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Abstract

Internal gravity waves are fundamental to the dynamics of density stratified fluids and the in-
stability mechanisms by which these waves dissipate their energy are a potentially significant
factor that underlies the distribution of energy and momentum in the natural environment.
Recently, it has been recognized that internal waves in the oceans and atmosphere often
take the form of beams: plane waves with locally confined spatial profile. While there is
a large body of theoretical work concerning the instability of sinusoidal internal waves, in-
stability mechanisms of beams are not yet fully understood. Although various nonlinear
mechanisms have been proposed, it remains unclear which, if any, are dominant in the nat-
ural environment and under what circumstances. This thesis examines the instability of
finite-width internal wave beams in order to extend the current understanding of internal
wave instability into more realistic settings.

Part I of this thesis uses a combination of experimental and theoretical techniques to
investigate finite-amplitude instabilities of beams. First, using a variant of the classical
‘St. Andrew’s Cross’ experiment, whereby beams are generated using a harmonically os-
cillated horizontal cylinder, we present novel experimental observations of instability in
large-amplitude internal wave beams. These results are compared against the predictions
of linear stability analysis based on Floquet theory and reveal the competition between
two- and three-dimensional instability mechanisms. Next, Floquet theory is used to investi-
gate the well-known parametric subharmonic instability (PSI) for finite-width beams. Our
findings show that frequency components typically ignored in standard analyses based on
triad resonance are in fact crucial to the instability dynamics of fine-scale perturbations.
The Floquet stability analysis also reveals that PSI is restricted to a finite range of per-
turbation wavenumbers and that a broadband instability dominates at large perturbation
wavenumber. Furthermore, in the nearly inviscid limit, this broadband instability persists
for small-amplitude beams that are not typically susceptible to PSI.

Part II focuses on the PSI of finite-width internal wave beams and investigates the role
of background mean flows, which provide a more realistic setting for PSI in the natural
environment. Using weakly nonlinear asymptotic theories, two types of internal wave beams
are considered: nearly-monochromatic beams whose spatial profile consists of a sinusoidal
carrier modulated by a locally confined envelope, and thin beams with general profile under
the effects of Earth’s rotation. In both cases, the presence of a uniform background mean
flow has a stabilizing effect on PSI for finite-width beams, in contrast to the PSI of a purely
sinusoidal plane wave where the background mean flow has no effect.

Thesis Supervisor: Triantaphyllos R. Akylas
Title: Professor of Mechanical Engineering
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Chapter 1

General introduction

Internal gravity waves are fundamental disturbances that arise in density stratified fluids
such as the oceans or atmosphere. Owing to the natural anisotropy of such fluids, with grav-
ity providing a preferred direction, internal waves exhibit a variety of interesting properties,
the most famous of which is their unique linear dispersion relation

𝜔

𝑁
= sin 𝜃, (1.1)

which relates the frequency 𝜔 of a sinusoidal wave, normalized by the buoyancy frequency 𝑁
that characterizes the background density stratification, and the angle 𝜃 that the wavevector
makes with the vertical, but is entirely independent of the magnitude of the wavevector.

As internal waves propagate through the interior of a fluid, they are key contributors to
the underlying distribution of energy and momentum in the natural environment. Therefore,
the instability mechanisms by which these waves dissipate their energy are of great physical
relevance. While there is a large body of theoretical work concerning the instability of
sinusoidal internal waves, recently, it has been recognized that internal waves in the oceans
and atmosphere instead often take the form of beams, plane waves with locally confined
spatial profile, whose instability mechanisms are not yet fully understood. There has been
some progress detailing various nonlinear mechanisms by which beams undergo instability,
but it still remains unclear which, if any, are dominant in the natural environment and
under what circumstances. Therefore, the unifying aim of this thesis is to advance the
understanding of internal wave instability in physically relevant settings.

This thesis is divided into two parts, corresponding to two central themes. Part I, con-
sisting of Chapters 2 and 3, focuses on the instability dynamics of finite-width beams beyond
the small-amplitude limit. Chapter 2 uses a combination of experimental and theoretical
techniques to investigate internal wave beams whose spatial profile features no more than a
single wavelength. Using a variant of the classical ‘St. Andrew’s Cross’ experiment, whereby
beams are generated using a harmonically oscillated horizontal cylinder, we present novel
experimental observations of instability, which bears resemblance to the triadic resonant
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instability (TRI) of sinusoidal internal waves but is fundamentally distinct from TRI. The
experimental observations agree well with linear stability computations based on Floquet
theory, and evidence is presented that the presence of three-dimensional effects, in the form
of transverse beam variations, induce a horizontal mean flow of the streaming type and
greatly subdue the instability.

Chapter 3 uses Floquet theory to investigate finite-amplitude instabilities of finite-width
beams in relation to the well-known parametric subharmonic instability (PSI). Results of the
Floquet analysis are compared with previous weakly nonlinear models of PSI and show that
frequency components typically ignored in standard analyses based on triad resonance are in
fact crucial to the instability dynamics of fine-scale perturbations. After accounting for these
components, the asymptotic PSI analysis is in excellent agreement with numerical solutions
of the Floquet eigenvalue problem. The Floquet stability analysis also reveals that PSI is
restricted to a finite range of perturbation wavenumbers: as the perturbation wavenumber
is increased (for fixed beam amplitude), higher-frequency components eventually come into
play so the instability becomes broadband. Furthermore, in the nearly inviscid limit, this
broadband instability persists for small-amplitude beams that are not typically susceptible
to PSI.

Part II, consisting of Chapters 4 and 5, considers PSI of finite-width internal wave beams
under the influence of a background mean flow. Chapter 4 describes an asymptotic model
for the PSI of a nearly monochromatic internal wave beam, whose spatial profile features a
sinusoidal carrier modulated by a locally confined envelope. As a result of the background
mean flow, an additional necessary condition for PSI emerges that stabilizes very short-scale
perturbations and allows for a small amount of mean flow to weaken PSI dramatically. This
is in contrast to the PSI of a purely sinusoidal wave, for which a background mean flow has
no effect.

Finally, Chapter 5 considers the effect of a background beam flow on the near-inertial
PSI of finite-width beams, in which the primary wave frequency is approximately twice that
of the background rotation rate. In a similar fashion to the results of Chapter 4, the presence
of a uniform background mean flow generally has a stabilizing effect on PSI for finite-width
beams. However, under near-inertial conditions, it is possible for small amounts of mean
flow, depending on its direction in relation to the primary wave, to induce PSI in beams
that would have otherwise been stable in the absence of mean flow.
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Chapter 2

Finite-amplitude instabilities of thin
internal wave beams: experiments
and theory

This work has been submitted to Journal of Fluid Mechanics.

2.1 Introduction

The classic experiment by Mowbray & Rarity (1967) of oscillating a cylinder in a stratified
fluid was the first demonstration of the remarkable X-shaped pattern of internal gravity
waves that is now known as ‘St. Andrew’s Cross’. Interestingly, the four arms of the
cross are in the form of time-harmonic plane waves with locally confined spatial profile,
determined by the oscillating cylinder, and stretch along specific directions relative to gravity
set by the dispersion relation. Such beam-like disturbances are fundamental propagation
modes that derive from the inherent anisotropy of internal wave motion, whereby energy is
transported along rather than perpendicularly to surfaces of constant phase (e.g. Lighthill,
1978, §4.4). Since the original observations of Mowbray & Rarity (1967), there have been
numerous experimental and theoretical investigations of internal wave beams in connection
with forced internal waves by oscillating bodies and related configurations (see e.g. Kataoka
et al., 2017, and references therein). Furthermore, internal wave beams arise in oceans due
to the interaction of the barotropic tide with bottom topography (e.g. Lamb, 2004; Peacock
et al., 2008; Johnston et al., 2011) and in the atmosphere due to thunderstorms (e.g. Fovell
et al., 1992).

In an effort to shed light on the dissipation process of oceanic internal waves, a body
of recent work has focused on possible instability mechanisms of internal wave beams (see
e.g. Dauxois et al., 2018, and references therein). Theoretically, the stability of wave beams
can be viewed as an extension of the simpler, but less realistic problem of the stability of
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plane waves with sinusoidal profile. The latter problem has been studied systematically
using Floquet theory, and a wide range of instabilities have been found for finite-amplitude
sinusoidal waves (e.g. Mied, 1976; Klostermeyer, 1991; Sonmor & Klaassen, 1997). In the
small-amplitude limit, these instabilities can be understood in terms of resonant triad inter-
actions of the primary wave with two subharmonic perturbations (e.g. Staquet & Sommeria,
2002). A particular case of such triadic resonant instability (TRI) is the widely-studied
parametric subharmonic instability (PSI), which involves subharmonic perturbations with
half the frequency of the primary wave and very fine wavelength. In view of the possibility of
transferring energy into much smaller scales, PSI has been suggested as a potentially signif-
icant factor in the dissipation of oceanic internal waves (e.g. Hibiya et al., 2002; MacKinnon
& Winters, 2005; Young et al., 2008).

It is now recognized, however, that the finite width of an internal wave beam reduces
the efficiency of PSI: subharmonic perturbations travel across the beam with their group
velocity and thus have only limited time to extract energy from the primary wave. On these
grounds, Karimi & Akylas (2014) argued that, in the small-amplitude nearly-inviscid limit,
only beams with nearly monochromatic profile are susceptible to PSI. This possibility of
PSI, which requires that the beam profile comprise large enough number of carrier wave-
lengths, is further limited by background mean flows (Fan & Akylas, 2019). An exception
arises in the presence of background rotation for beams with frequency close to twice the
inertial frequency. In this instance, which is of geophysical relevance, owing to the Earth’s
rotation, beams with general locally confined profile can suffer PSI because subharmonic
perturbations of near-inertial frequency have group velocity close to zero (Karimi & Aky-
las, 2017). These conclusions regarding PSI of small-amplitude nearly-inviscid beams were
confirmed by a formal linear stability analysis (Fan & Akylas, 2020b) using the Floquet
procedure of Onuki & Tanaka (2019). In addition, however, Fan & Akylas (2020b) found
that small-amplitude beams with general locally confined profile can develop instability far
away from the inertial frequency. This instability, similar to PSI, arises in the limit of large
perturbation wavenumber and is thus viable only in very high Reynolds-number environ-
ments. Furthermore, it involves not only two subharmonic perturbations, but also higher
harmonics due to interactions with the underlying beam.

On the experimental side, Bourget et al. (2013) examined the stability of wave beams of
finite width comprising about three wavelengths of a well-defined carrier, which were gener-
ated in a stratified fluid tank by a stacked-plate wavemaker (Mercier et al., 2010) specially
designed for this purpose. Owing to the increased importance of viscosity under laboratory
flow conditions, rather than PSI, which involves perturbations of very fine spatial scale,
Bourget et al. (2013) observed a form of TRI: the two unstable subharmonic perturbations
formed a resonant triad with the beam carrier but the three waves had comparable wave-
lengths. Furthermore, in a follow-up study using a similar set-up, Bourget et al. (2014)
confirmed that the finite beam width weakens this triad resonance instability, consistent
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with Karimi & Akylas (2014). In an earlier experiment, however, using a similar wave
generator, but in a relatively wide tank where the generated nearly monochromatic beams
featured significant transverse variations, Bordes et al. (2012) found no evidence of TRI.
Instead, they observed a growing horizontal mean flow of the streaming type which also
impacts the beam itself via refraction. This induced mean flow is of viscous origin and
hinges on the combined effects of transverse variations and nonlinearity (Kataoka & Akylas,
2015; Fan et al., 2018; Jamin et al., 2020). However, as noted by Dauxois et al. (2018), it is
unclear whether streaming and TRI can coexist, and the conditions that would favour one
over the other remain largely unexplored.

In contrast to nearly monochromatic beams, there have been only few reports of insta-
bility in the original St. Andrew’s Cross, which features internal wave beams whose typical
width is only one or two wavelengths. Importantly, such ‘thin’ beams with a broadband
spectrum of spatial wavenumbers are not only readily generated in the laboratory by oscil-
lating bodies, but also typify beams that arise in oceans and the atmosphere (e.g. Fovell
et al., 1992; Lamb, 2004; Johnston et al., 2011). Most prior laboratory experiments that
used an oscillating cylinder as forcing, in particular, were concerned with small-amplitude
beams. Specifically, the typical ratio of oscillation amplitude (half peak-to-peak) to cylin-
der radius was less than 0.2, and the generated beams agreed well with linear theory (e.g.
see Sutherland & Linden, 2002). Thus, considering the theoretical findings of Karimi &
Akylas (2014) and Fan & Akylas (2020b) for small-amplitude thin beams, it is not surpris-
ing that no instabilities have been observed under these laboratory flow conditions. At a
larger amplitude-to-radius ratio of 0.66, Clark & Sutherland (2010) report an instability
that resembles PSI, but experimental limitations of their synthetic schlieren technique pre-
cluded detailed quantitative measurements regarding this instability. Finally, Ermanyuk &
Gavrilov (2008) used amplitude-to-radius ratios of up to 1.2. However, they did not observe
instability probably because of the large viscous effects introduced by their small cylinder
radius of 1 cm. The only significant nonlinear effect noted in this study was the radiation of
a second-harmonic beam when the cylinder driving frequency is less than half the buoyancy
frequency.

Apart from the St. Andrew’s Cross, thin internal wave beams arise also in the so-called
‘internal wave attractor’ (e.g. Hazewinkel et al., 2008; Scolan et al., 2013; Brouzet et al.,
2016), which forms by the focusing of wave energy via wall reflections. In this setting, there
have been observations of an instability of thin beams that appears to resemble TRI (i.e.
satisfy the triad resonance conditions in an approximate sense). However, it remains unclear
whether the observed instability can be predicted using TRI theory, which was originally
developed for small-amplitude sinusoidal waves, and whether this instability persists outside
of the strict geometric constraints of the attractor set-up.

The present joint experimental and theoretical investigation aims to improve the current
understanding of instability mechanisms of isolated thin internal wave beams, akin to those
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originally observed by Mowbray & Rarity (1967). Specifically, we experimentally study
internal wave beams due to a horizontal cylinder that is oscillated harmonically in the
direction of propagation of the generated beam. This forcing arrangement permits the
generation of coherent, finite-amplitude wave beams, which are then measured using particle
image velocimetry. We present novel observations of instability above a threshold forcing
amplitude-to-radius ratio depending on the driving frequency, which are compared against
the predictions of a formal linear stability analysis based on Floquet theory. Although it
bears resemblance to TRI, the observed instability cannot be predicted by TRI theory since
thin wave beams have no well-defined carrier wavevector. This is in contrast to the Floquet
stability analysis, which agrees well with the experimental observations. Finally, we present
experimental evidence that transverse beam variations induce a horizontal mean flow of the
streaming type and significantly weaken the observed instability.

2.2 Experimental set-up

Laboratory experiments were performed in a glass wave tank 5.46 m long and 0.51 m wide,
filled to a depth of 0.54 m with salt water. Using the double-bucket method, a linear den-
sity stratification was set up with buoyancy frequency 𝑁 = 0.94 s−1. The final stratification
was measured using a Precision Measurements Engineering conductivity/temperature probe.
Waves were generated by oscillating a 0.5 m long horizontal cylinder (see schematic in figure
2-1) whose length spanned the transverse width of the tank with about 5 mm clearance
between the ends of the cylinder and the tank walls on each side. Two thin metal rods
attached to opposing ends of the cylinder were connected to a National Instruments/Axis
New England based motion control system, which used a lead screw traverse to drive the
cylinder oscillations. Cylinders were 3D printed using ABS plastic, allowing for precise con-
trol of the cylinder diameter along its length. We used two types of cylinders: (i) a uniform
cylinder with radius 22.2 mm (figure 2-1b); and (ii) a non-uniform cylinder comprised of
three cylindrical sections of equal length whose radii were 15.6 mm, 22.2 mm and 15.2 mm
(figure 2-1c). We shall use 𝐿 = 22.2 mm, the common radius in the centre section of the
two types of cylinders, as the characteristic length scale for all experiments.

Cylinders were harmonically oscillated at angle 𝜃 to the horizontal with frequency 𝜔0 and
half peak-to-peak amplitude 𝐴 (figure 2-1a). For each experiment, 𝜃 was chosen to match
the angle of inclination to the horizontal of the generated wave beams (see figure 2-1d), set
by the linear dispersion relation

𝜔2
0 = 𝑁2 sin2 𝜃. (2.1)

This arrangement allows for complete forcing of the fluid velocity in two of the four generated
beams, since the motion of the cylinder is then exactly parallel to the direction of fluid
motion. Our interest centres on one of these two preferentially excited beams (see figure
2-1d), which reach higher amplitude as compared to the four symmetric beams that would
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be generated by vertical (𝜃 = 90∘) cylinder oscillations at the same forcing amplitude 𝐴.
We note that an analogous result was found by Mercier et al. (2010) in their analysis of
the forcing efficiency of a wavemaker comprised of stacked plates. In our experiments,
𝜃 ∈ {35∘, 40∘, 45∘, 50∘, 55∘} and 0.36 ≤ 𝐴/𝐿 ≤ 1.26. For all these forcing conditions, the
wave beam amplitudes were below the threshold for overturning (see §2.5.2). Finally, the
size of our wave tank was large enough to ensure that reflections of the other three beams
from the tank walls and free surface do not interfere with the primary beam of study.

Flow visualization was performed using a LaVision particle image velocimetry (PIV)
system. A pulsed Nd:YAG laser located beneath the wave tank was used to generate a
vertical laser sheet in the 𝑥𝑦-plane located at 𝑧 = 4.3 cm (unless otherwise noted), where
𝑧 = 0 specifies the midline of the tank (see figure 2-1a). The density stratification was
seeded with Sphericel hollow glass oxide particles of diameter 8-12 𝜇m and densities ranging
from 1000 to 1050 kg m−3. Images were captured using an Imager Pro X CCD camera at
a resolution of 2048 × 2048 pixels from the start of forcing to 8 to 20 minutes later. The
camera frame rate was 8 Hz, which corresponds to a minimum of 64 images per forcing
period for the range of forcing frequencies used. Images were processed using LaVision
DaVis software to obtain two-dimensional velocity fields in the plane of the laser sheet.

2.3 Stable vs. unstable beams: experimental observations

Figure 2-2 compares the horizontal (𝑥-) velocity field of the internal wave beam generated
using the uniform cylinder for 𝜃 = 45∘ at two forcing amplitudes, 𝐴/𝐿 = 0.45 and 0.63.
For both amplitudes, at 𝑡 = 8𝑇0 after start of forcing (figure 2-2a,b), where 𝑇0 = 2𝜋/𝜔0 is
the oscillation period, the wave beam has propagated across the observation window from
the upper right to the lower left (phase traveling from lower right to upper left) and has
reached a quasi-steady state. At the later time 𝑡 = 36𝑇0, the lower-amplitude beam (at
𝐴/𝐿 = 0.45) remains uniform in the along-beam direction aside from the effects of viscous
dissipation, which cause slight broadening and decay of the wave profile far from the cylinder
(figure 2-2d), and this steady state persisted even for larger times, e.g. 𝑡 = 120𝑇0, with no
noticeable instability. In contrast, at the larger forcing amplitude 𝐴/𝐿 = 0.63 after 36𝑇0 of
forcing, an instability is visibly apparent (figure 2-2e), causing breakdown of the primary
wave beam. These observations are also consistent with a time series of the horizontal
velocity at a position along the beam centreline roughly 20 cm away from the cylinder:
the lower-amplitude forcing produces a steady time-harmonic signal (figure 2-2f ), while the
higher-amplitude forcing eventually results in a modulated, multi-frequency signal due to
instability (figure 2-2g).

Figure 2-3(a) compares the spatially-averaged frequency spectra of the stable and un-
stable beams, obtained by calculating the time-frequency spectrum at each spatial point
and averaging over the region of the primary wave beam. Both spectra feature a domi-

21



Straight cylinder

3D cylinder

(a) (b)

Transverse view
0.54 m

Side (camera) view

g
<latexit sha1_base64="T4TJlDULzgLamgk0Ypk8cIdm8hA=">AAACFHicbVDLSgMxFL3js9ZX1aWbYBFclDIjgi6Lbly2YB/QlpLJpG1oJhOSTHEo/QK36te4E7fu/Rkxnc6iDw8EDuecy705vuRMG9f9cTY2t7Z3dnN7+f2Dw6PjwslpQ0exIrROIh6plo815UzQumGG05ZUFIc+p01/9DDzm2OqNIvEk0kk7YZ4IFifEWysVBv0CkW37KZA68TLSBEyVHuF304QkTikwhCOtW57rjSlWFOBQ6pLwZhJndLuBCvDCKfTfMfaEpMRHtD2YuA5vX+KLq0foH6k7BMGperi0ASHWiehb5MhNkO96s3Efz05TDQjevmC2PTvuhMmZGyoIPPt/ZgjE6FZQyhgihLDE0swUcz+AZEhVpgY22PeFuat1rNOGtdlzy17tZti5T6rLgfncAFX4MEtVOARqlAHAhRe4BXenHfnw/l0vubRDSebOYMlON9/LZmfsQ==</latexit><latexit sha1_base64="T4TJlDULzgLamgk0Ypk8cIdm8hA=">AAACFHicbVDLSgMxFL3js9ZX1aWbYBFclDIjgi6Lbly2YB/QlpLJpG1oJhOSTHEo/QK36te4E7fu/Rkxnc6iDw8EDuecy705vuRMG9f9cTY2t7Z3dnN7+f2Dw6PjwslpQ0exIrROIh6plo815UzQumGG05ZUFIc+p01/9DDzm2OqNIvEk0kk7YZ4IFifEWysVBv0CkW37KZA68TLSBEyVHuF304QkTikwhCOtW57rjSlWFOBQ6pLwZhJndLuBCvDCKfTfMfaEpMRHtD2YuA5vX+KLq0foH6k7BMGperi0ASHWiehb5MhNkO96s3Efz05TDQjevmC2PTvuhMmZGyoIPPt/ZgjE6FZQyhgihLDE0swUcz+AZEhVpgY22PeFuat1rNOGtdlzy17tZti5T6rLgfncAFX4MEtVOARqlAHAhRe4BXenHfnw/l0vubRDSebOYMlON9/LZmfsQ==</latexit><latexit sha1_base64="T4TJlDULzgLamgk0Ypk8cIdm8hA=">AAACFHicbVDLSgMxFL3js9ZX1aWbYBFclDIjgi6Lbly2YB/QlpLJpG1oJhOSTHEo/QK36te4E7fu/Rkxnc6iDw8EDuecy705vuRMG9f9cTY2t7Z3dnN7+f2Dw6PjwslpQ0exIrROIh6plo815UzQumGG05ZUFIc+p01/9DDzm2OqNIvEk0kk7YZ4IFifEWysVBv0CkW37KZA68TLSBEyVHuF304QkTikwhCOtW57rjSlWFOBQ6pLwZhJndLuBCvDCKfTfMfaEpMRHtD2YuA5vX+KLq0foH6k7BMGperi0ASHWiehb5MhNkO96s3Efz05TDQjevmC2PTvuhMmZGyoIPPt/ZgjE6FZQyhgihLDE0swUcz+AZEhVpgY22PeFuat1rNOGtdlzy17tZti5T6rLgfncAFX4MEtVOARqlAHAhRe4BXenHfnw/l0vubRDSebOYMlON9/LZmfsQ==</latexit><latexit sha1_base64="T4TJlDULzgLamgk0Ypk8cIdm8hA=">AAACFHicbVDLSgMxFL3js9ZX1aWbYBFclDIjgi6Lbly2YB/QlpLJpG1oJhOSTHEo/QK36te4E7fu/Rkxnc6iDw8EDuecy705vuRMG9f9cTY2t7Z3dnN7+f2Dw6PjwslpQ0exIrROIh6plo815UzQumGG05ZUFIc+p01/9DDzm2OqNIvEk0kk7YZ4IFifEWysVBv0CkW37KZA68TLSBEyVHuF304QkTikwhCOtW57rjSlWFOBQ6pLwZhJndLuBCvDCKfTfMfaEpMRHtD2YuA5vX+KLq0foH6k7BMGperi0ASHWiehb5MhNkO96s3Efz05TDQjevmC2PTvuhMmZGyoIPPt/ZgjE6FZQyhgihLDE0swUcz+AZEhVpgY22PeFuat1rNOGtdlzy17tZti5T6rLgfncAFX4MEtVOARqlAHAhRe4BXenHfnw/l0vubRDSebOYMlON9/LZmfsQ==</latexit>

5.46 m

0.54 m

✓
<latexit sha1_base64="xY07rJwkAesqbrrd3eI5eUrUR8c=">AAACGXicbZBLSwMxFIUz9VXrq+rSTbAILkqZEUGXBUFcVrAPaEvJZDKd2ExmSO4Uh1LwJ7hVf407cevKPyOm0y768ELgcM4Jyf3cWHANtv1j5dbWNza38tuFnd29/YPi4VFDR4mirE4jEamWSzQTXLI6cBCsFStGQlewpju4meTNIVOaR/IB0ph1Q9KX3OeUgLEaHQgYkF6xZFfsbPCqcGaihGZT6xV/O15Ek5BJoIJo3XbsGMqJZpKETJe9IY91JrsjooBTwcaFjoljQgekz9rzhadsiTE+M7mH/UiZIwFn7vylEQm1TkPXNEMCgV7OJua/WRykmlO9+IME/OvuiMs4ASbp9HU/ERgiPMGEPa4YBZEaQajiZgdMA6IIBQOzYIA5y3hWReOi4tgV5/6yVL19nqLLoxN0is6Rg65QFd2hGqojih7RC3pFb9a79WF9Wl/Tas6a4T5GC2N9/wGHD6Jy</latexit><latexit sha1_base64="xY07rJwkAesqbrrd3eI5eUrUR8c=">AAACGXicbZBLSwMxFIUz9VXrq+rSTbAILkqZEUGXBUFcVrAPaEvJZDKd2ExmSO4Uh1LwJ7hVf407cevKPyOm0y768ELgcM4Jyf3cWHANtv1j5dbWNza38tuFnd29/YPi4VFDR4mirE4jEamWSzQTXLI6cBCsFStGQlewpju4meTNIVOaR/IB0ph1Q9KX3OeUgLEaHQgYkF6xZFfsbPCqcGaihGZT6xV/O15Ek5BJoIJo3XbsGMqJZpKETJe9IY91JrsjooBTwcaFjoljQgekz9rzhadsiTE+M7mH/UiZIwFn7vylEQm1TkPXNEMCgV7OJua/WRykmlO9+IME/OvuiMs4ASbp9HU/ERgiPMGEPa4YBZEaQajiZgdMA6IIBQOzYIA5y3hWReOi4tgV5/6yVL19nqLLoxN0is6Rg65QFd2hGqojih7RC3pFb9a79WF9Wl/Tas6a4T5GC2N9/wGHD6Jy</latexit><latexit sha1_base64="xY07rJwkAesqbrrd3eI5eUrUR8c=">AAACGXicbZBLSwMxFIUz9VXrq+rSTbAILkqZEUGXBUFcVrAPaEvJZDKd2ExmSO4Uh1LwJ7hVf407cevKPyOm0y768ELgcM4Jyf3cWHANtv1j5dbWNza38tuFnd29/YPi4VFDR4mirE4jEamWSzQTXLI6cBCsFStGQlewpju4meTNIVOaR/IB0ph1Q9KX3OeUgLEaHQgYkF6xZFfsbPCqcGaihGZT6xV/O15Ek5BJoIJo3XbsGMqJZpKETJe9IY91JrsjooBTwcaFjoljQgekz9rzhadsiTE+M7mH/UiZIwFn7vylEQm1TkPXNEMCgV7OJua/WRykmlO9+IME/OvuiMs4ASbp9HU/ERgiPMGEPa4YBZEaQajiZgdMA6IIBQOzYIA5y3hWReOi4tgV5/6yVL19nqLLoxN0is6Rg65QFd2hGqojih7RC3pFb9a79WF9Wl/Tas6a4T5GC2N9/wGHD6Jy</latexit><latexit sha1_base64="xY07rJwkAesqbrrd3eI5eUrUR8c=">AAACGXicbZBLSwMxFIUz9VXrq+rSTbAILkqZEUGXBUFcVrAPaEvJZDKd2ExmSO4Uh1LwJ7hVf407cevKPyOm0y768ELgcM4Jyf3cWHANtv1j5dbWNza38tuFnd29/YPi4VFDR4mirE4jEamWSzQTXLI6cBCsFStGQlewpju4meTNIVOaR/IB0ph1Q9KX3OeUgLEaHQgYkF6xZFfsbPCqcGaihGZT6xV/O15Ek5BJoIJo3XbsGMqJZpKETJe9IY91JrsjooBTwcaFjoljQgekz9rzhadsiTE+M7mH/UiZIwFn7vylEQm1TkPXNEMCgV7OJua/WRykmlO9+IME/OvuiMs4ASbp9HU/ERgiPMGEPa4YBZEaQajiZgdMA6IIBQOzYIA5y3hWReOi4tgV5/6yVL19nqLLoxN0is6Rg65QFd2hGqojih7RC3pFb9a79WF9Wl/Tas6a4T5GC2N9/wGHD6Jy</latexit>

Laser sheet

z

y

x z

y

x

(d) ✓
<latexit sha1_base64="xY07rJwkAesqbrrd3eI5eUrUR8c=">AAACGXicbZBLSwMxFIUz9VXrq+rSTbAILkqZEUGXBUFcVrAPaEvJZDKd2ExmSO4Uh1LwJ7hVf407cevKPyOm0y768ELgcM4Jyf3cWHANtv1j5dbWNza38tuFnd29/YPi4VFDR4mirE4jEamWSzQTXLI6cBCsFStGQlewpju4meTNIVOaR/IB0ph1Q9KX3OeUgLEaHQgYkF6xZFfsbPCqcGaihGZT6xV/O15Ek5BJoIJo3XbsGMqJZpKETJe9IY91JrsjooBTwcaFjoljQgekz9rzhadsiTE+M7mH/UiZIwFn7vylEQm1TkPXNEMCgV7OJua/WRykmlO9+IME/OvuiMs4ASbp9HU/ERgiPMGEPa4YBZEaQajiZgdMA6IIBQOzYIA5y3hWReOi4tgV5/6yVL19nqLLoxN0is6Rg65QFd2hGqojih7RC3pFb9a79WF9Wl/Tas6a4T5GC2N9/wGHD6Jy</latexit><latexit sha1_base64="xY07rJwkAesqbrrd3eI5eUrUR8c=">AAACGXicbZBLSwMxFIUz9VXrq+rSTbAILkqZEUGXBUFcVrAPaEvJZDKd2ExmSO4Uh1LwJ7hVf407cevKPyOm0y768ELgcM4Jyf3cWHANtv1j5dbWNza38tuFnd29/YPi4VFDR4mirE4jEamWSzQTXLI6cBCsFStGQlewpju4meTNIVOaR/IB0ph1Q9KX3OeUgLEaHQgYkF6xZFfsbPCqcGaihGZT6xV/O15Ek5BJoIJo3XbsGMqJZpKETJe9IY91JrsjooBTwcaFjoljQgekz9rzhadsiTE+M7mH/UiZIwFn7vylEQm1TkPXNEMCgV7OJua/WRykmlO9+IME/OvuiMs4ASbp9HU/ERgiPMGEPa4YBZEaQajiZgdMA6IIBQOzYIA5y3hWReOi4tgV5/6yVL19nqLLoxN0is6Rg65QFd2hGqojih7RC3pFb9a79WF9Wl/Tas6a4T5GC2N9/wGHD6Jy</latexit><latexit sha1_base64="xY07rJwkAesqbrrd3eI5eUrUR8c=">AAACGXicbZBLSwMxFIUz9VXrq+rSTbAILkqZEUGXBUFcVrAPaEvJZDKd2ExmSO4Uh1LwJ7hVf407cevKPyOm0y768ELgcM4Jyf3cWHANtv1j5dbWNza38tuFnd29/YPi4VFDR4mirE4jEamWSzQTXLI6cBCsFStGQlewpju4meTNIVOaR/IB0ph1Q9KX3OeUgLEaHQgYkF6xZFfsbPCqcGaihGZT6xV/O15Ek5BJoIJo3XbsGMqJZpKETJe9IY91JrsjooBTwcaFjoljQgekz9rzhadsiTE+M7mH/UiZIwFn7vylEQm1TkPXNEMCgV7OJua/WRykmlO9+IME/OvuiMs4ASbp9HU/ERgiPMGEPa4YBZEaQajiZgdMA6IIBQOzYIA5y3hWReOi4tgV5/6yVL19nqLLoxN0is6Rg65QFd2hGqojih7RC3pFb9a79WF9Wl/Tas6a4T5GC2N9/wGHD6Jy</latexit><latexit sha1_base64="xY07rJwkAesqbrrd3eI5eUrUR8c=">AAACGXicbZBLSwMxFIUz9VXrq+rSTbAILkqZEUGXBUFcVrAPaEvJZDKd2ExmSO4Uh1LwJ7hVf407cevKPyOm0y768ELgcM4Jyf3cWHANtv1j5dbWNza38tuFnd29/YPi4VFDR4mirE4jEamWSzQTXLI6cBCsFStGQlewpju4meTNIVOaR/IB0ph1Q9KX3OeUgLEaHQgYkF6xZFfsbPCqcGaihGZT6xV/O15Ek5BJoIJo3XbsGMqJZpKETJe9IY91JrsjooBTwcaFjoljQgekz9rzhadsiTE+M7mH/UiZIwFn7vylEQm1TkPXNEMCgV7OJua/WRykmlO9+IME/OvuiMs4ASbp9HU/ERgiPMGEPa4YBZEaQajiZgdMA6IIBQOzYIA5y3hWReOi4tgV5/6yVL19nqLLoxN0is6Rg65QFd2hGqojih7RC3pFb9a79WF9Wl/Tas6a4T5GC2N9/wGHD6Jy</latexit>

!0, A0
<latexit sha1_base64="UolYVclyTYjGAlSBcdIqHHFhapg=">AAACIHicbZDLSgMxGIUz9VbrrerSTbAILkrJiKDLiiAuK9gLtMOQyaRtaCYTk0xxKAXfwq36NO7EpT6MmE67sK0/BA7nnJD8XyA50wahLye3srq2vpHfLGxt7+zuFfcPGjpOFKF1EvNYtQKsKWeC1g0znLakojgKOG0Gg+tJ3hxSpVks7k0qqRfhnmBdRrCxlteJI9rDPirDKx/5xRKqoGzgsnBnogRmU/OLP50wJklEhSEca912kTTlRFOBI6rL4ZBJnUlvhJVhhNNxoWNjickA92j7b+Ex22UMT2wewm6s7BEGZu7fSyMcaZ1GgW1G2PT1YjYx/81kP9WM6PkfJKZ76Y2YkImhgkxf7yYcmhhOaMGQKUoMT63ARDG7AyR9rDAxlmnBAnMX8SyLxlnFRRX37rxUvXmaosuDI3AMToELLkAV3IIaqAMCHsAzeAGvzpvz7nw4n9NqzpnhPgRz43z/AluXpFY=</latexit><latexit sha1_base64="UolYVclyTYjGAlSBcdIqHHFhapg=">AAACIHicbZDLSgMxGIUz9VbrrerSTbAILkrJiKDLiiAuK9gLtMOQyaRtaCYTk0xxKAXfwq36NO7EpT6MmE67sK0/BA7nnJD8XyA50wahLye3srq2vpHfLGxt7+zuFfcPGjpOFKF1EvNYtQKsKWeC1g0znLakojgKOG0Gg+tJ3hxSpVks7k0qqRfhnmBdRrCxlteJI9rDPirDKx/5xRKqoGzgsnBnogRmU/OLP50wJklEhSEca912kTTlRFOBI6rL4ZBJnUlvhJVhhNNxoWNjickA92j7b+Ex22UMT2wewm6s7BEGZu7fSyMcaZ1GgW1G2PT1YjYx/81kP9WM6PkfJKZ76Y2YkImhgkxf7yYcmhhOaMGQKUoMT63ARDG7AyR9rDAxlmnBAnMX8SyLxlnFRRX37rxUvXmaosuDI3AMToELLkAV3IIaqAMCHsAzeAGvzpvz7nw4n9NqzpnhPgRz43z/AluXpFY=</latexit><latexit sha1_base64="UolYVclyTYjGAlSBcdIqHHFhapg=">AAACIHicbZDLSgMxGIUz9VbrrerSTbAILkrJiKDLiiAuK9gLtMOQyaRtaCYTk0xxKAXfwq36NO7EpT6MmE67sK0/BA7nnJD8XyA50wahLye3srq2vpHfLGxt7+zuFfcPGjpOFKF1EvNYtQKsKWeC1g0znLakojgKOG0Gg+tJ3hxSpVks7k0qqRfhnmBdRrCxlteJI9rDPirDKx/5xRKqoGzgsnBnogRmU/OLP50wJklEhSEca912kTTlRFOBI6rL4ZBJnUlvhJVhhNNxoWNjickA92j7b+Ex22UMT2wewm6s7BEGZu7fSyMcaZ1GgW1G2PT1YjYx/81kP9WM6PkfJKZ76Y2YkImhgkxf7yYcmhhOaMGQKUoMT63ARDG7AyR9rDAxlmnBAnMX8SyLxlnFRRX37rxUvXmaosuDI3AMToELLkAV3IIaqAMCHsAzeAGvzpvz7nw4n9NqzpnhPgRz43z/AluXpFY=</latexit><latexit sha1_base64="UolYVclyTYjGAlSBcdIqHHFhapg=">AAACIHicbZDLSgMxGIUz9VbrrerSTbAILkrJiKDLiiAuK9gLtMOQyaRtaCYTk0xxKAXfwq36NO7EpT6MmE67sK0/BA7nnJD8XyA50wahLye3srq2vpHfLGxt7+zuFfcPGjpOFKF1EvNYtQKsKWeC1g0znLakojgKOG0Gg+tJ3hxSpVks7k0qqRfhnmBdRrCxlteJI9rDPirDKx/5xRKqoGzgsnBnogRmU/OLP50wJklEhSEca912kTTlRFOBI6rL4ZBJnUlvhJVhhNNxoWNjickA92j7b+Ex22UMT2wewm6s7BEGZu7fSyMcaZ1GgW1G2PT1YjYx/81kP9WM6PkfJKZ76Y2YkImhgkxf7yYcmhhOaMGQKUoMT63ARDG7AyR9rDAxlmnBAnMX8SyLxlnFRRX37rxUvXmaosuDI3AMToELLkAV3IIaqAMCHsAzeAGvzpvz7nw4n9NqzpnhPgRz43z/AluXpFY=</latexit>

x
✓

<latexit sha1_base64="xY07rJwkAesqbrrd3eI5eUrUR8c=">AAACGXicbZBLSwMxFIUz9VXrq+rSTbAILkqZEUGXBUFcVrAPaEvJZDKd2ExmSO4Uh1LwJ7hVf407cevKPyOm0y768ELgcM4Jyf3cWHANtv1j5dbWNza38tuFnd29/YPi4VFDR4mirE4jEamWSzQTXLI6cBCsFStGQlewpju4meTNIVOaR/IB0ph1Q9KX3OeUgLEaHQgYkF6xZFfsbPCqcGaihGZT6xV/O15Ek5BJoIJo3XbsGMqJZpKETJe9IY91JrsjooBTwcaFjoljQgekz9rzhadsiTE+M7mH/UiZIwFn7vylEQm1TkPXNEMCgV7OJua/WRykmlO9+IME/OvuiMs4ASbp9HU/ERgiPMGEPa4YBZEaQajiZgdMA6IIBQOzYIA5y3hWReOi4tgV5/6yVL19nqLLoxN0is6Rg65QFd2hGqojih7RC3pFb9a79WF9Wl/Tas6a4T5GC2N9/wGHD6Jy</latexit><latexit sha1_base64="xY07rJwkAesqbrrd3eI5eUrUR8c=">AAACGXicbZBLSwMxFIUz9VXrq+rSTbAILkqZEUGXBUFcVrAPaEvJZDKd2ExmSO4Uh1LwJ7hVf407cevKPyOm0y768ELgcM4Jyf3cWHANtv1j5dbWNza38tuFnd29/YPi4VFDR4mirE4jEamWSzQTXLI6cBCsFStGQlewpju4meTNIVOaR/IB0ph1Q9KX3OeUgLEaHQgYkF6xZFfsbPCqcGaihGZT6xV/O15Ek5BJoIJo3XbsGMqJZpKETJe9IY91JrsjooBTwcaFjoljQgekz9rzhadsiTE+M7mH/UiZIwFn7vylEQm1TkPXNEMCgV7OJua/WRykmlO9+IME/OvuiMs4ASbp9HU/ERgiPMGEPa4YBZEaQajiZgdMA6IIBQOzYIA5y3hWReOi4tgV5/6yVL19nqLLoxN0is6Rg65QFd2hGqojih7RC3pFb9a79WF9Wl/Tas6a4T5GC2N9/wGHD6Jy</latexit><latexit sha1_base64="xY07rJwkAesqbrrd3eI5eUrUR8c=">AAACGXicbZBLSwMxFIUz9VXrq+rSTbAILkqZEUGXBUFcVrAPaEvJZDKd2ExmSO4Uh1LwJ7hVf407cevKPyOm0y768ELgcM4Jyf3cWHANtv1j5dbWNza38tuFnd29/YPi4VFDR4mirE4jEamWSzQTXLI6cBCsFStGQlewpju4meTNIVOaR/IB0ph1Q9KX3OeUgLEaHQgYkF6xZFfsbPCqcGaihGZT6xV/O15Ek5BJoIJo3XbsGMqJZpKETJe9IY91JrsjooBTwcaFjoljQgekz9rzhadsiTE+M7mH/UiZIwFn7vylEQm1TkPXNEMCgV7OJua/WRykmlO9+IME/OvuiMs4ASbp9HU/ERgiPMGEPa4YBZEaQajiZgdMA6IIBQOzYIA5y3hWReOi4tgV5/6yVL19nqLLoxN0is6Rg65QFd2hGqojih7RC3pFb9a79WF9Wl/Tas6a4T5GC2N9/wGHD6Jy</latexit><latexit sha1_base64="xY07rJwkAesqbrrd3eI5eUrUR8c=">AAACGXicbZBLSwMxFIUz9VXrq+rSTbAILkqZEUGXBUFcVrAPaEvJZDKd2ExmSO4Uh1LwJ7hVf407cevKPyOm0y768ELgcM4Jyf3cWHANtv1j5dbWNza38tuFnd29/YPi4VFDR4mirE4jEamWSzQTXLI6cBCsFStGQlewpju4meTNIVOaR/IB0ph1Q9KX3OeUgLEaHQgYkF6xZFfsbPCqcGaihGZT6xV/O15Ek5BJoIJo3XbsGMqJZpKETJe9IY91JrsjooBTwcaFjoljQgekz9rzhadsiTE+M7mH/UiZIwFn7vylEQm1TkPXNEMCgV7OJua/WRykmlO9+IME/OvuiMs4ASbp9HU/ERgiPMGEPa4YBZEaQajiZgdMA6IIBQOzYIA5y3hWReOi4tgV5/6yVL19nqLLoxN0is6Rg65QFd2hGqojih7RC3pFb9a79WF9Wl/Tas6a4T5GC2N9/wGHD6Jy</latexit>

y
⌘

<latexit sha1_base64="UTFG/sYZhH4iO4aWa7CIZgC6DmU=">AAACjHicbZHPShxBEMZ7JybRTWI0OSphiARykGUmLCQQAhJBclTIquAsUtNT6zb2P7prjMswR69e46P4KnkGXyI9swrurgXdfNSviu6qL7dSeEqSf53o2dLzFy+XV7qvXr9Zfbu2/u7Qm9JxHHAjjTvOwaMUGgckSOKxdQgql3iUn+82/OgCnRdG/6aJxaGCMy1GggM1qQwJTte2kl7SRrwo0nuxtbN5e3B39eF2/3S947LC8FKhJi7B+5M0sbRdetSg0G8XF8L6Vg4rcCS4xLqbBWyBn8MZnjwuuGxnqONPgRfxyLhwNMVt9nFTBcr7icpDpQIa+3nWJJ9kdjzxgvvZH5Q0+jashLYloebT10eljMnEzZbiQjjkJCdBAHcizBDzMTjgFHbZ7WYa/3CjFOiiysocXF1lJqy5caEq63q2AK2v21tIo+eYEAERXlIlFtrwAWFAwaV03pNFcfill/Z7/YNg1082jWW2wT6yzyxlX9kO+8X22YBxNmbX7C+7iVajfvQ9+jEtjTr3Pe/ZTER7/wG9j9D3</latexit>

⇠

<latexit sha1_base64="2Meg4kZHVTCfBmo6D6MNvtTff8g="></latexit>

⇣

<latexit sha1_base64="qZjv+35DUN8qVofqL52OGClAXOo="></latexit>

(c)

!0, A0
<latexit sha1_base64="UolYVclyTYjGAlSBcdIqHHFhapg=">AAACIHicbZDLSgMxGIUz9VbrrerSTbAILkrJiKDLiiAuK9gLtMOQyaRtaCYTk0xxKAXfwq36NO7EpT6MmE67sK0/BA7nnJD8XyA50wahLye3srq2vpHfLGxt7+zuFfcPGjpOFKF1EvNYtQKsKWeC1g0znLakojgKOG0Gg+tJ3hxSpVks7k0qqRfhnmBdRrCxlteJI9rDPirDKx/5xRKqoGzgsnBnogRmU/OLP50wJklEhSEca912kTTlRFOBI6rL4ZBJnUlvhJVhhNNxoWNjickA92j7b+Ex22UMT2wewm6s7BEGZu7fSyMcaZ1GgW1G2PT1YjYx/81kP9WM6PkfJKZ76Y2YkImhgkxf7yYcmhhOaMGQKUoMT63ARDG7AyR9rDAxlmnBAnMX8SyLxlnFRRX37rxUvXmaosuDI3AMToELLkAV3IIaqAMCHsAzeAGvzpvz7nw4n9NqzpnhPgRz43z/AluXpFY=</latexit><latexit sha1_base64="UolYVclyTYjGAlSBcdIqHHFhapg=">AAACIHicbZDLSgMxGIUz9VbrrerSTbAILkrJiKDLiiAuK9gLtMOQyaRtaCYTk0xxKAXfwq36NO7EpT6MmE67sK0/BA7nnJD8XyA50wahLye3srq2vpHfLGxt7+zuFfcPGjpOFKF1EvNYtQKsKWeC1g0znLakojgKOG0Gg+tJ3hxSpVks7k0qqRfhnmBdRrCxlteJI9rDPirDKx/5xRKqoGzgsnBnogRmU/OLP50wJklEhSEca912kTTlRFOBI6rL4ZBJnUlvhJVhhNNxoWNjickA92j7b+Ex22UMT2wewm6s7BEGZu7fSyMcaZ1GgW1G2PT1YjYx/81kP9WM6PkfJKZ76Y2YkImhgkxf7yYcmhhOaMGQKUoMT63ARDG7AyR9rDAxlmnBAnMX8SyLxlnFRRX37rxUvXmaosuDI3AMToELLkAV3IIaqAMCHsAzeAGvzpvz7nw4n9NqzpnhPgRz43z/AluXpFY=</latexit><latexit sha1_base64="UolYVclyTYjGAlSBcdIqHHFhapg=">AAACIHicbZDLSgMxGIUz9VbrrerSTbAILkrJiKDLiiAuK9gLtMOQyaRtaCYTk0xxKAXfwq36NO7EpT6MmE67sK0/BA7nnJD8XyA50wahLye3srq2vpHfLGxt7+zuFfcPGjpOFKF1EvNYtQKsKWeC1g0znLakojgKOG0Gg+tJ3hxSpVks7k0qqRfhnmBdRrCxlteJI9rDPirDKx/5xRKqoGzgsnBnogRmU/OLP50wJklEhSEca912kTTlRFOBI6rL4ZBJnUlvhJVhhNNxoWNjickA92j7b+Ex22UMT2wewm6s7BEGZu7fSyMcaZ1GgW1G2PT1YjYx/81kP9WM6PkfJKZ76Y2YkImhgkxf7yYcmhhOaMGQKUoMT63ARDG7AyR9rDAxlmnBAnMX8SyLxlnFRRX37rxUvXmaosuDI3AMToELLkAV3IIaqAMCHsAzeAGvzpvz7nw4n9NqzpnhPgRz43z/AluXpFY=</latexit><latexit sha1_base64="UolYVclyTYjGAlSBcdIqHHFhapg=">AAACIHicbZDLSgMxGIUz9VbrrerSTbAILkrJiKDLiiAuK9gLtMOQyaRtaCYTk0xxKAXfwq36NO7EpT6MmE67sK0/BA7nnJD8XyA50wahLye3srq2vpHfLGxt7+zuFfcPGjpOFKF1EvNYtQKsKWeC1g0znLakojgKOG0Gg+tJ3hxSpVks7k0qqRfhnmBdRrCxlteJI9rDPirDKx/5xRKqoGzgsnBnogRmU/OLP50wJklEhSEca912kTTlRFOBI6rL4ZBJnUlvhJVhhNNxoWNjickA92j7b+Ex22UMT2wewm6s7BEGZu7fSyMcaZ1GgW1G2PT1YjYx/81kP9WM6PkfJKZ76Y2YkImhgkxf7yYcmhhOaMGQKUoMT63ARDG7AyR9rDAxlmnBAnMX8SyLxlnFRRX37rxUvXmaosuDI3AMToELLkAV3IIaqAMCHsAzeAGvzpvz7nw4n9NqzpnhPgRz43z/AluXpFY=</latexit>

Figure 2-1: Schematics of the experimental set-up. (a) Side and transverse view of the wave
tank and horizontal cylinder. The cylinder is harmonically oscillated at frequency 𝜔0 and
angle 𝜃 relative to the horizontal such that 𝜔2

0 = 𝑁2 sin2 𝜃. The laser sheet is in the 𝑥𝑦-plane
at 𝑧 = 4.3 cm. (b) Sketch of the uniform cylinder and (c) non-uniform cylinder used for
the experiments. Dimensions are given in §2.2. (d) Sketch of the generated wave beams (in
grey), which reflect off the free surface and tank bottom. The dotted-line box shows the
PIV window, with the primary beam of interest propagating from the upper right to the
bottom left. The beam-oriented coordinate system (𝜉, 𝜂, 𝜁) is defined by the along-beam,
cross-beam and transverse horizontal coordinates, respectively.
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Figure 2-2: (a) Horizontal (𝑥-) velocity for beam inclination angle 𝜃 = 45∘ and forcing
amplitude 𝐴/𝐿 = 0.45 at 𝑡 = 8𝑇0 after start of forcing. The grey box corresponds to the
region around the cylinder that is masked out. (b) Same as (a) but for 𝐴/𝐿 = 0.63. (c)
Theoretical beam profile used in the linear stability analysis of §2.5 to approximate the
experimental beam in (b). (d) Same as (a) but at 𝑡 = 36𝑇0 after start of forcing. (e) Same
as (d) but for 𝐴/𝐿 = 0.63. (f ) Time series of the horizontal velocity for 𝐴/𝐿 = 0.45 at the
location marked with the cross in (a,d). The vertical lines indicate the times 𝑡 = 8𝑇0 and
36𝑇0. (g) Same as (f ) but for 𝐴/𝐿 = 0.63 and at the location marked with the cross in
(b,e).
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nant peak at the primary wave frequency 𝜔0/𝑁 , as well as smaller peaks corresponding to
the second and third harmonic. As 2𝜔0 > 𝑁 for all experiments reported in this study,
these higher harmonics exist only within the primary beam and do not propagate. Given
that a uniform inviscid beam involves a single harmonic (Tabaei & Akylas, 2003, see also
equation (2.4) below), the observed higher harmonics arise from nonlinear self-interactions
of the primary wave brought about by along-beam variations in the beam profile due to
the effects of viscosity. In contrast to the lower-amplitude, stable beam (at 𝐴/𝐿 = 0.45),
however, the frequency spectrum of the higher-amplitude, unstable beam (at 𝐴/𝐿 = 0.63)
features several additional peaks, corresponding to multiple daughter waves spontaneously
generated via instability. According to figure 2-3(a), the strongest of these peaks occur at
the subharmonic frequencies 𝜔1/𝑁 = 0.26 and 𝜔2/𝑁 = 0.45. The corresponding spatial
disturbances, obtained by filtering the experimental wave field about the selected frequency
with a window of ±0.05 rad s−1, are plotted in figure 2-3(b,c). Both subharmonic waves
have wavepacket-like spatial structure with smaller carrier wavelength than the width of the
primary beam (carrier wavelengths measured to be approximately 44 mm for 𝜔1/𝑁 = 0.26

in figure 2-3b and 29 mm for 𝜔2/𝑁 = 0.45 in figure 2-3c), and they propagate in opposite
directions with respect to the primary beam. Furthermore, upon estimating the inclination
angle to the horizontal of their wave crests (𝜃1 ≈ 15∘ for 𝜔1/𝑁 = 0.26 and 𝜃2 ≈ 27∘ for
𝜔2/𝑁 = 0.45), it is concluded that the subharmonic waves approximately satisfy the internal
wave dispersion relation, 𝜔2 = 𝑁2 sin2 𝜃.

It is worth noting that the observed subharmonic instability disturbances along with
the primary beam appear to satisfy, to a rough approximation, the conditions for TRI.
Specifically, according to the classical theory of TRI (e.g. Bourget et al., 2013), a sinusoidal
primary wave of infinitesimal amplitude with frequency 𝜔0 and wavevector 𝑘0 can be un-
stable to subharmonic perturbations, also in the form of sinusoidal waves, with frequencies
(𝜔1, 𝜔2) and wavevectors (𝑘1,𝑘2), if the three waves form a resonant triad:

𝜔1 + 𝜔2 = 𝜔0, (2.2a)

𝑘1 + 𝑘2 = 𝑘0. (2.2b)

Here, the observed subharmonic frequencies 𝜔1/𝑁 = 0.26 and 𝜔2/𝑁 = 0.45 of the instability,
along with the primary wave frequency 𝜔0/𝑁 = 0.71, clearly satisfy to a good approximation
the frequency resonance condition (2.2a). In regard to the spatial resonance condition (2.2b),
the carrier wavevectors of the observed subharmonic disturbances, calculated using the car-
rier wavelength and inclination angle estimated above, are given in the coordinate system
(𝜉, 𝜂) by 𝑘1 = (71,−124) m−1 for 𝜔1/𝑁 = 0.26 and 𝑘2 = (−67, 206) m−1 for 𝜔2/𝑁 = 0.45.
Then, taking the primary beam width of roughly 80 mm to correspond to a single wave-
length, we find that 𝑘0 = (0, 79) m−1, which is approximately equal to 𝑘1 + 𝑘2 = (4, 82)

m−1.
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Figure 2-3: (a) Spatially-averaged time frequency spectra for the experiments shown in
figure 2-2. The dotted line corresponds to the stable case at 𝐴/𝐿 = 0.45 (figure 2-2a,d)
while the solid line corresponds to the unstable case at 𝐴/𝐿 = 0.63 (figure 2-2b,e). The
subharmonic frequencies 𝜔1/𝑁 = 0.26 and 𝜔2/𝑁 = 0.45 are labelled. (b) Experimentally
measured horizontal velocity field from figure 2-2(e), filtered at 𝜔1/𝑁 = 0.26. (c) Same
as (b) but filtered at 𝜔2/𝑁 = 0.45. (d) Time frequency spectrum of the fastest-growing
Floquet mode. The vertical dotted line marks the primary wave frequency at 𝜔0/𝑁 . (e)
Theoretically predicted spatial mode shape corresponding to the first peak (from the left)
in the frequency spectrum in (d) at 𝜔/𝑁 = 0.24. (f ) Same as (e) but for the second peak
at 𝜔/𝑁 = 0.47. Dashed arrows in (b,c,e,f ) indicate direction of phase propagation. Solid
arrows in (b,c) indicate direction of group velocity 𝑐𝑔. Velocity scale in (e,f ) is normalized
to have the same maximum velocity as in (b,c).

However, in spite of this apparent resonant triad, the theory for TRI, strictly, is not
applicable in the present setting: the primary wave is not sinusoidal but rather a thin beam
with a broadband spectrum of wavenumbers and no defined carrier wavevector 𝑘0, so the
meaning of (2.2b) is not clear. As noted in §2.1, the finite width of the beam dramati-
cally affects the instability dynamics and adds new physics, namely the group velocity of
the perturbations, which is ignored in the classical TRI theory (Karimi & Akylas, 2014).
Furthermore, the stability predictions of TRI theory cannot be trusted: treating our thin
beam as one wavelength of a primary sinusoidal wave with 𝜔0/𝑁 = 0.71 and 𝑘0 = (0, 79)

m−1, the most unstable triad according to TRI theory involves a subharmonic perturbation
with wavelength greater than the primary beam width, contradicting our findings (figure
2-3b,c). Thus, to make quantitative comparisons with experimental observations, we turn
to a formal stability analysis based on Floquet theory that takes into account both the finite
width and finite amplitude of the primary wave beam.
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2.4 Stability analysis

The analysis assumes an unbounded, incompressible, uniformly stratified Boussinesq fluid
with constant buoyancy frequency 𝑁 . While in the rest of the paper we use dimensional
variables, here we find it more convenient to work with nondimensional variables for ease
of notation. Using 1/𝑁 as the time scale and the cylinder radius 𝐿 (see §2.2) as the length
scale, the dimensionless governing equations for the velocity field 𝑢, the reduced density 𝜌
and pressure 𝑝 are

∇ · 𝑢 = 0, (2.3a)

𝜌𝑡 + 𝑢 · ∇𝜌 = 𝑢 · 𝑗, (2.3b)

𝑢𝑡 + 𝑢 · ∇𝑢 = −∇𝑝− 𝜌𝑗 + 𝜈∇2𝑢. (2.3c)

Here, 𝑗 is a vertical unit vector pointing upwards and 𝜈 = 𝜈*/𝑁𝐿
2 is the inverse Reynolds

number, where 𝜈* denotes the kinematic viscosity.
In the inviscid limit (𝜈 = 0), (2.3) supports time-harmonic plane waves in the form of

uniform beams (Tabaei & Akylas, 2003)

𝑢 = 𝑢0(𝜂, 𝑡) = 𝑈(𝜂)e−i𝜔0𝑡 + c.c., 𝑣 = 𝑣0 = 0, 𝑤 = 𝑤0 = 0, (2.4a)

𝜌 = 𝜌0(𝜂, 𝑡) = −i𝑈(𝜂)e−i𝜔0𝑡 + c.c., (2.4b)

𝑝 = 𝑝0(𝜂, 𝑡) = i cos 𝜃

∫︁ 𝜂

𝑈(𝜂′) d𝜂′ e−i𝜔0𝑡 + c.c., (2.4c)

where 𝑈(𝜂) describes the beam profile and is related to the wave generation mechanism.
Here, 𝑢 = (𝑢, 𝑣, 𝑤) are the velocity components in the beam-aligned coordinate system
(𝜉, 𝜂, 𝜁) defined by the along-beam, cross-beam and transverse horizontal coordinate, respec-
tively (see figure 2-1d). These coordinates are related to (𝑥, 𝑦, 𝑧) by 𝜉 = −𝑥 cos 𝜃 − 𝑦 sin 𝜃,
𝜂 = −𝑥 sin 𝜃 + 𝑦 cos 𝜃, and 𝑧 = −𝜁, where 𝜃 is the beam inclination angle to the horizontal,
specified by the forcing frequency 𝜔0 via the (nondimensional) dispersion relation 𝜔0 = sin 𝜃.

The uniform beam given by (2.4) will be used as the basic state for the ensuing stability
analysis. The choice of 𝑈(𝜂) for comparison with experimental observations will be specified
later in §2.5.1. As already noted, viscous effects (𝜈 ̸= 0) introduce along-beam (𝜉-) variations
in (2.4), corresponding to broadening and a decrease in amplitude of the beam profile far
from the forcing (Mowbray & Rarity, 1967; Thomas & Stevenson, 1972). However, in the
interest of simplifying the stability analysis, these effects will be ignored.

To examine the linear stability of the uniform beam (2.4), we now superimpose infinites-
imal perturbations in the form of normal modes,

𝑢 = 𝑢0(𝜂, 𝑡) +
{︁
�̂�(𝜂, 𝑡)ei(𝜇𝜉+𝑚𝜁) + c.c.

}︁
, (2.5)

with similar expressions for 𝑣, 𝑤, 𝜌 and 𝑝. Here, 𝜇 and 𝑚 are real parameters that specify
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the along-beam and transverse wavenumbers of the perturbation. Inserting (2.5) into (2.3),
linearizing with respect to the perturbations and dropping the hats, we obtain the following
equations governing the perturbations

0 = i𝜇𝑢+
𝜕𝑣

𝜕𝜂
+ i𝑚𝑤, (2.6a)

𝜕𝜌

𝜕𝑡
= −i𝜇𝑢0𝜌−

d𝜌0
d𝜂

𝑣 − 𝑢 sin 𝜃 + 𝑣 cos 𝜃, (2.6b)

𝜕𝑢

𝜕𝑡
= −i𝜇𝑢0𝑢− d𝑢0

d𝜂
𝑣 − i𝜇𝑝+ 𝜌 sin 𝜃 + 𝜈

(︂
−𝜇2 +

𝜕2

𝜕𝜂2
−𝑚2

)︂
𝑢, (2.6c)

𝜕𝑣

𝜕𝑡
= −i𝜇𝑢0𝑣 −

𝜕𝑝

𝜕𝜂
− 𝜌 cos 𝜃 + 𝜈

(︂
−𝜇2 +

𝜕2

𝜕𝜂2
−𝑚2

)︂
𝑣, (2.6d)

𝜕𝑤

𝜕𝑡
= −i𝜇𝑢0𝑤 − i𝑚𝑝+ 𝜈

(︂
−𝜇2 +

𝜕2

𝜕𝜂2
−𝑚2

)︂
𝑤. (2.6e)

It can be verified by eliminating 𝑝 that it is sufficient to consider 𝜇 ≥ 0 and 𝑚 ≥ 0 owing to
symmetry (see §A.1). It should be noted that (2.6) includes the full effects of viscosity on
the perturbations.

To solve the stability equations (2.6), as the basic state 𝑢0(𝜂, 𝑡) in (2.4) is periodic in 𝑡, it
is necessary to apply Floquet theory. In the widely-studied case of a sinusoidal plane wave,
i.e. 𝑈(𝜂) = 𝑈0ei𝑘0𝜂/2 in (2.4), this task is carried out (e.g. Mied, 1976; Klostermeyer, 1991)
by expressing (𝑢, 𝜌, 𝑝) as infinite Fourier series in 𝑘0𝜂− 𝜔0𝑡, multiplied with an exponential
term that contains the Floquet exponent. After truncating the Fourier series, the resulting
eigenvalue problem is solved numerically to obtain the Floquet exponents which give the
instability growth rates. This procedure is then performed over a variety of parameters 𝜇
and 𝑚 in order to determine the perturbations with the highest growth rate. In the present
setting, however, the primary wave profile 𝑈 is a general, locally-confined function of 𝜂.
Thus, in addition to a Fourier expansion in 𝑡, separate discretization in 𝜂 is also necessary,
resulting in an eigenvalue problem that is too large to be solved efficiently.

Instead, we follow the approach recently taken by Onuki & Tanaka (2019) to study the
stability of finite-amplitude internal wave beams under oceanic flow conditions and by Jouve
& Ogilvie (2014) for the stability of inertial wave beams, as well as by earlier authors for
Floquet problems in other contexts (e.g. Schatz et al., 1995). Briefly, this approach relies
on the monodromy matrix, which can be easily computed using time-integration. First, we
eliminate 𝑣 and 𝑝 from (2.6) and discretize in 𝜂 to obtain the matrix equation

d𝜒

d𝑡
= 𝐴(𝑡)𝜒, (2.7)

where 𝜒 = {𝑢,𝑤, 𝜌} is the state vector and 𝐴(𝑡) = 𝐴(𝑡 + 𝑇0) is the periodic matrix (with
period 𝑇0 = 2𝜋/𝜔0) that results from the right-hand side of (2.6). Based on Floquet theory,
a fundamental solution matrix to (2.7) is given by 𝑋(𝑡) = e𝐵𝑡𝑃 (𝑡), where 𝑋 = {𝜒1, 𝜒2, ...} is
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composed of linearly independent solutions to (2.7), 𝐵 is a constant matrix whose eigenvalues
are the Floquet exponents 𝜆𝑖, and 𝑃 (𝑡) = 𝑃 (𝑡 + 𝑇0) = {𝑃1, 𝑃2, ...} is a periodic matrix
composed of the Floquet modes. Because 𝑃 is 𝑇0-periodic, it follows that 𝑋(𝑇0) = 𝑀𝑋(0),
where 𝑀 ≡ e𝐵𝑇0 is called the monodromy matrix and represents the effect of the operator
𝐴 over one period (i.e. the linearized Poincaré map). To find 𝑀 , we set 𝑋(0) = 𝐼, the
identity matrix, as the initial condition, integrate (2.7) over one period to obtain 𝑋(𝑇0),
and compute 𝑀 = 𝑋(𝑇0). Next, we compute the eigenvalues of 𝑀 , denoted 𝛼𝑖, to obtain the
Floquet exponents 𝜆𝑖 = (log𝛼𝑖)/𝑇0. By definition of the Floquet exponent, 𝜒 ∝ exp(𝜆𝑖𝑡) so
Re(𝜆𝑖) > 0 implies instability. Finally, we repeat this procedure for various 𝜇 and 𝑚 in order
to find the instability modes with the highest growth rate. We implemented this procedure
by discretizing (2.6) using a pseudo-spectral method with 512 Fourier modes in 𝜂 ∈ [−30, 30]

and integrating (2.7) with fourth-order Runge–Kutta time stepping and a typical ∆𝑡 = 0.02.
The ensuing eigenvalue problem was then solved using standard MATLAB algorithms.

2.5 Comparison of observations with Floquet analysis

2.5.1 Instability dynamics

We now make comparisons between the observed instability in §2.3 and the predictions of the
linear stability analysis outlined in §2.4. Taking into account the experimental parameters,
the inverse Reynolds number 𝜈 = 0.0021. In addition, we chose the primary beam profile
𝑈(𝜂) in (2.4) to be

𝑈(𝜂) =
1

2
𝑈0

∫︀∞
0 𝐽1(𝐾) exp

(︀
−𝑑𝐾3 + i𝐾𝜂

)︀
d𝐾

max
⃒⃒ ∫︀∞

0 𝐽1(𝐾) exp(−𝑑𝐾3 + i𝐾𝜂) d𝐾
⃒⃒ , (2.8)

where 𝐽1 denotes the Bessel function of order 1. Here, 𝑈0 is an amplitude parameter that
corresponds to the maximum nondimensional along-beam velocity (i.e. max |𝑢0| = 𝑈0) and
𝑑 controls the shape of the profile. Expression (2.8) is based on the linear viscous solution
by Hurley & Keady (1997) for a beam generated by an oscillating cylinder. However, rather
than using their solution as originally formulated, which would give 𝑈0 as a function of 𝑑, we
instead independently fit 𝑈0 and 𝑑 using the experimentally measured beam profile at a cross-
beam slice located 20 cm away from the cylinder. This allowed us to accurately approximate
the experimental beam profile and to study the effect of beam amplitude independently of
the profile shape (see §2.5.2). It should be noted that the agreement between the original
solution of Hurley & Keady (1997) and the experimental observations is overall satisfactory,
although it varies depending on the beam inclination angle and forcing amplitude, and
our choice to decouple 𝑈0 from 𝑑 is primarily for convenience. Here, for 𝑈0 = 0.25 and
𝑑 = 0.0137 in (2.8), the basic state (2.4) agrees nicely with the experimentally generated
unstable beam (at 𝐴/𝐿 = 0.63) discussed in §2.3 for all times after the initial transient
(due to start-up of the forcing) and prior to the onset of instability. For comparison, figure
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2-2(c) plots a snapshot of the theoretical beam (2.4) using the profile (2.8) at the same time
as the experimentally observed beam in figure 2-2(b). These values of 𝑈0 and 𝑑 were used
for the stability results presented in §2.5.2 below, as well as in §2.6.1. Furthermore, here
we only consider two-dimensional (𝑚 = 0) instability modes. A discussion of the effects of
transverse variations (𝑚 ̸= 0) is presented in §2.6.1.

Figure 2-3(d) plots the frequency spectrum of the computed two-dimensional Floquet
mode with the highest growth rate. The theoretical spectrum shows good quantitative agree-
ment with the experimentally measured frequency spectrum (figure 2-3a) across all instabil-
ity peaks. For instance, the strongest four frequencies, in order of power, that comprise the
experimentally measured instability are 𝜔/𝑁 = {0.45, 0.26, 0.97, 1.17}, while the strongest
four instability frequencies predicted theoretically are 𝜔/𝑁 = {0.47, 0.24, 0.94, 1.18}. Fur-
thermore, the spatial disturbances associated with the strongest two predicted frequency
components at 𝜔/𝑁 = 0.24 and 𝜔/𝑁 = 0.47 (figure 2-3e,f ) are in excellent agreement in
both length scale and direction of propagation with the experimental measurements filtered
at 𝜔1/𝑁 = 0.26 and 𝜔2/𝑁 = 0.45 (figure 2-3b,c). The filtered experimental observations
were obtained using the Hilbert transform technique (Mercier et al., 2008). The velocity
scale for the theoretically predicted spatial disturbances is normalized to have the same
maximum velocity as the experimental measurements.

It is important to note that our theoretical predictions correspond to linear stability
modes, which decay outside the primary wave beam and are valid only for limited times after
the onset of instability, while the experimental observations correspond to perturbations
that evolve according to fully nonlinear dynamics and may eventually propagate freely.
This is evident in figure 2-3(b,c) as the perturbations extend outside the primary wave
beam in the direction of their group velocity. In addition, our theory assumes an infinitely
long, uniform primary beam, while the experimentally generated beam is of finite length
and features slight along-beam variations in amplitude and profile shape as a result of
viscosity. Accordingly, the theoretically predicted perturbations extend the entire length
of the beam, whereas the experimentally observed perturbations are locally confined in the
along-beam direction. Finally, although the Floquet analysis makes quantitative predictions
of the instability growth rate, it is not possible to make accurate comparisons with our
experimental observations. Figure 2-2(g) indicates that the initial (exponential) growth of
the perturbations likely lasts no more than 10 periods of oscillation of the primary wave. As
a result, estimation of the observed growth rate using a short-time Fourier transform yields
poor temporal resolution and significant errors, especially since the observed subharmonic
perturbations with frequencies 𝜔1/𝑁 = 0.26 and 𝜔2/𝑁 = 0.45 have even longer period
than the primary wave. Instead, a qualitative discussion of growth rates is made later in
connection with the threshold amplitude for instability (see §2.5.2).

Our theoretical results confirm that the Floquet stability analysis captures the observed
instability of a finite-amplitude thin beam: there is excellent agreement between theory
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and experiment across the multi-frequency spectrum associated with the instability. Even
though the classical TRI theory is not applicable for our system as argued in §2.3, the
observed instability still displays similarities to TRI. Specifically, both our experimental
observations and stability analysis show that the dominant components of the instability are
two subharmonic disturbances in the form of modulated wavepackets. These disturbances,
moreover, satisfy the frequency resonance condition (2.2a) and also very roughly satisfy
the spatial resonance condition (2.2b). The observed instability thus may be regarded as a
finite-amplitude form of TRI, whose dynamics still features subharmonic disturbances that
satisfy triad resonance to some extent, but the finite width and amplitude of the underlying
beam are major controlling factors as well.

2.5.2 Effects of beam amplitude and angle

We now assess the effects of beam amplitude and propagation angle 𝜃 (i.e. forcing frequency)
on the instability dynamics. Figure 2-4 shows a phase diagram of all stable and unstable
experimental configurations observed across a range of amplitudes and angles. Here, just
as in §2.5.1, 𝑈0 is the maximum nondimensional along-beam velocity (max |𝑢0| = 𝑈0) of
the observed beam at a slice located 20 cm away from the cylinder and prior to onset of
instability, if present. The stable and unstable beams shown in figure 2-2 and discussed
in §§2.3 and 2.5.1 correspond to the points located at 𝜃 = 45∘ and 𝑈0 = 0.18 and 0.25,
respectively.

Figure 2-4 indicates that for given beam angle there exists a critical amplitude below
which the beam is stable. This is in qualitative agreement with the analysis of Karimi &
Akylas (2014), according to which weakly nonlinear (i.e. 𝑈0 ≪ 1) thin beams are stable to
PSI, although formally, their asymptotic assumption of fine-scale perturbations (relative to
the primary beam) does not hold here. Figure 2-4 also shows that beams with shallower
angles of propagation (i.e. smaller 𝜃) require higher amplitudes to undergo instability. It
should be noted that all experimental wave beams were below the overturning amplitude
for density inversions given by d𝜌0/d𝑦 = 1 (e.g. see Kataoka & Akylas, 2013), which occurs
at 𝑈0 cos 𝜃 ≈ 0.47 for the uniform beam (2.4) with the profile (2.8).

Furthermore, figure 2-4 overlays the nondimensional growth rate 𝜎 ≡ max𝑖,𝜇 Re(𝜆𝑖),
where 𝜆𝑖 are the (nondimensional) Floquet exponents predicted by the Floquet stability
analysis, as a function of 𝜃 and 𝑈0 for the same primary beam profile (2.8) as in §2.5.1.
Here, for simplicity, we take the parameter 𝑑, which controls the shape of the beam profile,
to be fixed 𝑑 = 0.0137 as 𝜃 and 𝑈0 are varied. In reality, the observed beam profiles show
slight dependence on 𝜃, with the experimentally fitted 𝑑 ranging between 0.012 and 0.017
at a location 20 cm away from the cylinder; however, these differences do not significantly
affect the predicted growth rate and are ignored.

Although the contours of constant growth rate in figure 2-4 appear to qualitatively follow
the observed transition region between stability and instability, we find that the linear
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Figure 2-4: Phase diagram showing the dependence of the instability on the nondimensional
beam amplitude 𝑈0 and beam angle 𝜃. (N): experimental configurations where instability
was visibly apparent; (+): experimental configurations where instability was not visibly
apparent but small instability peaks could be seen in the time frequency spectrum; (∘):
stable configurations. Overlaid are contour lines of the (nondimensional) real growth rate
𝜎 ≡ max𝑖,𝜇 Re(𝜆𝑖) as predicted by Floquet stability analysis.

stability analysis predicts instability for all experimental configurations, including those
observed to be stable. According to the Floquet analysis, there is a critical amplitude for
instability in qualitative agreement with observation, but the theoretical amplitude threshold
is smaller than what is observed. For example, at 𝜃 = 45∘, the Floquet analysis predicts
the critical amplitude for instability to be 𝑈0 ≈ 0.09, whereas the experimental observations
suggest that it is between 0.18 and 0.23. This discrepancy may be attributed to various
factors not accounted for in the stability analysis, including the presence of along-beam
variations in the beam profile, three-dimensional (transverse) effects, and induced mean
flows such as streaming. An analysis of the effects of along-beam profile variations lies
outside the scope of this study. The effects of three-dimensional variations and mean flows
on the instability dynamics are discussed below.

2.6 Three-dimensional effects

2.6.1 Perturbations with transverse variations

The stability results reported in §2.5 assume that the primary wave beam as well as the
perturbations are purely two-dimensional, i.e. there are no variations in the transverse
horizontal (𝜁-) direction. While these assumptions are reasonable given the small radius-
to-length ratio (≈ 0.044) of the uniform cylinder used in the experiments described thus
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(a) (b) (c)

Figure 2-5: Dependence of the instability growth rate 𝜎 on the dimensionless transverse
wavenumber 𝑚 as predicted by the Floquet analysis for beam angle (a) 𝜃 = 35∘, (b) 𝜃 = 45∘,
(c) 𝜃 = 55∘; and dimensionless beam amplitude 𝑈0 = 0.15 (dotted line), 𝑈0 = 0.20 (dashed
line), and 𝑈0 = 0.25 (solid line). All growth rates are normalized by the two-dimensional
(𝑚 = 0) growth rate.

far, some three-dimensional effects are inevitably introduced by the finite transverse extent
of the tank. First, we consider the effect of 𝑚 ̸= 0 in (2.5), corresponding to infinitesimal
perturbations that vary sinusoidally in 𝜁 on a purely two-dimensional primary beam. Using
the same beam profile (2.8) with 𝑑 = 0.0137, figure 2-5 plots the theoretically predicted
growth rate as a function of the dimensionless transverse wavenumber 𝑚 for various values
of beam angle 𝜃 and dimensionless beam amplitude 𝑈0. These results indicate that pertur-
bations with transverse variations have lower instability growth rate, and this effect is more
pronounced for shallower beam angles and lower beam amplitudes. As a crude estimate, by
taking the tank width to be half a wavelength of transverse variation, we find that 𝑚 ≈ 0.26,
which would decrease by . 10% the growth rates for 35∘ ≤ 𝜃 ≤ 55∘ and 0.15 ≤ 𝑈0 ≤ 0.25.

2.6.2 Transverse beam variations and induced mean flows

As pointed out by recent work, transverse variations in the primary wave beam enable
production of mean potential vorticity, which results in a horizontal mean flow (Bordes
et al., 2012; Kataoka & Akylas, 2015; Fan et al., 2018; Jamin et al., 2020). This induced
mean flow has two components, one of inviscid and the other of viscous origin. The latter,
known as streaming, grows resonantly in time and is expected to dominate in a laboratory
setting where viscous effects are more pronounced (Fan et al., 2018). It should be noted
that along-beam modulations of a purely two-dimensional inviscid beam can also generate
a mean flow, but unlike streaming this mean flow is in the along-beam direction and does
not grow resonantly (Tabaei & Akylas, 2003).

Throughout our experiments using the uniform cylinder, we indeed observed a slowly
evolving horizontal mean flow within the primary wave beam (e.g. see time-frequency spectra
in figure 2-3a). Figure 2-6 plots two examples of this mean flow, obtained by filtering the
horizontal velocity about the zero-frequency. As no vertical mean flows were observed, this
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Figure 2-6: Experimental mean horizontal velocity field at 𝑡 = 300 s, obtained by filtering the
horizontal velocity field around the zero-frequency. The uniform cylinder is used as forcing.
(a) beam inclination angle 𝜃 = 35∘ and forcing amplitude 𝐴/𝐿 = 0.72, with 𝑡 = 300 s
≈ 26𝑇0; (b) 𝜃 = 45∘ and 𝐴/𝐿 = 0.54, with 𝑡 = 300 s ≈ 32𝑇0. In both cases, the primary
wave beam has nondimensional maximum along-beam velocity 𝑈0 ≈ 0.22 measured 20 cm
away from the cylinder, and did not exhibit any visible signs of instability. Contours of the
horizontal velocity field of the primary wave beam at ±1 mm s−1 are plotted in the dotted
lines.

horizontal mean flow suggests that three-dimensional effects due to the finite width of the
tank are indeed present and may play a role in the instability dynamics. It is worth noting
that a mean flow is also generated by near-cylinder boundary-layer effects, but it is confined
to the vertical (𝑦-) location of the cylinder (seen as the long horizontal bands at the top of
figure 2-6) and remains distinct from the mean flow generated within the beam itself.

In order to more concretely assess the effect of three-dimensional variations on the in-
stability dynamics, experiments were also conducted using a non-uniform cylinder whose
middle section had the same radius as the straight cylinder, but whose end sections had
smaller radius (see §2.2 and figure 2-1c). Figure 2-7 plots the experimentally observed
wave fields using the uniform and non-uniform cylinders at 𝜃 = 45∘ and forcing amplitude
𝐴/𝐿 = 0.63. For the uniform cylinder, these forcing conditions are precisely the ones used
to generate the unstable beam discussed in §2.3 and shown in figure 2-2. Here, however,
PIV measurements were made at two different transverse locations: (i) 𝑧 = 4.3 cm, where
both the uniform and non-uniform cylinders have radius 22.2 mm; and (ii) 𝑧 = 14.3 cm,
where the non-uniform cylinder has radius 15.2 mm. The beam generated using the uniform
cylinder undergoes instability (figure 2-7a,b), just as discussed in §2.3. Even so, transverse
variations, introduced by the finite width of the tank, are visible as the instability appears to
be slightly weaker at 𝑧 = 14.3 cm (figure 2-7b), which is closer to the lateral tank walls, than
at 𝑧 = 4.3 cm (figure 2-7a). The beam generated using the non-uniform cylinder (figure
2-7d,e) is noticeably thinner at 𝑧 = 14.3 cm than at 𝑧 = 4.3 cm, as a result of the smaller
cylinder radius at 𝑧 = 14.3 cm. Most importantly, however, in contrast to the beam due to
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the uniform cylinder, the beam due to the non-uniform cylinder appears to be essentially
stable, and remained so even at longer times (𝑡 = 63𝑇0). This suggests that transverse
variations significantly weaken the TRI-like instability discussed in §2.3.

Furthermore, figure 2-7(c,f ) compares the strength of the induced horizontal mean flow
due to the uniform cylinder against that due to the non-uniform cylinder, at 𝑡 = 39𝑇0

after start of forcing. As expected, the mean flow generated by the non-uniform cylinder
was much stronger than its counterpart due to the uniform cylinder. For the non-uniform
cylinder, this mean flow was observed to grow approximately linearly (resonantly) in early
times and is therefore likely of the streaming type. Furthermore, in this instance, the strong
mean flow noticeably bends the beam (figure 2-7e), as was found for streaming (Fan et al.,
2018).

Our observations thus indicate that enhancing transverse variations weakens the TRI-
like instability and instead favours streaming, an effect that is likely also dependent on
forcing amplitude and beam angle, as suggested by the results of §2.5.2. This provides a
plausible explanation for why Bordes et al. (2012) observed strong streaming but not TRI:
the presence of significant transverse beam variations due to their wavemaker, which spanned
only about 1/6 of the tank width, as well as the shallow beam angles (15∘ ≤ 𝜃 ≤ 30∘) used
in their study, apparently acted to completely mask TRI.

2.7 Concluding remarks

Most prior stability studies of internal gravity wave beams focused on subharmonic in-
stabilities due to resonant triad interactions. This instability mechanism is pertinent to
small-amplitude nearly monochromatic beams – either as PSI in the nearly inviscid limit
appropriate to oceans (Karimi & Akylas, 2014, 2017; Fan & Akylas, 2020b) or as TRI under
laboratory flow conditions (Bourget et al., 2013). By contrast, the present investigation
considered finite-amplitude wave beams whose profile comprises roughly one wavelength,
akin to those originally observed by Mowbray & Rarity (1967). Such thin beams, generated
in a stratified fluid tank by oscillating a cylinder in the direction of beam propagation, were
observed to be unstable above a threshold wave amplitude to two subharmonic perturba-
tions with wavepacket-like spatial structure. Despite certain similarities to the familiar TRI
of small-amplitude nearly monochromatic wave beams, this novel instability can be treated
theoretically only via formal stability analysis of a finite-amplitude beam based on Floquet
theory. Adapting to our experimental flow conditions the computational procedure used
by Onuki & Tanaka (2019) for finite-amplitude oceanic internal wave beams, the computed
most unstable Floquet modes are in very good agreement with the observed subharmonic
disturbances.

Our observed instability bears resemblance to recent observations of instability in internal
wave attractors (Scolan et al., 2013; Brouzet et al., 2016), which also involve thin beams
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Figure 2-7: Experimental velocity fields for beam inclination angle 𝜃 = 45∘ and forcing
amplitude 𝐴/𝐿 = 0.63 using the uniform cylinder (a–c) and the non-uniform cylinder (d–e)
at 𝑡 = 39𝑇0, where 𝑇0 is the forcing period. Plots (a,d) show the horizontal velocity field at
𝑧 = 4.3 cm while (b,e) show the horizontal velocity field at 𝑧 = 14.3 cm, closer to the lateral
tank wall. Plots (c,f ) show the mean horizontal velocity field at 𝑧 = 14.3 cm obtained by
filtering (b,e), respectively, around the zero-frequency. No significant vertical mean flows
were observed.
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that feature no more than a single wavelength. In these studies, the authors report that the
observed instability appears to satisfy the triad resonance conditions. However, as discussed
at the end of §2.3, the TRI theory is not strictly applicable for these thin beams, and it is
unclear whether the most unstable triad predicted by TRI theory matches their observed
instability. In view of the results presented here, it is possible that Floquet stability analysis,
which takes into full account the finite width and amplitude of the beam, may be used to
predict the observed instability frequencies and wavevectors of the attractor system. This
approach has been used by Jouve & Ogilvie (2014) to predict theoretically the instability
found in numerical simulations of an inertial wave attractor.

We also explored the significance of three-dimensional effects on the observed subhar-
monic instability. According to our Floquet stability analysis, under the experimental flow
conditions, infinitesimal perturbations with sinusoidal dependence in the transverse direction
generally have smaller growth rates than their two-dimensional counterparts. Furthermore,
finite transverse beam variations, introduced by using as forcing a cylinder with non-uniform
radius, were observed to weaken the subharmonic instability and, in addition, to induce a
horizontal mean flow of the streaming type. Thus, although it is possible for TRI-like
subharmonic instability and streaming to co-exist, in the presence of significant transverse
variations the latter effect is expected to dominate, consistent with the observations of Bor-
des et al. (2012). However, in more complex three-dimensional geometries, such as in the
axisymmetric thin beams generated by an oscillating torus (Shmakova & Flór, 2019), in-
stability of the TRI-type may still be important, particularly in the intersection region of
various wave beams.

In the nearly-inviscid oceanic context, the strength of streaming probably would be
greatly diminished as it hinges on the generation of mean potential vorticity by dissipative
processes. On the other hand, as also hinted by the nearly inviscid stability computations of
Onuki & Tanaka (2019) and Fan & Akylas (2020b), the finite-amplitude TRI-like instability
of thin beams discussed here is likely to persist. However, as we find that the beam prop-
agation angle 𝜃 plays an important part in the instability dynamics, a complete stability
analysis for 𝜃 in the range 3∘ . 𝜃 . 5∘, appropriate to oceanic beams, is necessary and is
left to future studies.
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Chapter 3

Instabilities of finite-width internal
wave beams: from Floquet analysis to
PSI

This work has been submitted to Journal of Fluid Mechanics.

3.1 Introduction

The stability of internal gravity waves in a continuously stratified fluid is a problem of funda-
mental and geophysical interest. Early work focused on sinusoidal plane waves in an inviscid
Boussinesq fluid with constant buoyancy frequency. In this idealized setting, linear stability
analysis based on Floquet theory has revealed a wide host of instabilities with varying dy-
namics and physical mechanisms (e.g. see Sonmor & Klaassen, 1997, for a comprehensive
treatment). As first noted by Mied (1976), in the limit of small primary wave amplitude,
this diverse range of instabilities reduce to triad resonant interactions: the primary wave
is unstable to two sinusoidal subharmonic perturbations whose frequencies and wavevectors
sum to those of the basic state. A specific form of such triadic resonant instability (TRI),
where the subharmonic perturbations have half the frequency of the primary wave and very
fine wavelength, is the celebrated parametric subharmonic instability (PSI). This mechanism
has attracted considerable interest as it permits transfer of energy into much smaller scales
(e.g. Staquet & Sommeria, 2002) and therefore may be a potentially significant factor in
the dissipation of oceanic internal waves (Hibiya et al., 2002; MacKinnon & Winters, 2005;
Young et al., 2008).

In more recent work, attention shifted from sinusoidal waves to time-harmonic plane
waves with locally confined spatial profile: such wave beams arise in oceans due to the inter-
action of the barotropic tide with bottom topography (Lamb, 2004; Johnston et al., 2011)
and in the atmosphere due to thunderstorms (Fovell et al., 1992), and therefore provide a

37



more realistic setting for instability. However, compared to sinusoidal waves, formal stabil-
ity analysis of wave beams based on Floquet theory is far more demanding, as it requires
solving an eigenvalue problem that involves an infinite number of differential, rather than
algebraic, equations.

In view of this difficulty, Karimi & Akylas (2014) (hereafter referred to as KA14) pro-
posed a simplified treatment of PSI assuming that two fine-scale subharmonic wave packets
at half the beam frequency interact with a small-amplitude beam of locally confined profile.
This model brings out the significance of the finite width of a beam: the subharmonic pertur-
bations travel with their group velocity so, to cause instability, they must interact with the
beam for long enough time before leaving the beam region. By comparing the wavepacket
travel time across the beam with the duration of resonant interaction in the beam vicin-
ity, KA14 argued that small-amplitude finite-width beams generally are not susceptible to
PSI. An exception arises when the locally confined beam profile is nearly monochromatic,
in which case PSI is possible if the number of carrier wavelengths within the beam width is
sufficiently large. The stabilizing effect of the finite width of a beam is also supported by
laboratory experiments (Bourget et al., 2014), although the nearly inviscid flow scalings as-
sumed in KA14 cannot be met in a laboratory setting. Furthermore, using a small-amplitude
nearly inviscid model similar to KA14, Karimi & Akylas (2017) (henceforth referred to as
KA17) showed that PSI is possible for beams with general spatial profile if the beam fre-
quency 𝜔 ≈ 2𝑓 (where 𝑓 is the inertial frequency) because in this instance subharmonic
perturbations with half the beam frequency are near-inertial and thus have nearly vanishing
group velocity.

The original scope of the present investigation was to assess the validity of the PSI models
of KA14 and KA17 by making a comparison against a formal linear stability analysis based
on Floquet theory of small-amplitude wave beams under nearly inviscid flow conditions.
The first successful Floquet stability analysis of wave beams was made in a very recent
study (Onuki & Tanaka, 2019) by exploiting the fact that the Floquet multipliers, which
determine stability, are tied to the eigenvalues of the so-called monodromy matrix which is
easily computed by time integration. The emphasis of Onuki & Tanaka (2019), however, is on
two- and three-dimensional instabilities of steep beams, far from the PSI regime considered
in KA14 and KA17, so our intent was to fill this gap by applying the technique of Onuki &
Tanaka (2019) to small-amplitude beams.

In carrying out this programme, we encountered difficulties obtaining quantitative agree-
ment of the instability growth rates predicted by KA17 with those of the Floquet stability
analysis for near-inertial PSI. This led us to study afresh the Floquet stability eigenvalue
problem in the limit pertinent to the models of KA14 and KA17, namely a small-amplitude
beam subject to fine-scale perturbations under nearly inviscid flow conditions. It transpires
that the unstable Floquet mode in near-inertial PSI (beam frequency 𝜔 ≈ 2𝑓) is dominated
by two subharmonic wavepackets with carrier frequency 𝜔/2, as assumed in KA17; however,
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the two relatively small additional components at the frequency 3𝜔/2, which were ignored
in KA17, also contribute to the stability eigenvalue problem and hence affect the instability
growth rate. Once this contribution is taken into account, the predictions of the revised
KA17 model are in excellent agreement with the Floquet stability analysis. A similar omis-
sion was also made in the PSI analysis of nearly-monochromatic beams by KA14, but in this
instance the components at the frequency 3𝜔/2 do not affect the instability growth rate,
and the predictions of KA14 agree well with their Floquet stability counterparts.

Apart from bringing out the significance of the 3𝜔/2 frequency components in the PSI
of wave beams, our asymptotic analysis of the Floquet eigenvalue problem also reveals that
PSI, which assumes that the frequency components 𝜔/2 are dominant, is limited by how
fine-scale the perturbations are for a given beam amplitude (assumed small). Specifically,
as the perturbation wavenumber is increased holding the beam amplitude fixed, higher-
frequency components eventually come into play so the frequency spectrum of the Floquet
mode broadens. Furthermore, this broadband instability, which is beyond the reach of KA14
and KA17, persists in the nearly inviscid limit for small-amplitude beams with general (not
necessarily nearly monochromatic) profile even far from near-inertial conditions.

3.2 Floquet stability analysis

3.2.1 General formulation

The present analysis assumes an unbounded, incompressible, uniformly stratified Boussinesq
fluid with constant buoyancy frequency 𝑁* and includes the effect of background rotation
under the 𝑓 -plane approximation. Using nondimensional variables with 1/𝑁* as the time
scale and 𝐿* as the length scale (to be specified later) the governing equations for the velocity
field 𝑢, the reduced density 𝜌 and pressure 𝑝 are

∇ · 𝑢 = 0, (3.1a)

𝜌𝑡 + 𝑢 · ∇𝜌 = 𝑢 · 𝑗, (3.1b)

𝑢𝑡 + 𝑢 · ∇𝑢 + 𝑓 × 𝑢 = −∇𝑝− 𝜌𝑗 + 𝜈∇2𝑢. (3.1c)

Here, 𝑗 is a vertical unit vector pointing upwards, 𝑓 = 𝑓𝑗, where 𝑓 is the local Coriolis
parameter normalized with 𝑁*, and 𝜈 = 𝜈*/𝑁*𝐿

2
* is the inverse Reynolds number, where 𝜈*

denotes the kinematic viscosity.

In the inviscid limit (𝜈 = 0), (3.1) admits time-harmonic plane wave solutions in the
form of beams (Tabaei & Akylas, 2003) that feature general profile in the cross-beam (𝜂-)
direction, and are uniform in the along-beam (𝜉-) and transverse horizontal (𝑧-) directions
(figure 3-1a). Specifically, the beam velocity components (𝑢, 𝑣, 𝑤) in the coordinate system
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Figure 3-1: (a) Schematic of uniform beam with frequency 𝜔 and inclination 𝜃 to the
horizontal, in keeping with (3.3). The coordinate system (𝜉, 𝜂, 𝑧) is defined by the along-
beam, cross-beam and transverse directions, respectively. Dotted lines indicate the finite
width of the beam and the arrows within show the along-beam velocity 𝑢0. The perturbation
wavevector 𝑘 is inclined by the angle 𝜒 to 𝜂 and by 𝜑 = 𝜃 − 𝜒 to the vertical 𝑦. (b) Beam
profile (3.8) for 𝜖 = 0.1. Solid, dashed and dotted lines correspond to the real part, imaginary
part and |𝑈 |, respectively.

(𝜉, 𝜂, 𝑧), along with 𝜌 and 𝑝, are given by

(𝑢, 𝑣, 𝑤) = (𝑢0, 0, 𝑤0) ≡
(︁

1, 0,
i𝑓 cos 𝜃

𝜔

)︁
𝑈(𝜂)e−i𝜔𝑡 + c.c., (3.2a)

𝜌 = 𝜌0(𝜂, 𝑡) ≡ − i sin 𝜃

𝜔
𝑈(𝜂)e−i𝜔𝑡 + c.c., (3.2b)

𝑝 = 𝑝0(𝜂, 𝑡) ≡ i(1 − 𝑓2)
sin 𝜃 cos 𝜃

𝜔

∫︁ 𝜂

𝑈(𝜂′) d𝜂′ e−i𝜔𝑡 + c.c.. (3.2c)

Here, the complex amplitude 𝑈(𝜂) specifies the beam profile and 𝜃 is the beam inclination
angle to the horizontal, which is tied to the beam frequency 𝜔 via the (nondimensional)
dispersion relation

𝜔2 = 𝑓2 + (1 − 𝑓2) sin2 𝜃. (3.3)

Furthermore, (𝜉, 𝜂) are related to the horizontal and vertical coordinates (𝑥, 𝑦) by 𝜉 =

𝑥 cos 𝜃 − 𝑦 sin 𝜃 and 𝜂 = 𝑥 sin 𝜃 + 𝑦 cos 𝜃. Generally, finite viscosity (𝜈 ̸= 0) will introduce
along-beam variations in (3.2) (Mowbray & Rarity, 1967; Thomas & Stevenson, 1972). These
viscous effects are ignored here.

The focus of the present analysis is on the stability of the primary wave (3.2) to infinites-
imal perturbations. As (3.2) does not depend on 𝜉 or 𝑧, we superimpose normal modes in
the form

𝑢 = 𝑢0 + �̂�(𝜂, 𝑡)ei(𝜇𝜉+𝑚𝑧), (3.4)

where the real parameters 𝜇 and 𝑚 specify the along-beam and transverse wavenumbers of
the perturbation, with similar expressions for 𝑣, 𝑤, 𝜌, and 𝑝. After inserting into (3.1) and
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linearizing with respect to the perturbations, we obtain the following equations (dropping
the hats),

0 = i𝜇𝑢+ 𝑣𝜂 + i𝑚𝑤, (3.5a)

𝜌𝑡 = −i(𝜇𝑢0 +𝑚𝑤0)𝜌− 𝜌0𝜂𝑣 − 𝑢 sin 𝜃 + 𝑣 cos 𝜃, (3.5b)

𝑢𝑡 = −i(𝜇𝑢0 +𝑚𝑤0)𝑢− 𝑢0𝜂𝑣 − i𝜇𝑝+ 𝜌 sin 𝜃 − 𝑤𝑓 cos 𝜃 + 𝜈L 𝑢, (3.5c)

𝑣𝑡 = −i(𝜇𝑢0 +𝑚𝑤0)𝑣 − 𝑝𝜂 − 𝜌 cos 𝜃 − 𝑤𝑓 sin 𝜃 + 𝜈L 𝑣, (3.5d)

𝑤𝑡 = −i(𝜇𝑢0 +𝑚𝑤0)𝑤 − 𝑤0𝜂𝑣 − i𝑚𝑝+ 𝑢𝑓 cos 𝜃 + 𝑣𝑓 sin 𝜃 + 𝜈L𝑤, (3.5e)

where L ≡ −𝜇2+𝜕2𝜂𝜂−𝑚2 takes into account the full effects of viscosity on the perturbations.
As the basic state (3.2) is periodic in 𝑡 (period 𝑇0 = 2𝜋/𝜔), (3.5) is a linear equation system
with periodic coefficients, which can be solved by applying Floquet theory to determine
stability for a given beam profile 𝑈(𝜂) and parameters 𝜇 and 𝑚.

3.2.2 Sinusoidal waves

For a sinusoidal plane wave, the primary wave profile in (3.2) is taken in the form 𝑈 =

𝜖 exp(i𝜂), where the amplitude parameter 𝜖 = 𝑈*/(𝑁*𝐿*), 𝑈* being half the along-𝜉 velocity
amplitude, and the wavelength has been normalised to 2𝜋 (which fixes the length scale 𝐿*).
In this instance, it is straightforward to solve (3.5) via Floquet theory by expanding the
perturbations in Fourier series in 𝜂−𝜔𝑡, and thus recover the thoroughly studied instability
of a sinusoidal plane wave (e.g. Sonmor & Klaassen, 1997). Out of this body of work,
of special interest here is the nearly inviscid (𝜈 ≪ 1) small-amplitude limit (𝜖 ≪ 1). In
this regime, the most unstable perturbation is two-dimensional (i.e. 𝑚 = 0) and involves
only two subharmonic frequency components that are freely propagating sinusoidal internal
waves and form a resonant triad with the primary wave. Specifically, these subharmonic
waves, with frequencies (𝜔1, 𝜔2) (where |𝜔1,2| < 𝜔) and wavevectors (𝑘1,𝑘2), each satisfy
the dispersion relation (3.3), and together satisfy the triad resonance conditions

𝜔1 + 𝜔2 = 𝜔, (3.6a)

𝑘1 + 𝑘2 = 𝑘0, (3.6b)

where 𝑘0 = �̂�𝜂 is the primary wavevector. This class of instabilities, which encompasses all
such pairs of (𝜔1,𝑘1) and (𝜔2,𝑘2), is thus known as TRI.

For inviscid flow conditions, in the event that the beam inclination angle 𝜃 & 43∘ for
𝑓 = 0, or when 𝜔 ≈ 2𝑓 for any 𝜃, the most unstable pairs of subharmonic waves feature
𝜔1 ≈ 𝜔2 ≈ 𝜔/2 and |𝑘1| ≈ |𝑘2| ≫ 1 (e.g. Yeh & Liu, 1981; Sonmor & Klaassen, 1997). This
particular form of TRI is widely known as PSI. However, it is important to note that other
flow conditions may favour other forms of TRI over PSI. For instance, the most unstable
triads for 𝜃 . 43∘ and 𝑓 = 0 involve subharmonic waves with |𝑘1| < 1 < |𝑘2|, which is
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sometimes referred to as the ‘branch-C’ instability (Sonmor & Klaassen, 1997) or ‘elastic
scattering’ and ‘induced diffusion’ (McComas & Bretherton, 1977).

3.2.3 Locally confined beams

Moving away from the sinusoidal wave, KA14 and KA17 examined the possibility of PSI for
locally confined beams in the small-amplitude nearly inviscid limit. As discussed in §3.1,
however, these models of PSI for localised beams are based upon the assumption of triad
resonance, a mechanism originally uncovered by solving the full stability problem (3.5) for a
sinusoidal primary wave. Here, to assess the validity of KA14 and KA17, we return to (3.5)
and perform a formal stability analysis of a locally confined beam profile 𝑈(𝜂). In general,
this task has to be carried out numerically.

The stability problem (3.5) is far more challenging to handle numerically for a general
profile 𝑈(𝜂) than for the sinusoidal wave profile: in addition to Fourier expansion in 𝑡, it
is necessary to use a separate discretization in 𝜂. To tackle this difficulty, we make use of
the approach taken by Onuki & Tanaka (2019) in their stability analysis of finite-amplitude
beams under oceanic flow conditions. This approach was also used by the current authors
in a very recent study of the instability dynamics of large-amplitude thin beams generated
by an oscillating cylinder under laboratory flow conditions (Fan & Akylas, 2020a).

As our interest centres on the relevance of PSI to small-amplitude locally confined beams,
we focus on two-dimensional perturbations (𝑚 = 0), although the solution procedure out-
lined below is valid generally. It should be noted that three-dimensional (𝑚 ̸= 0) instabilities
are possible and may be important at large amplitudes (Onuki & Tanaka, 2019). Further-
more, other three-dimensional instability mechanisms such as streaming, which involves the
generation of a resonant mean flow due to finite transverse variations of a beam (Kataoka &
Akylas, 2015; Fan et al., 2018; Jamin et al., 2020) and thus falls beyond the scope of linear
stability analysis, may be important in other contexts.

Following Onuki & Tanaka (2019), we solve (3.5) using the ‘monodromy’ matrix, which
can be easily computed using time-integration. First, we eliminate 𝑣 and 𝑝 from (3.5) and
discretize in 𝜂 to obtain the matrix equation

d𝑋

d𝑡
= 𝐴(𝑡)𝑋, (3.7)

where 𝑋 = {𝑢,𝑤, 𝜌} is the state vector and 𝐴(𝑡) = 𝐴(𝑡 + 𝑇0) is the periodic matrix that
results from the right-hand side of (3.5). Based on Floquet theory, a fundamental solution
matrix to (3.7) is given by X(𝑡) = e𝐵𝑡𝑃 (𝑡), where X = {𝑋1, 𝑋2, ...} is composed of linearly
independent solutions to (3.7), 𝐵 is a constant matrix whose eigenvalues are the Floquet
exponents 𝜆 = 𝜆𝑟 + i𝜆𝑖, and 𝑃 (𝑡) = 𝑃 (𝑡+ 𝑇0) = {𝑃1, 𝑃2, ...} is a periodic matrix composed
of the Floquet modes. Because 𝑃 is 𝑇0-periodic, it follows that X(𝑇0) = 𝑀X(0), where
𝑀 ≡ e𝐵𝑇0 is the so-called monodromy matrix and represents the effect of the operator
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𝐴 over one period (i.e. the linearized Poincaré map). To find 𝑀 , we set X(0) = 𝐼, the
identity matrix, as the initial condition, integrate (3.7) over one period to obtain X(𝑇0), and
compute 𝑀 = X(0)−1X(𝑇0). Next, we compute the eigenvalues of 𝑀 , denoted 𝛼, to obtain
the Floquet exponents 𝜆 = (log𝛼)/𝑇0. By definition of the Floquet exponent, 𝑋 ∝ exp(𝜆𝑡)

so Re(𝜆) ≡ 𝜆𝑟 > 0 implies instability. Finally, we repeat this procedure for various 𝜇 in order
to find the instability modes with the highest growth rate. In implementing this procedure,
we typically employed 1024 Fourier modes for discretizing (3.5) in the computational domain
𝜂 ∈ [−10, 10], and (3.7) was integrated using a pseudo-spectral method with fourth-order
Runge–Kutta time stepping and a typical ∆𝑡 = 0.02. The ensuing eigenvalue problem was
then solved using standard MATLAB algorithms.

3.3 Floquet stability of beams with 𝜔 = 2𝑓

3.3.1 Results

We begin by considering finite-width beams in the presence of background rotation and
attempt a comparison of the Floquet stability results with the predictions of the near-inertial
PSI theory of KA17. This approximate model focuses on the resonant interaction between
a small-amplitude wave beam with frequency 𝜔 ≈ 2𝑓 and two subharmonic perturbations
of frequency 𝜔/2 ≈ 𝑓 and very fine wavelength. According to KA17, the vanishing group
velocity of such near-inertial perturbations prolongs their interaction with the primary wave.
As a result, when 𝜔 ≈ 2𝑓 , small-amplitude locally confined beams of general profile are
susceptible to PSI in the nearly inviscid limit.

We first present Floquet stability results for a small-amplitude beam with the Gaussian
profile used in KA17, exactly at the critical frequency 𝜔 = 2𝑓 and for inviscid flow conditions
(𝜈 = 0). Specifically, we chose 𝑈(𝜂) in (3.2) to be

𝑈(𝜂) =
𝜖√
8𝜋

∫︁ ∞

0
i𝑙e−𝑙2/8ei𝑙𝜂 d𝑙 (3.8)

and set 𝜔 = 0.1. Here, the nondimensional amplitude parameter 𝜖 = 𝑈*/𝑁*𝐿*, where 𝑈* and
𝐿* are a characteristic (dimensional) velocity and width, respectively, of the primary wave
beam. Combined with (3.2), the profile (3.8) (figure 3-1b) corresponds to a unidirectional
(progressive) wave beam that transports energy in the positive 𝜉-direction (figure 3-1a).

Figure 3-2(a) plots the computed Floquet growth rates 𝜆𝑟, scaled by the beam amplitude
parameter 𝜖 = 0.01, as a function of the along-beam (𝜉-) wavenumber 𝜇 of the perturba-
tions. Instability first arises around 𝜇 ≈ 1, and growth rates increase monotonically with
𝜇 until they eventually saturate to approximately 0.126 at 𝜇 = 20. Figure 3-2(b) plots
the time-frequency spectra of the Floquet modes corresponding to the growth rates shown
in figure 3-2(a) at representative values of 𝜇 = 2.4, 8.6 and 17. At low values of 𝜇 (e.g.
𝜇 = 2.4), the frequency spectrum is dominated by two frequency components at approxi-

43



mately ±𝑓 , matching the description of near-inertial PSI in KA17. However, as 𝜇 increases,
the frequency spectrum broadens and the components at ±𝑓 are no longer the dominant
frequencies. For example, at 𝜇 = 17, the dominant frequencies are now approximately ±3𝑓 .
As 𝜇 is further increased, the frequency spectrum continues to broaden and increasingly
large frequencies dominate. It should be noted that the different frequency components are
discretized with spacing equal to 𝜔 in keeping with Floquet theory: the Floquet mode must
be periodic with the same period as the basic state plus a constant offset term due to the
imaginary part of the Floquet exponent.

Figure 3-2(e) plots the spatial disturbances that correspond to the top four frequency
components, in order of power, of the Floquet mode found at 𝜇 = 2.4, which are the com-
ponents at ±𝑓 , followed by ±3𝑓 . All four spatial disturbances take the form of wavepackets
with a well-defined carrier and locally-confined envelope. Interestingly, the carrier wavenum-
bers 𝛾 of each of the four spatial disturbances, corresponding to the peak of the spatial
Fourier spectrum, are all approximately equal, in this case to roughly −30. Figure 3-2(f )
shows similar results for the Floquet mode found at 𝜇 = 8.6, in which case 𝛾 ≈ −100. In fact,
all frequency components of a computed Floquet mode, and not just the top four, have ap-
proximately equal 𝛾. Furthermore, figure 3-2(b–d) indicates that the frequency components
of a given Floquet mode always appear in plus/minus pairs, while 𝛾 is always negative.

According to the above numerical results, the Floquet mode is a superposition of pairs
of wavepackets, and each pair consists of waves that have approximately the same frequency
and wavenumber but travel in opposite directions. Since the Floquet mode has a fixed
along-beam wavenumber 𝜇, the carrier wavevector 𝑘 = 𝜇�̂�𝜉 +𝛾�̂�𝜂 is approximately constant
for all frequency components. Moreover, since |𝛾| ≫ |𝜇| = 𝑂(1), 𝑘 is nearly aligned with
the 𝜂-direction (the angle 𝜒≪ 1 in figure 3-1a) and the perturbation wavepackets have very
fine scale relative to the primary beam, i.e. |𝑘| ≫ 1, consistent with KA17 in so far as the
subharmonic perturbations are concerned. In view of the dispersion relation (3.3), the beam
inclination angle 𝜃 ≈ 5∘ for 𝜔 = 0.1 and 𝑓 = 𝜔/2, so 𝑘, whose inclination to the vertical
is 𝜑 = 𝜃 − 𝜒 ≪ 1 (figure 3-1a), points nearly vertically. Therefore, only the subharmonic
components at ±𝜔/2 approximately satisfy the dispersion relation for the wavevector 𝑘 and
correspond essentially to freely propagating internal waves.

3.3.2 Floquet stability vs. near-inertial PSI

The Floquet stability results for a small-amplitude beam (𝜖 = 0.01) with 𝜔 = 2𝑓 discussed
above suggest that the instability dynamics assumed by KA17 for near-inertial PSI is valid
only as long as the fine-scale perturbations have moderately large |𝑘| (see figure 3-2b,e):
when 𝜇 and thereby |𝑘| is increased while keeping 𝜖 fixed (e.g. figure 3-2c,d,f ), the main
hypothesis of PSI breaks down because the instability dynamics is no longer dominated
by the subharmonic frequencies ±𝜔/2. These findings are consistent with the asymptotic
scaling |𝑘| = 𝑂(𝜖−1/2) of KA17, which is clearly violated as |𝑘| → ∞ for fixed 𝜖. As a result
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Figure 3-2: (a) Instability growth rates (scaled by the beam amplitude 𝜖 = 0.01) predicted
by the Floquet stability analysis as a function of the along-beam (𝜉-) wavenumber 𝜇 of the
perturbations, for primary beam profile (3.8), beam frequency 𝜔 = 0.1, Coriolis parameter
𝑓 = 0.05, and inviscid flow conditions (𝜈 = 0). (b) Time frequency spectrum of the fastest
growing Floquet mode for 𝜇 = 2.4, indicated in (a) by a vertical dashed line. Vertical
dotted lines indicate the frequencies ±𝑓/𝜔. (c) and (d) Same as (b) but for 𝜇 = 8.6 and
17, respectively. (e) Spatial mode shapes for the top four frequencies, in order of power,
of the frequency spectrum plotted in (b) for the Floquet mode at 𝜇 = 2.4. From left to
right, plots are shown in order of decreasing power. The spatial mode amplitudes have been
normalised such that the mode corresponding to the top frequency component has maximum
along-beam velocity equal to unity. The peak cross-beam (𝜂-) wavenumber 𝛾 of each mode
is listed along with the frequency. (f ) Same as (e) but for the top four frequencies, in order
of power, of the frequency spectrum plotted in (c) for the Floquet mode at 𝜇 = 8.6.
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of this restriction on |𝑘|, PSI does not capture the dominant inviscid instability (largest
growth rate) which arises as |𝑘| → ∞ (figure 3-1a). More importantly, however, quantitative
comparison between the growth rates predicted by KA17 and our Floquet analysis revealed
noticeable discrepancies even when PSI is valid (e.g. for 𝜇 = 2.4 in figure 3-1b,e).

To understand and resolve these issues, we now turn to an asymptotic stability analysis
of finite-width beams in the joint limit 𝜖≪ 1 and |𝑘| ≫ 1, based on the full stability problem
(3.5).

3.4 Small-amplitude limit of Floquet problem

3.4.1 Preliminaries

Since PSI is a two-dimensional instability, the following analysis assumes from the outset
perturbations that only vary in the plane of the basic state (i.e. 𝑚 = 0 in (3.4)). In this
setting, rather than 𝑢 and 𝑣, it is more convenient to introduce a streamfunction 𝜓(𝜉, 𝜂, 𝑡),
in terms of which 𝑢 = 𝜓𝜂 and 𝑣 = −𝜓𝜉. Thus, the incompressibility equation (3.1a) is
automatically satisfied, and 𝜓, 𝑤 and 𝜌 are governed by the vorticity equation

∇2𝜓𝑡 − cos 𝜃𝜌𝜉 − sin 𝜃𝜌𝜂 − 𝑓 sin 𝜃𝑤𝜉 + 𝑓 cos 𝜃𝑤𝜂 + 𝐽(∇2𝜓,𝜓) − 𝜈∇4𝜓 = 0, (3.9)

along with the transverse momentum and continuity equations

𝑤𝑡 + 𝑓 sin 𝜃𝜓𝜉 − 𝑓 cos 𝜃𝜓𝜂 + 𝐽(𝑤,𝜓) − 𝜈∇2𝑤 = 0, (3.10a)

𝜌𝑡 + cos 𝜃𝜓𝜉 + sin 𝜃𝜓𝜂 + 𝐽(𝜌, 𝜓) = 0, (3.10b)

where the Jacobian 𝐽(𝑎, 𝑏) = 𝑎𝜉𝑏𝜂 − 𝑎𝜂𝑏𝜉. Furthermore, in terms of the streamfunction, the
basic state (3.2) that describes a uniform internal wave beam is replaced by

𝜓0 = 𝜖𝑄(𝜂)e−i𝜔𝑡 + c.c, (3.11a)

𝑤0 = 𝜖
i𝑓 cos 𝜃

𝜔
𝑄𝜂e−i𝜔𝑡 + c.c, (3.11b)

𝜌0 = −𝜖 i sin 𝜃

𝜔
𝑄𝜂e−i𝜔𝑡 + c.c, (3.11c)

where𝑄(𝜂) and the beam profile 𝑈(𝜂) in (3.2) are related by 𝜖𝑄𝜂 = 𝑈 , and 𝜖 is the amplitude
parameter used earlier in (3.8).

As in (3.4), we superimpose infinitesimal perturbations to this basic state in the form of
normal modes

𝜓 = 𝜓0 + 𝜓(𝜂, 𝑡)ei𝜇𝜉, (3.12)

with similar expressions for 𝑤 and 𝜌, where 𝜇 is a real along-beam wavenumber parameter.
Furthermore, in keeping with Floquet theory, 𝜓 is expanded as a Fourier series in 𝑡 with
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period 2𝜋/𝜔, multiplied with an exponential term that contains the Floquet exponent 𝜆:

𝜓 = e𝜆𝑡
∞∑︁

𝑛=−∞
𝜓(𝑛)(𝜂)ei𝑛𝜔𝑡, (3.13)

with analogous expressions for �̂� and 𝜌. Inserting then (3.12) and (3.13) into (3.9) and
(3.10) and linearizing leads to a set of infinite homogeneous equations for the perturbation
amplitudes 𝜓(𝑛), �̂�(𝑛) and 𝜌(𝑛), where 𝑛 = 0,±1,±2, . . . . This eigenvalue problem for 𝜆,
which determines stability, is of course equivalent to the one obtained earlier from (3.5) and
can be solved numerically by a similar procedure as in §3.2.3.

Rather than proceeding numerically, however, here we seek an asymptotic approximation
to this Floquet eigenvalue problem in the limit of a small-amplitude beam (𝜖 ≪ 1) subject
to fine-scale perturbations (|𝑘| ≫ 1) in a nearly inviscid fluid (𝜈 ≪ 1), the conditions under
which PSI comes into play according to the numerical results in §3.3.1. Specifically, as seen
in figure 3-2(e), the spatial mode shapes 𝜓(𝑛)(𝜂) in (3.13) take the form of wavepackets with
a common carrier wavenumber 𝛾 in the cross-beam (𝜂-) direction. Therefore, we write(︁

𝜓(𝑛), �̂�(𝑛), 𝜌(𝑛)
)︁

=
(︁
𝐴(𝑛)(𝜂),𝑊 (𝑛)(𝜂), 𝑅(𝑛)(𝜂)

)︁
ei𝛾𝜂. (3.14)

Furthermore, we express the along- and cross-beam wavenumbers as

𝜇 = −𝑘 sin𝜒, 𝛾 = 𝑘 cos𝜒, (3.15)

where
𝑘 =

√︀
𝜇2 + 𝛾2, 𝜒 = tan−1(−𝜇/𝛾) (3.16)

are the magnitude and inclination angle to the 𝜂-direction, respectively, of the carrier
wavevector 𝑘 = 𝜇�̂�𝜉 + 𝛾�̂�𝜂 (see figure 3-1a). Finally, to bring out the perturbation compo-
nents with frequency 𝜔/2, without loss of generality, we take

𝜆→ 𝜆− i
𝜔

2
. (3.17)

As a result of the substitutions (3.14)–(3.17), the Floquet mode in (3.12) takes the form

𝜓(𝜂, 𝑡)ei𝜇𝜉 = e𝜆𝑡e−i𝜔𝑡/2ei𝑘(𝜂 cos𝜒−𝜉 sin𝜒)
∞∑︁

𝑛=−∞
𝐴(𝑛)(𝜂)ei𝑛𝜔𝑡, (3.18)

with similar expressions for �̂� and 𝜌. Furthermore, upon substituting (3.12) and (3.18) into
(3.9) and (3.10), linearizing and collecting equal harmonics, it follows that the perturbation
amplitudes 𝐴(𝑛) = 𝑘𝐴(𝑛),𝑊 (𝑛) and 𝑅(𝑛) (𝑛 = 0,±1,±2, . . . ) satisfy the infinite equation
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system[︂
𝜆+ i

(︁
𝑛− 1

2

)︁
𝜔

]︂
L𝐴(𝑛) + i

(︁
sin𝜑𝑅(𝑛) − 𝑓 cos𝜑𝑊 (𝑛)

)︁
+

1

𝑘

(︁
sin 𝜃 𝑅(𝑛)

𝜂 − 𝑓 cos 𝜃𝑊 (𝑛)
𝜂

)︁
− 𝜖𝑘 i sin𝜒

{︂(︁
𝑄𝜂L𝐴(𝑛+1) +𝑄*

𝜂L𝐴(𝑛−1)
)︁

+
1

𝑘2

(︁
𝑄𝜂𝜂𝜂𝐴

(𝑛+1) +𝑄*
𝜂𝜂𝜂𝐴

(𝑛−1)
)︁}︂

+ 𝜈𝑘2L2𝐴(𝑛) = 0,

(3.19a)[︂
𝜆+ i

(︁
𝑛− 1

2

)︁
𝜔

]︂
𝑊 (𝑛) − i𝑓 cos𝜑𝐴(𝑛) − 𝑓 cos 𝜃

𝑘
𝐴(𝑛)

𝜂 + 𝜈𝑘2L𝑊 (𝑛)

− 𝜖𝑘 i sin𝜒

{︂(︁
𝑄𝜂𝑊

(𝑛+1) +𝑄*
𝜂𝑊

(𝑛−1)
)︁
− i𝑓 cos 𝜃

𝑘𝜔

(︁
𝑄𝜂𝜂𝐴

(𝑛+1) −𝑄*
𝜂𝜂𝐴

(𝑛−1)
)︁}︂

= 0,

(3.19b)[︂
𝜆+ i

(︁
𝑛− 1

2

)︁
𝜔

]︂
𝑅(𝑛) + i sin𝜑𝐴(𝑛) +

sin 𝜃

𝑘
𝐴(𝑛)

𝜂

− 𝜖𝑘 i sin𝜒

{︂(︁
𝑄𝜂𝑅

(𝑛+1) +𝑄*
𝜂𝑅

(𝑛−1)
)︁

+
i sin 𝜃

𝑘𝜔

(︁
𝑄𝜂𝜂𝐴

(𝑛+1) −𝑄*
𝜂𝜂𝐴

(𝑛−1)
)︁}︂

= 0,

(3.19c)

where

L = 1 − 2i cos𝜒

𝑘

d

d𝜂
− 1

𝑘2
d2

d𝜂2
, (3.20)

and 𝜑 = 𝜃 − 𝜒 is the inclination of 𝑘 to the vertical (see figure 3-1a).

3.4.2 PSI regime

The eigenvalue problem (3.19), while equivalent to the one discussed in §3.2.3, is a convenient
starting point for examining the limit 𝜖≪ 1 and 𝑘 ≫ 1 appropriate for PSI. Specifically, for
𝑘 ≫ 1, the amplitudes (𝐴(𝑛),𝑊 (𝑛), 𝑅(𝑛)) of the various frequency components that comprise
the Floquet mode (3.18) correspond to the envelopes of the wavepackets found numerically in
figure 3-2(e,f ). According to (3.19), these amplitudes are coupled via the terms proportional
to 𝜖𝑘. Therefore, when 𝜖𝑘 = 𝑂(1), all frequency components may participate equally in the
instability dynamics of a small-amplitude (𝜖 ≪ 1) beam. This accounts for the results
of figure 3-2(c,d), in which the frequency spectrum of the instability at fixed 𝜖 becomes
increasingly broadband as 𝜇 (and therefore 𝑘) is increased.

By constrast, when
𝜖𝑘 ≪ 1 (3.21)

in (3.19), the amplitudes of the frequency components of the Floquet mode are weakly
coupled. In this instance, it is possible to asymptotically truncate the Fourier series in
(3.18) so that a finite number of frequency components dominate the instability dynamics,
as is the case in PSI. Thus, we now turn our attention to the joint limit

𝜖≪ 1, 𝑘 ≫ 1, (3.22)
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under the condition (3.21) and, as seen in figure 3-2(b), we assume that the frequencies
−𝜔/2 and 𝜔/2, which correspond to 𝑛 = 0 and 𝑛 = 1 in (3.18), dominate the instability.
Then, from (3.19), the rest of the harmonics are less important

(︁
𝐴(𝑛),𝑊 (𝑛), 𝑅(𝑛)

)︁
=

⎧⎨⎩𝑂
(︀
(𝜖𝑘)𝑛−1

)︀
𝐴(1) (𝑛 ≥ 2),

𝑂
(︀
(𝜖𝑘)|𝑛|

)︀
𝐴(0) (𝑛 ≤ −1).

(3.23)

Furthermore, after eliminating 𝑊 (0,1) and 𝑅(0,1) and making use of (3.21)–(3.23), the equa-
tions for the dominant 𝑛 = 0 and 𝑛 = 1 components of (3.19) can be approximated as

Ω𝐴(0) − 𝜔
(︀
𝜆+ 𝜈𝑘2𝛽

)︀
𝐴(0) − 𝜔𝑐

𝑘
𝐴(0)

𝜂 + i
3𝜔2

4𝑘2
𝐴(0)

𝜂𝜂

+ 𝜖𝑘 i sin𝜒

{︂
Ω

2

𝜔
𝑄𝜂𝐴

(1) +𝑄*
𝜂

(︁
sin𝜑𝑅(−1) − 𝑓 cos𝜑𝑊 (−1) +

𝜔

2
𝐴(−1)

)︁}︂
+ 𝜖2𝑘2i sin2 𝜒 |𝑄𝜂|2𝐴(0) − 𝜖

sin𝜒

𝜔

{︁
3𝛿𝑄𝜂𝜂𝐴

(1) + (4𝛿 − 𝜔2 cos𝜒)𝑄𝜂𝐴
(1)
𝜂

}︁
= 𝑂

(︁ 𝜖
𝑘
, 𝜖2𝑘

)︁
,

(3.24a)

Ω𝐴(1) + 𝜔
(︀
𝜆+ 𝜈𝑘2𝛽

)︀
𝐴(1) − 𝜔𝑐

𝑘
𝐴(1)

𝜂 + i
3𝜔2

4𝑘2
𝐴(1)

𝜂𝜂

− 𝜖𝑘 i sin𝜒

{︂
Ω

2

𝜔
𝑄*

𝜂𝐴
(0) −𝑄𝜂

(︁
sin𝜑𝑅(2) − 𝑓 cos𝜑𝑊 (2) − 𝜔

2
𝐴(2)

)︁}︂
+ 𝜖2𝑘2i sin2 𝜒 |𝑄𝜂|2𝐴(1) + 𝜖

sin𝜒

𝜔

{︁
3𝛿𝑄*

𝜂𝜂𝐴
(0) + (4𝛿 − 𝜔2 cos𝜒)𝑄*

𝜂𝐴
(0)
𝜂

}︁
= 𝑂

(︁ 𝜖
𝑘
, 𝜖2𝑘

)︁
,

(3.24b)

where

Ω = sin2 𝜑+ 𝑓2 cos2 𝜑− 𝜔2

4
(3.25a)

𝛽 =
1

2

(︂
1 +

4𝑓2 cos2 𝜑

𝜔2

)︂
, 𝛿 = sin𝜑 sin 𝜃 + 𝑓2 cos𝜑 cos 𝜃, (3.25b)

𝑐 =
2

𝜔

(︂
𝛿 − 𝜔2

4
cos𝜒

)︂
. (3.25c)

Here, in deriving (3.24), it is assumed that

𝜆 ∼ 𝜈𝑘2 ≪ 1, (3.26)

anticipating that in the weak-coupling limit (3.21) instability is weak, and including only
the leading-order effects of viscosity.

The 𝑂(1) terms in (3.24) drop out as the carrier wavevector 𝑘 has to adhere to the dis-
persion relation (3.3) for the dominant frequencies ±𝜔/2, so Ω = 0 in (3.25a). Furthermore,
from (3.19), the amplitudes of the frequency components ±3𝜔/2, to leading order, are given
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as
𝐴(−1) = −𝜖𝑘 sin𝜒

𝜔
𝑄𝜂𝐴

(0), 𝐴(2) = 𝜖𝑘
sin𝜒

𝜔
𝑄*

𝜂𝐴
(1), (3.27)

with 𝑅(−1,2) = ±2 sin𝜑𝐴(−1,2)/𝜔 and 𝑊 (−1,2) = ∓2𝑓 cos𝜑𝐴(−1,2)/𝜔. As a result, inserting
(3.27) into (3.24), we find that all interaction terms at 𝑂(𝜖𝑘) and 𝑂(𝜖2𝑘2) vanish, leaving
the following closed system for 𝐴(0) and 𝐴(1):

(︀
𝜆+ 𝜈𝑘2𝛽

)︀
𝐴(0) +

𝑐

𝑘
𝐴(0)

𝜂 − i
3𝜔

4𝑘2
𝐴(0)

𝜂𝜂 + 𝜖
sin𝜒

𝜔2

{︁
3𝛿𝑄𝜂𝜂𝐴

(1) + (4𝛿 − 𝜔2 cos𝜒)𝑄𝜂𝐴
(1)
𝜂

}︁
= 𝑂

(︁ 𝜖
𝑘
, 𝜖2𝑘

)︁
,

(3.28a)(︀
𝜆+ 𝜈𝑘2𝛽

)︀
𝐴(1) − 𝑐

𝑘
𝐴(1)

𝜂 + i
3𝜔

4𝑘2
𝐴(1)

𝜂𝜂 + 𝜖
sin𝜒

𝜔2

{︁
3𝛿𝑄*

𝜂𝜂𝐴
(0) + (4𝛿 − 𝜔2 cos𝜒)𝑄*

𝜂𝐴
(0)
𝜂

}︁
= 𝑂

(︁ 𝜖
𝑘
, 𝜖2𝑘

)︁
.

(3.28b)

These two coupled equations define an eigenvalue problem for 𝜆 that governs the sta-
bility of small-amplitude finite-width beams under the conditions (3.21), (3.22), and (3.26)
appropriate to PSI. This reduced system captures the effects of the group velocity and dis-
persion of the subharmonic perturbation wavepackets, as well as the leading-order effects of
the interaction of these wavepackets with the underlying beam, and weak viscosity. In view
of (3.21) and (3.22), the 𝑂(1/𝑘) group velocity effect in (3.28) always dominates the 𝑂(𝜖)

interaction of the perturbation with the beam, the only culprit in a potential instability.
On these grounds it was argued in KA14 that a small-amplitude finite-width beam cannot
suffer PSI in general.

There are two notable special cases, though: (i) near-inertial PSI (considered in KA17
and re-visited in §3.5 below), where the group velocity 𝑐 in (3.25c) happens to be small; and
(ii) PSI of a beam with nearly-monochromatic profile (considered in KA14 and re-visited in
§3.6 below), where the triad interaction of the subharmonic perturbations with the beam
is more finely tuned and can lead to instability. Conceivably, of course, a small-amplitude
(𝜖 ≪ 1) beam with general locally confined profile could be unstable to fine-scale (𝑘 ≫ 1)
perturbations with 𝜖𝑘 = 𝑂(1), in which case the full eigenvalue problem (3.19) is appropriate.
This possibility, which involves a broadband frequency spectrum and no longer qualifies as
PSI, will be explored in §3.7.

3.5 Near-inertial PSI

3.5.1 Reduced eigenvalue problem

We now revisit near-inertial PSI in the light of the small-amplitude theory derived in the
previous section and the numerical Floquet analysis of §3.3. To allow for slight deviations
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from the critical frequency 𝜔 = 2𝑓 , we write

𝜔 = 2𝑓 + 𝜎, (3.29)

where |𝜎| ≪ 1 is a detuning parameter.

Here, it is important to note that when 𝜔 < 2𝑓 (i.e. 𝜎 < 0), perturbations at half this
frequency are sub-inertial (𝜔/2 < 𝑓) so the dispersion relation Ω = 0 in (3.24) cannot be
satisfied by a real wavevector 𝑘. However, it is still possible to allow for slightly sub-inertial
subharmonic perturbations in our asymptotic approach by inserting (3.29) into (3.19) from
the onset. This results in two additional terms, 𝜔𝜎𝐴(0)/2 in (3.24a) and 𝜔𝜎𝐴(1)/2 in (3.24b),
which incorporate the effect of weak detuning. Since 𝜔/2 = 𝑓 to leading order, it is sufficient
now to take 𝜑 = 0 (i.e. 𝑘 points vertically) so that Ω = 0 and the 𝑂(1) terms in (3.24)
again drop out. Furthermore, for this choice of 𝜑, the group velocity 𝑐 of the perturbation
wavepackets in (3.28) vanishes in view of (3.25). The remaining terms of (3.28) – which
represent the effects of wavepacket dispersion, coupling to the underlying beam, viscous
dissipation and departure from the critical frequency – may then be formally balanced by
the scalings

𝜆→ 𝜖𝜆, 𝜈 = 𝛼𝜖2, 𝑘 =
𝜅

𝜖1/2
, 𝜎 = 𝜖𝑓�̂�, (3.30)

consistent with (3.22) and (3.26). In this ‘distinguished limit’, making also use of (3.25),
the eigenvalue problem (3.28) reduces to(︃

�̂�

𝜔/2
− i

�̂�

2

)︃
𝐴(0) − i

3

2𝜅2
𝐴(0)

𝜂𝜂 +
3 sin 2𝜃

4𝜔
𝑄𝜂𝜂𝐴

(1) = 0, (3.31a)(︃
�̂�

𝜔/2
+ i

�̂�

2

)︃
𝐴(1) + i

3

2𝜅2
𝐴(1)

𝜂𝜂 +
3 sin 2𝜃

4𝜔
𝑄*

𝜂𝜂𝐴
(0) = 0. (3.31b)

where
�̂� = 𝜆+ 𝛼𝜅2. (3.32)

For a given profile 𝑄, the eigenvalues �̂� depend on the parameters 𝜔, �̂� and 𝜅, and instability
arises when �̂� > 𝛼𝜅2. Accordingly, �̂� can be interpreted as the inviscid growth rate.

The stability problem (3.31) is similar, but not entirely equivalent, to the one obtained
in KA17 for near-inertial PSI. Specifically, the present asymptotic analysis, which is based
on the full Floquet stability problem (3.19), reveals the importance of the ±3𝜔/2 frequency
components (3.27) in the PSI dynamics: including these waves cancels out the terms pro-
portional to |𝑄𝜂|2 in (3.24), which thus do not appear in the final stability equations (3.31).
In contrast, KA17 focuses solely on the ±𝜔/2 frequency components so these ‘nonlinear
refraction’ terms erroneously are present in the stability eigenvalue problem of KA17 (cf.
their equation 28). This resolves the discrepancy noted in §3.3.2 between KA17 and the
numerical Floquet analysis: the predictions of the eigenvalue problem (3.31) are in excellent
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agreement with Floquet numerical results for near-inertial PSI, as discussed below. Fur-
thermore, it should be noted that KA17 assumes 𝜔 ≥ 2𝑓 , whereas our analysis permits
the detuning parameter to be of either sign, encompassing both super- and sub-inertial
perturbations. The present, more general, treatment reduces to that of KA17 by setting
�̂� = 𝜎2KA(1 − 𝑓2)/𝑓2 and (𝐴(0), 𝐴(1)) → (𝐴(0), 𝐴(1)) exp(i𝜅𝜎KA𝜂/ sin 𝜃), where 𝜎KA is the
detuning parameter used in KA17.

3.5.2 Instability growth rates

We now proceed to compare the predictions of (3.31) against the results of the numerical
Floquet analysis of §§3.2.3 and 3.3. To this end, 𝑄 in (3.31) is chosen as

𝑄(𝜂) =
1√
8𝜋

∫︁ ∞

0
e−𝑙2/8ei𝑙𝜂 d𝑙 , (3.33)

which corresponds to the same beam profile (3.8) used earlier (and also matches the profile
used in KA17). Furthermore, as in §3.3, 𝜔 = 0.1 and all reported real growth rates 𝜆𝑟 will be
in the scaled time 𝑇 = 𝜖𝑡 consistent with (3.30). Numerically, the eigenvalue problem (3.31)
was discretized in 𝜂 using 8th-order centred differences and the resulting matrix eigenvalue
problem was solved using standard numerical eigenvalue algorithms in MATLAB for the
eigenvalue �̂�. The computational domain was varied between 𝜂 ∈ [−5, 5] and [−100, 100],
depending on the choices of 𝜅 and �̂�, with a typical grid size of 2000 points.

Figure 3-3 compares the instability growth rates 𝜆𝑟 predicted by the numerical Floquet
analysis and the near-inertial PSI theory (3.31) under various flow conditions. Specifically,
the PSI growth rates are plotted as a function of the perturbation wavenumber 𝜅 > 0 for
viscosity parameter 𝛼 = 0 and 10−3, and detuning parameter �̂� = −4,−2, 0, 4, 10, and
20. The corresponding Floquet growth rates are shown for beam amplitude 𝜖 = 0.002,
with 𝜅 computed using (3.16) and (3.30), where 𝛾 is taken to be the average of the carrier
wavenumbers (in 𝜂) of the two subharmonic frequency components.

Overall, we observe excellent quantitative agreement between the fully numerical and
the asymptotic instability growth rates. In the inviscid case (𝛼 = 0) shown in figure 3-
3(a,c), 𝜆𝑟 = �̂�𝑟 saturates to an approximatively constant value for large 𝜅 that depends
on the detuning �̂�. As |�̂�| increases, i.e. as 𝜔/2 moves away from 𝑓 , this limiting growth
rate is diminished, a stabilizing effect that is stronger for �̂� < 0 (i.e. 𝜔/2 < 𝑓). In this
instance, the computed PSI growth rates have zero imaginary part (𝜆𝑖 = 0) so in view of
(3.18), sub-inertial subharmonic perturbations have frequency exactly equal to 𝜔/2, also in
agreement with the numerical Floquet analysis. Under viscous flow conditions (𝛼 = 10−3),
shown in figure 3-3(b,d), instability is confined to a finite range of 𝜅. This is to be expected
based on the near-inertial PSI theory: as 𝜅 is increased, the quadratic 𝛼𝜅2 will eventually
exceed �̂�𝑟, the inviscid growth rate, which is approximately constant at large 𝜅.

Figure 3-4 plots the maximum instability growth rate, taken over 𝜅, as a function of
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(a) (b)

(c) (d)

Figure 3-3: Comparison of predicted instability growth rates (in terms of the scaled time
𝑇 = 𝜖𝑡) as a function of the scaled perturbation wavenumber 𝜅 between the near-inertial
PSI theory (using beam profile (3.33)) and the Floquet analysis (using beam profile (3.8)
with beam amplitude 𝜖 = 0.002) for primary beam frequency 𝜔 = 0.1. Results are shown
for viscous parameter (a,c) 𝛼 = 0 corresponding to inviscid flow, and (b,d) 𝛼 = 10−3. (a,b)
show results for detuning parameter �̂� = 0 (∙, solid line), �̂� = 4 (△, dashed line), �̂� = 10 (�,
dashed-dotted line), and �̂� = 20 (♦, dotted line). (c,d) show results for �̂� = 0 (∙, solid line),
�̂� = −2 (×, dashed line), �̂� = −4 (*, dashed-dotted line). In all plots, shapes correspond to
the Floquet growth rate while lines correspond to the near-inertial PSI growth rate.
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(a) (b)

Figure 3-4: Maximum instability growth rate as function of detuning −6 ≤ �̂� ≤ 20 for the
same primary beam as in figure 3-3. (a) Inviscid flow conditions (𝛼 = 0). In this case, since
the maximum growth rate for a given �̂� occurs as 𝜅 → ∞ (see figure 3-3a,c), results are
presented for the near-inertial PSI growth rate at 𝜅 = 12 (solid line) and 𝜅 = 100 (dotted
line). Floquet results (∘) are shown at 𝜅 ≈ 12. (b) Viscous flow conditions (𝛼 = 10−3). In
this case, since the maximum growth rate is achieved at finite 𝜅 (see §3.5.2), plotted growth
rates correspond to the maximum over all 𝜅. Solid line is the near-inertial PSI growth rate,
while (∘) is the Floquet growth rate.

the detuning −6 ≤ �̂� ≤ 20. Again, there is excellent agreement between the near-inertial
PSI theory and the Floquet analysis. As illustrated in figure 3-4, instability is completely
suppressed regardless of viscous dissipation when 𝜔/2 is sufficiently sub-inertial (�̂� . −5).
For inviscid flow conditions (figure 3-4a), the maximum instability growth rate, which is
found as 𝜅 → ∞ for a given detuning �̂�, shows very weak dependence on �̂� for �̂� ≥ 0.
Under viscous flow conditions (𝛼 = 10−3), shown in figure 3-4(b), the maximum growth rate
decreases for large �̂�, indicating that instability is weakened far enough from near-inertial
conditions. Interestingly, though, for finite viscosity, instability is strongest at small but
finite �̂� > 0, rather than exactly at the critical 𝜔 = 2𝑓 . This is due to the behaviour of the
growth rates near the onset of instability: as illustrated in figure 3-3(a,b), the growth rates
for �̂� = 4 arise at slightly lower 𝜅 and have larger values in the range 1 . 𝜅 . 5 than the
growth rates for �̂� = 0.

Finally, figure 3-5 compares the Floquet and PSI growth rates under inviscid flow con-
ditions (𝛼 = 0) at three different values of the detuning �̂� = −4, 0, and 20 for the beam
amplitudes 𝜖 = 0.002, 0.01, 0.05, and 0.1. For �̂� = 0, the Floquet growth rates for the larger
𝜖 = 0.2 are also shown. As expected, the best agreement between the PSI theory and the
Floquet analysis is found when the assumptions 𝜖 ≪ 1, 𝜖𝑘 ≪ 1 (𝜅 . 𝜖−1/2) and |�̂�| = 𝑂(1)

made in the PSI theory are well satisfied.

3.5.3 Instability dynamics

The results presented thus far indicate that the instability growth rates predicted by the
numerical Floquet analysis agree well with the near-inertial PSI theory. However, as illus-
trated in figure 3-2 and discussed in §3.4.2, the main assumption of PSI theory, namely that
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Figure 3-5: Inviscid instability growth rate as a function of the scaled perturbation wavenum-
ber 𝜅 predicted by the Floquet analysis for beam amplitude 𝜖 = 0.002 (∘), 0.01 (△), 0.05
(�), 0.1 (♦). The same primary beam profile and frequency as in figure 3-3 and 3-4 are used
here. Plots correspond to detuning parameter �̂� = −4 (a), �̂� = 0 (b), and �̂� = 20 (c). The
results for �̂� = 0 in (b) include Floquet growth rates for 𝜖 = 0.2 (*). Solid lines correspond
to the near-inertial PSI growth rate.

the frequency components at ±𝜔/2 dominate, eventually breaks down as 𝜅 is increased with
𝜖 fixed. More precisely, the PSI theory fails when 𝜅 = 𝑂(𝜖−1/2), in keeping with (3.21) and
(3.30), and unstable Floquet modes contain broadband frequency spectra.

To confirm these theoretical predictions, we return to the instability growth rate curve
in figure 3-2(a). When plotted in terms of the scaled wavenumber magnitude 𝜅 rather than
the along-beam wavenumber 𝜇, this curve corresponds to the growth rate curve in figure
3-5(b) for �̂� = 0 and 𝜖 = 0.01 and is nearly indistinguishable from the predictions of the
PSI theory. However, despite this agreement, the time-frequency spectra in figure 3-2(b–d),
which correspond to 𝜅 ≈ 3, 10 and 20, respectively, indicate that the instability dynamics
for 𝜅 & 10 does not resemble PSI at all, consistent with the estimate 𝜅 ≈ 𝜖−1/2 = 10 for
the breakdown of the PSI assumption. Furthermore, figure 3-6 compares the time-frequency
spectra of the most unstable inviscid Floquet modes at 𝜅 = 10 for beam amplitudes 𝜖 = 0.002

and 0.05 and detuning �̂� = −4, 0, and 20. Since these Floquet modes exactly correspond
to the growth rates shown in figure 3-5 at 𝜅 = 10, the Floquet growth rate is in excellent
agreement with the PSI theory for both beam amplitudes. However, for the larger amplitude
𝜖 = 0.05 (top row of figure 3-6), the frequency spectra indicate that the instability dynamics
does not correspond to PSI, consistent with 𝜖𝑘 ≈ 2 not being small.

In summary, when 𝜖𝑘 ≪ 1 the near-inertial PSI theory is in excellent agreement with
the numerical Floquet analysis. When 𝜖𝑘 is not small, instability is not dominated by the
subharmonic frequencies at ±𝜔/2, consistent with the conclusion reached in §3.4.2. Remark-
ably however, PSI theory, even though it is not formally valid in this regime, still provides
reliable predictions for the instability growth rate. We note that a similar observation was
made by Sonmor & Klaassen (1997) for the instability of a sinusoidal wave (see their §4a).
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Figure 3-6: Time-frequency spectra of the fastest-growing Floquet mode found at scaled
perturbation wavenumber 𝜅 = 10 for the same primary beam profile and frequency used
throughout §3.5. Top row show modes for beam amplitude 𝜖 = 0.05 while bottom row shows
modes for 𝜖 = 0.002. Left, middle and right columns correspond to detuning parameter
�̂� = −4, 0 and 20, respectively. The vertical dotted lines indicate the frequencies ±𝑓/𝜔.

3.6 PSI of nearly monochromatic beams

3.6.1 Reduced eigenvalue problem

Aside from near-inertial conditions, PSI is also possible for small-amplitude locally confined
beams with nearly monochromatic profile, as pointed out in KA14 for a beam with general
frequency 𝜔 in the absence of background rotation (𝑓 = 0). This study omitted the contri-
bution of the ±3𝜔/2 frequency components to PSI dynamics. However, unlike near-inertial
PSI, these frequencies do not affect the stability eigenvalue problem derived in KA14.

We wish to compare the predictions of PSI theory with those of Floquet stability analysis
for a nearly-monochromatic beam under the conditions assumed in KA14. To this end, rather
than quoting KA14, it is more economical to proceed directly from the small-amplitude limit
of the Floquet stability problem discussed in §3.4. Specifically, we return to the eigenvalue
problem (3.28) and consider a beam with frequency 𝜔 = sin 𝜃 (𝑓 = 0) and profile

𝑄(𝜂) = 𝑞(𝐻)ei𝜂, 𝐻 = 𝜖𝜂. (3.34)

Here, 𝐻 is a stretched envelope coordinate and 𝜖 ≪ 1 is a small parameter (made precise
below) that controls the width of the slowly varying envelope 𝑞(𝐻) relative to the charac-
teristic length scale 𝐿* = Λ*/2𝜋, where Λ* is the carrier wavelength of the primary wave
beam. It should be noted that under the present conditions, the dispersion relation Ω = 0
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in (3.24) is exactly satisfied by choosing sin𝜑 = 𝜔/2.

In view of (3.34), the perturbation amplitudes 𝐴(0,1) take the form

𝐴(0)(𝜂) → 𝐴(0)(𝐻)ei 𝜂
2 , 𝐴(1)(𝜂) → 𝐴(1)(𝐻)e−i 𝜂

2 , (3.35)

and inserting (3.34) and (3.35) into the stability equations (3.28), we find at leading order(︂
𝜆+

1

2
𝜈𝑘2 + i

𝑐

2𝑘
+ i

3𝜔

8𝑘2

)︂
𝐴(0) + 𝜖

𝑐

𝑘
𝐴

(0)
𝐻 − 𝜖 sin𝜒 cos2

(︁𝜒
2

)︁
𝑞𝐴(1) = 0, (3.36a)(︂

𝜆+
1

2
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𝑐

2𝑘
− i

3𝜔

8𝑘2

)︂
𝐴(1) − 𝜖

𝑐

𝑘
𝐴

(1)
𝐻 − 𝜖 sin𝜒 cos2

(︁𝜒
2

)︁
𝑞*𝐴(0) = 0. (3.36b)

The various terms in (3.36) may then be formally balanced in a similar fashion to the
near-inertial PSI analysis (c.f. (3.30)), by the scalings

𝜆→ 𝜖𝜆, 𝜈 = 2𝛼𝜖2, 𝑘 =
𝜅

𝜖1/2
, 𝜖 =

𝜖1/2

𝐷
. (3.37)

Here,
𝐷 = 2𝜋𝑁𝜖1/2 = 𝑂(1) (3.38)

is a scaled width of the beam envelope in terms of 𝑁 , the number of carrier wavelengths
contained within the beam. Inserting (3.37) into (3.36) and making the substitutions
𝐴(0,1) → 𝐴(0,1) exp[−3i𝜔𝐻/(8𝑐𝜅)] and 𝜆 → 𝜆 + i𝑐/(2𝑘), which do not affect stability, we
find that the PSI of nearly monochromatic beams is governed by

�̂�𝐴(0) +
𝑐

𝐷𝜅
𝐴

(0)
𝐻 − sin𝜒 cos2

(︁𝜒
2

)︁
𝑞𝐴(1) = 0, (3.39a)

�̂�𝐴(1) − 𝑐

𝐷𝜅
𝐴

(1)
𝐻 − sin𝜒 cos2

(︁𝜒
2

)︁
𝑞*𝐴(0) = 0, (3.39b)

where
�̂� = 𝜆+ 𝛼𝜅2. (3.40)

As noted earlier, the final stability eigenvalue problem (3.39) is identical to that found by
KA14 (see their equation 4.10), as the frequency components at ±3𝜔/2, omitted in KA14,
ultimately do not play a role in the PSI stability analysis of nearly monochromatic beams.

3.6.2 Comparison with Floquet analysis

We now compare the results of the numerical Floquet analysis outlined in §3.2 against the
predictions of the PSI theory (3.39). Specifically, we chose the Gaussian envelope profile

𝑞(𝐻) =
1

2
exp
(︀
−8𝐻2

)︀
, (3.41)
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Figure 3-7: Beam profile (3.42) for nondimensional amplitude 𝜖 = 1 and (a) 𝑁 = 1 and
(b) 𝑁 = 7, where 𝑁 corresponds to the number of carrier wavelengths contained within the
beam width. Solid lines indicate the real part, while dotted lines indicate the imaginary
part.

whose width is approximately 4 standard deviations. Combined with (3.34) and (3.37),
(3.41) corresponds to the overall beam profile

𝑈(𝜂) = i
𝜖

2
exp

[︃
−1

2

(︂
4

2𝜋𝑁

)︂2

𝜂2

]︃
exp(i𝜂) (3.42)

to be used in the numerical Floquet analysis (see (3.2)). Figure 3-7 plots the beam profile
(3.42) for 𝜖 = 1 and 𝑁 = 1 and 7. We recall that, according to (3.38), 𝑁 = 𝑂(𝜖−1/2) in the
PSI theory. Numerically, the eigenvalue problem (3.39) was discretized in the domain 𝐻 ∈
[−5, 5] using 8th-order centred differences with a grid size of 500 points, and the resulting
matrix eigenvalue problem was solved using standard numerical eigenvalue algorithms in
MATLAB for the eigenvalue �̂�. The discussion below will focus on the beam inclination
angle 𝜃 = 45∘ (which is tied to the beam frequency via the dispersion relation 𝜔 = sin 𝜃)
and viscosity 𝜈 = 10−5. The effect of varying 𝜃 is discussed in §3.6.3.

Figure 3-8(a) plots the maximum instability growth rates (taken over 𝜅 and given in
terms of the slow time 𝑇 = 𝜖𝑡) predicted by the PSI theory and the numerical Floquet
analysis as a function of 𝑁 , the number of carrier wavelengths of the beam profile, for
various values of 0.025 ≤ 𝜖 ≤ 0.4. As expected, in the limit of 𝑁 → ∞, the PSI growth rates
converge onto the sinusoidal wave growth rate. Furthermore, the Floquet growth rates show
excellent agreement with the PSI theory for all 𝜖 ≤ 0.4 and 𝑁 ≥ 2, even though in these
parameter ranges neither the assumption of small amplitude (i.e. 𝜖≪ 1) nor the assumption
of scale separation between the carrier and the envelope (i.e. 𝑁 ≫ 1) are necessarily well
satisfied.

Furthermore, based on PSI theory, KA14 proposed a lower bound on 𝑁 , the number
of carrier wavelengths contained in the beam envelope, needed for PSI (see their equation
(5.14)). By re-arranging their expression for this lower bound, which depends on various pa-
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rameters including the viscosity 𝜈 and beam amplitude 𝜖, we find that a minimum amplitude
threshold needed for instability at fixed 𝑁 is

𝜖𝑐 =

(︂
1

2C𝑐

)︂1/3 𝑐2/3

Γ

𝜈1/3

(2𝜋𝑁)2/3
. (3.43)

Here, C𝑐 ≈ 3.35×10−3 is a coefficient set by the choice of envelope profile (3.41), 𝑐 is defined
in (3.25c), and Γ = sin𝜒 cos2(𝜒/2). Figure 3-8(b) compares (3.43) against the minimum
amplitude threshold found numerically using the Floquet analysis for various 2 ≤ 𝑁 ≤ 10

and for three different viscosities 𝜈 = 5 × 10−4, 10−3, and 2 × 10−3. We observe excellent
agreement between (3.43) and the numerical results.

Figure 3-9 plots the time-frequency spectra of the Floquet modes corresponding to the
growth rates shown in figure 3-8(a) for 𝜖 = 0.05 and 0.2, and for 𝑁 = 2, 10, and 20. Similar
to the results found in §3.5.3 for near-inertial conditions, the frequency spectra widen as
the beam amplitude 𝜖 is increased, corresponding to the emergence of multiple instability
frequencies other than ±𝜔/2. Again, we find that PSI theory, although it is no longer strictly
valid, still provides accurate predictions of the instability growth rates.

Finally, it is worth noting that (3.43) predicts that 𝜖𝑐 → 0 in the inviscid limit (𝜈 = 0)
regardless of 𝑁 . This is in qualitative agreement with the discussion of §3.4.2, which suggests
that small-amplitude (𝜖 ≪ 1) locally confined beams with general (not necessarily nearly
monochromatic) profile are possibly susceptible to instability. However, this instability may
arise when 𝜖𝑘 = 𝑂(1) and is distinct from PSI. We shall return to this point in §3.7.

3.6.3 Instability for inclination angle 𝜃 . 43∘

Thus far, the results of §3.6 have focused on the beam inclination angle 𝜃 = 45∘. However,
as noted in §3.2.2, for a plane sinusoidal wave in the absence of rotation (𝑓 = 0) and under
inviscid flow conditions, PSI is the most unstable of all triadic resonant instabilities only for
wave inclination angle 𝜃 & 43∘. For 𝜃 . 43∘, the ‘branch-C’ or finite-scale TRI, where one
member of the triad has larger wavelength than the primary wave, has higher growth rate
than PSI. To check whether this interesting result also holds for a locally confined beam,
we now consider the stability of a nearly monochromatic beam with frequency 𝜔 = 0.4,
corresponding to 𝜃 ≈ 23.6∘. Here, we will use the term PSI to refer to any TRI where both
members of the resonant triad have smaller wavelength than the primary wave.

Figure 3-10 compares the dominant instability growth rates, computed using the Floquet
stability analysis and scaled by the beam amplitude 𝜖 = 0.1, between a nearly monochro-
matic beam with the profile (3.42) for 𝑁 = 20 and a purely sinusoidal wave (i.e. 𝑁 → ∞)
under inviscid flow conditions. Here, growth rates are plotted as a function of the along-
beam perturbation wavenumber 𝜇. In the case of the sinusoidal wave, the growth rate curve
features a distinct kink at 𝜇 ≈ 0.62, where the instability with the highest growth rate
transitions from a branch-C-like instability at low 𝜇 to a PSI-like instability at high 𝜇. It
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Figure 3-8: (a) Computed instability growth rates (in terms of the scaled time 𝑇 = 𝜖𝑡)
according to the Floquet stability analysis as a function of 𝑁 , the number of carrier wave-
lengths contained in the beam width, for the profile (3.42) with viscosity 𝜈 = 10−5, beam
frequency 𝜔 = sin 45∘, and beam amplitudes 𝜖 = 0.025 (O), 0.05 (∘), 0.1 (♦), 0.2 (�), and
0.4 (△). The corresponding asymptotic PSI growth rates, as predicted by (3.39), are over-
laid and labelled. The PSI growth rate for a sinusoidal wave (i.e. 𝑁 → ∞) is indicated by
the horizontal dashed line. (b) Minimum amplitude 𝜖𝑐 for instability as a function of 𝑁 for
𝜈 = 5 × 10−4 (◁, solid line), 10−3 (*, dashed line), and 2 × 10−3 (▷, dotted line). Shapes
correspond to Floquet analysis results while lines correspond to the amplitude threshold
(3.43) predicted by the PSI theory.
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Figure 3-9: Time-frequency spectra of the fastest-growing Floquet mode for various configu-
rations shown in figure 3-8(a). Top and bottom rows correspond to beam amplitude 𝜖 = 0.2
and 0.05, respectively. Left, middle and right columns correspond to 𝑁 = 2, 10 and 20.
Vertical dotted lines in each plot correspond to the frequencies ±𝜔/2.
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should be noted that at the inclination angle 𝜃 ≈ 23.6∘, the maximum branch-C growth rate
is larger than that of PSI by nearly 40%. By contrast, for the nearly monochromatic beam
with 𝑁 = 20 wavelengths at the same 𝜃, the Floquet analysis growth rates simply increase
monotonically and converge to the PSI growth rate as 𝜇→ ∞, with no sign of the ‘branch-C’
instability. This reveals that the finite width of the beam stabilizes the branch-C instability
to a far greater extent than PSI (which involves smaller-scale perturbations), likely due to
the fact that perturbations with 𝑂(1) wavenumber have 𝑂(1) group velocity and therefore
propagate quickly across the primary beam.

Furthermore, this stabilizing effect suggests an explanation for why Bourget et al. (2013),
in their experimental study of TRI in a finite-width beam with approximately three carrier
wavelengths, did not observe the branch-C instability and instead observed PSI. In these
experiments, although the inclination angle 𝜃 ≈ 47.7∘ > 43∘, due to the effect of viscosity
and the proximity to the critical angle of 43∘, the branch-C instability of a sinusoidal wave
has higher growth rate than PSI (see their figure 7). However, based on our findings here, it
is likely that the finite width of the experimentally-generated beam suppressed the branch-C
instability, allowing PSI to manifest.

3.7 Broadband instability of small-amplitude beams

In §3.4.2 it was argued that PSI is not an effective instability mechanism of small-amplitude
(𝜖 ≪ 1) beams with general locally confined profile away from near-inertial conditions be-
cause the group velocity effect overwhelms the coupling of the perturbations with the pri-
mary beam (see (3.28)). However, the full stability eigenvalue problem (3.19) suggests that
such beams may still be unstable to fine-scale (𝑘 ≫ 1) perturbations when 𝜖𝑘 = 𝑂(1), but
unlike PSI this potential instability involves broadband frequency spectrum. To explore
this possibility, we consider again the beam with profile (3.8) and frequency 𝜔 = 0.1, used
in the discussion of near-inertial PSI of §3.5 (see figure 3-1b), except here, we assume no
background rotation (𝑓 = 0).

Figure 3-11(a) plots the instability growth rates (scaled with the beam amplitude 𝜖)
found by the numerical Floquet analysis as a function of the perturbation wavenumber 𝑘,
for 𝜖 = 0.01 under inviscid flow conditions (𝜈 = 0). For comparison, the same figure also
plots the growth rates for 𝑓 = 0.05, corresponding to near-inertial conditions exactly at the
critical frequency 𝜔 = 2𝑓 . Figure 3-11(a) confirms that for 𝑓 = 0, the beam is unstable when
𝜖𝑘 & 𝑂(1). The onset of instability occurs at 𝑘 ≈ 45 (𝜖𝑘 ≈ 0.45) and the growth rate keeps
increasing monotonically, reaching a plateau for 𝑘 & 300 (𝜖𝑘 & 3). This is in sharp contrast
to the instability for 𝑓 = 0.05 (i.e. near-inertial conditions), which arises at a significantly
lower value of 𝑘 ≈ 10 (𝜖𝑘 = 0.1), consistent with the scaling 𝜅 = 𝜖1/2𝑘 = 1 = 𝑂(1) of
near-inertial PSI, and has reached its plateau when 𝑘 & 100 (𝜖𝑘 & 1).

Figure 3-11(b–d) plots the frequency spectrum of the Floquet mode for 𝑓 = 0 at 𝑘 =
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Figure 3-10: Instability growth rate predicted by the Floquet stability analysis (∘) as a
function of the along-beam (𝜉-) wavenumber 𝜇 of the perturbation, for the beam profile
(3.42) with beam frequency 𝜔 = 0.4 (i.e. beam inclination angle 𝜃 ≈ 23.6∘), amplitude
𝜖 = 0.1, viscosity 𝜈 = 0, and 𝑁 = 20 wavelengths of the carrier contained in the beam
width. The corresponding growth rates for a sinusoidal wave as predicted by Floquet analysis
under the same conditions are plotted as the solid line. The vertical dashed line at 𝜇 ≈
0.62 indicates the point at which the most unstable perturbations to the sinusoidal wave
transitions between the ‘branch-C’-like instability (for 𝜇 . 0.62), where one subharmonic
frequency component of the perturbation has larger wavelength than the primary wave, and
the PSI-like instability (for 𝜇 & 0.62), where both subharmonic frequency components have
smaller wavelength than the primary wave.
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80, 200 and 400. Perhaps surprisingly, at 𝑘 = 80 (𝜖𝑘 = 0.8) the frequency components
±𝜔/2 are dominant so the spectrum is of the PSI type (figure 3-11b). However, as shown
in figure 3-11(a), the instability growth rate at this value of 𝑘 is significantly lower than
its near-inertial counterpart, consistent with the destabilising effect of the vanishing group
velocity at the critical frequency 𝜔 = 2𝑓 . Furthermore, the Floquet modes associated with
the highest growth rates for 𝑓 = 0 (which are roughly 75% of the highest near-inertial
growth rates) are certainly broadband, as illustrated in figure 3-11(c,d) at 𝑘 = 200 and 400,
corresponding to 𝜖𝑘 = 2 and 4. Thus, the scaling argument made in §3.4.2 (and KA14) for
ruling out PSI of small-amplitude locally confined beams away from near-inertial conditions
is not entirely binding: the dominant instability for 𝑓 = 0 indeed is broadband, but PSI is
still relevant near the onset of instability.

The computed instability for 𝑓 = 0 is expected to be more vulnerable to the effects of
viscous dissipation, owing to the larger wavenumber perturbations required, 𝑘 = 𝑂(𝜖−1),
than near-inertial PSI, which arises when 𝑘 = 𝑂(𝜖−1/2). This is illustrated in figure 3-12,
which shows the effect of finite viscosity (𝛼 = 10−3) on the Floquet growth rates for the
same beam as in figure 3-11(a). In this case, for both 𝑓 = 0 and 𝑓 = 0.05 (i.e. near-inertial
conditions), instability is entirely stabilized when 𝑘 & 110 (𝜖𝑘 & 1.1), thereby eliminating the
broadband-type instability and leaving only the PSI-type instability. As a result, instability
is far weaker for 𝑓 = 0 than for 𝑓 = 0.05. Based on figure 3-12, for 𝛼 = 10−3, the maximum
growth rate for 𝑓 = 0 decreases by roughly 80% relative to inviscid conditions, whereas the
maximum growth rate for 𝑓 = 0.05 decreases only by roughly 30%.

3.8 Concluding remarks

We made an analytical and numerical study of instability mechanisms of finite-width in-
ternal gravity wave beams using a formal stability analysis based on Floquet theory. Our
original motivation was to assess the validity of the approximate theories proposed in KA14
and KA17 for the PSI of small-amplitude beams. These models assume that PSI involves
a resonant triad interaction between a beam of frequency 𝜔 and two fine-scale subharmonic
perturbation wavepackets with carrier frequency 𝜔/2. This hypothesis is supported by our
asymptotic analysis of the Floquet stability eigenvalue problem in the PSI regime, namely a
small-amplitude beam subject to fine-scale perturbations in the nearly inviscid limit. How-
ever, the Floquet instability mode also comprises components with frequency 3𝜔/2, ignored
in KA14 and KA17, which are smaller than the subharmonic wavepackets but still play an
important part, particularly in near-inertial PSI where they affect the instability growth
rate. The participation of these additional frequency components in PSI dynamics is a
higher-order interaction (resonant quartet) effect that here comes into play at the same level
as the main resonant triad owing to the fine scale (large wavenumber) of the perturbations.

After accounting for the 3𝜔/2 frequency components, the predictions of KA17 for near-
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Figure 3-11: (a) Floquet growth rate (∙) as a function of the perturbation wavenumber
magnitude 𝑘 using beam profile (3.8) for beam amplitude 𝜖 = 0.01, primary beam frequency
𝜔 = 0.1 and no background rotation (𝑓 = 0) under inviscid flow conditions (𝜈 = 0). The
Floquet growth rate for 𝑓 = 0.05 (∘) and the asymptotic near-inertial PSI growth rate (solid
line) are plotted for comparison. Vertical dashed lines indicate the values 𝑘 = 80, 200 and
400. (b) Time-frequency spectra of the most unstable Floquet mode for 𝑓 = 0 shown in (a)
at 𝑘 = 80. Vertical dashed lines indicate the frequencies 𝜔𝑝 = ±𝜔/2. (c) Same as (b) but
at 𝑘 = 200. (d) Same as (b) but at 𝑘 = 400.

Figure 3-12: Effect of viscosity on the Floquet growth rates shown in figure 3-11(a) using the
same beam profile (3.8), beam amplitude 𝜖 = 0.01 and primary beam frequency 𝜔 = 0.1, for
𝛼 = 10−3 (N,M) and 𝛼 = 0 (∙, ∘). Filled shapes (∙,N) correspond to growth rates for 𝑓 = 0,
while open shapes (∘,M) correspond to results for 𝑓 = 0.05 (i.e. near-inertial conditions).
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inertial PSI of a locally confined beam are in excellent quantitative agreement with those of
the Floquet stability analysis, even outside the formal range of validity of the approximate
model. Close agreement is also found between the model of KA14 and the exact linear
stability analysis away from near-inertial conditions. In this instance, the 3𝜔/2 frequency
components of the Floquet instability mode omitted in KA14 do not affect the instability
growth rate. The asymptotic PSI theory of KA14 also assumes nearly monochromatic
beam profile – the resonant interaction of the subharmonic perturbations, which travel with
their group velocity, with the underlying beam must be finely tuned to cause instability.
Nevertheless, we find satisfactory agreement of the asymptotic PSI growth rate with that
computed from the Floquet stability analysis, even for a beam profile with as few as two
carrier wavelengths. Furthermore, the validity of the asymptotic beam-amplitude threshold
for PSI found in KA14 is confirmed.

An interesting insight revealed by our analysis of the small-amplitude limit of the Floquet
stability problem is that the coupling of the perturbation with the underlying beam is
controlled by 𝜖𝑘, where 𝜖≪ 1 measures the beam amplitude and 𝑘 ≫ 1 is the perturbation
wavenumber. As a result, PSI arises only when 𝜖𝑘 ≪ 1 so the coupling is weak and the two
subharmonic perturbation components with frequency 𝜔/2 dominate. This also explains
why the frequency spectrum of the Floquet instability mode eventually becomes broadband
as 𝜖 is increased (in agreement with the results of Onuki & Tanaka, 2019) and/or 𝑘 is
increased. Furthermore, this broadband instability can persist in the nearly inviscid limit
for small-amplitude beams with general (not nearly monochromatic) locally confined profile,
which according to the scaling argument presented in §3.4.2 (and KA14) are not susceptible
to PSI.
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Chapter 4

Effect of background mean flow on
the PSI of nearly monochromatic
internal wave beams

Much of this text previously appeared in Fan, B. & Akylas, T. R. 2019 Effect of back-
ground mean flow on PSI of internal wave beams. J. Fluid Mech. 869, R1. However, it has
been corrected and updated to reflect new findings based on the results of Chapter 3.

4.1 Introduction

Among the various types of instabilities that are known to befall internal gravity waves
in continuously stratified fluids (Sonmor & Klaassen, 1997; Dauxois et al., 2018, and refer-
ences therein), parametric subharmonic instability (PSI) has been widely studied in the past
decades. In its most idealized form, PSI involves transfer of energy from a primary sinusoidal
wavetrain to two subharmonic perturbations via a weakly nonlinear resonant triad interac-
tion (Staquet & Sommeria, 2002). Furthermore, for nearly inviscid flows, the most unstable
perturbations have short wavelength relative to the primary wave, and frequency equal to
half that of the primary wave. In view of this transfer of energy into smaller scales, PSI
emerges as a possibly significant factor in the dissipation of oceanic internal waves and could
provide a pathway for their contribution to mixing (e.g. Hibiya et al., 2002; MacKinnon &
Winters, 2005; Young et al., 2008).

Oceanic observations of PSI (Alford et al., 2007; MacKinnon et al., 2013) and detailed
numerical simulations (Hazewinkel & Winters, 2011) though have found only modest energy
transfer rates compared with the idealized theory. To account for this discrepancy, it is
possible that the presence of mesoscale flow features, such as background mean flows, may
alter the dynamics of PSI. For instance, recent numerical experiments (Richet et al., 2017)
indicate that near-inertial PSI around the critical latitude is weakened by a background
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mean flow. To support these findings, Richet et al. (2017) argue that, due to the Doppler
shift of the frequency of a sinusoidal plane wave by the background mean flow, the primary
wave frequency can fall below 2𝑓 (where 𝑓 is the inertial frequency); in such a case, the
subharmonic perturbations with half the primary frequency would be sub-inertial and hence
forbidden by the dispersion relation, preventing PSI.

Recent work on PSI has also shifted attention from sinusoidal plane waves to plane waves
with locally confined spatial profile (Clark & Sutherland, 2010; Bourget et al., 2013, 2014;
Karimi & Akylas, 2014, 2017). Such wave beams provide a more realistic setting for PSI
(Sutherland, 2013), as they arise from the interaction of the barotropic tide with bottom
topography in oceans (e.g. Lamb, 2004; Peacock et al., 2008; Johnston et al., 2011) and can
also be generated by thunderstorms in the atmosphere (e.g. Fovell et al., 1992). The finite
width of an internal wave beam imposes additional constraints on PSI because subharmonic
perturbations, which propagate across the beam with their group velocity, will eventually
leave the beam (Bourget et al., 2014; Karimi & Akylas, 2014, 2017). As a result, PSI is
only possible if a beam: (i) has nearly monochromatic profile so as to allow fine-tuned
triad interactions similar to a sinusoidal plane wave; and (ii) is sufficiently wide so that
subharmonic perturbations can stay in contact with the beam for long enough time (Karimi
& Akylas, 2014). These conditions also hold in the presence of background rotation, unless
the primary beam frequency happens to be close to 2𝑓 , in which case it is possible for beams
of general profile to be subject to PSI. In this instance, subharmonic perturbations with half
the primary frequency are near-inertial and have nearly vanishing group velocity, which
prolongs their contact with the primary beam and thus enhances PSI (Karimi & Akylas,
2017).

The present paper seeks to further advance our understanding of PSI in more realistic
scenarios. Specifically, we explore the effect of a constant uniform background mean flow
on PSI of finite-width internal wave beams in the absence of background rotation. These
flow conditions preclude near-inertial PSI and, in view of the findings of Karimi & Akylas
(2014), attention is focused on nearly monochromatic beams. We first discuss how the
mean flow affects the beam profile itself and then derive evolution equations for fine-scale
subharmonic perturbations. The analysis considers a ‘distinguished limit’ where coupling
with the underlying beam, dispersion, viscous dissipation and the background mean flow
partake in the perturbation dynamics on an equal footing; to this end, it will be necessary
to assume that the mean flow is small. The main effect of the background mean flow is
to advect the subharmonic perturbations, which modifies their group velocity and generally
hinders their capacity to extract energy from a finite-width beam. Specifically, for PSI to
arise in the presence of the mean flow, unstable perturbations must propagate in opposite
directions across the beam. This constraint stabilizes very short-scale perturbations and
can in fact weaken PSI dramatically, as demonstrated by calculating the growth rates and
range of unstable wavenumbers for a nearly monochromatic beam profile with a ‘top-hat’
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envelope. These findings for a finite-width beam are in stark contrast with the case of a
purely sinusoidal plane wave, where the presence of a uniform background mean flow has no
effect on PSI once the Doppler shift of the wave frequencies has been taken into account.

4.2 Formulation

4.2.1 Preliminaries

Our analysis assumes two-dimensional disturbances in an unbounded, incompressible, uni-
formly stratified Boussinesq fluid with constant buoyancy frequency 𝑁*, and will use nondi-
mensional variables with 1/𝑁* as the time scale and 𝐿* as the length scale, to be specified
later. We take 𝑥 to be the horizontal coordinate, 𝑦 the vertical coordinate pointing antipar-
allel to gravity, and 𝑢 = 𝑢 �̂�𝑥 the horizontal uniform background mean flow with respect to
a fixed reference frame. In this frame, the streamfunction 𝜓 for the velocity field (𝜓𝑦,−𝜓𝑥),
and the reduced density 𝜌 are governed by

(𝜕𝑡 + 𝑢 𝜕𝑥)𝜌+ 𝜓𝑥 + 𝐽(𝜌, 𝜓) = 0, (4.1a)

(𝜕𝑡 + 𝑢 𝜕𝑥)∇2𝜓 − 𝜌𝑥 + 𝐽(∇2𝜓,𝜓) − 𝜈∇4𝜓 = 0. (4.1b)

Here, 𝐽(𝑎, 𝑏) = 𝑎𝑥𝑏𝑦 −𝑎𝑦𝑏𝑥 stands for the Jacobian and 𝜈 = 𝜈*/𝑁*𝐿
2
* is an inverse Reynolds

number where 𝜈* is the fluid kinematic viscosity.

In the linear, inviscid limit (𝜈 = 0), equations (4.1) admit sinusoidal plane wave solutions
that obey the dispersion relation

(𝜔 − 𝑢 |𝑘| sin 𝜃)2 = sin2 𝜃, (4.2)

where 𝜔 is the wave frequency, |𝑘| is the magnitude of the wavevector 𝑘 and 𝜃 is the
inclination of 𝑘 to the vertical (figure 4-1a). It is useful to note that in (4.2), the quantity
in parentheses is the (Doppler shifted) frequency of the wave in the reference frame moving
with the background mean flow. In the case of 𝑢 = 0, (4.2) reduces to the well-known
internal wave dispersion relation, where the inclination of the wavevector to the vertical
alone determines the frequency. For a locally confined time-harmonic source, it is then
possible to construct infinitely long uniform wave beam solutions by superposing sinusoidal
plane waves with the same frequency as the source but general |𝑘| spectrum, and these
solutions are also exact nonlinear states (Tabaei & Akylas, 2003). In contrast, for 𝑢 ̸= 0,
the wave frequency is no longer independent of |𝑘| and exact uniform beam solutions are
not possible. In this case, each wavevector 𝑘 generated by a general, locally confined source
with fixed frequency will be affected by the mean flow to a varying degree, resulting in a
two-dimensional wake-like wave pattern far away from the forcing (Lighthill, 1978, §4.12).
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4.2.2 Primary wave beam

Our interest here is on flow conditions that permit the generation of beams for 𝑢 ̸= 0, that
will be used later in the PSI analysis. To this end, keeping also in mind that beams with
nearly monochromatic spatial profiles are the only ones that can suffer from PSI in the
absence of background rotation (Karimi & Akylas, 2014), we shall focus on waves generated
by a time-harmonic source whose spatial profile consists of a sinusoidal carrier modulated by
a locally confined envelope. The steady-state response to such a source is expected to also be
time-harmonic and have nearly monochromatic spatial dependence. Accordingly, without
getting into the detailed generation process, we take as characteristic length scale 𝐿* =

Λ*/2𝜋, where Λ* is the dimensional carrier wavelength of the generated wave disturbance.
The carrier wavevector 𝑘0 is then simply given by

𝑘0 = �̂�𝜂, (4.3)

where �̂�𝜂 is a unit vector pointing along 𝜂 = 𝑥 sin 𝜃+𝑦 cos 𝜃, and in view of (4.2), 𝜃 is related
to the source frequency 𝜔0 by

𝜔0 = (1 + 𝑢) sin 𝜃. (4.4)

Furthermore, owing to the modulations of the source profile, the wave response involves
sidebands, 𝑘 = 𝑘0 + 𝜇𝑞 (0 < 𝜇 ≪ 1) that modulate the sinusoidal carrier 𝑘0 with a slowly
varying envelope. For 𝑢 ̸= 0, it is clear from (4.2) that each of these sidebands will point
in a slightly different direction than 𝑘0. Expanding (4.2) about 𝑘0 gives 𝜔0 − 𝑢(𝑘0 + 𝜇𝑞) ·
�̂�𝑥 = sin 𝜃 + 𝜇𝑐𝑔 · 𝑞 to leading order in 𝜇, and taking into account (4.4), we find that
𝑐𝑔 · 𝑞 + 𝑢 𝑞 · �̂�𝑥 = 0, where the group velocity 𝑐𝑔 of 𝑘0 is taken in the fluid frame. Thus, the
slowly varying envelope of the wave response can be described by the stretched coordinate
𝐻 which is inclined to the vertical by the angle Θ such that

𝐻 = 𝜇(𝑥 sin Θ + 𝑦 cos Θ), tan Θ =
−𝑐𝑔,𝑦
𝑐𝑔,𝑥 + 𝑢

=
sin 𝜃

cos 𝜃 + 𝑢/ cos 𝜃
, (4.5)

where 𝜇−1 sets the envelope length scale, and 𝑐𝑔,𝑥 and 𝑐𝑔,𝑦 are the horizontal and vertical
components of 𝑐𝑔. It should be noted that the mean flow rotates the modulation direction
�̂�𝐻 relative to the carrier direction �̂�𝜂 (figure 4-1a), an effect that depends on the sign of 𝑢
and the orientation of 𝑘0.

From the above kinematic analysis, it is concluded that the response to the assumed
wave source in a background mean flow is a nearly monochromatic beam in the form

𝜓0 = 𝜌0 = 𝜖
{︁
𝑄(𝐻)ei(𝜂−𝜔0𝑡) + c.c.

}︁
+ . . . , (4.6)

where the envelope𝑄(𝐻) is related to the source spatial profile, and the amplitude parameter
𝜖 = 𝑈*/(𝑁*𝐿*) ≪ 1, 𝑈* being the dimensional peak beam velocity. It should be noted that
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Figure 4-1: Schematic of the PSI geometry. (a) Nearly monochromatic primary wave beam
of frequency 𝜔0 in the presence of a background mean flow 𝑢. The carrier wavevector 𝑘0 = �̂�𝜂
is inclined to the vertical by 𝜃, determined by the Doppler shifted dispersion relation (4.4).
Thin solid lines indicate lines of constant phase (e.g. crests) of the carrier with Λ* as
the dimensional carrier wavelength, while thick solid lines indicate the finite extent of the
envelope. According to (4.5), due to the mean flow, the modulation coordinate 𝐻 is inclined
to the vertical by an angle Θ different from 𝜃. (b) Subharmonic perturbations are short-
scale wavepackets with lines of constant phase (dashed lines) inclined to the horizontal by
the angle 𝜑 given by (4.12).

unlike uniform beams in the absence of mean flows, which are exact inviscid nonlinear states,
(4.6) is only an approximate weakly nonlinear solution of equations (4.1). Specifically, due to
the dispersive effects of the mean flow, the beam envelope will also feature variations in the
direction orthogonal to �̂�𝐻 . Such ‘along-beam’ modulations, however, have an 𝑂(𝜇−2) length
scale as can be verified from expanding (4.2) about 𝑘0 correct to 𝑂(𝜇2), and will be neglected
in the PSI stability analysis in comparison with the ‘cross-beam’ 𝑂(𝜇−1) modulations in
𝐻. Furthermore, weakly nonlinear effects on the beam solution (4.6) itself, owing to self-
interactions with its mean and higher harmonics, will not be considered either because
they act over an 𝑂(𝜇−1𝜖−2) time scale at best (see §A.2) and thus are less important than
nonlinear interactions with perturbations as discussed in the following sections. Finally,
viscous dissipation affects predominately these perturbations since they are of fine scale
relative to the underlying beam (see §4.2.3).

4.2.3 Subharmonic perturbations

To examine the linear stability of (4.6) to PSI, we now specify the form of the subharmonic
perturbations. According to the standard PSI analysis for sinusoidal wavetrains in the case
of no mean flow, the most unstable perturbations (𝑘+, 𝜔+) and (𝑘−, 𝜔−) correspond to
short-scale disturbances relative to the primary wave (|𝑘±| ≫ |𝑘0|) and satisfy the triad

71



resonance conditions

𝑘+ + 𝑘− = 𝑘0, (4.7a)

𝜔+ + 𝜔− = 𝜔0 (4.7b)

(e.g. Staquet & Sommeria, 2002; Bourget et al., 2013). Making use of Galilean invariance,
it is expected that these results will hold in the presence of a constant uniform mean flow,
provided that we are in the reference frame moving with the mean flow. However, by virtue
of the form of the frequency Doppler shift 𝑢 · 𝑘 due to the mean flow, the triad resonance
conditions in the fluid frame are equivalent to (4.7) in the stationary frame.

With these considerations in mind, we now turn to the beam (4.6) as the primary
wave. Here, the subharmonic perturbations are taken in the form of fine-scale wavepackets
that are modulated by the underlying beam (figure 4-1b). Furthermore, we consider the
‘distinguished limit’ where triad nonlinear interactions, dispersion, viscous dissipation and
the background mean flow are equally important in the evolution of such perturbations.
From prior experience (Karimi & Akylas, 2014), a balance of nonlinear and dispersive effects,
acting on an 𝑂(𝜖−1) time scale, is achieved when

𝜇 = 𝜖1/2 (4.8)

and the perturbations have carrier wavevectors 𝑘± = 𝑂(𝜖−1/2). Thus, to satisfy the wavevec-
tor resonance condition 𝑘+ + 𝑘− = 𝑘0, we write

𝑘± = ± 𝜅

𝜖1/2
�̂�𝜁 +

1

2
𝑘0, (4.9)

where �̂�𝜁 is a unit vector along 𝜁 = 𝑥 sin𝜑 + 𝑦 cos𝜑, with the inclination angle 𝜑 to be
determined. Here, the parameter 𝜅 = 𝑂(1), taken to be positive without loss of generality,
controls the carrier wavenumber of the perturbation wavepackets and will play a central role
in the determination of the maximum PSI growth rate. Additionally, in order for dispersion,
which causes such perturbations to propagate with their 𝑂(𝜖1/2) group velocity across the
envelope, to be as important as the advection due to the mean flow 𝑢, it is necessary to take
the mean flow to be 𝑂(𝜖1/2):

𝑢→ 𝜖1/2𝑢. (4.10)

As a result, the effects of the mean flow on the primary beam, discussed in §4.2.2, will be
small.

Substituting (4.3), (4.9) and (4.10) into the dispersion relation (4.2), we find the following
expressions for the subharmonic frequencies

𝜔± = sin𝜑(1 ± 𝑢𝜅) ± 𝜖1/2
{︂

1

2𝜅
(sin 𝜃 − sin𝜑 cos𝜒) ± 𝑢 sin 𝜃

2

}︂
, (4.11)
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where 𝜒 = 𝜃 − 𝜑. As argued earlier, these wave frequencies have to form a resonant triad
with the beam frequency in the reference frame moving with the mean flow, which happens
to be equivalent to forming a resonant triad in the stationary frame (viz. equation 4.7b).
Making use of (4.3), (4.4), (4.9) and (4.11), the triad resonance condition (4.7b) determines
𝜑:

sin𝜑 =
sin 𝜃

2
. (4.12)

4.2.4 Additional frequency components

Recently, in their study of PSI using a formal stability analysis based on Floquet theory
in the absence of background mean flow, Fan & Akylas (2020b) (see Chapter 3) noted the
presence of additional frequency components with frequency 3𝜔0/2, where 𝜔0 is the primary
wave frequency. Importantly, their results show that these 3𝜔0/2 frequency components,
which are generated via the interaction of the subharmonic perturbations with the primary
wave, play a crucial role in PSI dynamics and were erroneously neglected by earlier analyses
(e.g. Karimi & Akylas, 2014, 2017).

In view of these findings, in the present analysis of PSI with background mean flow,
it is necessary to include in the perturbation frequency components with frequency 𝜔± +

𝜔0, which are analogous to the 3𝜔0/2 frequency components for PSI in the absence of
mean flow. Since they arise via the interaction of the subharmonic perturbations with the
primary wave, these 𝜔±+𝜔0 frequency components have the same fine-scale structure as the
subharmonic perturbations. It should be noted that these additional frequency components
were erroneously ignored in the published version of this thesis chapter (Fan & Akylas,
2019); however, they play no role in the instability growth rates of a nearly-monochromatic
primary wave and therefore do not affect the results presented in Fan & Akylas (2019).

4.2.5 Evolution equations

At this point, we introduce infinitesimal perturbations in the form discussed above to the
primary wave beam (4.6),

𝜓 = 𝜓0 +
𝜖1/2

𝜅

{︁
𝐴(𝐻,𝑇 )ei(𝑘+·𝑥−𝜔+𝑡) +𝐵(𝐻,𝑇 )ei(𝑘−·𝑥−𝜔−𝑡) + c.c.

}︁
+
𝜖

𝜅

{︁[︁
𝐴3(𝐻,𝑇 )ei(𝑘+·𝑥−𝜔+𝑡) +𝐵3(𝐻,𝑇 )ei(𝑘−·𝑥−𝜔−𝑡)

]︁
ei(𝜂−𝜔0𝑡) + c.c.

}︁
,

(4.13a)

𝜌 = 𝜌0 +
{︁
𝐹 (𝐻,𝑇 )ei(𝑘+·𝑥−𝜔+𝑡) +𝐺(𝐻,𝑇 )ei(𝑘−·𝑥−𝜔−𝑡) + c.c.

}︁
+ 𝜖1/2

{︁[︁
𝐹3(𝐻,𝑇 )ei(𝑘+·𝑥−𝜔+𝑡) +𝐺3(𝐻,𝑇 )ei(𝑘−·𝑥−𝜔−𝑡)

]︁
ei(𝜂−𝜔0𝑡) + c.c.

}︁
,

(4.13b)

Here, the perturbation envelope amplitudes 𝐴,𝐵, 𝐹,𝐺,𝐴3, 𝐵3, 𝐹3 and 𝐺3 are modulated in
𝐻 owing to their interaction with the primary beam, and 𝑇 = 𝜖𝑡 is the slow time on which
dispersion, nonlinear interactions and the mean flow affect the perturbations. Furthermore,
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as in Karimi & Akylas (2014), we scale the inverse Reynolds number, 𝜈 = 2𝛼𝜖2, where 𝛼
is an 𝑂(1) viscous parameter, to bring dissipation to the same level as these effects. Note
that in view of (4.5) and (4.10), 𝐻 = 𝜖1/2𝜂+𝑂(𝜖), which simplifies the ensuing calculations
significantly.

Inserting (4.13) into (4.1), linearizing with respect to the perturbations, and grouping
terms according to each frequency component, we find that the amplitudes of the 𝜔± + 𝜔0

frequency components are given to leading order as

𝐴3 = 𝐹3 = −i
𝜅 sin𝜒

2 sin𝜑
𝐴𝑄, 𝐵3 = −𝐺3 = i

𝜅 sin𝜒

2 sin𝜑
𝐵𝑄. (4.14)

Turning now to the subharmonic perturbations with frequency 𝜔±, making use of (4.14) and
eliminating 𝐹 and 𝐺, we obtain the following coupled evolution equations for 𝐴 and 𝐵,

𝐴𝑇 +
1

𝐷

(︁ 𝑐
𝜅

+ 𝑢 sin 𝜃
)︁
𝐴𝐻 + i

𝑐′

8𝜅2
𝐴+ 𝛼𝜅2𝐴− 𝛾𝑄𝐵* = 0, (4.15a)

𝐵𝑇 − 1

𝐷

(︁ 𝑐
𝜅
− 𝑢 sin 𝜃

)︁
𝐵𝐻 + i

𝑐′

8𝜅2
𝐵 + 𝛼𝜅2𝐵 − 𝛾𝑄𝐴* = 0, (4.15b)

where
𝑐 = sin 𝜃 − sin𝜑 cos𝜒, 𝑐′ = 3 sin𝜑 cos2 𝜒− 2 sin 𝜃 cos𝜒− sin𝜑,

𝛾 = sin𝜒 cos2
(︁𝜒

2

)︁
.

(4.16)

Here, in order to bring out the effect of the finite width of the primary beam, we have
taken 𝑄(𝐻) to have fixed 𝑂(1) width by rescaling 𝐻 → 𝐻/𝐷, where 𝐷 = 2𝜋𝑁𝜖1/2 is the
nondimensional width of the beam envelope and 𝑁 = 𝑂(𝜖−1/2) is the number of carrier
wavelengths contained in the beam. In (4.15), the first two terms represent the propagation
of the subharmonic wavepackets across the beam with the projection of their group velocity
on the modulation direction. The third term corresponds to envelope dispersion, fourth to
viscous dissipation, and fifth to nonlinear energy transfer from the primary wave. Thus, the
leading-order effect of the small mean flow is to advect each subharmonic wavepacket and
modify its group velocity. In the limit 𝑢 → 0, we recover the results of Karimi & Akylas
(2014). Furthermore, if 𝑄 is not locally confined, i.e. in the limit of 𝐷 → ∞, the group
velocity and the effect of 𝑢 vanish, and we recover the PSI of a sinusoidal wavetrain.

It is worth noting that the coupled evolution equations (4.15) differ from those found
by Fan & Akylas (2019) (the published version of this thesis chaper) in that the terms
proportional to |𝑄𝜂|2 have now vanished as a result of the inclusion of the 𝜔±+𝜔0 frequency
components. However, since these terms do not affect the instability growth rates (Fan &
Akylas, 2019), the ensuing results are largely unchanged.
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4.3 Stability eigenvalue problem

We now proceed to solve (4.15) for a locally confined beam envelope (𝑄→ 0 as 𝐻 → ±∞)
in order to examine the effect of the background mean flow on PSI. To this end, we first
make the substitution

(𝐴,𝐵*) → (𝐴,𝐵*) exp

[︂
i
𝐷𝜅

𝑐

(︂
𝑐′𝑢 sin 𝜃

8𝜅2𝐷
𝑇 − 𝑐′

8𝜅2
𝐻

)︂]︂
, (4.17)

which eliminates in (4.15) the dispersive terms proportional to 𝑐′. Next, we search for normal
mode solutions

(𝐴,𝐵*) = (𝑎, 𝑏*)e𝜆𝑇 , (4.18)

where 𝜆 = 𝜆𝑟 + i𝜆𝑖 and 𝜆𝑟 > 0 implies instability. Thus, we obtain the eigenvalue problem

(1 + �̂�)𝑎𝐻 + �̂�𝑎− �̂�𝑄𝑏* = 0, (4.19a)

(1 − �̂�)𝑏*𝐻 − �̂�𝑏* + �̂�𝑄*𝑎 = 0, (4.19b)

(𝑎, 𝑏*) → 0 (𝐻 → ±∞), (4.19c)

with
�̂� =

𝜅 sin 𝜃

𝑐
𝑢, �̂� =

𝐷𝜅

𝑐
(𝜆+ 𝛼𝜅2), �̂� =

𝐷𝛾

𝑐
𝜅. (4.20)

For given beam envelope profile 𝑄(𝐻), background mean flow 𝑢 and perturbation wavenum-
ber 𝜅, solving (4.19) determines the eigenvalue spectrum �̂�, and instability arises (𝜆𝑟 > 0)
only if �̂�𝑟(𝜅) > 𝛼𝐷𝜅3/𝑐. Thus, �̂�𝑟 is proportional to the inviscid growth rate (�̂�𝑟 ∝ 𝜆𝑟 if
𝛼 = 0), whereas the actual growth rate 𝜆𝑟 takes into account the effect of viscous dissipation.

As a simple example to illustrate the effect of the background mean flow on PSI, we
solve the eigenvalue problem (4.19) for the ‘top-hat’ envelope profile

𝑄(𝐻) =

⎧⎨⎩1/2 (|𝐻| ≤ 1/2)

0 (|𝐻| > 1/2),
(4.21)

corresponding to a beam that comprises a uniform sinusoidal wave with peak amplitude 𝜖
and finite width. Because 𝑄 is piecewise constant, it is possible to solve (4.19) analytically
in |𝐻| > 1/2 and |𝐻| ≤ 1/2. Then, matching these solutions to ensure that 𝑎 and 𝑏* are
continuous at 𝐻 = ±1/2 leads to the characteristic equation for �̂�.

First, consider the case where |�̂�| < 1. The solution to (4.19) can be expressed, up to a
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normalization constant, as

(𝑎, 𝑏*) = (1, 0)e−�̂�𝐻/(1+�̂�) (𝐻 > 1/2), (4.22a)

(𝑎, 𝑏*) = D(0, 1)e�̂�𝐻/(1−�̂�) (𝐻 < −1/2), (4.22b)

(𝑎, 𝑏*) =
{︀
D+(1,B+)ei𝜎𝐻 + D−(1,B−)e−i𝜎𝐻}︀e�̂��̂�𝐻/(1−�̂�2) (|𝐻| < 1/2), (4.22c)

where

𝜎 =

⎯⎸⎸⎷ 1

1−�̂�2

(︃
�̂�2

4
− �̂�2

1−�̂�2

)︃
, B± =

2

�̂�(1−�̂�)

(︁
�̂�± i(1−�̂�2)𝜎

)︁
. (4.23)

Here, D,D+,D− are constants determined by enforcing continuity of 𝑎 and 𝑏* at 𝐻 = ±1/2.
For a nontrivial solution to exist, we obtain the characteristic equation

�̂�

1 − �̂�2
sin𝜎 + 𝜎 cos𝜎 = 0 (4.24)

that determines �̂�; then 𝜆 follows directly via (4.20). It is easy to verify that (4.24) does
not depend on the sign of 𝑢. Thus, for a given envelope profile 𝑄(𝐻), the growth rates are
symmetric in 𝑢. On the other hand, in view of (4.5), for a given wave source, the envelope
profile 𝑄(𝐻) will differ depending on the sign of 𝑢, but these effects will be small given the
small mean flow (viz. (4.10)).

Turning next to the case |�̂�| > 1, the solution to (4.19) in each region where 𝑄 is constant
can again be readily obtained and has similar form as (4.22). However, upon matching these
piecewise solutions, it is concluded that no nontrivial solutions exist with �̂�𝑟 > 0. Therefore,
all disturbances are stable, regardless of viscosity. For |�̂�| = 1, it is also readily shown by
returning to (4.19) that no unstable solutions exist either. Therefore, PSI only exists when
|�̂�| < 1, or equivalently,

𝜅 <
⃒⃒⃒ 𝑐

𝑢 sin 𝜃

⃒⃒⃒
. (4.25)

Importantly, this condition arises only for finite beam width 𝐷 and, in view of the group
velocity terms in (4.15), can be physically interpreted as a requirement that the two sub-
harmonic wavepackets propagate in opposite directions. Furthermore, (4.25) suggests that
the range of possible unstable wavenumbers shrinks to zero as 𝑢 → ∞, consistent with the
arguments made later (see §4.5) that no instability is possible for a dimensionless mean flow
of 𝑂(1) magnitude.

4.4 Results

We now present stability results based on the characteristic equation (4.24) for the specific
parameter values 𝜃 = 𝜋/4, 𝜖 = 0.3, 𝜈 = 0.004, 𝐷 = 5, and various 𝑢 ≥ 0 (e.g. for 𝜈* = 10−6

m2/s, corresponding to water, and 𝑁* = 1 rad/s, taking 𝜈 = 0.004 implies Λ* ≈ 10 cm).
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These values are representative of laboratory flow conditions (e.g. Bourget et al., 2014).
Earlier analyses of finite-width PSI with no mean flow (Bourget et al., 2014; Karimi &
Akylas, 2014) focused on the importance of the width 𝐷, and in particular, the existence
of a critical value 𝐷 = 𝐷𝑐 below which no PSI is possible (Karimi & Akylas, 2014). As the
emphasis here is on the effects of the background mean flow 𝑢 on PSI growth, we take 𝐷 = 5

such that 𝐷 > 𝐷𝑐 ≈ 2 for the chosen parameters. Furthermore, as 𝑢 is varied, the beam
inclination angle 𝜃 is kept fixed and the forcing frequency 𝜔0 is allowed to adjust accordingly
via (4.4), as opposed to the other way around. This makes it possible to compare the effect
of the mean flow for a fixed primary wave beam, although given the small mean flow, both
choices produce qualitatively similar results. Figure 4-2(a,b) shows the eigenvalue branches
�̂�𝑟 as functions of 𝜅 for 𝑢 = 0 and 𝑢 = 0.2, as well as the cubic 𝛼𝐷𝜅3/𝑐. It is clear that
as a whole, the addition of the background mean flow has decreased the eigenvalues and
therefore reduced the growth rates for PSI.

For 𝑢 = 0 (figure 4-2a), (4.24) admits a countably infinite number of eigenvalue branches
that bifurcate at discrete non-zero values along the 𝜅-axis. As shown by Karimi & Akylas
(2014), when 𝜅 is much greater than the first bifurcation point, the first eigenvalue branch
(lowest mode) has the highest growth rate and behaves as �̂�𝑟 ∼ 𝐷𝛾𝜅/(2𝑐). Therefore, for
nonzero viscosity, the cubic 𝛼𝐷𝜅3/𝑐 will always exceed �̂�𝑟 for large enough 𝜅, restricting
unstable wavenumbers to a finite range of 𝜅. In the inviscid limit (𝛼 = 0), there is then no
upper bound to the range of unstable wavenumbers. On the other hand, for 𝑢 = 0.2 (figure
4-2b), there exists an upper bound on the range of eigenvalues with positive �̂�𝑟, suggesting
that very short wavelength perturbations are stabilized by the mean flow even in the absence
of viscosity. This can be understood in view of the necessary condition for instability (4.25)
noted earlier. Moreover, for the top-hat profile (4.21), the first bifurcation point can be
found analytically

𝜅 =
𝜋𝑐√︀

𝐷2𝛾2 + 𝜋2𝑢2 sin2 𝜃
, (4.26)

and provides a lower bound to the unstable range of wavenumbers.
Figure 4-2(c,d) plots the range of unstable wavenumbers as well as the maximum PSI

growth rates for various values of 𝑢, indicating that the presence of mean flow significantly
shrinks the range of unstable wavenumbers and decreases the PSI growth rates. For instance,
according to figure 4-2(d) the maximum instability growth rate is cut in about half by taking
𝑢 = 1, which corresponds to a dimensional mean flow of about 9 mm/s. However, in spite of
this dramatic weakening of PSI, the mean flow never completely eliminates the instability, as
there always exists a small but finite range of unstable wavenumbers for any 𝑢 (figure 4-2c).
We suspect that this is a limitation of our asymptotic theory as the unstable wavenumber
range shifts towards 𝜅 ≪ 1 when 𝑢 is increased, in keeping with (4.25), invalidating the
scaling assumptions made earlier.

While the mean flow weakens PSI for beams with 𝐷 > 𝐷𝑐, as shown by the above
example, it is also possible with the addition of sufficient mean flow to induce PSI for
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(a) (b) (c) (d)

Figure 4-2: Eigenvalues and growth rates for the top-hat profile with 𝜃 = 𝜋/4, 𝜖 = 0.3,
𝜈 = 0.004, and 𝐷 = 5. When varying 𝑢, the beam inclination angle 𝜃 was fixed. (a) Plot of
the real eigenvalue branches �̂�𝑟(𝜅) for 𝑢 = 0 (thin lines), as well as the cubic 𝛼𝐷𝜅3/𝑐 (thick
line) that controls viscous dissipation. Instability arises if �̂�𝑟 > 𝛼𝐷𝜅3/𝑐. (b) Same as (a),
but for 𝑢 = 0.2. (c) Range of unstable wavenumbers (shaded in dark gray) as 𝑢 is varied.
The wavenumber with the maximum growth rate is indicated by the thick black line. The
corresponding range for 𝜈 = 0 is shown in light gray (which completely contains the dark
gray region), with maximum growth rate locus indicated by the dotted line. (d) Plot of the
maximum PSI growth rate 𝜆max as function of 𝑢. The corresponding growth rates for 𝜈 = 0
are plotted with the dotted line.

beams with 𝐷 < 𝐷𝑐 that would be entirely stable in the absence of mean flow. To explain
this apparent anomaly, we note that increasing 𝑢 decreases the lower bound for instability,
namely (4.26), and shifts the range of unstable wavenumbers to smaller 𝜅 (as seen in figure
4-2c). Because the effects of viscous dissipation are weaker for smaller 𝜅, it is now possible
for these low wavenumber modes to overcome viscous damping and lead to PSI. However,
this mean-flow-induced PSI is extremely weak. For instance, using the same parameters as
in figure 4-2 (𝜃 = 𝜋/4, 𝜖 = 0.3, 𝜈 = 0.004) but with 𝐷 = 1.5 < 𝐷𝑐 ≈ 2, the maximum PSI
growth rate attained as 𝑢 is varied is 𝜆max ≈ 0.01, while the range of unstable wavenumbers
(difference in 𝜅) is quite narrow (about 0.1).

4.5 Concluding remarks

We have studied the effect of a background constant horizontal mean flow on the PSI of
finite-width nearly monochromatic internal wave beams. As in Karimi & Akylas (2014), the
subharmonic perturbations are in the form of short-scale wavepackets that are modulated
by the underlying beam and can also extract energy via resonant triad interactions. In
order for the advection by the mean flow to be as important as the propagation of such
disturbances with their group velocity across the beam, and to also achieve a balance with
the effects of triad nonlinearity and viscous dissipation, it is necessary to take the mean
flow to be small. This distinguished limit is governed by the similar evolution equations as
those derived in Karimi & Akylas (2014) after taking into account the 𝜔± + 𝜔0 frequency
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components revealed by Fan & Akylas (2020b), with the exception of a mean flow term that
affects the group velocity of the subharmonic perturbations. For a nearly monochromatic
beam with a top-hat envelope profile, this new term stabilizes very short-scale perturbations
in keeping with the necessary condition for instability (4.25), and thus shifts the most un-
stable disturbance to longer wavelengths even for inviscid or nearly inviscid flow conditions.
Physically, this necessary condition implies that unstable perturbations must propagate in
opposite directions across the beam in order for PSI to arise in the presence of the mean
flow. As a result, it is possible for a small amount of mean flow to weaken PSI dramatically.
Although these findings were derived analytically for the top-hat envelope profile, similar
results are expected for other types of locally-confined envelope profiles. Finally, these re-
sults are unique to finite-width beams (𝐷 finite in (4.15)), as the background mean flow has
no effect on the PSI of a purely sinusoidal plane wave once the Doppler shift of the wave
frequency has been taken into account (viz. (4.4)).

It is worth mentioning that for 𝑂(1) mean flow (i.e. 𝑢 = 𝑂(1) instead of 𝑢 = 𝑂(𝜖1/2) in
(4.10)), it is still possible to balance the mean flow advection of subharmonic perturbations
and nonlinear energy transfer over the same 𝑂(𝜖−1) time scale by assuming a larger beam
envelope scale, namely 1/𝜇 = 1/𝜖 instead of 1/𝜇 = 1/𝜖1/2 in (4.8). The evolution equations
obtained under these alternative scalings are nearly identical to (4.15) with the exception
that the effect of the group velocity is rendered negligible relative to the advection by the
mean flow. As a result, the perturbations are advected in the same direction across the
beam and according to the necessary condition for PSI noted above for the top-hat envelope
profile, no instability is possible in this instance.

The present theory assumes waves with nearly monochromatic spatial profile and ignores
the effects of background rotation. These flow conditions preclude direct comparisons with
oceanic internal waves, although a rough estimate for the dimensional mean flow strength
needed to impact PSI can still be obtained. Using 𝜃 = 𝜋/4, 𝜖 = 0.3, and 𝐷 = 5 as in §4,
but with the choice 𝜈 ≈ 0 relevant to the oceanic case, the maximum instability growth
rate is cut in about half by taking 𝑢 = 0.5, which corresponds to a rather small dimensional
mean flow of about 2 cm/s (using 𝑁* = 10−3 s−1 and Λ* = 500 m as representative oceanic
values). A separate theory that accounts for background mean flow in the presence of
rotation and focuses on near-inertial PSI, which is most relevant to oceanic internal waves,
will be presented elsewhere.
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Chapter 5

Near-inertial PSI of internal wave
beams in a background mean flow

5.1 Introduction

In its simplest form, the parametric subharmonic instability (PSI) of internal gravity waves in
continuously stratified fluids involves transfer of energy from a sinusoidal primary wavetrain
to two subharmonic perturbations via a weakly nonlinear resonant triad interaction (Staquet
& Sommeria, 2002). Importantly, for nearly inviscid flows, the most unstable perturbations
have frequency equal to half that of the primary wave and short wavelength relative to the
primary wave. PSI has therefore been proposed as a potential pathway by which internal
waves transfer their energy into smaller scales and eventually dissipate (e.g. Hibiya et al.,
2002; MacKinnon & Winters, 2005; Young et al., 2008).

However, oceanic internal waves are not necessary sinusoidal and may not be well ap-
proximated by theories of sinusoidal plane wave PSI (Alford et al., 2007; Hazewinkel &
Winters, 2011; MacKinnon et al., 2013). Rather, oceanic internal waves commonly manifest
as wave beams – time-harmonic plane waves with locally confined spatial profile (Tabaei
& Akylas, 2003; Sutherland, 2013) – that arise from the interaction of the barotropic tide
with bottom topography in oceans (e.g. Lamb, 2004; Peacock et al., 2008; Johnston et al.,
2011). Recent work on the PSI of internal wave beams have shown that the finite width of
the beam imposes additional constraints on PSI because subharmonic perturbations, which
propagate across the beam with their group velocity, will eventually leave the beam (Bour-
get et al., 2014; Karimi & Akylas, 2014, 2017). As a result, PSI is only possible if either (i)
the beam has nearly monochromatic profile and is sufficiently wide to allow subharmonic
perturbations to stay in contact with the beam for a long enough time (Karimi & Akylas,
2014), or (ii) the beam has arbitrary general profile but has frequency close to 2𝑓 , where
𝑓 is the Coriolis frequency, in which case subharmonic perturbations with half the primary
frequency are near-inertial with nearly vanishing group velocity, prolonging their contact
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with the primary beam (Karimi & Akylas, 2017).

Recently, Fan & Akylas (2019) revisited the PSI of internal wave beams and considered
the additional effect of a background mean flow in an effort to study PSI in more realistic
settings. We found that mean flow weakens PSI dramatically by hindering the ability of
the subharmonic perturbations to extract energy from the primary wave. This stabilizing
effect of the mean flow is unique to finite-width beams as mean flow has no effect on the
PSI of a purely sinusoidal plane wave once the Doppler shift of the wave frequency has been
taken into account. However, in Fan & Akylas (2019), we focused on beams with nearly
monochromatic profile and did not include the effects of background rotation. While recent
numerical experiments (Richet et al., 2017) indicate that near-inertial PSI is also weakened
by a background mean flow, our earlier study could not make direct comparisons to oceanic
internal waves as we ignored the effect of background rotation.

The present analysis explores the effect of a background mean flow on the near-inertial
PSI of internal wave beams with general profile. Similar to the approach of Fan & Akylas
(2019), we first discuss the effects of the mean flow on the primary beam profile itself.
Here, waves are generated by a source with general locally confined profile and thus contain
broadband wavenumber spectrum. As a result, it is necessary to assume that the mean flow
is small in order to ensure that the mean flow does not destroy the beam entirely of its own
accord. We then derive evolution equations for near-inertial fine-scale perturbations under a
‘distinguished limit’, where coupling with the primary wave, dispersion, viscous dissipation,
and the background mean flow partake in the perturbation dynamics on an equal footing.
By calculating the growth rates and eigenvalue spectra for a locally confined beam profile,
we find that background mean flow can either hinder or facilitate the ability of perturbations
to extract energy from a finite-width beam, depending on both the sign of the mean flow
and the frequency of the primary wave. However, sufficiently large background mean flow
of either sign stabilizes perturbations and weakens PSI dramatically.

5.2 Formulation

5.2.1 Preliminaries

Our analysis assumes two-dimensional disturbances in an unbounded, incompressible, uni-
formly stratified Boussinesq fluid with constant buoyancy frequency 𝑁*, and will use nondi-
mensional variables with 1/𝑁* as the time scale and 𝐿* as the length scale, to be specified
later. We take 𝑥 to be the horizontal coordinate, 𝑦 the vertical coordinate pointing antipar-
allel to gravity, and 𝑢 = 𝑢 �̂�𝑥 as the uniform horizontal background mean flow with respect
to a fixed reference frame. In this fixed frame, the streamfunction 𝜓(𝑥, 𝑦, 𝑡) for the in-plane
velocity field (𝜓𝑦,−𝜓𝑥), the transverse velocity 𝑤(𝑥, 𝑦, 𝑡), and the reduced density 𝜌(𝑥, 𝑦, 𝑡)
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are governed by

(𝜕𝑡 + 𝑢 𝜕𝑥)∇2𝜓 − 𝜌𝑥 + 𝑓𝑤𝑦 + 𝐽(∇2𝜓,𝜓) − 𝜈∇4𝜓 = 0, (5.1a)

(𝜕𝑡 + 𝑢 𝜕𝑥)𝑤 − 𝑓𝜓𝑦 + 𝐽(𝑤,𝜓) − 𝜈∇2𝑤 = 0, (5.1b)

(𝜕𝑡 + 𝑢 𝜕𝑥)𝜌+ 𝜓𝑥 + 𝐽(𝜌, 𝜓) = 0. (5.1c)

Here, 𝐽(𝑎, 𝑏) = 𝑎𝑥𝑏𝑦 − 𝑎𝑦𝑏𝑥 stands for the Jacobian, 𝑓 is the local Coriolis parameter under
the 𝑓 -plane approximation, and 𝜈 = 𝜈*/𝑁*𝐿

2
* is the inverse Reynolds number where 𝜈* is

the fluid kinematic viscosity. In the linear, inviscid limit (𝜈 = 0), equations (5.1) admit
sinusoidal plane wave solutions that obey the dispersion relation

(𝜔0 − 𝑢 |𝑘| sin 𝜃)2 = 𝑓2 + (1 − 𝑓2) sin2 𝜃, (5.2)

where 𝜔0 is the wave frequency, |𝑘| is the magnitude of the wavevector 𝑘 and 𝜃 is the inclina-
tion of 𝑘 to the vertical. In (5.2), it is useful to note that the quantity in parentheses is the
(Doppler shifted) frequency of the wave in the reference frame moving with the background
mean flow.

5.2.2 Primary wave beam

When 𝑢 = 0, (5.2) reduces to the well-known internal wave dispersion relation, where the
inclination of the wavevector to the vertical alone determines the frequency. In such a
setting, by superposing sinusoidal plane waves with the same frequency 𝜔0 but varying |𝑘|,
it is then possible to construct infinitely long uniform wave beam solutions

𝜓0 = 𝑄(𝜂)e−i𝜔0𝑡 + c.c., 𝑤0 = i
𝑓 cos 𝜃

𝜔0
𝑄𝜂e−i𝜔0𝑡 + c.c., 𝜌0 = −i

sin 𝜃

𝜔0
𝑄𝜂e−i𝜔0𝑡 + c.c., (5.3)

where 𝑄(𝜂) is a general profile (related to the wave source) that varies in the cross-beam
direction 𝜂 = 𝑥 sin 𝜃 + 𝑦 cos 𝜃, 𝐿* is taken to be a characteristic length scale of the beam
profile, and 𝜃 is related to beam frequency 𝜔0 via (5.2). Such uniform beams happen to be
exact nonlinear states (Tabaei & Akylas, 2003) and form the basis of the analyses of Karimi
& Akylas (2017) and Fan & Akylas (2020b) of PSI in near-inertial locally-confined beams.

On the other hand, for 𝑢 ̸= 0, the wave frequency is no longer independent of |𝑘| and each
wavevector 𝑘 generated by a locally-confined source (with fixed frequency) will be affected
by the mean flow to varying extents. As a result, the profile 𝑄 in (5.3) will also feature
variations in the along beam (𝜉-) direction, orthogonal to 𝜂 and defined by 𝜉 = 𝑥 cos 𝜃−𝑦 sin 𝜃

(figure 5-1a). To prevent this dispersive effect of the mean flow from destroying the beam of
its own accord, and to permit the possibility of PSI, we therefore focus on the case of weak
mean flow and introduce the scaling

𝑢→ 𝜇𝑢, (5.4)
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where 0 < 𝜇≪ 1 is a small scaling parameter to be specified later. Inserting (5.4) into (5.1)
and allowing for 𝜉-variations in 𝑄, we find at leading order

𝜇𝑢 sin 𝜃 𝑄𝜂𝜂 + i
(1 − 𝑓2) sin 𝜃 cos 𝜃

𝜔0
𝑄𝜉 = 0. (5.5)

Here, the two terms represent a balance between the effects of the mean flow and along-beam
variations, which suggests that the latter have 𝑂(𝜇−1) length scale. As we are ultimately
interested in the stability to fine-scale perturbations (relative to 𝐿*), these slow 𝜉-variations
may therefore be neglected in the PSI analysis: at a given 𝜉 = 𝜉0, the beam locally appears
uniform (see figure 5-1b), which allows (5.3) to be taken as the basic state in the ensuing
stability analysis provided 𝐿* and 𝑄 are taken at 𝜉0.

As our analysis centres on PSI for small-amplitude beams, we assume

𝑄→ 𝜖𝑄, (5.6)

where 𝜖 = 𝑈*/𝑁*𝐿* ≪ 1 is a nondimensional amplitude parameter and 𝑈* is a (dimensional)
characteristic along-beam velocity. In addition, for beams of general locally-confined profile
to suffer PSI, it is necessary for their frequency 𝜔0 to be close to 2𝑓 (Karimi & Akylas,
2017; Fan & Akylas, 2020b) so that perturbations at half this frequency will be near-inertial
and thus have vanishing group velocity, prolonging their interaction with the primary wave.
Therefore, we specify

𝜔0 = 2𝑓 + 𝛿𝜎, (5.7)

where 0 < 𝛿 ≪ 1 is a small scaling parameter, to be made precise later, and 𝜎 = 𝑂(1)

is a detuning parameter. Here, 𝜎 may be either positive or negative, implying that the
perturbations at half this frequency may be either super-inertial or sub-inertial.

5.2.3 Fine-scale perturbations

With the basic state (5.3) specified, it remains now to specify the form of the perturbations
used in the ensuing linear stability analysis. According to PSI theory in the absence of mean
flow, the primary wave is unstable to two fine-scale subharmonic wavepackets with frequency
approximately 𝜔0/2. From prior experience (Karimi & Akylas, 2017; Fan & Akylas, 2020b),
PSI requires such perturbations have 𝑂(𝜖−1/2) carrier wavenumber to ensure that the group
velocity effect balances with the coupling of the perturbations with the primary wave. These
effects are then balanced with the effects of detuning and viscosity via the scalings

𝛿 = 𝜖, 𝜈 = 𝛼𝜖2, (5.8)

where 𝛼 is an 𝑂(1) viscous parameter, and

𝑇 = 𝜖𝑡 (5.9)
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Figure 5-1: Schematic of the PSI geometry. (a) Locally confined primary wave beam of
general profile with frequency 𝜔0 and 𝑂(1) width in the presence of a small background
mean flow 𝑢. According to (5.5), the beam profile will feature slow variations in 𝜉. (b)
Close-up view of the beam slice shown in the dotted box in (a). The beam geometry at
any given 𝜉-location can be assumed to be uniform along 𝜉 since 𝜉-variations have a much
longer length scale than 𝜂-variations. Subharmonic perturbations with frequency 𝜔0/2 are
taken to have short vertical scale and have nearly horizontal lines of constant phase (dotted
lines) since they are near-inertial.

is the slow time scale over which this ‘distinguished limit’ occurs. As a result of (5.8),
subharmonic perturbations with half the primary wave frequency (5.7) thus have frequency
close to

𝜔0

2
= 𝑓 +

𝜎

2
𝜖, (5.10)

and in view of (5.2), have nearly vertical wavevectors. In the present analysis, owing to the
assumption of weak mean flow (5.4), it is possible to formally incorporate the leading order
effects of the mean flow into the rest of the PSI dynamics by setting

𝜇 = 𝜖. (5.11)

Recently, Fan & Akylas (2020b), noted the presence of frequency components with fre-
quency 3𝜔0/2 when studying PSI using a formal stability analysis based on Floquet theory.
Importantly, their results show that these 3𝜔0/2 frequency components, which are gener-
ated via the interaction of the subharmonic perturbations with the primary wave, play a
crucial role in PSI dynamics and were erroneously neglected by earlier analyses (e.g. Karimi
& Akylas, 2017). Therefore, based on these considerations, we introduce infinitesimal per-
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turbations to the primary wave beam (5.3) as follows:

𝜓 = 𝜓0 +
𝜖1/2

𝜅

{︁[︁
𝐴ei𝜅𝑦/𝜖1/2 +𝐵e−i𝜅𝑦/𝜖1/2

]︁
e−i𝜔0𝑡/2 + c.c.

}︁
+
𝜖

𝜅

{︁[︁
𝐴3ei𝜅𝑦/𝜖1/2 +𝐵3e−i𝜅𝑦/𝜖1/2

]︁
e−i3𝜔0𝑡/2 + c.c.

}︁
,

(5.12a)

𝑤 = 𝑤0 +
{︁[︁
𝑀ei𝜅𝑦/𝜖1/2 +𝑁e−i𝜅𝑦/𝜖1/2

]︁
e−i𝜔0𝑡/2 + c.c.

}︁
+ 𝜖1/2

{︁[︁
𝑀3ei𝜅𝑦/𝜖1/2 +𝑁3e−i𝜅𝑦/𝜖1/2

]︁
e−i3𝜔0𝑡/2 + c.c.

}︁
,

(5.12b)

𝜌 = 𝜌0 + 𝜖1/2
{︁[︁
𝐹 ei𝜅𝑦/𝜖1/2 +𝐺e−i𝜅𝑦/𝜖1/2

]︁
e−i𝜔0𝑡/2 + c.c.

}︁
, (5.12c)

where the perturbation envelopes 𝐴,𝐵,𝐴3, 𝐵3,𝑀,𝑁,𝑀3, 𝑁3, 𝐹 and 𝐺 are taken to be func-
tions of (𝑥, 𝑇 ). Here, the near-inertial perturbations consist of two fine-scale wavepackets
with vertical carrier wavevectors, in view of (5.7) and (5.8), of equal magnitude but opposite
sign, and thus resonantly interact with the primary wave. The 3𝜔0/2 frequency components
are taken to have the same fine-scale structure as the subharmonic waves but with smaller
amplitude, as shown by Fan & Akylas (2020b). Finally, the parameter 𝜅 = 𝑂(1), taken to
be positive without loss of generality, controls the vertical wavenumber of the perturbation
wavepackets and will play a central role in the determination of the maximum PSI growth
rate.

5.2.4 Evolution equations

Inserting (5.12) into (5.1), linearizing with respect to the perturbations, and collecting the
various harmonics, we first find that

𝐴3 = −𝑀3 = −𝜅 sin 𝜃

2𝑓
𝐴𝑄𝜂, 𝐵3 = 𝑁3 =

𝜅 sin 𝜃

2𝑓
𝐵𝑄𝜂. (5.13)

As discussed, these 3𝜔0/2 waves are generated via the nonlinear interaction between the
subharmonic perturbations and the primary wave. Next, eliminating 𝐹,𝐺,𝑀, and 𝑁 , and
making use of (5.13), we obtain the following coupled evolution equations for 𝐴 and 𝐵,

𝐴𝑇 − i
𝜎

2
𝐴+ 𝑢 sin 𝜃 𝐴𝜂 − i

𝑐′

2𝜅2
𝐴𝜂𝜂 + 𝛼𝜅2𝐴+ 𝛾𝑄𝜂𝜂𝐵

* = 0, (5.14a)

𝐵𝑇 − i
𝜎

2
𝐵 + 𝑢 sin 𝜃 𝐵𝜂 − i

𝑐′

2𝜅2
𝐵𝜂𝜂 + 𝛼𝜅2𝐵 + 𝛾𝑄𝜂𝜂𝐴

* = 0, (5.14b)

where
𝑐′ = 3𝑓, 𝛾 =

3

4
sin 𝜃 cos 𝜃. (5.15)

Here, the second term of (5.14) corresponds to the effect of detuning, the third to the
effect of the mean flow, the fourth to dispersion, the fifth to viscous dissipation, and the
sixth to the coupling with the underlying wave. Based on (5.14), the leading order effect
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of the mean flow is to advect the subharmonic wavepackets, similar to the case in the PSI
of nearly-monochromatic beams in a weak background mean flow (Fan & Akylas, 2019).
Finally, it should be noted that even though we have allowed for general 𝑂(1) variations in
the perturbation envelopes, (5.14) can be written as a function of 𝜂 only, indicating that
𝜉-variations have no effect on the stability to leading order.

5.2.5 Eigenvalue problem for 𝑓 ≪ 1

The linear equations (5.14) that describe the evolution of near-inertial perturbations depend
on the primary beam profile 𝑄(𝜂), as well as the independent parameters (𝑓, 𝜎, 𝑢, 𝛼, 𝜅).
Although (5.14) can be readily solved (e.g. numerically), a comprehensive study across all
values of these parameters is formidable. Therefore, we now shift focus for the rest of the
study to the case where

𝑓 ≪ 1, (5.16)

an approximation that is well justified for oceanic internal waves where typically 𝑓 . 0.1.
In this limit, to achieve the same distinguished limit as found in (5.14), it is necessary to
rescale

𝑇 → 𝑓𝑇, 𝜎 → 𝑓𝜎, 𝛼→ 𝑓𝛼 (5.17)

and note that to leading order, sin 𝜃 =
√

3𝑓 and 𝛾 = 3
√

3𝑓/4. In addition, to examine the
linear stability of the primary beam, we look for solutions in the form of normal modes

(𝐴,𝐵*) = (𝑎, 𝑏*)e𝜆𝑇 , (5.18)

where 𝜆 = 𝜆𝑟 + i𝜆𝑖 and 𝜆𝑟 > 0 implies instability. Thus, making use of (5.16)–(5.18), (5.14)
reduces to (︁

�̂�− i
𝜎

2

)︁
𝑎+ 𝑢

√
3 𝑎𝜂 − i

3

2𝜅2
𝑎𝜂𝜂 +

3
√

3

4
𝑄𝜂𝜂𝑏

* = 0, (5.19a)(︁
�̂�+ i

𝜎

2

)︁
𝑏* + 𝑢

√
3 𝑏*𝜂 + i

3

2𝜅2
𝑏*𝜂𝜂 +

3
√

3

4
𝑄*

𝜂𝜂𝑎 = 0, (5.19b)

where
�̂� = 𝜆+ 𝛼𝜅2. (5.20)

For a given primary wave profile 𝑄(𝜂), detuning 𝜎, and mean flow 𝑢, (5.19) defines eigen-
values �̂� = �̂�(𝜅), and via (5.20), instability arises if �̂�𝑟(𝜅) > 𝛼𝜅2. Thus, eigenvalues �̂�𝑟
correspond to the inviscid growth rates, whereas the actual growth rate 𝜆𝑟 takes into ac-
count the effect of viscous dissipation. We now discuss the predictions of (5.19) for the PSI
growth rates.
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5.3 Sinusoidal plane wave

First, we examine the PSI of a uniform sinusoidal plane wave

𝑄 =
1

2
ei𝜂, (5.21)

corresponding to a primary wave with nondimensional peak amplitude 𝜖 and dimensional
wavelength 2𝜋𝐿*. For this primary wave profile, normal mode solutions of (5.19) are found
in the form

(𝑎, 𝑏*) =
(︁
𝑎0ei𝜂/2, 𝑏*0e

−i𝜂/2
)︁
ei𝜌𝜂, (5.22)

where 𝜌 is a real mode parameter. Upon substituting (5.21) and (5.22) into (5.19), we obtain
a characteristic equation for 𝜆 that can be readily solved to find that

𝜆 =
3

8

√︀
3 − C2 − 𝛼𝜅2 − i

(︂
3

2𝜅2
+ 𝑢

√
3

)︂
𝜌 (5.23)

with

C =

(︂
4

3
𝜎′ − 1

𝜅2

)︂
− 4𝜌2

𝜅2
, 𝜎′ = 𝜎 − 𝑢

√
3. (5.24)

Here, the effect of the mean flow appears together with the detuning in the form of the
parameter 𝜎′, which can be interpreted as the detuning in the reference frame of the fluid
moving with the background mean flow. Indeed, according to (5.2), (5.7), (5.8) and (5.17),
the primary wave in the reference frame of the fluid has frequency 𝜔𝑓 = 𝜔0 − 𝜖𝑢 sin 𝜃 =

2𝑓(1 + 𝜖𝜎′/2). This agrees with the fact that a constant, uniform, background mean flow
has no affect on the PSI of a sinusoidal plane wave once the Doppler shift of the primary
wave frequency is taken into account.

Based on (5.23) and (5.24), a necessary condition for PSI is that C > −
√

3, or equiva-

lently, 𝜅 > 𝜅min =
√︁

3/(4𝜎′ + 3
√

3). This implies that PSI is only possible for 𝜎′ > −3
√

3/4,
which indicates that slightly sub-inertial perturbations (in the reference frame of the fluid)
are indeed unstable, in agreement with the results of Young et al. (2008).

In the inviscid limit (𝛼 = 0), the maximum growth rate 𝜆𝑟 = 3
√

3/8 is obtained when
C = 0, which is always possible for a suitable choice of 𝜌 if the quantity in the parentheses in
(5.24) is positive, or equivalently, 𝜅 ≥ 𝜅𝑐 =

√︀
3/(4𝜎′). Therefore, for 𝜎′ > 0, PSI is universal

for any 𝜅 ≥ 𝜅𝑐 with no scale selection. On the other hand, for 𝜎′ ≤ 0, the maximum growth
rate requires 𝜅→ ∞, also in agreement with Young et al. (2008).

Under viscous flow conditions (𝛼 ̸= 0), high wavenumber modes are stabilized because
the quadratic 𝛼𝜅2 in (5.23) will always exceed the inviscid growth rate. As a result, no

instability is possible for 𝜅 >
√︁

3
√

3/(8𝛼). In addition, for 𝜎′ < 0, the PSI growth rate
monotonically decreases for 𝜅 ≥ 𝜅𝑐 owing to the increased effect of viscous dissipation and
implies that the maximum PSI growth rate can always be found in the range 𝜅min < 𝜅 ≤ 𝜅𝑐.
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5.4 Locally confined beam

We now consider the case of a locally confined beam profile (𝑄 → 0 as 𝜂 → ±∞) and
accordingly, we look for solutions of (5.19) that decay far from the beam:

(𝑎, 𝑏*) → 0 (𝜂 → ±∞). (5.25)

Interestingly, by integrating (5.19) over the 𝜂-domain and making use of the boundary
condition (5.25), we find that all modes with �̂�𝑟 ̸= 0, including all unstable modes, satisfy∫︁ ∞

−∞
|𝑎|2 d𝜂 =

∫︁ ∞

−∞
|𝑏|2 d𝜂 , (5.26)

which suggests that energy is equipartitioned between the two subharmonic wavepackets
regardless of mean flow.

To examine the effect of the mean flow on PSI, we use the beam profile

𝑄 =
1√
8𝜋

∫︁ ∞

0
e−𝑙2/8ei𝑙𝜂 d𝑙 , (5.27)

comprised of a superposition of plane waves with positive wavenumber (𝑙 > 0) and therefore
represents a unidirectional, progressive wave beam (Tabaei & Akylas, 2003) that transports
energy in the positive 𝜉-direction (see figure 5-1). Inserting (5.27) into (5.19) and discretizing
(5.19) using eighth-order centered finite differences, the resulting matrix eigenvalue prob-
lem is then solved for various 𝜎 and 𝑢 using standard numerical eigenvalue packages in
MATLAB to obtain eigenvalues �̂�(𝜅), with boundary conditions (5.25) taken at the edges
of the computational domain. We used a typical grid spacing of ∆𝜂 = 0.05 and domain of
𝜂 ∈ [−50, 50], although these values varied depending on the parameters 𝜎 and 𝑢.

Figure 5-2 plots the eigenvalues �̂� as a function of 𝜅 for 𝜎 = 0 and 𝑢 = 0, 0.5 and -1, as
well as the quadratic 𝛼𝜅2. Here, it is clear that positive background mean flow (𝑢 = 0.5),
in which the mean flow is parallel with the projections of the group and phase velocities
onto the horizontal, has a strong stabilizing effect on instability, while negative mean flow
(𝑢 = −1) has a much weaker stabilizing effect. It should be noted that if 𝑄 is taken to have
only negative wavenumbers via the substitution 𝑄(𝜂) → 𝑄(−𝜂), representing a wave beam
that transports energy in the negative 𝜉-direction, then via (5.19), the same results hold if
the mean flow is accordingly reversed via the substitution 𝑢→ −𝑢.

Figure 5-3(a) plots the maximum inviscid PSI growth rates, taken over 𝜅, as a function of
the mean flow −4 ≤ 𝑢 ≤ 2 for detuning parameter 𝜎 = −4, 0 and 10. Overall, PSI is almost
entirely stabilized for 𝑢 & 1 and for 𝑢 . −4. Importantly however, for 𝜎 = −4, corresponding
to the case when 𝜔/2 < 𝑓 and subharmonic perturbations are sub-inertial, negative but small
mean flow actually enhances PSI, with the maximum growth rate occurring for 𝑢 ≈ −1.
Furthermore, under viscous flow conditions, shown in figure 5-3(b,c), instability for the
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Figure 5-2: Real part of the stability eigenvalues �̂�𝑟, corresponding to the inviscid PSI growth
rate, for the locally confined beam profile (5.27) as a function of the scaled perturbation
wavenumber 𝜅 for 𝑢 = 0 (∘), 0.5 (�), and -1 (*). The dashed line plots the quadratic 𝛼𝜅2

for 𝛼 = 0.1.

(a) (b) (c)

Figure 5-3: (a) Maximum inviscid (𝛼 = 0) PSI growth rate 𝜆𝑟 for the locally confined beam
profile (5.27) as a function of 𝑢 for 𝜎 = −4 (*), 0 (∘), and 10 (�). (b) Same as (a) but for
𝛼 = 0.1. (c) Same as (a) but for 𝛼 = 0.5.

(a) (b) (c)

Figure 5-4: (a) Maximum inviscid (𝛼 = 0) PSI growth rate 𝜆𝑟 for the locally confined beam
profile (5.27) as a function of 𝜎 for 𝑢 = 0 (∘), -1 (△), -2 (�), -3 (♦), and -4 (×). (b) Same
as (a) but for 𝛼 = 0.1. (c) Same as (a) but for 𝛼 = 0.5.
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case of negative detuning and negative mean flow appears to be less susceptible to the
stabilizing effects of viscous dissipation. This is because negative mean flow generally shifts
the maximum instability growth rate to lower wavenumbers 𝜅, as seen in figure 5-2.

To shed light on the case of negative detuning and negative mean flow, in which instability
appears to be strengthened by the addition of mean flow, figure 5-4(a) plots the maximum
inviscid PSI growth rate, taken over 𝜅, as a function of −30 ≤ 𝜎 ≤ 0 for −4 ≤ 𝑢 ≤ 0.
Overall, negative mean flow permits PSI far below the critical frequency 𝜔 = 2𝑓 . This
effect is similar to the PSI of a plane wave, where instability depends only on the combined
parameter 𝜎′ = 𝜎 − 𝑢

√
3, although for the locally confined beam, growth rates are highest

under no mean flow. Under viscous flow conditions (figure 5-4b,c), PSI is stronger for 𝑢 < 0

than no mean flow, owing to the complex dependence of the instability eigenvalues on 𝜅

(e.g. see figure 5-2). However, it should be noted that although these results suggest that
PSI is possible even for 𝜎 . −10 under the presence of mean flow, the present asymptotic
theory is only strictly valid for |𝜎| = 𝑂(1).

5.5 Concluding remarks

We have studied the effect of a small background constant horizontal mean flow on the
near-inertial PSI of locally confined beams of general profile. To do so, we derived evolution
equations for near-inertial perturbations that describe their ability to extract energy from the
primary beam under the combined effects of mean flow, detuning, dispersion, and viscosity.
Importantly, we find that sufficiently large mean flow in either direction (relative to the
primary beam) stabilities PSI. From the results presented in §5.4, our theory suggests that
mean flow entire stabilizes PSI when 𝑢 ≈ 1. Assuming a modest amplitude of 𝜖 = 0.1 and
using 𝑁* = 10−3 s−1 and 𝐿* = 500 m as representative oceanic values, this corresponds to
a dimensional mean flow of about 5 cm/s. However, in the special case where the mean flow
points antiparallel to the horizontal projection of the group velocity and the primary wave
frequency 𝜔 < 2𝑓 , a small amount of mean flow can strengthen PSI and extend the region
of instability to lower frequencies. As a result, PSI may be found away from the critical
frequency 𝜔 = 2𝑓 depending on the mean flow.
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Chapter 6

Future directions

In this thesis, we have shown that the instability of finite-width internal wave beams, while
sharing much fundamental physics with that of idealized sinusoidal waves, manifest in the
natural environment in very different ways. We find that in some cases, classical instability
mechanisms may not be as important as we think, such as PSI in three-dimensional beams or
at the critical latitude in the presence of background mean flows, while they appear in new,
unexpected places, such as away from the critical latitude and even without background
rotation. At the same time, we find that asymptotic analysis is an extremely powerful tool
in studying these nonlinear phenomena, by taking full advantage of the vast arrays of time
and length scales that nature has provided us, which continue to astound us with their
complexity while surprising us with their simplicity.

However, there is still much work to be done. In Chapter 2, we found that three-
dimensional variations, while weakening PSI, may result in other types of instability related
to the generation of induced mean flows. These three-dimensional instabilities, which in-
clude streaming and a three-dimensional modulational instability, have only recently gained
notice and their relevance in the natural environment is still unknown. In Chapter 3, we
found that a broadband-type instability dominates over PSI for extremely fine-scale pertur-
bations. Whether this broadband instability can be observed is unclear. In Chapter 4 and
5, we showed that background mean flows generally weaken PSI, but small amounts can
actually extend the range of PSI, suggesting that instability could be spread over a range
of latitudes around the critical latitude. Since these are theoretical results derived using an
asymptotic theory, a comparison with fully numerical simulations, laboratory experiments,
or observation is desired. Furthermore, our results assume small mean flow, and so the effect
of larger mean flows are unknown, such as in the lee wave regime. It is possible that other
types of instabilities befall internal waves in these scenarios.
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Appendix A

Miscellaneous results

A.1 Eigenvalue problem symmetry for locally-confined beam

By eliminating 𝑝 in (2.6), we obtain

𝑣𝜂 = −i(𝜇𝑢+𝑚𝑤), (A.1a)

𝜌𝑡 + i𝜇𝑢0𝜌+ 𝑣𝜌0𝜂 + 𝑢 sin 𝜃 − 𝑣 cos 𝜃 = 0, (A.1b)(︀
𝑢𝜂𝜂 − 𝜇2𝑢− 𝜇𝑚𝑤

)︀
𝑡
+ (i𝜇𝑢0𝑢+ 𝑣𝑢0𝜂 − 𝜌 sin 𝜃 − 𝜈L 𝑢)𝜂𝜂 − i𝜇F𝜂 = 0, (A.1c)(︀

𝑤𝜂𝜂 −𝑚2𝑤 − 𝜇𝑚𝑢
)︀
𝑡
+ (i𝜇𝑢0𝑤 − 𝜈L𝑤)𝜂𝜂 − i𝑚F𝜂 = 0, (A.1d)

where
F = i𝜇𝑢0𝑣 + 𝜌 cos 𝜃 − 𝜈L 𝑣, (A.2)

and L = −𝜇2+𝜕2𝜂𝜂−𝑚2. Because 𝑢0 and 𝜌0 are purely real, if (𝑢, 𝑣, 𝑤, 𝜌;𝜇,𝑚) is a solution to
(A.1), then so are (𝑢, 𝑣,−𝑤, 𝜌;𝜇,−𝑚), (𝑢*, 𝑣*, 𝑤*, 𝜌*;−𝜇,−𝑚), and (𝑢*, 𝑣*,−𝑤*, 𝜌*;−𝜇,𝑚).
Therefore, it is sufficient to consider 𝜇 ≥ 0 and 𝑚 ≥ 0 only.

A.2 Nonlinear self-interaction terms with weak mean flow

An internal wave beam with general profile in 𝜂 and variations in 𝜉, the along-beam di-
rection orthogonal to 𝜂, will generate a mean and higher harmonics owing to nonlinear
self-interactions (Tabaei & Akylas, 2003). For a beam with amplitude 𝜖 and 𝑂(𝜇) modu-
lations in 𝜉, nonlinear self-interaction terms due to the Jacobians in (4.1) will be 𝑂(𝜇𝜖2).
Therefore, at best, the mean and higher harmonics that arise via these self-interaction terms
will have amplitude 𝑂(𝜇𝜖2) and their feedback onto the primary wave beam can only occur
over a 𝑂(𝜇−1𝜖−2) time scale.

The wave beam (4.6) is a specific case of a locally confined beam with general profile
in 𝜂 and 𝑂(𝜇) modulations in 𝜉 according to (4.5). Therefore, as argued above, nonlinear
self-interaction terms can only occur over a 𝑂(𝜇−1𝜖−2) time scale at best.
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