaustion program, along with previously published exhaustion 

programs46,48, to estimate the exhaustion state of each cell. An exhaustion state was 

defined as high or low expression of the exhaustion program relative to that of the 

cytotoxicity genes (Figure 5D).17 Accordingly, we defined exhaustion states in Mel75 and 

in four additional tumors with the highest number of CD8+ T cells (68 to 214 cells per 

tumor). We identified the top preferentially expressed genes in high-exhaustion cells com- 

pared with low-exhaustion cells (both defined relative to the expression of cytotoxicity 

genes). This allowed us to define a core exhaustion signature across cells from various 

tumors.  

Our core exhaustion signature yielded 28 genes that were consistently up-regulated in 

high-exhaustion cells of most tumors, including coinhibitory (TIGIT) and costimulatory 

(TNFRSF9/ 4-1BB and CD27) receptors (Figure 5E; Appendix A, table S14). In addition, 

most genes that were significantly up-regulated in high-exhaustion cells of at least one 

tumor had distinct associations with exhaustion across the different tumors (Figure 5F, 

272 of 300 genes with P < 0.001 by permutation test; Appendix A, Figure S22, A and 
B; and table S14). These tumor- specific signatures included variable expression of 

known exhaustion markers (Appendix A, table S14) and could be linked to 
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immunotherapeutic response or might reflect the effects of previous treatments. For 

example, CTLA-4 was highly up-regulated in exhausted cells of Mel75 and weakly up-

regulated in three other tumors but was completely decoupled from exhaustion in Mel58. 

Interestingly, Mel58 was derived from a patient with an initial response and subsequent 

development of resistance to CTLA-4 blockade with ipilimumab (Figure 5F; Appendix 
A, Figure S22C). Another variable gene of interest was the transcription factor NFATC1, 

previously implicated in T cell exhaustion.49 NFATC1 and its target genes were 

preferentially associated with the activation-independent exhaustion phenotype in Mel75 

(Appendix A, Figure S22, D and E), suggesting a potential role of NFATC1 in the 

underlying variability of exhaustion programs among patients.  

Finally, we explored the relationship between T cell states and clonal expansion. T cells 

that recognize tumor antigens may proliferate to generate discernible clonal 

subpopulations defined by an identical T cell receptor (TCR) sequence.50 To identify 

potentially expanded T cell clones, we used RNA-seq reads that map to the TCR to 

classify single T cells by their isoforms of the V and J segments of the a and b TCR chains, 

and we searched for enriched combinations of TCR segments. Most observed 

combinations were found in few cells and were not enriched. However, approximately half 

of the CD8+ T cells in Mel75 had one of the seven enriched combinations identified (FDR 

= 0.005) and thus may represent expanded T cell clones (Figure 5G; Appendix A, 
Figure S23). This putative T cell expansion was also linked to exhaustion (Figure 5H), 

such that low-exhaustion T cells were depleted in expanded T cells (TCR clusters with 

more than six cells) and enriched in nonexpanded T cells (TCR clusters with one to four 

cells). In particular, the nonexhausted cytotoxic cells are almost all non- expanded cells 

(Figure 5H). Overall, this analysis suggests that single-cell RNA-seq may allow for the 

inference of functionally variable T cell populations that are not detectable with other pro- 

filing approaches (Appendix A, Figure S24). This knowledge may empower studies of 

tumor response and resistance to immune checkpoint inhibitors.  
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2.8 Conclusions 

Our analysis has uncovered intra- and interindividual, spatial, functional, and genomic 

heterogeneity in melanoma cells and associated tumor components that shape the 

microenvironment, including immune cells, CAFs, and endothelial cells. We identified a 

cell state in a subpopulation of all melanomas studied that is linked to resistance to 

targeted therapies, and we used a variety of approaches to validate the presence of a 

dormant drug-resistant population in a number of melanoma cell lines. 

 

By leveraging single-cell profiles from a few tumors to deconvolve a large collection of 

bulk profiles from TCGA, we discovered different micro- environments associated with 

distinct malignant cell profiles. We also detected a subset of genes expressed by one cell 

type (e.g., CAFs) that may influence the proportion of other cell types (e.g., T cells); this 

indicates the importance of intercellular communication for tumor phenotype. Putative 

interactions between stromal-derived factors and immune cell abundance in melanoma 

core biopsies suggest that future diagnostic and therapeutic strategies should account for 

tumor cell composition rather than bulk expression. Furthermore, our data suggest 

potential bio- markers for distinguishing exhausted and cytotoxic T cells that may aid in 

selecting patients for immune checkpoint blockade.  

 

Although future work is necessary to clarify the interplay between these cell types and 

functional states in space and time, the ability to carry out a number of highly multiplexed 

single- cell observations within a tumor allows us to identify meaningful cell 

subpopulations and gene expression programs that may inform both the analysis of bulk 

transcriptional data and precision treatment strategies. Conceivably, single-cell genomic 

profiling may soon enable a deeper understanding of the complex interplay among cells 

within the tumor ecosystem and its evolution in response to treatment, thereby providing 

a versatile new tool for future translational applications.  
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Chapter 3: Seq-Well: portable, low-cost RNA 
sequencing of single cells at high throughput 
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Abstract 

Single-cell RNA-seq can precisely resolve cellular states but applying this method to low-

input samples is challenging. Here, we present Seq-Well, a portable, low-cost platform 

for massively parallel single-cell RNA-seq. Barcoded mRNA capture beads and single 

cells are sealed in an array of subnanoliter wells using a semipermeable membrane, 

enabling efficient cell lysis and transcript capture. We use Seq-Well to profile thousands 

of primary human macrophages exposed to Mycobacterium tuberculosis. 
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INTRODUCTION 

3.1 Background 

The emergence of single-cell genomics has enabled new strategies for identifying the 

cellular and molecular drivers of biological phenomena.1-19 Patterns in genome-wide 

mRNA expression measured by single-cell RNA-seq (scRNA-seq) can be leveraged to 

uncover distinct cell types, states and circuits within cell populations and tissues.1–5,9–13 

To inform our understanding of healthy and diseased behaviors and eventually guide 

precision diagnostics and therapeutics, we need broadly applicable scRNA-seq methods 

that are easy to use and enable high-throughput studies of cellular phenotypes, 

particularly for low-input (≤104 cells) samples such as clinical specimens. 

 

Typically, scRNA-seq involves isolating and lysing individual cells, then independently 

reverse transcribing and amplifying their mRNAs before generating barcoded libraries 

that are pooled for sequencing. Although manual picking2,5,8, FACS sorting1,3,4 or 

integrated microfluidic circuits7,9,10 can isolate single cells, these approaches are 

constrained in scale by cost, time and labor. Recently developed massively parallel 

methods assign unique bar-codes to each cell’s mRNAs during reverse transcription, 

enabling ensemble processing while retaining single-cell resolution. These techniques 

typically yield single-cell libraries of lower complexity, but higher throughput reduces the 

impact of the technical and intrinsic noise associated with each cell in analyses.11,12 The 

most commonly used approach relies on microfluidic devices to generate reverse-

emulsion droplets that couple single cells with uniquely barcoded mRNA capture 

beads11,12. Droplet-based techniques, however, can have inefficiencies in encapsulation, 

introduce technical noise through differences in cell lysis time and require specialized 

equipment—limiting where, when and at what scale scRNA-seq can be performed. 

 

One alternative to droplets is to use arrays of subnanoliter wells loaded by gravity, which 

reduces the need for peripheral equipment, decreases dead volumes and facilitates 

parallelization. As a proof of principle, cells and beads have been co-confined in nanowell 

arrays to perform targeted single-cell transcriptional profiling13, yet the absence of a seal 

significantly impairs capture efficiency and increases cross-contamination (Appendix B, 
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Supplementary Figure 1). Nanowells have also been combined with microfluidic 

channels that facilitate oil-based single-cell isolation via fluid exchange.14 Nevertheless, 

this design limits buffer exchange and necessitates integrated temperature and pressure 

controllers, impacting ease of use and portability.15 Semiporous-membrane-covered 

nanowells have been used to link pairs of specific transcripts from single cells16; however, 

this approach used many beads per well, precluding the creation of unique single-cell 

libraries, and transcript capture and sealing efficiency were not addressed.  

 

RESULTS 
3.2 The Development of Seq-Well 

To overcome these challenges, we developed Seq-Well, a simple, portable platform for 

massively parallel scRNA-seq (Appendix B, Supplementary Figure 2). Seq-Well 

confines single cells and bar-coded poly(dT) mRNA capture beads in a PDMS array of 

~86,000 subnanoliter wells. Wells accommodate only one bead, enabling single-bead 

loading efficiencies of ~95% (Figure 1a; Appendix B, Supplementary Figure 3a). A 

simplified cell-loading scheme in turn permits capture efficiencies of around 80% (see 

Online Methods and Appendix B, Supplementary Figure 3b), with a dual occupancy 

rate that can be tuned by adjusting the number of cells loaded and visualized before 

processing (Appendix B, Supplementary Figure 3c). 

Figure 1 | Seq-Well: a portable, low-cost platform for high-throughput single-cell RNA-seq of low-
input samples. (a) Equipment and array used to capture and lyse cells, respectively. Scale bar, 100 μm. 
(b) Sequencing a mix of human (HEK293) and mouse (NIH/3T3) cells reveals distinct transcript mapping 
and single-cell resolution. Cells with >2,000 human and <1,000 mouse transcripts are labeled as human, 
and cells with >2,000 mouse and <1,000 human transcripts are labeled as mouse. Of the 254 cells 
identified, 4 (1.6%) had a mixed phenotype. (c,d) Number of transcripts (c) and genes (d) detected in single-
cell libraries generated by Seq-Well or Drop-seq (ref. 12; center-line: median; limits, first and third quartile; 
whiskers, ±1.5 IQR; points; values, >1.5 IQR). Using Seq-Well (Drop-seq), an average of 37,878 (48,543) 
transcripts or 6,927 (7,175) genes were detected among human HEK cells (n = 159 for Seq-Well; n = 48 
for Drop-seq); and an average of 33,586 (26,700) transcripts or 6,113 (5,753) genes were detected among 
mouse 3T3 cells (n = 172 for Seq-Well; n = 27 for Drop-seq) at an average depth of 164,238 (797,915) 
reads per HEK cell and 152,488 (345,117) reads per 3T3 cell. 
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A key unique feature of Seq-Well is the use of selective chemical functionalization to 

facilitate reversible attachment of a semipermeable polycarbonate membrane (10-nm 

pore size) in physiologic buffers. This enables rapid solution exchange for efficient cell 

lysis but traps biological macromolecules for improved transcript capture and reduced 

cross-contamination (Appendix B, Supplementary Figure 4a). The array’s three-layer 

surface functionalization comprises an aminosilane base20 crosslinked to a bifunctional 

poly(glutamate)–chitosan top via a p-phenylene diisothiocyante intermediate (see Online 
Methods and Appendix B, Supplementary Figure 4). In the outer layer, poly(glutamate) 

at the inner nanowell surfaces prevents nonspecific binding of mRNAs, while chitosan on 

the array’s top sur-face encourages efficient sealing to the membrane (see Online 
Methods and Appendix B, Supplementary Figure 4b,c). To test sealing and buffer 

exchange, we monitored the fluorescence of dye-labeled, cell-bound antibodies before 

and after adding a guanidinium-based lysis buffer. We observed rapid diffusion of the 

antibodies throughout the wells within 5 minutes of buffer addition and—unlike in 

unsealed or previously described, membrane-covered BSA-blocked arrays16— we 

observed little change in fluorescent signal over 30 min, suggesting robust retention of 

biological macromolecules despite the use of a strong chaotrope (see Online Methods 

and Appendix B, Supplementary Figure 5). 

 

After lysis, cellular mRNAs are captured by bead-bound poly(dT) oligonucleotides that 

also contain a universal primer sequence, a cell barcode and a unique molecular identifier 

(UMI) (see Online Methods and Appendix B, Supplementary Table 1). Next, the 

membrane is peeled off, and the beads are removed for subsequent bulk reverse 

transcription, amplification, library preparation and paired-end sequencing, as previously 

described12 (see Online Methods). Critically, beyond a disposable array and membrane, 

Seq-Well only requires a pipette, a manual clamp, an oven and a tube rotator to achieve 

stable, barcoded single-cell cDNAs (Figure 1a), so it can be performed almost anywhere.  

 

3.3 Validation of Capture Efficiency and Single-cell Resolution 

To assess transcript capture efficiency and single-cell resolution, we profiled a mixture of 

5 × 103 human (HEK293) and 5 × 103 mouse (3T3) cells using Seq-Well. The average 



 55 

fraction of reads mapping to exonic regions was 77.5% (Appendix B, Supplementary 

Figure 6), demonstrating high-quality libraries. Shallow sequencing from a fraction of an 

array revealed highly organism-specific libraries, suggesting single-cell resolution and 

minimal cross-contamination (Figure 1b and Appendix B, Supplementary Figure 7a–
c). In the absence of membrane sealing, by comparison, we obtained poor transcript and 

gene detection as well as substantial cross-contamination (Appendix B, Supplementary 

Figure 1). From deeper sequencing of a fraction of a second array, we detected an 

average of 37,878 mRNA transcripts from 6,927 genes in HEK cells and 33,586 mRNA 

transcripts from 6,113 genes in 3T3 cells, comparable to a droplet-based approach using 

the same mRNA capture beads (Drop-seq)12 (Figure 1c,d and Appendix B, 
Supplementary Figures 7 and 8). Upon downsampling to match read depths, we also 

observed levels of transcript and gene detection consistent with those of other massively 

parallel bead-based scRNA-seq methods (see Online Methods and Appendix B, 
Supplementary Figure 7d–g). Moreover, bulk RNA-seq data were strongly correlated 

with populations constructed in silico from individual HEK cells (R = 0.751 ± 0.073 to R = 

0.983 ± 0.0001 for populations of 1–1,000 single cells, respectively), suggesting 

representative cell and transcript sampling (see Online Methods and Appendix B, 
Supplementary Figure 9). To examine Seq-Well’s ability to resolve populations of cells 

in complex primary samples, we loaded human peripheral blood mononuclear cells 

(PBMCs) into arrays in triplicate before beads, allowing us to perform on-array multicolor 

imaging cytometry (see Online Methods; Figure 2a,b; Appendix B, Supplementary 

Tables 2 and 3). 

 

Sequencing one-third of the beads recovered from each array yielded 3,694 high-quality 

single-cell libraries (see Online Methods). Unsupervised graph-based clustering 

revealed unique subpopulations corresponding to major PBMC types (see Online 

Methods, Figure 2b; Appendix B, Supplementary Figures 10–12 and Table 4). Each 

array yielded similar subpopulation frequencies (Figure 2c), with detection efficiencies 

comparable to those of other massively parallel technologies (Appendix B, 
Supplementary Figure 13). The proportion of each subpopulation determined by 

sequencing also matched on-array immunophenotyping results (Figure 2a,b). 
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Figure 2 | Combined image cytometry and scRNA-seq of human PBMCs. (a) Hierarchical gating 
scheme used to analyze PBMCs labeled with a panel of fluorescent antibodies, loaded onto three replicate 
arrays and imaged before bead loading (see Online Methods). Myeloid cells (green) were identified as the 
population of hCD3(−) HLA-DR(+) CD19(−) cells; B cells (orange) as the subset of hCD3(−) HLA-DR(+) 
CD19 (+) cells; CD4 T cells (blue) as the subset of CD3(+) CD4(+) cells; CD8 T cells (yellow) as the CD3(+) 
CD8(+) subset of cells; and NK cells (red) as the subset of CD3(−) HLA-DR(−) CD56(+) CD16(+) cells. (b) 
t-SNE visualization of clusters identified among 3,694 human Seq-Well PBMCs single-cell transcriptomes 
recovered from the imaged array and the two additional arrays (see Online Methods). Clusters 
(subpopulations) are labeled based on annotated marker gene (supplementary fig. 0). (c) Distribution of 
transcriptomes captured on each of the biological replicate arrays, run on separate fractions of the same 
set of PBMCs. No shifts are statistically significant (n.s. = not significant; see Online Methods) except for 
a slightly elevated fraction of CD8 T cells in array 1 (*, P = 1.0 × 10−11; Chi-square test, Bonferroni 
corrected). (d) Relative expression level of a set of inflammatory and antiviral genes among cells identified 
as monocytes. Inflamm., inflammatory. 
 

Critically, sequencing provided additional information; in addition to resolving dendritic 

cells from monocytes (Figure 2b), we found significant variation among the monocytes 

(captured in PC3) due to differential expression of inflammatory and antiviral gene 

programs (Figure 2d).1,3 Our results show that characterizing a sample in two ways using 
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a single platform increases the amount of information that can be extracted from a 

precious specimen, while allowing analysis of one measurement to be interpreted in the 

context of the other.  

 

3.4 Demonstration of Portability 

Finally, to test the portability of Seq-Well, we profiled primary human macrophages 

exposed to Mycobacterium tuberculosis (H37Rv) in a BSL3 facility (see Online 
Methods). In total, we recovered 14,218 macrophages (from a total of 40,000 loaded 

across experiments) with greater than 1,000 mapped transcripts from an M. tuberculosis-

exposed and an unexposed array. Unsupervised analysis of 4,638 cells with greater than 

5,000 transcripts per cell revealed five distinct clusters (Figure 3a,b; Appendix B, 
Supplementary Figure 14a,b and Table 5). Two clusters had lower transcript capture 

and high mitochondrial gene expression (suggestive of low-quality libraries)17 and were 

removed; the remaining three (2,560 cells) were identified in both the exposed and 

unexposed samples (Figure 3a; Appendix B, Supplementary Figures 14c,d and 15), 

and they likely represent distinct subphenotypes present in the initial culture.  

 

We next examined common and cluster-specific gene enrichments (see Online 
Methods). Although clusters 1 and 3 did not present strong stimulation-independent 

enrichments, cluster 2 uniquely expressed several genes associated with metabolism 

(Appendix B, Supplementary Tables 6 and 7). Intriguingly, within each cluster we 

observed pronounced shifts in gene expression in response to M. tuberculosis (see 

Online Methods; Figure 3c; Appendix B, Supplementary Table 8), with common 

enrichments for gene sets previously observed in response to intracellular infection, LPS 

stimulation and activation of TLR7/8 receptor (Appendix B, Supplementary Tables 9 
and 10). Cluster 1 uniquely displayed stimulation-induced shift in several genes 

associated with cell growth, cluster 3 in transcripts associated with hypoxia, and cluster 

2 (again) in genes linked to metabolism. Overall, these data suggest that basal cellular 

heterogeneity may influence ensemble M. tuberculosis responses. Equally important, 

they demonstrate Seq-Well’s ability to acquire large numbers of single-cell transcriptomes 

in challenging experimental environments. 
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Figure 3 | Sequencing of TB-exposed macrophages in a BSL3 facility using Seq-Well. (a) t-SNE 
visualization of single-cell clusters identified among 2,560 macrophages (1,686 exposed, solid circles; 874 
unexposed, open circles) generated using five principal components across 377 variable genes (see Online 
Methods). (b) Marker genes for the three phenotypic clusters of macrophages highlighted in a. (c) 
Differential expression between exposed and unexposed macrophages within each cluster showing genes 
enriched in cells exposed to M. tuberculosis. Cyan, genes with P values less than 5.0 × 10−6 (threshold for 
statistical significance, determined by a likelihood ratio test) and absolute log2 fold changes greater than 
0.4 (threshold used for differential expression). Magenta, genes with P values less than 5.0 × 10−6 but 
absolute log2 fold changes less than 0.4. Black, remaining genes. 
 
3.5 Conclusion 

In conclusion, Seq-Well is a robust platform for scalable, single-cell transcriptomics 

applicable to almost any cellular suspension for which a reference genome or 

transcriptome exists. The technique is inexpensive, user friendly, portable, and efficient; 

it enables scRNA-seq to accelerate scientific and clinical discovery even when working 

with limited samples. Furthermore, the ability to measure protein secretion and cell-

surface expression on the same platform18,19 foreshadows multi-omic single-cell 

measurements at scale. 
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METHODS 

3.6 Running Seq-Well  

See Protocol Exchange21, http://www.shaleklab.com, or Appendix D for a step-by-step 

Seq-Well protocol. In this work, we used the primers listed in Appendix B, Supplementary 

Table 1. 

 

3.7 Bead synthesis 

Barcoded oligo-dT beads (as described in Macosko et al.12) were purchased from 

Chemgenes (Wilmington, Massachusetts, USA; cat. no. MACOSKO-2011-10) at 10 umol 

scale (~100 arrays). Bead functionalization and reverse phosphoramidite synthesis was 

performed by Chemgenes Corporation using Toyopearl HW-65S resin (30 micron mean 

particle diameter) obtained from Tosoh Biosciences (cat. no. 19815). Surface hydroxyls 

were reacted with a PEG derivative to obtain an 18-carbon linker to serve as a support 

for oligo synthesis. Reverse-direction phosphoramidite synthesis was performed using an 

Expedite 8909 DNA/RNA synthesizer at 10 micromole scale with a coupling time of 3 min. 

Initially, a conserved PCR handle was synthesized followed by 12 rounds of split and pool 

synthesis to generate 16,777,216 unique barcode sequences. Addition of an 8-mer 

random sequence was performed to generate unique molecular identifiers (UMIs) on 

each capture oligo. Finally, a 30-mer poly-dT capture sequence was synthesized to 

enable capture of polyadenylated mRNA species. 

 
4.8 Imaging differential surface functionalization 

Differential labeling of the top and inner well surfaces was visualized by substituting 1 

ug/mL PE–strepavidin for chitosan (Appendix D; step 8, Seq-Well Protocol21) and 1 

ug/mL AlexaFluor488-Streptavidin for the poly-glutamate (Appendix D; step 10, Seq-

Well Protocol21) in the standard functionalization protocol (Appendix B, Supplementary 
Figure 3). Carboxylation of the inner well surfaces was visualized by treating the 

functionalized array with 100 μg/mL EDC/10 μg/mL NHS MES (pH 6.0) solution for 10 

min, washing twice with MES buffer, once with sodium borate buffer (pH 8.5), and 

incubating overnight with 1 μg/mL Alexa-Fluor 568-labeled antibody. Arrays were washed 
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three times with phosphate-buffered saline (PBS) and imaged using Alexa Fluor 568 

channel (Appendix B, Supplementary Table 2). 

 

3.9 Visualizing lysate retention (imaging) 

PBMCs were labeled with αCD45–AF647 (BioLegend 304020, diluted 1:20). Cells were 

washed and loaded onto two arrays previously blocked with 1% BSA solution for 30 min 

and one array functionalized with chitosan as described above. A polycarbonate 

membrane was attached to the chitosan-functionalized array as described above. The 

array was submerged in PBS and imaged for AF647 fluorescence to identify wells 

containing cells. The BSA-blocked arrays were imaged before membrane attachment 

because the membrane would detach when submerged in media. After imaging, a 

plasma-treated polycarbonate membrane was attached to one of the BSA-blocked arrays 

as described16. Briefly, the membrane was placed on the array with forceps, and all 

excess media were aspirated from the array. The open BSA-blocked array and the 

chitosan array were submerged in 5 mL of 5 M GCTN lysis buffer. 500 μL of lysis buffer 

was placed on the top of membrane attached to the BSA-blocked array as described16. 

5 and 30 minutes later, 100 block positions were imaged on each array, encompassing 

12,100 individual wells. Automated image analysis software was used to background 

subtract each image, identify cell and well locations and extract AF647 signal intensity of 

the cells and the well volumes (Appendix B, Supplementary Figure 4). 

 

3.10 Calculating bead loading efficiency 

Bead loading efficiencies were determined by loading two functionalized arrays with 

beads as outlined above (Appendix B, Supplementary Figure 1). Arrays were imaged 

in transmitted light and AF488 channel (Appendix B, Supplementary Table 2) to capture 

bead autofluorescence. Automated image analysis was used to identify well locations and 

extract the 75th percentile fluorescence intensity in each well. Histogram analysis of 

fluorescence intensities was used to identify empty wells and wells containing beads. 

Finally, manual review of 50 randomly selected image positions, each containing 121 

nanowells, of a total of 690 positions was used to calculate the frequency of wells 

containing two beads. 
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3.11 Calculating cell loading efficiency 

To calculate cell loading efficiencies and well occupancy distributions (Appendix B, 
Supplementary Figure 3), HEK293 and 3T3 cells were labeled with Calcein AM (Life 

Technologies) and Calcein Violet (Life Technologies), respectively, per the 

manufacturer’s recommendations. 200 μL of serial dilutions of a 1:1 mix of the cells at an 

estimated concentration of 1,000, 10,000 and 100,000 cells/mL were loaded in 

functionalized arrays in triplicate using the standard protocol. To determine the 

distribution of cells present in 200 μL of these solutions, the same volume of each solution 

was added to 12 wells of a 96-well plate. 690 array positions on each array were imaged 

in the transmit-ted light, AF488 and AF405 spectral channels (Supplementary Table 2). 

Overlapping images of each well of the 96-well plate were acquired in the same channels. 

Automated image analysis was used to identify well and cell locations in the array images. 

The overlapping images of the 96-well plate were stitched together based on x–y location 

of each image and analyzed in a similar manner to identify cell locations. All three dilutions 

were used to determine the distribution of well occupancy as a function of the number of 

cells loaded. The 10,000 cells/mL dilution were used to calculate cell loading efficiency. 

 

3.12 Species-mixing experiments 

Murine NIH/3T3 cells (ATCC, CRL-1658) were cultured in Dulbelcco’s modified Eagle’s 

medium (DMEM) with glutamate and supplemented with 10% fetal bovine serum (FBS) 

at 37 °C and 5% CO2. Human 293T cells (ATCC, CRL-11268) were cultured at 37 °C 

and 5% CO2 in DMEM with glutamate supplemented with 10% FBS. The media were 

removed from the culture flasks, which were then rinsed with 5 mL of 1× PBS. Cells were 

detached from the surface of the culture flasks by applying 3.5 mL of Trypsin-LE (Life 

Technologies) and incubating at room temperature for 5 min. Once cells had adhered, 10 

mL of complete media was added, and cells were pelleted by spinning at 500× g for 10 

min. Cell pellets were resuspended in 1 mL of media, and a 10 μL aliquot was used to 

count cells. A total of 100,000 HEK and 3T3 cells were again pelleted and resuspended 

in 1 mL of media. For species-mixing experiments, a total of 200 μL of a single-cell 

suspension containing 5,000 HEK and 5,000 NIH/3T3 cells was applied to the surface of 

two nanowell devices loaded with beads. In the first experiment, of the 60,000 beads 
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collected from the array, 9,600 beads were pooled for subsequent processing and 

sequencing, from which we identified 254 high-quality cells with greater than 2,000 

transcripts. In the second experiment, of the 25,000 beads collected from the array, 

15,000 beads were pooled for subsequent processing and sequencing, from which we 

identified 331 high-quality cells with greater than 10,000 transcripts, greater than 2,000 

genes, and greater than 90% transcript purity (i.e. >90% of transcripts from the same 

species). Also, as in Drop-Seq, we attempted to validate capture efficiency using ERCC 

spike-ins; however, this required us to load ERCCs onto the nanowell array by pipetting, 

which proved inefficient to properly assess capture efficiency since we could not evenly 

distribute ERCCs to nanowells. 

 

3.13 HEK population experiments 

HEK293 cells were cultured in RPMI supplemented with 10% FBS. A total of 10,000 

HEK293 cells were applied to a Seq-Well device and scRNA-seq libraries were generated 

from 24,000 beads and sequenced on a NextSeq 500. For the bulk RNA-seq sample, 

cellular lysate from 40,000 HEK293 cells in 200 μL of lysis buffer (5 M GTCN, 1% 2-mer-

captoethanol, 1 mM EDTA, and 0.1% Sarkosyl in 1× PBS, pH 6.0) was combined with 

40,000 mRNA capture beads in a PCR tube and rotated end over end for 1 h. Afterward, 

the beads were washed, and a population sequencing library was constructed in an 

identical manner to that of the single-cell Seq-Well libraries but with reads from the 

different bead barcodes combined into one population. In silico populations were created 

by randomly sampling 1, 10, 100 or 1,000 HEK cells from a total of 1,453 cells with greater 

than 3,000 transcripts obtained from a Seq-Well array. Average Pearson correlation 

coefficients and their s.d. were calculated between 100 randomly generated in silico 

populations for each number of cells and the bead population (Appendix B, 
Supplementary Figure 9). 

 

3.14 Human PBMC experiments 

Leukocytes isolated from a leukocyte reduction filter used during platelet aphoresis were 

purchased from Key Biologics (Memphis, Tennessee). The cells were shipped overnight 

at room temperature. PBMCs were isolated from the sample using a Ficoll–Hypaque (GE) 
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gradient, washed two times with HBSS buffer, and frozen in 90% FBS/10%DMSO in 

aliquots of 107 cells. The day before the experiment, an aliquot was thawed and rested 

overnight in RPMI-1640 supplemented with 10% FBS, Pen–Strep, nonessential amino 

acids, sodium pyruvate, and HEPES buffer (RP10) at 106 cells/mL in a 50 mL conical 

tube. Cells were counted the next day, and 5 × 105 cells were pelleted, resuspended in 

1 mL of CellCover solution, and processed as described above. 

 

3.15 Array loading for imaging (PBMCs) 

To quantify cell surface marker protein expression levels on array (Figure 2a), PBMCs 

were loaded first and imaged before bead addition to avoid potential detection issues 

associated with bead autofluorescence. Here, cells were resuspended in cold CellCover 

(Anacyte), an RNA stabilization reagent, and placed at 4C for 1 h. Cells were spun down 

and resuspended in a cocktail containing αCD45-AF647 (BioLegend; HI30), αCD3-PerCP 

(BioLegend; UCHT1), αCD4-PECy5.5(eBioscience; SK3), αCD56-PECy5(BD 

Biosciences; B159), αCD8-APCCy7 (BioLegend; RPA-T8), αHLA-DR-PECy7 (BD 

Biosciences; L243), and αCD19-PE (BioLegend; HIB19) with all antibodies diluted 1:20 

in RP10 media and were incu-bated at 4 °C for 30 min. Cells were washed twice with 

PBS and resuspended in CellCover10 buffer (CellCover supplemented with 10% FBS 

and 100 mM sodium carbonate (pH 10) buffer). Functionalized arrays were washed with 

5 mL of CellCover10 buffer. 2.0 × 104 cells were loaded onto the array and washed twice 

with CellCover10 buffer, and finally the array was placed in 5 mL CellCover. Arrays were 

imaged with a Zeiss AxioVision microscope with Lumencor light source and EMCCD 

camera using the settings described in Appendix B, Supplementary Table 2. Automated 

imaging software was used to identify cell locations within the images and extract signal 

intensities in each spectral channel. To generate spillover coefficients for each 

fluorophore, α−mouse beads (Bangs Labs) were stained individually with each antibody 

using the same protocol as the cells. Images of the singly stained beads were used to 

generate spillover coefficients for each fluorophore that were then used to calculate the 

amount of each fluorophore on each cell as previously described.22 After imaging, arrays 

were washed with 5 mL CellCover10 media. Barcoded beads suspended in CellCover10 

media were loaded into the array through gentle agitation. Arrays were washed 3x with 
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CellCover10 without FBS and finally washed with CellCover. Arrays were then moved on 

to membrane attachment. 

 

3.16 Human monocyte isolation 

Primary human monocytes were isolated from deidentified human buffy coats obtained 

from the Massachusetts General Hospital Blood Bank using a standard Ficoll gradient 

and subsequent CD14 positive selection (Stemcell Technologies). Enriched monocytes 

were cultured in low-adherence flasks (Corning) for 9 d with RPMI media (Invitrogen) 

supplemented with 10% heat-inactivated FCS (Sigma-Aldrich). 

 

3.17 Mycobacterium tuberculosis culture 

Mycobacterium tuberculosis (Mtb) H37Rv expressing the E2-Crimson fluorescent protein 

was grown in Difco Middlebrook 7H9 media supplemented with 10% OADC, 0.2% 

glycerol, 0.05% Tween-80 and Hygromycin B (50 ug/mL). 

 

3.18 Macrophage infection and flow cytometry 

The Mtb culture was pelleted by centrifugation and washed once with RPMI + 10% FCS, 

sonicated briefly, and filtered through a 5 μm syringe filter. Monocyte-derived 

macrophages (MDM) were infected at an MOI of 10 for 4 h and then washed 3× with 

RPMI + 10% FCS. 24 h after infection, cells were washed briefly with 1× PBS. 10× Trypsin 

(Life Technologies) was added, and cells were incubated briefly at 37 °C to allow for cell 

detachment. Detached cells were spun down and resuspended in 1× PBS supplemented 

with 2% FCS and 1 mM EDTA and then passed through a mesh filter to eliminate clumps. 

Uninfected and infected cells were sorted by flow cytometry on an Aria II flow cytometer. 

Mtb-infected cells were identified by the presence of an E2-Crimson signal above the 

background autofluorescence of uninfected cells. 

 

3.19 Transcriptome alignment and barcode collapsing 

Read alignment was performed as in Macosko et al.12. Briefly, for each NextSeq 

sequencing run, raw sequencing data was converted to FASTQ files using bcl2fastq2 that 

were demultiplexed by Nextera N700 indices corresponding to individual samples. Reads 
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were first aligned to both HgRC19 and mm10, and individual reads were tagged according 

to the 12-bp barcode sequence and the 8-bp UMI contained in read 1 of each fragment. 

Following alignment, reads were binned and collapsed onto 12-bp cell barcodes that 

corresponded to individual beads using Drop-seq tools (http://mccarrolllab.com/dropseq). 

Barcodes were collapsed with a single-base error tolerance (Hamming distance = 1), with 

additional provisions for single insertions or deletions. An identical collapsing scheme 

(Hamming distance = 1) was then applied to UMIs to obtain quantitative counts of 

individual mRNA molecules. Quality metrics are presented in Supplementary Figures 5 

and 8 (Appendix B). 
 

3.20 Data normalization 

Digital gene expression matrices were obtained by collapsing filtered and mapped reads 

for each gene by 8-bp UMI sequences within each cell barcode. For each cell, we 

performed library-size normalization. UMI-collapsed gene expression values for each cell 

barcode were scaled by the total number of transcripts and multiplied by 10,000. Scaled 

expression data were then natural-log transformed before analysis using Seurat.23 

 

3.21 Analyzing species-mixing experiments 

In the first experiment, HEK cells were identified as those barcodes with greater than 

2,000 human transcripts and less than 1,000 mouse transcripts, while barcodes with 

greater than 2,000 mouse transcripts and less than 1,000 human transcripts were 

identified as 3T3 cells. Cells with fewer than 2,000 total transcripts were considered 

indeterminate, while any cell with greater than 5,000 total transcripts and more than 1,000 

nonmouse or nonhuman transcripts was considered a multiplet (Figure 1d). In the second 

experiment, HEK cells were identified as those barcodes with greater than 10,000 human 

transcripts, greater than 2,000 human genes, and greater than 90% human transcript 

alignment; while barcodes with greater than 10,000 mouse transcripts, greater than 2,000 

mouse genes, and greater than 90% mouse transcript alignment were identified as 3T3 

cells. Cells with fewer than 10,000 total transcripts were considered indeterminate, while 

any cells with greater than 10,000 total transcripts and more than 1,000 nonmouse or 
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nonhuman transcripts were considered multiples (Figure 1c and Appendix B, 
Supplementary Figure 8). 

 

3.22 PBMC analysis 

We reduced the dimensionality of our data to 11 principle components that account for 

the majority of the variation (51.6% cumulative variance) among variable genes to 

achieve optimal discrimination of cell types identified through image cytometry. We 

identified seven distinct clusters of cells using the FindClusters function in Seurat with 

k.param = 50 (a measure of neighborhood size) and resolution = 0.75 (Appendix B, 
Supplementary Figure 11). Clusters corresponding to CD4 T cells, CD8 T cells, B cells, 

NK cells, monocytes, and dendritic cells were all identified on the basis of significant 

enrichment using an ROC test implemented in Seurat (also see Appendix B, 
Supplementary Figures 10 and 11). We removed 602 cells that comprised a distinct 

cluster enriched for expression of mitochondrial genes (Appendix B, Supplementary 
Figure 11) and a lower mapping rate of new transcripts and genes per sequencing read 

(Appendix B, Supplementary Figure 12), which likely rep-resented single-cell libraries 

of low complexity. We then applied t-distributed stochastic neighbor embedding (t-SNE) 

using the cell loadings for the previously chosen 11 principle components to visualize the 

cells in two dimensions. Following sequence alignment, we analyzed a total of 4,296 cells 

in which at least 10,000 reads, 1,000 transcripts and 500 genes were detected with mRNA 

alignment rate greater than 65% (Figure 2b–d), which resulted in filtering of 1,670 cells 

with greater than 1,000 transcripts. We analyzed a total of 6,713 genes that were detected 

in at least 2.5% of filtered cells across six sequencing runs from three separate arrays. 

We identified 687 variable genes with log-mean expression values greater than 0.5 and 

dispersion (variance/mean) greater than 0.5. We observed optimal discrimination of cell 

types identified through image cytometry using 11 principal components that account for 

the majority of the variation (51.6% cumulative variance) among variable genes and 

visualized using the t-distributed stochastic neighbor embedding (t-SNE) algorithm. We 

performed 1,000 iterations of the Barnes–Hut implementation of the t-SNE algorithm 

using a ‘perplexity’ value of 40. We identified seven distinct clusters of cells using the 

FindClusters function in Seurat with k.param = 50 (a measure of neighborhood size) and 
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resolution = 0.75 (Appendix B, Supplementary Figure 11). Clusters corresponding to 

CD4+ T cells, CD8+ T cells, B cells, NK cells, monocytes and dendritic Cells were all 

identified on the basis of significant enrichment using an ROC test implemented in Seurat 

(also see Appendix B, Supplementary Figures 10 and 11). We removed 602 cells that 

comprised a distinct cluster enriched for expression of mitochondrial genes (Appendix 
B, Supplementary Figures 11) and a lower mapping rate of new transcripts and genes 

per sequencing read (Appendix B, Supplementary Figures 12), which likely 

represented single-cell libraries of low complexity. We examined proportions of various 

cell types across arrays and sequencing runs among 3,694 cells that passed the 

aforementioned filtering criteria. Statistical significance of differences in the proportion of 

clusters between separate arrays and sequencing runs was performed using a Chi-

square test (Figure 2c). We further examined phenotypic variation within myeloid cells 

among identified principal components (Figure 2d) by ranking cells on the basis of their 

PC score among genes with highest loadings for each principal component. 

 

3.23 Comparison of Seq-Well PBMCs to 10X genomics data 

We performed comparisons of gene detection and transcript capture among PBMC cell 

types conserved between 3,590 PBMCs (excluding dendritic cells) obtained using Seq-

Well and 2,700 PBMCs from the 10x Genomics platform 

(http://support.10xgenomics.com/single-cell/datasets/pbmc3k). To classify PBMC cell 

types within the 10x Genomics data, we first identified 446 variable genes with log-mean 

expression values greater than 0.5 and dispersion (variance/mean) greater than 0.5. We 

then performed graph-based clustering using 13 principal components, k.param of 50 and 

resolution of 0.75. Cell type identity of each cluster was established on the basis of gene 

enrichments. Comparisons of genes and transcripts were initially performed between B 

cells, CD4 T cells, CD8 T cells, monocytes and NK cells using raw data matrices. We 

refined these comparisons by separately downsampling genes and transcripts within 

each cell type in Seq-Well data to an average read depth of 69,000 reads per cell to match 

the reported sequencing depth using in publicly available 10x Genomics data. 
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3.24 Mycobacterium tuberculosis analysis 

Following sequence alignment, we identified a total of 14,218 cells with greater than 1,000 

mapped transcripts. Initially, we analyzed a subset of 4,638 macrophages with greater 

than 5,000 detected transcripts (Appendix B, Supplementary Figure 14a) and a total of 

9,381 genes expressed in at least 5% of filtered cells. Principal components analysis was 

performed among a set of 377 variables genes, defined by genes with log-mean 

expression greater than 0.5 and dispersion (variance/mean) greater than 0.5. We 

performed graph-based clustering, as described below, using the first five principal com-

ponents since we observed that they captured the majority of the biological variation in 

our data set (63% cumulative variance), and that each additional principal component 

contributed less than 1% to the total variance. We performed 1,000 iterations of the t-

SNE algorithm (Barnes–Hut implementation) using a ‘perplexity’ value of 30. We identified 

five distinct clusters of cells in the t-SNE plot using the FindClusters function in Seurat 

with k.param = 40 and resolution = 0.25 (Appendix B, Supplementary Figure 14).We 

removed two clusters comprised of cells with reduced gene detection, transcript capture 

and enrichment for expression of mitochondrial genes. Following removal of low-quality 

cells, we analyzed three distinct clusters with total of 2,560 high-quality cells (Figure 3a 

and Appendix B, Supplementary Figure 14). Differential expression analysis was 

performed between clusters, and cells exposed and unexposed to TB within each t-SNE 

cluster using a likelihood ratio test in Seurat (Figure 3c and Appendix B, 
Supplementary Table 9). We performed gene set enrichment analysis to examine 

association of expression differences observed between control macrophages exposed 

and unexposed to M. tuberculosis with previously published gene sets using GSEA. For 

each cluster, expression patterns between exposed and unexposed cells were made to 

complete GSEA databases (Appendix B, Supplementary Tables 7, 8, 10 and 11). 

 

3.25 Regressing out latent technical effects 

Technical parameters governing sequencing data, such as the number of genes detected 

or the transcriptomics alignment rate, often vary significantly across single cells. We 

sought to conservatively remove these technical effects using a ‘latent-variable’ approach 

similar to that of Buettner et al.24 Briefly, we fit a linear model to predict the expression 
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value of each gene based on a set of technical metrics, as well as the total number of 

unique genes detected in that cell. In our analyses, we constructed models to adjust gene 

expression values for alignment rate of each cell. We considered the residual expression 

from this model as a ‘corrected’ gene expression value, and we used these values as 

input to the downstream clustering analyses. 

 

3.26 Graph-based clustering of single-cell transcriptomes 

For all single-cell clustering analyses, we used an approach similar to that of our recently 

proposed clustering strategy for Drop-seq data. Briefly, as in Macosko et al.12, we first 

identified the set of genes that was most variable across our data set after controlling for 

the relationship in single-cell RNA-seq data that inherently exist between mean 

expression and variability by binning genes into 20 bins based on their average 

expression level and z-scoring dispersion (mean/variance) estimates within a bin. We 

excluded all genes which were detected in less than 2.5% of PBMCs (5% of monocytes 

for the Mtb experiments) and used a dispersion cutoff of 0.5 to select variable genes, 

resulting in the selection of 687 variable genes across 4,296 PBMCs and 377 variable 

genes across 4,638 macrophages. We next reduced the dimensionality of our data set, 

using principal components analysis. As previously described in Macosko et al.12, we ran 

PCA using the prcomp function in R. We then selected PCs for further downstream 

analysis (11 PCs in PBMC analysis and 5 PCs in TB analysis). As expected, markers for 

distinct cell types were highly represented among the genes with the largest scores along 

these PCs. We then applied t-distributed stochastic neighbor embedding (t-SNE) using 

cell loadings for the significant principal components as input to visualize the structure of 

our data in two dimensions. Here we used graph-based clustering methods, similar to 

those that have been recently proposed for both single-cell RNA-seq and mass cytometry 

data25,26. We first construct a Euclidean distance matrix on the loadings for the significant 

principal components as described above and use this to construct a K-nearest neighbor 

graph (KNN, k = 50 in PBMC analysis; k = 40 in TB analysis). Our goal was to identify 

‘quasi-cliques’26, or ‘communities’25, of cells that were highly interconnected across this 

graph. Therefore, we first converted the KNN graph into a weighted shared nearest 

neighbor (SNN) graph, where the weight between any two cells was represented by the 
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percent overlap in their respective K-nearest neighborhoods (Jaccard distance), and we 

pruned low-quality edges with a Jaccard distance of <0.1 (less than 10% overlap in local 

neighborhoods). Finally, to group the cells into clusters, we used a recently developed 

method for modularity optimization, which aims to optimize a function describing the 

density of connections within a cluster versus connections between clusters, essentially 

to identify highly interconnected nodes within the SNN graph. Here, we applied the smart 

local moving algorithm, which is similar to the widely used ‘Louvain’ algorithm for 

community detection but implements a local moving heuristic that enables communities 

to be split up and iteratively reorganized in an attempt to improve the overall partition 

modularity. This grants the SLM algorithm additional freedom in identifying an optimal 

clustering solution, and we empirically observed increased sensitivity and consistency 

applying this approach to single-cell data. 
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Cell RNA-Seq Reveals Cellular States and Molecular 
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Tsoi , Jose Ordovas-Montanes, Johann E Gudjonsson , Robert L Modlin, and Alex K 

Shalek 

* Denotes equal authorship 

Abstract 

The development of high-throughput single-cell RNA-sequencing (scRNA-Seq) 

methodologies has empowered the characterization of complex biological samples by 

dramatically increasing the number of constituent cells that can be examined 

concurrently. Nevertheless, these approaches typically recover substantially less 

information per-cell as compared to lower-throughput microtiter plate-based strategies. 

To uncover critical phenotypic differences among cells and effectively link scRNA-Seq 

observations to legacy datasets, reliable detection of phenotype-defining transcripts – 

such as transcription factors, affinity receptors, and signaling molecules – by these 

methods is essential. Here, we describe a substantially improved massively-parallel 

scRNA-Seq protocol we term Seq-Well S^3 (“Second-Strand Synthesis”) that increases 

the efficiency of transcript capture and gene detection by up to 10- and 5-fold, 

respectively, relative to previous iterations, surpassing best-in-class commercial analogs. 

We first characterized the performance of Seq-Well S^3 in cell lines and PBMCs, and 

then examined five different inflammatory skin diseases, characterized by distinct types 

of inflammation, to explore the breadth of potential immune and parenchymal cell states. 

Our work presents an essential methodological advance and a critical resource of the 

cellular and molecular features that inform human skin inflammation. 
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INTRODUCTION 
4.1 Background 

Although a nascent technology, single-cell RNA-sequencing (scRNA-Seq) has already 

helped define, at unprecedented resolution, the cellular composition of many healthy and 

diseased tissues.1-5 The development of high-throughput methodologies has been crucial 

to this process, empowering the characterization of increasingly complex cellular 

samples. Unfortunately, current scRNA-Seq platforms typically demonstrate an inverse 

relationship between the number of cells that can be profiled at once and the amount of 

biological information that can be recovered from each cell. As a result, one must choose 

between quantity and quality – and thus comprehensiveness and fidelity – or alternatively 

employ two distinct approaches in parallel.6 Indeed, inefficiencies in transcript capture 

among massively-parallel methods have limited our ability to resolve the distinct cell 

states that comprise broad cell types,7 as well as their essential molecular attributes and 

often lowly-expressed molecular features, such as transcription factors, affinity receptors, 

and signaling molecules (Figure 1A).  

 

Improving the fidelity of these methodologies is particularly important for resolving 

differences within heterogeneous populations of immune cells like lymphocytes and 

myeloid cells.8 Here, subtle differences in surface receptor, transcription factor and/or 

cytokine expression can profoundly impact cellular function, particularly in the setting of 

human pathology.9 Enhancing data quality in high-throughput scRNA-Seq would facilitate 

a greater appreciation of the underlying molecular features that describe such cellular 

variation. Similarly, it would ease integration with legacy datasets that often rely on lowly-

expressed biomarkers, such as transcription factors, that are false-negative prone to 

discriminate subsets of cells. 

 

Most high-throughput scRNA-Seq methods currently rely on early barcoding of cellular 

contents to achieve scale. Typically, these techniques recover single-cell transcriptomes 

for thousands of cells at once by leveraging reverse-emulsion droplets or microwells to 

isolate individual cells with uniquely barcoded poly-dT oligonucleotides which can then 

capture and tag cellular mRNAs during reverse transcription.10 Afterward, an additional 
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priming site is added to the 3’ end of the synthesized cDNA to enable PCR-based 

amplification of all transcripts using a single primer (whole transcriptome amplification, 

WTA). A number of techniques have been described to add this second priming site.11,12 

The most common uses the terminal transferase activity of certain reverse transcription 

enzymes to facilitate a “template-switch” from the original mRNA to a second defined 

oligonucleotide handle.13 While simple to implement, this process has the potential to be 

highly inefficient, leading to the loss of molecules that have been captured and converted 

to cDNA but not successfully tagged with a secondary PCR priming site (Figure 1A; 
Appendix C, Figure S1A).  

 

To overcome these limitations, we have developed a new massively-parallel scRNA-Seq 

protocol we call Seq-Well S^3 (for “Second-Strand Synthesis”). Seq-Well S^3 increases 

the efficiency of the second PCR handle addition by amending it through a randomly-

primed second-strand synthesis after reverse transcription (Figure 1A). Working with cell 

lines and peripheral blood mononuclear cells (PBMCs), we demonstrate that Seq-Well 

S^3 enables significant improvements in transcript and gene capture across sample 

types, facilitating studies of complex immune tissues at enhanced resolution (Figure 1; 
Appendix C, Figures S1 and S2). 
 

To illustrate the utility of S^3, we apply it to generate a resource of single-cell 

transcriptional states spanning multiple inflammatory skin conditions. Skin represents the 

largest barrier tissue in the human body and is comprised of numerous specialized cell-

types that help maintain both immunological and physical boundaries between our inner 

and outer worlds.14 The dermis and epidermis – the two primary compartments of human 

skin – play complementary roles in tissue structure and function (Figure 2A).14 The 

epidermis consists primarily of keratinized epithelial cells, which provide a physical barrier 

to the outside world; the dermis, meanwhile, provides structural support for the skin, with 

fibroblasts producing collagen and elastin fibrils along with the other components of the 

extracellular matrix. Crucially, within the cellular ecosystem of human skin, there are 

numerous tissue-resident immune and parenchymal cells essential to homeostatic barrier 

function. Using Seq-Well S^3, we examine the cellular composition of normal skin and 
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altered cellular phenotypes in multiple inflammatory skin conditions, including acne, 

alopecia areata, granuloma annulare, leprosy and psoriasis. With conditions that span 

autoimmune (alopecia), autoinflammatory (psoriasis), reactive (acne), and 

granulomatous (granuloma annulare and leprosy) inflammation, we uncover a diverse 

spectrum of immune and parenchymal cellular phenotypes, as well as their molecular 

features, across multiple inflammatory skin conditions. Overall, our work presents an 

essential methodological advance as well as a critical resource for understanding how 

diverse inflammatory responses can impact a single tissue and the range of cellular 

phenotypes that are possible upon perturbation. 

 

RESULTS 

4.2 Second-Strand Synthesis (S^3) Leads to Improved Transcript Capture and Gene 

Detection 

We hypothesized that use of “template-switching” to append a second PCR handle during 

reverse transcription might limit the overall recovery of unique transcripts and genes from 

individual cells in some massively-parallel scRNA-Seq methods such as Seq-Well and 

Drop-Seq.2,15 Thus, we incorporated a randomly primed second-strand synthesis 

following first-strand cDNA construction (Figures 1A; Appendix C, Figure S1A). Briefly, 

after reverse transcription, barcoded mRNA capture beads are washed with 0.1 molar 

sodium hydroxide to remove attached RNA template strands and then a random second-

strand synthesis is performed to generate double-stranded cDNA labeled on one end with 

the SMART sequence and its reverse complement on the other (Figure 1A; Appendix 
C, Figure S1A; STAR* Methods).13,16 

 

To examine the effectiveness of Seq-Well S^3 and optimize its performance, we first 

tested a number of conditions using cell lines (Appendix C, Figure S1B; STAR* 
Methods). In these experiments, we observed that S^3 led to marked improvements in 

library complexity (Seq-Well V1: 0.22 transcripts/aligned read, Seq-Well S^3: 0.68 

transcripts/ aligned read) and was able to function in the absence of a template switching 

oligo (TSO); Seq-Well V1, meanwhile, failed to generate appreciable product without a 

TSO (Appendix C, Figure S1B-D). In species-mixing experiments using HEK293 
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(human) and NIH-3T3 (mouse) cell lines, the use of the S^3 protocol resulted in significant 

increases in the numbers of unique transcripts captured and genes detected per cell 

compared to our original protocol for Seq-Well (P < 0.05, Mann-Whitney U Test; 

Appendix C, Figure S1B; STAR* Methods).  

 

To fully understand how S^3 would perform on more challenging primary cells, we next 

applied it to human PBMCs (Appendix C, Figure S1C and S2; STAR* Methods), 

benchmarking against our original Seq-Well protocol as well as a commercial technology 

(10X genomics, V2 chemistry; hereafter 10x v2). For these comparisons, we 

downsampled all resulting data to an average of 42,000 reads per cell to account for 

differences in sequencing depth across technologies. Critically, Seq-Well S^3 resulted in 

significant improvements in the complexity of our sequencing libraries compared to 10x 

v2 as determined by the number of transcripts and genes detected at matched read depth 

(P < 0.05, Mann-Whitney U Test & Linear Regression; Figure 1B-C; STAR* Methods). 

To confirm that these overall improvements were not driven by changes in the relative 

frequencies of different cell types captured by each technology, we also examined each 

subset independently (Appendix C, Figure S2A-B). For each cell type detected, we 

observed significant increases in the numbers of transcripts captured and genes detected 

using S^3 for each pairwise comparison between techniques (P < 0.05, Mann-Whitney U 

Test; CD4+ T cells, Seq-Well V1: 1,044 ± 62.3  UMIs/cell; 10x v2: 7,671 ± 103.9 UMIs/cell; 

Seq-Well S^3: 13,390 ± 253.4 UMIs/cell; Mean ± SEM) (Appendix C, Figure S2; STAR* 
Methods). Both Seq-Well S^3 and 10x v2 displayed increased sensitivity for transcripts 

and genes relative to Seq-Well v1, but Seq-Well S^3 showed the greatest efficiency 

(defined as genes recovered at matched read depth) to detect genes for each cell type 

(Figure 1D-E; Appendix C, Figure S2).  

 

We sought to further understand whether these improvements resulted in enhanced 

detection of biologically relevant genes typically under-represented in high-throughput 

single-cell sequencing libraries.6 Importantly, genes that were differentially detected (i.e., 

higher in S^3) within each cell type include numerous transcription factors, cytokines and 

cell-surface receptors (Figure 1D-E; Appendix C, Table S1).  
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Figure 1 | Overview 
of Second Strand 
Synthesis (S^3). (A) 

Conceptual 
illustration of the 
molecular features 
that define immune 
phenotypes – 

including 
transcription factors, 
cytokines and 
receptors – as well 
as the Seq-Well 

second-strand 
synthesis method 
(Seq-Well S^3) and 
how it improves 
detection of key 
genes and 
transcripts. (B) 
Scatterplot showing 
differences in per-
cell transcript 
capture (y-axis) as a 
function of aligned 
reads per cell (x-
axis) between 10x 
Genomics v2 (grey) 
and Seq-Well S^3 
(black). Red line 
indicates uniform line 
where transcripts per 
cell and aligned 
reads would be 
equivalent. (C) 
Scatterplot shows 
the differences in 
per-cell gene 

detection (y-axis) as a function of aligned reads per cell (x-axis) between 10x v2 (grey) and Seq-Well S^3 
(black). (D) Scatterplot comparing gene detection rates in CD4+ T cells between 10x v2 (x-axis) and Seq-
Well S^3 (y-axis). Black line indicates point of equivalence in gene detection frequency between methods. 
Colors correspond to classes of genes including transcription factors (blue), cytokines (magenta), and 
receptors (green; Table S1). (E) Scatterplot comparing gene detection frequency (y-axis) between Seq-
Well S^3 (positive values) and 10x v2 (negative values) as a function of the aggregate expression levels of 
an individual gene (x-axis). Black line indicates point of equivalence in gene detection frequency between 
methods. Colors correspond to classes of genes including transcription factors (blue), cytokines (magenta), 
and receptors (green; Table S1). (F) Violin plot (boxplots median +- quartiles) showing the distribution of 
per-cell transcript capture for Seq-well S^3 (blue; n = 1,485), 10x v2 (red; n = 2995), and Smart-Seq2 (black, 
n = 382). (G) Scatterplot showing the relationship between aligned reads and genes detected per cell 
between Seq-Well S^3 (blue), 10x v2 (red) and Smart-Seq2 (black) in sorted PBMC CD4+ T cells. (H) Violin 
plots showing the distribution of normalized expression values for select transcription factors, cytokines and 
cytokine receptors between Seq-Well S^3 and 10x v2.  
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For example, among CD4+ T cells, we observe significantly increased detection of 

cytokines (e.g., TGFB1 and TNF), surface receptors (e.g., TGFBR and CCR4) and 

transcription factors (e.g., STAT6, and IRF4) (P< 0.05, Chi-Square Test, Figure 1H; 
Appendix C, Figure S2 and Table S1).  

 

Finally, we performed an additional comparison of enriched human CD4+ T cells profiled 

using Seq-Well S^3 and 10X v2, as well as by Smart-Seq2, a commonly implemented 

microtiter plate-based approach (Figure 1F-G; STAR* Methods).13 Integrated analysis 

of aggregate gene detection revealed that Seq-Well S^3 detects more genes per cell than 

10x v2 and nearly as many genes per cell as Smart-Seq2 in pairwise comparison of 

techniques (10x v2: 2,057 ± 18.7 genes/cell , Seq-Well S^3: 3,514 ± 36.2 genes/cell , 

SS2: 3,975 ± 74.0 genes/cell; mean ± SEM) (P < 0.05, Mann-Whitney Test; Figure 1F; 
STAR* Methods). Further, comparing the frequency of gene detection between methods 

revealed crucial differences for transcription factors, cytokines and receptors/ligands 

(STAR* Methods). Surprisingly, we observe similar rates of gene detection between S^3 

and Smart-Seq2 for a large number of biologically informative genes (Appendix C, 
Figure S2F). Critically, while comparable numbers of genes were detected across 

methods, Seq-Well S^3 detected more genes per aligned read than either 10x v2 or SS2 

in pairwise comparisons (P<0.05, Mann-Whitney U Test; Figure 1G; STAR* Methods).  

 
4.3 A Resource of Cellular States Across Healthy and Inflamed Skin  

To demonstrate the utility of Seq-Well S^3 to comprehensively describe cellular states 

across human pathology at unprecedented resolution, we applied it to profile human skin 

samples spanning multiple, complex inflammatory skin conditions (Figure 2) – including 

acne, alopecia areata, granuloma annulare, leprosy, psoriasis – as well as normal skin 

(Figure 2A-B; Appendix C, Figure S3A-C and Table S2; STAR* Methods). In total, we 

processed nine skin biopsies by S^3 and, after data quality filtering, retained 20,903 high-

quality single-cell transcriptomes (Figure 2A-B; STAR* Methods).  

 

To examine similarities and differences among these cells across the high-dimensional 

gene expression space, we selected variable genes, performed UMAP dimensionality 
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reduction, and identified 33 clusters through Louvain clustering in Scanpy17 (Figure 2; 
Appendix C, Figure S3A-C; STAR* Methods). To collapse clusters to cell-types, we 

performed enrichment analyses to identify cluster-defining genes (Appendix C, Figure 
S3B) and then manually assigned cell-type identities based on the expression of known 

lineage markers (Figure 2B; Appendix C, Table S3; STAR* Methods). We also 

generated aggregate gene expression profiles and performed hierarchical clustering 

using a combined list of the top 50 cluster-defining genes for each cluster to further 

support our annotations and groupings (Appendix C, Figure S3C; STAR* Methods). 

Ultimately, we recovered a total of 16 primary cell-types, within which there was 

considerable heterogeneity. The identified cell types include: B cells (marked by 

expression of MS4A1 and CD79A), dendritic cells (FCER1G and CLEC10A), endothelial 

cells (SELE and CD93), fibroblasts (DCN and COL6A2), hair follicles (SOX9), 

keratinocytes (KRT5 and KRT1), macrophages (CD68 and CTSS), mast cells (CPA3 and 

IL1RL1), muscle (NEAT1 and KCNQ1OT1), plasma cells (IGHG1), Schwann cells 

(SCN7A), and T cells (CD3D and TRBC2) (Figure 2b; Figure S3A-E and Table S3). We 

next sought to define nuanced cell states within these immune, stromal and parenchymal 

populations – including T cells, myeloid cells, endothelial cells, dermal fibroblasts, and 

keratinocytes – across the spectrum of skin inflammation.  

 

4.4 Seq-Well S^3 describes T cell states across inflammatory skin conditions 

To determine the range of biological diversity that can be captured using Seq-Well S^3, 

we first focused on further characterizing T cells across the inflammatory skin conditions 

examined since each is known to significantly skew T cell phenotypes (Figure 3).18,19 We 

performed dimensionality reduction and sub-clustering across T cells alone (Figure 3A-
B; STAR* Methods). Our analysis revealed nine sub-clusters that closely correspond to 

NK cells and CD8 T cells, as well as several known CD4+ T-helper cell (Th) subsets. As 

before, we used the enhanced sensitivity of S^3 for lineage defining transcripts to help 

annotate the identity of each sub-cluster; for example, in T cell sub-clusters 5 and 6, 

respectively, we detected distinct expression of canonical regulatory T cell and Th17 T 

cell transcription factors (e.g., FOXP3 and RORC, respectively) and immune receptors 

(e.g. TIGIT and CXCR6 respectively) (Figure 3C-E; Figure S4 and Table S4).  
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Figure 2 | Cell Types Recovered across Inflammatory Skin Conditions. (A) (Top-Left) Diagram 
illustrating the anatomic organization and major features of human skin. (Top-Right) Cell-type composition 
of the epidermis and dermis. (Bottom) Sample processing pipeline used to generate a collection cellular 
states across skin inflammation. (B) (Left) UMAP plot for 20,903 cells colored by cell-type cluster.  (Right) 
Stacked barplot showing the cell-type composition for each of the nine skin biopsies. (C) (Left) UMAP plot 
for 20,308 cells colored by inflammatory skin condition. (Right) Stacked barplot showing the proportion of 
cells from each skin condition within phenotypic clusters. 
 

Additionally, we cross-referenced each sub-cluster’s marker genes against a series of 

curated signatures in the Savant database20 to confirm our assignments. This analysis 

highlighted similarity to previously characterized T cell and NK cell populations 

(Appendix C, Figure S4B; STAR* Methods). 
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We next examined T cell phenotypes across inflammatory skin conditions to explore 

variability in T cell subset composition by skin pathology (Figure 3B). This analysis 

revealed potentially varied contributions to different classes of cutaneous inflammation. 

For example, sub-cluster 6 is enriched for expression of canonical Th17 genes including 

RORC, which encodes the Th-17 lineage-defining transcription factor ROR𝛾t21 and is 

observed predominantly within the leprosy sample. While either Th1 or Th2 responses 

are typically thought to predominate in the immune response to leprosy, a role for Th17 

cells in controlling disease has been previously demonstrated.22 We further found that 

sub-cluster 1, which express NR4A1, a transcription factor that is a marker of 

dysfunctional T cells23, and sub-cluster 3, enriched for genes involved in nuclear 

organization (ANKRD36, XIST, and NEAT1), were over-represented in both patients from 

psoriasis (Figure 3B-D). In alopecia areata, we detected a unique population of T cells 

(sub-cluster 7) that overexpress PDE4D, which has been shown to plays a role in TCR-

dependent T cell activation (Figure 3C; Appendix C, Supplemental Table S4).24  

 

We also uncovered considerable variation across cytotoxic T cells and NK cells. Directed 

analysis within CD8 T cells (sub-cluster 0) revealed a sub-grouping of activated CD8 T 

cells that express elevated levels of several inflammatory cytokines (TNF, CCL4, and 

XCL1), as well as specific affinity receptors (FASLG and TNFRSF9) and transcription 

factors (KLF9 and EGR2); this phenotypic skewing was observed primarily in a patient 

with granuloma annulare (Figure 3F; Figure S4B and Table S5; STAR* Methods). 

Meanwhile, we found the highest degree of cytotoxic gene expression (GNLY, GZMB, 

and PRF1) among cells in sub-cluster 8, suggesting that this sub-cluster may represent 

a diverse set of NK cells, gamma-delta T cells, and activated cytotoxic T cells. Indeed, 

further analysis of sub-cluster 8 revealed 3 distinct component sub-groups of cytotoxic 

cells: a sub-group of CD8+ T cells (T.8.1; TNFSF8, SLAMF1, CLEC2D, CD5) expressing 

various TCR genes; a second sub-group of CD16+ cells (T.8.2) expressing cytotoxic 

effector molecules (GNLY, PRF1, GZMB) and NK surface receptors, consistent with 

either NK cell or tri-cytotoxic CTL; and a third sub-group of NK cells (T.8.3) enriched for  
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Figure 3 | Identification of Inflammatory T cell States using Seq-Well S^3. (A) (Left) Force-directed 
graph of 2,908 T cells colored by the nine phenotypic sub-clusters identified by Louvain clustering. (Right) 
Stacked barplots showing the distribution of these T cell sub-clusters within each skin biopsy. (B) (Left) 
Force-directed graph of 2,908 T cells colored by inflammatory skin condition. (Right) Stacked barplots 
showing the contribution of each inflammatory skin condition to the T cell sub-clusters. (C) T cell force-
directed graphs displaying log-normalized expression of a curated group of sub-cluster-defining gene. 
Higher expression values are shown in black. (D) Heatmap showing log-normalized gene expression values 
for a curated list of sub-cluster-defining genes across nine T cell sub-clusters. (E) Heatmap showing the 
rate of detection for lineage-defining transcription factors, cytokines, and cytokine receptors across T 
cellphenotypic clusters. (F) Heatmap showing average expression of genes enriched across T cells by 
inflammatory skin condition (row-normalized average expression values). (G) Plot showing rates of 
detection of TCR genes from human skin T cells across a range of sequencing depths. (H) Heatmap 
showing normalized gene expression values for genes enriched in the sub-group analysis of T cell sub-
cluster 8. 
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expression of c-KIT, RANKL (TNFSF11) and GITR (TNFSFR18) (Figure 3H and S4B; 
Table S6).25 

 

Profiling of T cell receptor expression is critical to understand T cell antigen specificity.26 

Importantly, among CD4+ T cells obtained from peripheral blood, we recovered most 

TCR-V and TCR-J genes at a higher frequency using Seq-Well S^3 as compared to 10x 

v2 (P< 0.05, Chi-square Test; Appendix C, Figure S4C; STAR* Methods). Among CD4+ 

T cells from peripheral blood, we observed paired detection of TRAC and TRBC in 1,293 

of 1,485 CD4+ T cells (87.1% Paired Detection Rate; Appendix C, Figure S4C). In the 

setting of skin inflammation, we explored TCR detection rates across a range of 

sequencing read depths. Overall, we detected TRAC in 54.5%, TRBC in 75.5%, and 

paired detection in 46.4% of T cells (Figure 3G). Among T cells with at least 25,000 

aligned reads, we recovered paired alpha and beta chains in 66.7%. Among cells from 

sub-cluster 8, we observe expression of gamma and delta constant genes (TRGC and 

TRDC), while remaining T cell clusters exclusively express alpha and beta TCR constant 

genes (Appendix C, Figure S4C). These data further suggest that sub-cluster 8 

represents a diverse population of gamma delta, NK, and cytotoxic CD8 T cells that share 

common gene expression features and, potentially, roles in inflammation.  

 

4.5 Spectrum of Myeloid Cell States in Skin Inflammation 

In the setting of cutaneous inflammation, myeloid cells play a key role in maintaining 

tissue homeostasis, wound healing and response to pathogens.27 Using Seq-Well S^3, 

we were able to identify numerous myeloid cell subpopulations defined by a combinations 

of surface markers, cytokines and lineage-defining transcription factors. Specifically, we 

independently analyzed 2,371 myeloid cells and identified nine sub-clusters representing 

4 primary myeloid cell types based on expression of canonical lineage markers and 

comparison to cell-type signatures in the Savant database: dendritic cells (CLEC10A), 

Langerhans cells (CD207 and CD1A), macrophages (CD68 and CD163), and mast cells. 

 

Skin functions as both a physical and immunologic barrier, and is the primary site of 

exposure to environmental antigens. As such, multiple types of antigen-presenting cells 
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(APCs) are distributed in both the dermis and epidermis. In the epidermis, there is a 

specialized population of antigen-presenting cells known as Langerhans cells. We initially 

identified Langerhans cells on the basis of expression of canonical markers (CD207, 

CD1A; Figure 4C-D; Appendix C, Table S7).30 For biopsies obtained from normal skin 

and leprosy, we performed MACS enrichments from the epidermal section and loaded 

Langerhans cells as 5% of the total amount to increase recovery (STAR* Methods). 

When we directly compared Langerhans cells from leprosy and normal skin, we observed 

elevated expression of IDO1, STAT1, HCAR3 and MHC class I molecules (HLA-A, HLA-

B and HLA-F) in Langerhans cells in leprosy infection, which may suggest a role for 

Langerhans cells in priming CD8 T cell responses in this disease (Figure 4E; Appendix 
C, Table S8).31,32 

 

Additionally, we found a large sub-group of dermal dendritic cells (Figure 4A). Further 

analysis of the CD207-negative dendritic cell sub-cluster revealed multiple sub-groupings 

of dermal dendritic cells across skin biopsies. Consistent with previous observations from 

peripheral blood8, we saw a sub-group of dendritic cells that corresponds to cDC1 

(CLEC9A, IRF8, and WDFY4) (P<0.05, Permutation Test; Appendix C, Figure S4H; 
STAR* Methods). We further report another sub-group that represents cDC2 cells (IRF4, 

SOCS2, SLCO5A1, CD1B, CD1E) (Figure 4B-C; Figure S4F-H; STAR* Methods).33 

Importantly, we detect expression of IL12B, a subunit of the IL-23 cytokine, within the 

sub-group of IRF4+ cDC2 cells (Appendix C, Figure S4I-J), which have previously been 

shown to promote mucosal type 17 inflammation via secretion of IL-23.34 Further, this 

sub-grouping of cDC2 cells express high levels of CCL17 and CCL22, chemokines 

involved in T cell chemotaxis (Figure S4J).35 

 

We further identified three sub-groups of dermal dendritic cells that are broadly 

distinguished from conventional dendritic cell clusters by expression of CLEC10A 

(Appendix C, Figure S4J), which has been shown to influence T cell cytokine responses 

in skin.36,37 Cells from dermal DC sub-group 1 show elevated expression of CD44, IL8  
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Figure 4 | Diverse Myeloid Cell States Uncovered using Seq-Well S^3. (A) (Left) Force-directed graph 
of 2,371 myeloid cells colored by five phenotypic sub-clusters. (Right) Stacked barplots showing the 
distribution of myeloid sub-clusters within each skin biopsy. (B) (Left) Force-directed graph of 2,371 myeloid 
cells colored by inflammatory skin condition. (Right) Stacked barplots showing the contribution of each 
inflammatory skin condition to each myeloid sub-cluster. (C) Force-directed graphs of 2,371 myeloid cells 
that highlighting expression of a curated group of sub-cluster defining genes. (D) Heatmap showing the 
expression of a curated list of myeloid cell-type cluster-defining genes. (E) Volcano plot showing genes 
differentially expressed in Langerhans cells between leprosy (ncells = 56) and normal skin (ncells = 120). 
Log10-fold change values are shown on the x-axis and -log10 adjusted p-values are shown on the y-axis. 
(F) Heatmaps showing the expression of mast-cell proteases across inflammatory skin conditions. (G) 
Heatmap showing detection frequencies for transcription factors, surface receptors, and cytokines across 
DC sub-populations.  
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and SOD2 (Figure 4G; Appendix C, Figure S4I and TableS9). Cells from dermal DC 

sub-group 2 display elevated expression of pro-inflammatory chemokines up-regulated 

during DC maturation (CXCL3, CCL2 and CCL4)38 and soluble mediators (EREG and 

INHBA). Finally, a third sub-grouping of dermal DCs (Dermal DC3) was distinguished by 

expression of FCER1A, FCGR2A, and FCGR2B, which are important for interfacing with 

humoral immunity (Appendix C, Figure S4I).39 

 
In the skin, mast cells are most commonly associated with allergic responses, but mast 

cell proteases serve additional roles in inflammation and pathogen defense.40 Among skin 

mast cells, we detect core expression of HDC (Histidine decarboxylase), HPGD, and 

TPSAB1 (Tryptase alpha/beta 1) (Figure 4F).41 Importantly, we observe variable 

expression of mast cell proteases TPSD1 (Tryptase D1) and CMA1 (Chymase A1), which 

are primary mast cells effector molecules40, which may have functional consequences. 

By performing analysis across inflammatory conditions and patients, we identify a distinct 

pattern of mast cells with elevated expression of proteases (TPSD1, Tryptase D1 and 

PRSS27, serine protease 27), SCG2 (secretogranin 2), and CCL2 in a patient with 

granuloma annulare (Figure 4F).  
 

4.6 Detection of Endothelial Heterogeneity and Vascular Addressin Expression 
Multiple types of endothelial cells exist within the dermis of the skin. As in most tissues, 

arterioles shuttle oxygenated blood to tissues terminating in a capillary bed that gives rise 

to post-capillary venules. Importantly, DARC+ post-capillary venules are the primary site 

of egress of immune cells from circulation into tissues.42 Using the improved sensitivity of 

Seq-Well S^3, we sought to understand the spectrum of endothelial cell diversity and 

vascular addressin expression across multiple instances of skin inflammation.43 We 

performed sub-clustering and dimensionality reduction across 4,996 endothelial cells 

(Figure S5A-B and STAR* Methods) and identified three primary sub-clusters of dermal 

endothelial cells defined by distinct expression patterns: vascular smooth muscle 

(TAGLN), endothelial cells (CD93) and lymphatic endothelial cells (LYVE1) (Figure S5C). 

Importantly, we found multiple sub-clusters of CD93+ endothelial across normal and 

inflamed skin biopsies (Appendix C, Figure S5A-B). For example, we observe two 
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distinct populations of endothelial cells: a population of DARC-negative, CD93+ 

endothelial cells (Venule sub-cluster 3) that displays elevated expression of SLC9A3R2, 

which is involved in endothelial homeostasis (Bhattacharya et al., 2012), and another 

cluster of proliferating endothelial cells (Venule sub-cluster 4) (Appendix C, Figure S5D).  

 

Further, we sought to understand the distribution of vascular addressins expressed by 

DARC+ endothelial sub-populations, the site primary site of lymphocyte egress into 

tissues (Appendix C, Figure S5E).44 Notably, across sub-populations of CD93+ 

endothelial cells (Venule sub-clusters 1-4), we observe variation in expression of vascular 

addressins (Appendix C, Figure S5E). Among post-capillary venules, we observe 

broadly elevated expression of ITGA5, ITGA6, ITGB4, ICAM2, and ITGA2, while 

arterioles express higher levels of ITGA7, ITGA8, and ITGB5. Further, we observe the 

highest expression of ITGA4, ITGA9, ITGB2 and ITGB8 among lymphatic endothelial 

cells (Figure 5E). 

 

4.7 Altered Dermal Fibroblast Identities in Skin Inflammation  

Dermal fibroblasts provide structural support and are the primary source of extracellular 

matrix components within the skin. Previous studies have demonstrated significant 

variation among dermal fibroblasts based on their relationship to anatomic features of the 

skin.45,46 To deeply catalogue diverse fibroblast cell states across inflamed skin, we 

performed dimensionality reduction and sub-clustering within the 4,189 fibroblasts 

identified across all samples and conditions (Appendix C, Figure S5F-G; STAR* 
Methods). In comparison to inflamed biopsies, fibroblasts from normal skin display 

enrichments in LTBP4, IGFBP5, and TCF4. Consistent with previous single-cell studies 

of dermal fibroblasts, we observe a sub-population of fibroblasts (Cluster 6) that express 

COL11A1, DPEP1 and RBP4, where these cells were suggested to have a role in 

connective tissue differentiation (Appendix C, Figure S5H).47 

 

Fibroblasts from GA patient 1 (sub-cluster 2) express elevated levels of SPOCK1, CRLF1, 

and COMP, a cartilage protein that is upregulated in matrix-producing fibroblasts following 

myocardial infarction48 (Appendix C, Figure S5H-I). Further, fibroblasts from GA patient  
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Figure 5 | Keratinocyte Differentiation Trajectories. (A) Diagram showing the layers of the epidermis 
and morphologic changes associated with keratinocyte differentiation. (B) UMAP embedding of 20,903 cells 
with all keratinocyte and hair follicle populations highlighted in blue. (C) Diffusion map of 5,141 keratinocytes 
colored by inflammatory skin condition. (D) Plot showing differentiation trajectory of keratinocytes from 
normal skin from basal cells (yellow) through differentiating cells (aqua) and terminal keratinocytes (purple). 
(E) (Top-left) tSNE plot of normal keratinocytes with normalized KRT14 expression values overlayed. (Top-
right) Immunohistochemistry staining showing the expression of KRT14 from the human protein atlas.56 
(Bottom-left) tSNE plot of normal keratinocytes with normalized FLG expression values overlayed. 
(Bottom-right) Immunohistochemistry staining of FLG from the human protein atlas.56 Scale bars = 50 
microns. (F) Stacked barplot showing genes with the highest differential pseudo-time correlation between 
normal keratinocytes (blue) and psoriatic keratinocytes (red) sorted by correlation values in psoriatic 
keratinocytes. Correlation values shown on the x-axis represent Pearson correlation coefficients between 
normalized gene expression and diffusion pseudotime. (G) (Top) Immunofluorescence staining in normal 
(above) and psoriatic (below) for FOSL, IL36G, TNFAIP3, and APOBEC3. All images stained for nuclei 
(DAPI) and gene of interest (Red Fluorescence). Scale bar = 100 microns. (H) Immunofluorescence staining 
for IL-17R expression (green) in normal (left), uninvolved (middle), and psoriatic skin (right). Scale bar = 
100 microns. 
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2 (sub-cluster 0) display elevated expression of protease inhibitor 16 (PI16), which inhibits 

the function of MMP249, and ITIH5, a protease inhibitor important for maintenance of 

dermal hyaluronic acid that is overexpressed in skin inflammation (Appendix C, Figure 
S5H-I).50 Finally, among fibroblasts from acne patients, we observed elevated expression 

of multiple metallothioneins (Appendix C, Figure S5H-I). Specifically, the expression 

levels of MT1E and MT2A are highest in fibroblasts and endothelial cells in acne 

(Appendix C, Figure S5H). As seen among endothelial cells, fibroblast expression 

patterns in acne are consistent with a wound healing response.51 

 

4.8 Keratinocyte Differentiation Trajectories 

Within the epidermis, keratinocytes undergo a stereotyped differentiation process in 

which cells acquire altered morphology and phenotype as they mature (Figure 5A-C).52 

Under physiologic conditions, basal keratinocytes are characterized by expression of 

KRT14 and TP63, and continuously divide to give rise to the remaining cells of the 

epidermis.53 Using keratinocytes from normal skin, we performed pseudo-temporal 

analysis to reconstruct the differentiation process of normal epidermal keratinocytes 

(Figure 5D; STAR* Methods). More specifically, in normal skin, we first identified a 

population of keratinocytes enriched for expression of TP63 and KRT14, markers of basal 

keratinocytes (Appendix C, Figure S6B).54 We then used known patterns of cytokeratin 

expression to infer localization of keratinocytes along a supervised differentiation 

trajectory (Figure 5E; Appendix C, Figure S6A).4 Our trajectory analysis revealed 

patterns of transcription factor and cytokeratin expression that closely correspond to 

previously established signatures of keratinocyte maturation.55 Consistent with 

immunohistochemical staining from the Human Protein Atlas (Figure 5E)56, we observed 

enrichment of filaggrin (FLG), a protein in the outer layers of the epidermis57, mRNA 

among keratinocytes that lie at the terminal points in the pseudo-temporal ordering 

(Figure 6E; Appendix C, Figure S6B).  

 

Having established a trajectory for normal keratinocyte differentiation, we next examined 

patterns of keratinocyte differentiation across pathologic conditions. To identify conserved 

and unique patterns across conditions, we constructed a combined diffusion map using 
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the 5,141 keratinocytes recovered across all samples (Figure 5C; STAR* Methods). 

While keratinocytes from most conditions closely align with normal differentiation, we 

observe marked deviation in the differentiation trajectory of psoriatic keratinocytes 

(Figure 5C). Consistent with previous observations, differential expression analysis 

reveals significant up-regulation of antimicrobial peptides (S100A7, S100A8, S100A9) 

and pro-inflammatory cytokines (IL36G, IL36RN) in psoriatic keratinocytes (Appendix C, 
Table S12).58 

 

Based on increased sensitivity of Seq-Well S^3 to detect transcription factors observed 

in peripheral lymphocytes, we hypothesized that our data might enable identification of 

novel transcriptional regulators of psoriatic keratinocytes. To identify potential drivers of 

the psoriatic disease process within the epidermis, we performed differential pseudo-time 

correlation analysis between psoriatic and normal keratinocytes (STAR* Methods). 

Specifically, we separately constructed pseudo-time trajectories for normal and psoriatic 

keratinocytes, calculated correlation values between diffusion pseudo-time and gene 

expression levels, and examined the difference in correlation values between psoriatic 

and normal keratinocytes (Figure 5F; Appendix C, Figure S6A-B and Table S13). 

Notably, we observed positive correlation of FOSL1, an AP-1 transcription factor, with 

diffusion pseudo-time in psoriatic keratinocytes, implying that FOSL1 is preferentially 

expressed along the differentiation trajectory of psoriatic keratinocytes. To validate this 

observation, we performed immunofluorescence staining for FOSL1 protein, and 

measured increased levels of FOSL1 in psoriatic skin (Figure 5G, STAR* Methods). We 

further validated the distribution of additional genes overexpressed or differentially 

correlated with diffusion pseudo-time in psoriatic keratinocytes (including TNFAIP3, 

IL36G, and APOBEC3) at the protein level (Figure 5G; Appendix C, Figure S6A and 

Tables S12-13; STAR* Methods).  

 

To further define differences in gene expression patterns between normal and psoriatic 

keratinocytes, we scored the expression levels of known cytokine response signatures 

using a series of reference signatures gene lists derived from population RNA-Seq of 

cultured keratinocytes exposed to IL-17 (Appendix C, Figure S6C and Table S14, 
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STAR* Methods). While IL-17 has been previously implicated in the pathogenesis of 

psoriasis, here we infer the identity of cells that dominate the IL-17 response, localizing 

the expression of IL-17 responsive genes to spinous keratinocytes.4 To validate this 

observation, we performed immunofluorescent staining for IL-17R protein and measured 

the highest staining within spinous keratinocytes exclusively within psoriatic skin (Figure 
5H; STAR* Methods). Collectively, these data provide novel insights into the localization 

IL-17 response in psoriatic keratinocytes.  

 

4.9 Discussion 

Here, we present an enhanced technique for high-throughput scRNA-Seq – Seq-Well S^3 

– that affords improved sensitivity for transcript capture and gene detection. Through use 

of a templated second-strand synthesis, S^3 recovers information typically lost in bead-

based high-throughput scRNA-Seq protocol such as Seq-Well or Drop-Seq. Specifically, 

S^3 reclaims mRNA molecules that are successfully captured and reverse transcribed 

but not labeled with a second primer sequence through template switching (Figure 1; 

Appendix C, Figure S1). Using Seq-Well S^3, we obtain a 5-10 fold increase in the 

number of unique molecules captured from cells at similar sequencing depth relative Seq-

Well v1 (Figure 1; Appendix C, Figures S1 and S2).15 Beyond aggregate increases in 

the number of transcripts recovered per-cell, the improvements in sensitivity made 

possible by Seq-Well S^3 enable enhanced detection, and thus deeper examination, of 

lineage-defining factors in immune and parenchymal cells – such as transcription factors, 

cytokines, and cytokine receptors among lymphocytes (Figure 1; Appendix C, Figures 
S2) – which are often transiently or lowly expressed.59 Among CD4+ T cells isolated from 

PBMCs, for example, we observed rates of gene detection similar to those observed in 

Smart-Seq2, a best-in-class microtiter plate-based method (Figure 1F-G; Appendix C, 
Figure S2F).  

 

Similarly, using Seq-Well S^3, we report improved paired detection of alpha and beta 

TCR sequences from T cells in peripheral blood and tissue biopsies (Figures 3G; 
Appendix C, Figure S4C). Among CD4+ T cells from PBMCs, we recover paired TCR 

alpha and beta constant genes in 87.1% of cells. Together with targeted enrichment, 
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amplification and sequencing, we anticipate that Seq-Well S^3 will enable improvements 

in TCR reconstruction and deep characterizations of clonotype-phenotype relationships 

at scale.26 Collectively, our validation experiments show that Seq-Well S^3 significantly 

augments the amount of information that can be recovered in massively-parallel scRNA-

seq experiments, enabling high-resolution profiling of low-input biopsy samples at scale. 

 

With this enhanced method, here, we move towards a draft atlas of human skin 

inflammation by creating a compendium of cell-types and states for the broader research 

community.60 Through use of Seq-Well S^3, we survey, at unprecedented resolution, the 

diversity of cell-types and states – e.g., among tissue resident T cells and myeloid cells – 

present across multiple types of skin inflammation. For example, GA and leprosy are two 

granulomatous diseases characterized by aggregates of lymphocytes and macrophages 

within the dermis, which are both thought to arise from a delayed-type hypersensitivity 

response to M. leprae infection (leprosy) and an unknown agent (GA).61,62 Here, we find 

that both are characterized by the presence of T cell sub-cluster 0 (Immature CD8-CTL) 

and T cell sub-cluster 8 (mature CTL effectors containing CD8+ T-CTL, gd and NK cells; 

Figure 3). Although both conditions contain CD163+ dermal macrophages and various 

DC subpopulations, M1-like macrophages were present only in leprosy, which host the 

intracellular pathogen M. leprae.63,64 Moreover, GA uniquely contained specific 

populations of fibroblasts expressing SPOCK1, CRLF1, and COMP (Appendix C, Figure 
S5), which likely reflect remodeling of the dermis with mucin deposition and alternation of 

elastin fibers.65,66  

 

Acne, meanwhile, is an inflammatory disease thought to arise in response to infection 

with P. acnes, resulting in the formation of lesions that resemble a wound following 

eruption of the hair follicle into the dermis.67 Here, we observe 2 clusters of endothelial 

cells marked by expression of SLC9A3R2, a marker of endothelial homeostasis, and a 

signature of proliferation (Venule clusters 3 and 4; Appendix C, Figure S5). This 

increased angiogenesis and endothelial proliferation is most consistent with the 

proliferative phase of wound healing in acne.68  
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Alopecia areata and psoriasis both arise from autoimmune and autoinflammatory 

processes, yet there were distinct differences in their underlying cell states. For example, 

alopecia areata is thought to be driven by a population of CD8 T cells that target hair 

follicles.69 Notably, in alopecia, we report a sub-cluster of T cells characterized by 

expression of PDE4D (Figure 3). PDE4 inhibitors have recently shown demonstrated 

efficacy in the treatment of alopecia20,70, and it is intriguing to speculate that these 

inhibitors might work by targeting this subset of T cells.  

 

In psoriasis, T cells are thought to be a primary driver of inflammation, with dendritic cells 

playing a central role in the recruitment and polarization of T cells that contribute to the 

hyperproliferation of keratinocytes in psoriasis.19 In both patients with psoriasis, we report 

a sub-cluster of DCs (IRF4+ cDC2) that display elevated expression of CCL17, CCL22 

and IL12B (Figure 4G; Appendix C, Figure S4I). Importantly, a similar population of 

dermal cDC2 cells has recently been shown to drive psoriatic inflammation in mice and 

humans through the recruitment of inflammatory T cells.71,72 Although we detected a 

diversity in T cell subtypes in psoriatic lesions, we note few Th17-like cells.73 

 

Leveraging the increased sensitivity of Seq-Well S^3, we performed pseudo-time 

correlation analysis to uncover an altered differentiation trajectory of keratinocytes 

compared to normal skin (Figure 5; Appendix C, Figure S6). From our pseudo-time 

correlation analysis, we detected FOSL1 as a putative transcription factor involved in 

psoriatic differentiation, a finding which we validated through immunofluorescent staining 

of healthy and psoriatic skin (Figure 5G).  Further, previous studies using in vitro 

keratinocyte based systems have suggested that more differentiated keratinocytes were 

the main responders to IL-17A, given larger effect sizes in differentiated compared to 

monolayer keratinocyte.74 Using data generated with Seq-Well S^3 cross-analyzed 

against an IL-17 response signature in keratinocytes, we show that IL-17 responses are 

observed in keratinocytes from all layers of the epidermis, but that these responses are 

stronger in keratinocytes derived from more differentiated layers of the psoriatic epidermis 

(Appendix C, Figure S6C). This observation is corroborated by co-localization of the IL-
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17 receptor subunits (IL-17RA/IL-17RC) in the upper layers of psoriatic epidermis (Figure 
5H).  

 

4.10 Conclusion 

In conclusion, we describe a powerful massively-parallel scRNA-Seq protocol that 

enables improved transcript capture and gene detection from low-input clinical samples. 

Here, Seq-Well S^3 provides novel insights into putative mechanisms and the cellular 

localization of previously appreciated and unknown responses to specific inflammatory 

mediators in immunologic skin conditions in a fashion not previously achievable. 

Increases in the sensitivity of gene and transcript detection are increasingly important as 

single-cell atlasing efforts shift from detection of large differences between cell types 

within normal tissue to identification of subtle differences in cell state across cell types 

within diseased tissues. The increased sensitivity of gene detection and transcript capture 

afforded by S^3 enhances the strength of inferences that can be drawn from these types 

of single-cell data, as evidenced by the range of immune, stromal and parenchymal cell 

states uncovered in human skin inflammation. The S^3 protocol is easy to integrate into 

current bead-based RNA-Seq platforms, such as Drop-Seq, making it broadly useful for 

the single-cell community, particularly in the setting of human disease. Importantly, S^3’s 

increases in library complexity and sequencing efficiency reduce costs relative to plate-

based protocols and providing researchers with a powerful and cost-effective alternative 

to commercial solutions in a format that can be deployed almost anywhere.  

 

METHOD DETAILS 

4.11 Single-Cell Processing Pipeline 

We utilized Seq-Well, a massively-parallel, low-input scRNA-Seq platform for clinical 

samples, to capture the transcriptome of single cells. A complete, updated protocol for 

Seq-Well S^3 is included as a Supplementary Protocol and is hosted on the Shalek Lab 

website (www.shaleklab.com). Briefly, 10-15,000 cells were loaded onto a functionalized-

polydimethylsiloxane (PDMS) array preloaded with uniquely-barcoded mRNA capture 

beads (Chemgenes; MACOSKO-2011-10). After cells had settled into wells, the array 

was then sealed with a hydroxylated polycarbonate membrane with pore sizes of 10 nm, 
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facilitating buffer exchange while confining biological molecules within each well. 

Following membrane-sealing, subsequent buffer exchange permits cell lysis, mRNA 

transcript hybridization to beads, and bead removal before proceeding with reverse 

transcription. The obtained bead-bound cDNA product then underwent Exonuclease I 

treatment (New England Biolabs; M0293M) to remove excess primer before proceeding 

with second strand synthesis. 

 
4.12 Templated Second Strand Synthesis 

Following Exonuclease I treatment, beads were washed once with 500uL of a TE-SDS 

(0.5% SDS) solution, and twice in 500uL of a TE-Tween (0.01% Tween) solution. After 

the second TE-TW wash the beads were solvated with 500uL of 0.1M NaOH and mixed 

for 5 minutes at room temperature using an end-over-end rotator with intermittent 

agitation to denature the mRNA-cDNA hybrid product on the bead. Following denaturing, 

the NaOH was removed and beads were washed once with 1M TE, and then combined 

with a mastermix consisting of 40uL 5x maxima RT buffer, 80uL 30% PEG8000 solution, 

20uL 10mM dNTPs, 2uL 1mM dn-SMART oligo, 5uL Klenow Exo-, and 53ul of DI 

ultrapure water. Second strand synthesis was carried out by incubating the beads for 1 

hour at 37°C with end-over-end rotation and intermittent agitation. Following incubation, 

beads were sequentially washed twice with 0.5 mL of TE buffer with 0.01% Tween 20, 

and once with 0.5 mL of TE. Immediately prior to PCR amplification, beads were washed 

once with 0.5 mL of water and resuspended in 0.5 mL of water.  

 
4.13 PCR Amplification 

After second strand synthesis, PCR amplification was performed using KAPA HiFi PCR 

Mix (Kapa Biosystems KK2602). Specifically, a 40uL PCR Mastermix consisting of 25 uL 

of KAPA 5X Mastermix, 0.4 uL of 100 uM ISPCR oligo, and 14.6 uL of nuclease-free 

water was combined with 2,000 beads per reaction. For each sample, the total number 

of PCR reactions performed varied based on the number of beads recovered following 

second strand synthesis. PCR amplification was performed using the following cycling 

conditions: an initial denaturation at 95°C for 3 minutes, then 4 cycles of 98°C for 20 

seconds, 65°C for 45 seconds, and 72°C for 3 minutes, followed by 9-12 cycles of 98°C 
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or 20 seconds, 67°C or 20 second, and 72°C for 3 minutes, and then a final extension of 

72°C for 5 minutes. Following PCR amplification, WTA products were isolated through 

two rounds of SPRI purification using Ampure Spri beads (Beckman Coulter, Inc.) at both 

0.6X and 0.8x volumetric ratio and quantified using a Qubit.   

 
4.14 Optimization of Second Strand Synthesis 

We performed a series of experiments to validate the performance of the second-strand 

synthesis protocol relative other techniques. For the comparison of the Seq-Well protocol 

with and without second-strand synthesis, we performed species-mixing experiments and 

PBMC comparisons. For species-mixing experiments, we applied a mixture of 5,000 

HEK293 and 5,000 NIH-3T3 cells to a loaded Seq-Well device, while for PBMC 

comparisons, we loaded a total of 10,000 PBMCs. In optimization experiments, PBMCs 

were thawed and immediately loaded directly onto Seq-Well devices without stimulation. 

Following bead removal, beads were split into separate reverse transcription reactions 

with and without the template-switching oligo. After reverse transcription and ExoI 

treatment, beads for each comparison were processed separately with and without the 

second-strand synthesis protocol.  

 

Specifically, we performed a series of optimization experiments to validate the 

effectiveness of Seq-Well S^3. Specifically, we performed a series of control experiments 

using beads from a single Seq-Well array loaded with 10,000 PBMCs. For each array we 

split the beads into six equal fractions and performed the following controls: (1) we 

performed PCR amplification without the use of second-strand synthesis. (2) we 

performed random second-strand synthesis followed by PCR amplification. (3) we omitted 

the template switching oligo without the use of second-strand synthesis. (4) we omitted 

the template switching oligo but subsequently performed random second-strand 

synthesis. (5) we examined the effect of heat inactivation of the reverse transcription 

reagent without the use of second strand synthesis. (6) we examined the effect of heat 

inactivation of the reverse transcription reagent followed by random second strand 

synthesis (Appendix C, Figure S1B-C). Following PCR amplification, products were 
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obtained from all conditions with the exception of Condition 3 (Seq-Well V1/ No TSO), 

which did not yield appreciable WTA product.  

 
4.15 Comparison of 10X Genomics (V2 Chemistry) and Seq-Well S^3 

Human PBMC were thawed and rested overnight. Cells were stimulated for 18 hours by 

adding aCD3 (UCHT1) and aCD28 (CD28.2) antibodies were added to the bulk PBMC 

culture at a concentration of 1mg/mL and 5 mg/mL, respectively, and CD4+ T cells were 

enriched following stimulation using magnetic negative selection (Stemcell 

Technologies). Following isolation, T cells were stained with calcein violet live stain 

(Thermo), Sytox dead stain (Thermo), and aCD45-AF647 (HI30) antibody at 4C for 30 

minutes.  After two washes, aliquots of the cells were placed on ice and delivered to 

facilities for flow sorting directly into RLT buffer for Smart-Seq2 processing and another 

unstained sample for 10X Chromium analysis. Once the cells were delivered, a third 

aliquot was loaded onto a Seq-Well array. Single-cell libraries were generated using the 

Smart-Seq 2, 10X V2, and Seq-Well S^3 protocols.  

 
4.16 Sequencing Library Preparation 

A total of 1ng of WTA product at a concentration of 0.2 ng/uL was combined with 10 uL 

of Buffer TD and 5 ul of Buffer ATM and incubated at 55°C for 5 minutes. Following 

tagmentation, 5 uL of Buffer NT was added and incubated at room temperature for 5 

minutes to neutralize the reaction. A total of 8 uL of nuclease-free water, 15uL of buffer 

NPM, 1 uL of Custom P5 hybrid Oligo, and 1 uL of N700 Index oligo were combined and 

PCR amplification was performed using the following cycling conditions: an initial 

denaturation of 95°C for 30 seconds, then 12 cycles of 95°C for 10 seconds, 55°C for 30 

seconds, and 72°C for 30 seconds, followed by a final extension of 72°C for 5 minutes. 

PCR products were isolated through two rounds of SPRI purification (0.6x and 0.8x 

volumetric ratios) and quantified using a Qubit. Library size distributions were determined 

using an Agilent Bioanalyzer D1000 High Sensitivity Screen tape.  

 

DATA ANALYSIS OF COMPARISON EXPERIMENTS 
4.17 DNA Sequencing and Alignment of PBMC Optimization samples and Downsampling  
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PBMC optimization experiments were all sequenced on NextSeq500 75 cycle kits. 

Sequencing read alignment was performed using version 1 of the Drop-Seq pipeline 

(Macosko et al., 2015). NextSeq runs were loaded at a final concentration of 2.2pM using 

NextSeq 550 v2 sequencing kits at the Ragon Institute. Briefly, for each sequencing run, 

raw sequencing reads were converted from bcl files to FASTQs using bcl2fastq using 

Nextera N700 indices that corresponded to individual samples. Demultiplexed FASTQs 

were then aligned using an implementation of DropSeqTools v1.0 maintained by the 

Broad Institute for data analysis, and aligned to the Hg19 genome using standard 

parameters. Individual reads were tagged with a 12-bp barcode and 8-bp unique 

molecular identifier (UMI) contained in Read 1 of each sequencing fragment. Following 

alignment, aligned read 2 sequences were grouped by the 12-bp cell barcodes and 

subsequently collapsed by the 8-bp UMI for digital gene expression (DGE) matrix 

extraction and generation. 

 
4.18 PBMC Comparison Experiments 

We generated data matrices for PBMC data from 10x genomics and Seq-Well S^3.  

Initially, we performed downsampling to an average sequencing depth of 42,000 reads 

per cell. Specifically, downsampling was performed on Seq-Well S^3 to match the 

sequencing depth of 10x Genomics v2. For each data set, we performed variable gene 

identification and selected variable genes for downstream analysis (Seq-Well S^3, 856 

variable genes and 10x Genomics v2, 516 genes). We performed principal components 

analysis and selected the first 20 principal components to perform a t-SNE dimensionality 

reduction. We then performed cluster identification and discovered clusters representing 

CD4+ T cells, CD8/NK cells, and B cells for each of the technology platforms (Appendix 
C, Figure S2A). We examined the proportion of cell types recovered between Seq-well 

S^3 and 10x Genomics v2 and performed a Chi-Square test to examine differences in the 

proportion of recovered cell types (P = 0.971).  

 

Within each cell type identified between Seq-Well S^3 and 10x Genomics V2, we 

examined differences in aggregate gene detection and transcript capture (Appendix C, 
Figure S2C). We initially performed a Lilliefors test to assess normality of the distribution 
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of genes and UMIs for each technique. Based on these results, we determined to use a 

Mann-Whitney U Test to determine difference in aggregate gene and transcript detection 

between techniques (Figure 1; Appendix C, S1, and S2).  As a measure of library 

complexity, we examined the linear relationship between the number of UMIs captured 

and aligned sequencing reads. Specifically, across cell types for each technique, we 

plotted the number of UMIs against the number of aligned reads and calculated the slope 

of the regression line for each condition (Figure 1B-C). For comparisons of library 

complexity, we constructed a multivariable linear regression model in which the number 

of transcripts per cell was modeled follows: nUMI ~ Intercept + B1*nReads + 

B2*Technique + B3*nReads*Technique. From these models, we determined statistical 

significance of the difference in slope (i.e. library complexity) based on p-values for the 

interaction term B3*nReads*Technique, the magnitude and significance of which 

correspond to a difference in slope (i.e. library complexity or the number of UMIs per 

aligned read) (Figure 1B; Appendix C, S1B-C). For example, in a library of low-

complexity application of additional sequencing reads might result in detection of a new 

transcript in every 20th aligned read (i.e. slope = 0.05). Conversely, a library of high 

complexity, might result in detection of a new transcript with every 4 aligned reads (i.e. 

slope = 0.25). Critically, these comparisons should be performed on libraries that have 

been sequenced or down-sampled to similar depths as over-sequencing can augment 

the relative perception of differences in library complexity. Specifically, libraries that have 

been “over-sequenced” will appear to have lower complexity because unique molecular 

identifiers will eventually accumulate additional reads upon saturation.  

 
4.19 Comparison of Gene Detection Rates  

For each cell-type cluster, we calculated the rate of detection for each gene as the 

proportion of cells with a non-zero expression value. Gene detection rates were 

separately calculated across CD4+ T cells, B cells, CD8/NK cells, and monocytes for both 

Seq-Well S^3 and 10x Genomics v2. We further examined differences in gene detection 

rates among transcription factors, cytokines and surface receptors (Appendix C, Table 
S1). For comparisons of relationship between gene-detection rates and overall 

expression levels, we calculated the expression level of individual genes as the average 
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normalized expression value within each cell type for all cells identified in both Seq-Well 

S^3 and 10x v2 data (Figure 1; Appendix C, Figure S2). To test the statistical 

significance of differences in gene detection frequencies, we performed a chi-square test 

using the number of cells in which a given gene had a non-zero expression values for 

each technique.  

 

PROFILING CELL STATES IN HUMAN SKIN INFLAMMATION 

4.20 IRB Statement 

Informed written consent was obtained from human subjects under a protocol approved 

by the institutional review boards of the University of Michigan and University of California 

Los Angeles (UCLA).  This study was conducted according to the Declaration of Helsinki 

Principles. 

 
4.21 Processing of Human Skin 

Skin biopsies were obtained from a total of 9 patients at the University of California, Los 

Angeles and University of Southern California Hansen’s Clinic. For each sample, a 4-mm 

punch biopsy was obtained following local anesthesia and was placed immediately into 

10 mL of RPMI on ice. Initially, skin biopsies were incubated in 5mL of a 0.4% Dispase II 

solution (Roche Inc.) at 37°C for 1 hour with vigorous shaking. The dermis and epidermis 

were then carefully separated using forceps and transferred to separate tubes for 

additional processing. Epidermal samples were placed in 3mL of 0.25% Trypsin and 

10U/mL DNAse for 30 minutes at 37°C. Trypsin was neutralized with 3mL of fetal calf 

serum (FCS), and the tissue was passed through a 70-micron nylon cell strainer which 

was washed with 5mL of RPMI. Epidermal cells were then pelleted at 300xg for 10 

minutes and counted. Dermal samples were minced with a scalpel and incubated in a 

solution of 0.4% collagenase 2 and 10 U/mL DNAse for 2 hours at 37°C with agitation. 

The cell suspension was passed through a 70-micron cell strainer and washed with 5mL 

of RPMI. Cells were pelleted at 300xg for 10 minutes, resuspended in 1mL of RPMI and 

counted. 

 
4.22 Sequencing and Alignment of Skin Samples 
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Sequencing read alignment was performed using version 2 of the Drop-seq pipeline 

previously described in Macosko et al. Briefly, for each Nova-Seq sequencing run, raw 

sequencing reads were converted from bcl files to FASTQs using bcl2fastq based on 

Nextera N700 indices that corresponded to individual samples. Demultiplexed FASTQs 

were then aligned to the Hg19 genome using STAR and the DropSeq Pipeline on a cloud-

computing platform maintained by the Broad Institute. Individual reads were tagged with 

a 12-bp barcode and 8-bp unique molecular identifier (UMI) contained in Read 1 of each 

sequencing fragment. Following alignment, reads were grouped by the 12-bp cell 

barcodes and subsequently collapsed by the 8-bp UMI for digital gene expression (DGE) 

matrix extraction and generation.  

 
4.23 Tissue Immunofluorescence Staining 

Formalin fixed, paraffin-embedded tissue slides obtained from psoriasis patients and 

normal controls were heated for 30 min at 60°C, rehydrated, and epitope retrieved with 

Tris-EDTA, pH 6. Slides were blocked, incubated with primary antibody APOBEC3 (LS-

C98892-400; Lifespan bioscience), FOSL (A03927; Boster), IL-36G (sc-80056; Santa 

Cruz Biotechnology), TNFAIP3 (ab74037, Abcam), IL-17RC (LS-C400522, Lifespan 

bioscience), and IL-17RA (LS-C359381, Lifespan bioscience) overnight at 4 °C. Slides 

were then washed and incubated with Donkey anti-Rabbit IgG 594, Donkey anti-Mouse 

IgG 488, or Donkey anti-Rat IgG 594 (all from Invitrogen) for 1 h at room temperature. 

Slides were washed and prepared in mounting medium with 4',6-diamidino-2-

phenylindole (DAPI) (VECTASHIELD Antifade Mounting Medium with DAPI, H-1200, 

VECTOR). Images were acquired using Zeiss Axioskop 2 microscope and analyzed by 

SPOT software 5.1. Images presented are representative of at least three experiments 

using biological replicates. 

 
DATA ANALYSIS OF SKIN SAMPLES 

4.24 Cell Quality Filtering  

Cells were initially filtered on the basis of gene detection (> 500 genes per cell) and 

transcript detection (> 700 umis per cell) for inclusion in downstream analysis. Further, 

cells with fractional representation of mitochondrial genes greater than 40% were 



 103 

excluded. To account for potential transcript spreading, we removed any duplicated or 

hamming=1 barcodes among samples sequenced on the same Nova-Seq runs. For each 

sample, we performed variable gene identification and calculated 30 principal 

components. Within each sample, we performed jackstraw simulations to identify 

significant principal components that were then used to perform t-SNE dimensionality 

reduction and clustering for each sample using only significant principal components. 

Within each sample, clusters defined exclusively by mitochondrial gene expression, 

indicative of low-quality cells, were removed from downstream analysis.  

 
4.25 Removal of Ambient RNA Contamination 

Within each sample, we removed ambient RNA contamination using SoupX (Young and 

Behjati, 2018). Initially, we determined appropriate UMI thresholds to estimate 

background contamination using EmptyDrops (Lun et al., 2019). Specifically, we 

examined the distribution of P-values UMI thresholds between 30 and 100 and selected 

the UMI threshold in which the distribution most closely approximated a uniform 

distribution. For each sample, we calculated an array-specific ‘soup’ profile among 

barcodes below the UMI threshold. To calculate estimated per-cell contamination 

fractions, we manually selected genes observed to be bimodally expressed across cells, 

which suggest that these genes are predominantly expressed in a single-cell type, but 

are observed at low-levels in other cell types for which endogenous expression would not 

be expected. For each array, we removed individual transcripts most likely to be 

contamination from each single-cell based on the estimated contamination fraction. 

Specifically, individual transcripts were sequentially removed from each single-cell 

transcriptome until the probability of subsequent transcripts being soup-derived was less 

than 0.5 to generate a background-corrected UMI matrix for each Seq-Well S^3 array.   

 
4.26 Doublet Removal 

We performed doublet removal for each sample individually using DoubletFinder 

(McGinnis et al., 2018). For each sample, we calculated the expected doublet rate based 

on the cell loading density. For each sample, a total of 20,000 cells were loaded to a 

loaded Seq-Well device containing 85,000 wells (lambda = 20,000). For each array, we 
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calculated an expected doublet rate of 2.37%. For each array, we generated pseudo-

doublets using the following parameter values in DoubletFinder: proportion.artificial = 

0.25 and proportion.NN = 0.01.  Cells were identified as doublets based on their rank 

order in the distribution of the proportion of artificial nearest neighbors (pANN). 

Specifically, we identified the pANN value for the cell at the expected doublet percentile 

and used the corresponding pANN value as a threshold to remove additional cells with 

pANN greater than or equal to this value.  
 
4.27 Analysis of Combined Skin Dataset 

After background and doublet correction, we performed integrated analysis on a 

combined dataset of 25,468 cells. We performed variable gene identification and 

dimensionality reduction to identify 34 cell type clusters using Louvain clustering 

(Resolution = 2.0). We identified genes enriched across clusters to identify generic cell 

types. We performed an initial round of dimensionality reduction and cluster identification 

among cell types used in subsequent analysis (i.e. T  cells, myeloid cells, B and plasma 

cells, endothelial cells, fibroblasts, and keratinocytes). Based on the initial sub-clustering 

results for each cell type, we removed sub-clusters defined by residual contamination not 

corrected for by SoupX background correction and doublet filtering. In total, we filtered 

5,160 cells from sub-clusters defined by residual contamination: 968 from the T cell sub-

analysis, 473 from the myeloid sub-analysis, 787 from B and Plasma Cells, 1,049 from 

the endothelial sub-analysis, 1,051 from the fibroblast sub-analysis, and 832 from the 

keratinocyte sub-analysis.  

 

After this stringent quality control filtering step, a total of 20,308 cells were included in 

downstream analysis of the atlas of skin inflammation. We first performed variable gene 

identification and identified 8,927 genes as variably expressed. We performed UMAP 

dimensionality reduction to generate a 2-dimensional representation of gene expression 

data, and we identified a total of 33 cell type clusters using Louvain clustering (Resolution 

= 2.0) in Scanpy (Wolf et al., 2018). To understand similarity of identified clusters, we 

performed hierarchical clustering of identified cell type clusters (Appendix C, Figure 
S2C). Specifically, across clusters we generated a list composed of the top 25 cluster-
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defining genes from each cluster. Average gene expression values within each across 

the 511 unique cluster-defining genes was used to perform hierarchical clustering. A 

dendrogram was generated to display the similarity of clusters, and the observed 

relationships were used to inform rational combination of related cell type clusters for 

combined analysis (Appendix C, Figure S2C). Cell type assignments were assigned 

through a combination of literature-based assessment of expression signatures and 

manual curation. In total, we identified clusters representing 16 major cell types 

(Appendix C, Table S3) including arterioles, B cells, dendritic cells, fibroblasts, hair 

follicle, keratinocytes, Langerhans cells, lymphatics, mast cells, macrophages, muscle, 

neurons, plasma cells, sweat gland, T cells, and venules.  

 
4.28 Identification of T cell Sub-Clusters 

We performed sub-analysis for numerous cell-types to examine additional variation within 

major cell types. Among the 2,908 T cells identified in the total dataset, we identified 5,574 

variable genes that were used to construct a force-directed graph. We further used this 

set of variable genes to perform Louvain clustering (Resolution = 0.8) and identified a 

total of nine T cell sub-clusters. Cell-type identities were established by examining the 

expression of known marker genes corresponding to CD4+ T helper and CD8 T cell 

subsets. We performed comparison of identified T cell signatures to previously identified 

signatures in Savant (Lopez et al., 2017) (Figure S4A). We identified genes enriched by 

phenotypic condition across the set of 2,908 by performing a bimodal expression test in 

Seurat (Figure 3F, Table S4). To further define variation among T cell sub-clusters 0 and 

8, we performed additional sub-grouping analyses. In both cases, we performed sub-

analyses in which t-SNE was performed using a total of 5 principal components calculated 

across variable genes using Seurat. For T sub-cluster 0 (CD8 T cells), we identified sub-

groupings in Seurat using a resolution of 0.5, while a resolution of 1.10 was used for sub-

grouping analysis for T cell cub-cluster 8 (Cytotoxic cells) (Figure 3F; Appendix C, S4B).  

 
4.29 T Cell Receptor Detection  

Initially, we examined the detection rates for TCR alpha and beta (Constant, V and J 

genes) among CD4+ T cells from experiments performed on PBMCs using the Seq-Well 
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V1, Seq-Well S^3 protocol and 10x v2 (Appendix C, Figure S4C). Specifically, detection 

of constant genes was determined by non-zero values for either TRAC or TRBC2 genes 

for alpha and beta constant genes, respectively. Similarly, detection of TRAV and TRBV 

sequences was determined on the basis of a non-zero value for any TRAV or TRBV gene, 

We further examined the rate of TCR detection across 2,908 T cells obtained from human 

skin biopsies. Specifically, we examine detection rates across multiple sequencing 

depths: <5,000, 5,000-25,000, 25-000-100,000, and > 100,000 aligned reads per cell. 

(Figure 3G).  

 
4.30 Identification of Myeloid Heterogeneity  

We performed sub-analysis of myeloid populations observed in skin, which include 

Dendritic cells, Macrophages, Mast cells, and Langerhans cells identified in global 

analysis of 20,308 total cells. Using a combined dataset of 2,371 myeloid cells, we 

performed variable gene identification and dimensionality reduction in Scanpy. 

Specifically, we constructed a force-directed graph across 6,599 variable genes and 

performed Louvain clustering (resolution = 1.0), and we obtained 9 sub-clusters of 

myeloid cells (Appendix C, Figure S4D).  

 

To understand differences in Langerhans cells in normal skin, we performed differential 

expression analysis within each cluster of Langerhans cells (Appendix C, Figure S4D). 

Results presented in Figure 4E represent differential expression results between 

Langerhans cells from Cluster 1 between normal and leprosy skin biopsies. To identify 

mast cell genes associated with inflammatory skin conditions, we performed enrichment 

analysis using a bimodal expression test in Seurat (Figure 4F).  

 

We performed additional sub-grouping among 502 dendritic cells and performed UMAP 

dimensionality reduction across 4,333 variable genes. We once again used Louvain 

clustering and identified 5 sub-groupings of dendritic cells, and identified genes enriched 

within each cluster by performing a bimodal expression test in Seurat. To understand how 

dendritic cells related to previous findings, we performed comparisons to published 

signatures of dendritic cell phenotypes (Villani et al., 2017). Specifically, we generated 
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expression scores using the top 10 genes using the AddModuleScore function in Seurat 

and examined the distribution of signature scores (Appendix C, Figure S4H). We 

determined significance of cluster enrichment by performing 1,000 permutations in which 

cell and signature score identifiers were randomly re-assigned. Upon permutation testing, 

we observed significant enrichment among DC sub-group 4 (cDC1) for a signature 

corresponding to CLEC9A+ cDC1 cells (P<0.05, Permutation Test; Appendix C, Figure 
S4H). 

 
4.31 Identification of Endothelial Heterogeneity  

We performed variable gene identification across 4,996 endothelial cells identified in the 

global analysis across 9 skin biopsies. We generated a force-directed graph and 

performed Louvain clustering among 6957 variable genes, which revealed 7 sub-clusters 

of endothelial cells used in downstream analysis. To identify genes enriched in each 

endothelial sub-cluster, we performed a bimodal expression test in Seurat (Table S10). 

We specifically examined the distribution of addressin expression across endothelial 

subsets identified using Louvain clustering as well as the distribution across the spectrum 

of skin inflammation. Directed analysis of addressins was performed using a curated list 

of addressins using only the set of genes identified in endothelial cells (Figure S5E).  

 
5.32 Identification of Fibroblast Heterogeneity 

We performed variable gene identification across 4,189 fibroblasts identified in global 

analysis. We performed dimensionality reduction across 6,931 variable genes and 

performed Louvain clustering (Resolution = 0.8), revealing 9 sub-clusters of fibroblasts. 

For each fibroblast sub-cluster, we examined the relative contribution of cells from each 

sample and condition. Further, we examined the distribution of fibroblast sub-clusters 

within each sample. For each sub-cluster, we performed enrichment analysis to identify 

cluster-defining genes (Appendix C, Table S11).  

 
4.33 Pseudo-temporal Reconstruction of Epidermal Keratinocytes 

Initially, we performed sub-clustering analysis on a combined dataset of 5,141 

keratinocytes observed across normal skin and pathologic conditions to assess 
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heterogeneity. Diffusion analysis across all keratinocytes was performed using the 

Diffmap function in Scanpy, which implements a method for diffusion (Haghverdi et al., 

2015). Within normal and psoriatic kerainocytes, a population of basal keratinocytes was 

identified on the basis of expression of TP63 and KRT14 (Figure 5). Initially, we 

performed pseudo-temporal analysis within normal keratinocyte separately, using the 

basal keratinocyte population as the origin of the pseudotemporal ordering. After 

observing distinct developmental trajectories among psoriatic keratinocytes (Figure 5C), 

we performed differential expression analysis between normal and psoriatic keratinocytes 

in Seurat using a bimodal expression test (Appendix C, Table S12) 

 

Differentiation trajectories for individual samples were constructed using dyno  

(https://rdrr.io/github/dynverse/dyno/man/dyno.html). Specifically, we used SlingShot to 

generate diffusion pseudotime reconstructions of normal and psoriatic keratinocytes. We 

examined gene expression patterns correlated with pseudo-temporal order across normal 

keratinocyte populations. For normal and psoriatic keratinocytes from psoriasis patient 1, 

we performed differential pseudo-time correlation analysis. Here, for each pseudo-

temporal reconstruction, we performed linear regression between pseudotime values and 

gene expression values for either normal or psoriatic keratinocytes (Appendix C, Table 
S13). We then calculated the difference in pseudotime correlation between psoriatic and 

normal keratinocytes to identify genes that are uniquely involved in the development of 

psoriatic keratinocytes (Figure 5F).  

 
4.34 Keratinocyte Cytokine-Response Profiles  

Among both normal and psoriatic keratinocytes, we generated cytokine response scores 

using a series of reference datasets. Specifically, bulk RNA-sequencing references were 

previously generated from in vitro experiments in which cultured keratinocytes were 

stimulated with cytokines, individually or in combination. We used expression signatures 

generated by exposing keratinocytes to IL-17A, IL17-A + TNF-alpha, TNF-alpha, IFN-

alpha, IL-4, IL-13, and IFN-gamma. Expression signature were generated relative an 

unstimulated control population of keratinocytes. For each cytokine condition, we used 

the top 100 differentially expressed genes to generate a cytokine response score across 
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both psoriatic and normal keratinocytes (Appendix C, Table S14). We then examined 

the extent of cytokine response across basal, differentiating and terminal keratinocytes 

between normal and psoriatic keratinocytes.  
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Chapter 5: Conclusions 
 

 

As demonstrated in previous sections, scRNA-Seq is a powerful tool that has transformed 

the way we study health and disease. However, as our capability to ask more complex 

biological questions continues to grow, it necessitates both the optimization and 

innovation of single-cell technologies in order to improve our understanding of the 

biological systems of interest. When I entered the field in 2014, the power of single-cell 

technologies had been demonstrated; however, it’s application in precision medicine 

pipelines had yet to be realized. As a result, I was motivated to contribute to ongoing 

collaborations that not only demonstration why single-cell technologies are critical to 

precision medicine applications (see Chapter 2), but also develop new, high-throughput 

technologies (See Chapters 3 and 4) that provide viable options for the implementation 

of scRNA-Seq methods in precision medicine pipelines. 

 

In this final chapter, we explore ongoing work, both technology development, and 

biological applications, in the field of scRNA-Seq. 

 

5.1 Contributions of this work  

In this work, we provide a chronology of scRNA-Seq technology development and how, 

through both the power and limitations of low-throughput platforms, motivated the 

development of massively parallel, high-throughput methods. In Chapter 2, we describe 

the application of a powerful low-throughput, plate-based method1-3 to construct single-

cell profiles of the melanoma tumor microenvironment. Critically, this work demonstrates 

how the complexity of diseases, like cancer, requires single-cell resolution to construct 

clinically relevant patient profiles. For example, leveraging scRNA-Seq, this study showed 

that malignant cells exist on a spectrum of heterogeneity for MITF and AXL programs, 

which are canonically thought to be separate programs based on bulk RNA-Seq profiles.4 

This phenomenon potentially explains why targeted treatment of either tumor, based on 

bulk profiles, can lead to an outgrowth of drug-resistant tumor phenotypes 
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In Chapter 3, we present Seq-Well5, our solution to the limitations of existing low-1-3 and 

high-6-9 throughput scRNA-Seq assays for clinical implementations. This work 

demarcates an important time in single-cell technology development because it was a 

catalyst for democratizing scRNA-Seq. At that time, scRNA-Seq technologies were either 

prohibitively expensive1-3 or required an extensive setup6-8, preventing implementation in 

low-resource settings. Our technology was, and still is, a viable solution to these 

limitations because it is relatively inexpensive to run (less than $200/assay) and requires 

minimal equipment. As a result, we have helped democratize scRNA-Seq, setting up 

technologies in over 130 laboratories across 6 continents and 20 countries. 

 

Although Seq-Well catalyzed multiple international collaborations, it could not achieve the 

necessary transcriptome coverage to reliably phenotype unique and rare immune 

subsets, limiting its application in certain contexts. In chapter 4, to address this, we 

present Seq-Well S^3 (Second Strand Synthesis), a modified Seq-Well protocol with 

dramatically improved gene and transcript capture.10 Using this improved pipeline, we 

constructed an atlas of skin inflammation, profiling immune, and parenchymal cell 

subsets. Importantly, with our improved sensitivity, we were able to profile previously 

unappreciated diversity in adaptive and innate immune subsets, identifying phenotypes 

unique to the different inflammatory diseases. For example, we identified a population of 

dysfunctional T cells that were over-represented in patients with psoriasis.10 With this 

improved sensitivity, we were also able to propose biomarker targets, both unique and 

conserved across the inflammatory diseases for therapeutic intervention. 

 

In the subsequent sections, we will present four ongoing projects that are extensions of 

the presented work. 

 

5.2 Elucidating the Host-Pathogen Interaction of liver-stage P. vivax infection 

Leveraging the improved sensitivity of Seq-Well S^3, we are studying the host-pathogen 

interactions of liver-stage P. vivax infection in hepatocytes. To date, a major barrier to the 

eradication of malaria is the unique relapsing nature of Plasmodium vivax infection.11 

Using scRNA-Seq, we are profiling primary human hepatocytes, using co-cultures 



 117 

(micropatterned, primary human hepatocyte co-cultures; MPCCs)11 to elucidate the host-

pathogen dynamics over the course of liver-stage infection. Currently, we are working 

towards identifying how sporozoites, upon infecting a hepatocyte, commit to either 

maturation (i.e., replication by schizogony to produce merozoites and release into the 

bloodstream) or become hypnozoites, a dormant form of the parasite that can lead to 

relapse weeks to years after the initial infection.11 To date, we have profiled the 

transcriptome of 72,536 host (hepatocyte) cells and 126 parasites, allowing us to 

understand how infection alters the host response (Figure 1A-B). Preliminary results 

show that, in a comparison between infected and uninfected hepatocytes, we observe 

downregulation of interferon gamma (INFγ) programs in the infected cells while 

upregulation of INFγ in neighboring hepatocytes (Figure 1C). Currently, we are validating 

the potential gene targets, derived from the scRNA-Seq analysis, using a small interfering 

RNA (siRNA) perturbation assay. This will not only improve our understanding of the 

hepatocyte response to infection but also validate our hypothesis that reactivation of INFγ 

programs will help eliminate the parasites. 

 
Figure 1 | Seq-Well of 72,536 hepatocytes from host/pathogen study. (A) tSNE plot of hepatocyte cells 
color by infection status. (B) Volcano plot of differentially expressed genes between infected (right) and 
uninfected (left) hepatocytes. (C) Gene Set Enrichment Analysis (GSEA) plots of IFNA and IFNG programs 
(0 = infected, 1 = uninfected). 
 
5.3 Seq-Well V3: Bead-to-Seq 

As presented in Chapter 4, the dramatic improvement of transcriptome coverage afforded 

by Seq-Well S^3 has enabled robust phenotyping of previously elusive immune subsets.10 

However, while Seq-Well S^3 is one of the most affordable scRNA-Seq methods available 

(around $200/array before sequencing), experimental costs can still accumulate when 

trying to scale this technology for larger studies (e.g., cellular atlasing). To address this, 

we are currently developing Seq-Well V4, a modified pipeline of Seq-Well S^3 that 
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leverages second strand synthesis to generate sequencing libraries directly on the bead. 

In doing so, this decreases reagent costs by ~40% by eliminating the need for Illumina 

nextera XT kits, making Seq-Well an even more affordable alternative to other scRNA-

Seq technologies. Preliminary data is promising; however, the technique still needs to be 

benchmarked against the standards in the field (e.g., Seq-Well S^3, Drop-Seq, inDrop, 

10x Genomics, etc.) to ensure it is competitive and a usable option for researchers. 

 

5.4 Nuc-Seq: Development and Modification of Seq-Well for nuclei 

Although Seq-Well V15 and S^310 platforms have transformed the field and helped 

democratize single-cell technologies by empowering scientists in low- and high-resource 

settings, they still have critical limitations that prevent even more widespread use. For 

instance, the current iteration of Seq-Well is not compatible with nuclei, preventing our 

ability to profile specific sample types like fixed cells (e.g., formalin fixed paraffin 

embedded tissues), frozen tissues (e.g., bio-banked archived samples) and tissues with 

cell-type-specific processing compilations (e.g., neurons). To address this, in 

collaboration with the Regev Lab (MIT/Broad), we are developing Nuc-Seq, an optimized 

massively-parallel pipeline for processing single nuclei. To date, we have profiled 3,654 

hepatocyte nuclei from mouse livers, recapitulating known biology (Figure 2A and B). 

Preliminary results are promising, showing that we are not only recovering transcripts 

known to localize to in the nucleus (e.g., Hnf4a) versus cytoplasmic transcripts (e.g., 

Gata2; Figure C) but that, when comparing snRNA-Seq with scRNA-Seq, the methods 

recover cells with similar transcriptional profiles, although sometimes at varying 

proportions (Figure 2D and E). However, the technique still needs to be benchmarked 

against the standards in the field (e.g., DroNc-Seq, 10x Genomics, etc.) to ensure it is 

competitive and a usable option for researchers. 
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Figure 2 | Nuc-Seq of ~3,654 hepatocyte nuclei from preliminary pilot. (A) UMAP of nuclei recovered 
from mouse liver. (B) Heatmap of cluster-defining genes from UMAP in A. (C) Violin plots of Gata2 and 
Hnf4a gene expression. (D) UMAP of integrated hepatocyte cells and nuclei. (E) Proportion of sample types 
recovered from mouse liver broken down by UMAP clusters in D. 
 

5.5 Elucidating the mechanism of BCG vaccination using single-cell RNA-Seq 

To date, we have yet to realize a highly protective and durable vaccine against 

Mycobacterium tuberculosis (Mtb) infection and TB disease, which results in 10 million 

TB cases and 1.6 million deaths each year.12,13 While the currently licensed vaccine, 

Bacillus Calmette-Guérin (BCG), confers protection against disseminated disease in 

infants, clinical trials have shown variable protection (0-70%) against pulmonary 

tuberculosis (TB) disease.12 In order to develop a more effective vaccine, we must identify 

the mechanisms that confer protection and optimize our prophylactic interventions to 

induce them.  
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Recent studies have shown that protection against Mtb is, in part, dependent on T cell 

responses.14,15 These results suggest that protection against pulmonary TB likely requires 

a vaccine that can induce high levels of tissue-resident T cells in the lung that can 

recognize a wide range of antigens from among the 4,000 MtB genes, and hence have 

the potential to immediately control and eliminate Mtb in the lung post-exposure.  

However, as lung resident T cells may have limited durability, it could be critical for a 

vaccine to generate circulating, long-lived TB-specific “central memory” T cells that can 

function as a reservoir of cells to repopulate the lung for long-term protection.15 Several 

studies have demonstrated that the route of vaccine administration has the potential to 

impact the relative frequency and attributes of these responses.16-19  

 

The Seder Lab (NIH/VRC) recently developed a non-human primate (NHP) model to 

compare immunity and protection following immunization with BCG by intradermal (ID), 

aerosol (AE), and intravenous (IV) routes.20 Intriguingly, their results showed that IV 

administration of BCG prevented infection following Mtb challenge (6 months later) in 80% 

of NHPs. The other vaccine routes, meanwhile, proved less effective and displayed higher 

mycobacterial burden post-challenge. Comparing tissue samples from animals across 

this spectrum of vaccine efficacy enables the identification of cellular phenotypes that 

may be associated with control. For example, by flow cytometry, the Seder and Roederer 

Labs (NIH/VRC) identified that IV BCG leads to a significant expansion of T cells in 

bronchoalveolar lavages (BALs).  

 

To characterize cellular features that might inform differences in protection, we performed 

high-throughput single-cell RNA-sequencing (scRNA-Seq) with Seq-Well on a non-

human primate (NHP) multi-route BCG vaccination study in collaboration with the Seder 

and Roederer Labs. At two time points (weeks 13 (peak response) and 25 (memory 

phase)) post-vaccination, we profiled BALs from 15 monkeys representing five routes of 

BCG administration – an unvaccinated control, low-dose ID, high-dose ID, AE, and IV (3 

monkeys/condition). We also performed ex vivo overnight PPD stimulation on a fraction 

of each BAL to polarize its macrophages and T cells and similarly subjected it to scRNA-
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Seq. Across 60+ runs (160,000+ single cells), we identified trends in cell-type composition 

and T cell phenotypes that are associated with the degree and duration of protection 

against mucosal Mtb challenge (Figure 3A and B). Importantly, we identify an IV-BCG 

enriched module of correlated gene expression associated with T cell survival and 

effector function that is enriched among T cells with a Th1/Th17 phenotype. This is 

particularly intriguing since a recent study of mucosal BCG vaccination in rhesus 

macaques showed by flow cytometry that such Th1/Th17 CD4 T cell responses were 

associated with high-level protection against repeated, low dose challenge with Mtb.21 

More specifically, at 13 weeks post-vaccination, we observed a stimulation-inducible 

module of gene expression enriched for effector memory T cell functionality that was 

almost exclusively expressed in the T cells of animals that received IV BCG vaccination 

(Figure 4A-D). Further, we observed that the degree of stimulation-based induction of 

this module corresponded to the level of protection conferred by different vaccine routes 

(Figure 4E). Notably, when this stimulation-inducible gene-expression module, which 

was identified in week 13 T cells, was projected onto week 25 post-vaccination T cells, 

we observed a similar trend in the distribution of cellular module-scores by vaccine route. 

Looking directly at the 25 weeks post-vaccination data, we uncovered multiple 

stimulation-specific T cell gene expression modules. Notably, two of these showed a high 

 
Figure 3 | Seq-Well of ~160,000 cells from a multi-route NHP BCG vaccination study. (A) UMAPs 
of cells recovered from Week 13 (top) and Week 25 (bottom). (B) Proportion of cell types (colored as 
in A) recovered from BALs by route and by animal at Week 13 (top) and Week 25 (bottom). 
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degree of similarity to the module that correlated with vaccine efficacy at week 13. Further, 

while the IV vaccine response-signature at week 13 was largely driven by a single animal 

(i.e., a precocious responder; though up in each), we observed that both of these modules 

(as well as the projected week 13 module) were upregulated across all IV vaccinated 

animals at week 25. Based on these data, we believe that the onset of some vaccine-

associated gene expression signatures may vary across animals, but once induced, may 

persist – at least over the timescales studied. 

To further examine the molecular features of the cells expressing this effector memory 

module, we performed dimensionality reduction and clustering across T cells (Figure 4A 
and B). We then examined the distribution of gene expression module scores across 

identified cell-type clusters at weeks 13 and 25 to uncover those enriched for each 

module. We observed that the cells that most highly expressed the effector memory 

 

 
Figure 4 | A non-canonical Th1/Th17 hybrid T cell is enriched in IV-BCG NHPs.   (A) t-SNE plot of 
week 13 stimulated T cells colored by vaccine route. (B) t-SNE plot of week 13 stimulated T cells colored 
by phenotypic cluster. (C) Gene-gene correlation matrix demonstrating correlated gene modules 
(effector memory module boxed). (D) Distribution of module score by vaccine route. (E) Distribution of 
signature score by vaccine route and timepoint. (F) Heatmap showing identifying features of cells 
expressing gene module associated with IV vaccine response (boxed).  
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module were CD4+ T cells further enriched for expression of TBX21 and RORC (Figure 
4F). Importantly, these findings are consistent with a recent report that demonstrated that 

the frequency of poly-functional Th1/Th17 cells is a predictor of mucosal protection 

following aerosol BCG vaccination in rhesus macaques.21 

 

Having demonstrated that IV-BCG immunization in NHPs as a strategy to generate lung-

resident T cells, as well as systemic immunity to serve as a T cell reservoir, we are 

currently investigating how the dosage of IV-BCG alters the previously identified 

correlates of protection. Again, we are leveraging Seq-Well to transcriptionally profile 

bronchoalveolar lavages (BALs) performed on immunized NHPs and define gene 

signatures of a protective immune response to Mtb infection post IV BCG vaccination. In 

doing so, we hope to understand how the correlates of protection change with BCG 

dosage and how this impacts protection against pulmonary TB infection. 

 

5.6 Conclusion 

The development and application of scRNA-Seq technologies has transformed our 

understanding of biological systems and how diseases perturb them. As we enter the era 

of precision medicine, it is imperative that we approach benchtop science with a bedside 

mindset. In doing so, it will influence how scRNA-Seq technology is developed and 

implemented to study biological systems, allowing scientists to better contextualize and 

translate findings for clinical care. If achieved, the field of scRNA-Seq has the potential to 

transform clinical care, enabling the rapid generation of patient profiles that can be cross-

referenced with a comprehensive database, providing customized, tailored medical 

treatments. However, in order for successful implementation of scRNA-Seq in clinical 

settings to be achieved, experimental and computational pipelines need to be 

standardized to ensure robust and reproducible results. It is through efforts like the 

Human Cell Atlas that single-cell technologies will become critical tools for precision 

medicine pipelines. Ultimately, it will be the field’s ability to contextualize benchtop 

findings in bedside applications that will enable it to move beyond its current limitations 

and transform how we treat disease. 
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Appendix A - Supplemental Information for Chapter 2: 
Dissecting the Multicellular Ecosystem of Metastatic  

Melanoma by Single-Cell RNA-Seq 
 

This chapter is adapted in accordance with AAAS’s open access policy from the 

following article published in Science: 

 

Itay Tirosh*, Benjamin Izar*, Sanjay M. Prakadan, Marc H. Wadsworth II, Daniel Treacy, 

John J. Trombetta, Diana Lu, Asaf Rotem, Christine Lian, George Murphy, Ofir Cohen, 

Eli van Allen, Monica Bertagnolli, Alex Genshaft, Travis K. Hughes, Carly G. K. Ziegler, 

Samuel W. Kazer, Aleth Gaillard, Kellie E. Kolb, Judit Valbuena, Charles Yoon, Orit 

Rozenblatt-Rosen, Alex K. Shalek, Aviv Regev and Levi Garraway, “Dissecting the 

multicellular ecosystem of metastatic melanoma by single-cell RNA-seq,” Science, 352, 

(2016). 

 

* Denotes equal authorship 
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Figure S1 | Classification of cells to malignant and non-malignant based on inferred 
CNV patterns.  
(A) Same as shown in Figure 1B for another melanoma tumor (Mel78). (B) Each plot 

compares two CNV parameters for all cells in a given tumor: (1) CNV score (X-axis) 

reflects the overall CNV signal, defined as the mean square of the CNV estimates across 

all genomic locations; (2) CNV correlation (Y-axis) is the Pearson correlation coefficient 

between each cell’s CNV pattern and the average CNV pattern of the top 5% of cells from 

the same tumor with respect to CNV signal (i.e., the most confidently-assigned malignant 

cells). These two values were used to classify cells as malignant (red; CNV score > 0.04; 

correlation score > 0.4; grey lines mark thresholds on plot), non-malignant (blue; CNV 

score < 0.04; correlation score < 0.4), or unresolved intermediates (black, all remaining 

cells). In four tumors (Mel58, 67, 72 and 74), we sequenced primarily the immune 

infiltrates (CD45+ cells) and there were only zero or one malignant cells by this definition; 

in those cases, CNV correlation is not indicative of malignant cells (since the top 5% cells 

by CNV signal are primarily non-malignant) and therefore all cells except for one in Mel58 

were defined as non- malignant. Note that while these thresholds are somewhat arbitrary, 

this classification was highly consistent with the clustering patterns of these cells (as 

shown in Chapter 2, Figure 1C) into clusters of malignant and non-malignant cells. 
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Figure S2 | Identification of non-malignant cell types by tSNE clusters that 
preferentially express cell type markers. (A–H) Each plot shows the average 

expression of a set of known marker genes for a particular cell type (as indicated at the 

top) overlaid on the tSNE plot of non-malignant cells, as shown in Chapter 2, Figure 1C. 

Gray indicates cells with no or minimal expression of the marker genes (E, average 

log2(TPM+1), below 4), dark red indicates intermediate expression (4 < E < 6), and light 

red indicates cells with high expression (E > 6). (I) DBscan clusters derived from tSNE 

coordinates, with parameters eps = 6 and min-points = 10. Eleven clusters are indicated 

by numbers and colors. (J-K) Combined tSNE plot of all cells profiled in this work. Colors 

indicate the tumor-of-origin in (J) and the expression of cell type-specific marker genes 

(E > 5) in (K).  
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Figure S3 | Limited influence of tumor site on RNA-seq patterns. (A–B) Heat maps 

show correlations of global expression profiles between tumors, which were ordered by 

metastatic site. Expression levels were first averaged over melanoma (A) or T cells (B) 
in each tumor and then centered across the different tumors before calculating Pearson 

correlation coefficients. Differential expression analysis conducted between the two 

groups of tumors found zero differentially expressed genes with FDR of 0.05 based on a 

shuffling test for both T cells and melanoma cells.  
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Figure S4 | Identification and characterization of cycling malignant cells. (A) Heat 

map showing relative expression of G1/S (top) and G2/M (bottom) genes (rows, as 

defined from integration of multiple datasets; Methods) across cycling cells (left panel, 
columns, ordered by the ratio of expression of G1/S genes to G2/M genes) and across 

all cells (right panel, columns, cycling cells ordered as in left panel followed by non- 

cycling cells at random order). Cycling cells were defined as those with significantly high 

expression of G1/S and/or G2/M genes (FDR<0.05 by t-test, and fold-change > 4 

compared to all malignant cells). (B) The frequency of inferred cycling cells (Y axis) in 

seven tumors (X axis) with > 50 malignant cells/tumors, denoting low (≤ 3%) or high 

(>20%) proliferation tumors. (C, upper panel) Significant correlation (P < 0.038) between 

inferred proportion of cycling cells by single-cell transcriptome analysis (horizontal axis) 

and Ki67+ immunohistochemistry (IHC) (lower panel) of corresponding tumor slides 

(vertical axis). (D) Comparison of cycling cell expression programs between low- and 

high-proliferation tumors. Scatter plots compared the expression log-ratio between 

cycling and non-cycling cells in high-proliferation (y-axis) and low-proliferation (x-axis) 

tumors. Genes significantly upregulated (P < 0.01, fold-change > 2) in cycling cells in both 

types of tumor are marked in red. CCND3 (arrow) is significantly upregulated in cycling 

cells in high-proliferation tumors and downregulated in cycling cells in low-proliferation 

tumors. (E) Dual KDM5B (JARID1B)/Ki67 immunofluorescence staining of tissue slide of 

Mel80 (40x magnification). Consistent with findings presented for Mel78 and Mel79 in 

Figure 2C, KDM5B-expressing cells (green nuclear staining) occurred in small clusters of 

two or more cells and do not express Ki67 (red nuclear staining), indicating that these 

cells are not undergoing cell division.  
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Figure S5 | Immunohistochemistry of melanoma 79 shows gross differences 
between tumor parts and increased NF-κB levels in Region 1. (A) Tumor dissection 

into five regions. Left: melanoma tumor prior to dissection. Macroscopically distinct 

regions are highlighted by colored ovals. Right: The tumor was dissected into five pieces, 

which were further processed as individual samples. Regions 1, 3, 4 and 5 were included 

in the single-cell RNA-seq analysis, Cells from Region 2 were lost during library 

construction. (B) Corresponding histopathological cross-section of the tumor 

demonstrates distinct features of Region 1 compared to the other regions. Consistent with 

enrichment of cells in Region 1 expressing multiple markers that are highlighted in Fig. 

2D, immunohistochemistry staining revealed increased staining of NF-κB and JunB in 

Region 1 (right lower panel, 40x magnification), compared to region Region 3 (right 
upper panel, 40x magnification).  
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Figure S6 | Spatial heterogeneity in Mel79. (A-B) As shown in Chapter 2, Figure 2D for 

malignant cells, we examined the expression differences between regions of Mel79 for 

other cell types. The only cell type for which we had >10 cells in each of the regions was 

CD8+ T cells. We thus focused on the differences among CD8+ T cells and found 62 

genes that were preferentially expressed in region 1 (fold-change>2, FDR<0.05) and that 

partially overlapped the region 1-specific genes among the malignant cells (see Table 

S6). (A) Region 1-specific expression program of CD8+ T-cells (as shown in Figure 2D 

for malignant cells). Bottom: heat map shows the relative expression of the 62 genes 

preferentially expressed in region 1, in all CD8+ T-cells from Mel79, ranked by their 

average expression of these genes. A subset of genes of interest are noted at the right. 

Top: assignment of cells to the four regions of Mel79. (B) Comparison of region 1 

preferential expression between malignant cells (X-axis) and CD8+ T-cells (Y-axis). For 

each cell type, the scatterplot shows the log2-ratio between the average expression of all 

cells in region 1 and those in all other regions. (C) The top region1-specific genes from 

analysis of malignant cells (25 genes with 3-fold upregulation in region 1 compared to all 

other regions of Mel79) are co-expressed across melanoma TCGA bulk tumors. Shown 

are the distribution of Pearson correlation coefficients among the expression profiles of 

the top region1-specific genes (black), which is significantly higher (P<0.001 by 

permutation test) than the distribution of correlations among all genes (gray).  
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Figure S7 | Intra-tumor heterogeneity in AXL and MITF programs. AXL-program (Y-

axis) and MITF-program (X-axis) scores for malignant cells in each of the three tumors 

with a sufficient number of malignant cells (n>50) that were not included in Figure 3B. 

Cells are colored from black to red by the relative AXL and MITF scores. The Pearson 

correlation coefficient is denoted on top.  
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Figure S8 | AXL/MITF immunofluorescence staining of tissue slides of Mel80, Mel81 

and Mel79 (40x magnification) revealed presence of AXL-expressing and MITF-
expressing cells in each sample. Consistent with single-cell RNA-seq inferred 

frequencies of each population, Mel80 contained rare AXL-expressing cells (red, cell 

membrane staining) and mostly malignant MITF-positive cells (green, nuclear staining), 

while malignant cells of Mel81 almost exclusively consisted of AXL-expressing cells. 

Mel79 had a mixed population with rare cells positive for both markers, all in agreement 

with the inferred single-cell transcriptome data.  
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Figure S9 | AXL upregulation in a second cohort of post-treatment melanoma 
samples and mutual exclusivity with MET upregulation. Each point reflects a 

comparison between a matched pair of pre-treatment and post-relapse samples from 

Hugo et al., where the X-axis shows expression changes in MET, and the Y-axis shows 

expression changes in the AXL program minus those of the MITF program. Note that 

some patients are represented more than once based on multiple post-relapse samples. 

Fourteen out of 41 samples (34%) shown in red had significant upregulation of the AXL 

vs. MITF program, as determined by a modified t-test as described in Methods; these 

correspond to at least one sample from half (9/18) of the patients included in the analysis. 

Eleven out of 41 samples (27%) shown in blue had at least 3-fold upregulation of MET; 

these correspond to at least one sample from a third (6/18) of the patients included in the 

analysis. Notably, the AXL and MET upregulated samples are mutually exclusive, 

consistent with the possibility that these are alternative resistance mechanism.  
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Figure S10 | Flow-cytometry of melanoma cell lines before and after treatment with 
RAF/MEK- inhibition. (A) Sensitive cell lines show an increased proportion of AXL-

positive cells while resistant cell lines (B) show modest or no changes following treatment 

with RAF/MEK-inhibitors.  
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Figure S11 | Summary of multiplexed single-cell immunofluorescence in seven 
CCLE cell lines before and after treatment with BRAF/MEK-inhibition. (A) Relative 

fraction (compared to DMSO- treatment) of AXL-high cells (y-axis) treated for 5 or 10 

days with increasing doses (as indicated on x-axis) of BRAF-inhibition alone (with 

vemurafenib) or in combination with a MEK-inhibitor (trametinib) with a 10:1 ratio 

(vemurafenib:trametinib). In all cell lines with a baseline low-fraction of AXL- expressing 

cells (WM88, MELHO, COLO679 and SKMEL28), there was a significant dose-dependent 

increase in the AXL-high cell fraction with BRAF-inhibition alone (black bars), and more 

pronounced with combined BRAF/MEK-inhibition (yellow bars). Cell lines with a baseline 

high AXL-expressing cell fraction (A2058, IGR39 and 294T) showed either minimal 

changes in the AXL-high cell fraction, however, A2058 demonstrated a significant 

decreased in the AXL-positive fraction. Although an outlier in this experiment, this 

indicates that alternative mechanisms of resistance with low AXL expression (Hugo et al.; 

Figure S9). (B) The increase in AXL-high cell fractions in the sensitive cell lines was 

correlated with a significant decrease of p-ERK indicating strong MAP-kinase pathway 

inhibition, and (C) a decrease in cell viability. Overall, these results indicate, that the 

increase in the AXL-high cell fraction was at least in part due to a selection process. Both 

effects were more pronounced when cells were treated with combined BRAF/MEK-

inhibition compared BRAF-inhibition alone.  
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Figure S12 | Exemplary images of multiplexed single-cell immunofluorescence 
quantitative analysis for (A) an AXL-low (WM88) and (B) AXL-high cell line (A2058). 
Treatment with a combination of vemurafenib (V) and trametinib (T) at indicated doses 

on the left resulted in a dose-dependent change in the AXL-high population. In WM88, 

increasing drug concentrations led to killing of MITF-expressing, resulting in the 

emergence of a pre-existing AXL-high subpopulation. This indicates that the shift towards 

a higher AXL-expressing population (and possibly the AXL-high signature) is at least in 

part due to a selection process. While cell lines with a high baseline fraction of AXL-

expressing cells showed modest to no changes in the AXL-fraction (Figure S10B), A2058 

was an exception. This cell lines has a major AXL-expressing population at baseline, 

which decreases with treatment, while the MITF-expressing population emerges. This 

indicates the presence of alternative mechanisms of resistance to RAF/MEK-inhibition, 

consistent with a recent report by Hugo et al. and our analysis shown in Figure S9.  
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Figure S13 | Identification of cell-type specific genes in melanoma tumors. Shown 

are the cell- type specific genes (rows) as chosen from single cell profiles, sorted by their 

associated cells cell type, and their expression levels (log2(TPM/10+1)) across non-

malignant and malignant tumor cells, also sorted by type (columns).  
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Figure S14 | Association between a malignant AXL program and CAFs. (A) Average 

expression (log2(TPM+1)) of the AXL program (Y-axis) as defined here (bottom) and by 

Hoek et al. (top, ref. 30) in CAFs and melanoma cells from our tumors (this work, black 

bars) and in foreskin melanocytes and primary fibroblasts from the Roadmap Epigenome 

project (grey bars). Melanoma cells were partitioned to those from AXL-high and MITF-

high tumors as marked in Chapter 2, Figure 3A. (B) CAF expression correlates with higher 

AXL program than MITF program expression in melanoma malignant cells. Scatter plot 

shows for each gene (dot) from the MITF (blue) or AXL (red) programs (as defined based 

on single- cell transcriptomes) the correlation of its expression with inferred CAF 

frequency across bulk tumors (Y-axis, from TCGA transcriptomes), and how specific its 

expression is to CAFs vs. melanoma malignant cells (X-axis, based on single-cell 

transcriptomes). Black dots indicate the expected correlations at each value of the 

horizontal axis as defined by a LOWESS regression over all genes. The average 

correlation values of MITF program genes are significantly lower than those of all genes 

and the correlation values of AXL program genes are significantly higher than those of all 

genes, even after restricting the analysis to melanoma-specific genes (X-axis < -2, P < 

0.01, t-test). A subset of AXL-program genes are specifically expressed in melanoma 

cells (but not CAFs) based on the single cell expression profiles, but associated with CAF 

abundance in bulk tumors (marked by red squares and gene names). MITF is negatively 

correlated with CAF abundance (R=-0.42) and is also indicated by gene name.  
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Figure S15 | Identification of putative genes underlying cell-to-cell interactions 
from analysis of single cell profiles and TCGA samples. We searched for genes that 

underlie potential cell-to-cell interactions, defined as those that are primarily expressed 

by cell type M (as defined by the single cell data) but correlate with the inferred relative 

frequency of cell type N (as defined from correlations across TCGA samples). For each 

pair of cell types (M and N), we restricted the analysis to genes that are at least four-fold 

higher in cell type M than in cell type N and in any of the other four cell types. We then 

calculated the Pearson correlation coefficient (R) between the expression of each of these 

genes in TCGA samples and the relative frequency of cell type N in those samples, and 

converted these into Z-scores. The set of genes with Z > 3 and a correlation above 0.5 

was defined as potential candidates that mediate an interaction between cell type M and 

cell type N. (A) Of all the pairwise comparisons we identified interactions only between 

immune cells (B, T, macrophages) and non-immune cells (CAFs, endothelial cells, 

malignant melanoma) cells, such that the expression of genes from non- immune cells 

correlated with the relative frequency of immune cell types. Each plot shows a single 

pairwise comparison (M vs. N), including interactions of non-immune cell types 

(endothelial cells: left; CAFs: middle; malignant melanoma: right) with each of T-cells (A), 
B-cells (B) and macrophages (C). Each plot compares for each gene (dot) the relative 

expression of genes in the two cell types being compared (M–N) and the correlations of 

these genes’ expression with the inferred frequency of cell type N across bulk TCGA 

tumors. Dashed lines denote the four-fold threshold. Genes that may underlie potential 

interactions, as defined above, are highlighted.  
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Figure S16 | Immune modulators expressed by CAFs and macrophages. (A) 
Pearson correlation coefficient (color bar) across TCGA melanoma tumors between the 

expression level of each of the immune modulators shown in Fig. 4B and additional 

complement factors with significant expression levels. (B) Correlations across TCGA 

melanoma tumors between the expression level of the genes shown in (A) and the 

average expression levels of T cell marker genes. (C) Average expression level 

(log2(TPM+1), color bar) of the genes shown in (A) in the single cell data, for cells 

classified into each of the major cell types we identified. These results show that most 

complement factors are correlated with one another and with the abundance of T cells, 

even though some are primarily expressed by CAFs (including C3) and others by 

macrophages. In contrast, two complement factors (CFI, C5) and the complement 

regulatory genes (CD46 and CD55) show a different expression pattern.  
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Figure S17. Unique expression profiles of in vivo CAFs. (A-B) Distinct expression 

profiles in in vivo and in vitro CAFs. Shown are Pearson correlation coefficient between 

individual CAFs isolated in vivo from seven melanoma tumors, and CAFs cultured from 

one tumor (melanoma 80). Hierarchical clustering shows two clusters, one consisting of 

all in vivo CAFs, regardless of their tumor-of-origin (marked in (A)), and another of the in 

vitro CAFs. (C) Unique markers of in vivo CAFs include putative cell-cell interaction 

candidates. Left: Heatmap shows the expression level (log2(TPM+1)) of CAF markers 

(bottom) and the top 14 genes with higher expression in in-vivo compared to in-vitro CAFs 

(t-test). Right: average (bulk) expression of the genes in the in-vivo CAFs, in-vitro CAFs, 

and primary foreskin fibroblasts from the Roadmap Epigenome project. Potential 

interacting genes from Chatper 2, Figure 4B are highlighted in bold red.  
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Figure S18 | TMA analysis of complement factor 3 association with CD8+ T-cell 
infiltration, and control staining. Two TMAs (CC38-01 and ME208, shown in A, C, E 

and B, D, F, respectively) were used to evaluate the association between complement 

factor 3 (C3) and CD8 across a large number of tissues obtained by core biopsies of 

normal skin, primary tumors, metastatic lesions and NATs (normal skin with adjacent 

tumor). In both TMAs with a total of 308 core biopsies, we observed high correlation 

between C3 and CD8 (R > 0.8, shown in Chapter 2, Figure 4C for one TMA). To verify 

that this correlation is not due to technical effects in which some tissues stain more than 

others irrespective of the stains examined (e.g., due to variability in cellularity or tissue 

quality), we normalized the values (%area, Methods) for both C3 and CD8 by those of 

DAPI staining. Indeed, we found a non-random yet non-linear association between DAPI 

stains and either C3 (A, B), or CD8 (C, D), which were removed by subtracting a 

LOWESS regression, shown as red curves in panels A-D. The normalized C3 and CD8 

values were not correlated with DAPI levels, yet maintained a high correlation with one 

another (E, F). R = 0.86 and 0.74 for primary and normal skin in panel E (TMA CC38-01), 

and R = 0.78, 0.86, 0.63 and 0.31 for primary melanomas, metastasis, NATs and normal 

skin in panel F (TMA ME208), respectively.  
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Figure S19 | Cytotoxic and naïve expression programs in T cells. (A) Cell scores 

from a combined PCA of all T cells. Cells are colored as CD8+ (red), CD4+ (green), T-

regs (blue) and unresolved (black) based on expression of marker genes (Chapter 2, 

Figure 5A). (B) Gene scores for PC1 from a PCA of CD8+ cells (x-axis) and PC2 from a 

PCA of CD4+ cells (Y-axis). Selected marker genes are highlighted, including genes 

known to be associated with cytotoxic/active (red), naïve (blue) and exhausted (green) T 

cell states.  
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Figure S20 | Frequency of cycling cells in different subsets of T-cells. Shown is the 

frequency of cycling T cells (as identified based on the expression of G1/S and G2/M 

gene-sets; Methods) for different subsets of T cells, including Tregs, CD4+ cells 

separated into five bins of increasing activation (arrow below green bars), CD8+ cells 

separated into five bins of increasing activation (arrow below red bars), and 

active/cytotoxic CD8+ further partitioned into those with relatively high or low exhaustion, 

as shown in Chapter 2, Figure 5D. Asterisks denote subsets with significant enrichment 

or depletion of cycling cells across all cells from the same subset of CD4+ or CD8+ cells 

as defined by P < 0.05 in a hypergeometric test. Cell cycle frequency is associated with 

activation state of CD8+ T-cells, as the first bin is significantly depleted and the fifth bin is 

significantly enriched. A similar trend is observed in CD4+ T-cells (no cycling cells in the 

first bin and highest frequency in fifth bin), although none of the CD4 bins was significantly 

depleted or enriched. Exhaustion was not associated with significant differences in cell 

cycle frequency (P = 0.34, Chi-square test).  
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Figure S21 | Exhaustion program in Mel75. PCA of 314 CD8 T-cells from Mel75 

identified an exhaustion program in which the top scoring genes for PC1 included the five 

co-inhibitory receptors shown in Chapter 2, Figure 5B as well as additional exhaustion-

associated genes (e.g., BTLA, CBLB). We defined PC1-associated genes based on a 

correlation p–value of 0.01 (with Bonferroni correction for multiple testing, see Table S13). 

Cells were then ranked by the residual between average expression of these PC1-

associated genes (referred to as the exhaustion program) and average expression of the 

cytotoxic genes shown in Chapter 2, Figure 5B (referred to as the cytotoxic program) 

using a LOWESS regression, as shown in Chapter 2, Figure 5D. Finally, for each gene, 

we ranked its expression levels across the CD8 T-cells from Mel75 and converted these 

to rank scores between 0 and 1 such that the i highest-expressing cell received a rank 

score of i/314, where 314 represents the number of CD8 T cells from Mel75. (A) 
Exhaustion and cytotoxic program scores for ranked Mel75 CD8 T-cells, after applying a 

moving average with windows of 31 genes. (B) The heatmap shows expression ranks of 

PC1-associated genes across the CD8 T- cells from Mel75 cells, ranked as described 

above. 
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Figure S22 | Tumor-specific exhaustion programs. (A) Heatmap shows the 

significance (–log10(P-value)) of tumor-specific variation in exhaustion gene scores (log-

ratio in high vs. low exhaustion cells) comparing each tumor to all other tumors combined, 

for the same genes (and the same order) as shown in Figure 5F. The sign of significance 

values reflects the direction of change (positive values shown in red reflect higher 

exhaustion values compared to other tumors while negative values shown in green reflect 

lower exhaustion values compared to other tumors). Three values are shown for each 

tumor, corresponding to exhaustion scores based on the exhaustion gene-sets derived 

from Mel75 analysis (Figure S22), from Wherry et al., and from Baitsch et al. respectively. 

(B) Tumor-specific associations with the exhaustion program, detected by co- expression 

across single cells, are not detected by the overall (bulk) tumor-specific expression in 

CD8 T-cells. Genes with significant tumor-specific up- or down-regulation in high-

exhaustion cells (FDR < 0.05 in each tumor, based on median of the three exhaustion 

scores), were divided to three classes (bars) based on the differences in their overall 

expression level in CD8 T-cells among the different tumors (green: genes lower in the 

respective tumor by at least two fold. Red: genes higher in the respective tumor by at 

least two-fold. Black: genes with less than two-fold difference). This demonstrates that 

most differences across tumors in exhaustion co-expression are in genes whose overall 

expression is similar in the different tumors and thus their distinct association with co-

expression could not have been identified in bulk level analysis of the CD8 T-cells. (C–D) 
Bar plots showing the significance of tumor-specific variation, as in (A), for CTLA4 (C) 

and NFATC1 (D). Dashed lines indicate significance thresholds that correspond to P < 

0.05. (E) Heatmap (as in Chapter 2, subfigure A) for the target genes of NFATC1.  
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Figure S23 | Detection of Mel74 expanded T-cell clones by TCR sequence. (A) 
Clustering of Mel75 cells by their TCR segment usage. TCR Similarity was defined as 

zero for any pair with at least one inconsistent allele (i.e., resolved in both cells but distinct 

among the two cells), and as –log10(P) for any pair without inconsistent alleles, where P 

reflects the estimated probability of randomly observing this or a higher degree of 

segment usage similarity. P is equal to the product of the probabilities for the four TCR 

segments, P(i,j)=Pβv(i,j)*Pβj(i,j)*Pαv(i,j)*Pαj(i,j). For each segment, the probability equals 

one if segment usage is unresolved in at least one of the cells of the pair, and otherwise 

(i.e., if the two cells have the same allele) the probability is 1/N, where N is the number of 

distinct alleles that were identified for that segment. The TCR usage of one exemplary 

cluster is indicated. (B) Mel75 cells were ordered by the average relative expression of 

Exhaustion and Cytotoxic genes, as shown in Chapter 2, Figure 5B, and the percentage 

of clonally expanded cells (i.e., belonging to the clusters indicated in A) is shown with a 

moving average of 20 cells, demonstrating the depletion of expanded T cells among cells 

with high cytotoxic and low exhaustion expression. Dashed line indicates the overall 

frequency of clonally expanded cells. Note that the top and bottom panels are aligned but 

that due to the use of a 20-cell moving average, the top panel can only start at the 11th 

cell and end at the 11th cell from the end.  
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Figure S24 | Identification of distinct co-expression programs may require single 
cell analysis. Schematic depicting how single-cell RNA-seq can distinguish two 

scenarios that are indistinguishable by bulk profiling. Across individual tumor cells (top), 

genes A and B are either positively (left) or negatively (right) correlated. In bulk tumor 

(middle), the average expression of A,B cannot distinguish the two scenarios, whereas 

co-expression estimates from single cell RNA-seq (bottom) do so.  
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Table S2. Number of cells classified to each cell type in each tumor. 
 
Table S3. Cell type specific genes. 
 
Table S4. PCA. The top 50 correlated genes and the top MsigDB enrichments of 
those genes for the first six PCs. 
 
Table S5. Core signature of cell cycle genes expressed in cycling malignant cells 
from both low-cycling and high-cycling tumors. 
 
Table S6. Differentially regulated genes in Region 1. 
 
Table S7. List of genes included in the MITF-program. 
 
Table S8. List of genes included in the AXL-program. 
 
Table S9. Expression data for pre-treatment and post-relapse samples. 
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Table S12. List of genes preferentially expressed in Tregs. 
 
Table S13. Genes associated with Mel75 exhaustion signature. 
 
Table S14. Association of genes with exhaustion signature across five tumors. 
 
Table S15. CAF-derived genes that correlate with abundance of T-cells. 
 
Table S16. Curated list of housekeeping genes used for QC. 
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Appendix B - Supplemental Information for Chapter 3: 
Seq-Well: portable, low-cost RNA sequencing of 

single cells at high throughput 
 

This chapter is adapted in accordance with Nature’s open access policy from the 

following article published in Nature Methods: 

 

Gierahn, T.M.*, Wadsworth II, M.H.*, Hughes, T.K., Bryson, B.D., Butler, A., Satija, R., 

Fortune, S., Love, J.C., and Shalek, A.K. “Seq-Well: portable, low-cost RNA sequencing 

of single cells at high throughput,” Nature Methods, 14, 395-398 (2017). 

 

* Denotes equal authorship 
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Supplementary Figure 1 | Open Array Gene and Transcript Capture. (a) An open 

array format results in decreased gene and transcript capture, and increased cross-

contamination, relative to the membrane sealing implemented inSeq-Well. (b) Species 

mixing experiments with reversible membrane sealing using Seq-Well provides increased 

gene/transcript capture and improved single-cell resolution. 
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Supplementary Figure 2 | Seq-Well Experimental Workflow. Cells are obtained from 

complex tissues or clinical biopsies and digested to form a single-cell suspension. 

Barcoded mRNA capture beads are added to the surface of the microwell device, settling 

into wells by gravity, and then a single-cell suspension is applied. The device is sealed 

using a semi-permeable membrane that, upon addition of a chemical lysis buffer, confines 

cellular mRNAs within wells while allowing efficient buffer exchange. Liberated cellular 

transcripts hybridize to the bead-bound barcoded poly(dT) primers that contain a cell 

barcode (shared by all probes on the same bead but different between beads) and a 

unique molecular identifier (UMI) for each transcript molecule. After hybridization, the 

beads are removed from the array and bulk reverse transcription is performed to generate 

single-cell cDNAs attached to beads. Libraries are then made by a combination of PCR 

and tagmentation, and sequenced. After, single-cell transcriptomes are assembled in 

silico using cell barcodes and UMIs. 
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Supplementary Figure 3 | Bead and Cell Loading Efficiency. (a) Two arrays were 

loaded with barcoded beads through intermittent rocking. After washing, arrays were 

imaged in transmitted light and AF488 channel to capture bead autofluorescence. A plot 

of the frequency of the 75th percentile AF488 well intensity across the array (Panel 1) and 

the frequency of wells containing zero, one and multiple beads is displayed (Panel 2). (b) 
200 L of a 1:1 mix of fluorescently labeled human (HEK 293) and mouse (3T3) cell 

solution was loaded into 3 arrays and 12 wells of a 96 well plate. The number of cells 

loaded into each array and well as enumerated by fluorescent imaging is plotted, 

normalized to the average number of cells/well in the 96 well plate. Mean and standard 

error are denoted by line and error bars respectively. (c) 2x102, 2x103, and 2x104 total 

cells of a 1:1 mixture of fluorescently labeled HEK 293T and 3T3 cells were loaded onto 

three functionalized arrays each. All arrays were fluorescently imaged to enumerate the 

number of each cell line in each array microwell. The mean ± standard deviation of the 

number of empty, single and multiple occupancy wells across the three replicate arrays 

for each loading density is displayed along with the mean ± standard deviation of the 

percentage of occupied wells containing a cell from each species. 
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Supplementary Figure 4 | PDMS Surface Chemistry Functionalization Protocol and 
Differential Functionalization of Microwell Arrays. (a) The surface of the PDMS device 

is initially treated with an air plasma under mild vacuum, terminating the surface in 

hydroxyls. This PDMS surface is aminated using (3-Aminopropyl)triethoxysilane 

(APTES). The amine surface is then activated with PDITC to create an isothiocyanate 

surface. The isothiocyanate on the top surface of the array (negative space) is covalently 

linked to chitosan polymers through their amine group. The hydrophobicity of the 

isothiocyanate surface prevents solvation of the microwells with the aqueous chitosan 

solution, preventing chitosan from reacting with the inner well surfaces (positive space). 

These surfaces are subsequently reacted with the free amine of poly(glutamic) acid 

polymers under vacuum to drive the solvation of the wells. (b) The top surface of a PDITC-

activated array was coated with streptavidin-PE (red) and the inner well surfaces were 

coated with streptavidin-AF488 (green) using same method used to functionalize with 

chitosan and poly(glutamate). (c) Two chitosan/poly(glutamate) bifunctionalized arrays 

were submerged in MES buffer without (Panel 1) or with (Panel 2) 100 μg/mL EDC and 

10 μg/mL NHS for 10 minutes. The arrays were washed and then submerged in PBS 

solution containing 1 μg/mL AF568-labeled antibody overnight. After washing, arrays 

were imaged for AF568 fluorescence. 
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Supplementary Figure 5 | Microwell Sealing With Semipermeable Membrane. 
PBMCs labeled with CD45-AF647 were loaded into two BSA-blocked arrays and one 

array functionalized with chitosan and poly(glutamate). A semipermeable membrane was 

attached to one of the BSA-blocked arrays and the chitosan:polyglutamate functionalized 

array prior to addition of lysis buffer. (a) Example images of transmitted light and AF647 

fluorescence of the arrays before, and 5 and 30 minutes after addition of lysis buffer are 

displayed for each array. (b) The total fluorescence intensity (FI) of all pixels associated 

with cells within a well is plotted against the median fluorescent intensity (MFI) of the 

volume of the same well 5 minutes after lysis for 12,100 wells from each array. (c) The 

MFI of the well volume 5 minutes after lysis is plotted against the MFI of the volume of 

the same well 30 minutes after lysis for the same 12,100 wells from each array. 
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Supplementary Figure 6 | Read Mapping Quality. Read mapping quality matrices were 

generated for each sample for human (blue) and mouse (red) cells, aligned to hg19 and 

mm10, respectively. High quality samples had relatively higher percentages of annotated 

genomic (genic) and exonic transcripts and low percentages of annotated intergenic and 

ribosomal transcripts (Center-line: Median; Limits: 1st and 3rd Quartile; Whiskers: +/-1.5 

IQR; Points: Values > 1.5 IQR). 
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Supplementary Figure 7 | Comparison of Gene and Transcript Capture and Percent 
Contamination Among Massively-Parallel scRNA-Seq Methods Using Mouse and 
Human Cell Lines. Histograms of the percent cross-species contamination in (a) Seq-

Well, (b) Drop-Seq, and (c) Yuan and Sims. In each plot, cells with greater than 90% of 

human transcripts are displayed in blue and cells with less than 10% human transcripts 

are displayed in red. (d) Transcript capture in human (blue) and mouse (red) cell lines 

across three massively-parallel, bead-based single-cell sequencing platforms (Seq-Well, 

Drop-Seq, and 10x Genomics, with downsampling to an average read-depth of 80,000 

reads per cell, consistent with 10x genomics data (Center-line: Median; Limits: 1st and 3rd 

Quartile; Whiskers: +/-1.5 IQR; Points: Values > 1.5 IQR). We detect an average of 

32,841 human transcripts and 29,806 mouse transcripts using Seq-Well compared to an 

average of 39,400 human transcripts and 24,384 mouse transcripts using Drop-Seq, an 

average of 24,751 human transcripts and 22,971 mouse transcripts using 10X Genomics 

(available from http://support.10xgenomics.com/single-cell/datasets/hgmm). (e) Gene 

detection across human and mouse cell lines across the same three single-cell 

sequencing platforms with down-sampling to the average read-depth of 80,000 reads per 

cell, consistent with 10x genomics (Center-line: Median; Limits: 1st  and 3rd Quartile; 

Whiskers: +/-1.5 IQR; Points: Values > 1.5 IQR). We detect an average of 6,174 human 

genes and 5,528 mouse genes using Seq-Well, an average of 5,561 human genes and 

4,903 mouse genes using Drop-Seq and an average of 4,655 human genes and 3,950 

mouse genes using 10X Genomics. (f) Downsampling to an average of 42,000 reads per 

cell consistent with data published in Yuan and Sims 2016, results in average detection 

of 23,061 mouse transcripts using Seq-Well compared to an average of 24,761 mouse 

transcripts using the Yuan and Sims platform (Center-line: Median; Limits: 1st and 3rd 

Quartile; Whiskers: +/-1.5 IQR; Points: Values > 1.5 IQR). (g) Downsampling to an 

average of 42,000 reads per cell results in average detection of 4,827 mouse genes using 

Seq-Well compared to an average of 4,569 mouse genes using the Yuan and Sims 

platform(Center-line: Median; Limits: 1st and 3rd Quartile; Whiskers: +/-1.5 IQR; Points: 

Values > 1.5 IQR). 
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Supplementary Figure 8 | Transcript Cutoff For Species-Mixing Validation. We 

sequenced two arrays (a & b) to confirm single-cell resolution and minimal cross-

contamination between mouse and human cells. We called cells by plotting the 

cumulative distribution of transcripts and making a cutoff at the elbow in the curve. In the 

first experiment (a), which was used to validate our single-cell resolution, we shallowly 

sequenced the array and made the cutoff at 2,000 transcripts. In the second experiment 

(b), where we sequenced the array deeply to allow a competitive comparison to Drop-

Seq, we made our cutoff at 10,000 transcripts. 
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Supplementary Figure 9 | Comparison of In-Silico HEK293 Populations With Bulk 
Populations. Scatterplots showing the correlation between gene expression estimates 

from bulk populations (40,000 HEK cells and 40,000 mRNA capture) and populations 

generated in-silico from 1, 10, 100, and 1,000 randomly-sampled single HEK293 cells (1 

Cell: R = 0.751 ± 0.0726; 10 Cells: R = 0.952 ± 0.008; 100 Cells: R = 0.980 ± 0.0006; 

1000 Cells: R = 0.983 ± 0.0001). 
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Supplementary Figure 10 | Mapping Lineage Defining Transcripts to PBMC 
Clusters. (a) Clusters identified through graph-based clustering (Chapter 3, Methods) 

correspond to major immune cell populations. (b, e) CD4 T cells are characterized by 

expression of CD3D and T-cell receptor expression without pronounced expression of 

cytoxic genes NKG7 and PRF1. (c, f) CD8 T cells are defined by expression of NKG7 

and PRF1. (d, g) Monocytes are defined by expression of cathepsin B (CTSB) and SOD2. 

(e) Natural killer cells are characterized by expression of cytotoxic genes in the absence 

of T cell receptor expression. (h) B cells are marked by elevated expression of MS4A1 

(CD20) transcripts. (i) Dendritic cells are enriched for expression of BIRC3. 
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Supplementary Figure 11 | Heatmap Of PBMCs. (a) Genes enriched in each cluster 

were identified using an “ROC” test in Seurat, comparing cells assigned to each cluster 

to all other cells. A heatmap was constructed using enriched genes found to define each 

cluster. One cluster of 602 cells that demonstrated exclusive enrichment of mitochondrial 

genes was removed as these likely represent low-quality or dying cells. (b) We generated 

a t-SNE projection of 4,296 cells with greater than 10,000 reads, 1,000 transcripts, 500 

genes, and 65% transcript mapping. We removed a total of 602 cells from the final 

analysis found to be strongly enriched for expression of mitochondrial genes. The 

remaining 3,694 cells form distinct clusters enriched for lineage-defining that distinguish 

cells types from one another. 
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Supplementary Figure 12 | Read Mapping Quality in PBMCs. (a-c) Violin plots 

depicting (a) reads, (b) transcripts, and (c) genes per cell, separated by cell type. (d) 
Percent mRNA bases per cell, separated by cell type. 
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Supplementary Figure 13 | Comparison of Human PBMC Gene and Transcript 
Capture with Other Massively-Parallel scRNA-Seq Methods. (a) Comparison of 

transcript capture (top) and gene detection (bottom) between Seq-Well and 

10XGenomics within PBMC cell types prior to downsampling (colored as in Figure 2; 

Center-line: Median; Limits: 1st and 3rd Quartile; Whiskers: +/-1.5 IQR; Points: Values > 

1.5 IQR). Among B cells (orange), an average of 1,315 genes and 3,632 transcripts were 

detected using Seq-Well and an average of 710 genes and 1,910 transcripts were 

detected in 10X Genomics data. Among CD4 T cells (blue), an average of 861 genes and 

2,444 transcripts were detected using Seq-Well and an average of 815 genes and 2,370 

transcripts were detected in 10X Genomics data. Among CD8 T cells (yellow), an average 

of 885 genes and 2,574 transcripts were detected using Seq-Well and an average of 809 

genes and 2,029 transcripts were detected in 10X Genomics data. Among Monocytes 

(green), an average of 1,288 genes and 3,568 transcripts were detected using Seq-Well 

and an average of 974 genes and 2,835 transcripts were detected in 10X Genomics data. 

Among NK cells (red), an average of 902 genes and 2,338 transcripts were detected 

using Seq-Well and an average of 907 genes and 1,943 transcripts were detected in 10X 

Genomics data. (b) Transcript capture (top) and gene detection (bottom) upon 

downsampling of Seq-Well data to an average read depth 69,000 reads per cell (Center- 

(Continues on the next page) 
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line: Median; Limits: 1st and 3rd Quartile; Whiskers: +/-1.5 IQR; Points: Values > 1.5 IQR).  

Upon downsampling, in Seq-Well, an average of 1,048 genes and 3,103 transcripts were 

detected among B cells, 735 genes and 2,221 transcripts among CD4 T cells, 763 genes 

and 2,353 transcripts among CD8 T cells, 1,052 genes and 3,105 transcripts among 

monocytes, and 789 genes and 2,041 transcripts among NK cells. 
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Supplementary Figure 14 | T-SNE Visualization Of Exposed And Unexposed 
Macrophages Using A 5,000 Transcript Cutoff. (a) Using a threshold of 5,000 detected 

transcripts, we identified 4,638 macrophages. (b) Among these 4,638 cells, we identified 

5 distinct clusters of macrophages by performing graph-based clustering over 5 principal 

components (377 variable genes). (c) Clusters 1-3 are defined by unique gene expression 

signatures, while Clusters 4 and 5 are defined by expression of mitochondrial genes, 

suggesting low-quality cells. (d) Following removal of cells within Clusters 4 and 5, there 

remain a total of 2,560 cells in Clusters 1-3. 
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Supplementary Figure 15 | Quality By Cluster Among TB Macrophages. (a-c) Violin 

plots depicting (a) reads, (b) transcripts, and (c) genes per cell, separated by cluster. (d) 
Percent mRNA bases per cell, separated by cluster. 
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Supplementary Table 1 | Oligo Sequences. Sequences of oligos used in Seq-Well. 
(1) The barcoded bead sequence is constructed on the surface of the bead, and cell 

barcodes are generated through split and pool synthesis. (2) The template switching oligo 

(TSO) is used to tag the 5’ end of captured mRNA using a reverse transcriptase enzyme 

with terminal transferase activity. (3) Sequence for PCR primer used to perform whole-

transcriptome amplification (WTA) PCR reaction following reverse transcription and ExoI 

digestion. (4) Sequence that selectively primes the bead-specific SMART sequence 

during the post-tagmentation step-out PCR, which appends a P5 sequencing adapter. (5) 

Primer used during sequencing that selectively primes the bead-specific primer site to 

initiate sequencing of the barcode and UMI in Illumina Read 1. 
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Name Excitation, nm Emission, nm Exposure, ms Intensity, % Gain, abs. 
Transmitted Light - - 50 5 10 

CerCP710 485 725/40 100 100 50 

PECy5.5 560 725/40 100 100 20 

APCCy7 650 775LP 100 100 100 

PECy7 560 775LP 100 100 20 

PECy5 560 680/42 100 100 10 

PerCP650 485 680/42 100 100 30 

AF647 650 680/42 100 100 10 

AF568 560 607/36 100 100 10 

AF488 485 525/39 100 100 10 
 

Supplementary Table 2 | Microscope Settings. The excitation light wavelengths, 

emission filters, exposure times, light source intensity and camera gain settings used 

tocapture the fluorescence of the indicated fluorophore are displayed. 

 

Supplementary Table 3 | Gene Expression Matrix for PBMCs. UMI count matrix for 

the 4,296 PBMCs, labeled by array, that had at least 10,000 reads, 1,000 transcripts, and 

500 genes, with at least 65% bases mapping to the transcriptome. 

 

Supplementary Table 4 | PBMC Cluster Enrichments. Lists of genes enriched within 

each PBMC cluster (B cells, CD4 T Cells, CD8 T cells, Dendritic cells, Monocytes, NK 

Cells) based on a likelihood-ratio test in which members of each cluster are compared to 

members of all other clusters.  

 

Supplementary Table 5 | Gene Expression Matrix for Mtb-Exposed Monocyte-
Derived Macrophages and Unexposed Control Cells. UMI count matrix for the 4,638 

monocyte-derived macrophages, labeled by exposure, that had at least 5,000 mapped 

transcripts. 
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Supplementary Table 6 | TB Cluster Enrichments. We examined sets of enriched sets 

of genes among all cells (irrespective of TB exposure) within Cluster 1, 2 and 3 using the 

find.markers function in Seurat, which implements a ‘roc’ test to identify relative 

expression differences. (a) From this analysis, we identified sets of genes exclusively 

enriched in each cluster but not the others. For each of the identified gene sets, we 

performed gene set enrichment analysis in DAVID and GSEA. For analysis in DAVID, we 

compared each gene list for enrichment among GO terms and curated pathways against 

a background list of 9045 genes contained in the DAVID database that were detected in 

at least 5% of cells. For analysis using GSEA, we compared each gene list to the 

complete database of gene sets contained within GSEA. (b, c) Within Cluster 1, we 

observe unique enrichment of 134 genes related to TNF-alpha signaling, inflammation, 

immune response and LPS response among 1099 cells. (d, e) In Cluster 2, we observe 

exclusive enrichment of 251 genes among 904 cells that distinguish monocytes from 

dendritic cells in culture and characterize TNF-alpha signaling. (f, g) Finally, in Cluster 3, 

we observe unique enrichment of 118 genes among 557 cells related to specifically to 

hypoxia, LPS stimulation, TNF-alpha signaling and apoptosis. 

 

Supplementary Table 7 | Cluster Enrichments between Exposure Groups. Initially, 

we separately identified enriched genes among exposed and unexposed cells within 

Clusters 1, 2 and 3 using the find.markers function in Seurat. In total, we identified 18 

genes with conserved enrichment among TB exposed cells within Clusters 1,2 and 3. For 

each cluster, we identified the set of genes enriched among exposed cells and unexposed 

cells within each cluster. (a) We identified 28 enriched genes that were conserved among 

exposed cells across clusters and 31 conserved genes among unexposed, of which 18 

were conserved between exposed and unexposed. We identified 38 genes uniquely 

enriched among exposed cells in Cluster 1 and 54 genes uniquely enriched among 

unexposed cells, of which 5 were conserved between exposed and unexposed cells 

within Cluster 1. We identified 134 genes unique to Cluster 2 among exposed cells and 

200 genes unique to Cluster 2 among unexposed cells, of which 35 were conserved 

between exposed and unexposed cells within Cluster 2. In Cluster 3, we identified 43 

genes unique to cluster 3 among exposed cells and 44 genes unique to Cluster 3 among 
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unexposed cells, of which 9 were conserved between exposed and unexposed cells 

within Cluster 3. We performed gene set enrichment analyses for single gene list using 

DAVID and GSEA. In DAVID, we specified a background list of 9045 genes and examined 

enrichments within GO terms and curated pathways. For the analysis in GSEA, we made 

comparisons of gene lists to the complete database of gene sets within GSEA. (b, c) 
Among the 18 genes conserved across clusters in both exposed and unexposed cells, 

we observed strong enrichment for LPS response, TNF-alpha signaling, phagosome 

formation and macrophage activation. (d, e) Among the 5 genes unique to Cluster 1 

conserved between exposed and unexposed cells, we observed enrichment of PI3K-Akt 

signaling and immune activation. (f, g) Among the 35 genes unique to Cluster 2 

conserved between exposed and unexposed cells, we observed enrichment of genes 

related to monocyte culture and the coagulation cascade. (h, i) Among the 9 genes unique 

to Cluster 3 conserved between exposed and unexposed, we observed enrichment of 

genes up-regulated by HGF and apoptosis. 

 

Supplementary Table 8 | Differentially Expressed Genes between TB Exposed and 
Unexposed Cells within Each Cluster. We performed a likelihood ratio test to identify 

genes differentially expressed between TB exposed and unexposed cells within each 

cluster. (a) Differential expression results between 673 TB-exposed and 426 unexposed 

cells in Cluster 1. (b) Differential expression results between 627 TB-exposed and 277 

unexposed cells in Cluster 2. (c) Differential expression results between 386 TB-exposed 

and 171 unexposed cells in Cluster 3.  
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Supplementary Table 9 | TB Infection by Cluster Enrichments. Initially, we performed 

LRT within each cluster to identify genes differentially expressed between TB exposed 

and unexposed cells. For each cluster, we created lists of genes differentially expressed 

with p-values less than 5.0x10-6within each cluster (Figure 3c). (a) We then compared 

these lists to identify genes that are differentially expressed genes exclusively within each 

cluster. We also identified a list of 37 genes detected as differentially expressed across 

all clusters. We then performed gene set enrichment analysis in DAVID and GSEA to 

examine functional enrichment of the identified gene sets (i.e. Genes conserved across 

and unique to each cluster). We performed analysis in DAVID, comparing genes 37 

conserved genes, 22 genes unique to Cluster 1, 142 genes unique to Cluster 2, and 40 

genes unique to Cluster 3 to a background list of 9,381 genes expressed in at least 5% 

of filtered cells (Methods). Using GSEA, we made comparisons of the above gene list to 

the complete list of curated gene sets within the GSEA database (MSigDB v5.1: 

http://software.broadinstitute.org/gsea/msigdb/index.jsp). (b,c) Within Cluster 1, we 

observed unique enrichment of genes related to growth, proliferation and cell cycle. (d, 
e) Within Cluster 2, we observed enrichment of genes that identify monocyte and dendritic 

cell culture in addition to proliferation. (f, g) Within Cluster 3, we observed unique 

enrichment of genes related to hypoxia, oxidative stress and oxygen homeostasis. 
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Supplementary Table 10 | GSEA Comparisons of Exposed and Unexposed Cells 
within Each Cluster. We performed comparisons between M. tuberculosis exposed and 

unexposed cells within each cluster using GSEA. For each cluster we created .gct files 

containing normalized expression data for every cells within each cluster and assigned 

phenotypes (i.e. TB exposed vs. unexposed) to each cell using a .cls file. We then 

performed gene set enrichment analysis for each cluster across the complete gene set 

database in GSEA with 1000 permutations of assigned phenotype. (a,b) In cluster 1, we 

observed enrichment of dendritic cell maturation, monocytes in culture, response to L. 

donovani, and TNF-alpha signaling among 673 TB exposed cells and relative enrichment 

of ribosomal genes and protein synthesis among 426 unexposed cells. (c,d) In Cluster 2, 

we observed enrichment of LPS response, dendritic cell maturation, IL1 stimulation and 

response to TGF-beta among 627 TB exposed cells and relative enrichment of 

housekeeping functions, ribosomal genes and translation among 277 TB unexposed 

cells. (e,f) In Cluster 3, we observed enrichment of among delayed response to LPS (48 

response), TLR7/8 stimulation, inflammatory response, intracellular infection and TNF 

signaling among 386 TB exposed cells and relative enrichment of housekeeping functions 

(ribosome, translation, actin) among 171 unexposed cells. (g,h) In Cluster 4, we observed 

enrichment of mitochondrial gene signatures, oxidative phosphorylation, hypoxia 

response and interferon response among 74 TB exposed cells and enrichment of 

ribosomal genes and translation among 975 unexposed cells. (i, j) In Cluster 5, we 

observed enrichment of LPS stimulation, TNF signaling, sepsis and dendritic cells 

maturation among 988 TB exposed cells and enrichment of ribosomal proteins and 

translation among 41 unexposed cells. 
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Appendix C - Supplemental Information for Chapter 4: 
Highly Efficient, Massively-Parallel Single-Cell RNA-

Seq Reveals Cellular States and Molecular Features of 
Human Skin Pathology 

 
This chapter is adapted in accordance with Cold Spring Harbor Laboratory’s open 

access policy from the following article published in BioRxiv: 

 
Travis K Hughes*, Marc H Wadsworth II*, Todd M Gierahn*, Tran Do , David Weiss , 

Priscilla R. Andrade , Feiyang Ma , Bruno J. de Andrade Silva , Shuai Shao , Lam C 

Tsoi , Jose Ordovas-Montanes, Johann E Gudjonsson , Robert L Modlin, and Alex K 

Shalek 

 

* Denotes equal authorship 
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STAR* Methods 

KEY RESOURCES TABLE 

Reagent of Resource Source Identifier 

Maxima H-RT and Buffer ThermoFisher Scientific EP0751 

dNTPs New England Biolabs N0447L 

Polyethylene Glycol 8000 Fisher Scientific BP233-1 

SUPERase*In RNase inhibitor ThermoFisher Scientific AM2696 

Exonuclease I and Buffer New England Biolabs M0293S 

1M Tris-HCl, pH 8.0 ThermoFisher Scientific 15568025 

Klenow Fragment (3’à5’ exo-) New England Biolabs M0212L 

KAPA 2x HiFi HotStart PCR mix Kapa Biosystems KK2602 

Nextera XT Kit Illumina, Inc FC-131-1096 

UltraPure DNase/Rnase-Free Distilled 
Water 

ThermoFisher Scientific 10977015 

TWEEN 20 Fisher Scientific BP337-100 

Sodium Dodecyl Sulfate (SDS) Solution Sigma 71736-100mL 

TE Buffer ThermoFisher Scientific 12090015 
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Primers 

Template-Switching 
Oligo 

IDT AAGCAGTGGTATCAACGCAGAG TGAATrGrGrG 

SMART PCR Primer IDT AAGCAGTGGTATCAACGCAGAGT  

S^3 Randomer IDT AAGCAGTGGTATCAACGCAGAGTGANNNGGNNN
B 

P5-SMART Hybrid Oligo IDT AATGATACGGCGACCACCGAGATCTACACGCCTG
TCCGCG-GAAGCAG TGGTATCAACGCAGAGT*A*C  

Custom Read 1 Primer IDT GCCTGTCCGCGGAAGCAGTGGTATCAACGCAGA-
GTAC 

 

Biological Samples 

Skin Biopsies Clinical Biopsies UCLA 

 PBMCs Patient Blood Draw MGH  

 HEK293 Cell Lines  ATCC  

NIH/3T3s Cell Lines ATCC 

  

Critical Commercial Assays 

mRNA Capture Beads Chemgenes Corp. MACOSKO-2011-10B 

KAPA 2x HiFi HotStart PCR 
mix 

Kapa Biosystems KK2602 

NextSeq500 Illumina Ragon Institute 

Nova-Seq S2 Illumina Broad Institute 
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Software and Algorithms 

Seurat Satija et al, 2015 http://satijalab.org/seurat/ 

SCANPY Wolf et al, 2018 http://github.com/theislab/Scanpy 

UMAP Becht et al, 2018 http://github.com/lmcinnes/umap/ 

t-SNE Van der Maaten et al, 2008 http://lvdmaaten.github.io/tsne/ 

 

Immunofluorescence Antibodies 

IL-17RA LS-C359381 Lifespan Bioscience 

IL-17RC LS-400522 Lifespan Bioscience 

APOBEC3A LS-C98892-400 Lifespan Bioscience 

FOSL A03927 Boster 

IL-36G sc-80056 Santa Cruz Biotechnology 

TNFAIP3 ab74037 Abcam 

 

Human Protein Atlas Skin (FLG): 

https://www.proteinatlas.org/ENSG00000143631-FLG/tissue/skin+2#img  

Human Protein Atlas Skin (KRT14): 

https://www.proteinatlas.org/ENSG00000186847-KRT14/tissue/skin+1#img 
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Figure S1 | Second-Strand Synthesis Overview, related to Figure 1. 

A. Illustration of the second strand synthesis procedure: (1) mRNA is captured via poly-T 

priming of poly-adenylated mRNA; (2) First strand synthesis is performed to generate 

single-stranded cDNA template on bead-bound sequences; (3) Successful template 

switching: The use of enzymes with terminal transferase activity generates a 3’ overhang 

of 3 cytosines. Template switching utilizes this overhang to append the SMART sequence 

to both ends of the cDNA molecule during first strand synthesis. Failed Template 

Switching: If template switching fails, this results in loss of previously primed and reverse 

transcribed mRNA molecules; (4) mRNA template is chemically denatured using 0.1M 

NaOH; (5) Second strand synthesis is performed using a random-octamer with the 

SMART sequence in the 5’ orientation; and, (6) Following second strand synthesis, PCR 

amplification, library preparation and sequencing are performed to generate data. 

B. Scatterplots show the relationship between transcript detection (y-axis) and number of 

aligned reads per cell (x-axis) for an initial experiment (top) series of optimization 

conditions using HEK293 and NIH-3T3 cell lines (botttom). 

C. Scatterplots that illustrate the relationship between number of transcripts detected (y-

axis) and number of aligned reads per cell (x-axis) between Seq-Well V1 and Seq-Well 

S^3 in sequencing experiments for an initial experiment (top) and a series of optimization 

experiment using human PBMCs (bottom).  

D. Histograms that show the fraction of transcripts uniquely mapped to the human 

genome for each cell for Seq-Well V1 (Top) and Seq-Well S^3 (Bottom). Colors indicate 

species classification for cells with at least 90% purity of human (blue) or mouse (red) 

mapping. 
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Figure S2 | PBMC Methods Comparisons, related to Figure 1. 

A.  t-SNE plot showing detected cell-types among PBMCs including CD4+ T cells (green), 

CD8/NK Cells (blue), B cells (purple), and Monocytes (red) using 10X v2 and Seq-Well 

S^3. Cells recovered using Seq-well are colored with darker shades. 

B. Stacked barplots show the proportion of cell types recovered using Seq-Well S^3 (left) 
and 10X v2 (right).  

C. Top: Violin plots (boxplots median +/- quartiles) showing the distribution of per cell 

gene detection from Seq-Well S^3 (left) and 10X v2 (right). Bottom: Violin plots (boxplots 

median +/- quartiles) showing the distribution of per cell-gene detection from Seq-Well 

S^3 (left) and 10X v2 (right).  

D. Scatterplots showing a comparison of gene detection frequencies between Seq-Well 

S^3 (y-axis) and 10x v2 (x-axis) for each cell type.  

E. Scatterplots showing the difference in gene detection between Seq-Well S^3 and 10X 

v2 (y-axis) as a function of average normalized expression (x-axis).  

F. Scatterplots showing a comparison of gene detection frequencies among sorted CD4+ 

T cells between (Left) Seq-well S^3 (y-axis) and 10x v2 (x-axis), (Middle) Seq-Well S^3 

(y-axis) and Smart-Seq2 (x-axis), and (Right) 10x v2 (y-axis) and Smart-Seq2 (x-axis).  
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Figure S3 | Overview of Samples, related to Figure 2. 

A. UMAP plot for 20,308 cells colored by 33 cell type cell type clusters (Louvain 

Resolution: 2.0).  

B. Heatmap showing the relative expression of cell-type defining gene signatures across 

20,308 cells (Table S3).  

C. Dendrogram of hierarchical clustering shows similarity of cell type clusters among top 

25 cluster-defining genes (Appendix D, Figure S3B).  

D. t-SNE plots for each of the nine skin biopsies colored by generic cell type. 

E. Violin plots show the distribution of per-cell quality metrics displayed in UMAP 

embedding of 20,308 cells colored by colored generic cell-type classification (Figure 2B).  
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Figure S4 | Immune Cell Heterogeneity, related to Figures 3 and 4. 

A. (Top) Force-directed graph of 2,903 T cells colored by T cell sub-cluster. (Bottom)  
Heatmap of gene-set enrichment scores based on comparison of T cell phenotypic sub-

clusters to a curated list of reference signatures in the Savant database. 

B. Sub-grouping results for (top) T cell sub-cluster 0 and (bottom) T cell sub-cluster 8. 

For each analysis, t-SNE plots colored by inflammatory skin condition (top-left) and sub-

cluster (bottom-left) are shown. For each clusters, heatmaps show gene expression 

patterns across T and NK cells sub-types (right).  

C. (Top) Detection rates for TCR genes for PBMCs in Seq-Well v1, 10x v2. and Seq-Well 

S^3.  (Bottom) Detection frequency of TCR V-J (e.g. TRAV/J and TRBV/J) genes in CD4+ 

T cells from peripheral blood between Seq-Well S^3 (y-axis) and 10x v2 (x-axis). Colors 

correspond to TRAJ (red), TRAV (green), TRBJ (blue), and TRBV (purple) genes.  

D. Force-directed graph of 2,371 myeloid cells colored by myeloid phenotypic sub-

clusters.  

E. Heatmap of gene-set enrichment scores based on comparison of myeloid phenotypic 

sub-clusters to a curated list of reference signatures in the Savant database.  

F. (Left) UMAP plot for 502 dendritic cells from human skin colored by phenotypic sub-

grouping. (Right) Stacked barplot showing composition of dendritic cells within each of 

nine skin biopsies by DC sub-cluster.  

G. (Left) UMAP plot for 502 dendritic cells from human skin colored by inflammatory skin 

condition. (Right) Stacked barplot showing contribution of inflammatory skin conditions 

to each dendritic cell sub-grouping. 

H. Heatmap showing average signature score across 5 dermal DC populations based on 

dendritic cell signatures from Villani et al. Science 2017. 

I. Heatmap showing the distribution of normalized gene expression levels for cluster-

defining genes across dermal DC subpopulations.  

J. UMAP plots colored by normalized expression levels for DC sub-grouping-defining 

genes. 
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Figure S5 | Stromal Cell Diversity. 

A. Force-directed plots for 4,996 endothelial cells colored by phenotypic sub-cluster (left) 
and stacked barplot showing the distribution of endothelial phenotypic sub-clusters across 

samples (right). 

B. Force-directed plots for 4,996 endothelial colored by inflammatory skin condition (left) 
and stacked barplot (right) showing the contribution of each inflammatory skin condition 

to endothelial phenotypic sub-clusters.  

C. Forced-directed plot colored by normalized expression level of genes that mark 

endothelial cell types: (Left) CD93, venules, (Middle) TAGLN, arterioles, (Right) LYVE1, 

lymphatics.  

D. Heatmap showing patterns of gene expression across 7 clusters of endothelial cells. 

E. Heatmap showing row-normalized expression levels of vascular addressins across 

phenotypic sub-clusters of endothelial cells.  

F. Force-directed plots for 4,189 fibroblasts colored by phenotypic sub-cluster (left) and 

stacked barplot showing the distribution of fibroblast phenotypic sub-clusters across 

samples (right). 

G. Force-directed plots for 4,189 fibroblasts colored by inflammatory skin condition (left) 
and stacked barplot (right) showing the contribution of each inflammatory skin condition 

to fibroblast phenotypic sub-clusters.  

H. Force-directed graphs highlighting fibroblast cluster defining genes.  

I. Heatmap showing the normalized gene expression values of fibroblast cluster-defining 

genes. 
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Figure S6 | Keratinocyte Differentiation Trajectories, related to Figure 5. 

A. (Left) Heatmap showing enrichment of genes along pseudo-temporal trajectories for 

normal keratinocytes. (Right) Heatmap showing enrichment of genes along pseudo-

temporal trajectories among psoriatic keratinocytes.  

B. Differentiation trajectories for Normal (left) and Psoriatic (right) keratinocytes.  

C. Violin plots showing localization of cytokine response signatures in basal, 

differentiating and terminal keratinocytes for Normal (left) and Psoriatic (right) 
keratinocytes. 
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SUPPLEMENTARY TABLES 

Table S1. Gene detection frequencies for transcription factors, cytokines and cytokine 

receptors (Figure S2).  

Table S2. Patient Information 

Demographic and condition information for all patients included in this study.  

Donor Visit Date Lesion Type Gender Age Ethnicity Race Biopsy 

301 10/23/2017 Psoriasis F 56 Non-Hispanic White 1 

303 10/23/2017 Alopecia F 27 Non-Hispanic 

Asian, 

White 1 

304 10/23/2017 Psoriasis F 63 Non-Hispanic White 1 

305 10/23/2017 GA F 61 Non-Hispanic White 1 

306 10/23/2017 GA F 58 Non-Hispanic White 1 

307 10/24/2017 Acne F 46 Hispanic White 1 

308 10/24/2017 Acne F 29 Hispanic White 1 

 

Table S3. Gene Signatures. Gene signatures for generic cell-type clusters (Figure 2B).  

Table S4. T cell sub-cluster-defining genes.  

Table S5. Enriched genes across CD8 T cell sub-groupings (within sub-cluster 0).  

Table S6. Enriched genes across cytotoxic T cell/NK cell subsets (sub-cluster 8). 

Table S7. Myeloid cub-cluster-defining genes.  
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Table S8. Genes differentially expressed between Langerhan’s cells from Leprosy and 

normal skin. 

Table S9. Dendritic cell sub-cluster defining genes.  

Table S10. Endothelial cell sub-cluster defining genes 

Table S11. Fibroblast sub-cluster defining genes.  

Table S12. Differential Expression Results between Psoriatic and Normal Keratinocytes 

Table S13. Diffusion Pseudo-time Values for Normal and Psoriatic Keratinocytes. 

Per-cell Diffusion Pseudotime values for normal and psoriatic keratinocytes.  

Table S14. Keratinocyte Cytokine response signatures. Gene expression signatures 

generated following cytokine exposure of keratinocyte in vitro. 

  



 
208 

Appendix D: Seq-Well S^3 Master Protocol 
  

As outlined in: 
  

Highly efficient, massively-parallel single-cell RNA-
Seq reveals cellular and molecular features of human 

skin pathology 
  
Travis K Hughes1,2,3,4,5,8, Marc H Wadsworth II1,3,4,5,8, Todd M Gierahn5,8, Feiyang Ma6, 

Tran Do6, David Weiss6, Priscilla Andrade6, Bruno Andrade6, Shuai Shao7, Lam C Tsoi7, 

Johann E Gudjonsson7, Robert L Modlin6, J Christopher Love1,3,4,5,9, and Alex K 

Shalek1,2,3,4,5,9 

  

Affiliations: 
1 Institute for Medical Engineering & Science (IMES) and Department of Chemistry, MIT, 

  Cambridge, Massachusetts, USA 
2 Department of Immunology, Harvard Medical School, Boston, Massachusetts, USA 
3 Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA 
4 Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA 
5 Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts, USA 
6 Division of Dermatology and Department of Microbiology, Immunology and Molecular 

Biology, David Geffen School of Medicine, UCLA, Los Angeles, California, USA 
7 Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA 
8 These authors contributed equally to this work 
9 These senior authors contributed equally to this work 
9 To whom correspondence should be addressed: shalek@mit.edu (AKS), 

clove@mit.edu (JCL)  

  
  *For the latest protocol see Shalek Lab website (www.shaleklab.com/Seq-Well)  
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 Membrane Preparation 
1.  Carefully place a pre-cut (22 x 66 mm) polycarbonate membrane onto a glass slide 

using a gloved finger and tweezers to separate the membrane and paper. 

Note 1: Make certain the shiny side of the polycarbonate membrane is facing up 

to be in contact with the oxygen plasma and eventually the surface of the array. 

Note 2: Discard any membranes that have creases or other large-scale 

imperfections. 

  
2.  Place membranes onto a shelf in the plasma cleaner. 

         Note 1: Shelves are not provided, but any piece of glass will do. 

Note 2 (optional): If you have two shelves, place membranes on the bottom shelf 

to reduce risk of them flying after vacuum is removed. 
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3. Close the plasma cleaner door, then turn on the main power and pump switch. To 

form a vacuum, ensure that the 3-way valve lever is at the 9:00 position as shown 

below and that the door is completely shut. 

  
4.      Allow vacuum to form for 2-3 minutes. Once the vacuum has formed, 

simultaneously turn the valve to 12:00 while turning the power to the Hi setting 

(shown below). 

Note: The plasma should be a bright pink. If not, adjust the air valve to increase 

or decrease the amount of oxygen entering the chamber. 

  
5.      Treat membranes with plasma for 5-7 minutes. 

Note: We treat membranes for 7 minutes, but treatment times can vary. 

Experiment Notes 
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6.      Critical – After treatment, in the following order: (1) turn the RF level valve from 

HIGH to OFF, (2) turn the air valve from the 12:00 position to the 9:00 position, 

and (3) then turn off the power followed by turning off the vacuum.  Then slowly 

open the valve until air can be heard entering the chamber (approximate valve 

position shown below).  Leave until door opens (~5 min). 

  
7.      Remove slides (with membranes) from the oven and transfer to a 4-well dish. 

Note 1: If membranes have slightly folded over, slowly flip the membrane back 

using needle nose tweezers. 

Note 2: If membranes have blown off the slide entirely, repeat above procedure to 

ensure you know which side was exposed to plasma. 
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8.      Using a P1000 pipette, gently hydrate one end of the membrane with a single drop 

of 1xPBS so that it adheres to the slide before dispensing the entire volume. Once 

the membrane is hydrated, continuing add 1xPBS until you reach 5 mL (use either 

a serological pipette or P1000 pipette to complete hydration). 

  
9.      Remove any air bubbles underneath the membrane using wafer forceps or a 

pipette tip. 

10.    Membranes are now functionalized and ready for use. 

Note 1: Membranes solvated with 1xPBS should be used within 48 hours. 
Note 2: If transporting solvated membranes (e.g. between buildings), remove all 

but ~1 mL of 1xPBS to prevent membranes from flipping within the dish. 

Note 3: Alternatively, membranes initially solvated in 1xPBS can be dried and 

stored for 4 weeks at room temperature. To dry them out, carefully remove 

membranes, keeping them on their glass slides, from the 1xPBS solution, transfer 

the membranes to the benchtop, cover them with a tip box, and let them dry for 

15-20 minutes. As the membranes dry they’ll become opaque which is normal. 

Note 4: Before use the membranes should be rehydrated with 5 mL of 1xPBS. 

Drying out membranes is helpful when traveling or when running seq-well in a 

laboratory without access to a plasma cleaner. 

 Experiment Notes 
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Bead Loading 
  
1.     Aspirate storage solution and solvate each array with 5 mL of bead loading buffer 

(BLB; See Sub-Appendix D: Buffers Guide). 

2.      Place array(s) under vacuum with rotation (50 RPM) for 10 minutes to remove air 

bubbles in wells. Note: Rotation is optional 

  
3.      Aliquot ~110,000 beads from stock into a 1.5 mL tube and spin on a tabletop 

centrifuge for 15 seconds to form a pellet. 

4.      Aspirate storage buffer and wash beads twice in 500 uL of BLB. 

5.      Pellet beads, aspirate BLB, and resuspend beads in 200 uL of BLB. 

Note: For each array, it’s recommended to load ~110,000 beads. 

6.      Before loading beads, thoroughly aspirate BLB from the dish containing the 

array(s), being careful not to aspirate or dry the PDMS surface of the array(s). 
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7.      Using a P200 pipette, apply 200 uL containing 110,000 beads, in a drop-wise 

fashion, to the surface of each array (see image below and Bead Loading Diagram 

on page 10). 

   
8.      Allow the arrays to sit for 5 minutes, rocking them intermittently in the x & y 

direction. 

Pro-Tip: This step can be extended to 10 minutes to allow the beads more time to 

settle. However, make sure to monitor the surface of the array so that it doesn’t 

dry out. 

9.     Thoroughly wash array(s) to remove excess beads from the surface. For each 

wash: 

1. Position each array so that it sits in the center of the 4-well dish. 

2. Dispense 500 uL of BLB in the upper right corner of each array and 500 uL 

in the bottom right corner of each array. Be careful not to directly pipette 

onto the microwells, as it can dislodge beads. 

3. Using wafer forceps or a pipette tip, push each array against the left side of 

the 4-well dish to create a capillary flow; this will help remove beads from 

the surface. 

4. Aspirate the liquid, reposition each array, and repeat on the other side. 
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10.    Repeat step 9 as necessary. Periodically examine the array(s) under microscope 

to confirm that no loose beads are present on the surface, as this will interfere with 

membrane attachment. Usually it takes 4 washes/side to thoroughly remove 

excess beads (this depends on your original loading density). 

11.    Once excess beads have been removed from the surface, solvate each array with 

5 mL of BLB and proceed to cell loading. 

         Notes: 

1. If continuing to cell loading immediately (i.e., within 6 hours), loaded arrays  

should be stored in 5 mL of BLB. 

2. If you are not going to use the arrays on the day they’re loaded, remove the 

BLB buffer, rinse the arrays once with 5 mL of 1xPBS, and then solvate the 

arrays with 5 mL of quenching buffer. Arrays can be stored in quenching 

buffer for 10 days (See Sub-Appendix D: Buffers Guide). 

Experiment Notes 
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Bead Loading Diagrams 
 

 
  

 
  



 
218 

Cell Loading (Without Imaging) 
If you want to image cells in the array, please refer to Sub-Appendix F 

 

1.      At this point, your array should be loaded with beads and sitting in 5 mL of BLB. 

2.      Obtain the cell or tissue sample and prepare a single cell suspension using an 

optimized protocol for tissue dissociation.  

3.      While preparing your single-cell suspension, aspirate the BLB from each array (or 

quenching buffer) and rinse the array twice in 5 mL of 1xPBS to bring the solution 

in the four-well dish to physiological pH. 

4.      After the second wash, aspirate the 1xPBS and soak the loaded array in 5 mL of 

RPMI +10% (RP-10) FBS for 5 minutes. 

Note 1: This step is performed to mitigate non-specific adhesion of cells to primary 

amines on the top surface of the array. 

Note 2: Any supplemented media can be used in place of RP-10. 

5.      After obtaining a single-cell suspension, count cells using a hemocytometer and 

make a new solution of 10,000-15,000 cells in 200 uL of RP-10. 

Note 1: You can use your preferred media for prepping the cell loading solution. 

Note 2: Be sure to not use automated cell counters, particularly following tissue 

dissociation. This can provide an inaccurate cell count, compromising the 

experiment. 

6.      Thoroughly aspirate the RP-10/supplemented media (to ensure the array will not 

move during cell loading). 

7.  Center your array in the well and then apply the cell loading solution onto the 

surface in a dropwise fashion (similar to how beads were applied in the previous 

section). 

8.      Allow cells to settle for 10 minutes, intermittently rock the array in the x & y 

direction. 

9.      Wash array 4x with 5 mL of 1xPBS to remove the serum. For each wash, gently 

rock the array in the x & y direction, and then aspirate the 1xPBS. Once you have 

aspirated the 1xPBS out of the dish, gently tilt the 4-well dish toward you and 
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aspirate directly off the bottom border of the array; this will help to completely 

remove the excess serum on the surface of the array 

Note:  These washes are critical to remove excess serum which can interfere with

 successful membrane attachment. 

10.      Aspirate the final 1xPBS wash and replace with 5 mL of RPMI media without FBS. 

         Note: You can use any media here as long as it does not contain serum. 

Experiment Notes 
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Membrane Sealing 
 1.     Gather the following materials before sealing the array(s): 

  
●      Array loaded with beads and cells (See Bead/Cell Loading) 

●      Pre-treated membrane (See Membrane Preparation) 

●      Wafer forceps (or P1000 pipette tip) 

●      Paper towels 

●      Agilent clamp 

●      Clean microscope slides 

 

2.      Use the wafer forceps to transfer the array from media to the lid of a 4-well dish, 

being careful to ensure that the array is not tilted. 
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3.  Once the array is positioned on the lid of a 4-well dish, carefully aspirate excess 

liquid from around the edge of the array and the exposed surface of the glass slide. 

(Note: Be careful not to aspirate directly from the PDMS surface). 

4.      Using wafer forceps or a pipette tip, remove a pre-treated membrane from the 4-

well dish. 

5.      Gently dab away moisture from the glass slide on the paper towel until the 

membrane does not spontaneously change position on the glass slide. 

6.      Carefully position the membrane on the center of the microscope slide, leaving a 

small membrane overhang (2-3 mm) beyond the edge of slide. 

  
7.      Holding the membrane in your left hand, invert the microscope slide so that the 

treated surface of the membrane is facing down. 

  
Experiment Notes 
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8.      Place the overhang of the membrane in contact with the PDMS surface of the array 

just beyond the boundary of the microwells. 

  
9.      Using a clean slide held in your right hand, firmly hold down the overhang of the 

membrane against the PDMS surface of the array.  

10.      Critical Step: While maintaining pressure with your right hand to hold the 

membrane in place, gently apply the membrane. 

Note 1: For optimal results, use only the weight of the slide to apply the membrane 

with the left hand. 

Note 2: Attempts to manually seal the microwell device using excess pressure 

result in a ‘squeegee’ effect, effectively removing moisture from the membrane 

while fixing membrane creases in place. 

Note 3: As you apply the membrane you should see a fluid interface form and 

expand as direct, uniform contact between the slide and the array will naturally 

remove some of the media as the membrane is applied. 

Note 4: You can use either your left or right hand for membrane-sealing (most 

people use their dominant hand to apply the membrane). Please practice this step 

before the actual experiment to figure out which hand you’re most comfortable 

with. 

11.    After applying the membrane, carefully pry the array and membrane from the 

surface of the lid and transfer to an Agilent clamp.  
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12.    After transferring the sealed array to the clamp, place a glass slide on top of the 

sealed array. 

13.    Close the clamp and tighten to the point of resistance, then place it in a 37C 

incubator for 30-40 minutes. 

Note: This time is flexible and depends on the incubator. If you want to decrease 

this incubation time, please optimize on cell lines before proceeding with precious 

samples. 

14. Repeat membrane-sealing protocol procedure if running multiple arrays. 
Experiment Notes  
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Cell Lysis & Hybridization 
1.      Remove the clamp from the incubator, and then remove the array from the Agilent 

clamp. (Note: At this point, the glass slide will be attached to the array and 

membrane).  

2.      Submerge the array, with top slide still attached, in 5 mL of complete lysis buffer 

(See Sub-Appendix D: Buffers Guide).  

3.      Gently rock the array in lysis buffer until the top glass slide spontaneously 

detaches. 

Note 1: Do not pry the top slide off as this can reverse membrane sealing. The 

time necessary for detachment of the top slide varies (10 seconds – 10 minutes). 

Note 2: If the top slide does not release after 10 minutes, gently pry the top slide 

off using wafer forceps or a pipette tip. Just be careful. 

4.      Once the top slide has detached, place the arrays on a horizontal rotator for 20 

minutes at 50-60 rpm. 

5.      After 20 minutes, remove the lysis buffer and wash each array with 5 mL of 

hybridization Buffer (See Sub-Appendix C: Buffers Guide). 

Note 1: Use a separate waste container for lysis buffer because guanidine 
thiocyanate can react with bleach in TC traps to create cyanide gas. 
Note 2: The hybridization buffer used to wash the array post-lysis may 
contain trace amounts of guanidine thiocyanate and should, therefore, be 
disposed of in the lysis buffer waste container.  

6.      Aspirate hybridization buffer and add another 5 mL of hybridization buffer to each 

array and rotate for 40 minutes at 50-60 rpm. 

7.      While the arrays are rocking in hybridization buffer, prepare RT master mix. (See 

Reverse Transcription & Exonuclease Digestion) 

Experiment Notes 
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Bead Removal Method 1 
1.      After the arrays have rocked in hybridization buffer for 40 minutes, carefully peel 

back each membrane using fine-tipped tweezers. 

2.      Place array into a 50 mL conical containing 30-40 mL of Wash 1 solution. 

3.      Holding the array above the 50mL conical (shown below), repeatedly dispense 

approximately 1 mL of Wash 1 solution from the conical across the surface of the 

array to dislodge beads (See Sub-Appendix D: Buffers Guide). 

Note: Vigorously dispense Wash 1 buffer to remove beads. 

4.      Repeat these 10 times, periodically checking to see if beads are dislodging. 

          
5.      After repeatedly rinsing the array from top to bottom, use a clean glass slide to 

gently scrape the array to remove any beads that remain in the array. 
Note: At this point it is possible to visually inspect the array to assess bead 

removal. 

6.      Once you are satisfied with bead removal, place the empty array back in the 4-well 

disk, cap the 50 mL conical, and pellet beads for 5 minutes at 1000xg. 

Note 1: You can visually inspect the success of your bead removal by looking at 

the arrays under a light microscope. (continues on the next page) 
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Note 2: Where possible, use a swinging bucket centrifuge to collect beads. The 

use of a fixed-rotor centrifuge can lead to the formation of a bead pellet on the 

elbow rather than the bottom of the conical tube, which can lead to inefficient 

recovery. 

7.      After centrifugation, aspirate all but ~1 mL of excess Wash Buffer, collect the beads 

using a P1000 pipette, and transfer beads suspended in wash buffer to a separate 

1.5 mL eppendorf tube for each array. 

Experiment Notes 
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Reverse Transcription & Exonuclease Digestion 
Reverse Transcription (RT) 
1.      Prepare the following RT mastermix during the hybridization step: 

      40 uL            H2O 

      40 uL        Maxima 5X RT Buffer 

      80 uL        30% PEG8K 

      20 uL        10 mM dNTPs (Clontech) 

        5 uL  RNase Inhibitor (Lucigen) 

        5 uL          100 uM Template Switch Oligo 

      10 uL        Maxima H-RT 

Note: Add the Maxima H-RT enzyme to the mastermix immediately before adding 

to beads. 

2.      Centrifuge eppendorf tubes containing collected beads for 1 minute at 1000xg. 

3.      Remove supernatant and resuspend in 250 uL of 1X Maxima RT Buffer and 

centrifuge beads for 1 minute at 1000xg. 

4.      Aspirate 1X Maxima RT Buffer and resuspend beads in 200 uL of the RT 

mastermix. 

5.      Incubate at room temperature for 30 minutes with end-over-end rotation. After 30 

minutes, incubate at 52C for 90 minutes with end-over-end rotation. 

Note: The reverse transcription reaction can proceed overnight, if necessary. 

7.      Following the RT reaction, wash beads once with 500 uL of TE-SDS, and twice 

with 500 uL of TE-Tween (TE-TW). Following Reverse Transcription, beads 
can be stored at 4C in TE-TW. 
 

Exonuclease I Treatment 
1.      Prepare the following Exonuclease I Mix: 

          20 uL            10x ExoI Buffer 

      170 uL          H2O 

      10 uL            ExoI 

2.      Centrifuge beads for 1 minute at 1000xg and aspirate the TE-TW solution. 
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3.      Resuspend in 500 uL of 10 mM Tris-HCl pH 8.0. 

4.      Centrifuge beads again, remove supernatant and resuspend beads in 200 uL of 

exonuclease I mix. 

5.      Incubate at 37C for 50 minutes with end-over-end rotation. 

6.      Wash the beads once with 500 uL of TE-SDS, twice with 500 uL TE-TW.  

Beads can be stored at 4C in TE-TW. 
Experiment Notes 
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Second Strand Synthesis & PCR 
Second Strand Synthesis (Beginning after 2nd wash of TE-TW after Exo treatment) 

1.      Prepare the following 2nd strand synthesis mix: 

      40 uL            Maxima 5X RT Buffer 

      80 uL            30% PEG8000 

      20 uL            10 mM dNTPs (Clontech) 

      2 uL              1 mM dN-SMRT oligo 

      5 uL              Klenow Enzyme 

      53 uL            H2O 

         Note: Add the Klenow enzyme immediately before adding to beads. 

2.      After aspiration of 2nd TE-TW wash, resuspend beads in 500 uL 0.1 M NaOH. 

Note: Make the 0.1 M NaOH solution fresh for each experiment. 

3.      Rotate tube for 5 min at room temp, then spin (800xg for 1 minute) and aspirate 

supernatant. 

4.      Wash once with 500 uL of TE-TW, and once with 500 uL 1xTE 

5.      Resuspend beads in 200 uL 2nd strand synthesis reaction and rotate end-over-end 

at 37C for 1 hr. 

6.      Wash beads twice with 500 uL TE-Tween and once with 500 uL TE 

7.      Proceed directly with the PCR protocol.  

 
PCR (Whole Transcriptome Amplification (WTA)) 

1.      Prepare the following PCR mastermix: 

      25 uL            2X KAPA HiFi Hotstart Readymix 

      14.6 uL     H2O 

      0.4 uL       100 uM SMART PCR Primer 

      40 uL        per reaction 

2.      Wash beads once with 500 uL of water, pellet beads, remove supernatant and 

resuspend in 500 uL of water. 

Note 1: If you do not want to count the beads then after the 500 uL water wash in 

step 2, resuspend the beads in 240 uL of water and proceed to step 6.  
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Note 2: If you choose this path, prepare mastermix for 24 PCR reactions for each 

array being processed. 

3.      Mix well (do not vortex) to evenly resuspend beads and transfer 20 uL of beads to 

a separate 1.5 mL tube to count the beads. 

Note: Don’t vortex beads as this can result in bead fragmentation. 

4.      Pellet the small aliquot of beads, aspirate the supernatant, and resuspend in 20 uL 

of bead counting solution (10% PEG, 2.5 M NaCl). 

Note: The bead counting solution aids in even dispersion of beads across a 

hemocytometer. 

5.      Count the beads using a hemocytometer. 

6.      Add 40 uL of PCR mastermix per reaction to 96-well plate. 

7.      Add 1,500 – 2,000 beads per reaction in 10 uL of water for a total volume of 50 uL 

per PCR reaction, making certain to PCR the entire array. 

8.      Use the following cycling conditions to perform whole-transcriptome amplification:  

Start: 
95C           3 minutes 

4 Cycles: 
98C           20 seconds 

65C           45 seconds 

72C           3 minutes 

9-12 Cycles: 
98C           20 seconds 

67C           20 seconds 

72C           3 minutes 

Final Extension: 
72C          5 minutes 

4 C            Infinite hold 

Note: The total number of PCR cycles necessary for amplification depends on the 

cell type used. 

●      13 cycles are optimal for cell lines or larger cells (e.g. macrophages) 

●      16 cycles are optimal for primary cells  
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Purification of PCR products and analysis on the BioAnalyzer or Agilent 
TapeStation 
1.      Pool PCR products from between 6 and 8 PCR reactions in a 1.5 mL 

microcentrifuge tube so that you have 10-12,000 beads/1.5 mL microcentrifuge 

tube. 

2.      Purify PCR products using Ampure SPRI beads and the following protocol: 

         Note: Please refer to the Ampure SPRI bead official protocol for more details. 

A.    Spri at 0.6x volumetric ratio. 

B. Allow the tubes to sit on the tube-rack off the magnet for 5 minutes, and 

then place  

the rack on the magnet for 5 minutes. 

C. Perform 3 washes with 80% ethanol (Note: At each wash step rotate each 

tube 180 degrees 6 times to allow beads)  

to pass through the ethanol solution to the opposite side of the tube. 

D. After the third wash, remove the 80% ethanol wash solution. Further, use a 

P200 with fresh tips to remove any residual ethanol and allow beads to dry 

for 10-15 minutes. (Note: Beads will have a cracked appearance once dry). 

Remove the rack from the magnet, elute dried beads in 100 uL, place the 

rack on the magnet and then transfer the 100 uL supernatant which contains 

eluted DNA to a new 1.5 mL microcentrifuge tube or 96-well plate. 

E. Spri the 100 uL at 1.0x volumetric ratio and repeat steps b and c 

F. After the third wash, allow the beads to dry for 15 minutes, remove the rack 

from the magnetic, elute the beads in 15 uL, place the rack back on the 

magnet and then transfer the 15 uL to a new 1.5 mL microcentrifuge tube 

or 96-well plate. 

3.      Run a BioAnalyzer High Sensitivity Chip or Agilent D5000 High Sensitivity 

Screentape according to the manufacturer’s instructions. Use 2 uL of the purified 

cDNA sample as input (Note: Your WTA library should be fairly smooth, with an 

average bp size of 0.7-2 kbps). 

4.      Proceed to library preparation or store the WTA product at 4C (short-term) or -20C 

(long-term).  
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Library Preparation 

Tagmentation of cDNA with Nextera XT    
1.      Ensure your thermocyclers are setup for Tagmentation (step 5) & PCR (step 9). 

2.      For each sample, combine 1000 pg of purified cDNA with water in a total volume 

of 5 uL. It’s ideal to dilute your PCR product in a separate tube/plate so that you 

can add 5 uL of that for tagmentation. 

Example: For 1000 pg reactions, dilute PCR product, in a new plate, to 200 

pg/uL, then you can add 5 uL of this to a reaction tube for a 1000 pg reaction. 

Note 1: We typically perform Nextera reactions in duplicate for WTA product 

from each pool of 6-8 PCR reactions. For example, if you recover 3 pools/array, 

you would run a total of 6 nextera reactions. 

Note 2: These volumes can be reduced by half to reduce reagent costs, if 

desired. 

3.      To each tube, add 11 uL of Nextera TD buffer, then 4 uL of ATM buffer (the total 

volume of the reaction is now 20 uL). 

4.      Mix by pipetting ~5 times. Centrifuge plate at 1000x g for 10-15 seconds. 

5.      Incubate at 55C for 5 minutes. 

6.      Add 5 uL of Neutralization Buffer. Mix by pipetting ~5 times.  Note: Bubbles are 

normal. 

7.      Incubate at room temperature for 5 minutes.   

8.      Add to each PCR tube: 

15 uL  Nextera PCR mix  

  8 uL  H2O 

  1 uL  10 uM New-P5-SMART PCR hybrid oligo 

  1 uL  10uM Nextera N7XX oligo   

 
(continues on the next page)  
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9.      After sealing and centrifuging (1 minute at 1000xg) the PCR plate, run the   

following PCR program: 

Start: 
72C  3 minutes 

95C  30 seconds 

12 cycles: 
95C  10 seconds 

55C  30 seconds 

72C  30 seconds 

         Final Extension: 
         72C              5 minutes 

         4C  Infinite hold   

Purification of PCR products and analysis on the BioAnalyzer or Agilent 
TapeStation 
1.      If you performed Nextera reactions in duplicates, please pool duplicates before 

proceeding with step 2. If you ran a single Nextera reaction for each pooled WTA, 

proceed directly to step 2. 

2.      Purify PCR products using Ampure SPRI beads and the following protocol: 

         Note: Please refer to the Ampure SPRI bead official protocol for more details. 

A.    Spri at 0.6x volumetric ratio. 

B. Allow the tubes to sit on the tube-rack off the magnet for 5 minutes, and 

then place the rack on the magnet for 5 minutes. 

C. Perform 3 washes with 80% ethanol (Note: At each wash step rotate each 

tube 180 degrees 6 times to allow beads). 

to pass through the ethanol solution to the opposite side of the tube. 

D. After the third wash, remove the 80% ethanol wash solution. Further, use a 

P200 with fresh tips to remove any residual ethanol and allow beads to dry 

for 10-15 minutes. (Note: Beads will have a cracked appearance once dry).  

 (continues on the next page) 



 
234 

Remove the rack from the magnet, elute dried beads in 100 uL, place the 

rack on the magnet and then transfer the 100 uL supernatant which contains 

eluted DNA to a new 1.5 mL microcentrifuge tube or 96-well plate. 

E. Spri the 100 uL at 1.0x volumetric ratio and repeat steps b and c 

F. After the third wash, allow the beads to dry for 15 minutes, remove the rack 

from the magnetic, elute the beads in 15 uL, place the rack back on the 

magnet and then transfer the 15 uL to a new 1.5 mL microcentrifuge tube 

or 96-well plate. 

3.      Run a BioAnalyzer High Sensitivity Chip or Agilent D1000 High Sensitivity 

Screentape according to the manufacturer’s instructions. 

• Use 1 uL of the purified cDNA sample as input.   

• Your tagmented library should be fairly smooth, with an average bp size of 400-

800 bp. 

• Smaller-sized libraries might have more polyA reads 

• Larger libraries may have lower sequence cluster density and cluster quality. 

Note: We have successfully sequenced libraries from 400-800bp. 

5.      Proceed to sequencing. 
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Sequencing 
Once your sequencing library has passed the proper quality controls, you’re ready to 

proceed to sequencing. For a detailed loading protocol, please consult the Illumina 

website for a step-by-step manual. (https://support.illumina.com/downloads.html) 

  

NextSeq500 – Shalek Lab protocol 
1.      Make a 5 uL library pool at 4 nM as input for denaturation. 

2.      To this 5 uL library, add 5 uL of 0.2 N NaOH (make this solution fresh). 

3.      Flick to mix, then spin down and let tube sit for 5 minutes at room temperature. 

4.      After 5 minutes, add 5 uL of 0.2 M Tris-HCl pH 7.5. 

5.      Add 985 uL of HT1 Buffer to make a 1 mL, 20 pM library (solution 1). 

6.      In a new tube (solution 2), add 165 uL of solution 1 and dilute to 1.5 mL with HT1 

buffer to make a 2.2 pM solution – this is the recommended loading concentration. 

Note: Optimal loading concentration is 1.8-2.5 pM 

7.      Follow Illumina’s guide for loading a NextSeq500 Kit 

 

 Sequencing specifications for the MiSeq or NextSeq: 

      Read 1: 20 bp * 

     Read 2: 50 bp  

     Read 1 Index: 8 bp ← only necessary if you are multiplexing samples 

         Custom Read 1 primer 

          

 Sequencing specifications for the Nova-Seq: 

      Read 1: 20 bp * 

     Read 2: 50-80 bp  

     Read 1 Index: 8 bp 

         Read 2 Index: 8 bp (optional, but recommended) 

Custom Read 1 primer 

  



 
236 

Note 1: If you’re loading on a Nova-Seq you’ll want to use dual-indexing to mitigate 

index switching. 

Note 2: Read 1 can sometimes be 21 base pairs; this depends on the company and 

bead lot you are ordering from. Please consult with your bead provider to determine which 

read length to use. 

  

NextSeq 500: 

(http://support.illumina.com/content/dam/illumina-

support/documents/documentation/system_documentation/nextseq/nextseq-custom-

primers-guide-15057456-01.pdf) 

(Follow Illumina’s guide for custom primers) 

MiSeq: 

(http://support.illumina.com/content/dam/illumina-

support/documents/documentation/system_documentation/miseq/miseq-system-

custom-primers-guide-15041638-01.pdf) 
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Sub-Appendix A: Array Synthesis 
Day 0: Pouring PDMS Arrays 
Note: If you need to mount your master, please refer to appendix F 
1.      Combine Sylgard crosslinker with Sylgard base at a 1:10 ratio and mix vigorously 

for 5 minutes to create a PDMS master mix. 

2.      Once mixing is complete, put your PDMS master mix under vacuum for 20 minutes 

to remove any air bubbles. 

3.      Use a 10 mL syringe to inject 6-10 mL of PDMS master mix into molds with 

mounted PDMS masters. 

4.      Incubate at 70C for 2.5 hours. 

Day 1: Array Functionalization Part 1 
Note: For this section, make all solutions fresh! 

1.      Remove excess PDMS from edges of the glass slide. 

  
  

2.      Use scotch tape to remove excess PDMS from the surface of the array and the 

glass slide. 

3.      Place clean arrays into a metal slide basket 

 

(continues on the next page) 



 
238 

  
4.      Rinse arrays in 100% ethanol for 5 minutes, then let dry at room temperature (RT) 

for 15 minutes. 

  
5.      Plasma treat arrays on high for 5-7 minutes. 

         Note 1: Adjust the air valve so that the plasma is pink. 

6.      Following plasma treatment, immediately submerge arrays in 350 mL of 0.05% 

APTES in 95% ethanol for 15 minutes. 

7.      Spin dry arrays (500 RPM for 1 minute). 

Note: Our rotor model is TX-10000 75003017 (Thermo) with a rotor radius of 209 

mm. 500 RPM on this instrument is ~ 60xg. 

8.      Incubate at room temperature for 10 minutes. 
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9.      Submerge in 300 mL of acetone and rock until all bubbles are out of the wells; this 

typically takes approximately 5 minutes. 

10.    Place in 350 mL of 0.2% PDITC/10% pyridine/90% DMF solution in a glass 

chamber (or polypropylene tip box) for 2 hours at room temperature. 

Note: While this is rocking, prepare your chitosan solution (See Sub-Appendix D) 

  
11.    After the PDITC soak, wash arrays briefly in two boxes of 300 mL DMF. 

Note: For each brief wash, simply dunk the arrays in the solution 5-10 times and 

then transfer to the new solution.  

12.    Dunk and wash the arrays in 300 mL of acetone. 

13.    Move to a fresh 350 mL of acetone and rock for 20 minutes.  

14.    Spin dry arrays (500 RPM for 1 minute). 

15.    Place arrays at 70C for 2 hours. 

16.    Remove from oven and let sit at room temperature for 20 minutes. 

17.    Submerge arrays in 350 mL of 0.2% chitosan solution (pH 6.0-6.1; See Sub-
Appendix D) and incubate at 37C for 1.5 hours. 

18.    Wash arrays 4x in separate 300 mL distilled water baths. 
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19.    Submerge in 350 mL of 20 ug/mL aspartic acid, 2 M NaCl, and 100 mM sodium 

carbonate solution (pH 10.0). 

20.    Place in vacuum chamber and apply house vacuum. 

Note: You should see bubbles form indicating the solvation of wells. 

21.    Place vacuum chamber (still connected to house vacuum) on a rocker and rock 

(50-70 RPM) overnight at room temperature. 

 
Day 2: Array Functionalization – Part 2 
1.      The following morning, remove arrays from vacuum and rotate at 50-60 RPM for 3 

hours at room temperature. 

2.      Place arrays at 4C and soak 24 hours before use. 

Note: Arrays can be stored in the aspartic acid solution for 3 months at 4C. 

  

EXPERIMENTAL NOTES 
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Sub-Appendix B: Synthesis Protocol Checklist 
Date: 
Synthesizer: 
Number of Arrays: 
Start time / End time: 
Before you start: 
1. Pull the PDITC from the fridge (this takes ~1hr to come to room temperature) 

2. Make certain you have enough boxes for the various incubations 

3. Clean a 1L bottle, add stir bar, and dissolve 1 gram of chitosan in 500mL of DI 

water. 

 Step 1: Plasma treatment of the arrays 
1. Soak the arrays in 300mL of 95% ethanol for 5 minutes (50 rpm) 

2. Dry the arrays for 5 minutes @ 500 rpm (60xg) 

3. Plasma treat two trays at a time 

A. Form seal for 3 minutes 
B. Plasma treat for 5-7 minutes. 

C. What color was the plasma? (circle one): 

   No Color  Light purple  Light pink 

D. While the arrays are being treated, prep the APTES solution 

APTES Solution: 180uL of APTES stock in 350mL of 95% ethanol 

4.     Proceed with protocol 

Step 2: PDITC Soak 
**Autoclave the chitosan solution after starting the PDITC incubation 

1.      Volume of PDITC solution you’re prepping:                       liters (Standard: 350 mL)  

2.      Mass of PDITC added:                                           grams (Standard: 0.72 grams) 

3.      Volume of pyridine added:                                                   liters (Standard: 35 mL) 

4.      Length of incubation:                                                         hours (Standard: 2 hours) 

5.      Number of DMF washes:                                                           (Standard: 2 washes) 

6.      Number of acetone washes:              (Standard: 1 wash, and then transfer to 

new acetone box for a 20-minute soak) 

7. Proceed with protocol 
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Step 3: Oven incubation and chitosan preparation 
1.      After 20-minute soak, remove arrays from acetone and spin down (1 min. @ 500 

rpm) 

2.      Length of 70C incubation:                                                      hrs (Standard: 2 hrs) 

3.      Chitosan protocol checklist: Did you… (Y / N responses) 

A.      Autoclave chitosan (40-minute sterilization, 20-minute drying):   

B.      Let solution come to room temperature (can also do this @ 4C):   

C.     Calibrate the pH Meter with appropriate buffers:     

D.     Add 4 mL of glacial acetic acid (solution should be on stir plate):   

E.      Let solution stand for 5 minutes:        

F.      Add 50 mL of 5 M NaCl:         

G.     Titrate with 5 M NaOH:         

H.     Achieve pH of 6.0 – 6.1:         

I.       Remember, it is critical to make certain the you achieve a pH of 6.0 – 6.1 

and that it holds. Parts A-H should be completed before the completion of 

the 2 hr 70C incubation. 

4. Length of room temperature incubation:                    minutes (Standard: 20 minutes) 

A.      Second check of chitosan pH: 

5.      Length of chitosan incubation:                                                   (Standard: 1.5 hrs) 

A.      Temperature = 37C, Rotation = 70 rpm 

Step 4: In-well functionalization 
1.      Number of DI water rinses:                                                                  (Standard: 4) 

2.      pH of aspartic acid solution:                                                         (Standard: pH 10) 

3.      Length of overnight incubation:                                               (Standard: 12-16 hrs) 

4.      Day 2: length of room temperature incubation @ 50 rpm:            (Standard: 4 hrs) 

 
Array Lot: <Your initials>_<Synthesis Date>_<Box Number> 
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Sub-Appendix C: Master Mounting Protocol  
1.      Mix and degas PDMS in normal 1:10 ratio 

2.      While PDMS degases, use sandpaper to gently score back of silicon master and 

base plate to improve adhesion.  Careful – silicon masters are brittle. 

3.      Wash back of master and base plate with 95% ethanol until no more dust is 

removed when wiping surface clean with paper towel. 

4.      Use gloved finger to spread vacuum grease on bottom of BasePlate2 around 

square holes where the nanowell arrays will be cast.  You want a relatively thick 

layer, even on skinny parts between array holes, to make sure there is a seal 

between master and plate. 

5.      Carefully lower BasePlate2 onto the array side of the master making sure to not 

touch the array area with any of the greased surface.  4 array masters should fit 

into the 4 square holes.  Gently slide plate against master to center the arrays. 

6.      Place Base Plate 1 on paper towels to catch PDMS running off plate. 

7.      Pour ~30 mL of mixed PDMS in center of Base Plate 1. 

8.      Place master/BasePlate2 sandwich on top of the PDMS. 

9.      Gently apply pressure in the center of the master while making circular motions to 

push PDMS out from between layers.  You want to see PDMS coming out of all 

sides to ensure a complete coat. 

10.    Screw 6/32 screws into respective holes on base plate very gently.  Too much 

pressure too fast may crack master.  Do not fully tighten.  Do your best to make 

screws even – look at width of crack between base plates on all sides and make 

equal. 

11.    Place both top plates on top. 

12.    Screw 10/24 screws into their holes just enough such that they catch.  Again, do 

not fully tighten. 

13.    Place in 90C oven for 3 hours. 

14.    May need to do one dummy round of arrays to remove any PDMS or grease that 

got onto the nanowell features. 
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Sub-Appendix D: Buffers Guide 
CellCover10 
Reagents 

●      CellCover (Anacyte Art. No. 800-125) 

●      FBS (Thermo Fisher Scientific Cat. No. 10437028) 

●      Sodium Carbonate (Sigma Cat. No. 223530-500G) 

Working Concentrations 

●      10% FBS 

●      100 mM Sodium Carbonate 

 
Bead Loading Buffer 
Reagents 

●      Sodium Carbonate (Sigma Cat No. 223530-500G) 

●      BSA (Sigma Cat No. A9418-100G) 

●      Water (Thermo Fisher Scientific Cat No. 10977023) 

Quick Preparation Guide (50 mL) 

1. 2.5 mL 2 M Sodium Carbonate 

2. 42.5 mL H2O 

3. Add 5 mL BSA (100 mg/mL) 

4. Titrate with glacial acetic acid to achieve a pH of 10.0 

Working Concentrations 

●      100 mM Sodium Carbonate 

●      10% BSA 

 
Complete Lysis Buffer 
Reagents 

●      Pre-lysis buffer 

●      10% Sarkosyl (Sigma Cat No. L7414) 

●      100% 2-Mercaptoethanol (Sigma Cat No. M3148-25ML) 

(continues on the next page)  
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Quick Preparation Guide (50 mL) 

1. 47.25 mL Pre-Lysis Buffer 

2. 250 uL 10% Sarkosyl 

3. 500 uL BME 

Working Concentrations 

●      5 M Guanidine Thiocyanate 

●      1 mM EDTA 

●      0.50% Sarkosyl 

●      1.0% BME 

 
Hybridization Buffer 
Reagents 

●      5 M NaCl (Thermo Fisher Scientific Cat No. 24740011) 

●      1x PBS (Thermo Fisher Scientific Cat No. 10010023) 

●      8% (v/v) PEG8000 (Sigma Cat No. 83271-500ML-F) 

Quick Preparation Guide (50 mL) 

1. 20 mL 5 M NaCl 

2. 26 mL of PBS 

3. 4 mL PEG8000 

Working Concentrations 

●      2 M NaCl 

 
Wash Buffer 
Reagents 

●      5 M NaCl (Thermo Fisher Scientific Cat No. 24740011) 

●      1 M MgCl2 (Sigma Cat No.63069-100ML) 

●      1 M Tris-HCl pH 8.0 (Thermo Fisher Scientific Cat No. 15568025) 

●      Water (Thermo Fisher Scientific Cat No. 10977023) 

●      8% (v/v) PEG8000 (Sigma Cat No. 83271-500ML-F) 

(continues on the next page)  
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Quick Preparation Guide (50 mL) 

1. 20 mL 5 M NaCl 

2. 150 uL 1 M MgCl2 

3. 1 mL 1 M Tris-HCl pH 8.0 

4. 24.85 mL H2O 

5. 4 mL PEG8000 

Working Concentrations 

●      2 M NaCl 

●      3 mM MgCl2 

●      20 mM Tris-HCl pH 8.0 

  

Array Quenching Buffers 
Reagents 

●      Sodium Carbonate (Sigma Cat No. 223530-500G) 

●      1 M Tris-HCl pH 8.0 (Thermo Fisher Scientific Cat No. 15568025) 

●      Water (Thermo Fisher Scientific Cat No. 10977023) 

Quick Preparation Guide (50 mL) 

1. 2.5 mL 2 M Sodium Carbonate 

2. 500 uL 1 M Tris-HCl pH 8.0 

3. 47 mL H2O 

Working Concentrations 

●      100 mM Sodium Carbonate 

●      10 mM Tris-HCl pH 8.0 

 

  
0.2% Chitosan Solution 
Reagents 

●      Chitosan (Sigma Cat No. C3646-100G) 

●      Water (Thermo Fisher Scientific Cat No. 10977023) 

(continues on the next page)  
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Quick Preparation Guide 

1. Add 1 gram of chitosan to 500 mL of DI water 

2. Autoclave solution (40 minutes sterilization, 20 minutes dry) 

3. Allow chitosan solution to come to room temperature, and then add 2-3 mL of 

glacial acetic acid. 

Note: The chitosan will not start dissolving until the pH is acidic, and even then it will 

not fully dissolve. This is ok. 

4.   Add 50 mL 5 M NaCl, then titrate the chitosan solution with NaOH to bring the pH 

to 6.2. 

  

TE - Tween Storage Solution 
●      10 mM Tris pH 8.0 + 1 mM EDTA 

●      0.01% Tween-20 

Quick Preparation Guide (50 mL) 

1. 49.95 mL H2O 

2. 5 uL Tween-20 

  

TE - SDS Solution 
●      10 mM Tris pH 8.0 + 1 mM EDTA 

●      0.5% SDS 

 Quick Preparation Guide (50 mL) 

1. 49.75 mL H2O 

2. 250 uL SDS 
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Sub-Appendix E: Bead Removal Method 2 (“Spin-Out”)  
1.      Remove membrane and place array into an empty 50 mL conical tube. 

2.      Ensure that the array is angled within the tube as shown below. 

Note: The array might move around at this point, which isn’t something to worry 

about.  

3.      Add 48-50 mL of Wash 1 solution (See Buffers Guide) 

4.      Place the insert so the array is secured angled as shown in the image below. 

5.     Secure the lid and seal with parafilm, if necessary. 

6.      Put the sealed conical in a centrifuge, making certain the PDMS surface of the 

array is facing away from the rotor arm (See Diagram Below).  

7.      Centrifuge at 2000 x g for 5 minutes to remove the beads. 

8.      At this point you should see a small, but visible, pellet of beads at the bottom of 

the tube. 

9.      Aspirate 5 - 10 mL of Wash 1 solution to enable easier removal of the array. 

10.    Remove the array and carefully position it over the top of the 50 mL tube. 

11.    Repeatedly wash any remaining beads from the surface of the array over the 

surface of the 50 mL falcon tube using 1 mL of Wash 1 remaining in the tube. 

12.    Spin again at 2000 x g for 5 minutes to pellet beads. 

13.    Aspirate all wash 1 solution except for ~ 1mL. 

Note: Be careful to not disturb the pellet of beads.  

14.    Transfer beads to a 1.5 mL centrifuge tube and proceed to reverse transcription.  
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Sub-Appendix F: Imaging in Array 
1.      When pre-imaging cells, cells should be loaded first as beads will obstruct view of 

many cells and beads autofluorescence can interfere with the signal. 

2.      Obtain a cell or tissue sample and prepare a single cell suspension using your 

preferred protocol.  

 3.     Count cells using a hemocytometer and resuspend 10,000 cells in 200 uL of cold 

CellCover (Anacyte). 

4.      Incubate cells in at 4C for 1 hour.  

5.      After the cells have been fixed, perform antibody staining at 4C. 

Note: Some epitopes may no longer be available as a result of the fixation process.  

6.      Wash cells twice with 1x PBS, resuspend in 200 uL of CellCover10 buffer (pH 10 

+ 10% FBS; See Sub-Appendix D: Buffers Guide), and place on ice. 

Note: CellCover != CellCover10.  

7.      Obtain empty functionalized array(s), aspirate storage solution and soak each 

array in 5 mL of CellCover10 buffer (See Sub-Appendix D: Buffers Guide). 

8.      Aspirate media and load your fixed cells onto each array in a dropwise format.  

9.      Gently rock the array(s) in the x & y direction for 5 minutes. 

10.    Wash each array twice with 5 mL of CellCover10 (pH 10 + 10% FBS), then solvate 

each them in 5 mL of CellCover (No FBS). 

11.    Place a lift slip on each array, then image with a microscope.  

12.    After imaging, wash each array in 5 mL of CellCover10 media.  

13.    Immediately load beads using the bead loading protocol provided above. 

Note: In the protocol provided above, beads are washed and loaded in BLB. When 

loading cells first, you will replace BLB with CellCover10 for all steps. After beads 

are loaded and sufficiently washed, you will wash the array 4x with CellCover10 

without FBS and solvate arrays in CellCover. 

14.    Proceed with membrane sealing. 
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Sub-Appendix G: Shopping List 
Device Manufacturing 

• Dow Corning Sylgard 184 Silicone Encapsulant Clear 0.5 kg kit (Part No. 184 SIL 

ELAST KIT 0.5 PG) 

• Protolabs Custom Array Molding Plates (Please refer to www.shaleklab.com/seq-

well 

o Make out of aluminum and make sure to tap holes only on base 

plateBasePlate1 v3.1 (Bottom plate you mount the wafer to) 

•  BasePlate2 v3.1 (Divider for arrays) 

• TopPlate1 v3.1 (Plate that holds the glass slides) 

• TopPlate2 v3.1 (Top plate) 

• 45 micron Silicon Master Wafer Size (Please refer to www.shaleklab.com/seq-

well) 

• Master, pre-silanized – (FlowJem, Inc. Toronto, Canada) 

• Corning 72x25 Microscope Slides (Corning Life Sciences Cat. No. 2947) 

• 6/32 ¼” Hex Screws 

• 5/8” Hex 10/24 Screws 

• Hex Screwdriver 

• Vacuum grease 

• 80 grit sandpaper 

• 95% ethanol in spray bottle 

 
Array Functionalization 
Equipment 

• Plasma Oven (Harrick Plasma PDC-001-HP) 

• 2x 30-slide rack slotted (VWR Cat No. 25461-014) 

• 16x20 cm staining dish (VWR Cat No. 25461-018) 

• Vacuum Desiccator (VWR Cat No. 24988-164) 

• Sterile 4-well dishes (Thermo Fisher Scientific Cat No. 267061) 

(continues on the next page)  
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Reagents 

• 200 proof ethanol (VWR Cat No. 89125-188) 

•  (3-Aminopropyl)triethoxysilane (Sigma Cat No. A3648) 

• Acetone (Avantor Product No. 2440-10) 

• p-Phenylene Diisothiocyanate (PDITC) (Sigma Cat No. 258555-5G) 

• Pyridine (Sigma 270970-1L) 

• Dimethylformamide (DMF) (Sigma Cat No. 227056-1L) 

• Chitosan (Sigma Cat No. C3646-100G) 

• Poly(L-glutamic) acid sodium solution (Sigma Cat No. P4761-100MG) 

• 5M NaCl (Sigma Cat No. S6546-1L) 

• Sodium Carbonate (Sigma Cat No. S2127-500G) 

 
Buffer Reagents 

Bead Loading Buffer 

• Sodium Carbonate (Sigma Cat No. 223530-500G) 

• BSA (Sigma Cat No. A9418-100G) 

• Water (Thermo Fisher Scientific Cat No. 10977023) 

Complete Lysis 

• Guanidine Thiocyanate, (Sigma Cat No. AM9422) 

• 0.5 M EDTA (Thermo Fisher Scientific Cat No. 15575020) 

• Water (Thermo Fisher Scientific Cat No. 10977023) 

• 10% Sarkosyl (Sigma Cat No. L7414) 

• 100% 2-Mercaptoethanol (Sigma Cat No. M3148-25ML) 

Hybridization Buffer 

• 5 M NaCl (Thermo Fisher Scientific Cat No. 24740011) 

• 1x PBS (Thermo Fisher Scientific Cat No. 10010023) 

• PEG-8K (50%) (Fisher Scientific Cat No. BP337-100ML) 

(continues on the next page)  
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Wash Buffer 

• 5 M NaCl (Thermo Fisher Scientific Cat No. 24740011) 

• 1 M MgCl2 (Sigma Cat No.63069-100ML) 

• 1 M Tris-HCl pH 8.0 (Thermo Fisher Scientific Cat No. 15568025) 

• Water (Thermo Fisher Scientific Cat No. 10977023) 

Array Quenching Buffer 

• Sodium Carbonate (Sigma Cat No. 223530-500G) 

• 1 M Tris-HCl pH 8.0 (Thermo Fisher Scientific Cat No. 15568025) 

• Water (Thermo Fisher Scientific Cat No. 10977023) 

 
RT Reagents 

• UltraPure Distilled Water (Thermo Fisher Scientific Cat No. 10977023) 

• Maxima 5x RT Buffer/Maxima H-RT (Thermo Fisher Scientific Cat No. EPO0753) 

• 20% Ficoll PM-400 (Sigma Cat No. F5415-50mL) 

• 10 mM dNTPs (New England BioLabs Cat No. N0447L) 

• RNAse Inhibitor (Thermo Fisher Scientific Cat No. AM2696) 

• Template Switching Oligo (Order from IDT) 

 
Exonuclease Reagents 

• Exonuclease I (E. coli) (New England Biolabs Cat No. M0293S) 

 
Second Strand Synthesis Reagents 

• Maxima 5x RT Buffer/Maxima H-RT (Thermo Fisher Scientific Cat No. EPO0753) 

• 10 mM dNTPs (New England BioLabs Cat No. N0447L) 

• dN-SMART Oligo (Order from IDT) 

• UltraPure Distilled Water (Thermo Fisher Scientific Cat No. 10977023) 

• Klenow Exo- (New England BioLabs Cat No. M0212S) 

• 30% PEG8000 (Sigma-Aldrich 89510-1KG-F) 

  



 253 

PCR Reagents 
• IS PCR Primer (Order from IDT) 

• KAPA HiFi Hotstart Readymix PCR Kit (Kapa Biosystems Cat No. KK-2602) 

  
Nextera Reagents 

• Nextera XT DNA Library Preparation Kit (96 samples) (Illumina FC-131-1096) 

• New-P5-SMART PCR Hybrid Oligo (Order from IDT) 

• Nextera N70X Oligo (Order from Illumina) 

  

Operating Equipment 
• Polycarbonate (PCTE) 0.01 micron 62x22 mm precut membranes, 100 count 

(Sterlitech Custom Order) 

• mRNA Capture Beads (Chemgenes Cat No. MACOSKO-2011-10) 

• Lifter Slips, 25x60mm (Electron Microscopy Science Cat No. 72186-60) 

• Agilent Clamps (Agilent Technologies Cat No. G2534A) 

  
Sequences 
Barcoded Bead SeqB: 

5’–Bead–Linker--TTTTTTTAAGCAGTGGTATCAACGCAGAGTAC- 
JJJJJJJJJJJJNNNNNNNNTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT--3’ 
 
Template Switching Oligo (TSO): 
AAGCAGTGGTATCAACGCAGAGTGAATrGrGrG  
 
dN-Smart Randomer (dN-SMRT): 
AAGCAGTGGTATCAACGCAGAGTGANNNGGNNNB 
 
Smart PCR Primer (TSO_PCR): 
AAGCAGTGGTATCAACGCAGAGT 
 
New-P5-SMART PCR Hybrid Oligo (P5-TSO_Hybrid):  
 
AATGATACGGCGACCACCGAGATCTACACGCCTGTC- 
CGCGGAAGCAGTGGTATCAACGCAGAGT*A*C 
  
Custom Read 1 Primer (Read_1_Custom_SeqB):          
GCCTGTCCGCGGAAGCAGTGGTATCAACGCAGAGTAC  
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Appendix E: Loss of DNA methyltransferase activity in 
primed human ES cells triggers increased cell-cell 

variability and transcriptional repression 

 

This appendix is adapted in accordance with The Company of Biologist’s open access 

policy from the following article published in Development: 

 

Tsankov, A.M.*, Wadsworth II, M.H.*, Akopian, A., Charlton, J., Allon, S.J., Arczewska, 

A., Mead, B.E., Drake, R.S., Smith, Z.D., Mikkelsen, T.S., Shalek, A.K., Meissner, A., 

“Loss of DNA methyltransferase activity in primed human ES cells triggers increased 

cell-cell variability and transcriptional repression,” Development, 146, (2019).  

 

* Denotes equal authorship 

 

 

Abstract 

Maintenance of pluripotency and specification towards a new cell fate are both dependent 

on precise interactions between extrinsic signals and transcriptional and epigenetic 

regulators. Directed methylation of cytosines by the de novo methyltransferases DNMT3A 

and DNMT3B plays an important role in facilitating proper differentiation, whereas DNMT1 

is essential for maintaining global methylation levels in all cell types. Here, we generated 

single-cell mRNA expression data from wild-type, DNMT3A, DNMT3A/3B and DNMT1 

knockout human embryonic stem cells and observed a widespread increase in cellular 

and transcriptional variability, even with limited changes in global methylation levels in the 

de novo knockouts. Furthermore, we found unexpected transcriptional repression upon 

either loss of the de novo methyltransferase DNMT3A or the double knockout of 

DNMT3A/ 3B that is further propagated upon differentiation to mesoderm and ectoderm. 

Taken together, our single-cell RNA-sequencing data provide a high-resolution view into 

the consequences of depleting the three catalytically active DNMTs in human pluripotent 

stem cells.  
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 INTRODUCTION 

Appendix E.1 Background 

Isogenic populations of cells can exhibit substantial phenotypic variation, which can, in 

turn, play an important role in development and in adapting to changing external 

conditions.1 Variation in gene expression, due to stochastic bursting and asymmetric 

division of key molecular drivers of cellular identity, accounts for a large amount of 

observed cell-to-cell (cell-cell) variability within a given cell type.2 Cellular heterogeneity 

has historically been measured using microscopy and fluorescent labeling of key markers. 

These techniques have high spatial and cellular resolution but rely on prior knowledge 

and a limited number of markers, making it difficult to assay cellular differences 

comprehensively. The advent of single- cell genomic methods now enables profiling of 

transcriptional, genetic and epigenetic variation between individual cells on a global scale 

that depends less on a priori hierarchies and predefined markers.3 

 

Single-cell RNA-sequencing (scRNA-seq), in particular, has led to remarkable advances 

in defining and refining the myriad cell states4,5, cell types6-8 and progenitors9,10 that are 

present during mammalian development and differentiation.11-14 This has been aided by 

computational advances in clustering and pseudotemporal ordering of single cells that 

have enabled accurate inference of cell states and developmental trajectories, 

respectively15-17. From a biological perspective, scRNA-seq has allowed the role of 

transcriptional heterogeneity to be explored. For example, single-cell profiling of mouse 

embryonic stem (ES) cells has revealed sporadic expression of polycomb targeted 

lineage regulators and less heterogeneity among pluripotency-associated genes in 2i 

versus serum growth conditions.18 These results suggest a model whereby mouse ES 

cells are afforded the opportunity to access lineage specification programs through 

stochastic expression of pluripotency factors and lineage regulators typically repressed 

by H3K27me3.  

 

DNA methylation also plays an important role in maintenance of and exit from 

pluripotency. Variation in DNA methylation modulates metastable switching in mouse ES 

cells between ZFP42 low and high states.19 Three catalytically active DNA 
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methyltransferases (DNMTs) are responsible for maintenance (DNMT1) and de novo 

DNA methylation (DNMT3A/3B) in mammals, and all three are essential for normal 

development.20 DNA methylation by DNMT3A/3B plays a particularly important role 

during development and ES cell differentiation21,22, and both catalytically active enzymes 

are highly expressed in undifferentiated cells. Bulk experiments have shown a limited 

global impact of DNMT3A/3B knockout on the global DNA methylation landscape in 

human ES cells.23 This limited effect may be, in part, a consequence of bulk 

measurements, and it remains unknown how these epigenetic regulators affect 

transcriptional variation at the single-cell level, including how this may bias differentiation 

to new cell fates. To study this, we utilized previously generated knockout cell lines23 in 

the undifferentiated and differentiated states to investigate the effects of these mutations 

on transcription at single-cell resolution.  

 
RESULTS 
Appendix E.2 Increased cellular variation in ES cells lacking DNMT3A and DNMT3A/3B 

To explore the role of DNMTs in transcriptional regulation within individual cells, we used 

Smart-Seq2-based scRNA-seq24 to profile three HUES64 human ES cell lines – wild type 

(WT), with homozygous catalytic disruption of DNMT3A (3AKO), and with double 

knockout of both DNMT3A/3B (DKO).23 Although the global decrease in methylation 

levels in the DKO cells is limited (Figure 1A), they have 10-fold more differentially 

methylated regions than 3AKO relative to WT.23 Dimensionality reduction showed that 

WT, 3AKO and DKO cells mostly cluster by cell line (Figure 1B). We found that 3AKO 

and DKO undifferentiated cells were equally dissimilar to WT ES cells (Figure 1C, top), 

which was unexpected given the much greater similarity in the global methylation 

landscape between WT and 3AKO bulk samples.23 Interestingly, we noticed a significantly 

higher intra-sample cell-cell distance in the DKO and 3AKO populations relative to WT 

(P<10−15, Wilcoxon signed rank test, Figure 1C, bottom).  

To control for the effect of background differentiation on our measure of cellular 

heterogeneity, we classified all cells as pluripotent, endoderm (dEN), mesoderm (dME) 

and ectoderm (dEC) using previously reported germ layer markers.21,25,26 We observed  
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Figure 1 | Increased cellular variation in DNMT3A and DNMT3A/3B knockout ES cells. (A) Violin plot 
of CpG methylation for wild-type (WT),DNMT3A−/−(3AKO)andDNMT3A/3B−/−(DKO) cells averaged 
across two replicates. Mean methylation level and number of CpGs per sample are shown at the bottom 
and black boxes within the violin plots represent the interquartile range. Data were obtained from Liao et 
al. (2015) and are available at GEO under accession numberGSE63281. (B) Dimensionality reduction of 
WT, 3AKO and DKO single ES cells (dots) using t-distributed stochastic neighbor embedding (t-SNE) and 
hierarchical clustering (bottom right) of the averaged expression profiles for sorted ES cells from each cell 
line. Samples 3AKO and DKO were more similar to each other than to WT ES cells. (C) Inter-sample (top) 
and intra-sample (bottom) density distribution of all pairwise cell-cell distances for WT, 3AKO and DKO 
cells. (D) Fraction ofWT, 3AKO and DKO cells classified into four categories: ES cell; endoderm (dEN); 
mesoderm (dME); and ectoderm (dEC). (E) Violin plots of ES cell, dEN, dME and dEC scores for WT, 3AKO 
and DKO samples: each dot represents anin silico-sorted undifferentiated cell. 

an increase in differentiated cells in DNMT mutant cells and a distinct bias towards 

ectoderm in 3AKO cells (Figure 1D). 

To control for the effect of background differentiation on our measure of cellular 

heterogeneity, we classified all cells as pluripotent, endoderm (dEN), mesoderm (dME) 

and ectoderm (dEC) using previously reported germ layer markers.21,25,26 We observed 

an increase in differentiated cells in DNMT mutant cells and a distinct bias towards 

ectoderm in 3AKO cells (Figure 1D). We then in silico sorted for all undifferentiated cells 

and found that the intra-sample cell-cell distance using only cells classified as pluripotent 

was also significantly higher in the mutant cell lines relative to WT (P<10−15, Wilcoxon 

signed rank test; Figure S1A). Our results were unchanged when repeating this analysis 

using three different cell-cell distance metrics (Euclidean, Manhattan, Spearman 

correlation; see Materials and Methods) and after controlling for data quality by focusing 
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the analysis on the highest-quality ES cells (Figure S1B, C). Among undifferentiated 

3AKO and DKO cells, we also found increased variation in pluripotency, ectoderm and 

endoderm scores (Figure 1E). Taken together, these results suggest increased cell- cell 

transcriptional variation that may affect the differentiation potential in 3AKO and DKO 

cells.  

Appendix E.3 DNA methylation and transcript variation in DNMT3A/3B knockouts 

To further examine whether disruption of the de novo methyltransferases also increases 

global transcriptional variability, we computed the dispersion – log(variance/mean) – and 

standard deviation in expression for every gene within each sample population (Figure 
2A; Figure S2A left). DKO and 3AKO showed a significant increase in transcript variation 

at all genes relative to WT using both metrics (P<10−15, Wilcoxon signed rank test; 

Figure 2A) that associated with a corresponding decrease in mean promoter methylation 

level (Figure 2B). To control for the impact of technical dropouts on our measurements 

of transcript variation, we explicitly modeled three parameters for the expression of each 

gene: the fraction of cells with no detectable expression (α), and the mean (μ) and 

standard deviation (σ) of expression among only detectably expressing cells.5,27 As an 

example, the transcriptional variation of CTCFL increased in DKO versus WT cells as 

measured both by dispersion and by σ, whereas α decreased (Figure 2C). As observed 

using dispersion, we also confirmed a global increase in transcriptional variation using σ 

in the DNMT mutants relative to WT cells (Figure S2A, right). Globally, we found that 

difference in dispersion was highly correlated with difference in σ (r=0.75) but not with 

difference in α (r=−0.04, Fig. 2D), indicating that changes in the fraction of cells with 

detectable expression between samples does not associate with the global increase in 

transcriptional variation we report among DNMT mutant and WT ES cells. Consistent with 

the increased variation in pluripotency scores (Figure 1E), we also observed a significant 

increase in standard deviation of expression across all cells and cells with detectable 

expression (σ) at pluripotency gene markers (P<10−6, Wilcoxon signed rank test; Figure 
S2A), indicating that DNMT disruption leads to more variable expression of key 

pluripotency genes. We further quantified the relationship between changes in dispersion 

and average expression. We found 4740 and 1139 genes with a higher dispersion 
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(difference greater than 1.5) in the DNMT mutants and WT cells, respectively; of those, 

92% and 97%, respectively, also displayed a higher mean expression in the sample with 

higher dispersion (Figure S2B). We confirmed the trends in transcriptional variation that 

we observed in the scRNA-seq data from WT and 3AKO cells for ZFP42, MAP4K4 and 

RAD51 using RNA fluorescence in situ hybridization (FISH; Figure 2E,F; Figure S2C). 

The standard deviation of gene expression for ZFP42 using RNA FISH was slightly higher 

in WT versus 3AKO, whereas the difference in transcriptional variation was more 

pronounced between the two conditions for MAP4K4 and RAD51. In summary, we find 

increased transcriptional variation in undifferentiated 3AKO and DKO cells at genes that 

predominantly increase in mean expression; however, this increase in transcript variation 

is uncorrelated with dropout rate in our scRNA-seq data. 

Changes in DNA methylation variability have been linked to cancer risk markers, higher 

order chromatin organization and variability in gene expression across cancer patients.28-

30 DNA methylation variability can be measured in phase at the individual read level using 

bisulfite sequencing, whereby each read can be considered to derive from a different cell. 

Globally, an increase in the percentage of reads displaying discordant methylation states 

was reported for DKO, but not for 3AKO, relative to WT ES cells.23 In addition, we 

measured the normalized methylation entropy (NME)29, an alternative approach based 

on statistical physics and information theory, and found that NME increased slightly in 

3AKO and drastically in DKO relative to WT as mean methylation level decreased (Figure 
2G). Density scatter plots showed that the increase in NME was largely due to a shift of 

high methylation level CpGs with low entropy in WT to intermediate methylation level 

CpGs with high entropy in DKO (Figure 2H). As the DKO-specific increase in NME does 

not appear to be proportional to the increase in transcriptional variation observed in both 

3AKO and DKO, it suggests that genome-wide DNA methylation variability does not fully 

explain global transcript variation. 

To further explore the relationship between DNA methylation and transcriptional 

dispersion at a single-cell level, we focused our analysis on gene promoters. We initially 

performed promoter epigenetic state enrichment analysis in ES cells21 for the most and 

least transcriptionally variable genes in WT, 3AKO and DKO samples, and found an 
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Figure 2 | Relationship between DNA methylation level, mean methylation entropy and transcript 
variation in DNMT3A and DNMT3A/3B knockout. (A) Boxplots of gene expression dispersion distribution, 
log(variance/mean), for all genes, ES cell markers and WT low dispersion genes for WT, 3AKO and DKOES 
cells. (B) Violin plots of promoter mean CpG methylation for all genes, ES cell markers and WT low 
dispersion genes from WT, 3AKO and DKO ES cell bulk samples, averaged across two replicates. Dots 
represent the mean and lines extend at most one standard deviation from the mean. (C) Histograms of 
CTCFL expression in WT (top) and DKO (bottom) cells binned at intervals of 0.5 log(TPM+1) expression 
levels and normalized to the total cell counts. The three parameters that are estimated for CTCFL gene 
expression distribution (α,μ and σ) are shown in blue, orange and green, respectively. Dispersion for CTCFL 
increases and coincides with an increase in σ and as well as a decrease inα. (D) Scatter plots of the 
difference in dispersion,log(variance/mean) and parameters σ(left) andα(right) in DKO versus WT cells. We 
observe a high correlation between dispersion and σ difference (r=0.75) but not between dispersion and α 
difference (r=−0.04). (E) Left: representative images of RNA FISH with probes targeting ZFP42 (red) in WT 
(left) and 3AKO (right) ES cells. Cell segmentation is shown using white outlines. Scale bars: 10μm. Right: 
box plots of ZFP42 (left), MAP4K4 (middle) and RAD51 (right) integrated probe intensity summed over the 
volume of the cell for WT, 3AKO and unstained (Unst.) ES cells. (F) Violin plots of log(TPM+1) gene 
expression for ZFP42 (left), MAP4K4(middle) and RAD51 (right) in WT and 3AKO ES cell scRNA-seq data 
show similar trends in transcript variation as the RNA FISH experiment for these three genes. (G) 
Normalized methylation entropy (NME; left) and mean methylation level (MML; right) measured using WT, 
3AKO and DKO ES cell whole genome bisulfite sequencing data across all chromosome 21 and 22 CpGs 
using the approach in Jenkinson et al. (2017). (H) Smoothed scatter plot with color intensity showing density 
of all chromosome 21 and 22 CpGs NME versus MML data. For WT, most CpGs have high MML and low 
NME (dark blue, bottom right). DKO CpGs with high NME spread across a lower MML (middle top of DKO 
plot; intensity gets darker), consistent with the global loss of methylation in the DKO sample. Box plots: 
boxes display the interquartile range, horizontal line within the box shows the median, whiskers extend to 
the most extreme data point that is no morethan 1.5 times the length of the interquartile range. 

association between low dispersion genes and H3K9me3-enriched or highly methylated 

promoters in WT cells (Figure S2D). In contrast, whereas genes with H3K9me3-enriched 

promoters also correlated with genes of lowest transcriptional variance in 3AKO and DKO 

cells, high methylation promoters showed low to no correlation (Figure S2D). Consistent 

with this result, for the least variable genes in WT ES cells, we found a significant increase 
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in mean expression and transcriptional dispersion in 3AKO and DKO samples (P<10−15, 

Wilcoxon signed rank test; Figure 2A, right) and a concomitant decrease in DNA 

methylation at the corresponding promoters (Figure 2B). This implies that the expression 

of low dispersion genes in WT is regulated, in part, by the DNA methylation level. Although 

mean methylation and transcript dispersion levels appear to correlate at these genes, the 

same correlation is not apparent when comparing promoter mean NME and 

transcriptional variation globally, as measured by gene dispersion or σ (Figure S2E,F). 

Together, this suggests that the increase in transcript variability observed after loss of 

DNMT3A/3B associates with loss of methylation at a subset of promoters but not globally.  

Appendix E.4 Widespread transcriptional repression and super-enhancer misregulation 

To better understand the regulatory changes that underlie the observed transcriptional 

dynamics in the DNMT3A/3B mutants, we identified all three-way differentially expressed 

genes between WT, 3AKO and DKO sorted samples (Figure 3A). We found that the vast 

majority of genes were repressed (1964) rather than activated (470) relative to WT, which 

was somewhat unexpected given that loss of methylation is typically more associated 

with gene activation. Among the most downregulated genes in human ES cells, we 

observed a number of zinc fingers and important pluripotency transcription factors (TFs), 

including ZFP42, PRDM14, NANOG, POU5F1 and MYC (Appendix B, Table S1). 

Interestingly, the latter three TFs showed lower expression in 3AKO than DKO despite 

the DKO being generated through a DNMT3B deletion in the DNMT3A knockouts.23 We 

also found a number of housekeeping genes with reduced expression, including those 

encoding actins, heterogeneous nuclear ribonucleoproteins (HNRNPs) and proteasome 

genes.  

We next performed a comprehensive search for promoter enrichment against published 

DNA methylation, histone modification and TF binding data from matched samples 

(Figure 3B) to explore the potential underlying mechanism.21,23,25,26 We found a 

significant association between loss of promoter methylation and expression increase, as 

illustrated at the CTCFL locus (Figure 3C, top). Surprisingly, we also identified 152 and 

82 promoters that increased in DNA methylation (e.g. ZFP42; Figure 3C, bottom) in 
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Figure 3 | Global transcriptional repression and altered regulation in DNMT3A and DNMT3A/3B knockout  
ES cells. (A) Differentially expressed genes (right;rows) for sorted populations of WT, 3AKO and DKO ES cells 
(columns). Genes are separated into six gene sets [left: 100 (n=1443), 101 (n=191), 110 (n=330), 011(n=229), 
010 (n=143) and 001 (n=98)], where 1 or 0 indicates high or low expression for the respective condition (order: 
WT, 3AKO, DKO). (B) Genomic enrichment analysis for gene sets (columns) defined in panel A against CpG 
density features, epigenetic and TF binding data collected in matching WT ES cells (Gifford et al., 2013; Tsankov 
et al., 2015b). (C) Top: distribution (dots indicate individual cells) of CTCFL expression (left) and the 
corresponding CpG methylation levels at the CTCFL locus for WT, 3AKO and DKO ES cells. Bottom: ZFP42 
cellular expression (left) and promoter methylation (right) as described above. (D) Of all 684 H1 ES cell super-
enhancers (Hnisz et al., 2013), 321 (47%) are located within 1 kb of a DKO DMR (displayed in black). In total, 
734 DKO DMRs (of44,244 total) were associated with super-enhancers, and are defined as regions with 
difference in methylation>0.6 relative to WT, withP<0.01 (F-test). (E) Functional enrichment analysis for the gene 
sets defined in panel A against the REACTOME database. (F) Distribution of cell cycle phase-specific expression 
for sorted WT, 3AKO and DKO ES cells considering all genes, cell cycle annotated genes and differentially 
expressed cell cycle annotated genes. Error bars indicate one standard deviation. DMR, differentially methylated 
region; K, lysine on histone 3; me3, tri-methylation; ac, acetylation; me1, mono-methylation. 

3AKO and DKO, respectively, which overlapped significantly with decreased expression 

in the mutants (Figure 3B). Genes repressed in the knockouts frequently had high CpG-

dense promoters that were enriched for active histone modification in WT cells (H3K27ac 

and, to a lesser degree, H3K4me3 and H3K4me1; Figure 3B). DNMT3A and DNMT3B 

have previously been shown to occupy active enhancers, and knockdowns of the de novo 

methyltransferases reduced super- enhancer activity and disrupted homeostasis in 

epidermal stem cells.31 In our dataset, repressed genes (e.g. NANOG, POU5F1) 
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associated significantly with upstream H3K27ac and H3K4me1 super-enhancers, 

suggesting a similar role for the de novo methyltransferases at super-enhancers in human 

ES cells. We also found that nearly half of human ES cell super-enhancers32 showed 

drastic changes in methylation levels in DKO (Figure 3D; Figure S3A), suggesting that 

DNMT3A/3B shape the methylation landscape near super-enhancers. We further 

identified high enrichment for in vivo binding of a number of key pluripotency associated 

TFs upstream of 3AKO and DKO repressed genes, including MYC, NANOG, and 

POU5F1. As these factors occupy 76% of downregulated gene promoters in WT ES cells, 

a large fraction of the repressed phenotype may be mediated by their decreased 

expression and/or activity in the mutants. Taken together, loss of DNMT3A and 

DNMT3A/3B appears to interfere with normal super-enhancer activity upstream of 

pluripotency associated regulators, leading to downregulation of these core ES cell TFs 

and their downstream targets.  

Appendix E.5 Loss of DNMT3A/3B alters cell cycle gene expression  

We next performed gene set enrichment analysis and observed that genes upregulated 

in the 3AKO and DKO mutants included those encoding a number of ribosomal proteins 

(e.g. RPL13/31) that are associated with the influenza life cycle and viral RNA 

transcription and replication (Figure 3E, bottom). Combined with the observation that 

ERVH48-1 and ERVH-1 are also upregulated in the DKO, these changes in expression 

point to increased activity of endogenous retroviral elements. Interestingly, we also found 

that downregulated genes associated with a number of cell cycle categories, including 

gene sets related to G1/S transition and the establishment of checkpoints (Figure 3E, 
top).  

To investigate possible cell cycle alterations in the DNMT3A/3B mutants, we identified all 

differentially expressed cell cycle annotated genes in the WT, 3AKO and DKO ES cell 

samples (Figure S3B). We found decreased expression relative to WT ES cells in a 

number of key cell cycle genes (e.g. TP53, MCM2/3/4/5/6 and ORC1/2/5; Figure S3B) 

that were also downregulated during normal differentiation.21 We also observed 

downregulation of CDK4/6 and upregulation of CCND1 in the 3AKO, which has previously 
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been observed during normal ectoderm differentiation.21 Although the proportion of cells 

in different phases of the cell cycle is similar for all three samples (Figure S3C), we found 

a global shift from constant to phase-specific cell cycle expression in the DNMT3A/3B 

mutants at all genes and, especially, at ones annotated to have cell cycle function (Figure 
3F). Taken together, our data show a global change in expression of cell cycle-associated 

genes upon DNMT3A/3B loss with increases in phase-specific cell cycle expression that 

suggest the establishment of a regulated G1/S transition and cell cycle checkpoints 

relative to WT human ES cells.  

Appendix E.6 Aberrant expression following ES cell differentiation of DNMT3A/3B 

knockouts 

To investigate whether and how the observed transcriptional changes in the knockouts 

affect cellular specification, we differentiated all three cell lines for 5 days towards dME 

and dEC followed by scRNA-seq. Dimensionality reduction showed that cells clustered 

primarily by cell type and sample identity (Figure 4A). We observed a similar proportion 

of dME- and dEC-positive cells between knockout and WT samples following 

differentiation (Fig. 4B). The spread of dEC scores was similar across WT, 3AKO and 

DKO dEC samples, whereas variation in dME scores was slightly greater in the 3AKO 

dME sample relative to WT and DKO (Figure S4A). Population averaged transcriptomes 

for all samples clustered by cell type (Figure 4C) and showed that dEC samples were 

more similar to ES cells than dME samples, which is consistent with the inherent dEC 

bias we noted in 3AKO and DKO ES cells (Figure 1D, E). In line with our ES cell results, 

we found that the DKO dME/dEC cells were slightly more similar to WT dME/dEC than 

3AKO dME/dEC cells (Figure 4D, left). We also observed an increase in intra- sample 

cell distance in the knockouts versus WT for both dME and dEC (Figure 4D, right), 
although the difference was not as pronounced as in ES cells (Figure 1C). 

We then identified all differentially expressed genes in WT, 3AKO and DKO dME and 

dEC samples and compared them with the ES cell populations. We found that in dME 

36% and in dEC 34% of differentially expressed genes had a similar change in expression 

in the ES cell mutants, including 59% in dME and 42% in dEC of the genes repressed in 

both ES cell knockouts (Figure 4E). These genes included ZFP42 (Figure S4B), actin 
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family genes and proteasome genes (Figure 4F,G, gene set 100.1), and associated with 

some of the same functional categories as repressed genes in the ES cell knockouts (e.g. 

protein metabolism, immune system, apoptosis; Figure 4H). In dME, a number of genes 

associated with extracellular matrix organization and collagen formation (BMP1, 

COL4A1/2/6) were downregulated uniquely in dME DNMT mutants and not in ES cells 

(Figure 4H, gene set 100.0). We saw a similar enrichment for translation and viral 

response for upregulated genes in both ES cell and dME knockouts versus WT (Figure 
4H, gene set 011.1, e.g. RPS19/27/28), and enrichment for mRNA processing and 

splicing pathways for dME-specific knockout activated genes (Figure 4H, gene set 

011.0).  

 

To investigate the underlying mechanisms that may explain the transcriptional changes 

in the dME and dEC knockouts, we overlapped the promoter epigenetic state with 

differentially expressed gene categories. We found that genes that gain methylation in 

the three germ layers are also upregulated in DKO but not in 3AKO dME, suggesting that 

DNMT3B may compensate for DNMT3A loss at these lineage-specific targets (Figure 
S4C). This trend was also notable in dEC but to a lesser degree (Figure S4D). Further, 

we observed enrichment of high-CpG promoters (HCP) and CpG islands for inherited 

repressed genes (100.1) but not for dME- or dEC-specific repressed genes (100.0). 

Finally, we found an enrichment for genes downstream of super-enhancers being 

misregulated in dEC knockouts relative to WT, including FGFR1 (gene set 101), SOX11 

(011) and NR6A1 (010). In dME, we found an association between dME upstream super-

enhancers and dME- specific gene repression (gene set 100.0), including COL4A1/2, 

KRT8, CD99, and the TF HAND1, which may point to a cell type- specific role of 

DNMT3A/3B at dME super-enhancers. Moreover, downregulation of HAND1 may 

mediate further downstream repression at its dME targets, as we observed for core TFs 

POU5F1 and NANOG in undifferentiated DNMT3A/3B knockouts. 

 

We also found a number of TFs with important roles in developmental processes and 

oncogenesis to be aberrantly expressed in the dEC and dME DNMT mutants relative to 

WT. In dEC, genes encoding key TFs associated with ectoderm lineage development  



 
266 

Figure 4 | Transcriptional 
changes and mis-regulation 
in DNMT3A/3B knockout 
cells during ES cell 
differentiation. (A) 
Dimensionality reduction of 
wild-type (WT), DNMT3A 
knockout(3AKO) and 
DNMT3A/3B knockout (DKO) 
single ES, mesoderm (dME) 
and ectoderm (dEC) cells (dots) 
using t-distributed stochastic 
neighbor embedding (t-SNE). 
Number of cells is shown in 
parentheses. (B) Fraction of 
WT, 3AKO and DKO mesoderm 
(left)and ectoderm (right) cells 
classified into four cell types 
(ES cell, dEN, dME, dEC). (C) 
Hierarchical clustering of the 
averaged expression profiles 
for all sorted samples. (D) Inter-
sample (left) and intra-sample 
(right) density distribution of all 
pairwise cell-cell distances (1–
Pearson correlation coefficient) 
for WT, 3AKO and DKO dME 
(top) and dEC (bottom) cells. 
(E) Fraction of differentially 
expressed genes in dME (red) 
and dEC (blue) that were not 
already present in ES cells, or 
are dME/dEC unique. Gene 
sets are defined in the legend 
for F. (F) Differentially 
expressed genes (right; rows) 
for sorted population of WT, 
3AKO and DKO ES and 
mesoderm cells (columns). 
Genes are separated into eight 
gene sets (left: 100.1, 100.0, 
101, 110, 011.1, 011.0, 010 and 
001), for which 1 or 0 indicates 
high or low expression, 
respectively, for each condition 

(order: dME WT, 3AKO, DKO). Suffix .1 indicates inherited from ES cells whereas .0 indicates dME unique. 
(G) Differentially expressed genes (right; rows) for sorted population of WT, 3AKO and DKO ES and 
ectoderm cells (columns). Genes are separated into eight gene sets as described above. (H) Functional 
enrichment analysis for the dME gene sets defined in F against the REACTOME database. (I) Distribution 
of gene expression, log(TPM+1), for selected TFs aberrantly expressed in 3AKO and DKO dME cells, 
relative to WT. Dots represent cells. (J) CpG methylation levels at theHOXB1locus for ES, dEN, dME, 3AKO 
ES and 3AKO dEN cells. TheHOXB1promoter is highlighted with a gray bar and the mean promoter 
methylation level is listed on the right. 
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were specifically downregulated in DKO (e.g. PAX3, NR2F1/2), upregulated in both 

mutants (e.g. SOX11) or upregulated in 3AKO relative to WT (e.g. SOX9, ZIC2, POU4F1, 

PAX7; Figure S4E). Moreover, key pluripotency TFs, such as POU5F1, with a promoter 

that is focally methylated during differentiation, and PRDM1, along with POU domain TFs 

POU5F2 and POU2F2, were specifically upregulated in the DKO dEC sample relative to 

WT (Figure S4E, bottom). This was accompanied by an increase in the median and 

standard deviation of ES cell scores observed in dEC DKO cells versus WT (Figure S4F). 

In dME, TFs MEIS1, PBX1, HOXB1 and S OX4 were upregulated in the 3AKO cells 

relative to WT (Figure 4I). As the promoter methylation of HOXB1 increases drastically 

during ES cell differentiation towards dEN and dME, and this gain in dEN depends on the 

catalytic activity of DNMT3A (Fig. 4J), it is likely that the HOXB1 promoter methylation is 

misregulated in a similar manner in dME cells lacking DNMT3A. Although we do not 

observe a change in promoter methylation for the genes encoding TFs MEIS1 and SOX4, 

their expression is correlated with HOXB1 (r=0.2, P value<0.05; Pearson) implying that 

these TFs are co-regulated as part of the same gene expression program. Finally, we 

observed aberrant expression for a number of cell cycle annotated genes and key 

transcriptional regulators in the knockouts after dME and dEC differentiation. In dME 

mutants, and especially in 3AKO, we observed downregulation of mitosis-associated 

genes CDK1 and CCNA2 (Figure S4G) as well as cell cycle-associated genes linked to 

lineage choice (CCND1, CCND3, CDKN1A). In dEC mutants, a number of S-phase genes 

were downregulated (MCM2/5/7) as well as CCND1 (Figure 4G), which acts to block 

endoderm formation in late G1 phase33 and promotes neuroectoderm cell fate.34 In both 

dME and dEC, we observed a similar proportion of cells in different phases of the cell 

cycle (Figure S4H) and levels of phase-specific expression (Figure S4I).  
 

Appendix E.7 Loss of DNMT1 triggers increased transcript variation and differentiation 

To complement our results from the de novo DNA methyltransferases, we explored the 

effects of loss of the maintenance enzyme DNMT1. Loss of DNMT1 results in a global 

loss of DNA methylation rather than the limited dynamics we find in the DNMT3 

knockouts.23 Specifically, we utilized our previously established doxycycline-inducible 

downregulation of DNMT1 system and collected live cells every day for 8 days for single 
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cell methylation profiling and at day 0, 2 and 8 following doxycycline treatment for scRNA-

seq. We observed global loss of methylation in all the profiled cells beginning at day 2, 

which plateaued at a minimum at around day 6 to 8 (Figure 5A). Dimensionality reduction 

of the scRNA-seq revealed a high similarity between most day 0 and day 2 cells, with a 

gradual departure from WT for some day 2 cells and all day 8 cells (Figure 5B). 

Quantifying cell type identity (Figure 5C) showed an increase in cells exiting pluripotency 

at day 8, with a preference of escape towards ectoderm, as observed in 3AKO and DKO. 

We found that both the population average similarity between in silico-sorted 

undifferentiated samples (Figure 5B, bottom right) and the inter-sample ES cell distance 

versus day 0 (Figure 5D, top) increased with time after doxycycline induction. We also 

observed an increase in intra-sample cell-cell distance at day 2 and day 8 compared with 

day 0 (Figure 5D, bottom), and note that the heterogeneity at day 8 exceeds that found 

in the DNMT3A/3B knockout ES cells (Figure 1C). Variation in gene expression also 

increased at day 2 and day 8 for all genes, pluripotent markers and the least variable WT 

genes (P<10−8, Wilcoxon signed rank test; Figure 5E). Our results were consistent after 

controlling for differences in data quality and sequencing depth between samples. We 

again found an association between genes with the lowest expression dispersion and 

high methylation promoter occupancy at day 0, and this enrichment gradually decreased 

at day 2 and day 8, with downregulation of DNMT1 and concurrent global loss of 

methylation (Figure S5A), as we observed for 3AKO and DKO versus WT ES cells.  

 

To gain insight into the functional changes induced by downregulation of DNMT1, we 

identified all differentially expressed genes in ES cells collected at day 0, 2 and 8 (Figure 
5F). The majority (1638 of 2631; 62%) of day 8 differentially expressed genes were 

repressed relative to day 0, as observed in 3AKO and DKO ES cells. We found 

downregulation as early as day 2 of a number of ribosomal protein genes (e.g. RPS24/15, 

RPL12/19) associated with influenza life cycle (Figure 5G, gene set 100). At day 8, we 

observed a small downregulation of POU5F1 and other pluripotency-associated genes 

(e.g. CD24, DPPA4) and concomitant activation of NODAL signaling genes, including 

NODAL, CER1, LEFTY1/2 and downstream TF PITX2. We also note a shift in expression 

from glycolysis genes (e.g. GAPDH, PFKP/M) at day 0/2 to lipid metabolism at day 2 (e.g.  
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Figure 5 | Increased transcript variation and differentiation upon loss of DNMT1. (A) Violin plot of 
single cell methylation data, where each dot represents the average CpG methylation level per cell. Cells 
were collected for scRNA-seq after 0, 2 and 8 days of doxycycline treatment. (B) Dimensionality reduction 
of day 0, 2and 8 single cells (dots) using t-distributed stochastic neighbor embedding (t-SNE) and 
hierarchical clustering (bottom right) of the averaged expression profiles forin silico-sorted ES cell 
populations. (C) Fraction of cells classified into four categories (ES cell, dEN, dME, dEC) following 0, 2 and 
8 days of doxycycline treatment. (D) Inter-sample (top) and intra-sample (bottom) density distribution of all 
pairwise cell-cell distances for in silico-sorted ES cells at day 0, 2 and 8. (E) Box plots of gene expression 
dispersion distribution at all genes, ES cell markers, and WT low dispersion genes for sorted ES cell 
populations at day0,2 and 8. (F) Differentially expressed genes (right; rows) for sorted population of ES 
cells at day 0, 2 and 8 (columns). Genes are separated into six gene sets[left: 100 (n=337), 101 (n=36), 
110 (n=1301), 011 (n=349), 010 (n=139) and 001 (n=644)], where 1 or 0 indicates high or low expression 
for the respective condition (day 0, 2 and 8). (G) Functional enrichment analysis for the gene sets defined 
in F against the REACTOME database. 
 
FABP3, FADS2), to oxidative phosphorylation genes (MT-ND2, MT-ND4L) at day 8 

(Figure 5F,G). Finally, we observed changes in cell cycle regulation for ES cells that 

survived loss of methylation, including an increase in fraction of G2/M cells (Figure S5B) 

and increase in cell cycle phase-specific expression (Figure S5C). These changes might 

reflect a longer G2/M phase needed for methylation maintenance fidelity and compacting 

of chromosomes. Taken together, we observe repression at most differentially expressed 

genes and an increase in differentiation, as well as cellular and gene expression variation 

in ES cells upon loss of DNMT1. 
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Appendix E.8 Discussion and Conclusions 

Pluripotent stem cells are a powerful model to explore the targets and role of epigenetic 

regulators. We have previously generated knockout human ES cell lines for the three 

catalytically active DNA methyltransferases.23 With the advance of single- cell 

technologies, we wanted to explore the effects of these knockouts within individual cells 

to better understand how the subtle changes in the undifferentiated state translate to 

substantial disruptions upon exit from pluripotency.22 Using our scRNA-seq approach, we 

observed a global increase in cellular and gene expression variation for all DNMT 

mutants. As variability has been linked to the ability of a cell to evolve and adapt to a 

changing environment1, our results suggest that disruption of DNMTs may increase 

cellular plasticity. It would therefore be interesting in the future to explore the effects of 

this by tracking individual cells using molecular barcoding.36 

 

We also found two somewhat unexpected effects in the double knockout ES cells. First, 

we found widespread repression in gene expression upon loss of DNMT3A and 

DNMT3A/3B in the undifferentiated cells, particularly at genes associated with CpG 

islands and with H3K27ac super-enhancers. In epidermal stem cells, knockdown of the 

de novo methyltransferases triggers a reduction of super-enhancer activity31 and this may 

occur through a similar mechanism in human ES cells, albeit at different loci. In support 

of our findings, in epidermal stem cells we also observe 7765 genes that are 

downregulated versus 2136 upregulated (1.4 fold difference) in the DNMT3A knockdown 

versus control.31 Secondly, we do observe a gain of DNA methylation at selected sites in 

the 3AKO and DKO ES cells. As the latter are derived from the 3AKO this may be a 

consequence of DNMT3B activity. Known DNMT3B targets include germline genes and 

it will be interesting to explore how and why these additional loci are targeted in the mutant 

ES cells.  

 

Differentiation of 3AKO and DKO towards mesoderm and ectoderm showed that the 

knockout repressed genes were largely inherited from ES cells. We also observed that 

dME DNMT mutant repressed genes associated with super-enhancers in a mesoderm- 

specific manner. As core TFs (NANOG, POU5F1 in ES cells; HAND1 in mesoderm) are 
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associated with super-enhancers, we provide evidence that DNMT3A/3B disruption may 

lead to decreased expression of key cell identity TFs and their downstream targets. 

Furthermore, we find upregulation of a number of key developmental and oncogenic TFs 

in 3AKO mesoderm (e.g. MEIS1/2, PBX1, HOXB1, SOX4) and 3AKO ectoderm (SOX11, 

SOX9, ZIC2, POU4F1, PAX7). DNMT3A is often mutated in human tumors37, has been 

shown to act as a first hit mutation38, and its loss in hematopoietic stem cells and the 

epidermis promotes leukemia and squamous cell carcinoma formation, respectively.39,40 

It will be interesting in the future to further explore the possible role of increased 

transcriptional variability in tumor initiation and progression. Taken together, we show that 

combining scRNA-seq and genetic perturbations presents a powerful tool for dissecting 

the role of epigenetic regulators in development and disease.  

 
MATERIALS AND METHODS 

Appendix E.9 Human ES cell culture 

Cell culture was carried out as reported previously.26 Briefly, we chose the National 

Institutes of Health-approved, male human ES cell line HUES64 because it has 

maintained a stable karyotype over many passages and is able to differentiate well into 

mesoderm and ectoderm. The cells are frequently tested for mycoplasma and identity for 

the knockout cell lines was confirmed through genotyping PCR. ES cells were maintained 

on ∼15,000 cells/cm2 irradiated murine embryonic fibroblasts (MEFs, MTI-GlobalStem) 

and cultured in 20% KnockOut Serum Replacement (KSR, Life Technologies), 200 mM 

Glutamax (Life Technologies), 1X Minimal Essential Medium (MEM) Non-essential Amino 

Acids Solution (Life Technologies), 10 μg/ml basic fibroblast growth factor (bFGF, 

Millipore), 55 μM β-mercaptoethanol in Knockout Dulbecco’s Modified Eagle Medium (KO 

DMEM, Life Technologies). ES cells were passaged every 4-5 days using 1 mg/ml 

Collagenase IV (Life Technologies). All human ES cell work has been approved by the 

Harvard University ESCRO (#E00021).  
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Appendix E.10 Directed differentiation of human ES cells towards mesoderm and 

ectoderm 

When human ES cells reached 60-70% confluency on MEFs, the cells were plated as 

clumps on 6-well plates coated with Matrigel (Life Technologies) in mTeSR1 basal 

medium (Stemcell Technologies). We maintained the cells for 3 days in feeder-free 

culture and then induced directed differentiation towards mesoderm and ectoderm. For 

the first 24h of mesoderm differentiation, cells were cultured in DMEM/F12 medium 

supplemented with 100 ng/ml Activin A (R&D Systems), 10 ng/ml bFGF (Millipore), 100 

ng/ml BMP4 (R&D Systems), 100 ng/ml VEGF (R&D Systems), 0.5% fetal bovine serum 

(Hyclone), 200 mM GlutaMax (Life Technologies), 0.2× MEM Non-essential Amino Acids 

Solution (Life Technologies) and 55 μM β-mercaptoethanol. From 24 to 120 h of 

mesoderm differentiation, Activin A was removed from the culture. To induce ectoderm 

differentiation, cells were cultured for 5 days in DMEM/F12 differentiation media 

supplemented with 2 μM TGFβ inhibitor (Tocris, A83-01), 2 μM WNT3A inhibitor (Tocris, 

PNU-74654), 2 μM Dorsomorphin BMP inhibitor (Tocris), 55 μM β-mercaptoethanol, 1× 

MEM Non-essential Amino Acids Solution (Life Technologies) and 15% KOSR (Life 

Technologies). Media were changed daily. Before inducing differentiation, we manually 

removed the differentiated cell clumps.  

 

Appendix E.11 Cell collection and fluorescence-activated cell sorting  

Cells were treated with StemPro Accutase (Life Technologies, #A1110501) for 5 min, 

quenched in MEF medium and pelleted using centrifugation [5 min, 1000 rpm (94 g)]. 

Media was aspirated and cell pellets were washed once in PBS. RNA was immediately 

stabilized by resuspending the cells in RNAprotect Cell Reagent (∼100 μl per 100,000 

cells, Qiagen, #76526) and 1μl of RNaseOUT Recombinant Ribonuclease Inhibitor (Life 

Technologies, #10777-019). Before sorting, cells in RNAprotect Cell Reagent were 

diluted in ∼1.5 ml PBS (pH 7.4; no calcium, no magnesium, no phenol red; Life 

Technologies, #10010-049). Also, 5 μl of lysis buffer, composed of a 1/500 dilution of 

Phusion HF buffer (New England Biolabs, #B0518S) was aliquoted in Eppendorf 96-well 

skirted plates (VWR, #95041-430). Cells were sorted individually in each well of 96-well 

plates using the FACSAria II flow cytometer (BD Biosciences), avoiding doublets and cell 
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debris. After sorting, plates were immediately sealed, spun down, frozen on dry ice and 

stored at −80°C.  

 

Appendix E.12 Cell culture, fixation and FISH  

Human ES cells were dissociated to single cells using Accutase (Life Technologies, 

A11105-01), and 30,000 cells were plated per well of 96-well imaging plate coated with 

Geltrex (Gibco) in mTeSR1 media. The culture media were changed daily and fixed on 

the third day when cells were ∼90% confluent. Before fixing they were stained with 2uM 

CFSE for 20 min in the incubator. The cells were fixed in 4% formaldehyde solution while 

covered with aluminum foil for 30 min at room temperature and then dehydrated in 50%, 

70% and 100% ethanol for 2 min each concentration. The plates were stored in 100% 

ethanol in a −20°C chest freezer.  

 

Following fixation, expression levels of three different mRNA transcripts were measured 

in situ using RNA-FISH probes (Thermo Fisher Scientific) as previously described.4 

Briefly, the ViewRNA ISH Cell Assay Kit (Invitrogen) was performed to stain cells 

according to the manufacturer’s recommendations. Following staining, cells were imaged 

on an Olympus IX83 inverted microscope using 405 nm excitation for the DAPI stain and 

647 nm excitation for the RNA-FISH probes. To quantify RNA expression, single cells 

were segmented using CellProfiler, and their total probe content was summed over the 

volume of the cell. Integrated probe intensity box plots were generated to confirm 

qualitative agreement between RNA-FISH and scRNA-seq.  

 

Appendix E.13 scRNA-seq  

Following sorting, 96-well plates of single cells were whole-transcriptome amplified using 

a Smart-Seq2-based approach, as previously described.41 Cell lysates were first cleaned 

with 2.2× volume AMPure XP SPRI beads (Beckman Coulter). Reverse transcription and 

PCR were then performed on the samples. Following whole-transcriptome amplification, 

PCR products were cleaned with 0.9× volume SPRI beads and eluted into 20 μl of water. 

Concentration of cDNA in the resulting solution was determined using a Qubit 3.0 

Fluorimeter (Thermo Fisher Scientific) and analyzed using a high sensitivity DNA chip for 
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BioAnalyzer (Agilent Technologies). Whole-transcriptome amplification products were 

diluted to a concentration of 0.1 to 0.4 ng/μl and tagmented and amplified using Nextera 

XT DNA Sample preparation reagents (Illumina). Tagmentation was performed according 

to the manufacturer’s instructions, modified to use one quarter of the recommended 

volume of reagents, extended tagmentation time to 10 min and extended PCR time to 60 

s. PCR primers were ordered from Integrated DNA Technologies. Primer sequences: 3′ 

SMART CDS Primer IIA: 5′ AAGCAGTGGTATCAACGCAGAGTACT(30)VN; SMARTer II 

A oligonucleotide: 5′ AAGCAGTGGTATCAACGCAGAGTACATrGrGrG; IS PCR primer: 

5′ AAGCAGTGGTATCAACGCAGAGT. Nextera products were then cleaned with 0.9× 

volume of SPRI beads and eluted in water. The library was quantified using Qubit and 

analyzed using a high-sensitivity DNA chip. The library was diluted to 2.2 pM and 

sequenced on a NextSeq 500 (Illumina).  

 

Appendix E.14 Processing of scRNA-seq data  

RNA-seq reads were first trimmed using Trimmomatic.42 Trimmed reads were aligned to 

the RefSeq hg38 genome and transcriptome (GRCh38.2) using Bowtie243 and TopHat44, 

respectively. The resulting transcriptome alignments were processed using RSEM to 

estimate the abundance of RefSeq transcripts45, in transcripts per million reads mapped 

(TPM). All cells with fewer than 2000 detectable transcripts (TPM>1) were removed from 

further analysis. Expression levels for gene i in sample j were quantified as 

Ei,j=log(TPMi,j+1). Relative expression level for gene i was computed within each 

subpopulation S as Eri;Sj 1⁄4 Ei;Sj –E^i;S, where E^i;S 1⁄4 average1⁄2Ei;S1...Sn or the 

mean expression of that gene across all cells within subpopulation S.  

 

Appendix E.15 Unsupervised dimensionality reduction  

To visualize cells in 2-dimensional space, we first performed principal component analysis 

(PCA) using the Seurat R package version 2.0 as previously described46 using highly 

variable genes of mean expression ≥1. We then determined the statistically significant 

principal components by calculating 1000 random permutations of 1% of genes in the 

data. We used all significant principal components (P<10-10) as input to non-linear 

dimensionality reduction via t-distributed stochastic neighbor embedding (t-SNE).  



 275 

 

Appendix E.16 Classification of cells into ES cells, endoderm, mesoderm and ectoderm 

We calculated ES cell, endoderm (dEN), mesoderm (dME) and ectoderm (dEC) scores 

for all cells by using the AddModuleScore function in Seurat with default parameters for 

the top 50 most uniquely expressed markers for the ES cell, dEN, dME and dEC purified 

populations21 that were also present in the scRNA-seq data. Uniqueness was defined as 

in previous studies.25 Cells were then classified into one of four cell types, based on the 

maximal ES cell, dEN, dME or dEC score. We obtained in silico-sorted populations of ES 

cells by filtering out all cells collected at day 0 that had an ES cell score ≥max [dEN score, 

dME score, dEC score]. We defined dEN, dME and dEC in silico-sorted populations 

similarly.  

 

Appendix E.17 Hierarchical clustering of sorted samples  

Relative expression values for all genes was averaged across all ES or dME cells for the 

defined subpopulations (WT ES cells, 3AKO, DKO, DNMT1−/− day 0, 2, 8). The mean 

relative expression values were then clustered using hierarchical clustering, average 

linkage, and 1−Pearson correlation coefficient (r) of all non-zero values as a distance 

metric.  

 

Appendix E.18 Inter- and intra-sample cell-cell distance  

Inter-sample cell-cell distance was computed by comparing all pairs of cells between two 

samples, using 1−Pearson correlation coefficient (r) of all non- zero values as a distance 

metric. Intra-sample cell-cell distance was computed by comparing all pairs of cells within 

a sample using the same distance metric. Cells in each comparison were in silico sorted 

to contain only ES (Figures 1, 2, 3 and 5), dME or dEC cells (Figure 4). Before computing 

the distance, all cells were quantile normalized to control for the total number of transcripts 

detected per cell. The same approach was applied for other distance metrics (Euclidean, 

Manhattan and 1-Spearman correlation).  
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Appendix E.19 Gene expression dispersion analysis  

To assay the level of transcriptional variation per gene, we first quantile normalized TPMs 

for all cells within each sample population and then computed the dispersion or 

log(variance/mean) for all genes. We also performed quantile normalization before 

computing other measures of transcript variation.  

 

Appendix E,20 Normalized methylation entropy analysis  

To compare the variability of methylation levels at the individual CpG and read level, we 

used ‘informMe’, an information-theoretic approach that uses the Ising model of statistical 

physics to generate mean methylation levels and normalized methylation entropy per 

CpG. We ran informME for WT, 3AKO and DKO data, for all CpGs located on 

chromosomes 21 and 22, and used R to plot the respective levels of mean methylation 

level (MML) and normalized methylation entropy (NME).  

 

Appendix E.21 Three-way differential expression analysis  

Differential expression was tested across all possible pairwise comparisons (100, 101, 

110, 011, 010 and 001) of three samples, where 1 or 0 indicates high or low expression 

for the respective sample (e.g. WT, 3AKO and DKO ES cells). To measure differential 

expression, we used the likelihood-ratio test for single-cell gene expression27 as 

implemented in the Seurat R package, requiring a P value≤10-8 and 1.22-fold change. For 

ease of visualization, differentially expressed genes were then combined into gene sets 

representing all possible three-way comparisons (100, 101, 110, 011, 010 and 001) and 

gene expression was row normalized across cells. Genes were only included in one gene 

set that had the highest P value in differential expression. The same analysis was 

performed to compare WT, 3AKO and DKO dME/dEC cells and day 0, 2 and 8 DNMT1-

depleted ES cells.  

 

Appendix E.22 Genomic region enrichment analysis  

We assessed the significance of overlap of any gene set against a number of predefined 

genomic regions that can be mapped to their nearest downstream gene. Significance was 

calculated using the hypergeometric distribution ith Bonferroni correction for multiple 
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hypotheses testing. The resulting P value was −log() transformed and displayed for a 

number of genomic regions (rows), including CpG density features, epigenetic, and TF 

binding data collected in matching WT, ES, or dME cells.21,26 This analysis was performed 

for gene sets predefined using the three-way differential expression analysis as well as 

for high and low dispersion set of genes for all samples.  

 

Appendix E.23 Gene set enrichment analysis  

Gene sets enrichment analysis (http://software.broadinstitute.org/gsea/) was performed 

on defined gene sets above selecting only for common pathways from the REACTOME 

database (http://www.reactome.org/).  

 

Appendix E.24 Cell cycle differential expressed genes and phase classification  

To show differentially expressed cell cycle annotated genes, we performed the three-way 

differential expression analysis as described above solely for genes related to the cell 

cycle.47,48 We used a less stringent threshold for displaying cell cycle annotated 

differentially expressed genes of P value≤10−4. For visualization, cells (columns) within 

each sample were ordered according to progress in the cell cycle, as previously 

described49, starting with M/G1 cells on the left and ending with G2/M cells on the right. 

Expression values were averaged using a 20-cell window.  

 

To assign cells according to cell cycle phase, we used a similar approach to that 

previously described.50 Briefly, we defined cell cycle phase-specific markers for G1/S, S, 

G2/M for ES, dME and dEC cells separately, keeping only genes in each predefined cell 

cycle phase gene set45 if they had a correlation r≥0.3 with the average gene set 

expression. The most predictive markers for M/G1 phase cells were key markers with a 

low expression in the other phases (G1/S, S, G2/M). Cells were quantile normalized in 

expression, which preserves the order in expression levels between genes within a cell. 

We then measured the cell cycle phase score of each cell as the average relative 

expression Eri, Sj of the selected cell cycle phase markers, where the M/G1 score was 

multiplied by −1, as it consisted of lowly expressed cell cycle markers for other phases. 
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We used these scores to assign single cells to phases of the cell cycle, according to their 

maximal score for the four cell cycle phases.  

 

Appendix E.25 Cell cycle phase-specific expression  

Phase-specific expression for each gene i that peaked in expression in phase j ( for 

example j=M/G1) was defined as Ei,j = Ei,M/G1 = Êi,M/G1 – average[Êi,G1/S,Êi,S,Êi,G2/M], where 

Êi,j represents the average expression of gene in all cells classified as phase j of the cell 

cycle for a given sorted population of cells. This analysis was repeated for all genes that 

peaked in expression in one of four possible phases of the cell cycle (M/G1, G1/S, S and 

G2/M). Bar plots for cell cycle phase-specific expression in different cell types display the 

mean phase specific expression for a given gene set (all genes, cell cycle genes or 

differentially expressed cell cycle genes); error bars represent one standard deviation.  
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Supplemental Information 
 

 
 
Figure S1 supporting Figure 1 | Increased cellular variation in DNMT3A and 
DNMT3A/3B knockout ES cells. (A) Inter-sample (top) and intra-sample (bottom) 

density distribution of pairwise cell-cell distances (1-Pearson correlation coefficient) for in 

silico sorted undifferentiated WT (n = 162), 3AKO (n = 74), and DKO cells (n = 74). (B) 
Inter-sample (top) and intra-sample (bottom) density distribution of pairwise cell-cell 

distances (1-Pearson correlation coefficient) for only the highest quality cells (number of 

genes detected > 7,000) for wildtype (n = 149), 3AKO (n = 56), and DKO (n = 58) ES 

cells. (C) Intra-sample density distribution of pairwise cell-cell distances in  in silico sorted 

undifferentiated WT (n = 162), 3AKO (n = 74), and DKO cells (n = 74) using four different 

distances: 1- Pearson correlation coefficient (top left), 1- Spearman rank correlation 

(bottom left), Euclidean L2 norm (top right) and Manhattan L1 norm (bottom right). 
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Figure S2 supporting Figure 2 | Relationship between DNA methylation level, mean 
methylation entropy and transcript variation in DNMT3A and DNMT3A/3B 
knockouts. (A) Box plots of gene expression standard deviation computed across all 

cells (left) and only among cells with detectable gene expression (σ, right) for gene sets 

composing of all genes, ES cell markers, and WT low dispersion genes for WT, 3AKO, 

and DKO ES cells. Boxes display the interquartile range while the bold line shows the 

median and whiskers extend to the most extreme data point that is no more than 1.5 times 

the interquartile range. (B) Violin plots of log gene expression level, log(TPM+1), for 50 

selected genes that have a difference in dispersion greater than 1.5 between two 

samples, where the samples being compared are annotated using column headers on 

the top and the overall number of genes present in each category is shown in 

parentheses. The change in average expression relative to dispersion is annotated along 

rows on the left. The majority of genes (>90%) that increase in dispersion also increase 

in average expression. TPM = transcripts per million fragments mapped. (C) 
Representative images of RNA FISH experiment showing staining for DAPI (blue) and 

red fluorescent probes targeting ZFP42 (left), MAP4K4 (middle) and RAD51 (right) in 

WT (top) and 3AKO (bottom) ES cells. Cell segmentation is shown using white outlines. 

White bar in bottom right corner of each panel indicates a distance of 10 microns. (D) 
Genomic enrichment analysis for high (left) and low (right) transcript dispersion genes in 

WT, 3AKO, and DKO sorted ES cells overlapped with the promoter epigenetic state of 

matching WT ES cells.21,26 We observe a high enrichment of highly methylated promoter 

regions at low dispersion WT genes but this enrichment decreases for low dispersion 

3AKO and DKO genes. (E) Boxplot of the promoter mean normalized methylation entropy 

(NME; left) and mean methylation level (MML; right) measured for WT, 3AKO, and DKO 

ES cell WGBS data for all chromosome 21 and 22 promoters using the approach in 

(Jenkinson et al., 2017). Boxes display the interquartile range while the bold line shows 

the median and whiskers extend to the most extreme data point that is no more than 1.5 

times the interquartile range. (F) Correlation scatter plots of transcriptional variation 

measured in terms of dispersion (top) and standard deviation (σ) of detectable transcripts 

(bottom) versus promoter mean normalized methylation entropy for all WT (left), 3AKO 

(middle) and DKO (right) promoters on chromosomes 21 and 22. 
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Figure S3 supporting Figure 3 | Widespread transcriptional repression and 
changes in cell cycle gene expression in DNMT3A and DNMT3A/B knockout ES 
cells. (A) Browser tracks display methylation levels for WT and DKO cells over a 28kb 

region on chromosome 5. Grey bars highlight DKO-specific differentially methylated 

regions (DMRs; difference > 0.6, P < 0.01). An ES cell super-enhancer (Hnisz et al., 2013) 

is highlighted in purple with ENCODE ChIP-seq data for H3K27ac and H3K4me1 in H1 

ES cells displayed below. CpGs located within the super-enhancer region lose substantial 

methylation upon loss of DNMT3A and 3B. (B) Differentially expressed cell cycle 

annotated genes (right; rows) for sorted population of WT, 3AKO, and DKO ES cells 

(columns) ordered by progressin the cell cycle. Gene sets (left) are defined in Figure 2A. 

(C) Fraction of cells in M/G1, G1/S, S, and G2/M phase for in silico sorted WT, 3AKO, 

and DKO ES cell populations. 
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Figure S4 supporting Figure 4 | Transcriptional misregulation in DNMT3A/B 
knockout cells following mesoderm differentiation. (A) Violin plot of mesoderm (left) 
and ectoderm (right) scores for WT, 3AKO, and DKO cells following 5 days of 

differentiation towards mesoderm and ectoderm, respectively. Each dot represents a cell. 

(B) Distribution of ZFP42 expression for in silico sorted WT, 3AKO, and DKO ES (left), 
mesoderm (middle), and ectoderm (right) cells. (C) Genomic enrichment analysis for 

gene sets (columns) defined in Figure 4F against DNA methylation, CpG density 

features, and chromatin data collected in matching WT dME cells.21,26 DMR = differentially 

methylated region; K = lysine histone 3; me3 = tri-methylation; ac = acetylation; me1 = 

mono-methylation. (D) Genomic enrichment analysis for gene sets (columns) defined in 

Figure 4G against DNA methylation, CpG density features, and chromatin data collected 

in matching WT dEC cells. (E) Violin plots of log(TPM+1) gene expression for key 

developmental and oncogenic TFs misregulated in dEC 3AKO and/or DKO mutants. TFs 

displayed were either downregulated in DKO (top row; gene set 110), upregulated in 

3AKO (middle row; gene sets 011 & 010), or upregulated in DKO (bottom row; gene 

set 001). (F) Violin plot of ES cell scores for WT, 3AKO, and DKO cells following 5 days 

of differentiation towards ectoderm. DKO dEC sample has a higher median and standard 

deviation in ES cell scores. (G) Differentially expressed cell cycle annotated genes (right; 

rows) for sorted population of WT, 3AKO, and DKO dME cells (columns) ordered by 

progress in the cell cycle. Gene sets (left) are defined in panel Figure 4F. (H) Fraction of 

cells in M/G1, G1/S, S, and G2/M phase for sorted WT, 3AKO, and DKO dME (left) and 

dEC (right) cell populations. (I) Distribution of cell cycle phase specific expression for 

sorted WT, 3AKO, and DKO dME (left) and dEC (right) cells considering all genes, cell 

cycle annotated genes, and differentially expressed cell cycle annotated genes. Error 

bars indicate one standard deviation. 



 289 

 
 
Figure S5 supporting Figure 5 | Loss of DNMT1 triggers increased transcript 
variation and differentiation. (A) Genomic enrichment analysis for high (left) and low 

(right) transcript dispersion genes at day 0, 2, and 8 sorted ES cells following DOX 

treatment overlapped with the promoter epigenetic state of WT HUES64 ES cells.21,26 We 

observe a high enrichment of highly methylated promoter regions at day 0 low dispersion 

genes but this enrichment gradually decreases for low dispersion day 2 and day 8 genes 

while the enrichment at H3K9me3 promoters remains. (B) Fraction of cells in M/G1, G1/S, 

S, and G2/M phase for in silico sorted ES cells at day 0, 2, and 8. (C) Distribution of cell 

cycle phase specific expression for day 0, 2, and 8 sorted ES cells considering all genes, 

known cell cycle associated genes, and known, differentially expressed cell cycle 

annotated genes. Error bars indicate one standard deviation. 
 
 
Table S1 | Differentially expressed genes in wildtype (WT), DNMT3A-/- (3AKO) and 
DNMT3A/B-/- (DKO) ES cells. Three-way differentially expressed genes (rows in 

spreadsheet “Markers”) for sorted population of WT, 3AKO, and DKO ES cells, displayed 

in Figure 2A. Genes are separated into 6 clusters (100, 101, 110, 011, 010, and 001), 

where 1 or 0 indicates high or low expression for the respective condition (order: WT, 

3AKO, DKO). Spreadsheets “100” to “001” contain functional enrichment analysis for 

genes in each cluster from spreadsheet “Markers” against the REACTOME database. 

 


