
UN iThE L-j0AbILiY ci .; A.L lN T Vu-

DIMENSIONAL UNSYMMETRIC PARALLEL FLOWS

by

JOE REEDER FOOTE

B.S., Texas Technological College

(1940)

SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

(1949)

Signature of Author...
Signature redacted

epartment of Mathematics, May 13, 1949

Signature redacted
C er t if ied by.... .... .... .... .... .. D.... . 0.............. 0

Thesis Supervisor

Signature redacted
h000a00rn0000, a000** rm*@ n .Cm* .ttee n eGradute tudent

Chairman, Departmental Committee on Graduate Students



te

With grateful acknowledgement to

Professor Chia-Chiao Lin for his ready

aid in the conception and development

of the material presented here.

304467



1.

TABLE OF CONTENTS

I. INTRODUCTION........*................*.*.*.*. .*** 2

II. THE INVISCID EQUATION.............................. 6
III. THE BOUNDARY VALUE RRBLEM......................... 22

IV. AN EXISTENCE THEOREM............................... 27

V. REFERENCES......................................... 148

VI. ABSTRACT................................. **....... *49

VII. BIOGRAPHICAL NOTE.. . ............................. 53



2.

1. INTRODUCTION

This study is directed at solving some of the problems

which arise in the attempt to extend existing results on the

stability of two-dimensional parallel flows to cases of

unsymmetric velocity distribution, especially jet flow from

a narrow alit. The value of a minimum critical Reynolds

number at which instability or turbulence begins is of great

interest in such problems, and its calculation for unsymmetric

velocity profiles requires the use of certain asymptotic

expansions having complicated behavior in the neighborhood of

two points in the complex plane. The principal theorem of

this study is on the determination of a path around these

two points along which the asymptotic expansions of certain

solutions of the stability equation do not change; i.e., we

can avoid the so-called Stokes phenomenon. Applying this

conclusion to jet flow (symmetric or unsymmetric), it will

be shown that the effect of viscosity cannot be brought in

through the "viscous solutions", as was done in stability

problems previously investigated.
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There exists an extensive literature* on the stability

of essentially parallel flows, i.e., on the eigenvalue

problem associated with the linearized stability equation:

(W-) - C )w~g 2A +V) (1.1)

which is an equation for T(y) with suitable boundary

conditions. The derivation of (1.1) can be found in Ell,

and here we merely define the necessary symbols. In the

derivation the stream function (x,y,t) has been represented

as the sum of a steady main flow 4(x,y) and a disturbance

function (x,y,t). The main flow is taken as w(y), an

analytic function assumed to be given, and the small two-

dimensional periodic disturbance superposed onto the main

flow is represented by

(x,y,t) (y) C y. (12)

The disturbance velocity components are

u ', , (1.3)

We can take (as always real and positive, while in general

C =cL4 ic . Finally R= Ul) is the Reynolds number in

4' See ll. Numbers in brackets refer to References at the

end of this paper
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terms of a characteriatic velocity U and characteristic

length 1, and 9 is the kinematical viscosity. All

velocities and lengths are customarily referred to these,

making (1.1) non-dimensional.

The eigenvalue problem has been substantially solved

1l1 for certain cases of flow by the determination of the

neutral curve

CL(,R) =-- 0

in the ,(-R plane. Such a curve separates the region of

stability from the region of instability. Thus, existence

of a real c implies existence of a neutral disturbance.

We note N that only two-dimensional disturbances are con-

sidered since Squire and Hollingdale proved that such dis-

turbances are less stable than three-dimensional disturbances.

We shall see that one pair of solutions in a fundamental

system for (1.1) has exponential asymptotic character.

Therefore in the jet profile we must eliminate both of these

solutions whether or not we have very large Reynolds number

in the flow since one solution will diverge for positive y

and the other for negative y when y becomes infinite.

This is an important distinction of the jet problem from the

channel flow problem and means that the only way to bring in



the effect of viscosity is to use higher order terms in the

expansions of the other pair of solutions of (1.1).

Further we shall see that when the Reynolds number is

infinite the other pair of solutions for (1.1) gives a

fundamental system for the inviscid equation:

(w- c) ( - )-w"f = 0 ,

which could be obtained from (1.1) by formally passing to

the limit for infinitely large Reynolds number. Because of

this, the equation (1.4) plays an important part in dis-

covering certain properties of the flows under consideration.

The theorems of' 2 and 3 will refer directly to (1.4) and

its solutions, but because of both this limit relationship

and the main theorem proved in 44, we also refer indirectly
to solutions of (1.1) which can be used in the associated

eigenvalue problem.
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2. THE INVISCID EQUATION

This section concerns both symmetric and unsymmetric jet

flow; these types of real w(y) are illustrated in Fig. 1,

Fig.2 respectively for real y. In these flows the x-axis is in

M

Fig. 1.

1jkr(~)

Fig. 2.

the direction of the main flow. We note both cases have



exactly two points of inflection, and each has zero slope at

y = *aO and y =0. In each case w- c is assumed to have

exactly two simple zeros in the complex plane. For symmetric

flows only one side of the profile, and one zero, need be

considered.

Suppose w(y,)- c =0 and write (14) in the normal form

(y -y ) - (Y-ye) ((-+ w ) . (2.1)

But on using (2.3), (2.4) we have

Hence the coefficients in (2.1) are analytic so that y is a

regular singqlarity of (1.4). The general indicial equation is

o( +((p, -1)+q,= 0 ,

where p,= q,= 0 are the first terms of the coefficients of

0, respectively. Hence

0 (2.2)

and the roots of (2.2) differ by an integer, so that y, is a

logarithmic branch point of solutions of (1.4).

The explicit form of the general solution will now be

derived [3]. The series solution is of the form

AL,+ a-, (y - yt )+-'.



The coefficients of (1.) may be expanded:

+ , (Y-y) +---

(y - , --- .

w- =W (y- yt)

w = w, 4-w BI

Substitution into (1-.4) gives

w. a0 4[2w'a,, - we" a, - w1' a.] (y-c)+

so that we may take a, =-0, a,= 1, since the latter is

arbitrary.

Another solution has the form

T h fa b, (y -y, + --- + C fln(y -y,,)

Substitution into (1.4) gives

Cw -w ' b0 + -- =.O

so that taking b.= 1 gives C =W /
wi

. Hence

I
(~(y)~+.*' w'

Therefore the general solution of (1.4) is

ln( y--ye )(()=Af +Bf, =Af tBfyB

where T is the power series part of .

are complex.

In general A and B

I
0.

(2.3)

(2.4)

Hence

= 0

(y) (y y ) - (2.5)

(2.6)

9 (2.7)

.- 0

fIn(y - ye)
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In the following Theorem 1. we suppose the velocity

profile is symmetric and that a is real, so that ye is real.

The boundary conditions [1] are:

) ,( lim W(y)= 0,
y-+00 y y+-*

lim U= , 
lim -r 0

7+6--do 7(2.8)

2a) Tf(0): 0 , if f (y) is even.

2b) T(0) 0 , if (y) is odd.

By (1.2) and (1.3) the physical significance of an even ?(y)

is that th7 isturbance is antisymmetric, while an odd V(y)

implies a symmetric disturbance. In Fig. 3 we have assumed

that the flex, at y5 , and the

Fig. 3.

branch point, at y., do not coincide, and y >yC.. But the

following argument does not depend on their relative positions.
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THEOREM 1. If there exists a neutral disturbance

with wave velocity c for the symmetric jet profile, then

either

1) The point ye must coincide with the point ys , or

2) The inviscid equation has the trivial solution

= w-c with o= 0.

PROOF: Multiply (1.4) by .. and integrate:

+ dy=0. (2.9)

The first term can be integrated by parts, and using (2.8) we

have

4Cd y + d y d y

Then (2.9) becomes

W \ (2.10)

In (2.10) we may use a path in the complex plane given by the

three lines:

a) - oo < y

b) y-yc Y c e

ye. .-e

- 1 _! # :EO (2.11)

c) Y + .5 y 5 0 )

On each of these three lines the integrand of (2.10) is

analytic, so the integral exists, is analytic, and is finite

for each (>O. In particular the imaginary part of (2.10) has

dy -= a .



these properties. But (2.10) is real on each of (2.lla),

(2.11c), so that on path (2.11b) we have

Im +w t dy . (2.12)

Each of these three terms is evaluated individually. Now

(y), (y), and c(y) have known forms in (2.5), (2.6),

(2.7). Using (2.llb) in these with small 6 we obtain

= e +O(e') , =1+b, e +( )
13 (2.13)

140(w) orb,+0(6)

And then

'(y) A+Bb, +-- 4 B1+2aG 6e + -+

+ ln(C- e ) t a,E e ln(- eA) +-4- -

= c,+ c ln6 +c, + (c+ c+ln+ c.,O) + Z --] 2.4)

In the last equation the omitted terms are of higher order

in e.

From (2.12), for fixedeC:

Hence to show that this term vanishes with G we need only a

form of the Max (y on the designated path that will

behave well when multiplied by the 6 of (2.15). It is clear

from (2.1k) that no term, for example llnE, can appear in

Max jT'(y)1 which might destroy the convergence desired in

(2.15).

1.



Therefore we conclude that

IM 1(.y) dy= 0.

It is evident that (y) can be tree

way, and we obtain the form:

?(y)zB+(c.6 +c elnc+c2+---

where f(y,,)=B. Again it is clear that no

can diverge as 6 approaches zero; here the

(2.15) is not needed.

Therefore

ted in the same

)e , (2.16)

term of (y)

aid o f the 6 in

Im T(y)* dy=0 (2.17)

Finally, on combining (2.3) and (2.4) with the third

term of (2.10):

Im w dy Im we 2we - (We,
w- C wc"(y -'Y7 + dW.l

4O(y-y') 1(y)) dy =0.

The second term of this expression yields zero in the same

way as discussed above for (2.17). The third term is also

zero since the function (y- y )1f(y)I is of higher order in

6 than the terms for (2.17). Henee there remains:

Im Wy) Y-Thn y-yc

Then (2.llb) yields

d-Ye d4o
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and from (2.16):

(y) 2 (yc)I +- O(r)= JBI t O(E).

Therefore, as E approaches zero-

Im W B Id-6 W&B d*We B J-W .

Hence we have either w 0, which yields ys =c., or we have

B= 0. In the latter case (2.7) gives A so that (2.5)

gives ((yq,)= 0. Thus we may write

=A t = A(w- c) g(y).

Using this in (1.4) we can determine g(y) [2]. The equation

(1.4) becomes

1(w-) g -- 4( x(w-c) g=0.

On multiplying this by - and integrating this equation we

can reduce the first term as in the step preceding (2.10) and

obtain 0

J(w-c) [jgj'+*tjgj'jdy=o

Since c is taken here as real, all terms in this integrand are

positive so that if o( 0 then g= g/ = 0, whence ((y)w 0. That

is, there is no solution with JO. If 0=, then g '=0 or

g =const.= k, whence ((y)=Ak(w-c), andf -=w-c is a

solution. This completes the proof of the theorem. The

Case 2 of the theorem is a rather trivial case of a dis-

turbance since 0(c= prevents a periodic disturbance in

either x or t.

The situation for unsymmetric jet flow is quite different
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and we proceed with several lemmas to that result. In the

following we assume the situation of Fig. 4, i.e., an

unsymme tric prof ile.

Fig. i.

The x-average of the product of the disturbance velocity

components in a flow is proportional to the Reynolds shear

stress and is always an important physical quantity in the

study of turbulence. In the present case these components

are the real parts of the complex velocities (1.3). If we

put for the general solution

? (y) = ?"(y)+ iZ(y)

then we can prove a lemma known to Tollmien [4] for channel

flow, but extended to the case c c,+ic; and to jet flow.

LEMMA 1. For jet flow the x-average of (u'v'),

denoted by V , is proportional to the Wronskian of f(;, (
when c-cN.+icL.

PROOF: We have

u =Re( )=Re T(y)e

- Re ( +iT)[coso(x-cat)+i sinof(x-cqt) e ,



or u Cos C (x - cet) - sin o(x - ct)

Similarly

r = Re(-

Hence

Uii71z 1
x

e

) (Cos 0( (x - t)+0( ltsin P((x - ct) e

L ' Y i
0

-o(

u v dx

cos 0( (x- c t) - sine{ (x - cnt)

L sin o((x - c.t) dx

On multiplying and integrating we obtain

A 
sin ((x -c t) cos t.'(

+ sino(c t coso( ct +

+ ( ~--f ) sin o((x - c

C - C +t)+ (x- Cet)

cc C Lt] +

cnM t +

+(y -.41t) -sin ot cmt, cose( cLt +i~crtJ J
On combining terms by various trigonometric formulae we have

[sina4x cosa((x-2c,,t)+xj +

-+ ( - ) [sing((x -2c ,,t) sinex .t-

-- -- sinyx cosot(x - 2cu t) +(x]

u, V :
e
x

u' v/

X [T Cos 0 (x - CIt) +

t)-sin e

-sin vy ( x - Cnt) Cos k( (x - Cat) +
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~.c~t ~( ~ )Orx +7

t (+)cosa x- 2cft)- (+ -- /)sinrw(x- 2ct) sina( x

Hence for the limit of infinitely large x we have

ul 1777 = 2 W(?;,a (2. 18)

This lemma gives a form of the average which

calculated since C(y) is known in the form (2.7).

lemma also was known to Tollmien [4] for the case

flow.

can be

The next

of channel

LEMMA 2. If there exists a neutral disturbance

the jump along the real axis in the value of W(f, ) across

the singular point yc is

PROOF: Since yc and the path along which the jump is

taken are real, so are all the symbols on the right side of

(2.7) with the possible exception of the constants A, B

Hence

=(A, UA,) T (B, -V- B ) -I-

+ 4 !(B +iB)ln(-.y)m
WT

(2.19)
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For y , (2.19) holds unchanged and the Wronskian is

-j [Af # B,,? + w WC f n(y - ye + i

+- B. we

I,

A I + B + B + Bc-, ln(y - y)

rr (2.20)
-- LA IT+ BkT3 + B, cfln(y-y,) C

A; + B; . e B n(y -y )+t

C B

For y < y , to evaluate ln(y -yc ) we must go below ycin the

complex plane for reasons stated in 4.. Thus

ln(y -y,. )= ln(y, - y) - i-

is to be used in (2.19) and the Wronskian in this case is

-c T{ TB, + +ln(y-y) t

X. + Bm=f Bnyc B yn)y -+ ~
W

B , ~I W4.wc

{ geB ( 2. 21)
..-- f + B tf , ln (y.. - y) -+ Bij -Ell-

A +y) +xB. A +B ln (y, - y ) -+

-B. If -B w -rAo _Y . BW
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Now subtract (2.20) from (2.21) and let y approach yc as a

limit. In this process we suppose that the y on the left and

the y on the right to be always at the same distance from y..

This gives for the jump

- 2 tz: A; 16 B. n yy

I 
6 , foli: -c

+ B 7icr [ -B -Bl~e- |

Y-4 3+nftVceI 1Y-YC A]

-B 7T ' A T B, T Bn(y. Y]
N C

+ B, [ B..1T3 t (y - n- y - y) -',,

On expanding this it is f ound that all terms involving

y -yc or y - y will cancel. The remaining terms are

lI ( 2.22 )

+ B WB +m B



J. .

But inspection of (2.5), (2.6) and their derivatives shows

lmT(y)= 0 ; i (y) =1;

(y)= 1 (y)= const.-=b,

so that

y I 1 - 0 ; y , .

and from (2.7)

T(YC) li (y) = B,

whence

Bt + B

Therefore (2.22) gives the desired result:

THEOREM 2. If there exists a neutral disturbance,

a jet flow with symmetric velocity profile has iv7 ~= 0

throughout the flow.

PROOF: Since the wave velocity c is real, Lemmas 1

and 2 yield

Now Theorem 1. allows TtCyc) 0 ; clearly in this case no

change in the value of the average can occur at any finite y,
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since at y we have u y =0, then -7 O . The other

case of Theorem 1. is y,= yC. so that W = 0, and again

urv" B5 , proving the theorem.

For the unsymmetric profile we refer to Fig. 4 of

page 14 for definiteness. Because of the asymmetry, if

w(ys )= C, then w(yt)- C, and vice versa, so that Theorem 1

does not hold for this case. We still have uII7 7=0 for

y= oo , and this with Lemmas 1, 2 show that there must be a

jump in the value of uiirW at each of y,, y , and that these

must be equal in magnitude. There is no loss in generality

in assuming w. >w. For definiteneswe take w, w.e w .

At y. we already have for the jump

where (y) is-the ((y) of (2.7).

But since all the preceding work holds for every singular

point, at yo the jump is

J .0
where

(y) A! + B 13+ B/ W ny-,

Thus

(2. 2(2.23)1('02" WI 0-
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From Fig. L4 the derivatives in (2.23) have the behavior:

> 0, -0<0yO /, -< y<y
w,(y) ;Wa() 0, YCy y

< 0, *< y< ' 0, Y*<y 4CV

Thus (2.23) shows the assumed positions of y. , y. are impossible

since - , --.- are of opposite sign.

Similarly if w,= w,>w2 , these ratios are again of opposite

sign. Therefore we conclude with

THEOREM 3. If there exists a neutral disturbance,

a jet flow with unsymmetric velocity profile can only have

WS > WC > Wt , or wS < we < w-r



3. THE BOUNDARY VALUE PROBLEM

We shall see in 4). that there exists a fundamental

system of (1.1) containing two solutions with expo-

nential asymptotic behavior:

e x(y) + O( )

T 4 = 
e( y ) + ( K )] '( 3

where A = o(R is a large and positive parameter, and when y

is real, yQ(y)>O ; and Q (y)=4i(w-c) . From (3.1) it is

clear that even when X is not infinite we must have c,= c = 0

in the general solution

= c, 1 .+ c+ T +c T4 (3.2)

if we take the velocity profile as a whole to get boundary

conditions. This holds for both the symmetric and the

unsymmetric profile. However, the boundary conditions (2.3)

are for the symmetric profile and use only the part of the

profile where does not diverge, and it appears we need

not take c,,= 0. If this were true we could conveniently

bring in the effect of viscosity through $ , rather than

through the higher order terms in the expansions of the

other pair of solutions:



u(y)+0( 1) , =LV (y) +( )0 (3.3)

where u, v form a fundamental system of (1.4). We proceed to

show that even when the boundary conditions are taken as in

(2.8) the solution f3 does not contribute to the viscosity

effect.

The boundary condition at y,=- oo can be written

(3. 4)

where f { (y, ) , -.. (,(y ) , etc. For case 2a) of

(2.8) we have also T"'(o)=0, and using this case with

a ( + a C 3s

at y,= 0 we obtain

c + c + c3  /

e% + c u+c3 3  =0

Treating (3.4) similarly to get a third condition on the

coefficients, the only way these three relations for c;,

i =1,2,3, can hold is that

,I y = 0 (3.5)

It is understood that the fundamental system has dependence

on all the parameters 0', cqv(R appearing in (1.1), so that

(3.5) is a relation

F, (4., c, 6R)-0

for the eigenvalue problem.



In the same manner for Case 2b) of (2.8) we obtain

T -

=- ~

I,

Suppose =-f, + .is a solution of (14) satisfying

the boundary condition at y,= -~ . In (3.6) if we take

this linear combination of the first two columns and replace

the first column with the result we obtain'k0 -
where )(y.). From this we

e h c

have the eigenvalue condition

(3.7)

Using (3.1), (3.3),(1.4.) we have respectively

02, + R+ 0 (4R)

L -00

Substitution into (3.7) gives

1i..2+aR [ +

0

'TIA

32.

o . (3.6)

(3.3)

(3.9)

(3.10)

0 (3.11)

F. (ve, c ,4YR )



1From (3.11) we see that if terms of order O( ) are

neglected we approximate (3.7) with /( = , .
is of order 0(1). Then (3.10) shows that is of order

0( 1). Thus, if in (3.11) we include we still have no

effect from since the lowest order term on the right is

0( This puts (3.7), the case of symmetric disturbance,

in the form

+ = 0 . (3.12)

If we wish to carry the process further we can say

(3.12) is of order o(L) and substitute (3.12) into the

recursion formula [1] for higher approximations to (3-3)

and find that -- is also of order 0($)", so

that taking on the left of (3.11) does not allow

to introduce viscosity at this order of terms, since the

right side now has order 0( ) .

Finally we note that we can perform the same steps with

(3.5), the case of antisymmetric disturbance, since the

condition corresponding to (3.7) is

nn

and we find

A oil ~"' ~)2~
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But w and w - c are even functions of y, so that their

ratio is even and its first derivative is odd and hence zero

at y 0. Thus

+- C)

and the calculations go through in exactly the same way.

Therefore we have:

THEOREM t. The solutions of the stability equation

having exponential asymptotic behavior cannot be used in the

eigenvalue problem for either symmetric or unsymmetric jet

flow.



4. AN EXISTENCE THEOREM

If the velocity distribution w(y) is an analytic

function of y, the stability equation (1.1) has a fundamental

system of four solutions analytic in y and in the parameters

o(, coqRs A 2 These solutions can be found as power series

of some suitable small parameter, but for most numerical

purposes their asymptotic expansions in inverse powers of A
or of A are found more useful. A set of formal asymptotic

expansions have been calculated [] and the sector of their

validity found near a zero of w(y)-c . It was mentioned in

l that a fundamental system for (1.4) forms a first approxi-

mation to the asymptotic expansion of two solutions of (1.1).

We noted in 2 that a zero of first order is a logarithmic

branch point of solutions of the inviscid equation (1.4).

Recently [5J the validity of the formal expansions was

established and further insight was given into the behavior

of the asymptotic representations in certain sectors of the

y-plane with boundaries starting from the zero of w-c

However, all the results heretofore mentioned are found with

only. one singular point of (1.4) considered. This is satis-

factory for those hydrodynamics problems in which the velocity



profile is either symmetric or monotonic, since in the first

case the boundary values may be taken at one end and at the

center of the profile, while the second case can have only

one point where w -c =0 for each value of c. But an

unsymmetric profile leads to two singular points of (1.4),

each of which must be considered. For this case the central

problem is the determination of a method for going around the

two points by means of the asymptotic expansions proper to

the neighborhood of each point. The main theorem of this

section is on this question and is proved with an equation

more general than (1.1) and f or two zeros of w-c in the

complex plane. We retain the notation ye, y. for the zeros.

In the interest of generality we allow A to take on complex

values, although eR is a real and positive number in the

hydrodynamics problem, and write A= A where A, is a com-

plex constant different from zero, and P> l.

Following the notation of Wasow [5J, for this theorem

we consider the somewhat more general equation

N(y) +M(() = 04.1)

where j=e(y), and N(y), M(y) are linear differential ex-

pressions of order four and two respectively. The leading

coefficient of M(f) may be taken as the function-i(w -c)

without loss of generality. (Wasow uses b.(x) ). The

leading coefficient of N(c) does not vanish at the zeros
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of w -c. We define

Q,(y) %Fi(w-a) dy (4.2)

Q(= i(w-c) dy , (4.3)

and now introduce results we need from 5). Due to the zero

of first order at ye there are three curves C, 1, 2, 3,

meeting at y.., along which Re[AQ,(y)I= 0. These curves in

general are not straight lines. Each curve, near y. , makes

an angle of2 with the other two curves. They divide the3
doubly connected domain S., defined by

0< IQ C(y) I< K

into three curvilinear sectors S- ,j =1, 2, 3. The subscripts

are so chosen that S is bounded by the two arcs C;, i j ,

and these arcs are considered to be part of S . Similarly

at y* there are three curves C-, j= 1, 2, 3, dividing the

domain S. defined by

0< <Q(y) <K

into three sectors S., j 1, 2, 3. The constant K is so

chosen that neither domain contains a zero of w- c, so that

we can take

K i Qay w -)dy .(.)



If we put E(T) as a symbol denoting any function of

y and A which, along with all its y-derivatives, is bounded,

uniformly inA , in every closed subdomain of T, then from [5]

at y we have four theorems:

A. There exist solutions A(yA), j=l, 2, 3, of (4.1)

with asymptotic representations

Ai (y,X) = eid ( 45

where XQ),(y) is taken with the determination that gives a

negative re al part in S .

B. There exist solutions U (yA), j=1, 2, 3, of (4.1)

such that

U- (y, A) U(y) + E( , S(4.6)

where u(y) is a solution of M(T)= .

C. If u(y) is multivalued near ye then the corresponding

U (yA ) tending to u(y) in S.- S will diverge at every

interior point of S

D. If v(y) is a solution of M(y)= 0 regular at y. and

if not all solutions of M( )= 0 are singlevalued at yc, then

there exists a solution V(yA) of (4.1) such that

y( 

)E(S)
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The function 1(y) has an explicit form in terms of the

coefficients of (4.1) and is regular in S.<-C . The

solutions A(y,A) are termed dominant or subdominant according

as their corresponding exponent hQc(y) has a positive or nega-

tive real part respectively. From Theorem A., clearly A4 is

subdominant in S and dominant in the other two sectors since

the curves C are where Re [A Q(y)J = 0. Nothing is stated

about the asymptotic character of A on C , and crossing C'

will cause the asymptotic form of A to change abruptly since

we have to change from one branch of XQc(y) to the other.

It is well to state explicitly that the U , by Theorems B.

and C., are of known asymptotic form in just two sectors each

and that such a relation as Us~ u is meant to hold only in

S, and S3 *

We have similar theorems and conditions at yo . These

solutions are A-(y,A), U(y, ), j =1, 2, 3, and V(y,).

Using (4.2) and (4.3):

I)'rQ(z Y) = V \|( W ) dy + i(w-c) dy=Q,(y.)+Q.(y). (4.8)

When Re ,Q(y) = o, then for each y Re tA Qc(y)] ReL> Q (y).

In particular, when y travels a Ci it also is traveling a C

so that the configuration is topologically like that of Fig. .

We have the same configuration if only a single intersection

point is known, and Re[)\QZ(y.)=0 is necessary as well as



sufficient for the situation of Fig. 5; for

C we have Re[).Q,(y)I 0, and

Cs

S,

S!~

SS
L 2.

when y travels a

oV
S3

Fig. 5.

(4.8) shows Re [A Q,(y) is a constant, which must be zero

since at the point of intersection y=y, we have

ReQ(y, ) 0= Re [ Q0(ys) . Hence C is also some C.

On the other hand, the necessary and sufficient condi-

tion that no C intersects any C is Re A Q(y ) O. For

if the inequality holds then (4.8) shows that Re x Q,(y)J

and Re[A Q,(y)3 cannot be zero simultaneously, and con-

versely. This is the situation of Fig. 6.

Si

'

z3
- S,

C,

S3

C,

Fig. 6

C,
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This is the general case and holds in the hydrodynamics

problem when y. and yo are real, or when they have small

imaginary parts. This will be taken up in more detail fol-

lowing proof of the main theorem.

In the general case we note from (4.8) that the curve

Re [A Q(Y) = constant includes as a special case the curve

Re [AQ,(y)I= Re [A Q(y.) , which is just one or more of the

; also the C belong to the family Re [A Q(y) = constant.

Hence the general configuration for these curves is as is

given in Fig. 7. A %

-/ I e

- S

S

We can also make use

I

I
I

I
I
I

I

SI g
3

7.1

d SV

ONO
I 3

Fig. 7.

of (4.8) in determining the nature

of the Ai, j : 1, 2, 3, if we take a path crossing the

C-, j =l, 2, 3. For example, consider A. on a path in ,

approaching C, . In S. we know ReLA Q,(y) <0 since A, is

subdominant there, and this real part will decrease mono-

tonically, in crossing the contours of Fig. 7, from zero at
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to -Re D, Q.(y,) <0 at Cz, because on C2 Re AQ.(y)j=O.

Thus Re [X Q(y)] >0 and (4.8) shows Re o, r() 0 Yor y

inS or in S . Whether Re[XQ,(y)J continues to decrease

on crossing C, depends on the way Re AQ,(y) behaves

across C. , since ther variable real parts differ by the

constant Re X Qe(y,) . For y= y, on C.. we shall see in

(4.23) that for y, near yc we shall have

ang Q..(y, ) 4-&8

where is a constant and 6,= ang(y,- yc). Thus we have

Re AQC(y, ) -= cos(, + 46, )0

Now if

S ang(y-y,)-ang(y, -ye.)

takes on both positive and negative values then for y

crossing C the sign of Re [)QC(y)j is governed by

Cos( + 18 + 3) - sin( ,+ -9 )sin 2.,

which changes sign with S so that in S, we have Re[.\Qc(y)]<0,

which proves that Re[XQ.(y) continues to decrease on

crossing C,. Exactly the same procedure proves Re I QO(y)

continues to decrease on crossing C, into S, . In the

latter case Re [AQ.(y)] changes from positive to negative on

crossing C, , so that (4.8) gives

Aw= e AQy (4.9 )

where Re A,(y, ) >0.
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For the general case we now determine the directions

near yo which the boundary of S., must have.

def initions:

w = Iw. e , wI I e

Q4(yo ) = Ke ' = -- Q.(Y ) =Ke ; +

whence fC =T7r + fo

Expanding w- c near ye we have

Near yo , on taking

and using (4.10)

y-y,= (e ,

and (4.12):

(W -a) w.'1 e&* (y -y.)

(4.12)

/. (4.13)

We c an put

SQ(y)s Q'(y ) - Q.(y, ) dy = QO(y) . (4.14)

Then using (4+.12) and (4.13) with (4.24) gives:

f e' (y - yo dy
(oe , Ys. 2 sAe 4 15 r1 ~

(4. 15)

Hence

(4.16)

The problem is to determine the angle & at which y can

to Fig. 8, AQ, does not leave

First some

(4.10)

(4.11)

angAQ.(y ) t 4} angQ.(y )

leave y. so that, referring
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r- ta 7e

Fig. 8.

the circle, for this will mean y is not outside the boundary

of SC . It is clear from Fig. 8 that we should have

> ang A Q -(4.17)

On inserting (4.16) into (4.17) the result may be written

(2 qc,-o + (4.18) ! -11, 1r I

From (4.18) we conclude that Se near y. is like a sector of

angle and that the two lines tangent to the boundary at3
y, are symmetric with respect to the line having angle

3 . In general this sector will not coincide at

y. with a pair of the Ci , and this general case is illustrated

in Fig. 9 with C and C. as the two new lines including a

part of C, . It is easy to see that (4.18) gives the shape

of S. near y. if we interchange subscripts.



Fig9. 9.

We dispose of the special case. where, for example, C.

I V 1

and CS coincide, and C, ,C4. coincide by determining a

necessary and sufficient condition for this to happen. This,

however, is done under the assumption that the two singu-

larities of M(T) = 0 are of the logarithmic type. It has been

established [1] that a pair of the ,say C. and C. , have

angle s ne ar y, given by

-rr - - 2ng -r -&, -=-agA) +T
- -Iang -

From this we have

-3 3C3 - - - angzI .

Hence for sector te near ywo

- 05 -d a <angn(yd- y )<-- -cn-ci b d ing a .20)

neesar an sufcetcniin3r hst apn hs
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If this is to coincide with the sector of (4.18), we must

have

(, =- ang.A . (4.21)

The condition (4.21) is also sufficient to make the sectors

coincide, for if it is put into (4.20), the result is (4.18).

In a similar manner we find that the sector (4.18) coincides

with S. near yo when

C = -- angA + ir,

and that it coincides with S, when

C =-ang A + 01r.

The last equation becomes

- ang A -'rT

if we go around y, in the other direction, since TC changes

by 31r when y changes by 21 . (See (4.22) below). Hence-

forth we ignore these special cases.

The special case of Fig. 5 now can be treated in more

detail to find the orientation of the boundaries of Se near

yO The result will be that these boundaries are symmetric

with respect to the common curve C between y. and y.

Referring to Fig. 10, suppose C enters y, at angle 6,

Fig. 10
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and y. at angle ej . For y, near y. and on C, corresponding

to (4.12) and (4.13) we have

(w-c) , -wz e e I- (y, -y

y, -yC= e '

Then

(jt 2 I -V1
Q (y, )u xi(w - c) dy= ) e

2+ - -4 ). (L4.22)

ef

But for all y on C: Re [A Q,(y) Re [A Q(y) =0, so that

angQe,(y) and angQ,(y) are constant along C. Hence, using

(4.11) and (4.22) we have

(4.23)

Subtracting equations (4.23) and using (4.11):

-9-e, 21r--3(e; -e) ,

so that

2g -= + (e. - e.)+ 3e, 5 +30.k

and using this in (4.18) yields

3 ~ 3'

which shows that the sector S. near y. is symmetric with

respect to C. Similar computation shows S. near y is

symmetric to C.
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We now proceed with the more general configuration, a

combination of Fig. 7 and Fig. 9. This corresponds to the

flows of 2. The lines and mCg- appear to limit the region

of validity of the asymptotic expansions of the solutions

A2, U, j=, 2, 3, V. However, we can prove this is not

actually the case. All the solutions of (4.1) are analytic

functions of y and of A so that any one solution is a linear

combination of a fundamental system. We recall the assump-

tion that S6 near y. includes part of C, in its interior and

for convenience select the fundamental system
ADADAO AD

A , A3  , U, , V , (4.4)

where we choose U , V so that the following asymptotic

relationships hold for each suitable y:

U,V u , V-'v , (4.25)

where u(y) is the solution of the reduced equation

M 0 (4.26)

multivalued at y. , and "V(y) is the solution of (4.26)

regular at y, . Each solution from the fundamental system,

A A , U , V , (4.27)

can be written as a linear combination of the solutions

(4.24); for example,

Uj= kU,+ kA4-kA kV . (4.28)

This is an analytic function and (4.28) holds anywhere. The

coefficients k; , i=l, 2, 3, 4, are functions of A , and

something of their asymptotic behavior can be inferred from
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the known behavior of the solutions in the region common to

S. and S0 . We may choose U, so that U,^ # u by (4.6) since

the solutions of (4.26) are analytic in any simply connected

region not containing ye or yo . Using this and (4.25) in

the region common to S. and S. gives

kI1 , k4*-0 ,(k 6)- 0 ,(k 3A 3)-3 . (4.29)

Now if we take a point y, in the sector C,, C4 it is clear

that (4.29) and the expansions of the functions in (4.28)

will continue to be valid on the curve Re AQ.(y) =

Re [A Q(y, )J , wherever y is in S. and on the same segment of

the curve as y, . The curve Re [A Q.(y)= Re [A Q(y, ) is

like the curves of Fig. 7. This extends the asymptotic ex-

pansion of U, into a certain subset of S3 with C. as one

boundary. The solution V extends into a subset of S. in

exactly the same way. Using equation (4.9) we can identify

A1 with A in S and clearly a similar equation will identify

A3 with in 3 The exact shape and extent of the subset

of S3 into which the expansions of the solutions (4.27) may

be extended is not important and we shall identify it with

the symbol S/.

Similarly the expansions of the solutions (4.27) can be

extended across C to points arbitrarily near C., and we

shall use the symbol S. to identify the subset of S, in which

the expansions are valid. This gives
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L When the domain SC includes a part of C,

the asymptotic expansions of the fundamental system (4.27)

for equation (4.1) are valid in the four sectors S., Sk3,

S , S , where the last two sectors are certain subsets of S

and Sj partly bounded by C3 and C. respectively.

It is clear that an analogy of this lemma also holds for

the special case of Fig. 5 since S. near y, is symmetric with

respect to the common curve.

Independently of the particular notation selected here

we can assert that there is a fundamental system of solutions

for (4.1) with asymptotic expansions valid on a path through

two sectors at y. and through two sectors at y. , when

Re[) Q'(y.) 0. The particular pair of sectors at y. will
'V

have as a common boundary the C which is partly included in

St . This lemma indicates that the boundaries of S. and of

S. are not necessarily bars to the asymptotic expansions and

reference to the- proofs in 151 indicate that the main require-

ment in e',tablishing a domain of validity of the expansions

is to have monotonicity of Re [ Q(y) .

Finally we shall prove the

THEOREM 5. There exists a solution Q,(y,>) of

(4.1) having an unchanging asymptotic expression valid in

sectors S.' S3 s2' S, when the domain Sc includes a part

of C.
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The effect of this is to state that we can cross C.

We shall find Q3 ~ U; it i s then c le ar from the theorems of

page 30 that Q3 must diverge in S3

Choose a new fundamental system A, , A,, U3 , V, where

UIS ~U and V-. For the proof we shall use a fixed arbitrary

path C passing through the sectors of the Theorem and crossing

C, and CS . Define a solution Q,(y,%) of (4.1) in terms of

(4.27):

Q, = n,U, I- n.A.+n3V
^$ (+.30)

Q,~ u in S. and S3

Then by Lemma 3, Q o u holds al3so in S and S3 and this

carries the expansion of Q, up to C3 along path C. Now

Q1 -U is a solution so that

Q1 -U -= c, A, + cjLA.2_+c3U3 +C4 V
(4-31)

(Q,-U, )~ 0 in S, and S3.

Thus as we traverse C the asymptotic relation in (4.31) begins

to hold when C enters S& and then extends to C 3 . In S. the

expansion of A diverges so that (44) (4.5) and (4-31) give

cl e and c3 0, c+t 0. The relations for the c , i= 1,3,4,

then hold throughout Si . For A. we note the three properties:

1) czl Adiverges in S, to reflect the divergence of U, there,

by (4.31); 2) A, is subdominant in S2 ; 3) Both U3 and A.,.

diverge in S. and in (4.31) cancel each other there. These

properties indicate no definite asymptotic form for c, but

it shall be sufficient to note that c 2 does not dominate As

where the latter is subdominant.



44*

Again, U,-U3 is a solution of (4.1) so that

U, - U.= m,A,+ mA.,+m a

Uo V " 1m.3A-4- m..A ~mV (4.32)
(U,- U3 )~0 in S.,

In particular, the asymptotic relation in (4.32) holds on
OW I XA

path C after C enters S., , and holds up to C 3 . Then mv e

in S2 since otherwise mA, might diverge there. Again, m,

does not dominate A. in S. , and we have m5 ~o, m4 ~ o. The

relations concerning min, i= 1, 3, 4, hold throughout S.
of

The right side of (4.32) again reflects the divergence of U,

"'f Ati MO

or of U. in the sectors S, and S. respectively.

Now we add (4.31) and (4.32) to obtain

.-U3 (c= * m, )At+ (c.,+ m.).,+ (c3+ nmy)US+ (c4 + m4 )V. (4.33)

In this expression all the coefficients have known asymptotic

behavior in S, except (c.4+ in), and this cannot dominate A2.

for large A in S,, i.e., in SA, since the discussion pre-

ceding (4.9) has established this for Aa. The functions A.,

U , V are well behaved in both S. and S, and they do not

change asymptotic representation on crossing C3 .

Hence we define a solution of (4.1):

(y ,A (y, A)-(a+ AL(y,#A) (.4

and we observe that in .S (and S8 ) Q3 u, since u there

and (c,4. Mia)Aa wo. From (4.33) we have Q3A*u in S,.

Finally, in S2 we have since Qo u, and it was noted

in (4.9) that A. retains its subdominant behavior in S,,.

This makes Q, m at all points of such a path as C and proves

the theorem.



45.

Using (4.9) we can write QS as a linear combination of

the fundamental system (4.27), although we may not be able

to determine explicitly all the coefficients.

We can be somewhat more definite about the orientation

of the sectors S, S, j=1, 2, 3, if we return to the hydro-

dynamics situation of 42, i.e., assume an unsymmetric profile

with re al ye and y,. However, if y. and y. have small

imaginary parts the sectors are rotated only slightly, since

w(y) in general will not be changing rapidly near the real

axis, and the configuration remains basically the same. By

[ at y. we can find solutions corresponding to (4.27) valid

in

- -- < ang(a1 ) <

where a - (w') and = (a1R) (y-y). In this, wC >Q so

that we may take ang wE=O. This is also the form of the

sector at y., but we must determine ang(w')' properly,

where W 0. By examining three power series expansions of

w (y) near 1) a negative y, , 2) the origin, 3) a positive

we can find ang(w,')0 -- T , i.e., we go into the lower

half of the complex plane on changing from positive to

negative slope of the velocity profile. This gives

-r < arg (y - ye) < - 7

as a sector for validity of the asymptotic expansions of

solutions in a fundamental system at y.,
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By examining power series for w-c we find:

0, y < y< y. .

ang(w-c)= {: ang(y- yt), near y.. .

-7r + E, near y. , where -Q=ang(y-y.).

These relations make it possible to find I and To so that

we can obtain the directions of SC and S. near y. and y.

respectively. These appear as dashed lines in Fig. 11. The

Fig. 11.

solid lines are for the above sectors. The diagram explains

the necessity of taking a path below ye.,a eddnth

proof of Lemma 2.

In conclusion we mention some of the problems yet to be

solved in connection with the jet problem. First, the

existence of a neutral. dis turbance might be demonstrated,

and for this one might extend exis ting result s concerning

channel flow. Then the calculations for the eigenval.&ue

problem of 3 should be carried out to the extent that the

curve cj (ot , R) = -0 is f ound; in thisa c onne ction one might us e
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the methods already used for the monotonic profile extending

to infinity in both directions. In such a calculation the

theorem of 4 would be assumed to hold along the real axis

to infinity. There is indication that a theorem might be

found justifying the use of the asymptotic expansions along

such a path, since it appears that the essential requirement

is the monotonicity of Re[AQ(y) . Finally one might cor-

relate the present hydrodynamics theory with existing theory

to help complete the classification of unsymmetric velocity

profiles for channel flow.
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ABSTRACT

The results contained in this paper form the mathe-

matical basis for the investigation of the stability of two-

dimensional parallel (symmetric or unsymmetric) jet flow

from a narrow slit and related problems. An investigation

of the asymptotic properties of the solutions of the sta-

bility equation for large Reynolds numbers leads to a

complete formulation of the eigenvalue problem in a form

suitable for detailed calculations. As usual, only periodic

disturbances are studied. It is shown that the effect of

viscosity enters the problem in a manner completely different

from the stability problems of boundary layer flow and

channel flow. Certain general conclusions are reached for

the "inviscid case."

The velocity profile representing a jet flow extends to

infinity in both directions and has two points of inflection.

These properties make the problem differ greatly from sta-

bility problems previously investigated. The fourth order

stability equation has two solutions with exponential

asymptotic behavior which cannot be used in the boundary

value problem whether or not we have very large Reynolds

number in the flow. The other pair of solutions tend in the
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limit of infinitely large Reynolds number to a fundamental

system of the second order equation of inviscid flow. To

bring in the effect of viscosity we can only take higher

order terms in the asymptotic expansions of this pair.

Further, the stability problem tends for large Reynolds

number to that of the inviscid case. For these reasons a

study is made of the inviscid equation. As is well known,

the complete stability equation has no singularity, while

the inviscid equation has a leading coefficient with one or

more simple zeros, which become logarithmic branch points of

the solutions of the inviscid equatioii.

In the case of the symmetric velocity profile it is

proved that for a neutral disturbance (if one exists) the

wave velocity must be equal to the flow velocity at the

points of inflection of the velocity profile. The only

exceptional case is the trivial case of a steady deviation.

For more general velocity distributions, a form of the x-

average of the disturbance velocity product u~v' is found in

terms of the Wronskian of a certain pair of functions related

to the general solution of the inviscid equation. In the

case of a neutral disturbance these functions are also solu-

tions of the inviscid equation and the discontinuity in the

value of the Wronskian across a singular point of the in-

viscid equation is calculated, with the result that a

symmetric profile has 7V=0 throughout the flow, and that



for an unsymmetric profile the value of the wave velocity

lies between the values of the two ordinates to the profile

at the two points of inflection.

For the purpose of investigating the analytical pro-

perties of the solutions, the stability equation is replaced

by a somewhat more general equation, N[+ MN = 0. Wasow

has proved four theorems concerning the asymptotic expansions

of a fundamental system for this equation. The domain of

validity of these expansions is a sector in a certain annulus

around and excluding a first order zero of the leading co-

efficient of MW1=0, which corresponds to the inviscid

equation. Several choices of a fundamental system exist,

each differing from another only in location of sector of

validity around the annulus. The expansions can change form

abruptly in crossing three curves which divide the annulus

into three sectors. These are the curves corresponding to

the usual Stokes phenomenon. Using two such simple zeros, a

criterion is found which allows determination of the general

relative orientation of the three curves originating at each

zero. The special case wherein one curve from one zero

coincides with a curve from the second zero is noted and the

directions of the outer boundary of the annulus around the

first zero are determined near the second zero. It is shown

that this boundary near the second zero is not actually a

bar to the asymptotic expansions. For the more general



orientation of the six curves, a criterion is found for the

coincidence of the outer boundary around the first zero with

a pair of curves originating at the second zero. The

general case is taken as the case where this coincidence

does not occur and where there is no intersection of a curve

from one zero with a curve from the other zero. Again it is

found that for the general case the outer boundary near the

second zero is not a bar to the asymptotic expansions.

Further it is proved that there exists a solution of the

complete equation having an unchanging asymptotic expression

valid in two sectors at each zero; i.e., the Stokes phe-

nomenon can be avoided, and this with a solution of the

reduced equation M =0.

The general case is illustrated by the hydrodynamics

problem of the unsymmetric jet profile with a real value of

the wave velocity assumed.
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