
Learning to guide task and motion planning
by

Beomjoon Kim
BMath, University of Waterloo (2012)

MSc, McGill University (2014)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2020

c○ Massachusetts Institute of Technology 2020. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

July 23, 2020
Certified by. .

Leslie Pack Kaelbling
Professor of Computer Science and Engineering

Thesis Supervisor
Certified by. .

Tomás Lozano-Pérez
Professor of Computer Science and Engineering

Thesis Supervisor

Accepted by .
Leslie A. Kolodziejski

Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students

2

Learning to guide task and motion planning

by

Beomjoon Kim

Submitted to the Department of Electrical Engineering and Computer Science
on July 23, 2020, in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Abstract

How can we enable robots to efficiently reason both at the discrete task-level and
the continuous motion-level to achieve high-level goals such as tidying up a room
or constructing a building? This is a challenging problem that requires integrated
reasoning about the combinatoric aspects of the problem, such as deciding which
object to manipulate, and continuous aspects of the problem, such as finding collision-
free manipulation motions, to achieve goals.

The classical robotics approach is to design a planner that, given an initial state,
goal, and transition model, computes a plan. The advantage of this approach is its
immense generalization capability. For any given state and goal, a planner will find
a solution if there is one. The inherent drawback, however, is that a planner does
not typically make use of planning experience, and computes a plan from scratch
every time it encounters a new problem. For complex problems, this renders planners
extremely inefficient. Alternatively, we can take a pure learning approach where the
system learns, from either reinforcement signals or demonstrations, a policy that maps
states to actions. The advantage of this approach is that computing the next action
to execute becomes much cheaper than pure planning because it is simply making
a prediction using a function approximator. The drawback, however, is that it is
brittle. If a policy encounters a state that is very different from the ones seen in the
training set, then it is likely to make mistakes and might get into a situation from
which it does not know how to proceed.

Our approach is to take the middle ground between these two extremes. More
concretely, this thesis introduces several algorithms that learn to guide a planner
from planning experience. We propose state representations, neural network archi-
tectures, and data-efficient algorithms for learning to perform both task and motion
level reasoning using neural networks. We then use these neural networks to guide
a planner and show that it performs more efficiently than pure planning and pure
learning algorithms.

Thesis Supervisor: Leslie Pack Kaelbling
Title: Professor of Computer Science and Engineering

Thesis Supervisor: Tomás Lozano-Pérez
Title: Professor of Computer Science and Engineering

3

Acknowledgement

It has been tremendous five years. Thanks to my friends, mentors,
and colleagues that I met along this journey, I have learned and
grown a lot both as a person and as a researcher during my Ph.D.

First and foremost, I am extremely grateful to my advisors, Leslie
and Tomás, who have been just fantastic mentors. They taught me
some of the most important skills and mindsets for becoming a good
researcher – writing, speaking, formulating problems, organizing and
critiquing research ideas, and knowing when to slow down, to name
a few – and have been extremely patient during this process. As I
also embark on the journey of starting my research lab, I will try my
best to give back the love, care, and patience that I have received.

I am grateful to my comrades, the LIS lab members, for their
friendship. I am thankful to Caelan, who was always there to have
a discussion; to Rachel, for making me realize the importance of hav-
ing a good presentation; to Rohan and Tom for a collaboration filled
with humor; to Ferran for being a source of motivation; to Zi and
Zelda for making 414 so much fun to be in; to Luke for reminding
me of the importance of get-things-done attitude; and to Yoon for
pondering together about what an ideal lab and research advisor
might be.

Outside of research, I am grateful to Moosun and Byongjun who
have enriched my life. Our late-night snacks and drinks, marathons
on Havard Bridge, and visits to Newbury street kept my life on bal-
ance.

Last but not least, I am deeply grateful to my parents. About 20

years ago, my parents decided to immigrate to Canada. They had
to sacrifice their jobs, families, and friends. They had to struggle to
learn a new language and adapt to a new country. And they this all
these for one thing, and one thing only: better education for their
children. I will be forever thankful for their unconditional love. This
thesis is dedicated to them.

Table of contents

1 Introduction 8

I Geometric task-and-motion planning 12

2 A planning algorithm for g-tamp 13

2.1 Geometric task-and-motion planning problem formulation 13

2.2 A planning algorithm for geometric task-and-motion planning 15

2.2.1 Abstract state representation 16

2.3 Related work 20

3 Learning to guide discrete search 21

3.1 Related work 22

3.2 Learning the ranking function for abstract actions 23

3.2.1 Representing an abstract rank function 24

3.2.2 Learning a rank function from planning experience 25

4 Learning to guide continuous search 27

4.1 Related work 28

4.2 State representation using key configurations 31

4.3 Learning a biased sampler from planning experience 32

4.3.1 Wasserstein GANs with gradient penalty 32

4.3.2 Generative adversarial network with direct importance estimation (gandi) 34

4.3.3 Adversarial Monte Carlo (admon) 38

4.3.4 Cleaning the training dataset 40

5 Experiments in geometric task-and-motion planning problems 42

5.1 Results in guiding continuous search 42

5.1.1 Results using gandi 42

5.1.2 Bin packing problem 43

5.1.3 Stowing objects into crowded bins 44

5.1.4 Reconfiguration planning in a tight space 45

5.1.5 Results using admon 46

5.2 Results on combined guidance on discrete and continuous search 51

6 Learning on-line to guide planning: Voronoi Optimistic Optimization applied to
Trees 56

6.1 Related work 59

6.2 Monte Carlo planning in continuous state-action spaces 61

6.3 Voronoi optimistic optimization 63

6.4 Analysis of voo and voot 64

6.5 Experiments 68

6.6 Discussion and future work 72

II Task-and-motion planning 74

7 Learning to guide tamp 75

7.1 Related work 75

7.2 Problem Formulation 78

7.2.1 Black-box function optimization with experience 79

7.2.2 Illustrative examples 82

7.3 Constructing a minimal set 84

7.4 Experiments 86

7.4.1 Grasp-selection domain 88

7.4.2 Grasp-and-base selection domain 90

7.4.3 Pick-and-place domain 92

7.4.4 Conveyor belt unloading domain 93

7.4.5 Experiments with optimally minimal set 96

6

7.5 Discussion and future work 97

7.5.1 Fixed plan skeletons 97

7.5.2 Discrete constraints 98

8 Connection to Bayesian optimization 99

8.1 Background and related work 99

8.2 Problem formulation and notations 102

8.3 Meta BO and its theoretical guarantees 102

8.3.1 X is a finite set 103

8.3.2 X ⊂ Rd is compact 106

8.3.3 Bounding the simple regret by the best-sample simple regret 108

8.4 Experiments 108

8.5 Discussion 111

9 Conclusion 112

7

1
Introduction

We are facing an increasing demand for intelligent robots that can
perform a wide range of tasks that are mundane, dangerous, and
demanding for humans. Unlike traditional robots that mostly operate
in factories, these robots must operate in unstructured environments
such as construction sites, disaster areas, or homes, and manipulate
various objects efficiently and robustly to accomplish the given tasks.

We can formalize many such complex tasks as task-and-motion
planning (tamp) problems. tamp involves combined planning of
task and motion level decisions to achieve a high-level goal, such
as building a structure or putting away groceries. It is an extremely
difficult planning problem that involves a large number of objects,
hybrid search space, long planning horizon, and expensive action
feasibility checking.

The typical approach to tamp problems is to design relatively
general-purpose planning algorithms with domain-independent
heuristics for search guidance [118, 53, 43, 15, 124, 37, 36]. The advan-
tage of such pure planning approaches is that a planner can, most of
the time, guarantee a form of completeness, which means that for any
given initial state and goal pair, it will eventually find a solution if a
solution exists. The major drawback, however, is that it is computa-
tionally inefficient. tamp planners do not typically have the ability to
learn from past planning experience, and must solve difficult tamp

problems from scratch even when the current problem is similar to
the ones it has solved in the past.

Alternatively, we can take a pure learning approach where we
learn a policy that maps a state of the environment to an action using
reinforcement or imitation learning algorithms [122, 2]. The benefit
of this approach is the execution-time computational efficiency: com-
puting the next action to execute comes down to making a prediction
from a function approximator, rather than performing an expensive
search procedure. Its disadvantage, however, is that learned policies
are often very fragile. If a policy encounters a state that is very differ-

ent from the ones seen in training, it may make mistakes and might
get into a situation from which it does not know how to proceed.
Collecting a large amount of data could be a solution, but data tends
to be expensive in robot manipulation problems.

Based on these observations, we take the middle ground between
these two extremes. We propose a framework that, given a set of past
planning experiences, learns to guide a planner by learning search
guidance predictors. This approach combines the best features of
both pure planning and pure learning. It is more efficient than the
pure planning approach because the predictors guide the search to
a more promising region of the search space; because it can rely on
the planner to correct for mistakes the predictors may make, it is
far less fragile than the pure learning approach. Developing such a
framework, however, raises three fundamental challenges:

Representation How can we design a representation of a problem
state that consists of poses, shapes, and symbolic attributes of ob-
jects that can generalize across different environments and tasks? A
typical fixed-sized vector representation cannot directly be applied
because different problems may involve different numbers of objects.
Moreover, such a representation cannot encode the relational infor-
mation among objects, such as which object is occluding which other
objects, that is essential in evaluating the feasibility of robot actions.

Learning How can we design a data-efficient algorithm that can
learn from planning experience? Unlike reinforcement learning expe-
rience with a simulator or imitation learning dataset, planning expe-
rience is a set of search trees. Each tree involves a single positive tra-
jectory that led to a goal, and several neutral trajectories which may
have lead to the goal have we put in more search efforts. While it is
possible to learn just from the positive trajectories, We need learning
algorithms that can use both types of data for data efficiency.

Exploration vs. exploitation The central argument for learning to guide
planning is that we can recover from prediction mistakes on search
guidance by choosing actions that are not necessarily suggested
by the predictors. How can we design a planning algorithm that
efficiently balances between exploiting the prior search guidance
knowledge and exploring new choices? Can give a performance
guarantee for such a planning algorithm?

To address these challenges, we first consider an important sub-
class of tamp called geometric task-and-motion planning (g-tamp)

9

in Part I. We then consider the full tamp problem in Part II. The
contributions of this thesis are follows:

• Chapter 2 formulates the g-tamp problem class and presents a
planning algorithm. The algorithm is an extension of heuristic
graph search to g-tamp [64] and handles the expensive feasibility
checking and hybrid search space.

• Chapter 3 presents a strategy for guiding the discrete search in g-
tamp problems by learning a ranking function that ranks discrete
choices at each state. We present a novel abstract state representa-
tion that encodes relational information such as object occlusion
and reachability that is sufficient for making discrete decisions.
Using this representation, we represent our ranking function as
a graph neural network that takes the graph of the scene which
encodes this relational information as an input [64].

• Chapter 4 presents a strategy for guiding the continuous search
in g-tamp problems by learning biased samplers. We propose a
novel key-configuration state representation that approximates the
true configuration space (c-space) obstacles using a sparse set of
important configurations, which enables the sampler to reason
in the c-space. We propose two adversarial learning algorithms
that can use both neutral and positive trajectories [61, 62] to learn
samplers.

• Chapter 6 presents a planning algorithm that balances exploiting
the prior search guidance knowledge and exploring other choices
to more efficiently find a solution. It is an extension of Monte
Carlo Tree Search to continuous action spaces based on a novel
budgeted-black-box function optimization algorithm. We provide
performance guarantees on this algorithm [63].

• Chapter 7 changes focus and presents a strategy for guiding the
search for general tamp problems, which may involve purely sym-
bolic attributes of objects in addition to geometric attributes. To
deal with such diverse attributes, we propose a score-space repre-
sentation that directly reasons with the scores of potential solu-
tions. We assume that we are given a plan skeleton, and the goal
is to find the continuous parameters of the skeleton. To deal with
mistakes in prediction, we propose an exploration vs. exploitation
algorithm that suggests the next potential continuous parameters
based on the scores of the ones tried so far [60, 66].

• Chapter 8 makes a connection between the representation and
prediction algorithm presented in the previous chapter to Bayesian
Optimization (BO). We propose a new class of algorithms called

10

meta-BO, which have access to past optimization experience, and
the goal is to more efficiently optimize the current function based
on the experience. We provide a theoretical guarantee on our
algorithm based on the regret analysis tools in BO [65].

• Chapter 9 presents conclusions and directions for future work.

11

Part I

Geometric task-and-motion planning

2
A planning algorithm for g-tamp

In this chapter, we focus on a sub-class of tamp problems that we call
geometric task-and-motion planning (g-tamp), in which we are inter-
ested in moving a set of objects from one region to another among
movable obstacles. In particular, we will present a planning algo-
rithm called SAmpling-based Priority Search (saps) that can handle
hybrid search space and expensive action feasibility checking.

g-tamp is a particularly important sub-class of tamp problems be-
cause it occurs as a subproblem of every tamp problem: whether it
is cooking a meal, constructing a building, or simply putting away
groceries, a robot must efficiently reason about how to arrange ob-
stacles to move objects to desired regions. Therefore, we believe if we
can solve g-tamp problems more efficiently, then we can solve tamp

problems more efficiently as well. Examples of g-tamp problems are
shown in Figure 2.1.

We will defer all the experimental results of Part I to chapter 5.

2.1 Geometric task-and-motion planning problem formulation

Figure 2.1: Examples of g-tamp

problems

We assume that the environment of a g-tamp problem consists of
a set of fixed rigid objects O(F) = {o(F)

i }
n1
i=1, a set of movable rigid

objects O(M) = {o(M)
i }n2

i=1, and a set of workspace regions R =

{ri}n3
i=1.

A state of the system is determined by the poses of the movable
objects, where the pose of ith object is denoted P(M)

i , and the config-
uration c ∈ C of the robot. The poses of the objects and regions are
defined relative to a parent object, which can be a movable object such
as a tray, or a fixed object, such as a floor. We denote a state as s ∈ S
where s = (P(M)

1 , · · · , P(M)
n1 , c). All objects and regions have known

and fixed shapes. We assume that states are fully observable.
The action space consists of a set of no manipulation operators,

O = {o1, · · · , ono}. An operator can cause collision-free motion

... Pick(Obj8)Pick(Obj1) Pick(Obj1) Pick(Obj1)

...
Base Pose
Grasp

Pick(Obj1)

b, g

...Motion
Plan

Pick(Obj1)

g,b,m

Figure 2.2: Part of a search tree
for saps. Green triangle nodes
denote nodes in which abstract
action choices are available, and
orange circle nodes denote the
ones where continuous param-
eter choices are available. In
the initial state shown in the
left-most figure, the robot has
8 available abstract actions. It
chooses to explore abstract ac-
tion Pick(obj1). The continuous
parameters of Pick manipula-
tion operator, which consists
of base pose and grasp, are
sampled using random sam-
pling; ones that are in collision
or does not have a feasible IK
solution are rejected. Once fea-
sible base pose b and grasp g
are sampled, saps then calls a
motion planner to see if there
exists a motion plan to the
selected base pose, and finds
feasible motion m. A new node
is then added to the search tree,
in which the robot is at a new
configuration, holding object
the object with manipulation
operation Pick(obj1, (g,b)).

of a single object. Each operator takes as inputs a fixed number of
operation-specific continuous parameters κ ∈ Ko, and discrete param-
eters δ ∈ O(M) ×R. The robot might have one or more such operators
available, such picking-and-placing, pushing, or throwing.

For instance, the PickAndPlace operator had discrete param-
eters specifying the object to move and the region to place it into.
As continuous parameters, it takes a grasp and placement pose for
the object. Each of the operators has a set of feasibility constraints,
and we are given a set of external feasibility checker functions that
can check the feasibility of the given parameters. Examples of such
feasibility checkers could be an inverse-kinematics (IK) solver and a
motion planner, which can be thought of as checking the feasibility
of a constraint of the existence of a collision-free path between two
configurations

We will call the pair of operator type and its discrete parameters
as an abstract action, which we denote with o(δ). For instance, an
abstract action

PickAndPlace(δ = (obj1, table_top))

specifies the robot moves obj1 to table_top using pick-and-place. We
will define the continuous parameters associated with an abstract
action as a continuous action. An action, denoted o(δ, κ), is a concrete
operation that can be executed by the robot. For instance, we may
have

PickAndPlace (δ = (obj1, table_top), κ = (g, p))

for pick-and-placing obj1 to table_top using the continuous action that
consists of grasp g and the placement pose p on table_top. Associated
with an action is a low-level robot motion expressed as a sequence of
configurations, which is obtained by calling a motion planner, if the
operator instance is feasible.

Each action o(δ, κ) induces a mapping T(·, o(δ, κ)) from a world
state s, in which it is executed, to a resulting world state s′ ∈ S . If

14

the operation cannot be legally executed in s, we let s′ = s or an
absorbing “failure” state.

We specify a goal set G as a conjunction of statements of the form
InRegion(o, r), where o ∈ O(M) and r ∈ R, which are true if o is
contained entirely in region r. It is also possible to specify the final
robot configuration as part of the goal for NAMO problems [120], or
final poses of objects for specifying rearrangement problems [76, 67].

A g-tamp planning problem is characterized by (O(M), O(F), R, s0,O,G, T),
where (O(M), O(F), R) defines the environment and s0 is the initial
state. The objective is to find a sequence of operator instances that
changes the state from s0 to a state that satisfies G.

2.2 A planning algorithm for geometric task-and-motion planning

There are two key distinctions between g-tamp problems and a typ-
ical graph search problem. The first is that g-tamp problems involve
a hybrid search space that consists of discrete task-level and continu-
ous motion-level decisions. The second is that they involve expensive
action feasibility checking: finding a feasible pick-and-place action,
for example, requires a call to a motion planner and an inverse kine-
matics solver, making the generation of successor states expensive.

To deal with these problems, we propose saps. Given a problem
instance, saps searches forward, first branching on the choice of an
abstract action, which specifies the type of a manipulation operator
and its discrete parameters, such as pick object1. Then, given the
choice of abstract action, it branches on a continuous parameters of the
operator, such as the grasp and base pose to pick the object, using
random sampling. The planner calls feasibility checker, such as mo-
tion planners and inverse kinematics solver on the sampled parame-
ters, and the next state is generated. Figure 2.2 shows an example of
a search tree of a g-tamp problem.

Unlike traditional heuristic search, in which a state is expanded
and its successors are added to the queue, saps maintains a prior-
ity queue of state-and-abstract-action pairs. If an effective priority
function and continuous parameter samplers are available, then we
can find a plan more efficiently, by prioritizing expensive feasibility
checking on promising abstract actions and continuous parameters
first.

We begin by introducing our abstract state representation based on
geometric predicates. The non-learning version of saps uses a hand-
designed priority function based on this abstract state representation.

15

2.2.1 Abstract state representation

For g-tamp problems, the important information that must be cap-
tured in an abstract state representation is which objects are occlud-
ing which other objects and regions. Once we have this information,
the planner can use it to efficiently plan operator instances that clears
necessary obstacles, and move the goal objects into goal regions.

To capture this information in a state, we make use of the assump-
tion that each action manipulates a single object to move it to a re-
gion or to a different pose within its region. Under this assumption,
we can characterize the preconditions of executing o(δ, κ) with two
volumes of workspace, where δ = (o, r) for some object o and for
some region r, and κ is chosen so that if the robot uses action o(δ, κ),
then it can move o to region r.

The first is the volume Vpre(q, o(δ, κ)), which is the swept volume
that the robot must move through from its current configuration q
to a configuration q′ in which o can be reached. The second is the
volume Vmanip(o(δ, κ)), which is the swept volume that the robot and
object must move through, from their configurations at the beginning
of the operation, (Po, q′), to their configurations at the end of the
operation, as determined by continuous parameters κ. Figure 2.3
shows examples of these two swept volumes.

Figure 2.3: Left: Vpre(q, o(δ, κ))

where o is pick-and-place, δ

is the red box, q is configura-
tion of the solid robot. κ is not
shown. Right:Vmanip(o(δ, κ))

where o is pick-and-place, δ is
the red box and home region
marked yellow, and κ is the
robot’s base pose at the end of
the trajectory inside the home
region

We construct a relational abstract representation of the state s =

(P
o(M)

1
, . . . , P

o(M)
n

, q) and goal G, denoted α(s,G), as a conjunction

of all true instances of the following relations, applied to entities
e ∈ O(M) ∪ R:

16

• IsRegion(e), true if e is a region;

• IsObject(e), true if e is an object;

• IsGoal(e), true if e is mentioned in the goal specification G;

• InRegion(o, r), true if object o is currently in region r;

• PreFree(o), true if ∃κ such that Vpre(q, o((o, r), κ)) is collision-
free;

• ManipFree(o, r), true if ∃κ such that Vmanip(o((o, r), κ)) is colli-
sion free;

• OccludesPre(o1, o2), true if o1 is an object that overlaps the
swept volume Vpre(q, o((o2, r), κ)), where κ is chosen to avoid
collisions if possible; and

• OccludesManip(o1, o2, r), true if o1 is an object that overlaps
the swept volume Vmanip(o((o2, r), κ)), where κ is chosen to avoid
collisions if possible.

The detailed implementations for the last four relations are specific to
an operator type, such as pick-and-place or pull. The value of any of
these predicates, if applied to arguments that are clearly the wrong
type, is false.

Given a state s and goal G, we must compute values for all in-
stances of these predicates in that domain. The last four require
non-trivial computation, including finding feasible κ values and
computing the motion plans to obtain the necessary swept volumes.
Ideally, we would find κ and associated trajectories so that Vmanip

and Vpre had a minimum number of collisions with obstacles in the
world, which can be very costly in the general case [45].

We compute them only approximately, in two stages: first, we
attempt to find a collision-free κ and trajectory. If that fails, then we
simply find κ and a trajectory that are collision-free with respect to
the fixed obstacles, but may collide with movable obstacles.

Evaluating each predicate is usually a very expensive operation,
but there is a lot of information that can be retained across different
calls, or across different iterations within the same call, to the pred-
icate evaluation function. Therefore, we use caching extensively to
make the repeated computation of the predicates efficient. Implemen-
tation details of this caching can be found in our original conference
paper.

Sampling-based abstract-edge heuristic search algorithm The key dis-
tinction between g-tamp problems and most graph search problems
is that the feasibility of a transition is very expensive to evaluate. To

17

check whether an operation is feasible, we must first sample continu-
ous values, and call an inverse kinematic solver and a motion planner
to ensure the existence of of a robot configuration and a collision-free
path for performing the operation.

So, instead of the traditional discrete state-based search, in which
a state is expanded and its successors are added to the queue, we
maintain a priority queue of state-and-abstract-action pairs, which
we call abstract edges. We then use the priority function, denoted
p(α(s,G), o(δ)), that ranks the abstract edges in the queue to de-
termine which abstract edge to explore first.

As a non-learning version of saps, we propose the following
heuristic function based on our abstract state representation,

H(s,G, o, r) = |M| − |Oachieved|
+ 1InRegion(o,r)∧(o,r)∈G (2.2.1)

where M is a set of objects that need to be moved, Oachieved is a set of
goal objects already in their specified goal regions, and the indicator
function evaluates to 1 if the given object is a goal object already in
its goal region, otherwise 0. Intuitively, this function has high values
on states which have more objects to move, and discourages moving
objects that have already been placed in its goal region.

Specifically, the set M is computed using following steps:

1. M = {oG|(oG, rG) ∈ G ∧ ¬InRegion(oG, rG)},

2. M = M ∪ {o|∃om ∈ M, OccludesPre(o, om) = True}

3. M = M ∪ {o|∃om ∈ M, r ∈ R, OccludesManip(om, r, r) = True}

Intuitively, the set is built recursively by first including goal objects
not in their goal regions. Then, we add objects that obstruct the pre-
manipulation robot configuration for the objects already in M, and
then do the same for the objects that occlude the manipulation of
objects in M.

Algorithm 1 defines saps, which is a greedy strategy with respect
to the priority function. It takes in as an input the initial state, the
set of goal states, the priority function, and the hyper-parameters for
sampling continuous parameters of operators, Nmp and Nsmpl.

The algorithm begins by creating a priority queue and adding
abstract edges in the initial state to the queue. At each iteration, the
algorithm selects the abstract edge with the highest priority, and at-
tempts to construct a successor state by sampling feasible continuous
parameters for the abstract action in the associated state using the
function SmplCont.

18

Algorithm 1 saps(s0,G, Nsmpl, Nmp, p(·, ·))

1: queue = PriorityQueue()
2: for δ ∈ O(M) × R, o ∈ O
3: queue.add((s0, o(δ)), p(α(s,G), o(δ)))
4: end for
5: while not time_limit_reached
6: s, o(δ) = queue.pop()
7: κ = SmplCont(s, o(δ), Nsmpl, Nmp)
8: if κ is feasible
9: s′ = T(s, o(δ, κ))

10: s′.path = s.path + o(δ, κ)

11: if s′ ∈ G
12: return s′.path
13: end if
14: for δ′ ∈ O(M) × R, o ∈ O
15: queue.add((s′, o(δ′)), p(α(s,G), o(δ)))
16: end for
17: end if
18: if queue.empty
19: for δ ∈ O(M) × R, o ∈ O
20: queue.add((s0, o(δ)), p(α(s,G), o(δ)))
21: end for
22: end if
23: end while

This function operates as follows. We first generate Nmp sam-
ples by checking whether the constraints are satisfied at the pre-
manipulation and post-manipulation states without calling a motion
planner to check the existence of a feasible motion. If we cannot sam-
ple a value within Nmp attempts, then we return. Otherwise, we call
the motion planner to using the sampled values to see if there exists
a feasible motion to any one of the sampled values. If there is, then
we return that value.

If SmplCont returns feasible continuous parameters, then ab-
stract edges based on the new state are added to the queue. If the
next state is in the goal set, it returns the plan by retracing the path to
the root. If it fails to sample feasible continuous parameters, it moves
onto the next tuple on the queue. Unlike discrete graph search, our
search space involves continuous values, so when the queue is empty
we add the initial abstract edges back to the queue to maintain com-
pleteness.

19

2.3 Related work

There are several pure planning algorithms pure-planning algo-
rithms for tamp. Many approaches use define separate strategies for
abstract and continuous actions. Typically, the task plans are deter-
mined using a task planner, often assuming that the low-level motion
plans would be valid. Motion plans are then determined using op-
timization or sampling-based algorithms [37, 36, 124, 15, 118]. Then,
they verify whether the abstract and continuous actions can together
achieve the goal. If not, they try a different task plan, and the process
repeats until the goal is found.

One of the difficulties of using learning algorithms in these plan-
ners is that at the task-level, they only have access to a “relaxed state”
where the low level geometric details are not completely determined
(for example, they may not know the poses of objects). This makes it
difficult to predict the ranks of abstract actions, which requires occlu-
sion and reachability information. Similarly, for continuous actions,
it is difficult for the learned action sampler to suggest high-quality
actions if the low-level geometric details are not completely deter-
mined. For these reasons, our algorithm, saps performs a search with
complete states.

g-tamp problem is very closely related to manipulation among
movable obstacles [119]. g-tamp significantly generalizes this class of
problems by allowing to move multiple goal objects to goal regions,
and lifting the assumption, in that particular method, that the robot
must touch each object once. Rearrangement planning [76, 67] can
also be considered as a subclass of g-tamp problem, where we are
given goal object poses for all objects instead of goal regions for some
objects.

20

3
Learning to guide discrete search

If the geometric predicates are computed exactly, the heuristic func-
tion proposed in section 2.2.3 would be sufficient to find the object
that needs to be moved at each state. However, because the predi-
cates are approximated using a PRM and samples of continuous pa-
rameters, they often have errors. For instance, PreFree(o) may eval-
uate to False when o is actually reachable. While we can hand-design
how we might respond to such errors, this is difficult and tedious.

Therefore, we propose a learning algorithm that learns from plan-
ning experience a ranking function that can be used to augment the
heuristic function to increase the efficiency of finding a plan. The
fundamental challenge in designing such learning algorithm is repre-
sentational: in guiding the decisions on which object to manipulate,
the learning algorithm must reason about the reachability of objects,
regions, and robot configurations. So, we must design a representa-
tion that (1) has sufficient information to infer reachability, and (2)
achieves generalization across environments with different numbers
and types of objects.

We observe that, for the purposes of guiding the search for ab-
stract actions, it is not necessary to represent the state in complete
geometric detail. Instead, we wish to capture the essential geometric
aspects of a scenario but encode them abstractly in a way that affords
generalization even across environments. More concretely, we use
the set of geometric predicates proposed in Chapter 2 to represent a
state.

Encoding such a relational state representation in a neural net-
work, however, is not straight-forward. A simple feed-forward net-
work cannot generalize to different numbers of objects. Our approach
is to use graph neural networks (GNNs) which take as input a graph.
We represent the relational state using a graph, where each node rep-
resents an object; unary predicates are stored at nodes and binary
predicate at edges between nodes. GNNs are parameterized by a
fixed set of weights, but can be applied to state representations with

any number of objects; i.e., graphs with different numbers of nodes
and edges. Using this representation and architecture, we learn a
ranking function based on a large-margin objective [125].

The work presented in this chapter is based on our conference pa-
per 1 which was a work done in collaboration with Luke Shimanuki. 1 B. Kim and L. Shimanuki. Learning

value functions with relational state
representations for guiding task-and-
motion planning. Conference on Robot
Learning, 2019

3.1 Related work

Learning to guide planning The most famous system for learning
to guide planning is AlphaZero, which was developed for the game
of Go [112]. In AlphaZero, Monte Carlo tree search (MCTS) is inte-
grated with a value function and policy that are learned from past
instances of the game of Go. These learned predictors then guide
MCTS into promising regions of the search space for the future
instances of the game. Our framework can be seen as a version of
AlphaZero for g-tamp problems.

Given this observation, one may wonder whether we can simply
use methods from AlphaGo and apply it to g-tamp problems. There
are few key differences between g-tamp and Go that make such
direct application non-trivial. First, Go has a discrete action space
where each action is placing a stone on the board. In contrast, g-
tamp problems have a hybrid action space where each abstract action
specifies which object to manipulate using which robot manipulation
operator, and each continuous parameters specify which motion the
robot should use to manipulate the chosen object. Further, generating
the successor state for each action in the search requires an expensive
feasibility check by calling a motion planner. In our framework, we
resolve this challenge by learning a ranking function for abstract
actions and samplers for continuous parameters. To minimize the
number of feasibility checks, we propose a novel heuristic forward
search algorithm that, instead of queuing the nodes of the graph,
queues the abstract actions of the graph. This enables it to check
feasibility of promising abstract actions first.

Another key difference is in the dimensionality of the state space.
In the game of Go, you may use a board image as a state represen-
tation across different instances of the game. In contrast, states of
g-tamp problems consist of objects and their attributes resulting in
state descriptions with different numbers of dimensions.

Our component for guiding the abstract action search is closely
related to substantial body of work on learning to guide discrete
planning. One line of work learns a heuristic function on states to
be used in planners based on heuristic search. This is typically for-
mulated as supervised learning from planning experience on related
problems. Learning the heuristic function directly has proven chal-

22

lenging. Perhaps the most successful of these methods [134] learns
domain-dependent corrections to an existing domain-independent
heuristic. Many approaches learn how to best combine a variety of
domain independent heuristics [32, 25]. Other approaches [38], like
us, learn to rank actions directly, or learn a Q-value function for rank-
ing actions [97].

Another approach that is similar to ours [18] also addresses tamp

problems by learning Q-values. However, their search is over plan re-
finements, rather than abstract actions and they provide no guidance
on the choice of state-representation. [11] aim to learn a heuristic to
guide greedy search in grid-based motion-planning problems. They
also learn Q-values by imitating an oracle (a standard graph search)
but they exploit the fact that they can easily get many training exam-
ples by solving all-sources shortest path problems. Also, a state of
their search is specified by a set of user-defined features on the whole
state of the search, including the search queues.

Graph Neural Networks For guiding the search for abstract ac-
tions, we use an abstract state representation based on geometric
predicates. This naturally defines a graph, where each node encodes
information about an entity in the scene, and each edge encodes re-
lationship between entities. To handle this graph-based input, we
use graph neural nets (GNNs). GNNs [115, 42, 106] (see surveys
of [7, 135, 132]) incorporate a relational inductive bias: a set of entities
and relations between them. In particular, we build on the framework
of message-passing neural networks (MPNNs) [39], similar to graph con-
volutional networks (GCNs) [69, 7]. A key advantage of GNNs is that
they learn a fixed-size set of parameters from problem instances with
different numbers of entities. After learning, the GNN can be applied
to arbitrarily large sets of objects and relations. This is crucial for
g-tamp problems where the number of objects varies widely.

3.2 Learning the ranking function for abstract actions

Our objective is to learn a ranking function that takes in as input the
abstract state representation, and outputs ranking among the abstract
actions. While we could, in principle, learn a action-value function
for the abstract actions, it has been shown that learning a ranking
function is sufficient to act optimally [88], and it is more data-efficient
to do so [38]. We first begin with describing how we represent the
ranking function using a graph neural network (GNN).

23

Figure 3.1: The graph encoding
the geometric predicates of a
scene with three objects o1, o2,
and o3 and two regions r1 and
r2. We represent a scene with
a disconnected graph where
each component of the graph
is a fully connected graph as-
sociated with a region. On the
left is a component associated
with region r1 and right is the
one with associated with r2.
Each Edge(oi,oj,rk) encodes the
binary predicates associated be-
tween two objects oi and oj and
ternary predicates associated
with the two objects and region
rk

3.2.1 Representing an abstract rank function

For each operator o, such as PickAndPlace, we define a GNN
F̂o(α(s,G), δ) that ranks discrete parameter choices for all δ ∈ O(M) ×
R. We will refer to an element of O(M) ∪ R as an entity, and reserve
object and region to refer an element of O(M) or R respectively. We
begin by describing the input to the network, which is an encoding of
the relational abstract state, α(s,G).

For each entity ei ∈ O(M) ∪ R, we define xei as a vector of unary
predicate values

xei = [IsObject(ei), IsRegion(ei), IsGoal(ei), PreFree(ei)]

For all ordered pairs of entities ei, ej, we define xeiej as a vector of
binary predicate values,

xeiej =
[

InRegion(ei, ej), OccludesPre(ei, ej), ManipFree(ei, ej)
]

For all entities ei, ej and region rk, xeiejrk is a single ternary relation
value

xeiejrk =
[

OccludesManip(ei, ej, rk)
]

The input to the ranking function is a graph representation of the ab-
stract state. The graph is a disconnected graph with |R| components,
each of which is a fully connected graph with |O(M)|+ 1 number of
nodes. We represent an entity with a node vector that encodes the
unary predicates of the entity, which we denote with Node(ei), where

Node(ei) = xei

At an edge between objects oi and oj on the component associated
with region rk, we have an edge vector Edge(oi, oj, rk) that encodes
binary and ternary predicates among oi, oj and rk

Edge(oi, oj, rk) = [xoi , xoj , xoioj , xojoi , xoirk , xojrk , xoiojrk xojoirk]

An example of the graph representation of abstract state is shown in
Figure 3.1.

Our ranking function takes this graph as an input, and outputs
a |O(M)| by |R| matrix where each value in the matrix indicates the
rank of moving an object to a region.

24

To compute the rank among abstract actions, we perform two
rounds of message passing. To compute the message from object oi to
object oj, we first initialize the values at each node with

u(0)
oi = f (Node(oi), θ1) and v(0)oi = f (Node(oi), θ2)

for all oi, oj ∈ O(M) where the superscript denotes the round of
message passing.

At each edge, we compute an edge embedding with

coiojrk = f (Edge(oi, oj, rk); θ3) .

We compute the message from oi to oj for region rk, moiojrk , as

m(0)
oiojrk = f (u(0)

oi , v(0)oj , coiojrk ; θ4)

We aggregate these messages using averaging,

m(0)
oj =

1
|O(M)|+ |R| ∑

oi ,rk

m(0)
oiojrk

We perform one more round of message passing. The values at nodes
are computed again using f (·; θ1) and f (·; θ2) as

u(1)
oj = f (m(0)

oj ; θ1) and v(1)oj = f (m(0)
oj ; θ2)

The new messages are computed with the updated node values and
the edge embedding

m(1)
oiojrk = f (u(1)

ojrk , v(1)ojrk , coiojrk , θ4).

We then aggregate the messages using averaging, only with respect
to objects this time:

m(1)
ojrk =

1
|O(M)|∑oi

m(0)
oiojrk .

Finally, we compute the ranking matrix, where each entry is

F̂o(α(s,G), (oj, rk); θ) = f (m(1)
oj ,rk ; θ5),

where θ = {θ1, θ2, θ3, θ4, θ5}.

3.2.2 Learning a rank function from planning experience

We now describe the training data and loss function for training
the ranking function. Because we know the transition model for the
domain, we can find plans by solving past problem instances using
an existing planning algorithm.

25

Each such plan is a sequence of state-action pairs

[(s0, o0(δ0, κ0)), . . . , (sT−1, oT−1(δT−1, κT−1)), (sT , ∅)]

in which sT ∈ G, where G is the goal for which that plan was made.
From this, we can construct T + 1 supervised training examples of
the form (α(st,G), ot(δt)). Aggregating this data from multiple start-
goal pairs, and partitioning it according to the abstract action types
o, we end up with a data set Do for each o, with entries of the form
(α(st,G), δ).

We wish to rank the abstract actions such that the actions that
appeared in past plans have higher ranks than those that have not
appeared. This is implemented using the following large-margin loss:

LLM(θ) = ∑
(s,G,δ,d)∈Do

max(0, 1−MQ(α(s,G), δ; θ)),

where

MQ(α(s,G), δ; θ)

=F̂o(α(s,G), δ; θ)− max
δ′∈∆\{δ}

F̂o(α(s,G), δ′; θ).

Intuitively, the margin term MQ(α(s,G), δ; θ) is penalizing the rank-
ing function until the value of δ that appeared in the dataset in the
given state is higher than the values of all the other abstract actions
by 1. If this is satisfied, the margin term evaluates to zero.

To guide the search algorithm saps, we use the priority function,
which combines the learned ranking and the heuristic function given
in Eqn 2.2.1,

p(α(s,G), o(δ)) =− H(α(s,G))

+λ ·
exp

(
F̂o(α(s,G), δ; θ)

)
exp

(
∑o′ ,δ′ F̂o′(α(s,G), δ; θ)

) . (3.2.1)

We use this priority function p as an input to saps, as shown in Al-
gorithm 1. The reason we integrate with the hand-designed heuris-
tic function, H, is that H is a good estimate of cost-to-go from the
current state, but by definition it does tell which actions are better
within the state. Therefore, we use a ranking function to prioritize ac-
tions within a state; to make sure that ranking does not override the
heuristic function, we make sure that the rank of an action is between
0 and 1, using the Boltzmann function.

26

4
Learning to guide continuous search

In Chapter 3, we presented a framework for guiding the discrete
search in g-tamp problems. In this chapter, we describe the represen-
tation and learning algorithms for guiding the continuous search in
g-tamp problems.

We first observe that these continuous parameters often specify,
implicitly or explicitly, a goal for a low-level motion planner, such
as a grasp and base pose for picking up an object. So, it is important
to predict a continuous action that induces a feasible motion plan,
because infeasible motion planning calls are extremely expensive.
One naive method would be to encode object poses and shapes into
a vector, but that would not generalize across different numbers of
objects. Moreover, using, such workspace occupancy information it is
very difficult to determine reachability. Instead, what we need is the
collision information in the configuration space (c-space) of the robot.

Therefore, we introduce a novel state representation called key
configuration obstacles that encodes collision information at essential
robot configurations. This enables the learned predictor to reason
about the feasibility of continuous actions because key configuration
obstacles approximate the true c-space obstacles in the current scene.

Using this representation, one simple method for learning to pre-
dict continuous parameters given a state is to use regression to learn
a mapping from a state to an action. However, this method has sev-
eral problems. First, it outputs an average of the actions taken in a
state, which often leads to undesirable results. Second, it only pre-
dicts a single value, which means that the planner cannot query for
other values if the first value leads the search astray.

To deal with these issues, we can learn a generative model for con-
ditional distribution over actions given a state using Kernel Density
Estimation (KDE). This approach can handle multi-modality in a
state, and can generate multiple values. However, this method cannot
scale to high-dimensional states because it relies on a kernel, such as
squared exponential function, which does not perform well in high-

dimensional spaces. Also, the computational complexity of inference
in KDE increases linearly with data, which is undesirable especially
because we wish to speed up planning.

We instead use generative adversarial nets (GANs), which can
handle high-dimensional inputs using neural networks and whose
inference time is independent of a number of training data. More-
over, GANs learn a data-dependent objective function that can handle
multi-modality, rather than using predefined objective function such
as MSE that leads to undesirable behavior such as averaging.

One problem with a standard GAN is that it is data-inefficient for
learning from planning experience. In a successful episode of search,
there is a large number of state and action pairs that are considered
but were not on a trajectory to the goal in the episode, which we call
neutral data, and only a relatively small number of samples that were
on a trajectory to the goal, which we call positive data. While we could
just use the small number of positive data, learning would be much
more data-efficient if we could use the abundant neutral data as well.

To use both types of data, we extend the basic GAN algorithm
under two different setups. The first setup is where we have posi-
tive and neutral labels on the trajectories encountered during search.
We introduce a new generative model learning algorithm, called
Generative Adversarial Network with Direct Importance estima-
tion (gandi) [61], that first estimates the importance-ratio between
neutral and positive data distributions. Using the estimated ratio,
gandi can use both types of data but train the sampler to approxi-
mate the positive data distribution. We theoretically analyze how the
importance-ratio estimation and the difference between positive and
neutral data distributions affect the quality of the resulting approxi-
mate distribution.

The second setup we consider is when we have access to rewards
along the trajectory encountered during search. We propose an actor-
critic method that learns a sampler by simultaneously maximizing
the sum of rewards and imitating the planning experience [62]. Our
algorithm, Adversarial Monte-Carlo (admon), penalizes actions if
they are too different from the planning experience, while learning
the Q-function of the sequences using past search trees. As a con-
sequence of integrating critic into GAN training, we can emphasize
imitating actions that have higher values.

4.1 Related work

Two basic methods for in generative-model learning, GANs [41] and
Variational Auto Encoders (VAEs) [68], are appealing choices for the
purpose of learning action samplers because an inference is simply a

28

feed-forward pass through a network. GANs are especially appeal-
ing, because for generic action spaces, we do not have any metric
information available. VAEs require a Euclidean metric on the action
space in order to compute the distance between a decoded sample
and a true sample. For our purpose, which involves predicting poses
of objects and the robot base, this is problematic because a small de-
viation in parameter values can mean the difference between in feasi-
bility and infeasibility. For this reason, we use GANs to represent our
sampler.

A major drawback of the original GAN [41], which minimizes
Shannon-divergence, is that its instability during training. WGANs [3],
which minimizes the Earth-mover’s distance, have shown to be more
stable, but led to difficulty in optimization due to hard gradient clip-
ping. We use WGAN with Gradient Penalty (WGAN-GP) [44], which
improves the training of WGAN by using a soft-enforced constraint
on the gradient of the discriminator.

There is a long history of work that uses importance sampling to
approximate desired statistics for a target distribution p using sam-
ples from another distribution q in various problems [71, 101, 122]. In
these cases, we have a surrogate distribution q that is cheaper to sam-
ple than the target distribution p. Our work shares the same moti-
vation as these problems, in the sense that in search experience data,
samples that are on successful trajectories are expensive to obtain,
while neutral samples are relatively cheaper and more abundant.

Recently, importance-ratio estimation has been studied for the
problem of covariate shift adaptation, which closely resembles our
setting. Covariate shift refers to the situation where we have samples
from a training distribution that is different from the target distribu-
tion. Usually, an importance-ratio estimation method [54, 121, 51] is
employed to re-weight the samples from the training distribution, so
that it matches the target distribution in expectation for supervised
learning. We list some prominent approaches here. In kernel-based
methods for estimating the importance [51], authors try to match
the mean of samples of q and p in a feature space, by re-weighting
the samples from q. In the direct estimation approach, Sugiyama et
al. [121] try to minimize the KL divergence between the distributions
q and p by re-weighting q. In another approach, Kanamori et al. [54]
directly minimize the least squares objective between the approxi-
mate importance-ratios and the target importance-ratios. All these
formulations yield convex optimization problems, where the decision
variables are parameters of a linear function that computes the im-
portance weight for a given random variable. Our algorithm extends
the direct estimation approach using a deep neural network, and
then applies it for learning an action sampler using both neutral and

29

positive data.
admon can be seen as a variant of an actor-critic algorithm that

uses extra data from past planning experience in addition to reward
signals. In a standard actor-critic algorithm [72], a value function is
first trained that evaluates the current policy, and a policy is trained
by maximizing this value function. Actor-critic algorithms have tra-
ditionally been applied to problems with discrete action spaces,
but recently they have been successfully extended to continuous
action space problems. For example, in Proximal Policy Optimiza-
tion (ppo) [109], an off-policy actor-critic method, a value function
is trained with Monte-Carlo roll-outs from the current policy. Then,
the policy is updated based on an advantage function computed
using this value function, with a clipping operator that prohibits a
large changes between iterations. Deep Deterministic Policy Gradi-
ent (ddpg) [83] is another actor-critic algorithm that extends deep
Q-learning to continuous action space by using a deterministic pol-
icy gradient. These methods have been applied to learning low-level
control tasks such as locomotion, and rely solely on the given reward
signal. Our method uses both past search trees and reward signals,
and is applied to the problem of learning a high-level operator policy
that maps a state to continuous parameters of the operators.

A number of other algorithms also use data from another source
besides rewards to inform policy search. Guided policy search
(GPS) [81] treats data obtained from trajectory optimization as
demonstrations, trains a policy via supervised learning, and enforces
a constraint that makes the policy visit similar states as those seen in
the trajectory optimization data. The key difference from our work is
that we use search trees as guiding samples - in a search tree, not all
actions are optimal, so we cannot simply use supervised learning. We
instead propose an objective that simultaneously maximizes the sum
of rewards while softly imitating the trajectories in the search tree.
Another important difference is that trajectory optimization requires
smooth reward functions while the problems of interest to us have
discontinuous reward functions. In approximate policy iteration from
demonstrations (APID) [59], suboptimal demonstrations are provided
in addition to reward signals, and the discrete action-space problems
are solved using an objective that mixes large-margin supervised loss
and policy evaluation. admon can be seen as an extension of this
work, where the suboptimal demonstrations are provided by the past
search trees, to continuous action spaces.

30

4.2 State representation using key configurations

The continuous actions predicted by a learned sampler should, with
high probability, satisfy the feasibility constraints and achieve the
goal. Typically, these continuous actions implicitly represent the goal
for the low-level motion planner, such as a base pose for picking an
object. So, for our biased sampler to predict promising values for
the continuous parameters, we need a representation of the scene
that enables a neural network to infer the existence of a collision-free
motion.

One naive approach is to use the poses and shapes of the mov-
able objects. However, since this approach only gives us the obsta-
cle information in the workspace, it is insufficient to reason about
collision-free constraints, especially for objects and robots with com-
plex shapes. Moreover, this representation cannot generalize across
different numbers and types of objects. What we need instead is the
obstacle information in the configuration space of the robot, but this
is extremely expensive to construct exactly.

Our approach is to approximate the collision information at es-
sential regions of the configuration space, using a set of key configura-
tions. Key configurations are a set of configurations that we construct
by first collecting from our planning experience a large set of robot
configurations that were used in the planning solutions, and then
sparsely sub-sampling from that set using a threshold on the dis-
tances among them. Given a scene, we represent the state using the
collision information at these key configurations. Our insight is that
we do not need to completely construct the configuration space ob-
stacles, but only represent them for essential regions of the c-space
that the robot is likely to re-use in the future problem instances.

Another essential type of information that we need to capture
is the set of swept-volumes for manipulating goal objects to their
associated goal regions, which we call goal-swept-volumes. If there
are no obstacles in collision with these goal-swept-volumes, then we
would have to move just the goal objects to goal regions, without
manipulating any other objects. So, it is important information that
we should encode.

To do this, we consider Vmanip, o(oG, rG) for goal objects and their
associated goal regions that we computed for evaluating geomet-
ric predicates in an abstract state. While this may not be the actual
swept-volume for moving the goal object to the goal region, it repre-
sents an approximation of it.

We then encode the collision and goal-swept-volume information
using a binary vector φ. Formally, φ is a binary vector of shape nk by
2, where nk is the number of key configurations. The first column of

31

Figure 4.1: Left: a subset of key
configurations used for this
domain. Middle: key config-
urations that are in collision.
Right: key-configuration-
representation of goal-swept-
volumes for the two goal red
objects marked yellow circles.
The state is r epresented by φ,
whose first column encodes
collision information shown
in the middle figure, and the
second column encodes goal-
swept-volumes shown on the
right-most figure

φ encodes collision information and the second column encodes goal
swept volumes. For each key configuration, we check its collision.
If the key configuration is in collision, then the corresponding row
and the first column of φ is assigned with a value of 1, otherwise to 0.
Likewise, for goal-swept-volumes, We go through each configuration
in the swept volume, find the key configuration that is closest to it,
and assign a value of 1. For all the key configurations that have not
been selected, their values are set to 0.

Figure 4.1 shows an example of a state representation based on
key configurations that encode both the key configuration collisions
and goal-swept-volumes.

4.3 Learning a biased sampler from planning experience

We have so far described a state representation that approximates the
c-space obstacles. We now describe a set of learning algorithms for
learning a sampler. We begin with a problem formulation.

Suppose that we are given a planning experience dataset Dpl =

{τ(i)}L
i=1, where each operator sequence, τ, from a search tree is a

tuple {st, ot(δt, κt), yt}T
t=1 where ot ∈ O and yt indicates whether

(st, ot(δt, κt)) is a positive or neutral data. We assume that the pos-
itive actions in state s follow an unknown conditional distribution
pK|S=s.

Give this dataset, our objective is to learn an operator sampler as-
sociated with each operator that maps a state to the continuous pa-
rameters of the operator, {πθi}

m
i=1, where θi is the parameters of the

sampler for the operator o(i), πθi : S → Ko(i) , such that πθi (s) is
similar to pK|S=s.

4.3.1 Wasserstein GANs with gradient penalty

We first present a sampler learning algorithm that can only use the
positive data from our planning experience that consists of trajecto-

32

ries that got to the goal. We will denote to the subset of out planning
experience data that only contains positive data as D(p)

pl ⊆ Dpl.
We use Wasserstein GANs (WGANs) [3], which has proven to be

more stable training behavior than GANs. Our objective function, in
the case of infinite samples, is

max
D∈||D||L≤1

Es∼PS

[
Eκ∼pK|S=s [D(s, κ)]−Eκ∼πθ

[D(s, κ)]
]

.

where πθ represents our learned distribution, PS represents the distri-
bution over states in our dataset, and pK|S represents the conditional
distribution over continuous action given a state that we wish to
learn, and ||D||L ≤ 1 indicates the set of all 1-Lipschitz functions
D : S × K → R.

Function D is commonly referred to as a discriminator that dis-
criminate the samples of pK|S from the samples of πθ . We represent
the function class ||D||L ≤ 1 with neural networks parameterized
by α, which we denote Dα. To enforce the 1-Lipschitz constraint
on these neural networks, the original WGAN used hard gradient
clipping which leads to difficulty in optimization. Instead, we use
WGAN with Gradient Penalty (WGAN-GP) [44]. This method uses
soft-constraint the norm of the gradient of the function Dα based on
the observation that a differential function is 1-Lipschitz if and only
if its gradients have norms of at most 1 everywhere. Our objective for
training a discriminator is

min
α

Es∼PS

[
Eκ∼pK|S=s [Dα(s, κ)] + Eκ∼πθ(K|s) [Dα(s, κ)] +

λ ·Eκ̂∼pK̂

[
(||∇κ̂ Dα(s, κ̂)||2 − 1)2

]]
(4.3.1)

Here, the last term is responsible for approximately enforcing Lip-
schitz constraint. Since enforcing the constraint everywhere is in-
tractable, WGAN-GP enforces it only on the samples from pK̂, where
pK̂ is defined as a uniform distribution on a straight line between a
pair of samples from pK|S and πθ .

To train our sampler, we use the discriminator as our optimization
criterion. Its objective is defined as

max
θ

Eκ∼πθ(K|s) [Dα(s, κ)] . (4.3.2)

In practice, these two neural networks are trained in an alternating
fashion. The pseudo-code is shown in Algorithm 2.

The algorithm takes as inputs the training dataset D(p)
pl , gradient

penalty scale term λ, total number of iterations, ntot, number of gra-
dient steps for discriminator training at each iteration, nc, the batch
size nb, and learning rates for the sampler and discriminator, lrθ and

33

Algorithm 2 wgan-gp(D(p)
pl , λ, ntot, nc, nb, lrθ , lrα)

for t = 0 to ntot
for tc = 0 to nc

for tm = 0 to nb(
s(i), κ(i)

)
∼ D(p)

pl

z(i) ∼ PZ(z), κ
(i)
θ ∼ πθ(s(i), z(i))

ε(i) ∼ U[0, 1], κ̂(i) = εκ(i) + (1− ε)κ̂(i)

L(i) = Dα(s(i), κ(i))− Dα(s(i), κ
(i)
θ) + λ

(
||∇κ̂(i) D(s(i), κ̂(i))||2 − 1

)2

end for
α = α + Adam(lrα,∇α

1
nb

∑nb
i=1 L(i))

end for
{z(i)}nb

i=1 ∼ PZ(z)
θ = θ + Adam(lrθ ,∇θ

1
nb

∑nb
i=1 f (s(i), π(s(i), z(i))))

end for
return πθ

lrα, respectively. It begins by training the discriminator. At each it-
eration of discriminator training, it creates a batch of κ̂ values, by
sampling a point from D(p)

pl , and generating a point from πθ . It then
samples a random number uniformly between 0 and 1 and uses this
as a weight to mix the point from D(p)

pl and point from πθ . These are
used to compute our objective function for each point in our batch,
L(i). Once all of these values are computed, then we take a gradient
step with respect to α using the Adam optimizer. We repeat these
steps nc times and then update the parameters of sampler, θ. The
entire process is repeated ntot number of times.

One of the fundamental challenges of GANs is evaluating qual-
ity of trained models. We can use it to guide the planner select the
best model that achieves highest improvement in planning efficiency,
but this is expensive. So, we use Kernel Density Estimation to eval-
uate the quality of trained models. To do this, for each state in our
dataset, we generate 100 samples and then fit it with Kernel Density
Estimation (KDE). We then measure the likelihood of the continuous
parameters for that state using KDE. We average the likelihood across
all states in the dataset, and discard the trained weights and restart
training if the average likelihood value are too low.

4.3.2 Generative adversarial network with direct importance es-
timation (gandi)

The downside of Algorithm 2 is it can only use the positive data,
whereas planning experience consists of positive and neutral datasets.
We now describe an adversarial training algorithm called Generative

34

adversarial network with direct importance estimation (gandi) that
uses both types of data.

The way it works is by estimating the importance-ratio between
the neutral and positive data distributions using the least squares
approach proposed in [54], and then use the estimated ratios to
train the model to imitate the positive data distribution pK|S while
using positive and neutral data. More concretely, we denote the
distribution over neutral data as qK|S and the samples from qK|S as
κq, samples from pK|S as κp, and the number of samples we have
from positive and neutral data distributions as np and nq respec-
tively. The goal in importance-ratio estimation is to estimate the ratio
w(κ; s) = pK|S(κ|s)/qK|S(κ|s) using only samples from distributions
pK|S and qK|S. We henceforth omit the conditioning on states to avoid
clutter unless it is ambiguous.

We use the least squares approach proposed in [54]. In this method,
the importance-ratio is approximated by minimizing

J(ŵ) =
∫

κ
(ŵ(κ)− w(κ))2q(κ)dκ .

In practice, we optimize its sample approximation version, which
gives

ŵ = arg min
ŵ

nq

∑
i=1

ŵ2(κ
(i)
q)− 2

np

∑
i=1

ŵ(κ
(i)
p), s.t ŵ(κ) ≥ 0 (4.3.3)

The method was originally proposed to be used with a linear
architecture, in which ŵ(κ) = θTφ(κ); this implies there is a unique
global optimum as a function of θ, but requires a hand-designed
feature representation φ(·). For robot planning problems, however,
manually designing features is difficult, while special types of DNN
architectures, such as convolutional neural networks, may effectively
learn a good representation. In light of this, we represent ŵ with a
DNN. The downside of this strategy is the loss of convexity with
respect to the free parameters θ, but we have found that the flexibility
of representation offsets this problem.

We now introduce our algorithm, gandi, which can use neutral
samples from qK using importance-ratios. We first describe how to
formulate the objective for training GANs with importance weights.
For the purpose of exposition, we begin by assuming we are given
w(κ; s), the true importance-ratio between qK and pK, for all κq dis-
tributed according to qK, and we only have neutral samples, and
none from the positive data distribution. We denote the neutral sam-
ples as D(q)

pl ⊆ Dpl. By the definition of importance weights w(κ), the

35

WGAN-objective for the discriminator, Eqn. (4.3.1), becomes

min
D∈||D||L≤1

Eκq∼qK

[
w(κq)Dα(κq)

]
+ Eκθ∼πθ

[Dα(κθ)] + λ ·Eκ̂∼qK̂

[
(||∇κ̂ Dα(κ̂)||2 − 1)2

]
(4.3.4)

Notice that this objective is now with respect to qK instead of pK. The
distribution qK̂ is analogous to pK̂, but we create samples κ̂ using qK

and πθ .
In trying to solve the equation (4.3.4), it is critical to have balanced

training set sizes nq and ng in order to prevent the class imbalance
problem for Dα. In the importance weighted version of the GAN
shown in equation 4.3.4, the sum of the weights c = ∑

nq
i=1 w(κ

(i)
q),

serves as an effective sample size for the data D(q)
pl . To achieve a balance

the number of samples from each class, we might then select ng to
be equal to some constant c. Taking this approach, however, would
require adjusting the GAN objective function and making sure that
in every batch, the number of generated samples is equal to the sum
of the importance weights of the real samples in that batch, which is
tedious.

Instead, we develop a method for bootstrapping D(q)
pl that allows

us to use existing mini-batch gradient descent without modification.
Specifically, instead of multiplying each neutral sample by its impor-
tance weight, we bootstrap (i.e. re-sample the data from D(q)

pl with

replacement), with probability pw(κ), where pw(κ) =
w(κ)

∑
nq
i=1 w(κ

(i)
q)

. This

method allows us to generate a dataset D̂pl in which the expected

number of instances of each data in D(q)
pl is proportional to its impor-

tance weight. Moreover, since we bootstrap, the amount of training
data remains the same, and discriminator Dα now sees a balanced
number of samples effectively drawn from pK(κ) = w(κ)qK(κ) and
πθ . One can also show that pw is actually proportional to p.

Proposition 1. For κ ∈ D(q)
pl ,

pw(κ) = k · p(κ) where k =
1

∑
nq
i=1 w(κ

(i)
q)

.

We now describe some practical details for approximating w(κ)

with ŵ(κ), whose architecture is a DNN. Equation 4.3.3 can be solved
by a mini-batch gradient-descent algorithm implemented using any
readily available NN software package. The non-negativity constraint
can also be straight-forwardly incorporated by simply using the
rectified linear activation function at the output layer. In practice,
this often lead gradients to shrink to 0 due to saturation. Although
this can be avoided with a careful initialization method, we found

36

that it is effective to just use linear activation functions, and then set
w(κ) = 0 if w(κ) < 0.

(a)

(b)

(c)

(d)

(e)

Figure 4.2: (a) positive and
neutral target distributions, (b)
training data points κ

(i)
p and

κ
(i)
q , (c) importance weight esti-

mation, (d) bootstrapping result
and (e) learned distribution πθ

and target distribution p.

Now, with estimated importance weights and bootstrapped sam-
ples, the sample-approximation of objective for the discriminator
shown in equation 4.3.4 is

D̂α = arg min
D

nq

∑
i=1

D(κ
(i)
w) +

ng

∑
i=1

log(1− D(κ
(i)
g))

+λ ·Eκ̂∼qK̂

nq

∑
i=1

[(
||∇κ̂ D(κ̂(i))||2 − 1

)2
]

(4.3.5)

where κ
(i)
w denotes a bootstrapped sample from Dpl, and nq = ng.

Algorithm 3 contains the code for gandi.
We illustrate the result of the bootstrapping with a simple exam-

ple, shown in Figure 4.2, where we have a Gaussian mixture model
for both positive and neutral data distributions p and q, where p is a
mixture of two Gaussians centered at (1, 1) and (3, 1), and q is a mix-
ture of three Gaussians at (1, 1), (3, 1), and (2, 2) with larger variances
than those of p.

Figure 4.2 (a) shows the true distributions of positive and neutral
data distributions, p and q denoted with blue and red, respectively.
Figure 4.2 (b) shows training data points from each of these distri-
butions, D(p)

pl and D(q)
pl . Figure 4.2 (c) shows the estimated impor-

tance weights, ŵ, using objective (4.3.3), where darker color indicates
higher ŵ(a) value. We can see that ŵ is almost zero in regions where
D(p)

pl and D(q)
pl do not overlap, especially around (2,2). Figure 4.2 (d)

shows our bootstrapped samples, D̂pl, sampled from our bootstrap

probability distribution pw in green, and D(p)
pl again in red. We can

see that it reflects the values of ŵ. Lastly, the right-most plot shows
the result of training gandi using D̂pl, from which we can see it is
quite similar to p.

Algorithm 3 GANDI(D(p)
pl , D(q)

pl)

ŵ← EstimateImportanceWeights(D(p)
pl , D(q)

pl) // obj. (4.3.3)

pw(κ) := ŵ(κ)

∑
nq
i=1 ŵ(κ

(i)
q)+∑

np
i=1 ŵ(κ

(i)
p)

// bootstrap p.m.f

Dpl ← D(p)
pl ∪D(q)

pl

D̂pl ← Bootstrap(Dpl, pw) // sample Dpl ∼ pw with replacement
θ ← TrainWGAN(D̂pl) // Algorithm 2 with D̂pl as data
return θ

Theoretical analysis

In this section, we analyze how the error in importance estimation
affects the performance of πθ in approximating p. The basic result
on GANs, shown in the limit of infinite data, representational and
computational capacity, is that πθ converges to p [41]. The proofs for
the theorems presented in this section can be found in our conference
paper [61].

Now, under the same assumptions, we consider the effect of us-
ing importance weighted off-target data. If w is exact, then p(κ) =

w(κ)q(κ) and the GAN objective is unchanged. If, however, we use
an estimation of importance weighting function ŵ, then the objective
of D̂α, the importance-weight corrected discriminator, differs from Dα

and they achieve different solutions.
We wish to analyze the effect of importance estimation error on

KL and reverse-KL divergence between p and πθ . First, define ρ =

supκ∈Kp
q(κ)/p(κ), where Kp is the support of p. We can see that

ρ >= 1, with equality occurring when p(κ) = q(κ) for all κ.
For the KL divergence, we have the following theorem.

Theorem 1. If w(κ) ≥ ε ∀κ ∈ Kq, ε ≥ 0, and J(ŵ) ≤ ε2, then

KL(p||πθ) ≤ log
(1

1− ερ

)
.

Note that 0 ≤ ερ ≤ 1 due to the condition w(κ) ≥ ε. For reverse
KL we have:

Theorem 2. If J(ŵ) ≤ ε2, KL(πθ ||p) ≤ (1 + ε) log(1 + ερ) .

These theorems imply three things: (1) If w = ŵ, then ε = 0,
and both divergences go to 0, regardless of ρ; (2) If p = q, then the
error in importance weight estimation is the only source of error in
modeling p with πθ . This error can be arbitrarily large, as ε becomes
large; and (3) If p 6= q then ρ > 1, and it contributes to the error in
modeling p with πθ .

4.3.3 Adversarial Monte Carlo (admon)

We now consider an alternative setup where we are given rewards
along the trajectories that have been explored in an episode of search.
This allow us to make use of neutral samples by augmenting the
adversarial training with an actor-critic objective.

In this setup, we are given a planning experience dataset Dpl =

{τ(i)}L
i=1, where each operator sequence, τ, from a search tree is a

tuple {st, ot(δt, κt), rt, st+1}T
t=1, where we have reward rt for using

ot(δt, κt) in state st instead of label yt. Our objective is to learn an

38

operator sampler associated with each operator that maps a state to
the continuous parameters of the operator, {πθi}

m
i=1, where θi is the

parameters of the sampler for the operator o(i), πθi : S → Ko(i) , that
maximizes the expected sum of the rewards

max
θ1,··· ,θm

Es0∼P0

[H

∑
t=0

r(st, κt)
∣∣∣θ1, · · · , θm

]
where r(st, κt) = r(st, ot(δt, κt)), and P0 is the initial state distribution.
Given a problem instance, we assume a task-level planner has given
the operators and discrete parameters, and our goal is to predict the
continuous parameters.

One way to formulate an objective for imitating the planning ex-
perience dataset Dpl is by using the adversarial training scheme [41],
where we learn a discriminator function Q̂α that assigns high values
to operator instances from Dpl and low-values to operator instances
generated by the sampler. We will, for the purpose of exposition,
consider a single operator setting to avoid the notational clutter. We
have

max
α

∑
si ,κi∈Dpl

Q̂α(si, κi)− Q̂α(si, πθ(si)) (4.3.6)

max
θ

∑
si ,κi∈Dpl

Q̂α(si, πθ(si)) (4.3.7)

These two objectives are optimized in an alternating fashion to train
the sampler that imitates the operator sequences in Dpl. This can
be seen as an application of Wasserstein-GAN [3] to an imitation
learning problem.

The trouble with this approach is that not all sequences in the
search trees are equally desirable: we would like to generate operator
instances that yield high values. So, we propose the following reg-
ularized sampler evaluation objective that learns the value function
from sequences in the search trees, but simultaneously penalizes the
sampler in an adversarial manner, in order to imitate the planner’s
operator sequences. We have

min
α

∑
si ,κi∈Dpl

||Q(si, κi)− Q̂α(si, κi)||2 + λ · [Q̂α(si, πθ(si))] (4.3.8)

where Q(si, κi) = r(si, κi) + ∑T
t=i+1 r(st, kt) is the sum of the rewards

of operator sequences in the search tree. We treat this as we would a
value obtained from a Monte-Carlo rollout, and λ is used to trade off
adversarial regularization versus accuracy in value-function estima-
tion.

The pseudocode for our algorithm, Adversarial Monte-Carlo (ad-
mon), is given in Algorithm 4. The algorithm takes as inputs the

39

Algorithm 4 admon(Dpl, λ, TS, lrα, lrθ , n)

for ts = 0 to Ts
// Train Q-value
Sample {si, κi}n

i=1 ∼ Dpl // a batch of data
dq = ∇α ∑n

i=1
[
(Qi − Q̂α(si, κi))

2 + λQ̂α(si, πθ(si))
]

α = α−Adam(lrα, dq)
// Train sampler
dp = ∇θ

[
∑n

i=1 Q̂α(si, πθ(si))
]

θ = θ + Adam(lrθ , dp)
Jts = Evaluate(πθ)

end for
return Q̂α, πθ with max J0, · · · , JTs

planning experience dataset Dpl, the parameter for admon, λ, the
number of iterations, Ts, the learning rates for the Q-function, lrα,
and the sampler, lrθ , , and batch size n. It then takes a batch gradient
descent step with the parameters of the Q-function, α, and then takes
a batch gradient step with those of the sampler, θ.

Adversarial training is known to have stability problems in its
typical application of generating images, since evaluating image-
generation policies is not simple. This is not an issue in our case. In
admon, after each update of the sampler parameters, we evaluate its
performance using the Evaluate function, which executes the given
sampler for a fixed number of time steps and returns the sum of the
rewards. We then return the best performing sampler.

4.3.4 Cleaning the training dataset

Since the planning algorithm that we use to generate training data
is sampling-based, the continuous parameter data tends to noisy, we
often get non-optimal state-continuous-parameter pairs. For example,
the robot might place an object at an unhelpful pose only to move it
again later. If we were to use this dataset directly, then we would end
up with a sampler that is very similar to a uniform sampler, because
there is not enough useful regularity to capture.

To deal with this problem, we use a strategy for cleaning the
dataset such that each training pair makes a progress towards a goal.
The idea is to check whether the object that we move at each step
decreases the number of objects in collision with goal-swept-volumes.

For each tuple (st, δt, κt, st+1) from DK, δt is the object that the
robot moves at time step t, κt is the continuous parameter that moves
δt, and st+1 is the resulting state.

To determine whether to include this training example, first
recall that each training example is from a problem instance for
a goal G. So for each og ∈ G, we check if δt is in collision with

40

Vpre(og) ∪ Vmanip(og, rg) at st. We add the number of times that δt

was in collision, and denote the summation as mt. The maximum
mt would be number of goal objects in G. We repeat these steps to
count the collisions in in state st+1, and compute mt+1. We include
κt in DK only if mt+1 − mt > 0. Intuitively, this method makes sure
that each example we include in our data moves an object out of the
goal-swept-volumes.

41

5
Experiments in geometric task-and-motion planning prob-
lems

We now evaluate our planning and guidance algorithms developed
in Chapters 3 and 4 by applying it to challenging g-tamp problems.
We first present the results on guiding the continuous search, and
then describe the results on using guidance on both discrete and
continuous search.

5.1 Results in guiding continuous search

For this section, we assume that the abstract actions are given by an
oracle, and the robot just has to find the continuous decision vari-
ables that satisfy the feasibility constraints and achieve the goal. As a
planner, we use Algorithm 1 but assume we know the correct abstract
actions to take.

5.1.1 Results using gandi

(a)

(b)

(c)

Figure 5.1: (a) Bin packing.
The color of objects indicate the
order of placement. The darker
the earlier. (b) Stowing task.
The goal is to put all green
objects into the crowded bins.
(c) Reconfiguration task. The
movable obstacles are colored
green, and the target object is
colored with orange. For all
tasks, the robot can only grasp
objects from the side.

We validate gandi on three different robot planning tasks that in-
volve continuous state and action spaces and finite depths. These
experiments have two purposes: first, to verify the hypothesis that
learning an action sampler improves planning efficiency relative to a
standard uniform sampler and second, gandi is more data efficient
than a standard GAN that is only trained with positive data.

We have three tasks that might occur in a warehouse. The first is
a bin-packing task, shown in Figure 5.1a, where a robot has to plan
to pack different numbers of objects of different sizes into a rela-
tively tight bin. The second task is planning to stow eight objects into
crowded bins, shown in Figure 5.1b where there already are obsta-
cles. The final task is a reconfiguration task, shown in Figure 5.1c
where a robot needs to reconfigure five randomly placed moveable
objects in order to make room to reach a target object.

These are highly intricate problems that require long-term geomet-
ric reasoning about object placements and robot configurations; for
each object placement, we require that there is a collision-free path
and an inverse kinematics (IK) solution to place the object. For the
placement of an object, we verify an existence of the IK solution by
solving for IK solutions for a set of predefined grasps, and then check
for the existence of a collision-free path from the initial state to the
IK solution using a linear path. A more sophisticated motion plan-
ners, such as RRT, can be used instead but we found linear path to be
sufficient in these tasks.

In the bin packing and stowing tasks, the robot is not allowed to
move the objects once they are placed, which leads to a large vol-
ume of dead-end states that cause wasted computational effort for a
planner with a uniform action sampler. In the reconfiguration task,
we have no dead-end states, but a planner could potentially waste
computational effort in trying no-progress actions that does not clear
a volume to reach the target object. For all tasks, the robot is only
allowed to grasp objects from the side; this is to simulate a common
scenario in a warehouse environment, with objects in a place cov-
ered on top, such as a shelf. For the first two experiments, we use
a heuristic that estimates the cost-to-go to be the number of objects
remaining to be placed, since we cannot move objects once they are
placed. For the last experiment we use breadth-first-search with no
heuristic. For all cases, instead of discarding the node when an infea-
sible action is sampled, we try to sample 4 feasible actions.

In each task, we compare three different action sampler in terms
of success rate within a given time limit: one that uniformly samples
an action from the action space, a standard GAN trained only with
positive samples, and gandi, which is trained with both neutral and
positive samples. We use the same architecture for both the standard
GAN and gandi, and perform 100 repetitions to obtain the 95%
confidence intervals for all the plots.

A crucial drawback of generative adversarial networks is that they
lack an evaluation metric; thus it is difficult to know when to stop
training. We deal with this by testing weights from all epochs on
10 trials, and then picking the weights with the best performance,
with which we performed 100 additional repetitions to compute the
success rates.

5.1.2 Bin packing problem

In this task, a robot has to move 5, 6, 7 or 8 objects into a region of
size 0.3m by 1m. The number of objects is chosen uniform randomly.
The size of each object is uniformly random between 0.05m to 0.11m,

43

depending on how many objects the robot has to pack. A problem in-
stance is defined by the number of objects and the size of each object,
ω = [nobj, Osize]. A state is defined by the object placements. For a
given problem instance, all objects have the same size. An example of
a solved problem instance with nobj = 5 and Osize = 0.11m is given in
Figure 5.1a.

The action space consists of the two dimensional (x,y) locations
of objects inside the bin, and a uniform action sampler uniformly
samples these values from this region. The robot base is fixed. The
planning depth varies from 5 to 8, depending on how many objects
need to be placed. This means that plans consist of 10 to 16 decision
variables.

10 15 20 25 30 35 40 45 50
Number of episodes

0.3

0.4

0.5

0.6

0.7

0.8

Su
cc

es
s R

at
es

Success Rate vs Number of Episodes
GANDI
gan
unif

(a)

5 10 15 20 25 30 35
Number of episodes

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

Su
cc
es
s R

at
es

Success Rate vs Number of Episodes
GANDI
gan
unif

(b)

20 30 40 50 60 70 80 90 100
Number of episodes

0.55

0.60

0.65

0.70

0.75

Su
cc

es
s R

at
es

Success Rate vs Number of Episodes
GANDI
gan
unif

(c)

Figure 5.2: Plots of success rate
vs. number of training episodes
for the (a) bin packing, (b) stow,
and (c) reconfiguration domains

Figure 5.2a plots, for each method, the success rate when given 5.0
seconds to solve a problem instance. We can see the data efficiency
of gandi: with 20 training episodes, it outperforms the uniform
sampler, while a standard GAN requires 50 training episodes to do
so. The uniform sampler can only solve about 50% of the problem
instances within this time limit, while gandi can solve more than
70%.

We also compare the action samplers trained using GAN and
gandi when the same number of training data are given. Figures 5.3a
and 5.3b show 1000 samples from GAN and gandi for packing 5

objects. While gandi learns to avoid the front-middle locations, GAN
is still close to a uniform action sampler, and has a lot of samples in
this region which lead to dead-end states. gandi focuses its samples
on the corners at the back or the front so that it has spaces for all 5

objects.

5.1.3 Stowing objects into crowded bins

In this task, a robot has to stow 8 objects into three different bins,
where there already are 10 obstacles. A bin is of size 0.4m by 0.3m,
an obstacle is of size 0.05m by 0.05m, and the objects to be placed
down are all of size 0.07m by 0.07m. A problem instance is defined
by the (x,y) locations of 10 obstacles, each of which is randomly dis-
tributed in one of the bins. Figure 5.1b shows an instance of a solved
stow problem.

The action space for this problem consists of (x,y) locations of an
object to be placed, and the robot’s (x,y) base pose. This makes a 4

dimensional continuous action-space. The planning depth is always
8, for placing 8 objects. Thus plans consist of 36 continuous deci-
sion variables. Again, there is a large volume of dead-end actions,
similarly to the previous problem: putting objects down without con-
sideration of poses of later objects can potentially block collision-free

44

paths for placing them.
Figure 5.2b compares the success rates of the algorithms with a

30-seconds time limit for planning. For the uniform sampler, we
sample first an object placement pose, and then sample a base pose
that can reach the object at its new location without colliding with
other objects. Unlike the previous task, learning-based approaches
significantly outperform the uniform sampling approach for this task.
This is because there is a small volume of action space that will lead
to a goal, and a large volume of search space. Again, we can observe
the data efficiency of gandi compared to GAN. When the number of
training data points is small, it outperforms it.

(a)

(b)

(c)

Figure 5.3: Figures (a) and
(b) respectively show actions
sampled from action sam-
plers trained with GAN and
gandi from the bin packing
domain when 20 episodes of
training data are used. Green
indicates the positive samples,
and blue indicates the learned
samplers. Figure (c) shows an
action distribution for the re-
configuration domain when
given 35 training episodes.

5.1.4 Reconfiguration planning in a tight space

In this task, a robot has to reconfigure movable obstacles out of the
way in order to find a collision-free IK solution for its left-arm to
reach the target object. There are five movable obstacles in this prob-
lem, each with size 0.05m by 0.05m, and the target object of size
0.07m by 0.07m, and the reconfiguration must happen within a bin,
which is of size 0.7m by 0.4m. A problem instance is defined by (x,y)
locations of the movable obstacles and the target object. The movable
obstacles are randomly distributed within the bin; the target object
location is distributed along the back of the bin. Figure 5.3c shows an
example of a rearrangement problem instance at its initial state, with
the black region indicating the distribution of target object locations.

An action specification consists of one discrete value and two
continuous values: what object to move and the (x,y) placement pose
of the object being moved. There is no fixed depth. For both the
uniform random sampler and the learned sampler, we uniformly at
random choose an object to move. The robot base is fixed, and the
robot is not allowed to use its right arm.

Figure 5.2c compares the success rates of the algorithms with a
10-seconds time limit for planning. In this problem, the learning-
based approaches outperform the uniform sampler even with a small
number of training data points. The relationship between gandi and
GAN is similar to the previous experiment, except that gandi and
GAN are within the each other’s confidence interval when a small
number of training points are used. Eventually, gandi comes to
clearly outperform GAN.

We would like to know if gandi’s distribution indeed assigns low
probabilities to no-progress actions. In Figure 5.3c, we show gandi’s
distribution of object placements after training on 35 episodes. The
left top corner of the bin is empty because there are no collision-
free IK solutions for that region1. As the figure shows, there are no 1 The robot’s left arm will collide with

the bin

45

placement samples in front of the target object, but only on the sides
that would contribute to clearing space for the robot’s left arm to
reach the target object.

5.1.5 Results using admon

We evaluate admon in two practical and challenging g-tamp prob-
lems, and compare against three benchmarks: ppo [109], ddpg [83],
which are actor-critic algorithms for continuous action spaces, and
Generative Adversarial Imitation Learning (gail) [48], a state-of-the-
art inverse reinforcement learning algorithm that treats the planning
experience dataset as optimal demonstrations, and uses ppo to find
a policy that maximizes the learned rewards. For ddpg, we use an
episodic variant that defers updates of the policy and replay buffer
to the end of each episode, which makes it perform better in our
inherently episodic domain. It is important to keep some level of
stochasticity in any policy we learn, because there is a large volume
of infeasible operator instances for which no transition occurs. So,
we use a Gaussian policy with a fixed variance of 0.25, and use the
learned policies to predict only the mean of the Gaussian.

Our hypotheses are that (a) admon, by using the planning expe-
rience dataset Dpl, can learn more data efficiently than the bench-
marks, and (b) learning these policies can improve planning effi-
ciency. To test the first hypothesis, we show two plots. The first is the
learning curve as a function of the size of Dpl, with a fixed number
of interactions with the simulated environment for the RL methods.
For the RL methods, Dpl is used as an initial training set. For admon,
simulations are only used for the evaluation of the current policy. For
this plot, we fix the amount of RL experience at 30000 for the con-
veyor belt domain, and 15000 for the object fetching domain; these
are obtained from 300 updates of the policy and value functions of
each algorithm, where for each update, we do 5 roll-outs, each of
which is 20 steps long for the first domain and 10 steps long for the
second domain. We report the performance of the best policy from
these 300 updates, averaged over four different random seeds. Sec-
ond is the learning curve with increasing amount of simulated RL
experience, with fixed Dpl size. We fix its size at 100 for the first do-
main and 90 for the second domain. For testing hypothesis (b), we
show the improvement in planning efficiency when we use the best
policy out of all the ones used to generate the first two plots to guide
a planner.

Domain overview Our objective is to test the generalization capability
of the learned policy across the changes in the poses and shapes of

46

different number of objects in the environment, while the shape of
the environment stays the same. We have two test domains. In the
first conveyor belt domain shown in Figure 5.4a, the robot’s objec-
tive is to receive either four or five box-shaped objects with various
sizes from a conveyor belt and pack them into a room with a narrow
entrance, already containing some immovable obstacles. A problem
instance is defined by the number of objects in the room, their shapes
and poses, and the order of the objects that arrive on the conveyor
belt. The robot must make a plan for handling all the boxes, includ-
ing a grasp for each box, a placement for it in the room, and all of the
robot trajectories. The initial base configuration is always fixed at the
conveyor belt. After deciding the object placement, which determines
the robot base configuration, a call to an RRT motion planner is made
to find, if possible, a collision-free path from its fixed initial config-
uration at the conveyor belt to the selected placement configuration.
The robot cannot move an object once it has placed it. This is a diffi-
cult problem that involves trying a large number of infeasible motion
planning problems, especially if poor sampling is used to sample
continuous operator parameters.

(a) Conveyor belt domain: green objects
must be packed in room.

(b) Object-fetch domain: objects must be
removed from path to target object.

Figure 5.4: Examples of initial
(left column) and goal states
(right column) in two domains.

In the second object-fetch domain shown in Figure 5.4b, the robot
must move to fetch a target object and bring it back to the robot’s
initial location. The target object is randomly placed in the bottom
half of the room, which is packed with both movable and immovable
obstacles. A problem instance is defined by the poses and shapes of
the target and movable obstacles. The robot’s initial configuration is
always fixed, but it needs to plan paths from various configurations
as it picks and places objects. To reach the target object, the robot
must pick and place movable obstacles along the way, each of which
involves a call to the motion planner in a relatively tight environ-
ment. We have set the problem instance distribution so that the robot
must move five to eight objects to create a collision-free path to fetch
the target object.

In both domains, if the selected operator instance is infeasible due
to collision or kinematics, the state does not change. Otherwise, the
robot picks or places the selected object with the given parameters.
The reward function for the conveyor belt domain is 1 if we success-
fully place an object into the room and 0 otherwise. For the fetching
domain, the reward function is 0 if we successfully pick an object, -1
if we try an infeasible pick or place, and 1 if we successfully move an
object out of the way. For moving all the objects out of the way, the
robot receives a reward of 10.

Operator description The robot is given two manipulation operators
are given to the planner, pick and place, each of which uses two arms

47

Operators
Continuous
parameters

Inputs to πθ

(conv belt)
Inputs to πθ

(obj fetch)

Pick
(xo

r , yo
r , ψo

r)

(d, h, χ)
-

φ f etch, φ

(xo, yo, ψo), (l, w, h)
Place (x, y, ψ) φ φ f etch, φ, (xo, yo, ψo)

Table 5.1: Operator descrip-
tions. (x, y, ψ) refers to a robot
base pose, at (x,y) location
and rotation ψ in the global
frame, (xo

r , yo
r , ψo

r) refers to the
relative robot base pose with
respect to the pose of an object
o, whose pose in global frame
is (xo, yo, ψo). (d, h, χ) is a grasp
represented by a depth, as a
portion of size of object in the
pushing direction, height, as
a portion of object height, and
angle in the pushing direction,
respectively, and (l, w, h) rep-
resents the length, width, and
height of object being picked. φ

is key configuration obstacles,
and φ f etch is a fetching path
represented with key configura-
tions.

to grasp a large object. Table 5.1 summarizes the parameters of each
operator.

To provide guidance, we use the policies trained with different
learning algorithms. The inputs to the policy are described in the
table as well. Each operator will generally require a call to a motion
planner to find a collision-free path from the previous configuration.

The oracle that gives task-level plan is implemented as follows.
For both domains, the task-plan is the sequence of objects to be pick-
and-placed. For the conveyor domain, this is given by the problem
instance definition: the objects arrive in the order to be packed. For
the fetching domain, we implement a swept-volume approach similar
to [24, 119]. We first plan a fetching motion to the target object as-
suming there are no movable obstacles in the scene. Then, we check
the collision between this path and the moveable obstacles to identify
objects that need to be moved.

To sample parameters for the pick operation using the default
uniform policy:

1. Sample a collision-free base configuration, (xo
r , yo

r , ψo
r), uniformly

from a circular region of free configuration space, with radius
equal to the length of the robot’s arm, centered at the location of
the object.

2. With the base configuration fixed at (xo
r , yo

r , ψo
r) from the object,

sample (d, h, χ), where d and z has a range [0.5, 1], and χ has a
range [π

4 , π], uniformly. If an inverse kinematics (IK) solution
exists for both arms for this grasp, proceed to step 3, otherwise
restart.

3. Use bidirectional RRT (biRRT), or any motion planner, to get a
path from the current robot base configuration to (xo

r , yo
r , ψo

r) from
the pose of the object. A linear path from the current arm configu-
ration to the IK solution found in step 2 is then planned.

If a collision is detected at any stage, the procedure restarts. When
we use the learned policy πθ , we simply draw a sample from it, and
then check for IK solution and path existence with the predicted
grasp and base pose.

For the conveyor belt domain, we assume that the conveyor belt
drops objects into the same pose, and the robot can always reach

48

them from its initial configuration near the conveyor belt, so we do
not check for reachability. For the object fetch domain, we do all three
steps.

From a state in which the robot is holding an object, it can place it
at a feasible location in a particular region. To sample parameters for
place using the default uniform policy:

1. Sample a collision-free base configuration, (x, y, ψ), uniformly
from a desired region.

2. Use biRRT from the current robot base configuration to (x, y, ψ).

To use πθ , we sample base configurations from it in step 1.
For heuristic function for the continuous-space graph search in

the fetching domain, we use the number of objects to be moved out
of the way as a heuristic. For the conveyor belt domain, we use the
remaining number of objects to be packed as a heuristic.

To collect a dataset Dpl, we use search trees constructed while
solving previous planning problems. To create a operator sequence τ

from a search tree, we begin at the root and collect state, action, and
rewards up to each leaf node.

Figure 5.5: Conveyor belt plots

Results for the conveyor belt domain Figure 5.5 (top) shows the learn-
ing curve as we increase the number of search trees. Each search tree
from a problem instance adds at most 50 (state, reward, operator
instance, next state) tuples. The RL algorithms, ddpg and ppo, have
rather flat learning curves. This is because they treat the planning
experience dataset Dpl as just another set of roll-outs; even with 100

episodes of planning experience, this is only about 5000 transitions.
Typically, these methods require tens of thousands of data to work
well. admon, on the other hand, makes special use of Dpl by trying
to imitate the sequences. On the other hand, the results from gail

show that it is ineffective to treat Dpl as optimal demonstrations and
simply do imitation. admon, which uses reward signals to learn a
Q-function in addition to imitating Dpl, does better.

Figure 5.5 (middle) shows the learning curves as we increase the
amount of transition data, while fixing the number of search trees
at 100. Again, admon outperforms the RL algorithms. Note that
the RL approaches, ddpg and ppo, are inefficient in their use of the
highly-rewarding Dpl dataset. For instance, ppo, being an on-policy
algorithm, discards Dpl after an update. Even though the transition
data collected after that is much less informative, since it consists
mostly of zero-reward transitions, it makes an update based solely on
them. As a result, it tends to fall into bad local optima, and the learn-
ing curve saturates around 3000 steps. The situation is similar for
the off-policy algorithm ddpg. It initially only has Dpl in its replay

49

buffer, but as it collects more data it fills the buffer with zero-reward
sequences, slowing the learning significantly after around 5000 steps.
admon, on the other hand, is able to better exploit the planning ex-
perience dataset to end up at a better (local) optima. gail shows
slightly better performance than ppo and ddpg. It tends to escape bad
local optima by learning a reward function that assigns high rewards
to the planning experience dataset Dpl, but still performs worse than
admon because it treats Dpl as optimal demonstrations.

Figure 5.5 (bottom) shows the reduction in planning time achieved
by different learning algorithms. We can see that, after about 400

seconds, admon achieves 95% optimal performance, whereas the
uniform policy still have not achieved that performance after 1200

seconds, indicating a speed up of at least 3.

Figure 5.6: Plots for object fetch
domain

Results for object fetch domain Figure 5.6 (left) shows the learning
curve as we increase the number of search trees. Each search tree
adds at most 50 (state, operator instance, next state) tuples, up to 25

of which use pick operator instances, and the remaining are place
operator instances. Again, the RL methods show weaker perfor-
mance than admon although this time they are closer. The poor
performance of gail is due to Dpl containing many more off-target
operator sequences than before, due the longer horizon. Since most
of these sequences are not similar to the solution sequence, treating
these data points as optimal demonstrations hurts the learning.

Figure 5.6 (middle) shows the learning curve as we increase the
number of transitions, while fixing the number of search trees at 90.
ppo shows large variance with respect to different random seeds, and
on average, shows a very steep learning curve at the beginning, but
it gets stuck at a bad local optima. ddpg shows good performance,
but still performs worse than admon. gail fails to learn anything
meaningful due to the previously stated reasons.

Figure 5.6 (right) shows the impact on the planning efficiency
when trained policies are used to choose the continuous parameters.
This time, we plot the progress, measured by the number of objects
cleared from the fetching path for different time limits. We can see
that admon clears the optimal number of objects at around 1500

seconds, and the uniform policy takes 3500 seconds, an improvement
in planning efficiency by a factor of more than 2.3.

ddpg initially performs just as well as admon until it clears 3

objects, but its improvement stops after this point. This is due to
the current-policy-roll-out exploration strategy used by ddpg. It
is very unlikely with this strategy to encounter an episode where
it clears more than 3 objects. When used with the planner, which
uses a heuristic, the policy starts encountering states that have more

50

than three objects cleared, leading to poor performance. This phe-
nomenon, where there is a discrepancy between the distribution of
states encountered during training and testing, is also noted in [105].
admon on the other hand does not have this problem because it is
trained with the search trees produced by the planner. Note also the
decrease in planning efficiency when using poor policies.

5.2 Results on combined guidance on discrete and continuous search

Previous sections empirically demonstrated that admon and gandi

can guide the search for continuous search in g-tamp to improve
planning efficiency by several factors compared to unguided plan-
ners, and does so using far less data than state-of-the-art learning
algorithms. This was possible because admon and gandi uses both
neutral and positive datasets. We now present results on guiding the
discrete search by using the learned ranking function for abstract
actions. We then integrate learned sampler, ranking function, and
planning algorithm, saps, in a single framework, and present the its
results.

We consider two different environments. One is the box-moving
domain shown in shown in Figure 2.1 (left) where the objective is to
move a set of boxes from their current locations to the kitchen region.
The second environment is the cupboard domain where the robot has
to move a target object from the cupboard to the packing box shown
in Figure 2.1 (right). A problem instance is defined by the poses of
movable objects, where the poses of objects are randomly chosen
from a distribution.

To make sure that each problem instance is non-trivial (i.e. cannot
be solved by simply moving just the goal objects to goal regions), we
define a distribution over pose such that the robot must manipulate
at least 2 objects. In the box-moving domain, we do this by randomly
placing at least 3 objects at the exit and around the robot. Similarly in
the cupboard domain, we randomly place the goal object at the back
of the cupboard to ensure the robot must rearrange at least 2 objects.
Some example problems are shown in Figure 5.7.

We again focus on the pick-and-place operator in this section. For
the box-moving domain, we have two-arm pick-and-place; for the
cupboard environment, we have a one-arm pick-and-place. Both of
these domains use the same sampling scheme as we have described
in the section 5.1.5, except that for the one-arm case the parameters
specify the midpoint of the right arm’s gripper fingers.

The inputs to the learned samplers are the key configuration ob-
stacles and the pick-and-place motion for moving the goal objects
into the goal region, expressed using key configurations. The abstract

51

ranking function takes in the graph representation of the scene as
described in section 3.2.1 based on geometric predicates.

Given a grasp and base pose for pick, an inverse kinematics solver
is used to generate (collision-free) arm configurations for picking at
the specified base pose and grasp parameters. In the box-moving
environment, once we determine the pick-and-place continuous pa-
rameters, we plan the base-motion plans for both picking and placing
the objects. In the cupboard environment, we omit motion planning
and simply check collisions at the pick and place configurations,
which is sufficient in this domain. We use Rapidly exploring Ran-
domized Trees as our motion planner, and IKFast [23] as our inverse
kinematics solver.

Figure 5.7: Examples of prob-
lems in the box-moving do-
main, where the robot has to
move all the red boxes to the
kitchen region at the top. Note
that there are objects blocking
the exit, and some objects are
surrounding the robot.

The central claim in this work is that learning to guide a planner is
more computationally efficient and reliable than using pure learning
or pure planning algorithms. To support this claim, we compare
against the following benchmarks:

• PureLearning: A method that simply uses the abstract action that
has the highest rank as predicted by our ranking function F̂ and
the first set of continuous parameters generated by our learned
sampler πθ . It resets to the initial state if it samples an infeasible
action.

• i-rsc: Iterative Resolve Spatial Constraint. In i-rsc, we extend
rsc [119], which is the state-of-the-art algorithm for manipulation
among movable obstacles, to moving multiple objects to a goal
region. To do this, we first plan pick-and-place motions for moving
goal objects to goal regions with checking collisions only at object
placements and initial and final robot configurations. From this,

52

we get an order to pack objects into the goal regions. Each single-
object packing sub-problem is solved by an application of rsc.
If, after some number of iterations, rsc does not find a solution,
we modify the object ordering and try randomly permuting the
unplaced boxes. The algorithm will eventually try all orderings if
given enough time.

• saps-hcount: saps with a hand-designed state-based-heuristic
function shown in Eqn 2.2.1.

PureLearning is a pure-learning method, while i-rsc and saps-
hcount are pure-planning methods. For our guided-planner, we
have two versions:

• saps-rank: uses the priority function in equation 3.2.1 in saps,
which includes the learned ranking term, but does not use the
learned sampler.

• saps-rank-sampler: uses the priority function in equation 3.2.1
and the learned sampler inside SmplCont function in saps.

PureLearning is a pure-learning method, while i-rsc and saps-
hcount are pure-planning methods. For our guided-planner, we
have two versions:

• saps-rank: uses the priority function in equation 3.2.1 in saps,
which includes the learned ranking term, but does not use the
learned sampler.

• saps-rank-sampler: uses the priority function in equation 3.2.1
and the learned sampler inside SmplCont function in saps.

For the parameters of saps, we use Nsmpl = 2000, Nmp = 5 in
the box-moving domain, and Nsmpl = 50 for the shelf domain. The
priority function in 3.2.1 uses λ = 1. For training the sampler, we use
ntot = 100000, nc = 5, nb = 32, lrθ = 1e − 4, lrα = 1e − 4, and use
N (0, 1) for PZ.

We train separate samplers for pick parameters and place param-
eters. For generating place parameters, we use the output from pick
sampler as an input to place sampler. We also train separate place
samplers for different regions, because different regions have differ-
ent distributions over placements. We use 1000 planning episodes
for training samplers in the cupboard domain, and 1500 planning
episodes for training samplers in the box-moving domain. For train-
ing the ranking function, we use 250 planning episodes.

To generate our training data, we first solve problems using i-rsc

and use the planning experience to train the ranking function. Then,
we use saps-rank to solve additional problems and use this planning

53

experience to train our sampler. To build the set of key configura-
tions, we use the motion plans from i-rsc planning experience, and
then sparsely sub-sample them by discarding the ones that are too
close. To test the ranking function’s generalization capability, we only
collect planning experience from the box-moving domain, where
the goal is to move a single box to the kitchen. Then, we test its per-
formance in (1) the same box-moving domain, but where the goal
is move four boxes to the kitchen, to demonstrate its capability to
generalize to harder problems, and (2) the cupboard domain, where
the goal is to move smaller objects into a packing box using one-arm
pick-and-place, to demonstrate its capability to generalize to harder
problems.

The learned samplers, which operate on lower geometric details,
however, must be trained in each environment. For this reason, its
planning experience data consists of a mixture of moving 1 and 4

boxes into the kitchen in the box-moving domain, and packing 1

object in the cupboard domain. We train separate samplers for these
environments.

SAPS
RankSampler

SAPS
Rank

SAPS
HCount

IRSC Pure
Learning

0

250

500

750

1000

1250

1500

1750

2000

SAPS
RankSampler

SAPS
Rank

SAPS
HCount

IRSC Pure
Learning

0

250

500

750

1000

1250

1500

1750

2000

SAPS
RankSampler

SAPS
Rank

SAPS
HCount

IRSC Pure
Learning

0

200

400

600

800

1000

Figure 5.8: Whisker plots for
planning times for moving one
box in the box-moving domain
(top) for moving four boxes
in the same domain (middle),
and for moving the target ob-
ject in the cupboard domain
(bottom). The box-moving do-
main had 2000 seconds time
limit, and the cupboard domain
has 1000 seconds time limit.
Whiskers indicate 10th and 90th
percentiles.

To evaluate each of these algorithms, we measure two quanti-
ties. One is the planning time, and the other is the success rate, both
within time limits. To measure these, we test the algorithms on 25

problem instances in each setup. For algorithms that involve plan-
ning, we use 5 different planning seeds. For algorithms that involve
learning we use 5 different training seeds.

Figure 5.8 (left), shows the planning time results for moving a
single box in the box-moving domain. We see that the median of
saps-rank is 3 times faster than that of i-rsc, and about 1.5 times
faster than that of saps-hcount. Further, the median of saps-rank-
sampler is 6 times faster than i-rsc, and 3 times faster than saps-
hcount. The guidance-based approaches have much lower 90th
percentiles as well, indicating that they are better even for harder
problem instances. i-rsc performs badly because it makes the mono-
tonicity assumption, which states that problems can be solved by
touching each object only once. This does not hold in this problem.
PureLearning performs the worst among all the methods, due to
its inability to overcome its prediction mistakes. This also evident
in Table 5.2 (left, second column). Because of their inherent flaws,
pure-learning and pure-planning methods only solve about half of
the problems, compared to guidance-based approaches which solve
more than 90% of the problems.

Figure 5.8 (left) shows the results for problems where the robot
has to pack four boxes. We see that the results support our claim
about generalizing to harder problem instances when learning only
from easier instances. Even without retraining, our ranking function

54

and the sampler can guide saps to have a significant advantage over
the pure planning and pure-learning approaches. The median of
saps-rank-sampler is almost 5.8 times faster than those of saps-
hcount and i-rsc, and saps-rank is about 3.5 times faster. The 90th
percentile is again significantly lower than the benchmarks. It is also
worth noting the significant drop in the success rate of the pure-
learning approach in Table 5.2 (left, third column). The main reason
is that, because this is a longer-horizon problem than the one-box-
moving scenario, there is more room for making prediction mistakes.
In terms of success rates, the guidance based algorithms outperform
the benchmarks.

Algorithm
Success rate

(1 box, 2000s)
Success rate

(4 boxes, 2000s)
i-rsc 0.53 0.51

PureLearning 0.43 0.03

saps-hcount 0.94 0.56

saps-rank 0.94 0.96

saps-rank-sampler 0.99 0.97

Algorithm
Success rate

(1 obj, 1000s)
i-rsc 0.21

PureLearning 0.00

saps-hcount 0.44

saps-rank 0.75

saps-rank-sampler 0.81

Table 5.2: Success rates of
different algorithms in the box-
moving domain with 2000s
time limit (left) and cupboard
domain 1000s time limit (right)

Lastly, we consider the cupboard domain. Here, we retrain our
sampler by collecting more data in this domain, but not our ranking
function, and apply the same ranking function that we learned from
the box-moving domain. We again see the significant improvement
in the medians of the guidance-based approaches compared to pure
planning and pure learning approaches. i-rsc especially suffers in
this domain because the environment is tighter than the box-moving
domain, making more instances of non-monotonic problems. Simi-
larly, the tightness in the environment requires longer horizon plans,
making PureLearning to suffer. The success rates in Table 5.2 (right)
indicates that guidance-based algorithms, saps-rank-sampler and
saps-rank, significantly outperform the benchmarks and improves
the success rate by a factor of 1.8.

55

6
Learning on-line to guide planning: Voronoi Optimistic
Optimization applied to Trees

So far, we presented algorithms that learn from past off-line experi-
ence a biased sampler and abstract ranking function to guide plan-
ning. However, naively following the suggestions made by these
predictors would lead to poor performance, because they might make
prediction mistakes. In this chapter, we present a novel planning
algorithm that balances between exploring new choices and exploit-
ing the prior search guidance knowledge by learning the values of
actions on-line. The work presented in this chapter is based on our
conference paper [63] which was a work done in collaboration with
Kyungjae Lee and Sungbin Lim.

More concretely, we consider a setup in which we are given a re-
ward function, deterministic transition model, and planning horizon,
and the objective is to find a plan that maximizes the sum of rewards.
Our algorithm is a variant of Monte Carlo Tree Search (MCTS) that
learns the action-value function on-line based on the Monte Carlo
simulations of trajectories. This on-line learning capability enables
the algorithm to correct the prior heuristic function or biased sampler
to explore more efficiently.

Figure 6.1: Packing domain:
the task is to pack as many
objects coming from a con-
veyor belt into the room (left).
Object-clearing domain: obsta-
cles must be cleared from the
swept-volume of a path to the
sink (right). In both domains,
the robot needs to minimize the
overall trajectory length.

In discrete action spaces, MCTS is a well-studied algorithm [70],
and we can use them at the nodes where we have to make abstract
action choices. However, the main challenge lies in how to efficiently
make continuous action choices when applying MCTS to g-tamp

problems. In particular, the parameters of manipulation operators are
high dimensional, consisting of multiple pick or placement configura-
tions of the robot.

Therefore, the main contribution in this work is extending MCTS
to continuous action space problems. There are several challenges
involved in this. First, we have a high-dimensional continuous action
spaces with possibly a discontinuous objective function. For example,
consider the sequential robot mobile-manipulation planning problem

shown in Figure 6.1 (left). In this domain, the objective function is
defined to be the number of objects that the robot packs into the stor-
age room while satisfying feasibility conditions, such as collision-free
motions, and minimizing the total length of its trajectory. Another
example is shown in Figure 6.1 (right), where the task is to clear ob-
stacles from a region, and the objective is a function of the number
of obstacles cleared and trajectory length. In both cases, the robot’s
action space is high dimensional, consisting of multiple pick or place-
ment configurations of the robot.

Figure 6.2: Top: Illustrations of
a partition made by doo when
five points are evaluated to
optimize a 2D Shekel function.
Each solid line shows the parti-
tions made by the point that is
on it. Numbers indicate the or-
der of evaluations. The dotted
lines indicate the two possible
partitions that can be made by
the fifth point, and depending
on this choice, the performance
differs. Bottom: Illustration of
the Voronoi partition implicitly
constructed by voo. We can
sample from the best Voronoi
cell (defined by the black point)
by random-sampling points,
and rejecting them until we
obtain one that is closer to
the black point than the other
points. We can sample a point
with Voronoi bias by uniformly
sampling from the entire search
space; the cell defined by the
white point is most likely to be
selected.

More generally, such discontinuous objective functions are the
sum of a finite set of step functions in a high-dimensional state-action
space, where each step corresponds to the occurrence of an important
event, such as placing an object. For classes of functions of this kind,
standard gradient-based optimization techniques are not directly
applicable, and even if we smooth the objective function, the solution
is prone to local optima.

Recently, several gradient-free approaches to continuous-space
planning problems have been proposed [14, 92, 131, 87], some of
which have been proven to asymptotically find a globally optimal
solution. These approaches either frame the problem as simulta-
neously optimizing a whole action sequence [14, 131] or treat the
action space in each node of a tree search [87] as the search space for
a budgeted-black-box function optimization (BBFO) algorithm, and
use hierarchical-partitioning-based optimization algorithms [91, 13]
to approximately find the globally optimal solution.

While these hierarchical-partitioning algorithms handle a richer
class of objective functions than traditional methods [96], their main
drawback is poor scalability to high-dimensional search spaces: to
optimize efficiently, these algorithms sequentially construct parti-
tions of the search space where, at each iteration, they create a finer-
resolution partition inside the most promising cell of the current
partition. The problem is that constructing a partition requires decid-
ing the optimal dimension to cut, which is a difficult combinatorial
problem especially in a high-dimensional space. Figure 6.2 (Top)
illustrates this issue with one of the algorithms, doo [91].

We propose a new BBFO algorithm called Voronoi Optimistic
Optimization (voo) which, unlike the previous approaches, only
implicitly constructs partitions, and so scales to high-dimensional
search spaces more effectively. Specifically, partitions in voo are
Voronoi partitions whose cells are implicitly defined as the set of all
the points that are closer to the generator than to any other evaluated
point. Figure 6.2 (right) shows an example.

Given as inputs a semi-metric, a bounded search space, and an
exploration probability ω, voo operates similarly to the previous

57

partition-based methods: at each iteration, it selects (implicitly) a
Voronoi cell based on a simple exploration-exploitation scheme, sam-
ples a point from the cell, and (implicitly) makes finer-resolution cells
inside the selected cell based on the sampled point. The selection of a
Voronoi cell is based on the given exploration probability: with prob-
ability ω, it explores by selecting a cell with probability proportional
to the volume of the cell; with probability 1− ω, it exploits by select-
ing the cell that contains the current best point. Unlike the previous
methods, however, voo never explicitly constructs the partitions: by
using the definition of Voronoi partition and the given semi-metric,
sampling from the best cell is implemented simply using rejection
sampling. Sampling a point based on the volumes of the cells, which
is also known as the Voronoi bias [77], is also simply implemented
by sampling uniformly at random from the search space. Figure 2.1
(right) demonstrates this point. We prove the regret bound of voo

which shows that under some mild assumptions, the regret goes to
zero.

Using voo, we propose a novel continuous state-action-space
Monte Carlo tree search (MCTS) algorithm, Voronoi optimistic op-
timization applied to trees (voot) that uses voo at each node of the
search tree to select the optimal action, in a similar fashion to HOOT [87].
HOOT, however, does not come with performance guarantees; we are
able to prove a performance guarantee for voot, which is derived
from a bound on the regret of voo. The key challenge in showing
this result is that, when voo is used to optimize the state-action value
function of a node in the tree, the value function is non-stationary, so
that even when the environment is deterministic, its value changes as
the policy at the sub-tree below the action changes. We address this
problem by using the regret of voo at the leaf nodes, whose value
function is stationary, and computing how many re-evaluations at
each depth is required to maintain the same regret at the root node as
at the leaf node. We show this regret can be made arbitrarily small.

We compare voo to several algorithms on a set of standard func-
tions for evaluating black-box function optimization algorithms in
which the number of dimensions of the search space is as high as
20, and show that voo significantly outperforms the benchmarks,
especially in high dimensions. To evaluate voot, we compare it to
other continuous-space MCTS algorithms in the two sequential robot
mobile-manipulation problems shown in Figure 2.1, and show that
voo computes significantly better quality plans than the benchmarks,
within a much smaller number of iterations.

58

6.1 Related work

There are several planning methods that use black-box function op-
timization algorithms in continuous-space problems. We first give
an overview of the BBFO algorithms, and then describe planning
algorithms that use them. We then give an overview of progressive-
widening approaches, which are continuous-space MCTS algorithms
that do not use black-box function optimization methods.
Global optimization of black-box functions with budget Several
partition-based algorithms have been proposed [91, 13, 92]. In [91],
two algorithms are proposed. The first algorithm is doo, which re-
quires as inputs a semi-metric and the Lipschitz constant for the
objective function. It sequentially constructs partitions of the search
space, where a cell in the partition has a representative point, on
which the objective function is evaluated. Using the local-smoothness
assumption, it builds an upper-bound on the un-evaluated points in
each cell using the distance from the representative point. It chooses
the cell with the highest-upper bound, and creates a finer-resolution
cell inside of it, and repeats. The second algorithm proposed in [91]
is soo, which does not require a Lipschitz constant, and evaluates
all cells that might contain the global optimum. In [13], Hierarchical
Optimistic Optimization (HOO) is proposed. Unlike soo and doo,
HOO can be applied to optimize a noisy function, and can be seen
as the stochastic counterpart of doo. So far, these algorithms have
been applied to problems with low-dimensional search spaces, be-
cause solving for the optimal sequence of dimensions to cut at each
iteration is difficult. voo gets around this problem by not explicitly
building the partitions.

Alternatively, we may use Bayesian optimization (BO) algorithms,
such as gp-ucb [116]. A typical BO algorithm takes as inputs a kernel
function, and an exploration parameter, and assumes that the objec-
tive function is a sample from a Gaussian Process (GP). It builds an
acquisition function, such as upper-confidence-bound function in gp-
ucb [116], and it chooses to evaluate, at every iteration, the point that
has the highest acquisition function value, updates the parameters
of the GP, and repeats. The trouble with these approaches is that at
every iteration, they require finding the global optimum of the acqui-
sition function, which is expensive in high dimensions. In contrast,
voo does not require an auxiliary optimization step.

There have been several attempts to extend BO to high-dimensional
search spaces [128, 55]. However, they make a rather strong as-
sumption on the objective function, such as that it lies on a low-
dimensional manifold, or that it can be represented by a linear com-
bination of functions of sub-dimensions, which are unlikely to hold

59

in domains such as robotics, where all of the action dimensions con-
tribute to its value. Also, these methods require extra hyperparame-
ters that define the lower-dimensional search space that are tricky to
tune. VOO requires neither the assumption or the hyperparameters
for defining the low-dimensional search space.

There are also methods that try to combine BO and hierarchical
partitioning methods, such as [126, 57]. The idea is to use hierarchical
partitioning methods to optimize the acquisition function of BO; un-
fortunately, for the same reason as hierarchical partitioning methods,
they tend to perform poorly in higher dimensional spaces.

Optimal planning in continuous spaces using BBFO There are
two approaches to continuous-space planning problems that use
black-box function-optimization (BBFO) algorithms. In the first group
of approaches, the entire sequence of actions is treated as a single
search space for optimization. In [131], the authors propose hierar-
chical open-loop optimistic planning (HOLOP), which uses HOO for
finding finite-horizon plans in stochastic environments with contin-
uous action space. In [14], the authors propose an algorithm called
simultaneous optimistic optimization for planning (SOOP), that uses soo

to find a plan when the environment is deterministic. These methods
become very expensive as the length of the action sequence increases.

The second group of approaches, where our method belongs,
performs a sample-based tree search with a form of continuous-
space optimizer at each node. Our work most closely resembles
hierarchical optimistic optimization applied to trees (HOOT) [87], which
applies hierarchical optimistic optimization (HOO) at every node in
MCTS for the action-optimization problem, but does not provide
any performance guarantees. These algorithms have been limited to
problems with low-dimensional action space, such as the inverted
pendulum. Our experiments demonstrate voot can solve problems
with higher-dimensional action spaces much more efficiently than
these algorithms.

Widening techniques for MCTS in continuous action spaces
There are progressive-widening (PW) algorithms that extend MCTS
to continuous action spaces [19, 5], but unlike the approaches above,
their main concern is deciding when to sample a new action, in-
stead of which action to sample. The action-sampler in these PW
algorithms is assumed to be an external function that has a non-zero
probability of sampling a near-optimal action, such as a uniform-
random sampler.

Typically, a PW technique [19] ensures that the ratio between the
number of sampled actions in a node to the number of visits to the
node is above a given threshold. In [5], the authors show that a form
of PW can guarantee that each state’s estimated value approaches

60

the optimal value asymptotically. However, this analysis does not
take into consideration the regret of the action sampler, and assumes
that the probability of sampling a near-optimal action is the same
in every visit to the node. So, if an efficient action-sampler, whose
regret reduces quickly at each visit, is used, their error bound would
be very loose. Our analysis shows how the regret of voo affects the
planning performance.

6.2 Monte Carlo planning in continuous state-action spaces

We have a continuous state space S , a continuous action space A, a
deterministic transition model of the environment, T : S × A → S , a
deterministic reward function R : S × A → R, and a discount factor
γ ∈ [0, 1). Our objective is to find a sequence of actions with plan-
ning horizon H that maximizes the sum of the discounted rewards
maxa0,··· ,aH−1 ∑H−1

t=0 γtr(st, at) where st+1 = T(st, at). Our approach
to this problem is to use MCTS with an action-optimization agent,
which is an instance of a black-box function-optimization algorithm,
at each node in the tree.

We now describe the general MCTS algorithm for continuous
state-action spaces, which is given in Algorithm 5. The algorithm
takes as inputs an initial state s0, an action-optimization algorithm A,
the total number of iterations Niter, the re-evaluation parameter Nr ∈
[0, Niter], and its decaying factor κr ∈ [0, 1]. It begins by initializing
the necessary data in the root node. U denotes the set of actions that
have been tried at the initial node, Q̂ denotes the estimated state-
action value of the sampled actions, and nr denotes the number of
times we re-evaluated the last-sampled action. It then performs Niter

Monte Carlo simulations, after which it returns the apparently best
action, the one with the highest estimated state-action value. This
action is executed, and we re-plan in the resulting state.

Algorithm 5 MCTS(s0,A, Niter, Nr, κr, H, γ)

1: global variables: T, R, H, γ,A, Niter, κr, H, γ

2: T (s0) = {A = ∅, Q̂(s0, ·) = −∞, nr = 0}
3: for i = 1→ Niter
4: simulate(s0, 0, Nr)
5: end for
6: return argmaxa∈T (s0).AT (s0).Q̂(s0, a)

Procedure simulate is shown in Algorithm 6. It is a recursive
function whose termination condition is either encountering an in-
feasible state or reaching a depth limit. At the current node T (s), it
either selects the action that was most recently sampled, if it has not
yet been evaluated Nr times and we are not in the last layer of the

61

Algorithm 6 simulate(s, h, Nr)

1: global variables: T, R, H, γ,A, Niter, κr, H, γ

2: if s == infeasible or h == H
3: return 0

4: end if
5: if (|T (s).U| > 0) ∧ (T (s).nr < Nr) ∧ (h 6= H − 1)
6: // re-evaluate the last added action
7: a = T .U.get_last_added_element()
8: T (s).nr = T (s).nr + 1
9: else

10: // Perform action optimization
11: a ∼ A(T (s).Q̂)

12: T (s).U = T (s).U ∪ {u}
13: T (s).nr = 1
14: end if
15: s′ = T(s, a)
16: r = R(s, a)
17: Q̂new = r + γ · simulate(s′, h + 1, Nr · κr)

18: if Q̂new > T (s).Q̂(s, a)
19: T (s).Q̂(s, a) = Q̂new
20: end if
21: return T (s).Q̂(s, a)

tree, or it samples a new action. To sample a new action, it calls A
with estimated Q-values of the previously sampled actions, T (s).Q̂.
A transition is simulated based on the selected action, and the pro-
cess repeats until a leaf is reached; Q-value updates are performed on
a backward pass up the tree if a new solution with higher value has
been found (note that, because the transition model is deterministic,
the update only requires maximization.)

The purpose of the re-evaluations is to mitigate the problem of
non-stationarity: an optimization algorithm A assumes it is given
evaluations of a stationary underlying function, but it is actually
given Q̂(s, at), whose value changes as more actions are explored in
the child sub-tree. This problem is also noted in [87]. So, we make
sure that Q̂(s, at) ≈ Q∗(s, at) before adding an action at+1 in state
s by sampling more actions at the sub-tree associated with at. Since
at the leaf node Q∗(s, at) = R(s, at), we do not need to re-evaluate
actions in leaf nodes. In section 5, we analyze the impact of the esti-
mation error in Q̂ on the performance at the root node.

One may wonder if it is worth it to evaluate the sampled actions
same number of times, instead of more sophisticated methods such
as Upper Confidence Bound (UCB), for the purpose of using an
action-optimization algorithm A. Typical continuous-action tree
search methods perform progressive widening (PW) [19, 5], in which
they sample new actions from the action space uniformly at random,

62

but use UCB-like strategies for selecting which of the previously-
sampled actions to explore further. In this case, the objective for
allocating trials is to find the highest-value action among a discrete
set, not to obtain accurate estimates of the values of all the actions.

VOOT operates in continuous action spaces but performs much
more sophisticated value-driven sampling of the continuous actions
than PW methods. To do this, it needs accurate estimates of the val-
ues of the actions it has already sampled, and so we have to allocate
trials even to actions that may currently “seem” suboptimal. Our em-
pirical results show that this trade-off is worth making, especially in
high-dimensional action spaces.

6.3 Voronoi optimistic optimization

Given a bounded search space X , a deterministic objective function
f : X → R and a numerical function evaluation budget n, our goal
is to devise an exploration strategy over X that, after n evaluations,
minimizes the simple regret defined as f (x?)−maxt∈[n] f (xt), where
f (x?) = maxx∈X f (x), xt is a point evaluated at iteration t, and [n]
is shorthand for {1, · · · n}. Since our algorithm is probabilistic, we
will analyze its expected behavior. We define the simple regret of a
probabilistic optimization algorithm A as

Rn = f (x?)−Ex1:t∼A

[
max
t∈[n]

f (xt)

]
Our algorithm, voo (Algorithm 7), operates by implicitly con-

structing a Voronoi partition of the search space X at each iteration:
with probability ω, it samples from the entire search space, to sample
from a Voronoi cell with probability proportional to its volume; with
probability 1− ω, it samples from the best Voronoi cell, which is the
one induced by the current best point, x∗t = arg maxi∈[t] f (xi).

Algorithm 7 voo(X , ω, d(·, ·), n)
1: for t = 0→ n− 1
2: Sample ν ∼ Uni f [0, 1]
3: if ν ≤ ω or t == 0
4: xt+1 =UnifSample(X)

5: else
6: xt+1 =SampleBestVCell(d(·, ·))
7: end if
8: Evaluate ft+1 = f (xt+1)

9: end for
10: return arg maxt∈{0,...,n−1} ft

It takes as inputs the bounded search space X , the exploration

63

probability ω, a semi-metric d(·, ·), and the budget n. The algorithm
has two sub-procedures. The first one is UnifSample, which sam-
ples a point from X uniformly at random, and SampleBestVCell,
which samples from the best Voronoi cell uniformly at random. The
former implements exploration using the Voronoi bias, and the latter
implements exploitation of the current knowledge of the function.
Procedure SampleBestVCell can be implemented using a form
of rejection sampling, where we sample a point x at random from
X and reject samples until d(x, x∗t) is the minimum among all the
distances to the evaluated points. Efficiency can be increased by sam-
pling from a Gaussian centered at x∗t , which we found to be effective
in our experiments.

To use voo as an action optimizer in Algorithm 6, we simply let A
be the search space, and use the semi-metric d(·, ·). f (·) is now the
value function Q∗(s, ·) at each node of the tree, whose estimation is
Q̂(s, ·). The consequence of having access only to Q̂ instead of the
true optimal state-action value function Q∗ will be analyzed in the
next section.

6.4 Analysis of voo and voot

We begin with definitions. We denote the set of all global optima as
X ?, the Voronoi cell generated by a point x as C(x). We define the
diameter of C(x) as supy∈C(x) d(x, y) where d(·, ·) is the semi-metric on
X .

Suppose that we have a Voronoi cell generated by x, C0(x). When
we randomly sample a point z from C0(x), this will create two new
cells, one generated by x, which we denote with C1(x), and the other
generated by z, denoted C1(z). The diameters of these new cells
would be random variables, because z was sampled randomly. Now
suppose that we have sampled a sequence of n0 points from the se-
quence of Voronoi cells generated by x, {C0(x), C1(x), C2(x), · · · , Cn0(x)}.
Then, we define the expected diameter of a Voronoi cell generated by x
as the expected value of the diameter of the last cell, E[supy∈Cn0 (x) d(x, y)].

We write δmax for the largest distance between two points in X ,
Br(x) to denote a ball with radius r centered at point x, and µ̄B(r) =
µ(Br(·))

µ(X)
where µ(·) is a Borel measure defined on X . We make the

following assumptions:

A 1. (Translation-invariant semi-metric) d : X × X → R+ is such that
∀x, y, z ∈ X , d(x, y) = d(y, x), d(x, y) = 0 if and only if x = y, and
d(x + z, y + z) = d(x, y).

A 2. (Local smoothness of f) There exists at least one global optimum
x? ∈ X of f such that ∀x ∈ X , f (x?) − f (x) ≤ L · d(x, x?) for some

64

L > 0.

A 3. (Shrinkage ratio of the Voronoi cells) Consider any point y inside the
Voronoi cell C generated by the point x0, and denote d0 = d(y, x0). If we
randomly sample a point x1 from C, we have E[min(d0, d(y, x1))] ≤ λd0

for λ ∈ (0, 1).

A 4. (Well-shaped Voronoi cells) There exists η > 0 such that for any
Voronoi cell generated by x with expected diameter d0 contains a ball of
radius ηd0 centered at x.

A 5. (Local symmetry near optimum) X? consists of finite number of dis-
joint and connected components {X (`)

? }k
`=1, k < ∞. For each compo-

nent, there exists an open ball Bν`(x(`)?) for some x(`)? ∈ X (`)
? such that

d(x, x(`)?) ≤ d(y, x(`)?) implies f (x) ≥ f (y) for any x, y ∈ Bν`(x(`)?).

We now describe the relationship between these assumptions and
those used in the previous literature. A1 and A2 are assumptions
also made in [91]. These make the weaker version of the Lipschitz
assumption applied only to the global optima, instead of every pair
of points in X . A3 and A4 are also very similar to the assumptions
made in [91]. In [91], the author assumes that cells decrease in di-
ameter as more points are evaluated inside of them and that each
shell is well-shaped, in that it always contains a ball. Our assumption
is similar, except that in our case, A3 and A4 are stated in terms of
expectation, because voo is a probabilistic algorithm.

A5 is an additional assumption that previous literature has not
made. It assumes the existence of a ball inside of which, as you get
closer to an optimum, the function values increase. It is possible to
drastically relax this assumption to the existence of a sequence of
open sets, instead of a ball, whose values increase as you get closer to
an optimum. In our proof, we prove the regret of voo in this general
case, and Theorem 3 holds as the special case when A5 is assumed.
We present this particular version for the purpose of brevity and
comprehensibility, at the expense of generality.

Define νmin = min`∈[k] ν`. We have the following regret bound for
voo. All the proofs can be found in our conference paper [63].

Theorem 3. Let n be the total number of evaluations. If 1−λ1/k

µ̄B(νmin)+1−µ̄B(η·λδmax)
<

ω, we have

Rn ≤LδmaxC1

[
λ1/k + ω(1− µ̄B(η · λnδmax))

]n

+ LδmaxC2[(1−ωkµ̄B(νmin)) · (1 + λ1/k)]n

65

where C1 and C2 are constants as follows

C1 :=
1

1− ρ(λ1/k + 1− [1−ω + ωµ̄B(η · λδmax)])−1 ,

ρ := 1−ωµ̄B(νmin),

and C2 :=
λ−1/k + 1

(λ−1/k + 1)− (1−ωµ̄B(νmin)−1

Some remarks are in order. Define an optimal cell as the the cell
that contains a global optimum. Intuitively speaking, when our best
cell is an optimal cell, the regret should reduce quickly because when
we sample from the best cell with probability 1− ω, we always sam-
ple from the optimal cell, and we can reduce our expected distance to
an optimum by λ. And because of A5, the best cell is an optimal cell
if we have a sample inside one of Bν`(x?).

Our regret bound verifies this intuition: the first term decreases
quickly if λ is close to 0, meaning that if we sample from an optimal
cell, then we can get close to the optimum very quickly. The second
term says that, if µ̄B(νmin), the minimum probability that the best cell
is an optimal cell, is large, then the regret reduces quickly. We now
have the following corollary showing that voo is no-regret under
certain conditions on λ and µ̄B(νmin).

Corollary 6.1. If λ1/k

(1+λ1/k)kµ̄B(νmin)
< ω < 1 − λ1/k and λ1/k

1−λ2/k <

kµ̄B(νmin), then limn→∞Rn = 0.

The regret bound of voot makes use of the regret bound of voo.
We have the following theorem.

Theorem 4. Define Cmax = max{C1, C2}. Given a decreasing sequence
η(h) with respect to h, η(h) > 0, h ∈ {0 · · ·H − 1} and the range of ω as
in Theorem 3, if Niter = ∏H−1

h=0 Nr(h) is used, where

Nr(h) ≥ log
(η(h)− γη(h + 1)

2LδmaxCmax

)
·min(Gλ,ω, Kν,ω,λ)

Gλ,ω = (log
(

λ1/k + ω
)
)−1, and Kν,ω,λ = (log([(1− ωµ̄B(νmin))(1 +

λ1/k)]))−1 , then for any state s traversed in the search tree we have

V(h)
? (s)− V̂(h)

Nr(h)
(s) ≤ η(h) ∀h ∈ {0, · · · , H − 1}

This theorem states that if we wish to guarantee a regret of η(h)
at each height of the search tree, then we should use Niter number of
iterations, with Nr(h) number of iterations at each node of height h.

To get an intuitive understanding of this, we can view the action
optimization problem at each node as a BBFO problem that takes

66

account of the regret of the next state. To see this more concretely,
suppose that H = 2. First consider a leaf node, where the problem
reduces to a BBFO problem because there is no next state, and the
regret of the node is equivalent to the regret of voo. We can verify
that by substituting Nr(H − 1) to the bound in Theorem 3 the regret
of η(H − 1) is guaranteed. Now suppose that we are at the root node
at height H − 2. There are two factors that contribute to the regret at
this node: the regret at the next state in height H − 1, and the regret
that stems from sampling non-optimal actions in this node, which is
the regret of voo. Because all nodes at height H − 1 have a regret of
η(H − 1), to obtain the regret of η(H − 2), the regret of voo at the
node at height H − 2 must be η(H − 2) − γNr(H − 1). Again, by
substituting Nr(H − 2) to the bound in Theorem 3, we can verify that
that it would yield the regret of η(H − 2)− γNr(H − 1) as desired.

Now, we have the following remark that relates the desired con-
stant regret at each node and the total number of iterations.

Remark 1. If we set η(h) = η, ∀h ∈ {0 · · ·H − 1}, and Niter = (Nr)H

where

Nr = log
(η(1− γ)

2LδmaxCmax

)
·min(Gλ,ω, Kν,ω,λ)

then, for any state s traversed in the search tree we have

V(h)
? (s)− V̂(h)

Nr(h)
(s) ≤ η ∀h ∈ {0, · · · , H − 1}

We draw a connection to the case of discrete action space with b
number of actions. In this case, we can guarantee zero-regret at the
root node if we explore all bH number of possible paths from the root
node to leaf nodes. In the continuous case, with assumptions A1-A5,
it would require sampling infinite number of actions at a leaf node
to guarantee zero-regret, rendering achieving zero-regret in prob-
lems with H > 0 impossible. So, this remark considers a positive
expected regret of η. It show that to guarantee this, we need to ex-
plore at least (Nr)H paths from the root to leaf nodes, where Nr is
determined by the regret-bound of our action-optimization algorithm
voo. Alternatively, if some other action-optimization algorithm such
as doo, soo, or gp-ucb is used, then its regret bound can be readily
used by computing the respective Nr(h) values in Theorem 3, and its
own Nr value in Remark 1. It is possible to prove a similar remark
in an undiscounted case. Please see Remark 2 in the appendix of our
paper [63].

67

6.5 Experiments

We designed a set of experiments with two goals: (1) test the perfor-
mance of voo on high-dimensional functions in comparison to other
black-box function optimizers and (2) test the performance of voot

on deterministic planning problems with high-dimensional action
spaces in comparison to other continuous-space MCTS algorithms.
All plots show mean and 95% confidence intervals (CIs) resulting
from multiple executions with different random seeds.

Figure 6.3: Griewank, Rastrigin,
and Shekel functions (top to
bottom) in 3, 10, and 20 dimen-
sions (left to right)

Budgeted-black-box function optimization We evaluate voo on three
commonly studied objective functions from the DEAP [34] library:
Griewank, Rastrigin, and Shekel. They are highly non-linear, with
many local optima, and can extend to high-dimensional spaces. The
true optimum of the Shekel function is not known; to gauge the

68

optimality of our solutions, we attempted to find the optimum for
our instances by using a genetic algorithm (GA) [102] with a very
large budget of function evaluations.

We compare voo to gp-ucb, doo, soo, cma-es, an evolutionary
algorithm [10], rembo, the BO algorithm for high-dimensional space
that works by projecting the function into a lower-dimensional man-
ifold [128], and bamsoo, which combines BO and hierarchical par-
titioning [126]. All algorithms evaluate the same initial point. We
ran each of them with 20 different random seeds. We omit the com-
parison to HOO, which reduces to doo on deterministic functions.
We also omit testing rembo in problems with 3-dimensional search
spaces. Detailed descriptions of the implementations and extensive
parameter choice studies are in the appendix of our paper [63].

Results are shown in Figure 6.3. In the 3-dimensional cases, most
algorithms work fairly well with voo and doo performing simi-
larly. But, as the number of dimensions increases, voo is significantly
better than all other methods. Purely hierarchical partitioning meth-
ods, doo and soo suffers because it is difficult to make the optimal
partition, and soosuffers more than doo because it does not take
advantage of the semi-metric; the mixed approach of BO and hier-
archical partitioning, bamsoo, tends to do better than soo, but still
is inefficient in high dimensions for the same reason as soo. gp-ucb

suffers because in higher dimensions it becomes difficult to globally
optimize the acquisition function. rembo assumes that the objective
function varies mostly in a lower-dimensional manifold, and there
are negligible changes in the remaining dimensions, but these as-
sumptions are not satisfied in our test functions, and voo, which
doesn’t make this assumption, outperforms it. cma-es performs a
large number of function evaluations to sustain its population, mak-
ing it less suitable for budgeted-optimization problems where function
evaluations are expensive.

This trend is more pronounced in the Shekel function, which is
flat over most of its domain, but does increase near the optimum
(see the 2D version in Figure 6.2). doo, soo, and bamsoo perform
poorly because they allocate samples to large flat regions. gp-ucb

performs poorly because in addition to the difficulty of optimizing
the acquisition function, the function is not well modeled by a GP
with a typical kernel, and the same goes for rembo. voo has neither
of these problems; as soon as voo gets a sample that has a slightly
better value, it can concentrate its sampling to that region, which
drives it more quickly to the optimum. We do note that cma-es is the
only method besides voo to perform at all well in high-dimensions.

69

Figure 6.4: (Top-left) max sum
of rewards vs. Niter for the
object clearing domain (Bottom-
left) that for the packing do-
main. (Top-right) minus the
number of remaining objects
that need to be moved vs. Niter

in the object clearing domain
(Bottom-right) that for the
packing domain.

Sequential mobile manipulation planning problems We now study two
realistic robotic planning problems. We compare voot to doot,
which respectively use voo and doo and as its action-optimizer in
Algorithm 6, and a single-progressive-widening algorithm that uses
UCT (pw-uct) [19]. But to make doot work in these problems, we
consider a randomized variant called rand-doot which samples an
action uniformly in the cell to be evaluated next, instead of always
selecting the mid-point, which could not solve any of these problems.

The objective of comparing to pw-uct is to verify our claim that
using an efficient action-optimizer, at the expense of uniform re-
evaluations of the sampled actions, is better evaluating sampled
actions with UCB at the expense of sampling new actions uniformly.
The objective of comparing to rand-doot is to verify our claim that
voot can scale to higher dimensional problems for which rand-doot

does not.
In addition to the state-of-the-art continuous MCTS methods, we

compare voo to the representative policy search methods typically
used for continuous-action space problems, ppo [109] and ddpg [83].
We train the stochastic policy using the same amount of simulated
experience that the tree-search algorithms use to find a solution, and
report the performance of the best trajectory obtained.

The action-space dimensions are 6 and 9 in the object-clearing and
packing domains, respectively. The detailed action-space and reward
function definitions, and extensive hyper-parameter value studies

70

are given in the appendix of our paper [63]. The plots in this section
are obtained with 20 and 50 random seeds for object-clearing and
packing problems, respectively.

We first consider the object-clearing problem (s0 is shown in Fig-
ure 2.1 (right)). Roughly, the reward function penalizes infeasible
actions and actions that move an obstacle but do not clear it from the
path; it rewards actions that clear an object, but with value inversely
proportional to the length of the clearing motion. The challenging as-
pect of this problem is that, to the right of the kitchen area, there are
two large rooms that are unreachable by the robot; object placements
in those rooms will be infeasible. So, the robot must clear obstacles
within the relatively tight space of the kitchen.

Figure 6.4 (Top-left) shows the results. In this case, pw-uct sam-
ples from the whole space, concentrating far too many of them in the
unreachable empty rooms. rand-doot also spends time partitioning
the big unreachable regions, due to its large exploration bonus; how-
ever it performs better than pw-uct because once the cells it makes
in the unreachable region get small enough, it starts concentrating in
the kitchen region. However, it performs worse than voot for simi-
lar reasons as in the Shekel problems: as soon as voot finds the first
placement inside the kitchen (i.e. first positive reward), it immedi-
ately focuses its sampling effort near this area with probability 1−ω.
This phenomenon is illustrated in Figure 6.5, which shows the values
of placements. We can also observe from Figure 6.4 (Bottom-left) that
voot clears obstacles much faster than the other methods; it clears
almost all of them with 750 simulations, while others require more
than 1700, which is about a factor of 2.3 speed-up.

The reinforcement learning algorithms, ppo and ddpg, perform
poorly compared to the tree-search methods. We can see that within
the first 250 simulations, their rewards grow just as quickly as for
the search algorithms, but they seem to get stuck at local optima,
clearing only one or two obstacles. This is because the problem has
two challenging characteristics: large future delayed rewards and
sparse rewards.

The problem has sparse rewards because most of the actions are
unreachable placements, or kinematically infeasible picks. It has large
delayed rewards because the reward function is inversely propor-
tional to the length of the clearing motion, but the first few objects
need to be moved far away from their initial locations to make the
subsequent objects accessible. Unfortunately, the RL methods come
with an ineffective exploration strategy for long-horizon planning
problems: Gaussian random actions1. This strategy could not dis- 1 In order to get the RL methods to

perform at all well, we had to tailor the
exploration strategy to compensate for
the fact that many of the action choices
are completely infeasible. Details are in
the appendix of our paper [63].

cover the delayed future rewards, and the policies fell into a local
optima in which they try to clear the first two objects with the least

71

possible cost, but blocking the way to the subsequent objects.
We now consider the conveyor belt problem (s0 shown in Fig-

ure 2.1 (left)). The challenge is the significant interdependence among
the actions at different time steps: the first two boxes are too big to
go through the door that leads to the bigger rooms, so the robot must
place them in the small first room, so that there is still room to move
the rest of the objects into the bigger rooms. Figure 6.4 (row 5, left)
shows the results. voot achieves the reward of a little more than 3

with 1000 simulations, while other methods achieve below 1 ; even
with 3000 simulations, their rewards are below 2, whereas that of
voot goes up to approximately 4. Figure 6.4 (row 5, right) shows that
voot finds a way to place as many as 15 objects within 1000 simu-
lations, whereas the alternative methods have only found plans for
placing 12 or 13 objects after 3000 simulations. We view each

Figure 6.5: Q̂(s, a) of pw-uct,
rand-doot, and voot (left to
right) after 50 visits to the place
node for the first object. Blue
and purple bars indicate values
of infeasible and feasible place-
ments, respectively. Solid robot
indicates the current state of
the robot, and the transparent
robots indicate the placements
sampled. Notice voot has far
fewer samples in infeasible
regions.

action-optimization problem (line 10 of Alg. 6) as a BBFO problem,
since we only have access to the values of the actions that have been
simulated, and the number of simulations is limited to Niter. The RL
approaches suffer in this problem as well, packing at most 8 boxes,
while the worst search-based method packs 13 boxes. Again, the
reason is the same as in the previous domain: sparse and delayed
long-term rewards.

6.6 Discussion and future work

We proposed a continuous MCTS algorithm in deterministic envi-
ronments that scales to higher-dimensional spaces, which is based
on a novel and efficient BBFO voo. We proved a bound on the regret
for voo, and used it to derive a performance guarantee on voot. The
tree performance guarantee is the first of its kind for search methods
with BBFO-type algorithms at the nodes. We demonstrated that both
voo and voot significantly outperform previous methods within a
small number of iterations in challenging higher-dimensional syn-
thetic BBFO and practical robotics problems.

72

We believe there is a strong potential for combining learning and
voot to tackle more challenging tasks in continuous domains, much
like combining learning and Polynomial UCT has done in the game
of Go [111]. We can learn from previous planning experience a policy
πθ , which assigns high probabilities to promising actions, using a
reinforcement-learning algorithm. We can then use voo with πθ ,
instead of uniform sampling.

Another extension is combining the PW techniques [19, 5] and
voot. The PW-algorithms primarily studies when to add a new action
to the existing set of actions, and uses rather primitive uniform sam-
pling to sample a new action. voot, on the other hand, is primarily
about which action to sample, and uses voo to sample a new action,
and it is rather primitive when to add an action. It simply uses a
fixed number of times to try an action. We believe we can devise an
algorithm by integrating these two techniques with complementary
strengths.

73

Part II

Task-and-motion planning

7
Learning to guide tamp

tamp encompasses a broader class of problems than g-tamp in that it
includes non-geometric and purely symbolic aspects, such as whether
an object is cooked. Such generality makes it difficult to design a vec-
tor representation of problems because each one involves different
sets of task constraints and symbolic attributes. To address this is-
sue, we propose the score-space representation, which abstracts away
from such variations [60]. In a score-space, a problem is represented
in terms of the scores of representative solutions. The similarity be-
tween two potential solutions is measured by the covariance of their
scores across different problem instances, which is estimated by the
estimator that we propose. Using this representation, we propose a
provably-efficient sequential prediction algorithm that predicts guid-
ance, which speeds up planning time by several factors.

7.1 Related work

There is a substantial body of work aimed at improving motion plan-
ning performance on new problem instances based on previous expe-
rience on similar problem instances [9, 50, 94, 52, 82, 95]. The typical
approach is to store a large set of solutions to earlier instances so
that, when presented with a new problem instance, one can (a) re-
trieve the most relevant previous solution and (b) adapt it to the new
situation. These methods differ in the way that they find the most
relevant previous solution and how it is adapted.

Several of these approaches define a similarity metric between
problem instances and retrieve solutions based on this metric. For
example, [50] use the distance between the start and goal pairs as
the metric, whereas, [94] based their metric on descriptions of quickly
generated low-quality solutions for the current and previous in-
stance. [52] use a mapping into a task-relevant space and measure
similarity in that space, with a learned metric.

Instead of defining solution similarity, [9] define relevance of ear-

lier solutions by measuring the degree of constraint violation, for
example collision, in the current situation. A related idea is devel-
oped by [95], where the search graph of past solutions is saved and
the search for the current problem instance is biased towards the part
of this past graph that is still feasible.

For more complex robotic planning, such as for mobile manipula-
tion in cluttered environments, complete solutions are more difficult
to adapt to new problem instances. In particular, the length of the
plans is highly variable and they contain both discrete and continu-
ous parameters.

Some earlier approaches have also focused on predicting partial
solutions, in the form of a goal state or subgoals, instead of a com-
plete solution. For instance, in the work of [26], the objective is to
learn from previous examples a classifier (or regressor) that, given a
hand-designed feature representation of a planning problem instance,
enables choosing a goal that leads to a good locally optimal trajec-
tory. In the approach of [33], the goal is to learn a model that predicts
partial paths or subgoals, from a given parametric representation of a
planning problem instance, aimed at enabling a randomized motion
planner to navigate through narrow passages.

Several approaches have been proposed for learning representa-
tions for robot manipulation skills with varying set of objects [74, 75].
Specifically, [74] proposes a feature selection method that, given a
certain basic features of objects in a scene, such as bounding boxes
describing their shapes, predicts relevance of each feature for the
given task. The relevant features are then used with a low-level robot
motion skill represented with a dynamic motion primitive. While
this approach is quite general, it still requires a human to design the
basic set of features that are relevant for the tasks that the robot will
encounter.

[136] proposed an approach to learn a representation for learning
a complete policy from RGB images. Authors designed an architec-
ture and defined a set of discrete high-level actions that allows an
agent to accomplish different tasks. Similar to our approach, they
learn a representation from planning experience. However, they
learn a complete policy, whereas our approach learns to predict so-
lution constraints. Moreover, their method does not take a robot
into account - for manipulation tasks, however, visual representa-
tion greatly suffers from occlusion by the end-effectors of the robot.
Our score-space representation abstracts away from this problem by
directly representing a planning scene with how well the predicted
constraints works.

Our approach can be seen as a method for choosing actions from
a library; several methods have been proposed for this problem.

76

[21] propose a method that finds a fixed ordering of the actions in
a library that optimizes a user-defined submodular function, for
example, the probability that a sequence of candidate grasps will
contain a successful one. Unlike our work, this method produces a
static list, which does not change across different problem instances.
Later, [22], generalized the approach by producing an ordered list of
classifiers (operating over environment features) that select actions
for a given problem instance. This approach again requires hand-
designed features for the problem instances.

We formulate our problem as a black-box function optimization
problem. In particular, box is motivated by the principle of optimism in
the face of uncertainty, which is well surveyed by [92]. The main idea
is to select the most “optimistic” item from the given set of items, by
constructing an upper bound on the values of un-evaluated items.
The performances of these algorithms are heavily influenced by how
the upper-bounds are constructed. For instance, doo (Deterministic
Optimistic Optimization), developed by [91], first constructs the
upper bound on the target function using manually specified semi-
metric and a smoothness assumption on the target function. It then
chooses the next point to evaluate based on this upper bound in
order to balance exploration and exploitation.

Another suite of algorithms for black-box function optimization
problems are Bayesian optimization algorithms [116, 127, 114]. In
Bayesian optimization, an upper bound of the target function is
constructed based on a hand-designed covariance matrix and the
Gaussian process assumption. For instance, [116] constructs an upper
bound using the confidence interval in an algorithm called Gaus-
sian Process Upper Confidence Bound (gp-ucb). At each time step,
gp-ucb evaluates the point that has the highest UCB value, observes
the function value, and updates the Gaussian process. It returns the
query point that resulted in the highest value.

The problem with these approaches is that, in general, they require
a human to design a similarity function on problem instances and
planning solutions: doo requires a semi-metric, and Bayesian opti-
mization algorithms require a kernel. This introduces human bias in
constructing the upper-bounds on the target function, which strongly
influences the performance of these algorithms. Moreover, as we have
shown in the introduction, designing such a function is not trivial:
even a small change in a problem instance may induce a large change
in scores.

Rather than relying on a hand-designed similarity function over
problem instances and planning solutions, our algorithm, box, op-
erates in a vector space of scores of possible solutions where the
correlation information among them can be computed easily.

77

7.2 Problem Formulation

Our premise is that calling the planner with a solution constraint,
although much more efficient than the completely unconstrained
problem, takes a significant amount of time and may generate signif-
icantly suboptimal plans if the solution constraint used is not a good
match for the problem instance. Given a new instance we will call
the planner with a fixed number of solution constraints and return
the best plan obtained. So, our problem is which solution constraints
should be tried, and in what order.

We formulate the problem as a black-box function optimization
problem over a discrete space of candidate solution constraints, and
use upper bounds constructed from experience on previous problem
instances as well as the accumulated experience on this instance to
determine which constraint to try next.

Formally, we have a sample space for problem instances, Ω, whose
elements ω are distributed according to P(ω); a space of possible
planning solutions, X ; and a space of solution constraints. The plan
solution space includes all possible assignments to all of the decision
variables, and the solution constraint space includes all possible
assignments to a subset of decision variables for the given planning
problem. The function J(ω, x) specifies the score of a solution x ∈ X
on problem instance ω ∈ Ω. We assume a planner π : Ω → X
that, given a problem instance ω can return a solution π(ω) ∈ X
that is either feasible or near-optimal depending on the nature of the
problem. In addition, we assume that, given a solution constraint θ,
the planner π will return π(ω, θ) ∈ X ,which is a plan subject to the
solution constraint θ; in general this solution will not be optimal (so
in general J(ω, π(ω)) > J(ω, π(ω, θ))), unless θ was perfectly suited
to the problem instance ω, but constraining the plan to satisfy θ will
make it significantly more efficient to compute. With a slight abuse of
notation, we will denote J(ω, θ) = J(ω, π(ω, θ)), the evaluation of the
solution constraint.

Let Θ = {θ1, . . . , θm} be a set of samples from the space of solution
constraints. Now, we formulate our problem as follows: given a
“training set” of example problem instances ω1, . . . , ωn sampled
identically and independently from P(ω), a discrete set of solution
constraints Θ̂, and the score function J(·, ·), generate a high-scoring
solution to the “test” problem instance ωn+1.

An interesting problem that we do not explicitly address in this
paper is how to select the subset of decision variables for specifying
constraints θ. In this paper, we manually choose a subset of decision
variables as solution constraints, and take the simple approach of
solving the training problem instances and then extracting the θ

78

values corresponding to these chosen constraints. The details of
constructing Θ are provided in Algorithm 9.

7.2.1 Black-box function optimization with experience

Instead of designing a problem-dependent representation for prob-
lem instances, we represent a problem instance with a vector of
scores of solution constraints Θ, where

Φ(ω) = [J(ω, θ1), · · · , J(ω, θm)]

Φ(ω) here is a random vector that maps a sample from the sam-
ple space of problem instances to Rm. Using this representation, our
training data constructed from n problem instances can be repre-
sented with a n×m matrix

D =

Φ(ω1)

Φ(ω2)
...

Φ(ωn)

that we call the score matrix. Now, given a new problem instance, ω,
our goal is to take advantage of one or more solution constraints in
Θ to find a high scoring plan without evaluating all of solution con-
straints in Θ. To do this, we will develop a procedure that evaluates
J(ω, θ) by computing a plan π(ω, θ) for k << m values of θ.

We begin by making use of the intuition that some solution con-
straints (via the plans they generate) are inherently more useful than
others, independent of the problem instance. This leads to a naive
score-space approach, static, that tries solution constraints in Θ in
a static order according to the empirical mean scores in the 1 × m
vector computed by

µ̂ =
1
n

n

∑
i=1

Di (7.2.1)

where i indicates the row of the score matrix, and then returns the
highest scoring plan obtained from trying the top k solution con-
straints.

This simple approach does not take advantage of the fact that
there are correlations among the scores of solution constraints across
problem instances; that is, the score of a solution constraint that has
been already tried on this problem instance can inform us about the
scores of other untried but correlated solution constraints. In order
to exploit correlation, we assume that the random vector Φ is dis-
tributed according to a multivariate Gaussian distribution, N (µ, Σ).

79

Now the score matrix is used to estimate the parameters of the
prior distribution of Φ, µ̂ and Σ̂, where µ̂ is defined in equation 7.2.1
and

Σ̂ =
1

n− 1

n

∑
i=1

(Di − µ̂)T(Di − µ̂) (7.2.2)

is a m×m covariance matrix. This prior distribution is updated given
evidence about a new problem instance, in the form of score values.
Algorithm 8 contains detailed pseudo-code for an algorithm based
on these ideas, called box, which stands for Blackbox Optimization
with eXperience. It takes as input: ωn+1, the “test” planning problem
instance; ζ, a constant governing the magnitude of the exploration; k,
the number of solution constraints to evaluate; Θ, the set of solution
constraints in the training set; µ̂ and Σ̂, the parameters for the prior
distribution of Φ(ωn+1); J, the scoring function; and π, the planner.

The algorithm first estimates the parameters of the prior distri-
bution. Then, it iterates over solution constraints: first it selects a
solution constraint, then it uses the chosen constraint to construct a
new plan, and the score of that plan combined with the prior com-
puted from D is used to determine the next solution constraint to
evaluate.

We will use Θt to denote the constraints that have been tried up
to time t, Θ̄t = Θ \ Θt to denote the ones not tried, θ(t) to denote
the index of the solution constraint chosen at time t, x(t) to denote
the associated plan, J(t) to denote the score of that plan on the given
problem instance, and J1:t and J1:t to denote the scores of tried and
untried solution constraints up to time t, respectively.

We will use this constraint notation to refer to corresponding rows
and columns in the mean vector and empirical covariance matrix. For
instance, at time t, we can rearrange the covariance matrix Σ̂ as[

Σ̂Θ̄t ,Θ̄t
Σ̂Θ̄t ,Θt

Σ̂Θt ,Θ̄t
Σ̂Θt ,Θt

]
where the subscript represents a set of rows and columns of the
matrix Σ̂. This way, the top-left block matrix is the covariance among
untried solution constraints, the top-right and bottom-left represent
covariance among tried and untried solution constraints, and the
bottom-right represents the covariance among the tried solution
constraints.

In line 1 of Algorithm 8, we first estimate the prior distribution of
the score function for a new problem instance ωn+1. For the consis-
tency of notations we assume µ̂(0) = µ̂ and Σ̂(0) = Σ̂. Line 2 selects
the next solution constraint to try based on the principle of optimism
in the face of uncertainty, by selecting the one with the maximum up-
per confidence bound (UCB). The next three lines generate a plan

80

Algorithm 8 BOX(ωn+1, C, k, Θ, D, J, ß)

1: Compute µ̂(0) and Σ̂(0) according to Eqns 7.2.1 and 7.2.2
2: for t = 1 to k
3: θ(t) = arg maxi∈Θ̄t

µ̂
(t−1)
i + ζ ·

√
Σ̂(t−1)

ii // ith entry and ith diagonal entry
4: x(t) = π(ωn+1, θ(t))

5: J(t) = J(ωn+1, x(t))
6: Compute µ̂(t) and Σ̂(t) using eqn. 7.2.3
7: end for
8: t∗ = arg maxt∈{1,··· ,k} J(t)

9: return x(t
∗)

Algorithm 9 GenerateTrainingData(n, π, J, [ω1, · · · , ωn])

1: for ω in [ω1, · · · , ωn]

2: xi = π(ω) // repeat to get multiple solutions if desired
3: θi = extractConstraint(xi) // elements of Θ
4: end for
5: for ω in [ω1, · · · , ωn]

6: for θ in Θ
7: J(ω, θ) = J(ω, π(ω, θ)) // elements of D
8: end for
9: end for

10: return D, Θ

using the chosen solution constraint, and then evaluate it. At itera-
tion t, given the experience of trying Θt = [θ(1), · · · , θ(t)] and getting
scores J1:t := [J(1), · · · , J(t)], our posterior on the scores of the untried
solution constraints, denoted J1:t, is

J1:t|J1:t ∼ N (µ̂
(t)
Θ̄t

, Σ̂(t)
Θ̄t ,Θ̄t

)

where
µ̂
(t)
Θ̄t

= µ̂Θ̄t
+ Σ̂Θ̄t ,Θt

(Σ̂Θt ,Θt)
−1(J1:t − µ̂Θt)

Σ̂(t)
Θ̄t

= Σ̂Θ̄t ,Θ̄t
− Σ̂Θ̄t ,Θt

(Σ̂Θt ,Θt)
−1Σ̂Θt ,Θ̄t

(7.2.3)

The constant ζ governs the size of the confidence interval on the
scores. We show how the constant can be set through theoretical
analysis of regret bounds in the next section. The number of eval-
uations k should be chosen based on the desired trade-off between
computation time and solution quality.

In order to create the score matrix D and solution constraints Θ,
we run Algorithm 9. This algorithm takes as input n, the number of
training problem instances, π a planning algorithm that can solve
problem instances ωn+1 without additional constraints, J, the scor-
ing function for a plan, and [ω1, · · · , ωn], a set of training sample
problem instances drawn iid from P(ω). For each problem instance,
a solution is generated using π, and a constraint is extracted from

81

the solution and added to set Θ. The process of extracting constraints
is domain-dependent; several examples are illustrated in the exper-
iment section. Each new solution constraint is used to generate a
solution π(ωn+1, θ) whose score J(ωn+1, θ) is stored in the D matrix.

7.2.2 Illustrative examples

In Figure 7.1a, we show an example of a score matrix D obtained by
running Algorithm 9. In this figure, the target object is represented
with a black circle, and the blue rectangular objects represent obsta-
cles. We have four training problem instances, shown across the rows
of the score matrix, and the four constraints across the columns.

For illustrative purposes, we assume a simple binary score func-
tion, which outputs one if a constraint is feasible for the given prob-
lem instance, and zero otherwise. For example, for the first training
problem instance, the top-approaching direction is feasible because
there is no obstacle blocking the object in that direction, whereas the
left-approaching direction is blocked with an obstacle. For such bi-
nary score function, other prior assumption on the target function,
such as Bernoulli distribution, might be more suited; however, we
will in general consider score functions that take on real numbers, as
we will demonstrate in our experiment section.

(a) Score matrix, D

(b) Covariance matrix, Σ̂

(c) Two new problem instances

Figure 7.1: Score and covariance
matrices for running box, and
two new problem instances

We now provide concrete examples of running box on some sim-
ple examples. Suppose that our constraint is a set of four different
grasps, defined by approach vectors, from the top, left, bottom, and
right. Our problem is to plan a collision-free path to grasp a target
object. The planner is constrained to use the chosen grasp approach
direction to grasp the target object. We arbitrarily choose ζ = 1.96
to ensure 95% confidence interval in our experiments, but it could be
tuned via cross validation for better performance.

In Figure 7.1b, we show the result of computing the covariance
matrix Σ̂ using D and equation 7.2.2. In order to understand box more
thoroughly, we note some salient correlation information in Σ̂. First,
the top-approaching constraint is positively correlated with the right-
approaching direction, whereas it is negatively correlated with the
bottom-approaching direction. So, in a new problem instance, if we
find that the top-approaching constraint fails, then it will increase the
UCB value of the score for the bottom-approaching direction while
decreasing the UCB value of the right-approaching direction.

We will illustrate these types of behaviors of using two problem
instances shown in Figure 7.1c, where the task is to plan a collision-
free path to grab the circular magenta object, which is occluded by
red obstacles. Clearly, for the problem shown in the first row, the
only constraint that would work is the bottom-approaching direc-

82

tion. For the second problem instance, the left-approaching direction
would be the only feasible constraint.

(a) Evolution of µ and UCBs for the first problem instance

(b) Evolution of µ and UCBs for the second problem instance

Figure 7.2: Illustration of how
UCBs change as box uses con-
straints in two different prob-
lem instances

Figure 7.2 shows the evolution of UCB values,

µ̂
(t)
i + ζ ·

√
Σ̂(t)

ii

of the different constraints we denoted with i, as box suggests con-
straints and receives feedback from the planner and the environ-
ment. For example, from the score matrix shown in Figure 7.1a, we
can see that the average values of the scores for top-,left-, and right-
approaching directions are 0.5. The elements in the diagonal of the
covariance matrix, which are variances of the scores of different con-
straints, are approximately 0.33 for these three constraints. These give
approximate UCB values of 0.83 for these constraints.

The first plot in Figure 7.2 (a) shows the UCB values when t = 1.
There is a tie among UCB values of the first, second, and the last
constraints, so we randomly break the tie and select the second con-
straint, marked with the red circle. After trying to plan a path with
this constraint, we see that it is infeasible. The second plot shows
the updated UCB values after observing that the second constraint
has a score of zero, using Eqn 7.2.3. We see that the UCB values of
the first and the last constraint remained unchanged, while the third
constraint has increased. This is because the second constraint has
zero correlation with the first and last constraints, but has negative
correlation with the third constraint, as shown in the Figure 7.1b. Af-
ter this, the last and the first constraints have the same UCB values,
and we again randomly break the tie; unfortunately, we chose the
fourth one, but from this we can update our UCBs such that all other
constraints except the third one are infeasible.

83

This example is a particularly hard for box, because from our prior
experience the third constraint was feasible only 1/4 of the time with
the lowest variance. Therefore, our belief about its score was quite
low. We now consider the second problem instance in Figure 7.1c,
which is more favorable. Figure 7.2 (b) shows the evolution of UCB
values. At t = 1, shown in the first plot, we randomly break the tie,
and chose the first constraint. After observing this is infeasible, at
t = 2, the UCB value of the fourth constraint, which has positive
correlation with the first constraint, also reduces to almost 0. The
third constraint was negatively correlated with the first constraint,
so its UCB value increased; however, the second constraint, which is
the correct constraint for this problem instance, has zero correlation
with the first constraint, and its UCB value is higher than the third
one even after the update. Hence box ends up choosing the feasible
constraint after just a single mistake.

7.3 Constructing a minimal set

In this section, we propose an algorithm for box which tries to re-
duces the cardinality of Θ while maintaining important properties,
such as the probability that the set will contain a constraint that is
applicable to a new problem instance.

We begin with the problem formulation. We wish that, for all
problem instances, there is at least one solution in our set. We de-
fine a constraint to be feasible for a problem instance if we can find
a solution that satisfies it. We will say a constraint covers a problem
instance if it is feasible for a problem instance. Given a set of con-
straints, Θ, we are interested in a minimum cardinality subset of the
original constraint set that covers all the problem instances in the
training data. We will call such subset a minimal set, and denote it
with Θmin.

Out of all the minimal sets, we are interested in those whose prob-
ability of success is maximized, so that the set can be applied to a
wide range of problem instances. The probability of success is mea-
sured by

P(Θmin succeeds on ω) = 1−
k

∏
θ∈Θmin

(1− pθ)

where k is the cardinality of the minimal set, and pθ is the probability
of constraint θi in the minimal set being feasible. Notice that pθ can
be approximated by empirical counts of successes divided by the
number of problem instances from our training data. We will call a
minimal set whose probability of success is maximum a maximally
successful minimal set.

84

Out of all the maximally successful minimal sets, we are interested
in those that give maximum information on the values of the scores
of other constraints, in order to minimize the number of evaluations.
First note that the differential entropy h of the multivariate Gaussian
distribution N (µ, ΣΘmin) over a random vector Θmin is defined by

h(Θmin) =
|Θmin|

2

[
1 + log(2π)

]
+

1
2

log det ΣΘmin

where n is |Θmin| and |ΣΘmin | is a determinant of the covariance ma-
trix ΣΘmin . Now, using this, we can define the gain function, g, which
characterizes the information gain for scores of other constraints
given an evaluation of a constraint θi

g(ΣΘmin , θi) = h(Θmin)− h(Θmin|θi)

= log(|ΣΘmin |)− log(|ΣΘmin |θi
|)

where |ΣΘmin | is the determinant of the covariance matrix of the min-
imal set Θmin, and |ΣΘmin |θi

| is the determinant of the covariance
matrix of the minimal set after evaluating the constraint θi in Θmin.
We will call a maximally successful minimal set that maximizes the
gain function an optimally minimal set (OMS) and denote it with Θ∗min.

We now formulate the optimally minimal set construction problem
as follows. Given an original constraint set Θ, construct a minimal set
Θmin that maximizes the function

c(Θmin) = ∑
θ∈Θmin

pθ + λ · g(ΣΘmin , θ)

The first term is responsible for maximizing the probability of success
for Θmin, and the second term is responsible for maximizing the sum
of information gain of each constraint in Θmin. Now the optimally
minimal set is defined as

Θ∗min = arg max
Θmin∈2Θ

c(Θmin)

Clearly, constructing Θ∗min is an NP-complete problem1 This mo- 1 We can make a polynomial-time
reduction to the minimum set-cover
problem.

tivates us to devise a greedy approach that approximately optimizes
the function c, as described in Algorithm 10.

This algorithm takes as inputs: the experience matrix D, the orig-
inal constraint set Θ, the approximated parameters of a distribution
of score vectors µ̂ and Σ̂, the number of problem instances n and the
number of constraints of the original set m, and outputs an approxi-
mation of an OMS, L.

It operates by progressively constructing a list of constraints, L,
using the gain function and probability of success of a constraint,
which is measured by the mean score function µ.

85

Algorithm 10 ConstructOMS(D, Θ, µ̂, Σ̂, n, m)

θnext = arg maxθ∈Θ µθ

L = CreateList(θnext)

Cmax = nCoveredBy(L, {1, · · · , n})
while Cmax 6= n

U = {1, · · · , n}) \ CoveredBy(L, {1, · · · , n})
Θcand = {i|maxi∈1,··· ,m len(CoveredBy({L, i}, U))}
Θcand = {i|i = arg maxi∈Icand

µi}
θnext = arg maxθ∈Θcand

g(ΣL, θ)}
L = {L, θnext}
Cmax = nCoveredBy(L, {1, · · · , n})

end while
return L

It begins by first adding the index of the constraint that has the
maximum mean score value. Then, it checks the number of prob-
lem instances covered by the current list of constraints L, using the
helper function nCoveredBy. It then computes the uncovered prob-
lem instance indices, U. The algorithm then computes the set of next
candidate constraint to add to L, Θcand, by taking the constraint that
maximally covers the currently uncovered indices U. This maximal
coverage step is to ensure that we are minimizing the cardinality of L.

From this set, the algorithm updates Θcand by considering only
those constraints whose mean score is the maximum; it is still a set,
since there may be a tie in mean scores. From this set, the algorithm
chooses the next constraint to add to L, by taking the one that has
the maximum gain function value. We update the number of prob-
lem instances covered, and repeat until we cover all the problem
instances. Lastly the algorithm returns L, the set of constraints that
approximates the OMS.

7.4 Experiments

We demonstrate the effectiveness of score-space algorithms static and
box in four robotic planning domains: grasp-selection, grasp-and-
base-selection, pick-and-place, and conveyor-belt unloading. Each of
these domains has several decision variables and different types of
solution constraints. For all the problems, a problem instance varies
in the sizes of the objects being manipulated, and the poses of obsta-
cles.

In each of these domains, π(·, θ) finds values of decision vari-
ables that are not specified in θ. For example, for the grasp-and-base-
selection domain π(·, θ) consists of an IK solver and a path planner,
and θ specifies values such as a robot base pose or a grasp for picking
an object that is relevant for achieving a goal. To implement raw-

86

planner, π(ω), we first uniformly sample θ from their original
space, such as R2 for robot base pose, instead of from Θ, and then
use π(ω, θ) with the sampled constraints.

We are interested in both running time and solution quality. We
compare score-space algorithms, static and box, with rawplan-
ner as well as two other methods that generate plans by selecting
a subset of size k of the solution constraints from Θ and return the
highest scoring one. As previously mentioned, static sequentially
selects constraints based on their average score values, without con-
sidering their correlation information. rand selects k of the θi values
at random from Θ̂; doo is an adaptation of doo [91] to optimization
of a black-box function over a discrete set, which is Θ in our case.
Like box, it alternates between evaluating θj and constructing up-
per bounds on the unevaluated θi for k rounds. It assumes that the
function is Lipschitz continuous with constant λ, and uses the bound
Jω(θi) ≤ Jω(θj) + λ · l(θi, θj) for some semi-metric l, λ ∈ R. We use
the Euclidean metric for l, and λ = 1.

To show that score-space algorithms can work with different plan-
ners, we show results using two different planners: bidirectional
RRT with path smoothing implemented in OpenRAVE [23], seeded
with a fixed randomization seed value, and Trajopt [108]. In the pick-
and-place and conveyor-belt unloading domains, where there is a
narrow-passage path planning problem, Trajopt cannot find feasible
paths without being given a good initial solution, so we omit it.

In each domain, we report the results using two plots, the first
showing the time to find the first feasible solution and the second
showing how the solution quality improves as the algorithms are
given more time. Each data point on each plot is produced using
leave-one-out cross-validation. That is, given a total data set of n
problem instances and associated solutions, we report the average of
n experiments, in which n − 1 of the instances are used as training
data and the remaining one is used as a test problem instance.

Grasp-selection, grasp-and-base-selection, and pick-and-place
problems are satisficing problems in which we are mainly interested
in finding a feasible solution. So, a binary score function that spec-
ifies the feasibility of a given plan would be sufficient to use box.
However, in many problems, we want to find a low-cost plan, rather
than just a feasible one, using box’s ability to seek optimal solutions
from its library of constraints.

To do this, we design a score function that measures the trajectory
length for a feasible plan, and that assigns a large cost if the plan is
infeasible in the given problem instance. So, given a plan π(ω) =

(q1, · · · , ql) where qi denotes a configuration of the robot, our score

87

function is

Jω(x) =

−∑l−1
i=1 ||qi+1 − qi|| if x feasible in ω

d, otherwise
(7.4.1)

where || · || denotes a suitable distance metric between configura-
tions and d = min(D) − mean(D). This is our strategy for finding
a domain dependent minimum score for failing to solve a problem.
Conveyor-belt unloading domain, on the other hand, is not a satisfic-
ing problem: we are interested in maximizing the number of objects
that a robot packs into a tight room. The Conveyor-belt unloading
domain, is not a satisficing problem: we are interested in maximizing
the number of objects that the robot packs into a tight room. There-
fore, naturally, our score function is defined as the number of objects
packed by a plan π(ω).

7.4.1 Grasp-selection domain

Our first problem domain is to find an arm motion to grasp an object
that lies randomly either on a desk or a bookshelf, where there also
are randomly placed obstacles. Neither the grasp of the object nor the
final configuration of the robot is specified, so the complete planning
problem includes choosing a grasp, performing inverse kinematics to
find a pre-grasp configuration for the chosen grasp, and then solving
a motion planning problem to the computed pre-grasp configuration.

Figure 7.3: Two instances of the
grasp selection domain. The
arrangement and number of
obstacles vary randomly across
different planning problem in-
stances. The objective is to find
an arm trajectory to a pre-grasp
pose for the blue box, marked
with a circle, whose pose is
randomly determined in each
problem instance

A planning problem instance for this domain is defined by an
arrangement of several objects on a table. Figure 7.3 shows two in-
stances of this problem, which are also part of the training data.
There are up to 20 obstacles in each problem instance. The robot’s
active degrees of freedom (DOF) are its left and right arms, each
of which has 7 DOFs, and torso height with 1 DOF, for a total of
15 DOF. Θ consists of 81 different grasps per each arm, computed
using OpenRAVE’s grasp model function. Θ would be all possible
grasps for an object. Notice that since our search space for solution
constraints is discrete, rawplanner is equivalent to rand.

88

Given a solution constraint θ, which is a grasp (pose of robot hand
with respect to the object) and an arm to pick the object with, it re-
mains for π(ω, θ) to find an IK solution and motion plan, which can
be expensive, but predicting a good grasp makes the overall process
much more efficient. The trajectory of the arm to the pre-grasp con-
figuration, with the base fixed, is scored according to eqn. 7.4.1, with
a score of d assigned to problem instances and constraints for which
no solution is found within a fixed amount of computation.

(a) Grasp-selection (RRT) (b) Grasp-and-base selec-
tion (RRT)

(c) Pick-and-place (RRT)

(d) Grasp-selection (TrajOpt)(e) Grasp-and-base selection
(TrajOpt)

Figure 7.4: LOOCV estimate
of time to find first feasible
solution, for each method in
different domains. Whiskers
indicate 95% confidence inter-
val on mean. The top row uses
RRT and the bottom row uses
TrajOpt

(a) Grasp-selection (RRT) (b) Grasp-and-base selec-
tion (RRT)

(c) Pick-and-place (RRT)

(d) Grasp-selection (TrajOpt)(e) Grasp-and-base (TrajOpt)

Figure 7.5: Solution score ver-
sus run time for different al-
gorithms in various domains.
The time axis goes until the
first algorithm reaches 95%
of the optimal score, marked
with magenta. This optimal
line is obtained by taking the θ

from Θ that achieved maximum
score for each problem instance.
The top row uses RRT and the
bottom row uses TrajOpt.

The experiments were run on a data set of 1800 problem instances.
Figure 7.4 (a) compares the time required by each method to find

89

the first feasible plan with RRT as the path planner, and Figure 7.4
(d) compares the time with TrajOpt as the path planner. In both of
the plots, we can observe that the score-space algorithms static and
box outperform all other algorithms in terms of finding a good so-
lution with a given amount of time. box performs about three times
faster than static, showing the advantage of using the correlation in-
formation. Compared to doo and rand, box is more than nine times
faster. doo does only slightly better than rand, which illustrates that
in the space of grasps, the Euclidean metric is not effective.

Figure 7.5 (a) compares the solution quality vs time when RRT is
used; figure 7.5 (d) compares the same quantities when TrajOpt is
used. Here, the score-space algorithms again outperform the other
algorithms, with box outperforming static.

7.4.2 Grasp-and-base selection domain

In this experiment, we evaluate how the score-space algorithms per-
form when we construct the matrix Θ by sampling from a continuous
space. Here, the robot needs to search for a base configuration, a
left arm pre-grasp configuration, and a feasible path between these
configurations to pick an object.

A planning problem instance is again defined by the arrange-
ment of objects. Figure 7.6 shows three different training problem
instances. We have 20 rectangular boxes as obstacles, all resting on
the two tables both of which remain fixed in all instances. For each
of the red obstacles and the blue target object, the (x, y) location and
orientation in the plane of the table are randomly chosen subject to
the constraint that they are not in collision. It is possible that the
problem instances will be infeasible (the target object is too occluded
or kinematically unreachable by the robot). The robot always starts at
the same initial configuration.

The robot’s active DOFs include its base configuration, torso
height, and left arm configuration, for a total of 11 DOF. A solution
constraint for this domain consists of the robot base configuration to
pick the target object, (x, y, ψ), where ψ is an orientation of the robot,
as well as one of 81 grasps from the previous section.

The solution constraints in this case are the grasp g, and the base
configuration k. Given a planning problem instance with no con-
straints, the rawplanner for this domain performs three sampling
procedures, using a uniform random sampler, backtracking among
them as needed to find a feasible solution:

1. Sample a base configuration, k = (x, y, ψ), from a circular region
of free configuration space, with radius equal to the length of the
robot’s arm, centered at the location of the object.

90

Figure 7.6: Three instances in
which the robot must select
base configuration, grasp, and
paths, to pick the target object
(blue). The poses of the objects
are randomly varied between
instances.

2. Sample, without replacement, from the 81 grasps until a legal one
is found, i.e. one for which there is an IK solution in which the
robot is holding the target object using that grasp in a collision-
free configuration.

3. Use bidirectional RRT or TrajOpt to find a path for the arm and
torso between the configurations found in steps 1 and 2.

We assume that the configuration from step 1 is reachable from the
initial configuration. To extract a solution constraint from the result-
ing plan, we simply return the base configuration from step 1 and the
grasp from step 2.

Unlike rawplanner, which has to search for k and g, π(ω, θ) sim-
ply solves the inverse kinematics and motion planning problems as in
the previous example. The trajectory of the arm to the pre-grasp con-
figuration, with the base fixed according to the constraint, is scored
according to equation 7.4.1, with a score of d assigned to problem in-
stances and constraints for which no feasible solution is found within
a fixed number of iterations of the RRT. The experiments were run on
a data set of 1000 problem instances. The set Θ contained 1000 pairs
of grasp and robot base configuration, each extracted from a different
problem instance.

Figures 7.4 (b) and 7.4 (e) show the time required by each method
to find the first feasible plan, using RRT and TrajOpt as the planner.
The score-space algorithms perform orders of magnitude better than
the other algorithms, with box again outperforming static. doo and
rand do provide some advantage by using previously stored so-
lution constraints compared to rawplanner. rawplanner has to
sample in the continuous space of base configurations and check
whether an IK solution and feasible path exist by running IK and
path planning. This causes a significant increase in time to find a
solution.

Figure 7.5 (b) compares the solution quality vs time when RRT is
used and Figure 7.5 (e) compares the same quantities when TrajOpt is
used. Again, the score-space approaches outperform all other meth-
ods, with box performing better than static, by using the correlation

91

Figure 7.7: Three problem in-
stances from the pick-and-place
domain. The robot’s initial con-
figuration and the black object’s
initial pose are fixed across
different planning scenes, but
other objects’ poses and the
black object’s length vary.

information from the score space. doo and rand perform similarly,
mainly because that simple Euclidean distance is not effective for the
hybrid space of base configuration and grasps.

7.4.3 Pick-and-place domain

In this experiment, with problem instances as shown in figure 7.7, we
introduce solution constraints involving the placements of objects.
Here, the robot needs to pick a large object (shown in black) up off
of a table in one room, carry it through a narrow door, and place
the object on a table. The initial poses of the target object and the
robot are fixed, but problem instances vary in terms of the initial
poses of 28 obstacles on both the starting and final tables, which are
chosen uniformly at random on the table-tops subject to non-collision
constraints, and the length of the target object, which is chosen at
random from three fixed sizes.

The robot’s active DOFs are the same 11 DOFs as in the previous
problem domain. The solution constraints in this domain consists of
grasp g to pick the object, o, the placement pose of the object on the
table in the back room, kb, the pre-placement base configuration of
the robot for placing the object at pose o, and ksg, the subgoal base
configuration for path planning through the narrow passage to kb

from the initial configuration.
Given a problem instance with no constraint, rawplanner per-

forms six sampling procedures, similarly to the previous domain,
using a uniform random sampler:

1. Sample a grasp g, without replacement, from the 81 grasps until a
legal one is found.

2. Plan a path for the arm and torso to the pre-grasp configuration
found in step 1. If none is found, choose another grasp.

3. Sample a collision-free object pose o on the table in the other
room.

4. Sample kb, the pre-placement base configuration, from a circular
region of free configuration space around o, with radius equal to

92

the length of the robot’s arms. If none is found, go back to the
previous step.

5. Plan a path from the initial configuration to kb. If none is found,
go back to the previous step.

6. Plan a path from kb to a place configuration for putting the object
down at o. If none is found, go back to the previous step.

In contrast, given a solution constraint, π(ω, θ) simply solves for
inverse kinematics and path plans.

Figure 7.8: Two instances of the
conveyor belt domain

Figure 7.9: A solution for the
conveyor belt domain

The experiments were run on a data set of 1500 problem instances,
with 500 instances per rod size. The set Θ̂ contained 1000 tuples of
solution-constraint values, obtained first by running Algorithm 9 and
then randomly subsampling them to reduce the size to 1000.

Figure 7.4 (c) shows the time required by each method to find the
first feasible plan. Again, the score-space algorithms significantly
outperform the other algorithms and box outperforms static. One
noticeable difference between this domain and the previous two is
that an ineffective solution constraint takes a long time to evaluate,
because computing a path plan or IK solution for an infeasible con-
straint is computationally expensive. This is evident in performance
of rand and doo which perform worse than rawplanner as they
tend to choose solution constraints that are infeasible and expensive
to evaluate.

Figure 7.5 (c) shows the average solution score as a function of
computation time. The graphs show a similar trend as in the previ-
ous experiments, with score-space algorithms outperfoming the other
algorithms, and box performing better than static. The fact that this
domain requires a significant amount of time to try an ineffective
solution constraint is again evident in doo’s plot, where consecutive
dots have a large gap between them. box and static are able to avoid
this problem by exploiting the score-space information.

7.4.4 Conveyor belt unloading domain

In this domain, the robot has to manipulate box-shaped objects us-
ing two-handed grasps. The robot’s objective is to receive five box-
shaped objects with various sizes from a conveyor belt and pack
them into a room with a narrow entrance. A problem instance is
defined by the shapes and order of the objects that arrive on the con-
veyor belt. Examples of problem instances are shown in Figure 7.8,
and a solved problem instance is shown in Figure 7.9.

The robot must make a plan for handling all the boxes, including
a grasp for each box, a placement for it in the room, and all of the
robot trajectories. The initial base configuration is always fixed at the

93

conveyor belt. After it decides the object placement, which uniquely
determines the robot base configuration, a call to an RRT is made to
find, if possible, a collision-free path from its fixed initial configura-
tion at the conveyor belt to the selected placement configuration. The
robot cannot move an object once it has placed it.

The three previous problems involve an infinite branching factor,
but a relatively shorter planning horizon than this problem: if we
assume that a call to a motion planner is a “step” in our plan, since
we are using it as a primitive planner, the grasp-selection domain has
a horizon of one, the grasp-base-selection domain is a has a horizon
of two (for base planning and arm planning for picking an object),
and the pick-and-place domain has a horizon of three (for picking
an object, moving robot’s base, and then to place the held object).
The conveyor-belt domain requires a horizon of ten, for picking and
placing five objects in total.

Further, this domain is particularly challenging compared to the
previous experiments for two reasons. First, the robot is operating
in an environment with tight free-space, in which there may or may
not be a collision-free path from one robot configuration to another.
If the object placements are not carefully chosen, calls to the motion
planner will be extremely expensive, either because they are infea-
sible and will have to run until a time-out is reached, or because the
tolerances are tight and so even if the problem is feasible, it may run
for a long time or time out. Second, they contain a large volume of
“dead-end” states that require the task-level planner to backtrack. For
example, if the planner greedily places early objects near the door,
then it will eventually find that it is infeasible to place the rest of the
objects and will have to backtrack to find different placements of
those objects.

As mentioned, we have a significantly longer horizon planning
problem than the previous domains. Therefore, we use graph-search
with the sampled operators as our rawplanner. It proceeds as fol-
lows:

1. Place the root node on the search agenda.

2. Pop the node from the agenda with the lowest heuristic value
(estimated cost to reach the goal)

3. Expand the popped node by generating three operator instances
by sampling their parameters, and add their successor states on
the search agenda.

4. If the popped node is a root node, add it back to the queue after
expansion

94

5. If at the current node we cannot sample any feasible operators,
then we discard the node and continue with the next node in the
agenda.

6. Go to step 2 and repeat until we arrive at a goal state.

(a) Time to pack four objects for the
conveyor belt domain using RRT

(b) Solution score vs run time for the
conveyor belt domain using RRT

Figure 7.10: LOOCV estimates
of different performance met-
rics for the conveyor belt do-
main

We have two operators: pick and place. To sample parameters for
the pick operation, the raw planner rawplanner executes the follow-
ing steps:

1. Sample a collision-free base configuration, (x, y, ψ), uniformly
from a circular region of free configuration space, with radius
equal to the length of the robot’s arm, centered at the location of
the object, using a uniform sampler.

2. With the base configuration fixed at (x, y, ψ), sample (d, h, γ),
where d and h are in the range [0.5, 1], and γ is in the range [π

4 , π],
uniformly. If an inverse kinematics (IK) solution exists for both
arms for this grasp, proceed to step 3, otherwise restart.

3. A linear path from the current arm configuration to the IK solu-
tion found in step 2 is planned.

At each stage, if a collision is detected, this means that the sampled
parameters are infeasible, so sampling proceeds from the step 1

We assume that the conveyor belt drops objects into the same pose,
and the robot can always reach them from its initial configuration
near the conveyor belt, so we omit step 3. From a state in which the
robot is holding an object, it can place it at a feasible location in a
particular region. To sample parameters for place, rawplanner exe-
cutes following steps:

1. Sample a collision-free base configuration, (x, y, ψ), uniformly
from a desired region R.

2. Use bidirectional RRT from the current robot base configuration to
(x, y, ψ).

The experiments were run on a dataset of 468 problem instances.
The solution constraints in this domain consists of the base config-
uration for the pick operator, and the base configuration for place
operator. The size of Θ was 400, obtained by running Algorithm 9 on
total of 468 problem instances and then randomly subsampling them
to reduce the size to 400.

Figure 7.10a shows the time required by each method to pack four
objects. Again, the score-space algorithms significantly outperform
the other algorithms and box outperforms static. In this domain,
each evaluation of a constraint is significantly longer than in the pre-
vious domains, because trying a constraint involves calls to an RRT

95

up to ten times, some of which may be an infeasible motion planning
problem. We also notice that doo does not perform as badly as in the
previous domains, because the constraints are defined on the base
poses of robots, in which Euclidean distance is a reasonable metric.

Figure 7.10b shows the average solution score as a function of
computation time. The graphs show a similar trend as in the previ-
ous experiments, with score-space algorithms outperfoming the other
algorithms, and box performing better than static. Compared to the
previous domains, the difference between box and static is much
smaller. This is because in this domain, any strategy that packs ob-
jects inside first and then gradually towards the narrow entrance will
tend to have high scores. Therefore, static, which uses the mean of
the scores, works reasonably well, although box generally does better.

7.4.5 Experiments with optimally minimal set

Figure 7.11: A comparison
of time to find a first feasible
solution for grasp-and-base-
selection domain (left), pick-
and-place domain (middle),
and conveyor belt domain
(right). minset refers to run-
ning box with the constraint
set found by Algorithm 10, and
allset refers to running BOX us-
ing the original set Θ. box time
refers to time spent (mostly)
inverting the covariance matrix,
and planning time refers to
time spent on planning using
chosen constraints.

The purpose of this experiment is to verify our hypothesis that reduc-
ing the size of the constraint set reduces the time for matrix inversion
involved in updating the mean and covariance matrix in box, as well
as the time to find the first feasible solution. We test Algorithm 10

in the first three problems previously solved using box with full
constraints, the grasp-and-base-selection domain, pick-and-place do-
main, and conveyor-belt domain, and provide comparisons. We omit
the grasp-selection domain because it already has a small constraint
set of size 162, compared to 1500,1000, and 500 for the other three
domains.

Using Algorithm 10, we were able to reduce the constraint set size
significantly. For the grasp-and-base-selection domain, the algorithm
reduced it to 41 from 1500 for the pick-and-place domain it reduced
the constraint set size to 69 from 1000, and for the conveyor-belt
domain it reduced from 500 to 76.

Figure 7.11 shows the times to find a first-feasible solution for
these domains using the reduced constraint set. As we can see, it
reduces both planning time and box time, which confirms our hy-
pothesis. In fact, in all of the domains, it reduced the box time, which
mostly consists of covariance matrix inversion time, to almost zero.
In terms of reduction in planning times, the reduction was approxi-
mately a factor of around 3 for the grasp-and-base-selection domain.
The reduction is smaller in the pick-and-place and conveyor belt
domains, although there is a notable reduction. The reason that the
reduction is smaller in these two domains is because there generally
is a smaller reduction in variance of scores of other constraints com-
pared to the grasp-and-base-selection domain when one constraint is
evaluated.

96

7.5 Discussion and future work

In this chapter, we proposed an algorithm for learning to guide a
planner for task-and-motion planning problems by addressing three
important questions: what to predict, how to represent a planning
problem instance, and how to transfer planning knowledge from one
instance to another.

In order to trade-off between the burden on the learning algorithm
and the planner, we proposed to predict constraints on the planning
process rather than a complete solution. To eliminate the bias and
cumbersome feature design, we introduced a score-space represen-
tation, in which we construct a representation of a problem instance
using a set of scores of plans that satisfy a pre-built discrete set of
constraints on-line. To transfer knowledge, we proposed box, an
algorithm that tries to both accurately construct a score-space repre-
sentation of the given problem instance and choosing a constraint to
try next from the given set.

As an extension to our original work, we also proposed an ap-
proach for reducing the constraint-set size. This is motivated by the
fact that box requires inverting a matrix, which gets larger as the size
of the constraint-set increases. This algorithm effectively reduced
the constraint-set size, which lead to reduced covariance matrix in-
version time and reduced number of evaluations of constraints. We
demonstrated effectiveness of these algorithms in four challenging
tampdomains. We now discuss limitations of the current approach
and future work.

7.5.1 Fixed plan skeletons

In this work, we focused on tampproblems such that even for a fixed
sequence of operators, also known as plan skeletons [84], the plan-
ner would yield a solution even for different problem instances.
For example for the grasp-and-base selection domain, the sequence
MoveBase,Pick was sufficient, and for the pick-and-place domain the
sequence Pick,MoveBase,Place was sufficient for different problem in-
stances. As noted by [84], the same plan skeleton can solve a large
number of problem instances for some tampproblems.

However, there are more general tampproblems in which a fixed
plan skeleton would not work. For example, consider the problem of
making a cup of coffee, where a problem instance is defined by the
number of spoons of sugar to put in. For such variation in problem
instances, we would need different plan skeletons depending on the
request.

To deal with this limitation, we are currently working on learning

97

high-level constraints that constrains the search space of plan skele-
tons from planning experience. Since the number of plan skeletons
is discrete, if we can find a good set of constraints that reduces the
space of plan skeletons to a small but promising set, then we can
construct Θ for each skeleton, and then use box appropriately.

7.5.2 Discrete constraints

To make use of the correlation information among scores of con-
straints, our approach builds a discrete set of constraints and evalu-
ates them on training problem instances during the training phase.
For some applications, however, finding a solution that conforms
to one of the constraints from a selected discrete set might be in-
sufficient to cope with changes in problem instances. For instance,
consider the task of moving objects to clear a path to the target ob-
ject. Depending on the arrangement of moveable obstacles, we would
need different object placements each time, and covering all possible
such placements in a discrete set would be difficult.

For this problem, we are currently looking into generative mod-
els for generating promising constraints from the original space Θ.
The idea is to use the recent advancement in generative model learn-
ing [41] to generate constraints with high scores, by training a gen-
erative model for constraints using successful plans. The main chal-
lenge would be how to incorporate score information appropriately
to generative adversarial network.

98

8
Connection to Bayesian optimization

It turns out that the algorithm that we have presented in Chapter 7,
box, has a strong connection to Bayesian Optimization (BO). In par-
ticular, box can be seen as a meta-Bayesian optimization algorithm that
learns parameters of a Gaussian Process (GP) from which the objec-
tive function is drawn from, using previous optimization experience
on functions that are also sampled from the same GP. This chap-
ter presents this connection, based on a conference paper with Zi
Wang [65], and proposes a novel variant of box, called Point Estimate
Meta Bayesian Optimization (pem-bo), with a principled method for
determining the exploration parameter. We analyze its regret bound
using tools from the BO literature. We show that by learning the
parameters of the GP from prior optimization experience, we can
improve the optimization efficiency, measured by the best function
value obtained within the given number of function evaluations.

8.1 Background and related work

BO optimizes a black-box objective function through sequential
queries. We usually assume knowledge of a Gaussian process [103]
prior on the function, though other priors such as Bayesian neu-
ral networks and their variants [35, 79] are applicable too. Then,
given possibly noisy observations and the prior distribution, we
can do Bayesian posterior inference and construct acquisition func-
tions [78, 90, 4] to search for the function optimizer.

However, in practice, we do not know the prior and it must be
estimated. One of the most popular methods of prior estimation in
BO is to optimize mean/kernel hyper-parameters by maximizing
data-likelihood of the current observations [103, 46]. Another popular
approach is to put a prior on the mean/kernel hyper-parameters and
obtain a distribution of such hyper-parameters to adapt the model
given observations [47, 114]. These methods require a predetermined
form of the mean function and the kernel function. In the existing lit-

erature, mean functions are usually set to be 0 or linear and the pop-
ular kernel functions include Matérn kernels, Gaussian kernels, linear
kernels [103] or additive/product combinations of the above [27, 56].

Meta BO aims to improve the optimization of a given objective
function by learning from past experiences with other similar func-
tions. Meta BO can be viewed as a special case of transfer learning
or multi-task learning. One well-studied instance of meta BO is
the machine learning (ML) hyper-parameter tuning problem on a
dataset, where, typically, the validation errors are the functions to
optimize [29]. The key question is how to transfer the knowledge
from previous experiments on other datasets to the selection of ML
hyper-parameters for the current dataset.

To determine the similarity between validation error functions
on different datasets, meta-features of datasets are often used [12].
With those meta-features of datasets, one can use contextual Bayesian
optimization approaches [73] that operate with a probabilistic func-
tional model on both the dataset meta-features and ML hyper-
parameters [6]. Feurer et al. [31], on the other hand, used meta-
features of datasets to construct a distance metric, and to sort hyper-
parameters that are known to work for similar datasets according to
their distances to the current dataset. The best k hyper-parameters
are then used to initialize a vanilla BO algorithm. If the function
meta-features are not given, one can estimate the meta-features, such
as the mean and variance of all observations, using Monte Carlo
methods [123], maximum likelihood estimates [133] or maximum a
posteriori estimates [100, 99].

As an alternative to using meta-features of functions, one can con-
struct a kernel between functions. For functions that are represented
by GPs, Malkomes et al. [86] studied a “kernel kernel”, a kernel for
kernels, such that one can use BO with a “kernel kernel” to select
which kernel to use to model or optimize an objective function [85] in
a Bayesian way. However, [86] requires an initial set of kernels to se-
lect from. Instead, Golovin et al. [40] introduced a setting where the
functions come in sequence and the posterior of the former function
becomes the prior of the current function. Removing the assumption
that functions come sequentially, Feurer et al. [30] proposed a method
to learn an additive ensemble of GPs that are known to fit all of those
past “training functions”.

Theoretically, it has been shown that meta BO methods that use
information from similar functions may result in an improvement for
the cumulative regret bound [73, 110] or the simple regret bound [99]
with the assumptions that the GP priors are given. If the form of
the GP kernel is given and the prior mean function is 0 but the ker-
nel hyper-parameters are unknown, it is possible to obtain a regret

100

bound given a range of these hyper-parameters [130]. In this pa-
per, we prove a regret bound for meta BO where the GP prior is
unknown; this means, neither the range of GP hyper-parameters nor
the form of the kernel or mean function is given.

A more ambitious approach to solving meta BO is to train an end-
to-end system, such as a recurrent neural network [49], that takes
the history of observations as an input and outputs the next point
to evaluate [17]. Though it has been demonstrated that the method
in [17] can learn to trade-off exploration and exploitation for a short
horizon, it is unclear how many “training instances”, in the form of
observations of BO performed on similar functions, are necessary
to learn the optimization strategies for any given horizon of opti-
mization. In this paper, we show both theoretically and empirically
how the number of “training instances” in our method affects the
performance of BO.

Our methods are most similar to the BOX algorithm [60], which
uses evaluations of previous functions to make point estimates of a
mean and covariance matrix on the values over a discrete domain.
Our methods for the discrete setting (described in Sec. 8.3.1) directly
improve on BOX by choosing the exploration parameters in GP-UCB
more effectively. This general strategy is extended to the continuous-
domain setting in Sec. 8.3.2, in which we extend a method for learn-
ing the GP prior [98] and the use the learned prior in GP-UCB and
PI.

Learning how to learn, or “meta learning”, has a long history
in machine learning [107]. It was argued that learning how to learn
is “learning the prior” [8] with “point sets” [89], a set of iid sets
of potentially non-iid points. We follow this simple intuition and
present a meta BO approach that learns its GP prior from the data
collected on functions that are assumed to have been drawn from the
same prior distribution.

Empirical Bayes [104, 58] is a standard methodology for estimat-
ing unknown parameters of a Bayesian model. Our approach is a
variant of empirical Bayes. We can view our computations as the
construction of a sequence of estimators for a Bayesian model. The
key difference from traditional empirical Bayes methods is that we
are able to prove a regret bound for a BO method that uses estimated
parameters to construct priors and posteriors. In particular, we use
frequentist concentration bounds to analyze Bayesian procedures,
which is one way to certify empirical Bayes in statistics [113, 28].

101

8.2 Problem formulation and notations

Unlike the standard BO setting, we do not assume knowledge of the
mean or covariance in the GP prior, but we do assume the availability
of a dataset of iid sets of potentially non-iid observations on func-
tions sampled from the same GP prior. Then, given a new, unknown
function sampled from that same distribution, we would like to find
its maximizer.

More formally, we assume there exists a distribution GP(µ, k), and
both the mean µ : X→ R and the kernel k : X×X→ R are unknown.
Nevertheless, we are given a dataset D̄N = {[(x̄ij, ȳij)]

Mi
j=1}

N
i=1, where

ȳij is drawn independently from N (fi(x̄ij), σ2) and fi : X → R is
drawn independently from GP(µ, k). The noise level σ is unknown as
well. We will specify inputs x̄ij in Sec. 8.3.1 and Sec. 8.3.2.

Given a new function f sampled from GP(µ, k), our goal is to
maximize it by sequentially querying the function and constructing
DT = [(xt, yt)]Tt=1, yt ∼ N (f (xt), σ2). We study two evaluation crite-
ria: (1) the best-sample simple regret rT = maxx∈X f (x)−maxt∈[T] f (xt)

which indicates the value of the best query in hindsight, and (2) the
simple regret, RT = maxx∈X f (x)− f (x̂∗T) which measures how good
the inferred maximizer x̂∗T is.

Notation We use N (u, V) to denote a multivariate Gaussian dis-
tribution with mean u and variance V and useW(V, n) to denote a
Wishart distribution with n degrees of freedom and scale matrix V.
We also use [n] to denote [1, · · · , n], ∀n ∈ Z+. We overload function
notation for evaluations on vectors x = [xi]

n
i=1, x′ = [xj]

n′
j=1 by denot-

ing the output column vector as µ(x) = [µ(xi)]
n
i=1, and the output

matrix as k(x, x′) = [k(xi, x′j)]i∈[n],j∈[n′], and we overload the kernel
function k(x) = k(x, x).

8.3 Meta BO and its theoretical guarantees

Figure 8.1: Our approach es-
timates the mean function µ̂

and kernel k̂ from functions
sampled from GP(µ, k) in the
offline phase. Those sampled
functions are illustrated by col-
ored lines. In the online phase,
a new function f sampled from
the same GP(µ, k) is given and
we can estimate its posterior
mean function µ̂t and covari-
ance function k̂t which will be
used for Bayesian optimization.

102

Instead of hand-crafting the mean µ and kernel k, we estimate
them using the training dataset D̄N . Our approach is fairly straight-
forward: in the offline phase, the training dataset D̄N is collected
and we obtain estimates of the mean function µ̂ and kernel k̂; in
the online phase, we treat GP(µ̂, k̂) as the Bayesian “prior” to do
Bayesian optimization. We illustrate the two phases in Fig. 8.1. In
Alg. 11, we depict our algorithm, assuming the dataset D̄N has been
collected. We use Estimate(D̄N) to denote the “prior” estimation
and Infer(Dt; µ̂, k̂) the “posterior” inference, both of which we will
introduce in Sec. 8.3.1 and Sec. 8.3.2. For acquisition functions, we
consider special cases of probability of improvement (PI) [129, 78] and
upper confidence bound (GP-UCB) [117, 4]:

αPI
t−1(x) =

µ̂t−1(x)− f̂ ∗

k̂t−1(x)
1
2

, αGP-UCB
t−1 (x) = µ̂t−1(x) + ζt k̂t−1(x)

1
2 .

Here, PI assumes additional information in the form of the upper
bound on function value f̂ ∗ ≥ maxx∈X f (x); alternatively, an upper
bound f̂ ∗ can be estimated adaptively [129]. Note that here we are
maximizing the PI acquisition function and hence αPI

t−1(x) is a neg-
ative version of what was defined in [129]. For GP-UCB, we set its
hyperparameter ζt to be

ζt =

(
6(N − 3 + t + 2

√
t log 6

δ + 2 log 6
δ)/(δN(N − t− 1))

) 1
2
+ (2 log(3

δ))
1
2

(1− 2(1
N−t log 6

δ)
1
2)

1
2

,

where N is the size of the dataset D̄N and δ ∈ (0, 1). With prob-
ability 1− δ, the regret bound in Thm. 2 or Thm. 4 holds with these
special cases of GP-UCB and PI. Under two different settings of the
search space X, finite X and compact X ∈ Rd, we show how our al-
gorithm works in detail and why it works via regret analyses on the
best-sample simple regret. Finally in Sec. 8.3.3 we show how the sim-
ple regret can be bounded. The proofs of the analyses can be found
in the appendix of our original paper [65].

8.3.1 X is a finite set

We first study the simplest case, where the function domain X =

[x̄j]
M
j=1 is a finite set with cardinality |X| = M ∈ Z+. For convenience,

we treat this set as an ordered vector of items indexed by j ∈ [M]. We
collect the training dataset D̄N = {[(x̄j, δ̄ijȳij)]

M
j=1}

N
i=1, where ȳij are

independently drawn from N (fi(x̄j), σ2), fi are drawn independently
from GP(µ, k) and δ̄ij ∈ {0, 1}. Because the training data can be
collected offline by querying the functions { fi}N

i=1 in parallel, it is not
unreasonable to assume that such a dataset D̄N is available. If δ̄ij = 0,

103

Algorithm 11 Meta Bayesian optimization

1: function META-BO(D̄N , f)
2: µ̂(·), k̂(·, ·)← Estimate(D̄N)

3: return BO(f , µ̂, k̂)
4: end function

5: function BO (f , µ̂, k̂)
6: D0 ← ∅
7: for t = 1, · · · , T
8: µ̂t−1(·), k̂t−1(·) ← Infer(Dt−1; µ̂, k̂)
9: αt−1(·)←Acquisition (µ̂t−1, k̂t−1)

10: xt ← arg maxx∈X αt−1(x)
11: yt ← Observe(f (xt))

12: Dt ← Dt−1 ∪ [(xt, yt)]

13: end for
14: return DT

15: end function

it means the (i, j)-th entry of the dataset D̄N is missing, perhaps as a
result of a failed experiment.

Estimating GP parameters If δ̄ij < 1, we have missing entries in the
observation matrix Ȳ = [δ̄ijȳij]i∈[N],j∈[M] ∈ RN×M. Under additional
assumptions specified in [16], including that rank(Y) = r and the
total number of valid observations ∑N

i=1 ∑M
j=1 δ̄ij ≥ O(rN

6
5 log N),

we can use matrix completion [16] to fully recover the matrix Ȳ with
high probability. In the following, we proceed by considering com-
pleted observations only.

Let the completed observation matrix be Y = [ȳij]i∈[N],j∈[M]. We
use an unbiased sample mean and covariance estimator for µ and
k; that is, µ̂(X) = 1

N YT1N and k̂(X) = 1
N−1 (Y − 1N µ̂(X)T)T(Y −

1N µ̂(X)T), where 1N is an N by 1 vector of ones. It is well known
that µ̂ and k̂ are independent and µ̂(X) ∼ N (µ(X), 1

N (k(X) +
σ2 I)), k̂(X) ∼ W(1

N−1 (k(X) + σ2 I), N − 1) [1].

Constructing estimators of the posterior Given noisy observations Dt =

{(xτ , yτ)}t
τ=1, we can do Bayesian posterior inference to obtain f ∼

GP(µt, kt). By the GP assumption, we get

µt(x) = µ(x) + k(x, xt)(k(xt) + σ2 I)−1(yt − µ(xt)), ∀x ∈ X

(8.3.1)

kt(x, x′) = k(x, x′)− k(x, xt)(k(xt) + σ2 I)−1k(xt, x′), ∀x, x′ ∈ X,
(8.3.2)

104

where yt = [yτ]Tτ=1, xt = [xτ]Tτ=1 [103]. The problem is that neither
the posterior mean µt nor the covariance kt are computable because
the Bayesian prior mean µ, the kernel k and the noise parameter σ are
all unknown. How to estimate µt and kt without knowing those prior
parameters?

We introduce the following unbiased estimators for the posterior
mean and covariance,

µ̂t(x) = µ̂(x) + k̂(x, xt)k̂(xt, xt)
−1

(yt − µ̂(xt)), ∀x ∈ X, (8.3.3)

k̂t(x, x′) =
N − 1

N − t− 1

(
k̂(x, x′)− k̂(x, xt)k̂(xt, xt)

−1
k̂(xt, x′)

)
, ∀x, x′ ∈ X.

(8.3.4)

Notice that unlike Eq. (8.3.1) and Eq. (8.3.2), our estimators µ̂t and k̂t

do not depend on any unknown values or an additional estimate of
the noise parameter σ. In Lemma 1, we show that our estimators are
indeed unbiased and we derive their concentration bounds.

Lemma 1. Pick probability δ ∈ (0, 1). For any nonnegative integer t < T,
conditioned on the observations Dt = {(xτ , yτ)}t

τ=1, the estimators in
Eq. (8.3.3) and Eq. (8.3.4) satisfy E[µ̂t(X)] = µt(X), E[k̂t(X)] = kt(X) +

σ2 I.
Moreover, if the size of the training dataset satisfies N ≥ T + 2, then for

any input x ∈ X, with probability at least 1− δ, both

|µ̂t(x)− µt(x)|2 < at(kt(x) + σ2) and 1− 2
√

bt < k̂t(x)/(kt(x) + σ2) < 1 + 2
√

bt + 2bt

hold, where at =
4
(

N−2+t+2
√

t log (4/δ)+2 log (4/δ)
)

δN(N−t−2) and bt =
1

N−t−1 log 4
δ .

Regret bounds We show a near-zero upper bound on the best-sample
simple regret of meta BO with GP-UCB and PI that uses specific
parameter settings in Thm. 2. In particular, for both GP-UCB and PI,
the regret bound converges to a residual whose scale depends on the
noise level σ in the observations.

Theorem 2. Assume there exists constant c ≥ maxx∈X k(x) and a training
dataset is available whose size is N ≥ 4 log 6

δ + T + 2. Then, with proba-
bility at least 1− δ, the best-sample simple regret in T iterations of meta BO
with special cases of either GP-UCB or PI satisfies

rUCB
T < ηUCB

T (N)λT , rPI
T < ηPI

T (N)λT , λ2
T = O(ρT/T) + σ2,

where ηUCB
T (N) = (m + C1)(

√
1+m√
1−m

+ 1), ηPI
T (N) = (m + C2)(

√
1+m√
1−m

+

1) + C3, m = O(
√

1
N−T), C1, C2, C3 > 0 are constants, and ρT =

max
A∈X,|A|=T

1
2 log |I + σ−2k(A)|.

105

This bound reflects how training instances N and BO iterations T
affect the best-sample simple regret. The coefficients ηUCB

T and ηPI
T

both converge to constants (for more details, please refer to the ap-
pendix of our original paper [65]), with components converging at
rate O(1/(N − T)

1
2). The convergence of the shared term λT depends

on ρT , the maximum information gain between function f and up
to T observations yT . If, for example, each input has dimension Rd

and k(x, x′) = xTx′, then ρT = O(d log(T)) [117], in which case λT

converges to the observational noise level σ at rate O(
√

d log(T)
T). To-

gether, the bounds indicate that the best-sample simple regret of both
our settings of GP-UCB and PI decreases to a constant proportional
to noise level σ.

8.3.2 X ⊂ Rd is compact

For compact X ⊂ Rd, we consider the primal form of GPs. We further
assume that there exist basis functions Φ = [φs]Ks=1 : X → RK,
mean parameter u ∈ RK and covariance parameter Σ ∈ RK×K

such that µ(x) = Φ(x)Tu and k(x, x′) = Φ(x)TΣΦ(x′). Notice that
Φ(x) ∈ RK is a column vector and Φ(xt) ∈ RK×t for any xt =

[xτ]tτ=1. This means, for any input x ∈ X, the observation satisfies
y ∼ N (f (x), σ2), where f = Φ(x)TW ∼ GP(µ, k) and the linear
operator W ∼ N (u, Σ) [93]. In the following analyses, we assume the
basis functions Φ are given.

We assume that a training dataset D̄N = {[(x̄j, ȳij)]
M
j=1}

N
i=1 is given,

where x̄j ∈ X ⊂ Rd, yij are independently drawn from N (fi(x̄j), σ2),
fi are drawn independently from GP(µ, k) and M ≥ K.

Estimating GP parameters Because the basis functions Φ are given,
learning the mean function µ and the kernel k in the GP is equivalent
to learning the mean parameter u and the covariance parameter Σ
that parameterize distribution of the linear operator W. Notice that
∀i ∈ [N],

ȳi = Φ(x̄)TWi + ε̄i ∼ N (Φ(x̄)Tu, Φ(x̄)TΣΦ(x̄) + σ2 I),

where ȳi = [ȳij]
M
j=1 ∈ RM, x̄ = [x̄j]

M
j=1 ∈ RM×d and ε̄i = [ε̄ij]

M
j=1 ∈ RM.

If the matrix Φ(x̄) ∈ RK×M has linearly independent rows, one
unbiased estimator of Wi is

Ŵi = (Φ(x̄)T)+ȳi = (Φ(x̄)Φ(x̄)T)−1Φ(x̄)ȳi ∼ N (u, Σ+σ2(Φ(x̄)Φ(x̄)T)−1).

Let W = [Ŵi]
N
i=1 ∈ RN×K. We use the estimator û = 1

NWT1N and
Σ̂ = 1

N−1 (W − 1N û)T(W − 1N û) to the estimate GP parameters.
Again, û and Σ̂ are independent and

û ∼ N
(

u, 1
N (Σ + σ2(Φ(x̄)Φ(x̄)T)−1)

)
, Σ̂ ∼ W

(
1

N−1
(
Σ + σ2(Φ(x̄)Φ(x̄)T)−1) , N − 1

)
[1].

106

Constructing estimators of the posterior We assume the total number
of evaluations T < K. Given noisy observations Dt = {(xτ , yτ)}t

τ=1,
we have µt(x) = Φ(x)Tut and kt(x, x′) = Φ(x)TΣtΦ(x′), where the
posterior of W ∼ N (ut, Σt) satisfies

ut = u + ΣΦ(xt)(Φ(xt)
TΣΦ(xt) + σ2 I)−1(yt −Φ(xt)

Tu), (8.3.5)

Σt = Σ− ΣΦ(xt)(Φ(xt)
TΣΦ(xt) + σ2 I)−1Φ(xt)

TΣ. (8.3.6)

Similar to the strategy used in Sec. 8.3.1, we construct an estimator
for the posterior of W to be

ût = û + Σ̂Φ(xt)(Φ(xt)
TΣ̂Φ(xt))

−1(yt −Φ(xt)
Tu), (8.3.7)

Σ̂t =
N − 1

N − t− 1

(
Σ̂− Σ̂Φ(xt)(Φ(xt)

TΣ̂Φ(xt))
−1Φ(xt)

TΣ̂
)

. (8.3.8)

We can compute the conditional mean and variance of the observa-
tion on x ∈ X to be µ̂t(x) = Φ(x)Tût and k̂t(x) = Φ(x)TΣ̂tΦ(x). For
convenience of notation, we define σ̄2(x) = σ2Φ(x)T(Φ(x̄)Φ(x̄)T)−1Φ(x).

Lemma 3. Pick probability δ ∈ (0, 1). Assume Φ(x̄) has full row rank.
For any nonnegative integer t < T, T ≤ K, conditioned on the observations
Dt = {(xτ , yτ)}t

τ=1, E[µ̂t(x)] = µt(x), E[k̂t(x)] = kt(x) + σ̄2(x).
Moreover, if the size of the training dataset satisfies N ≥ T + 2, then for any
input x ∈ X, with probability at least 1− δ, both

|µ̂t(x)− µt(x)|2 < at(kt(x) + σ̄2(x)) and 1− 2
√

bt < k̂t(x)/(kt(x) + σ̄2(x)) < 1 + 2
√

bt + 2bt

hold, where at =
4
(

N−2+t+2
√

t log (4/δ)+2 log (4/δ)
)

δN(N−t−2) and bt =
1

N−t−1 log 4
δ .

Regret bounds Similar to the finite X case, we can also show a near-
zero regret bound for compact X ∈ Rd. The following theorem
clarifies our results. The convergence rates are the same as Thm. 2.
Note that λ2

T converges to σ̄2(·) instead of σ2 in Thm. 2 and σ̄2(·) is
proportional to σ2 .

Theorem 4. Assume all the assumptions in Thm. 2 and that Φ(x̄) has full
row rank. With probability at least 1− δ, the best-sample simple regret in T
iterations of meta BO with either GP-UCB or PI satisfies

rUCB
T < ηUCB

T (N)λT , rPI
T < ηPI

T (N)λT , λ2
T = O(ρT/T) + σ̄(xτ)

2,

where ηUCB
T (N) = (m + C1)(

√
1+m√
1−m

+ 1), ηPI
T (N) = (m + C2)(

√
1+m√
1−m

+

1)+C3, m = O(
√

1
N−T), C1, C2, C3 > 0 are constants, τ = arg mint∈[T] kt−1(xt)

and ρT = max
A∈X,|A|=T

1
2 log |I + σ−2k(A)|.

107

8.3.3 Bounding the simple regret by the best-sample simple regret

Once we have the observations DT = {(xt, yt)}T
t=1, we can infer

where the arg max of the function is. For all the cases in which X is
discrete or compact and the acquisition function is GP-UCB or PI, we
choose the inferred arg max to be x̂∗T = xτ where τ = arg maxτ∈[T] yτ .
We show in Lemma 5 that with high probability, the difference be-
tween the simple regret RT and the best-sample simple regret rT is
proportional to the observation noise σ.

Lemma 5. With probability at least 1− δ, RT ≤ rT + 2(2 log 1
δ)

1
2 σ.

Together with the bounds on the best-sample simple regret from
Thm. 2 and Thm. 4, our result shows that, with high probability, the
simple regret decreases to a constant proportional to the noise level σ

as the number of iterations and training functions increases.

8.4 Experiments

We evaluate our algorithm in four different black-box function op-
timization problems, involving discrete or continuous function do-
mains. One problem is optimizing a synthetic function in R2, and
the rest are optimizing decision variables in robotic task and motion
planning problems that were used in [60]1. 1 Our code is available at https://

github.com/beomjoonkim/MetaLearnBO.At a high level, our task and motion planning benchmarks involve
computing kinematically feasible collision-free motions for picking
and placing objects in a scene cluttered with obstacles. This problem
has a similar setup to experimental design: the robot can “experi-
ment” by assigning values to decision variables including grasps,
base poses, and object placements until it finds a feasible plan. Given
the assigned values for these variables, the robot program makes a
call to a planner2 which then attempts to find a sequence of motions 2 We use Rapidly-exploring random

tree (RRT) [80] with predefined random
seed, but other choices are possible.

that achieve these grasps and placements. We score the variable as-
signment based on the results of planning, assigning a very low score
if the problem was infeasible and otherwise scoring based on plan
length or obstacle clearance.

Planning problem instances are characterized by arrangements of
obstacles in the scene and the shape of the target object to be manip-
ulated, and each problem instance defines a different score function.
Our objective is to optimize the score function for a new problem
instance, given sets of decision-variable and score pairs from a set of
previous planning problem instances as training data.

In two robotics domains, we discretize the original function do-
main using samples from the past planning experience, by extracting
the values of the decision variables and their scores from success-
ful plans. This is inspired by the previous successful use of BO in a

108

https://github.com/beomjoonkim/MetaLearnBO
https://github.com/beomjoonkim/MetaLearnBO

0 20 40 60 80 100 120 140 160

Number of evaluations

3.4

3.2

3.0

2.8

2.6

2.4

2.2

R
e
w

a
rd

s

Random

Plain-UCB

PEM-BO-UCB

TLSM-BO-UCB

0 5 10 15 20 25 30

Number of evaluations

6

5

4

3

2

R
e
w

a
rd

s

Random

Plain-UCB

PEM-BO-UCB

TLSM-BO-UCB

0 20 40 60 80

Number of evaluations

0

25

50

75

100

125

150

R
e
w

a
rd

s

Random

Plain-UCB

PEM-BO-UCB

TLSM-BO-UCB

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Portions of N

70

75

80

85

90

95

100

105
R

e
w

a
rd

s
PEM-BO-UCB

Plain-UCB

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

Portions of N

3.4

3.2

3.0

2.8

2.6

2.4

R
e
w

a
rd

s

PEM-BO-UCB

Plain-UCB

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

Portions of N

6

5

4

3

2

R
e
w

a
rd

s

PEM-BO-UCB

Plain-UCB

Number of evaluations Number of evaluations Number of evaluations

Proportion of training dataset Proportion of training dataset Proportion of training dataset

R
e
w

a
rd

s

R
e
w

a
rd

s

R
e
w

a
rd

s
R

e
w

a
rd

s

R
e
w

a
rd

s

R
e
w

a
rd

s

(a) (b) (c)

(d) (e)

Figure 8.2: Learning curves
(top) and rewards vs number
of iterations (bottom) for op-
timizing synthetic functions
sampled from a GP and two
scoring functions from.

discretized domain [20] to efficiently solve an adaptive locomotion
problem.

We compare our approach, called point estimate meta Bayesian op-
timization (pem-bo), to three baseline methods. The first is a plain
Bayesian optimization method that uses a kernel function to repre-
sent the covariance matrix, which we call plain. plain optimizes its
GP hyperparameters by maximizing the data likelihood. The second
is a transfer learning sequential model-based optimization [133] method,
that, like pem-bo, uses past function evaluations, but assumes that
functions sampled from the same GP have similar response surface
values. We call this method tlsm-bo. The third is random selection,
which we call random.

In all domains, we use the ζt value as specified in Sec. 8.2. For con-
tinuous domains, we use Φ(x) = [cos(xT β(i) + β

(i)
0)]Ki=1 as our basis

functions. In order to train the weights Wi, β(i), and β
(i)
0 , we repre-

sent the function Φ(x)TWi with a 1-hidden-layer neural network with
cosine activation function and a linear output layer with function-
specific weights Wi. We then train this network on the entire dataset
D̄N . Then, fixing Φ(x), for each set of pairs (ȳi, x̄i), i = {1 · · ·N}, we
analytically solve the linear regression problem yi ≈ Φ(xi)

TWi as
described in Sec. 8.3.2.

Optimizing a continuous synthetic function In this problem, the objec-
tive is to optimize a black-box function sampled from a GP, whose
domain is R2, given a set of evaluations of different functions from
the same GP. Specifically, we consider a GP with a squared exponen-
tial kernel function. The purpose of this problem is to show that pem-
bo, which estimates mean and covariance matrix based on D̄N , would
perform similarly to BO methods that start with an appropriate prior.
We have training data from N = 100 functions with M = 1000 sample
points each.

109

Figure 8.2(a) shows the learning curve, when we have different
portions of data. The x-axis represents the percentage of the dataset
used to train the basis functions, u, and W from the training dataset,
and the y-axis represents the best function value found after 10 eval-
uations on a new function. We can see that even with just ten percent
of the training data points, pem-bo performs just as well as plain,
which uses the appropriate kernel for this particular problem. Com-
pared to pem-bo, which can efficiently use all of the dataset, we had
to limit the number of training data points for tlsm-bo to 1000, be-
cause even performing inference requires O(NM) time. This leads to
its noticeably worse performance than plain and pem-bo.

Figure 8.2(d) shows the how maxt∈[T] yt evolves, where T ∈
[1, 100]. As we can see, pem-bo using the UCB acquisition function
performs similarly to plain with the same acquisition function.
tlsm-bo again suffers because we had to limit the number of training
data points.

Optimizing a grasp In the robot-planning problem shown in Fig-
ure 7.3, the robot has to choose a grasp for picking the target object
in a cluttered scene. A planning problem instance is defined by the
poses of obstacles and the target objects, which changes the feasibility
of a grasp across different instances.

The reward function is the negative of the length of the picking
motion if the motion is feasible, and −k ∈ R otherwise, where
−k is a suitably lower number than the lengths of possible trajec-
tories. We construct the discrete set of grasps by using grasps that
worked in the past planning problem instances. The original space
of grasps is R58, which describes position, direction, roll, and depth
of a robot gripper with respect to the object, as used in [23]. For
both plain and tlsm-bo, we use squared exponential kernel func-
tion on this original grasp space to represent the covariance ma-
trix. We note that this is a poor choice of kernel, because the grasp
space includes angles, making it a non-vector space. These methods
also choose a grasp from the discrete set. We train on dataset with
N = 1800 previous problems, and let M = 162.

Figure 8.2(b) shows the learning curve with T = 5. The x-axis
is the percentage of the dataset used for training, ranging from one
percent to ten percent. Initially, when we just use one percent of the
training data points, pem-bo performs as poorly as tlsm-bo, which
again, had only 1000 training data points. However, pem-bo outper-
forms both tlsm-bo and plain after that. The main reason that pem-
bo outperforms these approaches is because their prior, which is
defined by the squared exponential kernel, is not suitable for this
problem. pem-bo, on the other hand, was able to avoid this problem

110

by estimating a distribution over values at the discrete sample points
that commits only to their joint normality, but not to any metric on
the underlying space. These trends are also shown in Figure 8.2(e),
where we plot maxt∈[T] yt for T ∈ [1, 100]. pem-bo outperforms the
baselines significantly.

Optimizing a grasp, base pose, and placement We now consider a more
difficult task that involves both picking and placing objects in a clut-
tered scene. A planning problem instance is defined by the poses of
obstacles and the poses and shapes of the target object to be pick and
placed. The reward function is again the negative of the length of
the picking motion if the motion is feasible, and −k ∈ R otherwise.
For both plain and tlsm-bo, we use three different squared expo-
nential kernels on the original spaces of grasp, base pose, and object
placement pose respectively and then add them together to define the
kernel for the whole set. For this domain, N = 1500, and M = 1000.

Figure 8.2(c) shows the learning curve, when T = 5. The x-axis
is the percentage of the dataset used for training, ranging from one
percent to ten percent. Initially, when we just use one percent of
the training data points, pem-bo does not perform well. Similar to
the previous domain, it then significantly outperforms both tlsm-
bo and plain after increasing the training data. This is also reflected
in Figure 8.2(f), where we plot maxt∈[T] yt for T ∈ [1, 100]. pem-
bo outperforms baselines. Notice that plain and tlsm-bo perform
worse than random, as a result of making inappropriate assump-
tions on the form of the kernel.

8.5 Discussion

This chapter established the connection between box, presented in
the Chapter 7 to meta BO. We proposed a new framework for meta
BO that estimates its Gaussian process prior based on past experience
with functions sampled from the same prior. We established regret
bounds for our approach without the reliance on a known prior
and showed its good performance on task and motion planning
benchmark problems.

111

9
Conclusion

We presented a framework for learning to guide task-and-motion
planning, which combines the benefits of pure planning and pure
learning. We have identified the three fundamental challenges in de-
signing a framework for learning to guide planning – designing rep-
resentation, learning, and exploration vs. exploitation algorithms –
and addressed them in various setups. We first considered a smaller
yet important subclass of tamp problems, called g-tamp, and intro-
duced several representation, learning, and planning algorithms. We
then moved onto tamp, and presented a framework that can guide
the search given a plan skeleton. We have demonstrated, both theo-
retically and empirically, that by leveraging planning experience to
guide a planner, we can obtain a solution more efficiently than using
pure learning or pure planning algorithm alone.

The main idea that runs through all of the algorithms developed in
this thesis is using learning to guide the computations of manually-
designed algorithms, so that the entire system can be more efficient
and adaptive. For instance, by learning samplers, we learned the
patterns of placements of objects that are likely to lead to a goal. We
believe that this approach can be applied to make other aspects of
intelligent robots more efficient, such as perception, state-estimation,
and control.

This is a crucial and exciting time for robotics. Advancements in
data, algorithms, and hardware are hinting at general-purpose robots
that can reliably and efficiently operate in diverse domains. For the
next few decades, we believe a tight integration of machine learning
and classical robotics algorithms will be invaluable in realizing this
vision.

Bibliography

[1] Theodore Wilbur Anderson. An Introduction to Multivariate
Statistical Analysis. Wiley New York, 1958.

[2] B. D. Argall, S. Chernova, M. Veloso, and B. Browning. A
survey of robot learning from demonstration. Robotics and
Autonomous Systems, 2009.

[3] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasser-
stein generative adversarial networks. Proceedings of the Interna-
tional Conference on Machine Learning, 2017.

[4] Peter Auer. Using confidence bounds for exploitation-
exploration tradeoffs. Journal of Machine Learning Research,
3:397–422, 2002.

[5] D. Auger, A. Couëtoux, and Olivier Teytaud. Continuous up-
per confidence trees with polynomial exploration - consistency.
Joint European Conference on Machine Learning and Knowledge
Discovery in Databases, 2013.

[6] Rémi Bardenet, Mátyás Brendel, Balázs Kégl, and Michele
Sebag. Collaborative hyperparameter tuning. In Proceedings of
the International Conference on Machine Learning, 2013.

[7] Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro
Sanchez-Gonzalez, Vinicius Zambaldi, Mateusz Malinowski,
Andrea Tacchetti, David Raposo, Adam Santoro, Ryan
Faulkner, et al. Relational inductive biases, deep learning,
and graph networks. arXiv preprint arXiv:1806.01261, 2018.

[8] J Baxter. A Bayesian/information theoretic model of bias
learning. In Conference on Learning Theory, 1996.

[9] D. Berenson, P. Abbeel, and K. Goldberg. A robot path plan-
ning framework that learns from experience. IEEE Conference
on Robotics and Automation, 2012.

[10] H-G. Beyer and H-P Schwefel. Evolution strategies – a compre-
hensive introduction. Natural Computing, 2002.

[11] Mohak Bhardwaj, Sanjiban Choudhury, and Sebastian Scherer.
Learning heuristic search via imitation. In Conference on Robot
Learning, 2017.

[12] Pavel Brazdil, Joāo Gama, and Bob Henery. Characterizing
the applicability of classification algorithms using meta-level
learning. In European Conference on Machine Learning, 1994.

[13] S. Bubeck, R. Munos, G. Stoltz, and C. Szepesvári. X-armed
bandits. Journal of Machine Learning Research, 2011.

[14] Buşoniu, A Daniels, R. Munos, and R. Babus̆ka. Optimistic
planning for continuous-action deterministic systems. IEEE
Symposium on Adaptive Dynamic Programming and Reinforcement
Learning, 2011.

[15] S. Cambon, R. Alami, and F. Gravot. A hybrid approach to
intricate motion, manipulation, and task planning. International
Journal of Robotics Research, 2009.

[16] Emmanuel J Candès and Benjamin Recht. Exact matrix com-
pletion via convex optimization. Foundations of Computational
mathematics, 9(6):717, 2009.

[17] Yutian Chen, Matthew W Hoffman, Sergio Gómez Col-
menarejo, Misha Denil, Timothy P Lillicrap, Matt Botvinick,
and Nando de Freitas. Learning to learn without gradient
descent by gradient descent. In Proceedings of the International
Conference on Machine Learning, 2017.

[18] Rohan Chitnis, Dylan Hadfield-Menell, Abhishek Gupta, Sid-
dharth Srivastava, Edward Groshev, Christopher Lin, and
Pieter Abbeel. Guided search for task and motion plans using
learned heuristics. In IEEE International Conference on Robotics
and Automation, 2016.

[19] A. Couëtoux, J-B Hoock, N. Sokolovska, O. Teytaud, and
N. Bonnard. Continuous upper confidence trees. International
Conference on Learning and Intelligent Optimization, 2011.

[20] A. Cully, J. Clune, D. Tarapore, and J. Mouret. Robots that
adapt like animals. Nature, 2015.

[21] D. Dey, T. Y. Liu, B. Sofman, and J. A. Bagnell. Efficient op-
timization of control libraries. AAAI Conference on Artificial
Intelligence, 2012.

[22] D. Dey, T. Y. Liu, B. Sofman, M. Hebert, and J. A. Bagnell.
Contextual sequence prediction with application to control
library optimization. Robotics: Science and Systems, 2012.

114

[23] R. Diankov. Automated Construction of Robotic Manipulation
Programs. PhD thesis, CMU Robotics Institute, August 2010.

[24] M. Dogar and S. Srinivasa. A framework for push-grasping in
clutter. Robotics: Science and systems, 2011.

[25] Carmel Domshlak, Erez Karpas, and Shaul Markovitch. To
max or not to max: Online learning for speeding up optimal
planning. In AAAI Conference on Artificial Intelligence, 2010.

[26] A. Dragan, G. J. Gordon, and S. S. Srinivasa. Learning from
experience in manipulation planning: Setting the right goals.
International Symposium on Robotics Research, 2011.

[27] David K Duvenaud, Hannes Nickisch, and Carl E Rasmussen.
Additive Gaussian processes. In Advances in Neural Information
Processing Systems, 2011.

[28] Bradley Efron. Bayes, oracle Bayes, and empirical Bayes. Techni-
cal Report, Stanford University, 2017.

[29] Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost
Springenberg, Manuel Blum, and Frank Hutter. Efficient and
robust automated machine learning. In Advances in Neural
Information Processing Systems, 2015.

[30] Matthias Feurer, Benjamin Letham, and Eytan Bakshy. Scal-
able meta-learning for Bayesian optimization. arXiv preprint
arXiv:1802.02219, 2018.

[31] Matthias Feurer, Jost Springenberg, and Frank Hutter. Initial-
izing Bayesian hyperparameter optimization via meta-learning.
In AAAI Conference on Artificial Intelligence, 2015.

[32] Michael Fink. Online learning of search heuristics. In Artificial
Intelligence and Statistics, 2007.

[33] S. Finney, L. P. Kaelbling, and T. Lozano-Pérez. Predicting
partial paths from planning problem parameters. Robotics:
Science and Systems, 2007.

[34] F-A Fortin, F-M De Rainville, M-A Gardner, M Parizeau, and
C Gagné. DEAP: Evolutionary algorithms made easy. Journal of
Machine Learning Research, 2012.

[35] Yarin Gal and Zoubin Ghahramani. Dropout as a Bayesian ap-
proximation: Representing model uncertainty in deep learning.
In Proceedings of the International Conference on Machine Learning,
2016.

115

[36] C. R. Garrett, L. P. Kaelbling, and T. Lozano-Pérez. Sample-
based methods for factored task and motion planning. Robotics:
Science and Systems, 2017.

[37] C. R. Garrett, T. Lozano-Peréz, and L P. Kaelbling. Ffrob: Lever-
aging symbolic planning for efficient task and motion plan-
ning. International Journal of Robotics Research, 2014.

[38] Caelan Reed Garrett, Leslie Pack Kaelbling, and Tomás
Lozano-Pérez. Learning to rank for synthesizing planning
heuristics. In International Joint Conference on Artificial Intelli-
gence, 2016.

[39] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol
Vinyals, and George E Dahl. Neural message passing for
quantum chemistry. Proceedings of the International Conference on
Machine Learning, 2017.

[40] Daniel Golovin, Benjamin Solnik, Subhodeep Moitra, Greg
Kochanski, John Elliot Karro, and D. Sculley. Google vizier: A
service for black-box optimization. In SIGKDD Conference on
Knowledge Discovery and Data Mining, 2017.

[41] I. Goodfellow, J. Pouget-Abadie, M Mirza, B. Xu, D. Warde-
Farley, S. Ozair, A. Courville, and Y. Bengio. Generative adver-
sarial nets. Advances in Neural Information Processing Systems,
2014.

[42] Marco Gori, Gabriele Monfardini, and Franco Scarselli. A new
model for learning in graph domains. In IEEE International Joint
Conference on Neural Networks, 2005.

[43] F. Gravot, S. Cambon, and R. Alami. asymov: A planner that
deals with intricate symbolic and geometric problems. Interna-
tional Symposium on Robotics Research, 2005.

[44] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent
Dumoulin, and Aaron C. Courville. Improved training of
Wasserstein gans. Proceedings of the International Conference on
Machine Learning, 2017.

[45] Kris Hauser. The minimum constraint removal problem with
three robotics applications. The International Journal of Robotics
Research, 33(1), 2014.

[46] Philipp Hennig and Christian J Schuler. Entropy search for
information-efficient global optimization. Journal of Machine
Learning Research, 13:1809–1837, 2012.

116

[47] José Miguel Hernández-Lobato, Matthew W Hoffman, and
Zoubin Ghahramani. Predictive entropy search for efficient
global optimization of black-box functions. In Advances in
Neural Information Processing Systems, 2014.

[48] J. Ho and S. Ermon. Generative adversarial imitation learning.
Advances in Neural Information Processing Systems, 2016.

[49] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term
memory. Neural computation, 9(8):1735–1780, 1997.

[50] J. Hodál and J. Dvořák. Using case-based reasoning for mobile
robot path planning. Journal of Engineering Mechanics, 2008.

[51] J. Huang, A.J. Smola, A. Gretton, K.M. Borgwardt, and
B. Schölkopf. Correcting sample selection bias by unlabeled
data. In Advances in Neural Information Processing Systems, 2007.

[52] N. Jetchev and M. Toussaint. Fast motion planning from ex-
perience: trajectory prediction for speeding up movement
generation. Autonomous Robots, 2013.

[53] Leslie Pack Kaelbling and Tomas Lozano-Pérez. Hierarchi-
cal task and motion planning in the now. IEEE Conference on
Robotics and Automation, 2011.

[54] T. Kanamori, S. Hido, and M. Sugiyama. A least-squares ap-
proach to direct importance estimation. Journal of Machine
Learning Research, 10, 2009.

[55] K. Kandasamy, J. Schneider, and B. Poczos. High dimensional
bayesian optimisation and bandits via additive models. Proceed-
ings of the International Conference on Machine Learning, 2015.

[56] Kirthevasan Kandasamy, Jeff Schneider, and Barnabas Poczos.
High dimensional Bayesian optimisation and bandits via ad-
ditive models. In Proceedings of the International Conference on
Machine Learning, 2015.

[57] K. Kawaguchi, L.P. Kaelbling, and T. Lozano-Pérez. Bayesian
optimization with exponential convergence. In Advances in
Neural Information Processing Systems, 2015.

[58] Robert W Keener. Theoretical Statistics: Topics for a Core Course.
Springer, 2011.

[59] B. Kim, A-M Farahmand, J. Pineau, and D. Precup. Learning
from limited demonstrations. Advances in Neural Information
Processing Systems, 2013.

117

[60] B. Kim, L. P. Kaelbling, and T. Lozano-Pérez. Learning to guide
task and motion planning using score-space representation.
IEEE Conference on Robotics and Automation, 2017.

[61] B. Kim, L. P. Kaelbling, and T. Lozáno-Pérez. Guiding search
in continuous state-action spaces by learning an action sampler
from off-target search experience. AAAI Conference on Artificial
Intelligence, 2018.

[62] B. Kim, L. P. Kaelbling, and T. Lozáno-Pérez. Adversarial actor-
critic method for task and motion planning problems using
planning experience. AAAI Conference on Artificial Intelligence,
2019.

[63] B. Kim, K. Lee, S. Lim, L. P. Kaelbling, and T. Lozáno-Pérez.
Monte Carlo tree search in continuous spaces using Voronoi
optimistic optimization with regret bounds. AAAI Conference on
Artificial Intelligence, 2020.

[64] B. Kim and L. Shimanuki. Learning value functions with
relational state representations for guiding task-and-motion
planning. Conference on Robot Learning, 2019.

[65] B. Kim, Z. Wang, and L. P. Kaelbling. Regret bounds for meta
Bayesian optimization with an unknown Gaussian process
prior. In Advances in Neural Information Processing Systems, 2018.

[66] B. Kim, Z. Wang, T. Lozano-Pérez, and L. P. Kaelbling. Learn-
ing to guide task and motion planning using score-space repre-
sentation. In International Journal of Robotics Research, 2019.

[67] Jennifer E. King, Marco Cognetti, and Siddhartha S. Srinivasa.
Rearrangement planning using object-centric and robot-centric
action spaces. IEEE International Conference on Robotics and
Automation, 2016.

[68] D. P. Kingma and M. Welling. Auto-encoding variational bayes.
In International Conference on Learning Representations, 2014.

[69] Thomas N Kipf and Max Welling. Semi-supervised classifica-
tion with graph convolutional networks. International Conference
on Learning Representations, 2017.

[70] Levente Kocsis and Csaba Szepesvári. Bandit based Monte-
Carlo planning. In European Conference on Machine Learning,
pages 282–293. Springer, 2006.

[71] D. Koller and N. Friedman. Probabilistic Graphical Models:
Principles and Techniques. The MIT Press, 2009.

118

[72] V. R. Konda and J. N. Tsitsiklis. On actor-critic algorithms.
SIAM Journal on Control and Optimization, 2003.

[73] Andreas Krause and Cheng S Ong. Contextual Gaussian pro-
cess bandit optimization. In Advances in Neural Information
Processing Systems, 2011.

[74] O. Kroemer and G. S. Sukhatme. Meta-level priors for learning
manipulation skills with sparse features. International Sympo-
sium on Experimental Robotics, 2016.

[75] O. Kroemer and G. S. Sukhatme. Feature selection for learning
versatile manipulation skills based on observed and desired
trajectories. IEEE International Conference on Robotics and Au-
tomation, 2017.

[76] Athanasios Krontiris and Kostas E Bekris. Dealing with diffi-
cult instances of object rearrangement. In Robotics: Science and
Systems, 2015.

[77] J.J Kuffner and S.M LaValle. RRT-connect: An efficient ap-
proach to single-query path planning. In International Confer-
ence on Robotics and Automation, 2000.

[78] Harold J Kushner. A new method of locating the maximum
point of an arbitrary multipeak curve in the presence of noise.
Journal of Fluids Engineering, 86(1):97–106, 1964.

[79] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blun-
dell. Simple and scalable predictive uncertainty estimation
using deep ensembles. In Advances in Neural Information Pro-
cessing Systems, 2017.

[80] Steven M LaValle and James J Kuffner Jr. Rapidly-exploring
random trees: Progress and prospects. In Workshop on the
Algorithmic Foundations of Robotics (WAFR), 2000.

[81] S. Levine and P. Abbeel. Learning neural network policies with
guided policy search under unknown dynamics. Advances in
Neural Information Processing Systems, 2014.

[82] J. Lien and Y. Lu. Planning motion in environments with
similar obstacles. Robotics: Science and Systems, 2009.

[83] T. P. Lillicrap, A. Pritzel J. J. Hunt, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra. Continuous control with deep
reinforcement learning. International Conference on Learning
Representations, 2016.

119

[84] T. Lozano-Pérez and L.P. Kaelbling. A constraint-based method
for solving sequential manipulation planning problems. Inter-
national Conference on Intelligent Robots and Systems, 2014.

[85] Gustavo Malkomes and Roman Garnett. Towards automated
Bayesian optimization. In ICML AutoML Workshop, 2017.

[86] Gustavo Malkomes, Charles Schaff, and Roman Garnett.
Bayesian optimization for automated model selection. In Ad-
vances in Neural Information Processing Systems, 2016.

[87] Mansley, A. Weinstein, and M. Littman. Sample-based plan-
ning for continuous action Markov Decision Processes. Interna-
tional Conference on Automated Planning and Scheduling, 2011.

[88] Amir massoud Farahmand. Action-gap phenomenon in rein-
forcement learning. In Advances in Neural Information Processing
Systems, 2011.

[89] T P Minka and R W Picard. Learning how to learn is learning
with point sets. Technical report, MIT Media Lab, 1997.

[90] J. Moc̆kus. On Bayesian methods for seeking the extremum.
In Optimization Techniques International Federation for Information
Processing Technical Conference, 1974.

[91] R. Munos. Optimistic optimization of a deterministic function
without the knowledge of its smoothness. Advances in Neural
Information Processing Systems, 2011.

[92] R. Munos. From bandits to Monte-carlo Tree Search: the opti-
mistic principle applied to optimization and planning. Founda-
tions and Trends in Machine Learning, 2014.

[93] R.M. Neal. Bayesian Learning for Neural Networks. Lecture Notes
in Statistics 118. Springer, 1996.

[94] S. Pandya and S. Hutchinson. A case-based approach to robot
motion planning. IEEE International Conference on Systems, Man,
and Cybernetics, 1992.

[95] M. Phillips, B. Cohen, S. Chita, and M. Likhachev. E-graphs:
Bootstrapping planning with experience graphs. Robotics:
Science and Systems, 2012.

[96] J.D Pintér. Global Optimization in Action (Continuous and Lips-
chitz Optimization: Algorithms, Implementations and Applications).
Springer US, 1996.

120

[97] Jervis Pinto and Alan Fern. Learning partial policies to
speedup MDP tree search via reduction to I.I.D. learning. Jour-
nal of Machine Learning Research, 2017.

[98] John C Platt, Christopher JC Burges, Steven Swenson, Christo-
pher Weare, and Alice Zheng. Learning a Gaussian process
prior for automatically generating music playlists. In Advances
in Neural Information Processing Systems, 2002.

[99] Matthias Poloczek, Jialei Wang, and Peter Frazier. Multi-
information source optimization. In Advances in Neural In-
formation Processing Systems, 2017.

[100] Matthias Poloczek, Jialei Wang, and Peter I Frazier. Warm
starting Bayesian optimization. In Winter Simulation Conference,
2016.

[101] D. Precup, R.S. Sutton, and S. Dasgupta. Off-policy temporal-
difference learning with function approximation. In Proceedings
of the International Conference on Machine Learning, 2001.

[102] A.K. Qin and P.N. Suganthan. Self-adaptive differential evo-
lution algorithm for numerical optimization. IEEE Congress on
Evolutionary Computation, 2005.

[103] Carl Edward Rasmussen and Christopher KI Williams. Gaus-
sian processes for machine learning. The MIT Press, 2006.

[104] Herbert Robbins. An empirical Bayes approach to statistics. In
Third Berkeley Symposium on Mathematical Statistics and Probabil-
ity, 1956.

[105] S. Ross, G.J. Gordon, and D. Bagnell. A reduction of imitation
learning and structured prediction to no-regret online learning.
International Conference on Artificial Intelligence and Statistics,
2011.

[106] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagen-
buchner, and Gabriele Monfardini. The graph neural network
model. IEEE Transactions on Neural Networks, 2009.

[107] J Schmidhuber. On learning how to learn learning strategies.
Technical report, 1995.

[108] J. Schulman, Y. Duan, J. Ho, A. Lee, I. Awwal, H. Bradlow,
J. Pan, S. Patil, K. Goldberg, and P. Abbeel. Motion plan-
ning with sequential convex optimization and convex collision
checking. International Journal of Robotics Research, 2014.

121

[109] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov.
Proximal policy optimization algorithms. arXiv, 2017.

[110] Alistair Shilton, Sunil Gupta, Santu Rana, and Svetha
Venkatesh. Regret bounds for transfer learning in Bayesian
optimisation. In International Conference on Artificial Intelligence
and Statistics, 2017.

[111] D. Silver, A. Huang, C. Maddison, A. Guez, L. Sifre, G. van den
Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner,
I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel,
and D. Hassabis. Mastering the game of Go with deep neural
networks and tree search. Nature, 2016.

[112] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis
Antonoglou, Aja Huang, Arthur Guez, Thomas Hubert, Lucas
Baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy
Lillicrap, Fan Hui, Laurent Sifre, George van den Driessche,
Thore Graepel, and Demis Hassabis. Mastering the game of go
without human knowledge. Nature, 2017.

[113] Suzanne Sniekers, Aad van der Vaart, et al. Adaptive Bayesian
credible sets in regression with a Gaussian process prior. Elec-
tronic Journal of Statistics, 9(2):2475–2527, 2015.

[114] J. Snoek, H. Larochelle, and R. P. Adams. Practical Bayesian
optimization of machine learning algorithms. Advances in
Neural Information Processing Systems, 2012.

[115] Alessandro Sperduti and Antonina Starita. Supervised neural
networks for the classification of structures. IEEE Transactions
on Neural Networks, 1997.

[116] N. Srinivas, A. Krause, S. Kakade, and M. Seeger. Gaussian
process optimization in the bandit setting: No regret and ex-
perimental design. Proceedings of the International Conference on
Machine Learning, 2010.

[117] Niranjan Srinivas, Andreas Krause, Sham M Kakade, and
Matthias Seeger. Gaussian process optimization in the ban-
dit setting: No regret and experimental design. In Proceedings of
the International Conference on Machine Learning, 2010.

[118] S. Srivastava, E. Fang, L Riano, R. Chitnis, S. Russell, and
P. Abbeel. Combined task and motion planning through an
extensible planner-independent interface layer. IEEE Conference
on Robotics and Automation, 2014.

122

[119] M. Stilman, J-U. Schamburek, J. Kuffner, and T. Asfour. Manip-
ulation planning among movable obstacles. IEEE International
Conference on Robotics and Automation, 2007.

[120] Mike Stilman and James J Kuffner. Navigation among mov-
able obstacles: Real-time reasoning in complex environments.
International Journal of Humanoid Robotics, 2005.

[121] M. Sugiyama, S. Nakajima, P.V. Buenau H. Kashima, and
M. Kawananbe. Direct importance estimation with model
selection and its application to covariate shift adaptation. In
Advances in Neural Information Processing Systems, 2008.

[122] R.S. Sutton and A. G. Barto. Reinforcement Learning: An Intro-
duction. The MIT Press, 1998.

[123] Kevin Swersky, Jasper Snoek, and Ryan P Adams. Multi-
task Bayesian optimization. In Advances in Neural Information
Processing Systems, 2013.

[124] Marc Toussaint. Logic-geometric programming: An
optimization-based approach to combined task and motion
planning. International Joint Conference on Artificial Intelligence,
2015.

[125] I. Tsochantaridis, T. Joachims, T. Hofmann, Y. Altun, and
Y. Singer. Large margin methods for structured and interde-
pendent output variables. Journal of Machine Learning Research,
2006.

[126] Z. Wang, B. Shakibi, L. Jin, and N. Freitas. Bayesian multi-scale
optimistic optimization. International Conference on Artificial
Intelligence and Statistics, 2014.

[127] Z. Wang, B. Zhou, and S. Jegelka. Optimization as estima-
tion with Gaussian processes in bandit settings. International
Conference on Artificial Intelligence and Statistics, 2017.

[128] Z. Wang, M. Zoghi, F. Hutter, D. Matheson, and N. Freitas.
Bayesian optimization in high dimensions via random em-
beddings. International Conference on Artificial Intelligence and
Statistics, 2013.

[129] Zi Wang and Stefanie Jegelka. Max-value entropy search for
efficient Bayesian optimization. In Proceedings of the International
Conference on Machine Learning, 2017.

[130] Ziyu Wang and Nando de Freitas. Theoretical analysis of
Bayesian optimisation with unknown Gaussian process hyper-
parameters. In NIPS Workshop on Bayesian Optimization, 2014.

123

[131] A. Weinstein and M. Littman. Bandit-based planning and
learning in continuous-action Markov Decision Proceses. Inter-
national Conference on Automated Planning and Scheduling, 2012.

[132] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long,
Chengqi Zhang, and Philip S. Yu. A comprehensive survey on
graph neural networks. arXiv preprint arXiv:1901.00596, 2019.

[133] Dani Yogatama and Gideon Mann. Efficient transfer learning
method for automatic hyperparameter tuning. In International
Conference on Artificial Intelligence and Statistics, 2014.

[134] Sung Wook Yoon, Alan Fern, and Robert Givan. Learning
heuristic functions from relaxed plans. In International Confer-
ence on Automated Planning and Scheduling, 2006.

[135] Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang, Zhiyuan
Liu, and Maosong Sun. Graph neural networks: A review of
methods and applications. arXiv preprint arXiv:1812.08434,
2018.

[136] Y. Zhu, D. Gordon, E. Kolve, D. Fox, L. Fei-Fei, A. Gupta,
R. Mottaghi, and A. Farhadi. Visual semantic planning us-
ing deep successor representations. International Conference on
Computer Vision, 2017.

124

