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Abstract

Humans perform complex tasks in the real world thanks to rich and constant tactile
perceptual input. Being able to record such tactile data would allow scientists from
various disciplines to study human activities more fundamentally and quantitatively.
Moreover, capturing large and diverse datasets on human-environment interactions
and coupling them with machine learning models would allow the development of
future intelligent robotic systems that mimic human behavior. Here, we present
a textile-based tactile learning platform that enables researchers to record, monitor,
and learn human activities and the associated interactions. Realized with inexpensive
piezoresistive fibers (0.2 USD/m) and automated machine knitting, our functional
textiles offer dense coverage (> 1000 sensors) over large complex surfaces (> 2000
cm2). Further, we leverage machine learning for sensing correction, ensuring that our
system is robust against potential variations from individual receptors. To validate
the capability of our sensor, we capture diverse human-environment interactions (>
1,000,000 tactile frames). We demonstrate that machine learning techniques can
be used with our data to classify human activities, predict whole-body poses, and
discover novel motion signatures. This work opens up new possibilities in wearable
electronics, healthcare, manufacturing, and robotics.
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Chapter 1

Introduction

Living organisms extract information and learn from the surroundings through con-

stant physical interactions [12]. For example, humans are particularly receptive to

tactile cues (on hands, limbs, and torso), which enable the performing of complex

tasks like dexterous grasp and locomotion [10]. Observing and modeling interactions

between humans and the physical world are fundamental for the study of human

behavior [47, 35, 20], healthcare [37], robotics [51, 50, 22, 26], and human-computer

interactions [29, 34, 18]. However, many studies of human-environment interactions

rely on more easily-observable visual or audible datasets [25], because it is challenging

to obtain tactile data in a scalable manner. Recently, Sundaram et al. [41]coupled

tactile-sensing gloves and machine learning to uncover signatures of human grasp .

However, the recording and analysis of whole-body interactions remain elusive, as this

would require large-scale wearable sensors with low cost, dense coverage, conformal

fit, and minimal presence, to permit natural human activities.

Although wearable electronics have significantly benefited from innovations in

advanced materials [52, 49, 31], designs [32, 16, 45], and manufacturing techniques

[3, 43, 28], there are no existing sensory interfaces that would suit the needs described

above. However, the automated manufacture of such smart wearable sensors in the

form of whole-body garments, and their ensuing tactile data collections, would benefit

many fields. The garments could equip humanoid robots with electronic skin for

physical human-robot collaboration [50, 10], or serve as auxiliary training devices
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for athletes, by providing real-time interactive feedback and recording [2]. High-

risk individuals, including the elderly, could also wear the garments as automatic

unobtrusive health monitoring systems for emergency (e.g., sudden fall) and early

disease detection (e.g., heart attacks or Parkinson’s disease) [46].

To this end, we present the first textile-based tactile learning platform that in-

tegrates functional fibers, automated whole-garment digital machine knitting, and a

computational workflow to enable the recording and analysis of human-environment

interaction. Enabled with scalable functional fiber fabrication and industrial knit-

ting machine, We seamlessly embed a large-scale tactile sensing matrix into a full-

sized glove (722 sensors), a pair of socks (672 sensors), a vest (1024 sensors), and

a robotic arm sleeve (630 sensors) to enable the acquisition of a rich tactile dataset

collection (at a framerate of 14 Hz) during a variety of human-environment interac-

tions, such as grasping, movement, and so on. Further, inspired by living organisms,

which can adapt to environmental changes and restore from self-deficit through com-

prehensive sensory units [12], we develop a self-supervised calibration pipeline that

endows our platform with plasicitiy and adaptability. Extracting encoded informa-

tion from this large tactile dataset with machine learning techniques, we discover

patterns on human-environment interactions with the long-term goal of advancing

health-monitoring and human-mimicking robot manipulation.

The remaining chapters are organized as follows. Chapter 2 briefly introduces the

background and related works. Chapter 3 elaborates on the fabrication method and

computational pipelines. Chapter 4 demonstrates results on experimental characteri-

zation and versatile applications spanning human behavior learning, human-computer

interactions, and robot manipulation. Chapter 5 summarizes the work and present a

few future directions.
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Chapter 2

Background and Related Works

This section will provide the general background of the work in this thesis, introduc-

ing previous studies and related works on tactile sensing, smart textile, and digital

machine knitting.

2.1 Tactile Sensing

Human interact with each other as well as the external environment everyday by

sensing, refining, and learning through tactile perceptions [7]. Traditional robots

are considered tactile-blind and rely on vision for manipulation and control, which

are very challenging when there is vision occlusion or when cameras are hard to set

up. In the last decades, tactile sensors have been explored; they provide real-time

information and feedback arising from physical interactions, which are extensively

used in robotics to improve complex manipulation and control. Tactile sensors for

robotics have high requirement on resolution, robustness, flexibility and scalability.

An optical-based tactile sensor, GelSight, has been applied to a robotic gripper for

more efficient and accurate slip detection (Figure 2-1A) [11, 19]. Polymer-based

flexible pressure, strain, temperature sensors have been integrated as bio-mimetic

electronic skin (Figure 2-1B) [42, 7]. A tactile glove has been developed for human

grasping signature learning with the captured large tactile data-set (Figure 2-1C)

[41].
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Recently, the power of tactile sensing has been widely leverage; object classification

[38], texture recognition [30], signal correction [33], and signature discoveries [41]

are enabled by the integration of advanced machine learning techniques. Coupled

tactile information with vision, multimodal learning will be very useful in robotic

applications, such as dynamic model learning and human-mimetic operation.

A

B

C

Figure 2-1: A. An optical-based tactile sensor, Gelsight [19] B. Biomimetic electronic
skin [7] C. Tactile glove for human grasping signature learning [41]

2.2 Smart Textile

Smart textile are fabrics integrated with functionalities, in this work, sensing modal-

ity. Among various wearable sensors, smart textile have been considered as one of

the most promising technologies for body monitoring and human-computer interac-

tion because of its compatibility with human daily activities[40]. Previous researchers

implemented various sensors on garments by weaving of functional fibers[8], 3D print-

ing of active sensing materials (Figure 2-2C) [53] and mechanical attachment of pre-

fabricated sensor arrays[41]. Most of these smart garments, yet, has great limitations

on flexibility, robustness, scalability, automated manufacturability and compatibility

with human daily activities. Tessutivo [13] presented interactive textile by integrating

conductive thread into fabrics through embroidery for object recognition as well as

versatile interactive applications. Weaving of functional fibers has shown huge poten-

tial in large-scale automated manufacturing (Figure 2-2A) [29]; however, the fabric is
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rigid with monotonous pattern and geometry. Compared with weaving, which inter-

laces yarns orthogonally with each other, machine knitting creates soft, flexible and

stretchable fabrics with versatile textures in arbitrary 2D/3D geometries by forming

loops of yarns (stitches). Recently, machine knitting of conductive yarns was explored

for strain and touch sensors (Figure 2-2B and D) [28, 4]. However, electronic tex-

tile with only conductive yarn limits sensor functionality, sensitivity and resolution,

which are expected to be improved by incorporating functionalities at the yarn-level.

Leveraging industrial textile manufacturing techniques will unlock the potential of

smart textiles from lab-scale demonstration to end-use products.

A B

C D

Figure 2-2: A. Capacitive sensor array is incorporated into garments through weav-
ing of customized copper thread. Gesture recognition is performed to demonstrate
human-computer interaction [29]. B. Large scale resistive sensors are integrated
through knitting of conductive yarn[28]. C. Energy harvesting and storage are per-
formed by the direct printing of smart patterns on textile[53]. D. Body movements
are captured by smart clothing with conductive traces for applications in games and
virtual reality(VR). [1].

2.3 Digital Machine Knitting

The work in this thesis is enabled by digital machine knitting and this section gives

a brief overview on digital machine knitting and introduces the basic operations.
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Digital machine knitting is an industrial-scale manufacturing method for daily gar-

ments, including t-shirts, socks, sweaters and many other. Knitting creates fabrics by

forming loops of yarns, known as stitches. The series of loops connected horizontally

is called course and the series of loops intermeshed vertically is called wales. There

are two types of knitting: weft knitting and warp knitting. In warp knitting, each

wales takes a different yarn and loops are made vertically. More commonly used, weft

knitting, can create a whole fabric with one single yarn by forming loops horizon-

tally and intermeshing vertically. Versatile colors and patterns can be retrieved by

weft-knitting with the usage of multiple yarns.

Machine knitting has two primary advantages over weaving. First, the fabrication

process is simpler: woven fabric must be cut and sewn to form a garment while

whole-garment machine knitting can directly manufacture wearables with arbitrary

3D geometry [27]. Also, the interlocking loops of yarn (stitches) used in knitting

create a softer, stretchier fabric, which ensures comfort and compatibility during

natural human motions. Moreover, recent advances in industrial digital knitting

machines (Figure 2-3A) [36, 39] and coupled design interfaces (Figure 2-3) [23, 15]

enable programmable knitting design and fully automatic manufacturing processes.

Figure 2-3: A. An Industrial double-bed weft knitting machine, Stoll CMS 730K [39]
B. An industrial machine knitting design system, SDS-ONE APEX [36] C. 3D knitted
full garments designed by a customized compiler for automatic machine instruction
conversion [24].

20



Chapter 3

Method

We present a novel textile-based tactile learning platform by integrating 1) customized

inexpensive functional fibers ( 0.2 US dollar/m); 2) automated whole-garment digital

machine knitting for the incorporation of the sensing matrix into full-sized garments;

3) readout circuit for data collection (at 14 Hz) on human daily activities with the

fabricated sensing with the fabricated sensing wearables; and 4) machine-learning

computational workflow for sensing correction and human-environment interactions

learning. This section will elaborate on our fabrication and computational pipelines.

3.1 Coaxial Piezoresistive Fiber

Thermal curing
Stainless steel 
thread feeding

Nanocomposites 
feeding

Winding system

Piezoresistive coating

         Conductive core

A B

Figure 3-1: A. Coaxial piezoresistive fiber fabrication set-up. B. The effect of applied
pressure and pulling speed on the thickness of fabricated piezoresistive fiber.
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We embed pressure-sensing functionality at the yarn-level by fabricating the cox-

aial piezoresistive fiber at the length-scale with a customized automated setup (Fig-

ure 3-1). The functional fiber is composed of two parts: a conductive core and a

piezoresistive sheath. The piezoresistive nanocomposites mixture is prepared by mix-

ing graphite nanoparticle (400-1200 nm, US Research Nanomaterials Inc.), copper

nanoparticle (580 nm, US Research Nanomaterials Inc.) and polydimethylsiloxane

(PDMS) elastomer kit (Slygard-184, base to curing agent weight ratio =of 10:1, Dow

Corning). Silicone solvent OS2 (Dow Corning) is added to the mixture to optimize

the mixture viscosity for the coating procedure. The mixture is thoroughly mixed by

a speed mixer (FlackTek) at 2500 rpm for 90 seconds. The prepared piezoresistive

mixture is transferred to a 3D printing syringe (Nordson, Inc.), which is connected

to a customized material reservoir with 500 𝜇m diameter inlet and 700 𝜇m diame-

ter outlet. Constant pressure is applied to the syringe with a commercial dispenser

(Nordson, Inc.) while the 3-ply stainless steel thread (Sparkfun, DEV-13814) is fed

to the inlet. The thread is then pulled by a continuously rotating motor and coated

with the piezoresistive nanocomposites; the resulting coaxial piezoresistive fiber is

collected from the outlet and winds into a roll(Figure 3-1A). The thickness of the

resulting coaxial piezoresistive fiber is affected by the applied pressure and motor

rotation speed (Figure 3-1B). Cost of every 100 m piezoresistive fiber is listed in

Table A.1. The fabricated coaxial piezoresistive functional fibers are aligned orthog-

onally to be a sensing matrix; each individual sensor is located at the intersection of

two orthogonally aligned coaxial piezoresistive fibers, where the structure of a piezore-

sistive nanocomposites layer sandwiched by two conductive electrodes is constructed.

3.2 Digital Machine Knitting

The functional fiber is then fed into an industrial knitting machine for full-garment

sensing wearable manufacturing. We design and manufacture full-size tactile gloves,

socks, vest and robot arm sleeve with embedded sensing matrix (Figure 4-6).

In this work, we use a v-bed knitting machine weft digital knitting machine
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Figure 3-2: A. Industrial knitting machine, Shima Seiki SWG091N2 and B. its main
components.

(SWG091N2, Figure 3-2) for device fabrication. It has two beds of needles (front

and back), which form an inverted ‘v’ shape. Each needle is composed of a hook,

which catches the yarn and holds the topmost loop, and a slider, which is controls

by a horizontally moving carriage and actuates the movement of the hook. Three

basic needle operations are available to the machine: knit, tuck, and transfer. The

knit operation actuates the needles to grab the fed yarn from the yarn carrier, forms

a new loop, and pulls it through the existed loop to connect the loops in columns.

The tuck operation actuates the needles to grab the yarn and hold it without form-

ing a new loop. The transfer operation actuates needles from both beds to pass the

existed loop from one bed to the other. Racking is another common digital knitting

machine operation, where the back bed shifts laterally to the left or to the right as a

whole to create needle offsets during transferring (Figure 3-3). A sequence of racking,

transferring and knitting combine, split and move stitches to create short rows, in-

creasing and decreasing of stitches, which leads to complex 2D/3D fabric geometries

and structures (such as gloves and socks).

3.2.1 Inlay

The coaxial piezoresistive fiber is stiffer and thicker than normal knitting yarns (Fig-

ure 4-4); therefore, it is incorporated into the fabric by inlaying, a programmable

knitting technique performed automatically by a digital knitting machine. It hori-
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Back needle bed

Front needle bed

Yarn carrier

Hook

Slider

Needle motion 
direction

A

B

C

D

Racking direction

Wale direction

Course direction

Figure 3-3: Illustration of A. important components of commercial digital knitting
machine (SWG091N2) and operations of B. knit, C. tuck and D. transfer.

zontally integrates yarns into fabrics in a straight configuration without forming loops.

To optimize manufacturability and device performance, two methods of inlaying are

performed: automatic inlaying and manual inlaying (Figure 3-4).

Automatic inlaying requires the fabric structure of ‘ribs’, which are textured ver-

tical stripes created by alternating columns of knit stitches on the front and the back

bed. The coaxial piezoresistive fiber is forced to move simultaneously with normal

knitting yarn, which is caught by the needles on the two beds and forms alternat-

ing knit stitches to hold down the inlaid functional fiber (Figure 3-4A). The ribbed
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Figure 3-4: Illustration of A. automatic inlay and B. manual inlay

structure (alternating stitches on the front and back bed) allows the straightforward

inlaying design; however, it creates a textured gap when two fabrics are aligned

orthogonally to act as a functioning device and lower the sensing sensitivity and

accuracy.

Manual inlaying requires consecutive movements of the normal knitting yarn and

the coaxial piezoresistive fiber. Three steps of operations are performed. Firstly, spe-

cific stitches are moved from one bed to the other; then the coaxial piezoresistive fiber

is pulled across; lastly, the displaced stitches are moved back to their original posi-

tions to hold the functional fiber in place (Figure 3-4B). A flat inlaid fabric (without

ribbed structure) can be fabricated with manual inlay and the design with a contin-

uous piezoresistive fiber covered surface can be achieved by alternating the transfer

direction (from the front bed to back bed or from back bed to front bed). However,

due to fiber stiffness and the limited space between two beds, the coaxial piezoresis-

tive fiber can hardly stay down during the second round of stitches transferring and
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will be easily caught by the needles, leading to the destruction of fiber functionality.

Therefore, the manual inlay cannot be applied to a tube-shaped structure.

We form the sensing matrix by leveraging a double-layer structure, which is ar-

ranged by assembling two knitted fabrics with functional fibers inlaid perpendicularly

to form a sensing matrix (Figure 4-5A).

3.2.2 Designs of Full-sized Sensing Wearables

A full-size glove, a pair of socks, a t-shirt (sized for an 8-year-old kid) and a conformal

robot arm (KUKA) sleeve are fabricated (Figure 4-6). The knitting patterns of socks,

gloves and vest are developed based on the pre-loaded designs (Shima Seiki) through

Knitpaint [36].

The conformal robot arm outfit design is first generated through stitch mesh mod-

eling [48, 27] with given real-size 3D mesh and knitting wales-course ratio. Given the

input KUKA arm surface, it is first cut into a mesh, called cut-mesh, with disc topol-

ogy to guarantee the resulting knitted garment conformally fits to the KUKA. Then,

the cut-mesh is converted into a stitch mesh (quad-dominant mesh) with consistent

course/wale labeling. Stitch mesh is an abstractive representation of the knitting

structure, where each polygon face represents interlocked yarn structures and is em-

bedded with a set of low-level machine instructions to create the corresponding yarn

structures. Each face in the stitch mesh (quad-dominant mesh) can represent knit,

short-row, increase, or decrease of stitch. Finally, we traced the stitch mesh and

scheduled the knitting instructions accordingly. The output knitting instructions are

converted into .dat file that can be loaded and performed by the industrial knitting

machine. In order to form the sensors, two stitch meshes is generated along two

orthogonal directions from the KUKA arm surface. The functional fibers are inlaid

mostly in rows without short-row faces to get a larger coverage of the sensing matrix.

(Figure 3-5D).

All fabrics and devices in this project are manufactured with weft knitting in half

gauge (every other needle is used for operations) through an industrial digital knitting

machine (SWG091N2). Two knitted fabrics with specific 2D/3D shapes are arranged
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Figure 3-5: Design of full-size A. glove, B. sock, C. vest and D. KUKA sleeve embed-
ded with tactile sensing matrix.

as a double-layer structure so that the inlaid function fibers are aligned orthogonally

to retrieve the large scale sensing matrix. To optimize the manufacturability and

device performance, both automatic inlaying and manual inlaying are exploited. The

device designs and the positions of orthogonally aligned functional fibers are shown

in Figure 3-5. Cost of each garment can be foudn in Table A.2.
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A B C

Figure 3-6: A. A modified electrical-grounding-based isolation circuit architecture for
passive sensing array readout. B. the designed PCB board c. The response of a single
sensor in response to applied load at the output of ADC.

3.3 Data Collection

Electrical connections to the printed circuit board (PCB) are done by performing

cuts on the side of knitted garments with an embed sensing matrix. The inlaid

coaxial piezoresistive fibers are extended 1-2cm from the main fabric structures by a

few tucks away from the main knitting patterns, which allows electrical connections

without disrupting the main knitted fabric. A modified electrical-grounding-based

circuit architecture (based on Ref. 21) is designed to eliminate most cross-talk and

parasitic effects of the passive matrix (Figure 3-6A). The printed circuit board (PCB)

can take up to 32 rows and 32 columns of electrodes (1024 sensors) (Figure 3-6B).

A reference voltage V𝑟𝑒𝑓 is applied to each column. Controlled by the 32 single-pole

double-throw (SPDT) switches, one row of the sensors is grounded while all other

lines are maintained at V𝑟𝑒𝑓 ; voltage difference across all lines except the measuring

one is maintained at 0V to isolate the signals. A 32:1 analog switch is used as a

multiplexer to raster through the columns one by one. An amplifier is added to each

column and the gain is set by the feedback resistor R𝑔. The outputs at ADC are

roughly linear with the applied load. The dynamic range of the reading circuit can

then be tuned with the feedback resistors. Resistors of 0.5kΩ to 10 kΩ are used as

R𝑔 for optimized signal dynamical range for different applications (Figure 3-6C). For

example, since useful information is mostly embedded in higher response from the

tactile socks (during movement) and lower response from the tactile gloves (during

28



grasping), feedback resistors of 1 kΩ and 5 kΩ are used for the readout specifically

from the sock and the glove to optimize data extraction. A capacitor of 10 𝜇F Is

added in parallel with each feedback resistor to reduce noise. The 32 SPDT switches

and 32:1 analog switch are controlled by an Arduino Nano. Each single measure is

transformed into a 10-bit digital signal and transmitted serially to a computer.

3.4 Computational pipelines

Using our full-body sensing garments, we then collect a large tactile dataset (over

1,000,000 frames recorded at 14 Hz) featuring various human-environment interac-

tions, including object grasping, complex body movement and other daily activities.

This section briefly introduces our computational pipelines for sensing correction,

classification tasks and human pose predictions.

3.4.1 Sensing Correction

Figure 3-7: A. Procedure for correcting the tactile glove and B. the tactile vest.

Sensor variation and failure are inevitable during scale-up. Living organisms also

face this issue; therefore, they developed the ability to adapt their sensory system in

the presence of individual sensor failures or variations [12, 10, 37]. We posit that a

similar mechanism may provide robust sensing capabilities while relaxing the flawless

requirements in sensor fabrication. This is necessary for many applications, as it is

impractical to perform individual calibration and correction of our sensing units due
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to their high-density, complex geometries, and diverse applications. we develop a

self-supervised learning paradigm that learns from weak supervision, using spatial-

temporal contextual information to normalize sensing responses, compensate for vari-

ation, and fix malfunctioning sensors. In particular, to correct the sensing response

from the tactile glove, a person wears the glove and presses a scale with different

forces (as shown in Figure 3-7A), and we record the synchronized sensory readings

from both the glove and the scale. At each frame, the reading from the scale reflects

the sum of force being applied; therefore, the sum of the sensory response is expected

to have a linear correlation with the reading from the scale. We train a fully con-

volutional neural network (Figure 3-8A) that takes in a small sequence of the raw

response and outputs a single frame with the same spatial resolution as the input,

representing the calibrated result of the middle frame of the input sequence. The

neural network is optimized via stochastic gradient descent (SGD) on two objective

functions: one encourages the output to preserve the details in the input and the

other objective function restricts the sum of the calibrated results to be as close to

the scale as possible.

We employ the same self-supervised learning framework and use the calibrated

glove as our new “scale” to process the sensing fabrics with arbitrary shape, such as

the vest and robot arm sleeve. Similarly, we collect another dataset by pressing the

target garment wearing the calibrated glove (Figure 3-7B) and train a new calibration

network with the same architecture and procedure for the target garment.

3.4.2 Classification

To test the discriminative capability of our system, we perform versatile classification

tasks using tactile data on daily human activities collected from our full-size sensing

wearables. Generally, the classification network takes in a sequence of 45 consecutive

tactile frames ( approximately 3 seconds in real-time) on versatile human-environment

interactions, including grasping, locomotion, body movement and so on. As shown in

Figure 3-8B, we pass each tactile frame through 3 shared convolutional layers. The

resulted 45 vectors with a length of 512 after flattening are then passed through a

30



Figure 3-8: Models for A. sensing correction, B. classification, and C. full-body pose
prediction.

bidirectional gated recurrent unit (GRU) [9] and two fully-connected layers to derive

the final probabilistic distribution over the classes. We train the model using the

standard cross-entropy loss for 20 epochs with Adam optimizer of learning rate 0.001

and batch size of 32.
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3.4.3 Pose Prediction

Humans maintain the dynamic balance of the body by redirecting the center of mass

and exerting forces on the ground, which results in distinct force distributions on the

feet [47, 6]. Motivated by this, we hypothesize that a person’s pose can be further

estimated from a change of force distribution over time obtained by our tactile socks

as a sequence of pressure maps (Figure 4-15E). Here, the body pose is represented

by 19 joint angles spanning over the legs, torso, and arms (Figure 4-15A). We record

synchronized tactile data from a pair of sensing socks and a full-body motion capture

(Xsens MVN) suit, while the user performs versatile actions, including walking, bend-

ing forward, twisting, lunging, and so on. The motion capture system is composed

of 17 inertial-based sensors, which are mounted on 17 key-points on the human body

to record and estimate 19 joints angles during the movement. The real-time pressure

imprints from both feet are recorded and fed in the network. The 19 different joints

include the joints of legs, arms, and the torso. The collected dataset includes 282,747

frames of concurrent MOCAP and tactile pressure maps, where 236,036 frames are

used as the training set, 10,108 frames are used as the validation set, and 36,603

frames are used as the test set.

We train a deep convolutional neural network to predict the 19 different joints of

the human body, given the tactile footprints of the person. The architecture of the

network is described in Figure 3-8C. The network consists of two convolution layers,

which took in a sequence of tactile frames from the socks from time step t-k to time

step t+k. The input to the model is 30 consecutive frames of the pressure map of

the left and right feet. These layers extract patterns from the 2D signal, and the

resulting embedding is then passed through 3 fully connected layers to finally output

the predicted relative joint angles of the human body corresponding to the person’s

pose at time step t. The relative joint angles are the relative angle transformation

of the distal joint with respect to the proximal joint represented in the axis angle

format. The network is trained using stochastic gradient descent to minimize the

mean squared error between the predicted joint angles and the ground truth. We
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trained the network with a batch size of 128 and with a learning rate of 0.01 using

the Adam optimizer. It is a design choice to predict the pose in the joint angle

space instead of the position space, but the code provided can be easily modified to

predict the pose in position space. The collected dataset also contains positions of

the different joints that could be used to train such a model.
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Chapter 4

Experimental and Learning Results

This chapter demonstrates the experimental characterization on coaxial piezoresis-

tive fibers and knitted sensing textiles as well as results on self-supervised sensing

correction and human-environment interactions learning.

4.1 Fiber characterization

4.1.1 Morphological Characterization

Figure 4-1: A. Photograph of coaxial piezoresistive fiber (> 100 m) and sensing
fabrics. B. Morphology of coaxial piezoresistive fiber under microscope and SEM.

Morphological characterization is done under the optical microscope and the scan-

ning electron microscope (SEM) with a voltage of 3-5 kV. All fibers are characterized
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without any additional coating. Samples are mounted on carbon tape and further

covered with copper tape to enhance the electron conductivity and adhesion. For

the cross-sectional view, fibers are carefully cut with a new razor blade to expose the

cross-section(Figure 4-1).

4.1.2 Electrical Measurement
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Figure 4-2: The resistance changes of a single sensor (composed of two piezoresis-
tive fibers) A. in response to applied normal force and B. during load and unload
cycle test (over 1000 repetitions). C. Effect of functional fiber thickness on sensing
unit performance. D. Resistance change of an unloaded sensor treated with various
temperatures.

A pair of fibers are then orthogonally overlapped to create a sensing unit, which

converts pressure (normal force acting on the surface) stimuli into electrical signals.

The resistance profile is recorded by a digital multimeter (DMM 4050, Tektronix)
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Figure 4-3: Resistance profile of a single sensor composed of coaxial piezoresistive
fibers fabricated with A. various copper concentration and B. various graphite con-
centration

while controlled normal forces are applied at the sensor by a mechanical tester (Instron

5944). The applied load is controlled at the strain rate of 0.5mm/min. Figure 4-2A

shows the measured resistance of our typical sensor drops from 8 to 2kΩ in response

to an increasing applied normal force (0.1 - 2N). A 10 N compression load is applied

on a sensor (composed of two orthogonal functional fibers without the interference of

any textile) for 1000 cycles at a constant strain rate of 10 mm/min and no obvious

performance decrease was observed (Figure 4-2B). The electrical profile is influenced

by the fiber thickness, which is characterized as (Figure 4-2C). The functional fiber is

stable up to 50 ∘C, but its resistance increases with temperature beyond this point,

which is measured when heated to various temperature by a hotplate(Figure 4-2D).

The performance of sensors is also highly influenced by the composition of the piezore-

sistive coating (Figure 4-3). The final optimized mixture has the a composition of

26 wt% graphite, 20 wt% copper and 14 wt% OS2, which results in a reasonable

resistance range with optimal variations.

4.1.3 Mechanical Measurement

Tensile test is conducted by a mechanical testing machine (Instron 5984) on the

fabricated coaxial piezoresistive fiber (600 𝜇m), stainless steel core fiber, and two

different kinds of acrylic knitting yarn (Tamm Petit C4240 and Rebel TIT8000). 10
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Figure 4-4: Stress-strain curve of fabricated coaxial piezoresistive fiber and normal
knitting yarns from tensile testing.

cm of each fiber was pulled at the strain rate of 5mm/min. The yield tensile strength

of the fabricated coaxial piezoresistive fiber is over 6 times larger than the one of

acrylic knitting yarn while the ultimate strain of acrylic knitting yarn is over 10 times

larger than the one of fabricated coaxial piezoresistive fiber (Figure 4-4). The stiffness

of functional fiber leads to the special knitting operation, inlaying, for whole-body

sensing garments fabrication.

4.2 Full-sized Sensing Wearables

Figure 4-5A shows an example of a double-layer fabric structure, where the outer

layer is fabricated with manual inlaying and the inner layer is fabricated with au-

tomatic inlaying. Due to the fabric texture and flexibility, sensor sensitivity and

sensing range are highly influenced by the knitting pattern and fabric structures.

The influence of fabric structure on sensing matrix performance is characterized as

(Figure 4-5B).Sensor composed of two fabrics with automatic inlaid functional fibers

has the lowest sensitivity and highest detection range, which makes sense because the

ribbed texture creates a gap between two fabrics and lowers the force response.

As designed, a tactile glove with 722 sensors is fabricated as three separate parts: a
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Figure 4-5: A. Example of a double-layer fabric structure. B. The influence of fabric
structures (manual inlay and automatic inlay) on device performance.

Figure 4-6: Automated manufactured full-size tactile A. glove, B. sock, C. vest and
D. robot arm sleeve.

full glove with inlaid piezoresistive fiber in the vertical direction (to the finger-pointed

direction), a four-finger-shape flat sheet and a thumb-shape flat sheet with inlaid

piezoresistive fiber in parallel direction (to the finger-pointed direction) (Figure 3-

5A and 4-6A). The sensing matrix is assembled by aligning two flat sheets to the

inside of the full glove. Sewing is performed at specific locations to avoid the relative

movement between two layers of fabrics.

A sock embedded with 672 pressure sensors is composed of two tube-shape-like

fabrics with inlaid piezoresistive fibers in parallel and vertical directions (Figure 3-5B

and 4-6B).

A full-size vest embedded with 1024 pressure sensors is knitted in two separate

parts: a shaped flat sheet, where the zipper is sewed at the side to be a full vest, with

inlaid piezoresistive fiber in the horizontal direction, and a rectangular flat sheet with
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inlaid functional fiber in the vertical direction (Figure 3-5C and 4-6C). Two fabrics

are aligned and sewed accordingly as a full-size t-vest with tactile sensing matrix.

A conformal robot arm (KUKA) sleeve is knitted in two separate parts generated

from the stitch remeshing framework (Figure 3-5D and 4-6D).

These full-sized sensing wearables enable the capturing of human behavior, skills,

and crafts, which is essential for cultural preservation, transfer of knowledge, as well

as for human and robot performance optimization [50, 2].

4.3 Self-supervised sensing correction

Figure 4-7: A. 15 positions on tactile glove, B. correlation between the tactile reading
and the scale’s reading increases. The correlation between the sensory response and
references increases for C. the glove, D. the right sock, E. the left sock, F. the vest,
and G. the robot arm sleeve.

Our self-supervised model increases the correlation between the tactile response

and the reference (reading from scale) from 77.7% to 88.3% (Figure 4-7A to C). Same

data collection and training procedure are applied in tactile sock calibration, where

correlation increases from 92.4% to 95.8% for the left sock, and from 75.9% to 91.1%

for the right sock (Figure 4-7D and E).Correlation between the tactile response and
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the reference increases from 32.1% to 74.2% for the vest and from 58.3% to 90.6% for

the robot arm sleeve (Figure 4-7F and G).

The self-supervised calibration network exploits the inductive bias underlying the

convolutional layers [44], learns to remove artifacts, and produces more uniform and

continuous responses (Figure 4-8). It enables the large-scale sensing matrix to be

robust against variation among the individual elements and even their occasional

disruption, consequently improving the reliability of the measurement.

Figure 4-8: Self-supervised correction results on the tactile A. glove, B. vest, C. sock,
and D. robot arm sleeve.
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Figure 4-9: A. 26 object classes and B. the confusion matrix from classification.

4.4 Applications

We demonstrate the capability and utility of our platform by leveraging our data for

the environment and action classification, motion pattern discovery, and full-body

human pose prediction. This section will demonstrate applications of our system

spanning human behavior monitoring and learning, human-computer interactions and

robot manipulation.

4.4.1 Object Classification

Humans can easily identify an object during grasping, which remains challenging but

essential for robot manipulation. Recently, robotic grasping and object manipulation

are emerging with progress in multimodal learning across visual and tactile domains

[5, 14]. Signatures on human-object grasping were recently studied with a tactile

glove [41]. Motivated by these, here we show that our sensing glove can capture

tactile characteristics during interactions with objects working as electronic skin for

object classification. An object set similar to previous work [41] is used in this study,

including 26 daily objects, such as mug, screwdriver, chain, and so on. (Figure 4-

9A). A dataset for object classification is recorded while a user manipulated these
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Figure 4-10: A. We collect tactile information from a vest with a sensing matrix at
the back while the wearer sits, lays, and leans in versatile poses. B. Confusion matrix
from poses classification with an accuracy of 99.66%.

26 objects wearing the glove. We recorded 284,442 tactile frames in total during

manipulation. Based on the data, our model gave a prediction accuracy of 23.35%

for top-1, and 43.20% for the top-3 (Figure 4-9B).

4.4.2 Action Classification

We use tactile information from the two socks worn by a person to identify which ac-

tion the wearer is performing. The dataset consists of tactile frames retrieved from a

pair of socks when the wearer performs 9 different activities including walking, climb-

ing up the stairs, climbing down the stairs, fast walking, standing on toes, jumping,

leaning on the left foot, leaning on the right foot and standing upright (Figure 4-10A).

The dataset contains 90,295 frames across the different action categories. The same

classification pipeline achieves a top-1 accuracy of 89.61% and a top-3 accuracy of

96.97% (Figure 4-10B).

To further analyze the patterns underlying the signals collected from the socks,

we perform principal component analysis (PCA) to visualize their distribution. We

use the 12,245 frames from the class of walking in the action classification dataset.

We concatenate and flattened the signals from the left and right sock as the high-

dimensional representation at each time step, each of which is 2,048 dimensions. We
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Figure 4-11: PCA on tactile maps from walking (insets are corresponding tactile
frames).

extract the principal components with the highest and the second-highest variance to

project the high-dimensional responses to a 2-dimensional space and visualized them

in Figure 4-11 The signals naturally form a circular pattern, and the pressure shifts

back and forth between the left and right feet as we traverse through the circle.

4.4.3 Interaction Classification

Our full-sized sensing vest shows the force distribution during sitting, standing, reclin-

ing, and other actions, which can indicate the wearers’ pose, activity, and the texture

of the contacted surfaces. It shows great potential in human-computer interactions

and human behavior monitoring (Figure 4-12). We capture a dataset where a wearer

performs different poses on versatile surfaces. With the same model and training pro-

cedure as object classification and action classification, we achieved 99.66% on the

test set in distinguishing different lying postures and supporting surfaces. We further

project the high-dimensional sensory responses into 2d space via t-SNE [21], where

the recordings from different classes naturally form distinctive clusters, indicating the

discriminative power of the vest (Figure 4-13).
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Figure 4-12: A. Pressure imprints from different sitting postures and B. tapping with
potential application in human-computer interactions.

Our sensing matrix also shows a superior sensitivity than a human’s back [17].

We collect a dataset by pressing models of three letters, i.e., “M”, “I”, and “T”, against

the back of a manikin wearing the tactile vest from different orientations. The clas-

sification network takes a small window of tactile responses and predicts the type

and orientation of the letter with an accuracy of 63.76% . When ablating the reso-

lution of the sensor, we reassign the value in each 2x2 grid with the average of the

four values, which reduces the effective resolution to 16x16. We then use the same

classification training pipeline to obtain the accuracy. A similar procedure is em-

ployed for calculating the accuracy for sensors with an effective resolution of 8x8,

4x4, and 1x1. Performance drops as the effective resolution decreases from 32x32 to

1x1 (Figure 4-14).
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Figure 4-13: A. Photographs of 10 different poses. B. The confusion matrix for
classification and C. T-SNE plot from our pose dataset recorded by the tactile vest.

Figure 4-14: A. Example photographs and tactile frames of “M”, “I” and “T” pressed
on the tactile vest and B. the confusion matrix for classifying the letter and the
orientation. Accuracy drops as sensor resolution decreases.

we further show that ubiquitous sensing wearables can make life more interactive

and network things with humans, namely, converge human and machine intelligence.
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Figure 4-15: A. Location of the 19 joint angles representing body pose in our model.
B. MSE in pose prediction. Influence of C. sensor resolution and D. number of input
frames (temporal window) on prediction performance. The dashed line represents the
baseline defined as the canonical mean pose of the training data. E. Comparison of
various poses recorded by MOCAP (ground truth) and the same poses recovered by
our model from the tactile socks pressure frames. Notable errors in the arm region
are highlighted in red.

Pressure map retrieved from self-tapping is shown in Figure 4-12B, which shows great

potential in human-computer interaction.

4.4.4 Pose Prediction

Our model learns to make accurate predictions that are both smooth and consistent

over time, achieving an MSE that is 70.1% lower than our baseline, which always

outputs the mean pose. As shown in Figure 4-15B and B-2, our model achieves

higher accuracy for the poses in the torso and legs compared to the arms. This is

congruous with our observation that the force distributions on the feet are mostly

affected by lower body movement and the majority of body mass located in the torso

[47]. The significance of sensing resolution and temporal information is reiterated as

the performance drops with a systematic reduction in either the input resolution of

the tactile-pressure map or the context size of the input tactile-frames (Figure 4-15C

and D).
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Our results indicate that a pair of tactile socks can potentially replace the bulky

MOCAP system. Our approach sets the path forward to analyze and study human

motion activities without much physical obtrusion in domains like sports, entertain-

ment, manufacturing activities, and elderly care. Further, such footprints contain

dynamic body balance strategies, which is a valuable instructive paradigm for robot

locomotion and manipulation [47, 50].

4.4.5 Robotic Manipulation and Control

Figure 4-16: Tactile feedback from physical interactions with robotic (KUKA) arm
with potential applications in robot manipulation and control.

Modern robots are tactile-blind and rely mostly on vision. Robotic manipulation

and control, which are restrained when vision is occluded or disabled, will be dra-

matically improved with real-time tactile information. The scalable sensing wearable

forms conformal coverage on robotic gripper, limbs, and other functional parts with

complex 3D geometries, endowing things with sensing capability. Figure 4-16 shows

a digitally knitted KUKA sleeve that fits conformally with the robot arm joints. This

piece of skin enables robot to feel objects beyond the vision, for example, multi-point

collision detection, which is challenging with the KUKA embedded torque sensors.

It obtains huge potential in unobtrusive multi-point collision detection and physi-

cal human-robot collaboration, which is very challenging with the KUKA embedded

torque sensors and advanced computational tools.
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Chapter 5

Summary and Future Work

5.1 Summary

This work presents an automated, inexpensive, and scalable manufacturing method

that combines functional fibers and whole garment digital machine knitting to pro-

duce large scale sensing textiles with more than 1000 sensors that are conformal to

arbitrary 3D geometry. A self-supervised sensing correction is developed to normal-

ize sensor responses and correct malfunctioning sensors in the array. Conceptual

demonstrations of various human-environment interaction learning using our system

indicate the possibility of future applications in biomechanics, cognitive sciences, child

development, as well as imitation learning for intelligent robots.

5.2 Future work

There are several directions to improve device performance and explore device appli-

cations:

∙ The functional fiber is about 10× stiffer than normal knitting yarn and the

piezoresistive coating can be easily ripped off by the sharp needles. Due to these

limitations in mechanical properties, the functional fiber is currently integrated

with garments through inlaying to minimize artifacts; however, inlaying does

not form loops and limits the overall fabric stretchability and flexibility. I would
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like to explore new fiber fabrication processes for better mechanical properties,

which ideally will allow the formation of loops through knitting with the func-

tional fiber. Higher flexibility and stretchability will be obtained with fabrics

with pure knitting structures for higher compliance and comfort.

∙ Device performance in sensitivity and detection range is affected by fabric tex-

tures and patterns. In the future, we should explore versatile textures and

patterns which are attainable through digital machine knitting. The difference

in device performance can be easily tuned with knitting operations for different

applications. For example, lower sensitive sensing matrix can be incorporated at

the bottom of a sock for motion monitoring and higher sensitive sensing matrix

can be incorporated at the top of a sock for human-computer interactions.

∙ More sensing functionalities can be embedded in the yarn-level for multimodal

data capturing. Strain, temperature, humidity and ionic sensors can be devel-

oped at the yarn-level. Other than versatile sensing functionalities, more modal-

ities, such as actuation and energy harvesting can be embedded at the yarn-

level. Versatile functional fibers can be integrated with full-garment through

automated programmable large-scale manufacturing.

∙ Most demos in this project demonstrate the application in human activities

capturing and monitoring as well as human-computer interactions. Conformal

garments with embedded tactile sensing matrix for humanoid robots and robotic

hands with complex geometry can be easily manufactured, which can potentially

improve robotic manipulation and control through large data-set capturing and

real-time tactile feedback.

∙ The ataset in this project was all collected from each individual devices. We

would like to collect a synchronized tactile dataset from multiple wearable

sensign garments, which will contain more information for systematic human-

environment interactions, health condition and behavior signatures. For exam-

ple, we can monitor the health conditions of elders through their locomotion
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and movements with wearable tactile socks and vest; we can also record and

analyze the training data of baseball players with wearable tactile gloves and

socks for optimized training strategy.
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Appendix A

Tables

Table A.1: Cost estimation for coaxial piezoresistive fiber fabrication.
Elements Unit price Needed amount Total price

Graphite nanoparticles $388/kg 0.214g/100m $0.083

Copper nanoparticles $438/kg 0.167g/100m $0.073

PDMS $129/kg 0.428g/100m $0.055

OS2 $54.6/kg 0.119g/100m $0.0065

Stainless steel thread $19.68/100m NA $19.68

Coaxial piezoresistive fiber $20/100m NA NA
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Table A.2: Cost estimation for full-sized sensing wearables manufacturing.
Elements Unit price Needed amount Total price

Acrylic knitting yarn $0.23/100m NA NA

Tactile glove NA 2̃0m functional fiber $5.15

5̃00m acrylic yarn

Tactile glove NA ∼20m functional fiber $5.15

∼500m acrylic yarn

Tactile sock NA ∼20m functional fiber $5.15

∼500m acrylic yarn

Tactile vest NA ∼40m functional fiber $10.3

∼1000m acrylic yarn

Tactile robot arm sleeve NA ∼30m functional fiber $7.84

∼800m acrylic yarn
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Appendix B

Figures
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Figure B-1: Examples of self-supervised corrected results of tactile A. glove, B. sock,
C. vest, and D. robotic arm sleeve.
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Figure B-2: The human pose is represented by 19 joint angles in axis-angle represen-
tation of three dimensions (illustrated as 3 components).
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Figure B-3: Retrieved tactile frames from socks embedded with sensing matrix,
ground truth motion from motion caption system (XSens), and corresponding motion
prediction for A. lounging, B. squatting, C. twisting, and D. waist-turning.
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