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Abstract

Quantifying the causal effect of an intervention is a ubiquitous problem that spans a
wide net of applications. Typically, this quantity is measured through the difference in
outcomes under treatment (e.g., novel drug) and control (e.g., placebo). However, only one
outcome ever be revealed — this is the fundamental challenge in causal inference. In order
to overcome this obstacle, there have been two main types of studies: experimental (ES)
and observational (OS). While the former conducts carefully designed experiments, the
latter utilizes observed data.

In this thesis, we reinterpret the classical potential outcomes framework of Rubin through
the lens of tensors. Formally, each entry of the potential outcomes tensor is associated
with a tuple of entities; namely, the measurement (e.g., time), unit (e.g., patient type),
and intervention (e.g., drug). Subsequently, each study can be characterized by a
unique sparsity pattern, which allows us to translate the age old problem of estimating
counterfactuals into one of tensor estimation. As an added benefit, our tensor formulation
also opens the door to discussions about the computational and statistical trade-offs of
causal inference methods, a conversation (to the best of our knowledge) that has largely
not yet been had.

Ultimately, this novel perspective, coupled with basic principles of the popular synthetic
control method for OSs, enables us to provably estimate counterfactual potential outcomes
for every unit under all treatments and control with low sample and computational com-
plexity. As a result, we can customize treatment plans for every unit in a computationally
tractable and data-efficient manner. Pleasingly, we show that this result bears implica-
tions towards what-if scenario planning, drug discovery, and personalized, data-efficient
randomized control trials. Methodically, we furnish a data-driven hypothesis test to check
when our algorithm can reliably recover the underlying tensor.

The key technical contribution of this thesis advances the state-of-the art analysis for
principal component regression.
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Director of Statistics and Data Science Center
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Chapter 1

Introduction

Quantifying the causal effect of an intervention is a problem of interest across a wide
array of domains. From policy making to engineering and medicine, estimating the
treatment effect is critical to understanding existing systems and moving towards innovation.
Typically, this quantity is measured by the difference in outcomes under treatment (e.g.,
novel drug) and control (e.g., placebo or standard therapy). However, only one outcome

can ever be revealed — this is the fundamental challenge of causal inference.

Traditionally, there have been two primary, distinct types of studies: experimental studies
(ESs) and observational studies (OSs). While the former conducts carefully designed
experiments, the latter utilizes observed data. One canonical ES is a randomized control
trial (RCT); as its name suggests, RCTs randomly assign eligible participants to either a
treatment or control group. Because the assignments are random (thus reducing biases
and confoundedness), the differences between the groups can often be attributed to the
treatment, L.e., the treatment is the cause. For this reason, RCTs are considered the
gold standard mechanism to draw causal conclusions. However, due to practical and
ethical concerns, ESs are not always feasible. This gives rise to OSs, which provide an
alternate mechanism to enable causal inferences and may be the only way to explore

certain questions.

In this thesis, we follow the classical potential outcomes framework of Rubin, and reinterpret
it through the lens of tensors. More formally, we encode our data into a tensor, where
each entry is the potential outcome associated with a tuple of entities; namely, the
measurement (e.g., time), unit (e.g., patient type), and intervention (e.q., drug). Through
this lens, we associate the observations of each study with a particular sparsity pattern,
and recast its aim as recovering aspects of the tensor. In general, we translate the age
old problem of estimating unobservable counterfactuals into one of tensor estimation.

This perspective begs the following questions: (1) modeling: which sparsity patterns

19



20 CHAPTER 1. INTRODUCTION

allow recovery? (2) algorithmic: if recovery is possible, what are the computational and
statistical trade-offs? Indeed, if such an approach exists, then customized treatment plans

for every unit can be achieved in computationally tractable and data-efficient manner.

B 1.1 Motivating Applications

The problem of estimating treatment effects is ubiquitous, spanning a wide variety of
fields. As such, we consider several impactful problems, which will serve as motivation for

the rest of this thesis.

Example 1.1.1 (Importance of Controls in OSs: Evaluating the Impact of Gun Restrictions
on Violence). On November 8, 2016, in the aftermath of several high profile mass-shootings,
voters in California passed Proposition (Prop.) 63 into law BallotPedia (2016). Prop.
63 “outlaw[ed] the possession of ammunition magazines that [held] more than 10 rounds,
requirfed] background checks for people buying bullets,” and was proclaimed as an
initiative for “historic progress to reduce gun violence” McGreevy (2016). Imagine that
we wanted to study the impact of Prop. 63 on the rates of violent crime in California.
Although RCTs are ideal mechanisms to draw causal conclusions, they are not applicable
here since only one California exists. Instead, a statistical comparative study could be
conducted where the rates of violent crime in California are compared to a “control” state
after November 2016, which we refer to as the post-intervention period. To reach a
statistically valid conclusion, however, the control state must be demonstrably similar to
California sans the passage of a Prop. 63 style legislation. In general, there may not
exist a natural control state for California, and subject-matter experts tend to disagree on

the most appropriate state for comparison.

Example 1.1.2 (Importance of “Synthetic” Interventions: What-if Scenario Planning
for COVID-19). It is clear that the COVID-19 pandemic has led to an unprecedented
disruption of modern society at a global scale. What is much less clear, however, is
the effect that various interventions that have been put into place have had on health
and economic outcomes. For example, perhaps a 30% and 60% clampdown in mobility
have similar societal health outcomes, yet vastly different implications for the number of
people who cannot go to work or file for unemployment. Having a clear understanding
of the trade-offs between these interventions is crucial in charting a path forward on
how to open up various sectors of society. A key challenge is that policy makers do
not have the luxury of actually enacting a variety of interventions and seeing which has

the optimal outcome (a la RCTs). In fact, at a societal level, this is simply infeasible
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and socially irresponsible. Arguably, an even bigger challenge is that the COVID-19
pandemic, and the resulting policy choices ahead of us, are unprecedented in scale. Thus,
it is difficult to reliably apply lessons from previous pandemics (e.g., SARS, H1N1). This
is only further exacerbated when taking into the account the vastly different economic,
cultural, and societal factors that make each town/city/state/country unique. Although
epidemiological models (e.g., SIR, SIRS) can shed some insight, they often make strong
parametric assumptions. Therefore, in order to understand the unique trade-offs between
different policies for every region (while avoiding a heavy reliance on parametric modeling),
we need a data-driven, statistically principled way to estimate their potential outcomes

under these policies before having to actually enact them.

Example 1.1.3 (Towards Personalized RCTs: Development Economics). In the study of
Banerjee et al. (2018), the authors collaborated with the Haryana state government in
implementing the first large scale evaluation of the effects of different types of interventions
on childhood immunization rates. The Haryana immunization trials were conducted with
2523 villages, with data collected monthly over 13 months, and included a total of 74
different interventions. As is standard in RCTs, the authors in Banerjee et al. (2018)
randomly partitioned the 2523 villages into 74 groups, corresponding to the 74 different
interventions they aimed to study. They then measured the average increase in immuniza-
tion rates for each of these 74 groups over the 13 month trial period. Subsequently, they
made a single policy recommendation to the Haryana state government, corresponding
to the intervention that yielded the highest average increase in immunization rates. A
core assumption in such RCTs is that villages are homogenous (i.e., all interventions have
essentially the same effect on all units) and thus a blanket policy works well. However,
this assumption is often violated, and the inherent diversity between different groups of

people should be increasingly taken into consideration.

Example 1.1.4 (Towards Data-Efficient, Personalized RCTs: Drug Discovery & Precision
Medicine). Consider an FDA approved clinical trial with D new candidate drugs and
N patient types. The goal is to prescribe the optimal drug for each of the N patient
types. In an ideal world, this can be achieved by administering every drug to each patient
type, amounting to N x D RCTs. Although this framework enables our desired level of
personalization, in almost all scenarios, the number of required trials is simply infeasible.
Within clinical trials, patient recruitment and compliance is especially costly due to
monetary expenses and ethical considerations (e.g., placebo trials). Therefore, the name of
the game is to design an experimental protocol and inferencing scheme that can achieve

the personalization of the ideal setting yet retain the feasibility of standard RCTs, which
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are the bread and butter of clinical research. Indeed, the potential application of such a
framework, especially in the context of personalized drug design or clinical trials, can

have a large impact.

M 1.2 Problem Statement

Throughout, we follow the potential outcomes framework of Neyman (1923) and Rubin
(1974a). More formally, we are interested in outcomes associated with N > 1 units,
across T > 1 measurements, P > 1 metrics, and D > 1 possible interventions. Unless
stated otherwise, we index units with n € [N], measurements with t € [T], metrics with
p € [P], and interventions with d € [D]. Throughout, let Mﬁg"’) denote the potential
outcome of the t-th measurement for unit n under intervention d and metric p; similarly,
we define Yt(,‘,j’p) as the associated observed outcome, where E[Yt(,‘,j’p)] = M}Z"’). Without

loss of generality, we denote the control or “null-intervention” with d = 1.

Tensor Framework

Crucially, we encode the universe of potential outcomes across measurements, units,
interventions, and metrics into an order-four tensor M &€ RT*NxDxP (see Figure 1.1 for a
graphical depiction). As we will see in Chapter 4, the tensor structure is a convenient

representation to capture inter-dependencies along multiple dimensions.

intervention D

| intervention d

control (d=1)

units

measurements

Figure 1.1: Tensor of potential outcomes M for a particular metric p.

Pre- and Post-Intervention Periods

Throughout, we will assume that all units are under a common intervention (e.g., control)
for some number of measurements Ty < T; this will partition our T measurements into two
distinct segments: (i) the “pre-intervention” period, t < Tp, when all units are assumed,
without loss of generality, to be in the no intervention state; and (ii) the “post-intervention”

period, t > Tg, when each unit receives some intervention or remains unaffected. We
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group the units by the intervention they receive during the post-intervention period. That

is, we denote
79 = {n : unit n experiences intervention d for all t > T} (1.1)
as the subgroup of units that experience intervention d, and N9 = |Z(9)|> 1 as its size.

Observations

”

As previously mentioned, every study will inevitably suffer from an inherent “missing data
problem, i.e., unobservable counterfactuals. Thus, each study can be represented by a
unique observation pattern. Formally, we encode our observations into a sparse, noisy
tensor Z = [Z\%P)] € RT*N*DxP (see Figure 1.2), where

Y,(,l’p) . nﬂ,*’), forall t < To,n,d=1,p €[P]
ZiP =3 yIP 9P forallt> ToneTW de[DlpelP]  (12)

*, otherwise;

(d,

tn P Bernoulli(p) with p € (0, 1] and * denotes an unobservable counterfactual.

here, 7
Note, this observation model includes the standard consistency assumption made in the
potential outcomes literature (see Hernan and Robins (2020)) with the generalization that

there may still be randomly missing data.

AL Z(d) (D) 7D AC) (D) 7 Z( (D)

control ntervention intervention:D

pre-intervention

(t < To)

post-intervention

(To<t<T)

Figure 1.2: Observation tensor Z for a particular metric p, where each slice represents the observa-
tion patterns associated with the corresponding control or intervention. The latent counterfactuals
are given in white, while the observations are given in gray, blue, and green.

Aim
Given Z, we aim to infer potential outcomes for every unit under all interventions and

metrics during the post-intervention period, i.e., Miﬂ*’) for all n,p,d, and t > Ty.
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B 1.3 Synthetic Control

We begin by introducing synthetic control (SC) Abadie and Gardeazabal (2003); Abadie
et al. (2010, 2014); Abadie (2019), whose principles will serve as the bedrock of our
analytical framework and algorithmic developments. Over the years, SC has emerged as
a standard tool to estimate the outcomes in the absence of an intervention using only
OS data. Indeed, it has been regarded as “arguably the most important innovation in the
policy evaluation literature in the last 15 years” Athey and Imbens (2016). In our context,
it provides a solution for a restricted setting: D = 2 with ZU) = [N]\ {1}, TV = {1},
i.e., only unit 1 (often referred to in the SC literature as the “target” unit) experiences
intervention 2 after Tg while all other N — 1 “donor” units, Le., ZM, remain under the
no-intervention state. The goal in SC is to infer the potential outcomes for unit 1 under

the no-intervention state only, i.e., /\/lﬂ P) for t > Ty and some metric p.

Algorithm

To produce the counterfactuals, SC, as its name suggests, constructs a “synthetic” control
for the target unit from donor unit data. Specifically, using pre-intervention data, a
synthetic version of unit 1 is created as a weighted combination of the remaining N — 1
units. The learnt model is then used to produce counterfactual predictions for the target

unit under the no-intervention state during the post-intervention period.

For simplicity, consider the single metric case (P = 1). Here, SC learns 85 € RN~ as

To 5
B¢ € argmin Z (Ytq) — Z Wy Y,(,l)) ,

weSC t=1 nez

where the constraint set SC C RN~ differs across variants of the method, but is classically
taken to be over the probability simplex, i.e, B;° > 0 and )} , B;° =1, (cf. Abadie and
Gardeazabal (2003); Abadie et al. (2010)). Subsequently, XA/S)’SC = 1t B Yt(:,) is the
estimate for the target unit under no-intervention for t > To. Comparing )A/tq)’sc with Yt(12)
for t > Tp allows us to evaluate the impact of intervention 2 on the target unit compared

to the control.

Limitations

The last few decades have seen an unprecedented explosion in the availability of data

across a myriad of domains. In many applications, however, datasets are plagued by
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high-dimensional, noisy, sparse, and mixed valued observations. Meanwhile, despite its
widespread applicability and popularity, the original SC method was not designed to

handle such scenarios.

Theoretically, the finite-sample properties of SC estimators is also surprisingly sparse.
Abadie et al. (2010) proved that the classical SC estimator (i.e., where the weights are
enforced to form a convex combination) is asymptotically unbiased; however, the authors
not only assume the existence of a convex model, but also analyze the estimator using these
latent convex weights (as opposed to the model estimates outputted from the algorithm)
under a classical regression setting where the dimension of the covariates is fixed. In
fact, across the different SC variants, it is typically assumed that a synthetic control for
the target unit exists within the universe of donors (this is the fundamental hypothesis
that drives SC-like methods); however, it is not clear when such a hypothesis holds, and
meaningful finite-sample analysis that captures the behavior of the post-intervention
prediction error with respect to the potential outcomes (rather than the observed outcomes)

has remained elusive.

Additionally, given SC's widespread use across a plethora of domains, there are excellent
heuristic hypothesis tests proposed in the literature (see Abadie (2019)) that serve as
robustness checks for whether SC is valid to use; however, to the best of our knowledge,

none of them are quantitative nor come with rigorous theoretical guarantees.

In summary, SC, though a powerful method, provides an incomplete answer to our
objective laid out above — it only allows one to produce counterfactual estimates in
the absence of an intervention, while we are also interested in making counterfactual
estimates in the presence of an intervention. Indeed, extending SC to handle multiple
interventions, as required in our setting, is an important open problem (see Abadie (2019)).
Empirically, the classical SC estimator is ill-equipped to handle sparse, noisy, and
high-dimensional datasets; and theoretically, the SC literature is missing an analytically
motivated hypothesis test and a tighter finite-sample analysis with post-intervention

prediction error rates.

B 1.4 Summary of Results

This thesis provides a solution to the objective described above; that is, producing
counterfactual estimates of potential outcomes under all interventions and metrics for

every unit. To do so, we build upon both the SC estimator and framework, addressing the
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limitations detailed in Section 1.3. Along the way, we advance the theoretical analysis of
Principal Component Regression (see Jolliffe (1982)), a key subroutine of our proposed
SC variants, by viewing it through the lens of the Hard Singular Value Thresholding
(HSVT) method (e.g., Chatterjee (2015b), Gavish and Donoho (2014)), which we also
establish stronger quarantees for with respect to the ¢, -norm rather than the Frobenius
or spectral norms as is commonly done in the matrix estimation literature. Below, we

provide an overview of our contributions.

B 1.4.1 Principal Component Regression (Chapter 5)

We begin our journey by analyzing Principal Component Regression (PCR), which will
serve as a key subroutine in our algorithms in producing counterfactual potential outcomes
(see Algorithms 4, 5, 6). Therefore, in order to bound the post-intervention counterfactual
prediction errors of our proposed algorithms, we first establish that PCR generalizes from
training (pre-intervention) data to testing (post-intervention) data in a high-dimensional

error-in-variable regression setting.

Problem Setup

In Linear Regression, the data is believed to be generated as per a latent linear model
and the goal is to learn the linear predictor. More precisely, for each sample i < n,
the response y; € R is linked to the underlying covariate M; € RP via the following
model: y; = (M;, B*) + €, where B* € RP is the latent model parameter and ¢; denotes
idiosyncratic noise. In an error-in-variable regression setting, we are given access to a
labeled dataset {(y;, Z;) : i < n}, where Z; € RP represents the observed, contaminated

version of M; that is to be utilized in the learning process.

It is well established that PCR is an effective prediction algorithm when the covariates
exhibit low-rank structure. However, its ability to handle settings with noisy, missing, and
mixed (discrete and continuous) valued covariates (i.e., learning with Z; as opposed to M;)
is not understood and remains an important open challenge, cf. Chao et al. (2019). As a
contribution of this thesis, we establish the robustness of PCR in this respect, and provide
meaningful finite-sample analysis with a theoretically motivated, data-driven hypothesis

test to verify when PCR generalizes to unseen data.

Connection to HSVT

In order to prove the robustness and generalization properties of PCR, we first establish
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its connection to HSVT via Proposition 5.3.1. This allows us to analyze PCR through
the lens of HSVT, which will prove to be a fruitful approach. Along the way, we prove
that HSVT is a consistent estimator of the underlying mean matrix with respect to the
¥ oo-norm (Lemma 5.9.6), which is a stronger guarantee than the standard Frobenius

norm, i.e., a bound on the ¢, -norm immediately implies a bound for the Frobenius norm.

Parameter Estimation

Formally, under the high-dimensional error-in-variable setting, we prove that PCR
consistently learns the model parameter B* with the error rate scaling as 1/n, where
n represents the number of training samples (Theorem 5.3.1). Compared to the rich
literature of high-dimensional error-in-variable regression (cf. Loh and Wainwright (2012);
Datta and Zou (2017); Rosenbaum and Tsybakov (2013)), our method achieves a similar
error rate (with respect to n) for model identification without explicit knowledge of the
underlying covariate noise model or a sparsity assumption on the model parameter; instead,
we require the covariates to be low-rank. Moreover, the literature in error-in-variable
regression often assumes a restricted eigenvalue condition on the covariate matrix, while

we require the non-zero singular values of the covariate matrix to be well-balanced.

Test Prediction Error

Using our model identification result, we prove that PCR also achieves a test (out-
of-sample) error rate of 1/n in expectation (see Corollary 5.3.2); we state its high
probability version in Theorem 5.3.2. Of particular note, we underscore that Theorem
5.3.2 and Corollary 5.3.2 do not make any distributional assumptions. That is, while
typical generalization error analyses (e.g., Rademacher complexity techniques) adopt an
independent and identically distributed (i.i.d.) data generating assumption, our analysis
relies on a purely linear algebraic “subspace inclusion” condition. This distinction is
pivotal as i.i.d. assumptions can be unrealistic in our setting since potential outcomes
from different interventions are likely to come from different distributions; more generally,

the data generating process pre- and post-intervention may not be identically distributed.

Importantly, we highlight that the error-in-variable regression literature does not provide
test prediction error bounds since the existing algorithms do not provide a method to
“de-noise” corrupted test covariates; PCR, on the other hand, does provide a de-noising
approach. We provide a summary of comparisons with notable works from the error-in-

variable regression literature in Table 1.1.
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Literature Assumptions Knowledge of Parameter  Test (Out-of-Sample)
Noise Distribution  Estimation Prediction Error
Lasso-based sparsity Yes 1/n -
restricted eigenvalue cond.
This thesis low-rank No 1/n 1/n
well-balanced spectra (Thm. 5.3.1) (Cor. 5.3.1)

Table 1.1: Comparison with some notable Lasso-based works Loh and Wainwright (2012); Datta
and Zou (2017); Rosenbaum and Tsybakov (2013) in the high-dimensional error-in-variable
regression literature.

Hypothesis Test

As aforementioned, our test error relies on a “subspace inclusion” property, which enables
PCR to generalize to unseen data. Consequently, we furnish a simple, data-driven
hypothesis test with provable guarantees to check for this condition in practice. Indeed,
we argue that for any given significance level o € (0, 1), the test statistic is smaller than
an explicit critical value 1, with probability at least 1 — o (see Theorem 5.4.1). In the
context of our causal inference framework, this serves as a quantitative test to validate
when we can reliably extrapolate from our observed outcomes to estimate unobservable,

counterfactual potential outcomes.

B 1.4.2 Robust Synthetic Control (Chapter 6)

We begin our discussion of counterfactual estimation in the context of OSs by addressing
the limitations of the SC method described in Section 1.3. As the primary contributions
of Chapter 6, we prove the existence of a linear “synthetic” control for a target unit of
interest, and propose robust synthetic control (RSC), a robust variant of the classical SC
method to estimate potential outcomes under control given noisy and sparse observations,

with provable statistical guarantees.

Problem Setup

We consider a standard OS (and SC) setting, where there is a single metric of interest (for
simplicity) and target unit 1, which receives some intervention after t > Ty, with all other
donors, ie., T, remaining unaffected during the entire time horizon 7. Using our earlier
notation, this translates to P = 1, and D = 2 with Z) = [N]\ {1}, Z1? = {1}. Our goal
is to infer the potential outcomes for the target unit in the absence of any intervention,
ie., Mﬂ) for all t > Tp. For a graphical depiction of the input and output of RSC, see
Figure 1.3.
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Figure 1.3: RSC predicts counterfactual potential outcomes under control (light gray) for the
target unit, which is exposed to some intervention (blue) after To.

Existence of a Synthetic Control

In the SC literature, two standard assumptions are made: (i) First, the potential outcomes
under control (d = 1) follow a linear factor model. Specifically, this model (also considered
in Abadie et al. (2010)) states potential outcomes under control are /\/Ig) = (uy, vp), where
us € R"and v, € R" are latent factors associated with measurement and unit, respectively.
(il) Second, there exists a linear (or even convex) relationship between the target and

donor units.

As a contribution to the SC literature, we establish that a linear relationship between the
target and donor units is actually implied with high probability under the factor model
described above; thus, the existence of a linear synthetic control does not have to be
separately assumed as an axiom as is traditionally done, cf. Abadie and Gardeazabal
(2003); Abadie et al. (2010).

Robustness to Noise and Sparsity in a High-Dimensional Framework

Having established the robustness properties of PCR in the presence of noisy and sparse
covariates in a high-dimensional setting, we introduce RSC, which utilizes PCR as a key
subroutine (see Algorithm 4). Consequently, PCR'’s test error bounds (Theorem 5.3.2 and
Corollary 5.3.2) immediately provide meaningful finite-sample post-intervention prediction
error bounds for RSC (Theorem 6.2.1 and Corollary 6.2.1), which have been (to the best of
our knowledge) absent in the literature. Specifically, we establish that, in expectation, the
error scales as O(r/Tp); recall that To denotes the length of the pre-intervention period
and can thus be interpreted as the number of training samples, and r is the inherent

model complexity (dimension of the latent spaces).
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Empirical Studies: Importance of De-noising

We highlight the robustness properties of RSC through two canonical case studies: the
economic impact of terrorism in Basque Country Abadie and Gardeazabal (2003) and the
effect of Proposition 99 in the state of California Abadie et al. (2010). In both studies, we
also utilize the subspace inclusion hypothesis test since it serves as a natural quantitative
test for the validity of when to apply SC-like methods. Interestingly, our hypothesis test
suggests that RSC (and possibly the classical SC method) should not be applied towards
the Proposition 99 case study.

W 1.4.3 Multi-dimensional RSC (Chapter 7)

We continue the discussion of estimating potential outcomes under control using observa-
tional studies via SC-like principles. In particular, we present multi-dimensional RSC
(MRSC), a natural extension of RSC, to incorporate auxiliary metrics in a statistically
principled manner, and provide theoretical guarantees to highlight its ability to overcome

high levels of sparsity.

Problem Setup

We consider an extension to the setup in Section 1.4.2 with P > 1 metrics. Our interest
remains in estimating the potential outcomes for the target unit (n = 1) in the absence of
any intervention (d = 1) for some primary metric of interest p* during the post-intervention
period, ie., Mﬂ’p*) for all t > Tp and some p*. However, we now have access to auxiliary

metrics of conforming dimension, i.e., Z'P) for all p, which can be utilized to learn a model.

Incorporating Auxiliary Metrics

We extend the standard matrix factor model to a tensor factor model. Formally speaking,
we assume the potential outcomes under control follow Mil'”’ = 22:1 UteVneWpe, Where
us, v, € R™ are defined as before and wp € R" is the latent factor associated with metric
p. Under this factor model, we again establish that a linear synthetic control exists within
the reservoir of donors, which holds across all time and metrics. This suggests a natural
extension of RSC (stated in Algorithm 5), which we refer to as multi-dimensional RSC
(MRSC), that concatenates the pre-intervention data across all metrics in learning a

single linear model, thereby augmenting the number of training samples by a factor of P.

Benefits of Auxiliary Metrics
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As before, we utilize the PCR test error results to establish that the overall post-
intervention prediction error scales as O(r/Tp) (see Theorem 7.2.1 and Corollary 7.2.1).
However, the generalization error now decays as O(r/PTp). Since the training (in-sample)
error grows as O(r/Tp), the benefit of auxiliary metrics can only reduce the overall testing
prediction error up to a certain point, irrespective of the amount of additional information.
Therefore, the impact of auxiliary metrics is to help alleviate the problem of sparsity.
More specifically, as opposed to requiring on the order of r entries per sample in our

training set, we may now only need to observe r/P entries per sample.

Empirical Study: Overcoming Limited Training Data & Time Series Forecasting

MRSC's ability to overcome sparsity and limited training samples is further elucidated in
an empirical retail case study of forecasting weekly sales at Walmart stores. Across all
our experiments, we consistently find that MRSC significantly outperforms RSC when
the pre-intervention data is small; however, the two methods perform comparably in the
presence of substantial pre-intervention data. These empirical findings are in line with our
theoretical results, i.e., in the presence of sparse training data, MRSC provides significant

gains over RSC by utilizing information from auxiliary metrics.

Additionally, our mechanism for validating MRSC's performance is also an important and
related contribution of this work: episodic time series prediction. Specifically, we propose
a method to predict the future evolution of a time series based on limited data when the
notion of time is relative and not absolute, i.e., where we have access to a donor pool that

has already undergone the desired future evolution.

B 1.4.4 Synthetic Interventions (Chapter 8)

Our journey culminates with the presentation of synthetic interventions (SI), a method that
provides counterfactual estimates of potential outcomes for each unit under all treatments
and control. We establish its theoretical performance and discuss its implications towards

what-if analysis, drug repurposing, and personalized, data efficient RCTs.

Problem Setup

Here, we consider a significant extension to the setup described in Section 1.4.2 with
D > 2 interventions of interest; for simplicity, we consider P = 1. Our objective is
equivalent to that described in Section 1.2: to infer the potential outcomes for every

unit under all interventions (including control), i.e., Mig) for all n,d, and t > Ty. For a
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Figure 1.4: SI predicts counterfactual potential outcomes under control (light gray) and all
treatments of interest (blue and green) for all units.

graphical depiction of the input and output of SI, see Figure 1.4; we highlight that the
input matrix sparsity patterns reflect standard ES and OS data.

Estimating Counterfactuals Under Treatments

Methodologically, S| pleasingly turns out to be straightforward extension of SC, making it
easy to implement. Specifically, as in the variants of SC, the model in Sl is learnt using
pre-intervention data under the no-intervention (d = 1) setting; however, to produce post-
intervention counterfactual estimates, S| now applies the learnt model to any intervention

d, including control (thus, SC can be viewed as a special instance of Sl).

Transferring Between Interventional Frameworks

Although Sl is methodologically similar to SC in terms of learning a model to estimate
counterfactual outcomes, it is conceptually significantly different. In particular, it is not
clear a priori why the model can be transferred between interventions. To establish the
validity of SI, we consider a tensor factor model. Specifically, the potential outcomes follow
/\/Iig) = 22:1 UtoVneWqe, Where uy, v, are defined as before, and wy € R" now represents
the latent factor associated with intervention d. Under this setting, we establish that

there exists an invariant linear model that persists across measurements and interventions.

Moreover, we show Sl produces consistent post-intervention counterfactual estimates for
all units under all interventions. Formally, SI's post-intervention prediction error scales as
O(r/Tp) in expectation (Corollary 8.2.1). The statement in high-probability, with explicit

dependence on the noise parameters and model complexity, is given in Theorem 8.2.1.
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Empirical Studies: Toward Personalized, Data-Efficient Treatments

Given that S| can estimate potential outcomes under treatment (as well as control) across
all units, S| can effectively simulate treatment groups. As a result, we apply S| to
several case studies to highlight its ability to enhance what-if analysis and improve
RCTs, the gold standard mechanism in drawing causal conclusions. Most notably, we
use real-world observational data to quantify the trade-offs between different policies to
combat COVID-19 via SI. While standard OS methods (a la SC variants) can only infer
the counterfactual death trajectories if countries did nothing to combat COVID-19, S| can
additionally, and arguably more importantly, infer counterfactual trajectories if countries
implemented different policies than what was actually enacted. Indeed, understanding
the impact of various policies before having to actually enact them may provide guidance
to policy makers in making statistically informed decisions as they weigh the difficult
choices ahead of them. Furthermore, we use real-world experimental data from a large
development economics and e-commerce website to perform data-efficient, personalized
RCTs and A/B tests. Finally, we finish our whirlwind tour of case studies with an in-vitro
cell-therapy study (with experimental data) that bears implications towards data-efficient

drug discovery, thereby establishing Sl's widespread applicability.

B 1.4.5 Comparison with SC Literature

In Table 1.2, we list some of the key comparisons between SC and the extensions (i.e.,
RSC, MRSC, SI) presented in this thesis. More specifically, we highlight that (M)RSC
addresses the limitations of the classical SC work by providing finite-sample guarantees
for the post-intervention counterfactual prediction error and a quantitative hypothesis test
to check when SC-like methods are appropriate for use, both of which have been missing in
the literature. Finally, while the above methods can only produce counterfactual estimates
for a target unit under control, SI can also provably estimate the counterfactual potential

outcomes under treatment and for all units.

. Intervention Framework Theoretical Guarantees
Literature
# Interventions Recipient Counterfactual Estimates  Finite Sample  Hypo. Test
SC 1 Target control - -
(M)RSC 1 Target control 1/To Yes
Sl >1 Target, Donors control, treatment 1/T, Yes

Table 1.2: Comparison between classical SC literature Abadie and Gardeazabal (2003); Abadie
et al. (2010) and extensions presented in this thesis.
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B 1.5 Bibliographic Note

Preliminary versions of the results on PCR (Chapter 5) appeared in Agarwal et al. (2019).
Similarly, preliminary versions on the generalizations to the synthetic control method to
being robust to noise and missing data (Chapter 6) and incorporating multiple metrics
(Chapter 7), i.e., analyzing the utility of side information, appeared in Amjad et al. (2018)
and Amjad et al. (2019), respectively. Finally, synthetic interventions (Chapter 8) is
currently under submission; a memo version that details an application of synthetic
interventions towards COVID-19 and a full preprint version can be found at Agarwal et al.
(2020b) and Agarwal et al. (2020a), respectively.



Chapter 2

Literature Survey

B 2.1 Causal Inference

Causal inference has long been an interest for researchers from a wide array of communities,
ranging from economics to machine learning (see Pearl (2009); Rubin (1974b, 1973); Paul
R. Rosenbaum (1983) and the references therein). The focus of this work, however, will be

on extending the synthetic control literature.

W 2.1.1 Synthetic Control

Synthetic control (SC) has received widespread attention since its conception by Abadie
and Gardeazabal in their pioneering work Abadie et al. (2010); Abadie and Gardeazabal
(2003). It has been employed in numerous case studies, ranging from criminology Saunders
et al. (2014) to health policy Kreif et al. (2015) to online advertisement to retail; other
notable studies include Abadie et al. (2014); Billmeier and Nannicini (2013); Adhikari
and Alm (2016); Aytug et al. (2016). Within the clinical realm, a growing trend is to apply
SC-like methods to construct synthetic control arms in placebo studies syn (2019). In
their paper on the state of applied econometrics for causality and policy evaluation, Athey
and Imbens assert that synthetic control is “one of the most important development|s] in
program evaluation in the past decade” and “arguably the most important innovation in

the evaluation literature in the last fifteen years” Athey and Imbens (2016).

Among the many variants of SC, we note two of particular relevance here. As in our
framework, Arkhangelsky et al. (2018) assumes that the observed data is a corrupted
(additive noise model) of the true potential outcomes, which follows a factor model, i.e., a
low-rank matrix; however, they do not allow for missing data beyond the unobservable
counterfactuals. Here, the authors perform convex regression (with £-norm constraints)
along both the unit and measurement (time) axes (unlike standard SC methods, which

only consider regression along the unit axis) to estimate the causal average treatment

35
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effect. As is standard, however, the authors of Arkhangelsky et al. (2018) assume that
convex weights exist rather than prove its existence. Further, the results of Arkhangelsky
et al. (2018) are asymptotic, i.e., they hold when N, T — oo, while our results are
non-asymptotic. Another work that is less related, but is worth commenting on, as it also
heavily relies on matrix estimation techniques for SC, is Athey et al. (2017). Here, the
authors consider an underlying low-rank matrix of N units and T measurements per unit,
and the entries of the observed matrix are considered “missing” once that unit has been
exposed to a treatment. To estimate the counterfactuals, Athey et al. (2017) applies a
nuclear norm regularized matrix estimation procedure. Some key points of difference are
that the performance bounds are with respect to the Frobenius norm over all entries (i.e.,
units and measurements) in the matrix; meanwhile, we provide a stronger bound that is

specific to the single treated unit and only during the post-intervention period.

We refer the reader to Abadie (2019) and references therein for a detailed overview of
SC-like methods. Please refer to Table 1.2 and the related discussion in Section 1.4 for

a comparison of our results with previous work in the SC literature.

B 2.1.2 Heterogeneous Treatment Effects.

Randomized control trials (RCTs) are popular methods to study the average treatment
effects (ATEs) when the units under consideration are approximately homogeneous. How-
ever, RCTs suffer when the units are highly heterogeneous, i.e., when each unit of interest
might react very differently to each intervention. A complementary and exciting line of
work to tackle this problem has been on estimating heterogeneous treatment effects (see
Imbens and Rubin (2015) for a textbook style reference); here, the goal is to estimate
the effect of a single intervention (or treatment), conditioned on a sufficiently rich set of
covariates about a unit. The setting of Sl differs from these works in two important ways:
(i) it does not require covariate information regarding the units (this is in line with the
work of Athey et al. (2017)), yet can estimate the heterogeneous treatment effect; (ii) it
leverages the latent structure across interventions (via a tensor factor model) to estimate
the optimal intervention per unit. An interesting line of future work would be to combine
the literature on heterogeneous treatment effects with Sl to exploit covariate information

about units.
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B 2.2 Error-in-variable Regression

There exists a rich body of work regarding high-dimensional error-in-variable regression
(see Loh and Wainwright (2012), Datta and Zou (2017), Rosenbaum and Tsybakov (2010),
Rosenbaum and Tsybakov (2013), Belloni et al. (2017b), Belloni et al. (2017a), Chen and
Caramanis (2012), Chen and Caramanis (2013), Kaul and Koul (2015)). Three common
threads of these works include: (1) a sparsity assumption on the model parameter, 8*;
and (2) an “incoherence”-like structure, such as the restricted eigenvalue condition (cf.
Loh and Wainwright (2012) and references therein), on the underlying covariate matrix. In
all of these works, the goal is to recover the underlying model, B*. Some notable works
include Loh and Wainwright (2012), Datta and Zou (2017), Rosenbaum and Tsybakov
(2013), which are described in some more detail next.

In Loh and Wainwright (2012), a non-convex #;-penalization algorithm is proposed based
on the plug-in principle to handle covariate measurement errors. This approach requires
explicit knowledge of the unobserved noise covariance matrix £y and the estimator
changes based on their assumption of £y. They also require explicit knowledge of a
bound on HB*HZ

such knowledge about the distribution of the noise matrix (i.e., PCR does not explicitly

the object they aim to estimate. In contrast, PCR does not require any

use this information to recover the model parameter or make predictions).

The work of Datta and Zou (2017) builds upon Loh and Wainwright (2012) by proposing
a convex formulation of Lasso. Although the algorithm introduced does not require
knowledge of HB*
also not noise-model agnostic. In fact, many works (e.g., Rosenbaum and Tsybakov (2010),
Rosenbaum and Tsybakov (2013), Belloni et al. (2017b)) require either £y to be known
or the structure of the covariance noise is such that it admits a data-driven estimator for

Y it does also require access to Ly; in other words, their algorithm is

its covariance matrix.

It is worth noting that all of these works only focus on parameter estimation (i.e., learning
B*) and not explicitly de-noising the observed covariates. Thus, even with the knowledge
of B*, it is not clear how these methods can be used to produce predictions of the response

variables associated with unseen, noisy covariates.
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B 2.3 Principal Component Regression

The effectiveness of Principal Component Regression (PCR) is well established when the
covariates exhibit low-rank structure. Additionally, the reqularization property of PCR is
well known, at least empirically, due to its ability to reduce the variance. However, its
ability to handle settings with noisy, missing, and mixed (discrete and continuous) valued
covariates is not understood and remains an important open challenge, cf. Chao et al.
(2019). In fact, the formal literature providing an analysis of PCR is surprisingly sparse,
especially given its ubiquity in practice. A notable work is that of Bair et al. (2006), which
suggests a variation of PCR to infer the direction of the principal components. However,
it stops short of providing meaningful finite sample analysis beyond what is naturally

implied by that of standard Linear Regression.

B 2.4 Matrix & Tensor Estimation

Matrix estimation has spurred tremendous theoretical and empirical research across
numerous fields, including recommendation systems (see Keshavan et al. (2010a,b);
Negahban and Wainwright (2011); Chen and Wainwright (2015); Chatterjee (2015a); Lee
et al. (2016); Candes and Tao (2010); Recht (2011); Davenport et al. (2014)), social network
analysis (see Abbe and Sandon (2015a,b, 2016); Anandkumar et al. (2013); Hopkins and
Steurer (2017)), graph learning (graphon estimation) (see Airoldi et al. (2013); Zhang
et al. (2015); Borgs et al. (2015, 2017)), time series analysis (see Agarwal et al. (2018,
2020c)), reinforcement learning (see Shah et al. (2020)), and adversarial learning (see
Yang et al. (2019a,b)). Traditionally, the end goal is to recover the underlying mean matrix
from an incomplete, noisy sampling of its entries, and possibly with side information (see
Farias and Li (2019)). In general, the quality of the estimate is often measured through
the spectral or Frobenius norms. Further, entry-wise independence and sub-gaussian
noise is typically assumed. A key property of many matrix estimation methods is they
are noise-model agnostic (i.e., the de-noising procedure does not change with the noise
assumptions). We advance state-of-art for hard sinqular value thresholding (HSVT), a
specific (arguably the most ubiquitous) matrix estimation method by analyzing its error
with respect to the & o,-norm, which is a stronger measure than its Frobenius counterpart.
This generalization enables us to prove that PCR, which can be viewed through the lens
of HSVT (see Proposition 5.3.1 of Chapter 5), recovers the underlying model parameter

and achieves consistent out-of-sample prediction error.
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Recently, there has also been exciting developments in tensor estimation. In particular,
much theoretical work has focused on convex optimization approaches a la Ji Liu et al.
(2009), Gandy et al. (2011). Additionally, there has also been advancements with new
algorithms and provable guarantees (see Jain and Oh (2014), Huang et al. (2015), Zhang
and Barzilay (2015), Barak and Moitra (2016)). For a thorough review of tensors, we refer
the interested reader to Kolda and Bader (2009). We take this opportunity to note that
while we take a tensor perspective on counterfactual estimation, we cannot directly apply
these standard methods. This is due to a stark difference in modeling assumptions (block
sparsities of our setting versus uniform sparsity in standard setups) and objectives (i.e.,
we require guarantees for every unit-intervention tuple, while standard methods provide
guarantees on average across entire tensor). For a more detailed discussion, please see
Chapter 8.4.1.
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Chapter 3

Preliminaries

A common thread of modern datasets is that observations are often contaminated, both
by measurement noise and missing data, and may even be high-dimensional. In other
words, we only have access to a sparse, noisy representation of certain phenomena of
interest, which may live in a high-dimensional ambient space. To understand how these
perturbations affect our ability to recover the underlying signal, we rely on techniques
ranging from random matrix theory to non-asymptotic probability theory. As a result,
we take this opportunity to review relevant concepts from linear algebra and probability

theory in this chapter, which are central in analyzing our problems of interest.

In particular, we will study the geometry of linear operators through the prism of singular
values and subspaces, and how these objects change under perturbations. Additionally, we
present concentration inequalities, which quantify how random empirical quantities deviate
around their deterministic population counterparts, and the speed to which they converge
to these quantities. We will anchor on these results to then derive non-asymptotic rates

at which the probabilities of “bad” events vanish to zero.

B 3.1 Linear Algebra

Consider a real-valued m x n matrix A. Recall that A can always be represented via its

singular value decomposition (SVD), which we write as
A=Y sy, (3.1)
i=1

where r = rank(A). Here, s; denote the singular values of A (typically arranged in
non-increasing order with s; = 0 for all { > r), while the vectors u; € R" and v; € R”

denote the corresponding left and right singular vectors, respectively, of A. Equivalently,

1
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in matrix notation, we can write
A=USV',
where U =[uy,...,u ] €R™,V =wn,...,v] €R"™ and S = diag(s1,...,s,) € R™".

Importantly, the left singular vectors u; are also the orthonormal eigenvectors of AAT;
similarly, the right singular vectors v; are the orthonormal eigenvectors of ATA. The

singular values s; are thus the square roots of the eigenvalues A; of both AA” and AT A.

The Moore-Penrose pseudoinverse of A, denoted as AT, inverts A where A is invertible,

i.e., between the row space and column space of A. We write the pseudoinverse as

AT =vsTUT =5 (1/s)viu/.
i=1

In general, we can express A as

S 0 v’
o e

where U € R"™*" V € R"™" and S € R™*" are defined as before, and U; € R™*(m=1 v, &
R"*(1=1 and S, € R™=Nx("=r) QObserve that if rank(A) = r, then S; = 0. Further,
we note that the columns of U and V span the column and row spaces, respectively,
of A. As a result, U, denotes the left null space of A and V, denotes the null space
of A. Since the columns of U, U,, V, and V| are orthonormal, we will often refer to
them as matrices and subspaces interchangeably, where the subspaces are spanned by
their columns. Hence, we will denote Py = UUT and Py = VV' as the orthogonal
projection operators onto the column and row spaces of A, respectively; similarly, we
define Py, = U U] and Py, = VL V] as the projections onto the left null space and

null space, respectively.

Moving forward, for any matrix Q € R™*" with orthonormal columns, we denote Pg =
QQ' € R™™ as the orthogonal projection operator onto the n-dimensional subspace of

R™ spanned by the columns of Q.
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B 3.1.1 Matrix Norms

There are several ways to measure the size of a matrix. We will mention three of them —

operator (or spectral), Frobenius, and #; o-norms.

The matrix A is a linear operator from R” to R™. Its operator (or spectral) norm is defined

HAH = max HAXH2 = max (Ax, y),

XES”71 XES”71,y€5m71

where S"~1 and S™~" are the unit spheres in R” and R, respectively. Equivalently, the

spectral view of the operator norm states that
1A} = 1,

i.e., the operator norm of A is the largest singular value of A.

From the perspective of the entries of A, the Frobenius norm of a matrix is the extension

of the standard Euclidean #-norm on vectors:

AllF = w(aTa) =3~ % A5,

i=1 j=1

where tr denotes the trace operator. In terms of its singular values, the Frobenius norm

can also be represented as

2 : 2
Al =2 _st.
i=1
Thus, if s € R" denotes the vector of singular values, then

|A|| = lIslls and  ||A]| = lslI2,

which yields the inequality ||A|[. < /r-||A

, where rank(A) = r.

Finally, we introduce the ¢, o-norm, which is a mixed-norm on A:

A3 = ma 4], = max > 42
i=1

Jj€ln]

where A; € R™ denotes the j-th column of A. Thus, the & ,-norm measures the maximum



44 CHAPTER 3. PRELIMINARIES

Z>-norm on the columns of A. As an important side note, observe that

L= L5y 2 Loy 2= a2
mn F™ mn i U='m ?]eé[]rﬁ — U= m 2,007

This formalizes how the & .,-metric is a stronger guarantee than the Frobenius norm.

B 3.1.2 Isometries and Projections

The sinqular values of A have an important geometric interpretation. Specifically, the

singular values of A satisfy
sy lixly < HAXH2 < s1-lxll, forall x € R™.

Because A acts as an operator from R"” to R™, the singular values of A characterize the
amount of distortion in the size of x after its transformation. In particular, the operator

norm of A measures the maximum distortion of the geometry of R” under the action of A.

Operators that preserve distances exactly, called isometries, are of particular interest

here. We say that a matrix A (with m > n) is an isometry if
HAX”2 = lxll, for all x € R".

Clearly, this implies that the singular values of A are all equal to 1, ie, s1 =5, = 1.
Additionally, it follows that
ATA=1,

and P4 = AAT is an orthogonal projection onto an n-dimensional subspace of R™. A
useful consequence is that any subset of the columns of an orthogonal (unitary) matrix is

immediately an isometry.

Projection matrices, and particularly orthogonal projection operators, will play an important
role in this exposition. Thus, we review some their distinguishing properties. To begin,
recall that any projection operator (not necessarily orthogonal), P : R” — R”, satisfies
P2 =P Intuitively, this means if we start with any vector x € R”, then Px lies in the
subspace P projects onto, and applying the projection again does nothing to the resulting

vector. An orthogonal projection matrix further satisfies P = P’. An important spectral
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property of P is that its eigenvalues are either 1 or 0. As a result, it follows that
HPXHZ < lixll for all x € R".

Thus, P is a bounded operator.

If we let A be defined as in (3.2) with rank r, then we can decompose any x € R" as
x =Pyx + 'P\/LX,

where Py and Py, refer to the orthogonal projections onto the row space and null space
of A, respectively. A useful representation for the Py, is then Py, =1 —Py; similarly,
Pu, =1 —"Py. We take this opportunity to remind the reader that all the action under A
occurs between V and U. To see this, observe that applying A to x yields

Ax =A-(Pvx+ Py x) =A- -Pyx.

Since A = USV/, it follows that A - Pyx = Ax while A - Pv,x = 0. In words, only the
component of x that lives within the row space of A gets mapped to the column space

while any component of x within the null space is mapped to 0.

W 3.1.3 Perturbation Theory

Often, our observed data is a perturbed version of our true underlying signal. To recover
the latent signal, it is important to understand the effects of the perturbation. Perturbation
theory describes how the spectrum of our signal changes under “small” matrix perturbations,

and they play a critical role in analyzing spectral methods (e.g., SVDs).

Let A, as defined in (3.2), describe our signal matrix, which is approximately rank r (i.e.,
Sy > sr+1). We denote H € R™*" as the perturbation matrix (i.e., noise). We partition

the SVD of our observation matrix
Z=A+H

as follows:

z=|0 Dl][‘jg(l]l?g] (3.3)
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where U LAJLg §L, \7 and VL have the same structures as U, U,;,S,S,,V, and V|,
respectively.

Perturbation of Singular Subspaces

There are several characterizations to measure the distance between two subspaces, say

V and V. One viewpoint is through their orthogonal projection operators:
di(V, V) =|[Pv - Py
Another perspective is through the prism of principal angles:
da(V, V) = Hsin oV, V)H.

The following proposition states that the two definitions, which are both unaffected by

global orthonormal transformations, are equivalent, i.e., d1 and d; are equivalent metrics.

Proposition 3.1.1. Suppose [V, V] and [V \A/l] are orthogonal matrices, where V| and

Vi are orthogonal complements to V and \7 respectively. Then,
d(v, V) = [Py = Py|| = |sine(v, V).

There are two primary, canonical results from the field of perturbation theory that have
spurred tremendous research in recent years: the Davis-Kahan sin© Theorem (Davis
and Kahan (1970)) for eigenspaces and Wedin’s modified version for singular subspaces
(Wedin (1972)). Of the many exciting works to come out of this field, we highlight that Yu
et al. (2015) extends the analyses to provide a useful variant of the results in terms of the

population parameters (i.e., the singular values associated with A).

Theorem 3.1.1 (Wedin's generalized sin © theorem; Corollary 1.4.10 in Stratos (2016)).
Let A and Z = A+ H be defined as in (3.2) and (3.3), respectively. Then,

2[|H]|

Hsln oV, \A/)H v Hsm o(U, U)H <SS

where s; denotes the i-th singular value of A.

Despite its wide applicability, Wedin’s perturbation bound (Wedin (1972)) may be subop-
timal in certain settings. Specifically, since Wedin’s bound is uniform for both the left
and right singular spaces, it may not be useful to apply Wedin’s bound when the row and

column dimensions of the matrix differ significantly. To that end, Cai and Zhang (2018)
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resolves this gap by establishing separate optimal rates for the left and right sinqular

subspaces under the same perturbation.

Before we present their results, we make the convenient decomposition of H:
Hiu H v’
H:[U UJ_]' A B I (3.4)
H>1 H» v/
where
Hi1n=U"HV, Hy;=U"HV,, Hy=U[HV, and Hy=UHV,.

Theorem 3.1.2 (Perturbation bounds for sinqular subspaces Cai and Zhang (2018)). Let
A,Z, and H be given as (3.2), (3.3), and (3.4), respectively. Further, let h;; := HHU” for
i,j=1,2. Denote

o= omn(U'ZV) and B:=UlZV,. (35)

If a? > B2 + h%z A h§1, then

ahi + Bhy

a? — B%— (h%1 A h%z)
ahy1 + Bh12

a? — B? — (h%1 A h%z)

Hs'm oV, V)H <

Hs[n o(U, O)H <

In Chapter 5, we will invoke Theorems 3.1.1 and 3.1.2 to show that Principal Component
Analysis (PCA) and hard singular value thresholding (HSVT) can accurately recover the

singular subspaces of the signal matrix.

Perturbation of Singular Values

Analogous to the bounds for singular subspaces are perturbation bounds for singular
values. These results study how the sinqular values of the signal matrix A change under

perturbations. The most well known results are attributed to Weyl, which we state below.

Lemma 3.1.1 (Perturbation of sinqular values (Weyl's inequality)). Lets; and t; denote the
singular values of A and Z, respectively, in decreasing order and repeated by multiplicities.
Suppose Z = A+ H. Then,

max |s; — 1| < HHH
i€[mAn]
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B 3.1.4 Tensors

Here, we briefly overview a tensors, a convenient representation for multi-dimensional
data (a la spatio-temporal models; see Bahadori et al. (2014), Agarwal et al. (2020c)). In
particular, the structure of tensors naturally lends itself to capturing inter-dependencies

along the multiple dimensions.

For convenience, we focus on order-three tensors (though this can be easily extended
to higher dimensions). More formally, we denote T as a m x n x p order-three tensor.
Since T can be viewed as a stack of p matrices of size m x n, it will be convenient for us
to represent multi-dimensional data in the form of a tensor. As such, we will provide a
very review of an important tensor structure — its rank. Unlike matrices, however, tensors
have several notions of rank. For our purposes, we will discuss the canonical polyadic

(CP) rank, which is the tensor analogue to the traditional notion of matrix rank.

CP Rank

The canonical polyadic (CP) rank of a tensor T is related to its orthogonal decompositions,
and can be regarded as the natural generalization of the matrix SVD (see (3.1)). We say
that T is a rank-one tensor if it is expressed as the outer product of three vectors, say

u,v,and wforu e R, v € R", and w € RP, i.e.,
T=u®vew,

where the (i, j, k)-th entry of T can be written as T;jx = u;vjw,. More generally, we say

that T has CP rank r if T can be expressed as
r
T = ZU€®VE®W€,
=1
i.e., r is the minimum number such that T can be expressed as a sum of r rank-one tensors.

Remark 3.1.1. For a more thorough treatment of tensors, we refer the interested reader
to Kolda and Bader (2009).

B 3.2 Concentration Inequalities

Let X be a random variable. Recall that the quantities E[X¥] and E[(X — EX)] for
k € N represent the k-th moment and k-th central moment of X, respectively (assuming
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E[|X|k] < 00). The first moment and second central moment are well known as the mean

and variance of X. Further, we denote the moment generating function (MGF) of X as
Mx(s) = E[e*)], (3.6)

which is well defined for all s € R for which (3.6) is finite. We will see that moments of a
random variable capture useful information about its tail, i.e.,, P(X > x) and P(X < x),
which denote the upper (right) and lower (left) tails, respectively. In essence, MGFs
characterize the rate at which random variables converge to their population quantities

(e.g., mean).

For instance, one notable tool, known as Markov's inequality, bounds the tail of a

non-negative random variable in terms of its expectation.

Lemma 3.2.1 (Markov's inequality). For any non-negative random variable X and scalar
t > 0, we have

P(th)gE[t].

Proof. We begin by fixing any t > 0. Observing that X > t - 1(X > t) and taking
expectations completes the proof, e, E[X] > E[t- 1(X > t)] =t - P(X > t). [

To entertain the interested reader, we provide the proofs for Lemmas 3.2.2, 3.2.4, and 3.2.5,
which utilize common proof techniques (e.g., Chernoff's exponentiation trick, epsilon nets)
to establish concentration. Additionally, we will use these lemmas to prove our results
in Chapter 5. Finally, we refer the reader to Vershynin (2018) for a detailed review of
high-dimensional probability.

W 3.2.1 Sub-gaussian Distributions

We introduce an important class of probability distributions known as sub-gaussian
distributions. As the name suggests, these distributions are an extension of the famous
Gaussian (Normal) distribution, and thus exhibit similar desirable properties; namely,
tails that decay at least as fast as that of a Gaussian. Belonging to this rich class include
distributions such as the Bernoulli, truncated Poisson, and all bounded distributions. As
such, many results in probability, data science, and machine learning are proved under a

sub-gaussian setting.

Sub-gaussian random variables satisfy many properties — we highlight a few that will be of

particular importance. For a sub-gaussian random variable X, we denote its sub-gaussian
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norm as
IX[l,, = inf {t > 0: E[exp(x?112) | <2}

Property 3.2.1. IfEX =0, then
Elexp(AX)] < exp(cA?||X|[5,) for all 1€ R,

where ¢ is an absolute constant.

Property 3.2.2. Let X, ..., Xn be a sequence of independent, mean zero sub-gaussian

random variables. Then y_i_, X; is also a sub-gaussian random variable, and

2

n
)_X
i=1

n
2
< CZ HX"HL/Q'
(17 i=1

where C is an absolute constant.

We now state a modified version of Hoeffding's inequality in Lemma 3.2.2. Effectively,
Hoeffding's inequality, which is a more useful restatement of Property 3.2.2, establishes

the concentration of sums of independent sub-gaussian random variables.

Lemma 3.2.2 (Modified General Hoeffding's inequality). Let X = (X1, ..., X};) be a random
vector whose entries are independent, mean zero sub-gaussian random variables. Let
a = (a1,...,a,) € R" be a random vector, independent of X, satisfying llall, < b for

some constant b > 0. Then, for every t > 0, we have

P ( iaiX,-

i=1
Proof. Let S, = Y !, a:Xi. Then applying Markov's inequality (Lemma 3.2.1) for any

>t) <2€Xp(—c )
K?2b2 |
where K = max; HX‘H .

A > 0, we have

P(Sh > 1)

P (exp(AS,) > exp(At))
E[exp(AS,)] - exp(—At)
Eq[E[exp(ASy) | a]] - exp(—At).

IA

We note that the above is an example of Chernoff’s exponentiation trick, i.e., applying

Markov's inequality to exp(AS,) as opposed to simply S,.



Sec. 3.2. Concentration Inequalities 51

Now, conditioned on the random vector a, observe that
Elexp(AS,)] = |_| Elexp(Aa; Xi)] < exp(CKz)\zllaII%) < exp(CKz)\sz),
i=1
where the equality follows from conditional independence, the first inequality by Property
3.2.1, and the final inequality by assumption. Therefore,

P(S, > 1) < exp(CKZ)\zbZ _ At).

Optimizing over A yields the desired result:
ct?
P(S,>1) < eXp(_biZ)'

Applying the same arguments for —(X, a) gives a tail bound in the other direction. W

Sub-gaussian Random Vectors

The concept of sub-gaussian distributions extends to higher dimensions. In particular,
we say that a random vector X € R” is sub-gaussian if all one-dimensional marginals,
e, (X,u) of X for u € R", are sub-gaussian random variables. The corresponding

sub-gaussian norm is then defined as

Xl = sup ol
uesn-1

B 3.2.2 Sub-exponential Distributions

While sub-gaussian distributions form a wide class of distributions, there are several
natural random distributions (e.q., Laplacian, x?), which are not sub-gaussian but rather
sub-exponential. Although these distributions have heavier tails, we will see that they

have a close connection with our friendly sub-gaussian distributions.

Lemma 3.2.3 (Sub-exponential is sub-gaussian squared Vershynin (2018)). A random

variable X is sub-gaussian if and only if X? is sub-exponential. Moreover,

2 _ 2
. = IX.

The following statement can be seen as a version of Hoeffding’s inequality (Lemma 3.2.2)

for sub-exponential distributions.
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Theorem 3.2.1 (Bernstein’s inequality). Let X1,..., X, be independent, mean zero, sub-

exponential random variables. Then, for every t > 0, we have

t2 t
o X, maxe Xl

n
)_Xi

i=1

P

’

> t) < 2exp| —cmin

where ¢ > 0 is an absolute constant.

Quadratic Forms

Thus far, our focus has been studying sums of independent random variables. However,
quadratic forms of the type (X, AX) for a random variable X € R" and matrix of coefficients
A € R™", find their way in several important applications. Unfortunately, these terms,
often called chaos in probability theory, are harder to establish concentration due to the

dependence of the terms in the sum.

To that end, we state Lemma 3.2.4, which is a modified version of the Hanson-Wright

inequality where A is also a random object.

Lemma 3.2.4 (Modified Hanson-Wright inequality). Let X € R" be a random vector with
independent mean-zero sub-Gaussian coordinates with HXi”w2 < K. Let A€ R"™" be a

random matrix, independent of X, satisfying HAH < a and HAHZF < b almost surely for
some a,b > 0. Then for any t > 0,

2
P (‘XTAX . E[XTAX]‘ > t) <2. exp[—c min (Kt% %% ) ]
Proof. The proof follows similarly to that of Theorem 6.2.1 of Vershynin (2018). Using
the independence of the coordinates of X, we have the following useful diagonal and

off-diagonal decomposition:

XTAX —E[XTAX] = Z (A“xl.2 - E[A“-Xl-z]) +YAXX.
i=1 i#j

Therefore, letting
p=P (XTAX —EXTAX] > t) ,
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we Can express

n

p<P (Z (AUX[Z . E[AUX[Z]) > t/2
i=1

+P Y AXX 2 t2 | = p1+pa.
i#j

We will now proceed to bound each term independently.

Step 1: diagonal sum. Let S, = Y ", (A X? — E[AuX?]). Applying Markov's inequality
for any A > 0, we have

p1 = P (exp(AS,) > exp(At/2))
< EAE[[exp(AS,) | A]] - exp(—At/2).

Since the X; are independent, sub-Gaussian random variables, Xl-z—E[Xl-z] are independent

mean-zero sub-exponential random variables, satisfying

|x2 - Ex?]

<al
|

2
" < C2||Xi“¢2 < CzKZ.

|

’

Conditioned on A, we have that

Elexp(AS,)]=E [exp (i )\Aii(XiZ - E[Xiz])
i=1

= |i| E [exP ()\AU(X[Z - E[sz]))]
i=1

< |L| exp(CK4)\2Al-2i)
i=1

< exp(CK2[|A])

< exp(CK4)\2b),
where |A| < ¢/(aK?). Therefore, optimizing over A yields

. 2t
p1 < exp(CK4A2b - At/z) < exp[—cmm (,<4b K2q ) ]

Step 2: off-diagonals. Let S = Zi%j AijXiX;. Again, applying Markov's inequality for
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any A > 0, we have
p2 = P (exp(AS) > exp(At/2)) < EaA[E[exp(AS) | A]] - exp(—At/2).

Let g be a standard multivariate gaussian random vector. Further, let X’ and ¢’ be

independent copies of X and g, respectively. Conditioning on A yields

El[exp(AS)| < E [exp(4)\XTAX')] (by Decoupling Remark 6.1.3 of Vershynin (2018))
<E [exp(CMgTAg')] (by Lemma 6.2.3 of Vershynin (2018))
< exp(C2A2||A||2F) (by Lemma 6.2.2 of Vershynin (2018))

< exp(szzb),

where |A| < c/a. Optimizing over A then gives
< exp|—cmin t—z t
p2= e K'b' K2a | |
Step 3: combining. Putting everything together completes the proof. |

B 3.2.3 Random Matrices

Here, we consider m x n matrices A with random entries. For a detailed overview, please
refer to Vershynin (2010).

Independent Entries

We begin with the simplest, classical model of random matrices where its entries are
independent standard Gaussian random variables. Below, we state the behavior of the

extreme singular values of such a random matrix.

Theorem 3.2.2 (Gaussian matrices; Corollary 5.35 of Vershynin (2010)). Let A be a m x n
matrix whose entries are independent standard normal random variables. Then for every
t > 0, the following holds with probability at least 1 — 2 exp(—1t2/2):

Al < Vm +Vn + t.
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Independent Rows

We now consider settings where the rows of our matrix are independent random vectors
in R". Such settings are important in data science and machine learning since the rows
of A denote samples from a potentially high-dimensional distribution. As such, there is

no reason to suspect that the columns of A, corresponding to features, are not correlated.

As aforementioned, it is important for us to understand the effects of random perturbations
to our underlying signal. Luckily for us, as the dimensions of the matrices grow, the
spectrum of A tends to “stabilize”. This formalized in Lemma 3.2.5, which describes the

distribution of the singular values of A under the setting described above.

Lemma 3.2.5. Let A be an m x n matrix whose rows A; are independent, mean zero,
sub-gaussian random vectors in R" with second moment matrix £ = (1/m) - E[AT A]. Then
for any t > 0, the following inequality holds with probability at least 1 — exp(—tz):

1 t

AT _ 2 2 _ not
HmAA ZHSK max(0, 0°), where o C\/;+\/E'

here, K = max; HA;”w2 and C > 0 is an absolute constant.

Remark 3.2.1. Observe that Lemma 3.2.5 implies that for any t > 0,
v - ||=]| = CK (Wi + 1) < swin(A) < s1(A) < Vi - [|£]| " + CKP(v/n + 1)

with probability at least 1 — 2 exp(—tz).

Proof. The following proof extends the proof of Theorem 4.6.1 of Vershynin (2018) for the
non-isotropic setting; we present it here for completeness. Recall that the operator norm

of A can computed by maximizing the following quadratic form:

All = max Ax, uy),

|| || XES"71,y€Sm71< y>
where S"1,S™=1 denote the unit spheres in R” and R", respectively. Rather than
searching through the entire unit spheres, we will discretize the spheres using an e-net
argument to establish a tight control of the quadratic term (Ax, y) for any patr of fixed

unit vectors x, y. Then, we will take a union bound over all x, y in the net.

Step 1: Approximation. We will use Corollary 4.2.13 of Vershynin (2018) to establish a
1/4-net of A of the unit sphere S"~1 with cardinality |N'| < 9”. Applying Lemma 4.4.1 of
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Vershynin (2018), we obtain

1 1
HATA —~ ZH < 2 max < (ATA — z) x,x> = 2max —HAX”Z —x"EX|.
m xeN m xeN
To achieve our desired result, it remains to show that
1. 5 7 €
max | —Ax;—x"ZX| < =,
xeN |m 2

where € = K2 max(d, 62).

Step 2: Concentration. Let us fix a unit vector x € S"~! and write

m

HAXH; —x"Ex = Z ((A,-,X) — E[(A;, x)? ) i ( )

i=1 i=1

Since the rows of A are assumed to be independent sub-gaussian random vectors with

||A[HL/J2 < K, it follows that Y; = (A;, x) are independent sub-gaussian random variables

with HYle < K. Therefore, Yl-2 - E[Yl-z] are independent, mean zero, sub-exponential
2

random variables with

|

As a result, we can apply Bernstein’s inequality to obtain
> =e (
€2

€
§2exp —c1 min K2 m

= 2exp _—c1 62m]

V2 —E[Y/)

L =aly
I

2 2
" < C2||YiH¢,2 < GK-.

m

> (Y2 —E[Y?)

i=1

P (|l -+ S

|

N @

< 2exp -—c1 C%(n + tz)],

where the last inequality follows from the definition of & and because (a + b)? > a? + b?
for a,b > 0.

Step 3: Union bound. We now apply a union bound over all elements in the net.
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Specifically,

LhAx - xTx

P (max
m

xeN

> ;) <9". 29xp[—c1 C%(n + tz)] < Zexp(—tz),

for large enough C. This concludes the proof.
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Chapter 4

Potential Outcomes Tensor

In this chapter, we formally present our potential outcomes tensor. This framework will
enable us to characterize both ESs and OSs by unique block sparsity patterns, and relate
counterfactual estimation to tensor estimation. The following chapters (namely, Chapters

6, 7, and 8) will analyze instances of this general setting.

B 4.1 Tensor Factor Model

Throughout, we adopt the potential outcomes framework of Neyman (1923) and Rubin
(1974a). As an important contribution, we represent the universe of potential outcomes
through a tensor object. This structural representation will then allow us to view the
estimation of counterfactuals as equivalent to recovering aspects of this tensor, and will
allow us to not only establish a relationship between the units, interventions, and metrics,

but also prove the existence of synthetic controls and interventions.

B 4.1.1 Potential Outcomes

Let M € RT*NxDxP he an order-four tensor where its (t, n,d, p)-th element, Mﬁﬂ"”,
represents the potential outcome of the t-th measurement for unit n under intervention
d and metric p. It is convenient to think of M as a collection of P order-three tensors,
where each tensor represents the collection of potential outcomes across all units, time,
and interventions for a particular metric. In particular, for any metric p, let M(4-P) € RT*N
denote the d-th frontal slice of the p-th tensor, which represents the matrix of potential

outcomes across all measurements and units under intervention d. Further, we denote

MU =M™ < £ < To,n € T € RN (4.1)
Mp()z;[t)) =Mt > Ty, n eI e R(T—To)x N

59
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as the pre- and post-intervention sub-matrices of M(?P) restricted to those donors in Z(“)
(defined as in (1.1)). For ease of notation, we note that if unit i is the target and receives
intervention d, then I\ := T\ {i} and N9 := |Z(O\{i}|.

In consistency with the standard econometrics literature, we consider a factor model.
Specifically, we extend the standard matrix factor model to a tensor factor model. The low-
rank assumption reflects the belief that correlations exist within the different dimensions
(i.e., time, units, interventions, and metrics), and thus the potential outcomes can be

described by a few latent factors. This is formalized by the following property.

Property 4.1.1 (Low-rank). The canonical polyadic tensor rank of M is r. That is, there
exists vectors {u;} € RT,{v;} € RN, {w;} € R?, and {q;} € R” for all i €[r], such that

.
MZZW@V@@W@@W-
=1

Interpretation. Property 4.1.1 implies that every frontal slice M(@P) can be written as

,
MIP) =5 (waeqie - ug) ® ve = UP VT, (4.2)
=1

where Ul4P) € R™*" and V & RN*" has (without loss of generality) orthonormal columns.
Hence, the low rank tensor model implies there exists an r-dimensional linear subspace
of RN, denoted by V, that describes a latent relationship between units that is invariant
across interventions. Under every metric p, each intervention can then be interpreted as

some linear transformation, denoted by U'??), applied to this subspace.
Property 4.1.2 (Bounded). The entries of M are bounded by one in absolute value.

Property 4.1.3 (Well-balanced spectra). For every intervention d and metric p, the non-

zero singular values s; of M,()',jép) are well-balanced, i.e., sl-2 = G)(N(d) To/ré,?ép)), where
rank(MF()‘rjép)) = ré‘rj’p). Similarly, the non-zero singular values t; of MF(,‘Z’S’:) satisfy 7 =

ONE(T — To)/r'%P)), where rank(M92)) = (177)

post post / = "post *

Example 4.1.1 (Embedded Gaussian Features). One classical example in which Property
4.1.3 holds is the probabilistic model for PCA, cf. Bishop (1999); Tipping and Bishop
(1999).

Example 4.1.2 (Well-balanced Entries). Another natural setting in which Property 4.1.3
holds is if /\/Iig’p) = O(1) and the non-zero singular values of Mé,?ép) satisfy s7 = ©(() for
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2
some (. Then, C(ré,?ép) = HMEfrjép)HF = @(N(d) To) for some C > 0. An identical argument

applies to MI()‘;’S‘:).

Existence of Synthetic Control & Synthetic Interventions

We begin by stating a natural property that theoretically justifies SC-like methods and
S|, t.e., artificially constructing control and treatment groups. Let v, denote the n-th row

of V, given in (4.2), which is the latent factor associated with unit n.

Property 4.1.4. Given intervention d and unit i, let v; lie within span({v,},cz@). That
(d.i)

is, there exists a B\@) € RN such that v; = Y nerid Bn - Vi
Proposition 4.1.1 (Existence of SC & Sl). Suppose Property 4.1.1 holds. For a given
intervention d and unit i, suppose Property 4.1.4 holds. Then for all (t, d’, p) € [T] x
[D] x [P], we have

M = Y A .

nezld

Interpretation. Under a low-rank tensor factor model, Proposition 4.1.1 states that the
target unit can be expressed as a linear combination of every donor subgroup across all
measurements, interventions, and metrics. Indeed, this is the key result that enables both
(M)RSC and Sl to “transfer” the learned linear model from the pre- to post-intervention
period, even if the interventional frameworks differ between the two periods. In Proposition
4.1.2 below, we show that Property 4.1.4 holds with high-probability.

Proposition 4.1.2 (SC & SI Exist whp). Suppose Property 4.1.1 holds. Let the N units
be re-indexed as per some permutation chosen uniformly at random. Then for any unit i,
Property 4.1.4 holds w.p. at least 1 — r/N'9),

Interpretation. By the union bound, B!?) exists for all d simultaneously w.p. at least
1-— ZdD:1 r/N'.  Proposition 4.1.2 circumvents the “pathological” case where v; is
orthogonal to all other rows in V. Since there are at most r — 1 such rows in any rank r
matrix, Proposition 4.1.2 establishes that, with respect to the unit indexing randomness,
this pathological case will not occur w.h.p. Importantly, we highlight that Proposition 4.1.2
does not imply that the units need to be randomly administered interventions, i.e., the

random re-indexing is purely an analytical tool and makes no experimental statements.

Remark 4.1.1 (Linearity with respect to metric). By symmetry, we note that a linear

relationship between interventions holds across units and time. Therefore, analogous
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statements such as Property 4.1.4 and Propositions 4.1.1 and 4.1.2 hold for interventions.
However, as with units, it is important to note that this does not imply that interventions
(or units) are linear combinations of one another, e.g., the chemical structure of drug A is
not necessarily a linear combination of the chemical structures of other drugs. Rather,
these results simply state, under a low-rank tensor factor model (Property 4.1.1), there is
a linear relationship between interventions (or units) with respect to the outcome variable
of interest (metric). In general, the low-rank notion simply materializes the ideal that
structure is shared across dimensions of the tensor; hence, even though there are N units
(and D interventions), there are only a few canonical profiles for which all units (and

interventions) are linear combinations of these profiles under the metric of interest.

M 4.1.2 Observed Outcomes

We assume every observed outcome is corrupted by noise and satisfies

d, d, d,
yldp) _ aq p)+6$np)

tn tn

’

(d.p)

where &;,

represents measurement noise. We make the following assumptions.

P be a sequence of independent mean
S KI
U

Property 4.1.5 (Sub-gaussian noise). Let 5%’

zero sub-gaussian random variables with variance bounded by o?, and He(td’p)
HE[CEd'p) ® C(td'p)]H < 2, where P! = [€l%P) . p e T(@)] € RN

Interpretation. Since eﬂ’p) are independent, K and y? are constants. However, our

analysis goes through for the more general case where the noise is dependent across the
donor units for a given t; here, K and y? quantify the level of dependence in the noise

between the donors at a given time.

Property 4.1.6 (Missing at random). The non-counterfactual entries of Z are indepen-
dently observed w.p. p € (0,1], i.e,, ﬂg’,’,), given by (1.2), are a sequence of i.i.d. Bernoulli(p)

random variables.

Interpretation. Beyond the unobservable counterfactuals, we allow the observed outcomes

themselves to be missing at random.

Connection to Error-in-variable Regression

Without loss of generality, consider unit i in Proposition 4.1.1. Then, the observed

outcomes for the target unit i during the pre-intervention period (response vector) follow
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a linear model. That is, for every 7 and any metric p,

VP = ST B MR 4 P forall £ < T (4.3)

nezld)

Since we only ever observe a noisy instantiation of Miﬂ"”, namely Y,(,(,j'p), this is exactly

the setting of error-in-variable regression.

Parameter Estimation

To estimate the post-intervention counterfactual potential outcomes, we require a good
estimate of B(d'[), given in (5.1). It is well known, however, that recovering the latent
model parameter without any additional assumptions is ill-defined since infinitely many
solutions to (5.1) exist. Thus, for the purposes of model identification, it is standard within
the error-in-variable regression literature to assume, for instance, B{¢! is sparse and
M,g‘rjép) satisfies the restricted eigenvalue condition; see Loh and Wainwright (2012) and
references therein. However, for the purposes of prediction, we argue only the component
of B¢ within the row space of Mé,‘,jép) matters since any component within the null
space is mapped to zero. This particular B!%? is unique and has minimum #-norm; we
show PCR accurately estimates this vector, which may be of independent interest in the

error-in-variable regression literature.

B 4.2 Proof of Existence of SC and SI

B 4.2.1 Proof of Proposition 4.1.1
Proof. For all (t,d’, k) € [T] x [D] x [K], we have that

.
&'k
/\/’i,- ) = Z Ute ~ Vie " Ware - Qke

0=1
r
i
=Y U ( > B l)'Vné) “Ware - e
o=1 ezl
,
y
=) [ (Zuw-vne-wd'e-w)
nezld) =1
dii) yfld K
- Z Bﬁ’ l)'Mﬁn )'
nezld)

This completes the proof. |
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B 4.2.2 Proof of Proposition 4.1.2

Proof. Fix any d, and recall Z9) is the corresponding, randomly sampled donor group.
Under Property 4.1.1, rank(V) = r; hence, it must be that dim(span{(v,,)nez(d)uﬂ}}) <r.
Since Z!9) and the target unit i are sampled randomly from [N], the probability that
vi & span{(vy),ez@} is at most r/N(@ (since among the Z'9) U {i} units, there can be at
most r linearly independent vectors). Thus, P(E4) > 1 — r/N), where

Eq = {Hﬁ(dl) e RN(d) sty = Z B,gd'i) . Vn}.

neZld



Chapter 5

Principal Component Regression

As stated in Chapter 4, we assume the potential outcomes follow a low-rank factor model
(Property 4.1.1). In a high-dimensional framework where the ambient dimension of the
feature space is large, it is well known (particularly, empirically) that Principal Component
Regression (PCR), see Jolliffe (1982), is an effective prediction algorithm if the covariates
exhibit low-dimensional structure; this motivates the usage of PCR in our context to

predict counterfactual potential outcomes.

However, despite PCR'’s tremendous success in a variety of applications, its ability to
handle settings with noisy, sparse, and mixed (discrete and continuous) valued covariates
is not understood and remains an important challenge, cf. Chao et al. (2019). As
a contribution of this thesis, we establish the robustness of PCR to these scenarios
and provide finite-sample guarantees with respect to its parameter estimation and test

(out-of-sample) prediction errors.

B 5.1 Setup

We begin by describing our setup and formalizing our model, observations, and objective.

Training Data

Throughout this chapter, let My, denote a n x p training covariate matrix of rank

r<nAp:

,
Miain = E Silli @ V.
i=1
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Rather than directly observing My,in, we only have access to its corrupted version, Ziain:
nAp
Zirain = E SiU; ®V;.

i=1

We assume the observed covariates are generated via the model:
Ztra'm = (Mtra'm + Htra[n) o Ptra'mr

where Hiain € R"*P is the measurement noise and Piain € {0,1}7*P is a masking matrix.
Finally, let y € R" denote the response vector (training labels), which is related to the

underlying covariates My via the following linear model:
y = MtrainB* + &, (51)
where B* € RP is the underlying model parameter and € € R” is the response noise.

Testing Data

We denote the SVD of the m x p rank r' < m A p testing covariate matrix Miest as

r

Mest =) = T ® vi.
i=1

Similar to the above setup, we denote the perturbed version of Miest as Ziest, which is
generated as
Ztest = (Mtest + Htest) © PtEStr

and admits the following SVD:

mAp
Liest = Tili ® Vi.
i=1

We note that Hiest € R™*P and Piest € {0, 1}"*P are defined analogously as above.

Objective

Given (y, Zirain, Ztest), our aim is to recover the true model parameter B* and predict the

underlying out-of-sample response vector MiestS*.
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B 5.2 Hard Sinqular Value Thresholding (HSVT)

Before we analyze PCR, we briefly digress to examine HSVT, a powerful matrix estimation
technique to de-noise observations and impute missing values. As we will show in
Proposition 5.3.1, HSVT is closely related to PCR.

W 5.2.1 Algorithm

It is well known that the principal components of the data often capture most of the signal.
Thus, much like the spirit of Principal Component Analysis (PCA) — a key subroutine of
PCR — HSVT retains the top singular components of the data and shaves off the remaining

singular components, which often represent noise. We state the HSVT algorithm below.

Algorithm 1: HSVT
Data: Z =) ,5,0;®V; € R™P, k € [n Ap]
Result: M € R"*P

1. M« (1/p) Zfﬂ SiU; ® V;, where p is the fraction of observed entries in Z

H 5.2.2 Results

Due to its immense popularity, HSVT has been widely studied in the literature; however,
much of the analyses has been devoted to bounding its estimation error with respect to
the Frobenius and operator norms. For our purposes, however, we require a bound on the
4 oo-norm. To that end, we denote the HSVT estimation error of //\Ztra-m as

5HSVT(Mtrain) = EHMtrain - Mtrain

2,00

We note that the HSVT error of K/I\test is defined similarly. The following statement bounds
the HSVT estimation error when the sinqular values are chosen correctly under the setting
described in Chapter 4.

Lemma 5.2.1 (HSVT & «-norm Error). Suppose Mi.in satisfies Properties 4.1.2, 4.1.3,
Hyain satisfies Property 4.1.5, and Pyain satisfies Property 4.1.6. Consider K/I\tra-m =

HSVT(Zyain, r). For any 6 > 0 and some C > 0, if p > %}:M), then the following holds

w.p. at least 1 — o:

& M rain < — A,
HSVT (Mhirain) S nAp
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where

1 \ﬁ 1 r
A=G|5—+—F———]logp, 5.2
p?> n p*y/n(nAp) P )

Ci = C(1+ a1+ y)(1 + K?), and G = C1K2(1 + log*>?(1/6)).

Interpretation. Lemma 5.2.1 states that the HSVT estimation error vanishes as n, p grow.
Further, we note that the above bound is stated in the more general noise setting where
the rows of Hy.ain are independent sub-gaussian random vectors rather than the entry-wise
independence setting given by Property 4.1.5 (see Chapter 4.1.2 for details). Additionally,
the bound holds between /Mtest and Mhest with (n, r) replaced by (m, r’). Given the ubiquity
of HSVT, Lemma 5.2.1 may be of interest in its own right.

B 5.3 Principal Component Regression (PCR)

W 5.3.1 Algorithm

Often, our underlying signal of interest has low-dimensional structure, but is masked by
our perturbed observations that live in a high-dimensional ambient space. It is widely
known, however, that the principal components (top singular components) of the data
capture most of its information, and can be uncovered via Principal Component Analysis
(PCA). As a result, PCR, which uses PCA is a key subroutine, is a widely used technique
to extract the latent factors that drive the correlation structure of the data prior to learning

a linear model. We state the PCR algorithm below.

Algorithm 2: PCR
Data: Z=) ,5;u;®Vv; € R"™P,y € R", k € [n A p]
Result: E eRP

~ 2 ~
1. W < argmin Hg - (1/ﬁ)zkaH2, where Vi = [01,...,7] € R and B is the
weRk
fraction of observed entries in Z

2. §<— VkvAv

PCR Intuition

Using the observed covariates, PCR first finds a k <« p dimensional representation for

each feature via PCA,; specifically, PCA projects every covariate Z; onto the subspace
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spanned by the top k right singular vectors of the covariate matrix. PCR then uses the

k-dimensional features to perform linear regression.

Choosing k

In general, the correct number of principal components k = r to use is not known a priori.
However, under reasonable signal-to-noise scenarios, Weyl's inequality (Lemma 3.1.1)
implies that a “sharp” threshold or gap should exist between the top r sinqular values
and remaining sinqular values of the observed data Z. This gives rise to a natural “elbow”
point and suggests choosing a threshold within this gap. Another standard approach
is to use a “universal” thresholding scheme that preserves the singular values above a
precomputed threshold (see Chatterjee (2015b) and Gavish and Donoho (2014)). Finally,

data-driven approaches developed around cross-validation can also be employed.

B 5.3.2 Equivalence

Since our observed covariates are contaminated, a natural algorithm to recovering a
solution to (5.1) is to first de-noise our data via HSVT and then perform Ordinary Least
Squares (OLS) to learn a linear model. We note that OLS can be equivalently viewed as
PCR with hyper-parameter k = n A p. Pleasingly, it turns out that HSVT with OLS is
equivalent to PCR. This is formalized in Proposition 5.3.1.

Proposition 5.3.1 (Equivalence). Let k € [n A p]. Suppose BPCR — PCR(Ztrain, Y. k).
Further, consider //\Ztram = HSVT(Zyain, k) and EHSVT = PCR(//\Ztram, y,n A p). Then,

ZPCR _ BHSVT
B =8B

BPCR A BHSVT
ZtrainB = MtrainB .

Interpretation. Given the above equivalence, we can analyze properties of PCR through

the lens of the HSVT estimator. In particular, we will utilize Lemma 5.2.1 to prove Lemma
5.3.1 and Theorems 5.3.1, 5.3.2.

B 5.3.3 PCR Training Prediction Error

Evaluation Metric

For any estimate /\A/ltréyLn € R" of My,inB*, we define the corresponding training (in-sample)
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prediction error as

—~ 110 ~ . 2
&raln(Mtra'Ln) = ;H/V’traln - Mtra'LnB 5

Estimator

We consider /\A/Itra-ln = Ztra-mg with E = PCR(Zirain, y. r) as the estimate of My,inB*.

Results
We state the training error bound of /\/;Itra-m in high probability below.

Lemma 5.3.1 (PCR Train Error). Suppose (Mirain, MiainB*) satisfy Properties 4.1.2, Miain
satisfies Property 4.1.3, (Hyain, €) satisfy Property 4.1.5, and Py.in satisfies Property
4.1.6. Let B* be any solution to (5.1). For any 0 > 0 and some C > 0, if p > Cl%’(:/'s)
then the following holds w.p. at least 1 — 9:

’

2
20°r 4 Qrw/longB*Hf LA

arain(/\?’tra'm) S n p4 n /\p

where
Ay = 5%“3*”1, Ci=C(1+ a1+ v)(1+K?), G = GK?* (1 +log?(1/0)). (5.3)

Interpretation. The first term in the result of Lemma 5.3.1 above represents the minmax error
rate from low-dimensional ordinary least squares regression with noiseless covariates;
the second term corresponds to the HSVT estimation error as the training covariate
matrix is noisily observed; the third term corresponds to the error due to providing a
high-probability bound (which will be absent if we choose the expected error to be our

metric of choice).

H 5.3.4 PCR Parameter Estimation Error

In a high-dimensional framework, there may be an infinite number of models that satisfy
(5.1). However, as described in Chapter 4.1.2, only the component of B* that lives within
the rowspace of My, is important for the purposes of prediction. For that reason, we
consider, without loss of generality, the unique B* of minimum #>-norm that satisfies (5.1).
The following result states that PCR can recover this particular model parameter even in

the presence of contaminated covariates.
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Theorem 5.3.1 (PCR Parameter Estimation Error). Let the conditions of Lemma 5.3.1
hold. Further, let B* be the unique vector of minimum ¢,-norm that satisfies (5.1). For

any 0 > 0 and some C > 0, if p > Gr

A then the following holds w.p. at least 1 — 0:

~ 2 _r({Ca’r GCry/logp, .2 G or «|2
|88, < (5 + i MBI +2) + I8

where Cy, G, A are given by (5.3).

Interpretation. The first term within the parentheses on the RHS is exactly the in-sample
prediction error for PCR (given in Lemma 5.3.1). The second term is the additional cost
paid for directly estimating B8*. Now, consider the special case where the following
two conditions hold: (i) Mhin is directly observed, i.e., there are no missing values
or measurement errors in the donor data; and (ii) the columns of M., are linearly
independent (i.e., B* lies within its row space). Then, the bound above agrees with
classical parameter estimation results for ordinary least squares (e.g., Remark 2.3 of
Rigollet and Hiitter (2017) under Property 4.1.3.)

Comparison with Literature. Suppose n < p. Since HB*H1 < \/ﬁ”B* the parameter

I
estimation error scales as O(HB*H;/n) with high probability; this is with respect to the
minimum &-norm B*. We note that this rate is in line with previous works (c.f. Loh and
Wainwright (2012); Datta and Zou (2017); Rosenbaum and Tsybakov (2013)), where the
error also grows as (’)(HB*H;/n). Note, however, these previous works make a key sparsity
assumption that HB*HO < r, which we do not require for our results. Instead, we make a
low-rank assumption on the covariate (donor) matrix. Further, the estimators proposed
in Loh and Wainwright (2012); Datta and Zou (2017); Rosenbaum and Tsybakov (2013)
explicitly require knowledge of the noise distribution (i.e., its second moment matrix).

PCR, on the other hand, does not require this.

Synthetic Simulation

To study the scaling of the parameter estimation error, we performed simulations under

an additive noise model. We detail the setup and results below.

Model. We construct our underlying training covariates M € R"*P via the probabilistic
PCA model as described in Chapter 4.1.1. That is, we first generate M, € R"™" by
sampling each entry from a standard normal distribution, independently of other entries.
Then, we sample a transformation matrix Q € R™P, where each entry is uniformly
and independently sampled from {—1/\ﬁ, ’I/\ﬁ}. The final matrix then takes the form
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M = M, Q. We define rank(M) = r = p%, where p € {128,256,512}.

Next, we generate 8 € R by first sampling from a multivariate standard normal vector
with independent entries and then arbitrarily scaling the resulting values by 5. The
underlying response vector a € R" is then defined to be the product a = MB. Finally,

the model parameter of interest, 8%, is then computed as
minimize (lwll3 subject to Mw = a.

Observations. We consider an additive noise model. Specifically, the entries of € € R”
are sampled i.i.d. from a normal distribution with mean zero and variance o = 0.2. The
entries of H € R"*P are sampled in an identical fashion. We then define our observed

response vector as y = a + € and corrupted covariate matrix as Z = M + H.

Results. Using (y, Z), we perform PCR to yield B. To demonstrate that PCR can accurately
recover 8% the minimum &-norm solution, we compute the #,-norm parameter estimation
error, or root-mean-squared-error (RMSE), with respect to 8* and B in Figures 5.1a and
5.1b, respectively. As suggested by Figure 5.1a, the RMSE with respect to 8* roughly
aligns for different values of n, after rescaling the sample size as n/(r?/log p), and decays
to zero as the sample size increases; this is predicted by Theorem 5.3.1. On the other
hand, Figure 5.1b shows that the RMSE with respect to B stays roughly constant across
different values of p. Therefore, as established in Theorem 5.3.1, PCR performs recovers

the minimum-norm solution.
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(@) 4-norm error of E with respect to the  (b) &-norm error of E with respect to a
minimum &-norm solution of (5.1), i.e., B*. random solution to (5.1).

Figure 5.1: Plots of &-norm error against B* in 5.1a and B in 5.1b, versus the rescaled sample
size n/(r’y/log p) after running PCR with rank r = p%. As predicted by Theorem 5.3.1, the curves
for different values of p under 5.1a roughly align and decay to zero as n increases.
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Remark. Recall the discussion of Theorem 5.3.1. That is, if we apply the inequality
H/S*H1 < \/,T)Hﬁ*Hz then for any fixed 0, the parameter estimation error scales as
O(r?~/log pHB*Hg/(n A p)). Thus, we choose our rescaled sample size to be n/(r>y/log p).

B 5.3.5 PCR Testing Prediction Error

Evaluation Metric

For any estimate /\A/Itest € R" of MestB*, we define the corresponding testing (out-of-

sample) prediction error as
. 111 ~ 112
&est(M‘test) = EHMtest — MiestB HZ

Estimator

Assume MiestB* satisfies Property 4.1.2. We consider the following prediction estimate
of MiesiB*. Let /\A/Itest = Truncate(//\/I\testE) be a truncated version of Mestﬁ, where /Mtest =
HSVT(Ziest, I'), E = PCR(Zain, Yy, r), and Truncate(:) is defined below.

Algorithm 3: Truncate
Data: X =[X;:i < n]
Result: X{twnd — [x(rund . ; < o]

1. For every i < n:

Xi, it X e[-1,1]
X9 = L X > 1
-1, it X; < —1.

Interpretation. In words, since the underlying test responses are assumed to be bounded

under Property 4.1.2, we also restrict our estimates to lie within the unit interval.

Results

In what follows, we denote the right sinqular vectors of the underlying training (Mrain)
and testing (Mhest) covariate matrices as Virain € RP*" and Viest € RPXT respectively. We

are now ready to state PCR'’s test error bound in both high probability and expectation.
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Theorem 5.3.2 (PCR Test Error in High-Probability). Let the conditions of Theorem 5.3.1
hold. Suppose (Mhest, MiestB*) satisfy Property 4.1.2, Miest satisfies Property 4.1.3, Hiest
satisfies Property 4.1.5, and Piest satisfies Property 4.1.6. Let span(Viest) € span(Virain)-

Forany o >0, if p > H%SZAFP, then the following holds w.p. at least 1 — 9:
r{ Ca?r C1 G ry/logp
Eest(Mhest) < 7( - p4 oA /\p”B ||1 WHB Hz + A)

where Gy, 3, A are given by (5.3).

Corollary 5.3.1 (PCR Test Error in Expectation). Let the conditions of Theorem 5.3.2
hold. Then for any o > 0,

20°r 4 GG rlogz(p/é
n pt nAmAp

ElEies (Vhes)] < 7 18712 + B15) + 43,

(nAm /\ p)? |
where C3 = CK?(1 + a%)(1 + y?)(1 + K?) and Cy = C(1 + a?)(1 + y?)(1 + K?).

Interpretation. For simplicity, we let n = O(m) = O(p), and suppress dependencies
on B* and logp. The error bound in Theorem 5.3.2 is quantified by four terms: (i) the
first term, scaling as O(r/n), corresponds to the minmax in-sample prediction error for
low-dimensional ordinary least squares with noiseless covariates; (ii) the second term,
scaling as O(r/(p*n)) is the additional error due to the sparsity and noise in the covariates;
(iii) the third term, scaling as O(r/(p*n)) is the generalization error; (iv) the fourth term,
A = O(1/y/n), disappears if the error is taken in expectation (Corollary 5.3.1); finally, the
scaling, r/r’, is the ratio of the training and testing covariate matrix ranks, which may be

a remnant of our proof technique.

Remarks. It is worth mentioning that Theorem 5.3.2 does not make any distributional
assumptions of having i.i.d. covariates. Instead, the key assumption that enables Theorem
5.3.2 is a linear algebraic condition: span(Viest) € span(Virain). This allows PCR to
“generalize” to unseen data. A more general test error result when this condition fails to
hold can be found in Lemma 5.12.3 of Section 5.12.
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B 5.4 A Subspace Inclusion Hypothesis Test

As shown in Theorem 5.3.2, a key assumption that enables PCR to generalize is

span(Viest) C span(Virain)- This condition gives rise to a natural hypothesis test:

Ho : span(Viest) € span(Virain)
Hi < span(Viest) € span(Virain)-

Under Hy, we have Viest = P\/train Viest, Where Pvtra'm = Virain V... . However, given that

train®
the right singular vectors are never observable, we use the top right sinqular vectors of
Zirain, Ziest, denoted as Vtram, Vtest, as proxies. Hence, a natural test statistic is the gap

between Viest and Py, Viest. In particular,
Vtrain

F E Ta, (54)
1

Vtest - Py Vtest

Vtra'm

where T is our test statistic, 7, is the critical value, and a is the significance level.

Theorem 5.4.1 (Subspace Inclusion Type | Error). Suppose (Mirain, Mhest) satisty Prop-
erties 4.1.2, 4.1.3, (Hyrain, Hrest) satisfy Property 4.1.5, and (Pyain, Prest) satisfy Property
4.1.6. Consider Myain = HSVT(Zisain, ) and Miesy = HSVT(Ziest, r'). For any a € (0,1)

and some C > 0, if p > C(ln"/?g)/pa), then P (T > 14|Ho) < a with

. (& rr’ rr'log(1/a))
T p2\nAmAap (n A m)p

where C' = C(1 + a2)(1 + y?)(1 + K?).

Interpretation. Returning to our problem of causal inference, we note that (5.4) also
functions as a quantitative hypothesis test to check when we can apply Sl and thus SC,
something which, to the best of our knowledge, is missing from the literature. Roughly
speaking, if our test statistic is smaller than our critical value, then Sl can extrapolate
from our observed outcomes to estimate the unobservable potential outcomes of interest.
As we will see in our empirical studies, the post-intervention (cross-validation) prediction

error also corresponds closely to whether this hypothesis test passes or fails, as desired.
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B 5.5 Discussion

B 5.5.1 New Perspective on High-Dimensional Regression

It is well established that lasso (¢;-reqgularization) methods have been the de facto
algorithmic approach in the context of high-dimensional regression problems. This is
largely motivated because identifying model parameters (e.g., 8*) is of fundamental interest
in statistics. As such, the sparsity constraint provides one notion of identifiability that
is achievable; in turn, this perspective has spurred tremendous theoretical work and
has had a profound impact in many important real-world applications (e.g., magnetic
resonance imaging Lustig et al. (2007); Lustig et al. (2008)). Meanwhile, we hope that our
PCR results offer a new, complementary perspective, where the notion of identifiability
is associated with the minimum #-norm model parameter — in the context of prediction,
this also pleasingly corresponds to the only model of importance. Additionally, it is
worth remarking that an added benefit of PCR is that its conditions can be verified in
practice by simply observing the spectrum of the covariates. That is, if they exhibit
low-dimensional structure, then our results suggest that PCR should achieve desirable
prediction performance. This is contrast with standard sparsity assumptions, which are

arduous to verify in general.

B 5.5.2 PCR Robustness Properties

Implicit De-noising

By Theorem 5.3.1, we argue that PCR, without any change, is robust to noisy and sparse
covariates. In particular, despite only having access to Z.i, — the corrupted version of
Mrain with noisy, missing entries — we show that PCR recovers the underlying model
parameter B* with high probability. In fact, PCR’s parameter estimation error rate matches
the minmax rate achieved by OLS (up to logarithmic factors) if one had perfectly observed

the true covariates.

Noise Agnostic

Importantly, we note that PCR does not require any knowledge about the underlying
noise model that corrupts the covariates to achieve consistency with respect to both
parameter estimation (Theorem 5.3.1) and prediction (Theorem 5.3.2 and Corollary 5.3.1).
This can be also be seen through PCR’s connection to HSVT, as stated by Proposition
5.3.1, since it is well-known that HSVT can recover the ground-truth matrix from its noisy
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observations without knowledge of the underlying noise distribution (e.g., see Chatterjee
(2015a)). In contrast, despite the exciting recent advancements in the high-dimensional
error-in-variable regression literature (e.g., Loh and Wainwright (2012); Datta and Zou
(2017); Rosenbaum and Tsybakov (2013)), the current inventory of methods falls short as
they require knowledge of the underlying covariate noise model (i.e., its second moment

matrix) to recover a sparse model parameter.

Implicit Reqularization

It is well-known that PCR can be viewed as a reqularized estimator. To see this, consider

any k € [n A p]. Then E = PCR(Z, y, k) can equivalently be expressed as

B = argmin ly—( /ﬁ)ZW”i subject to VPT_kW =0,
weRP

where Vp_k =[Vks1, ..., Vp| € RP*(P=K) denotes an orthonormal basis that is orthogonal
to the subspace spanned by the top k principal components of Z. Thus, if only a proper
subset of principal components are chosen (i.e, kK < n A p), then PCR enforces a hard
constraint that the resulting estimator must lie within the subspace spanned by the

selected principal components.

B 5.5.3 Regression with Mixed Valued Covariates

Setup and Question

Regression models with mixed discrete and continuous covariates are ubiquitous in practice.
With respect to discrete covariates, a standard generative model assumes the covariates
are generated from a categorical distribution (i.e., a multinomial distribution). Formally, a
categorical distribution for a random variable X is such that X has support in [G] and the

probability mass function (pmf) is given by P(X = g) = p4 for g € [G] with Z;; pg =1

For simplicity, we focus on the case where the regression is being done with a collection
of Bernoulli random variables (i.e., each X has support in {0, 1}). The extension to general
categorical random variables, in addition to continuous covariates, is straightforward and

discussed below.

A standard model in regression with Bernoulli random variables assumes that the response
variable is a linear function of the latent parameters of the observed discrete outcomes.

Formally, M; = [pgi),p(zi),...,pg)]T € RP, where p}i) for j € [p] is the latent Bernoulli
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parameter for the j-th feature and i-th measurement. Further, the mean of the response
variable satisfies E[y;] = ;’:1 p}l)Bj. However, for each feature, we only get binary
observations, i.e, Z =[Z;] € {0,1}7*F.

As an example, consider E[Z;] to be the expected health outcome of patient i. Let there be
a total of p possible observable binary symptoms (e.g., cold, fever, headache, etc.). Then
M; denotes the vector of (unobserved) probabilities that patient i has some collection
of symptoms (e.g., M;1 = P(patient { has a cold), M;; = P(patient i has a fever),...).
However, for each patient, we only observe the binary outcome of these symptoms (i.e.,
Zi1 = 1(patient i has a cold), Z; = 1(patient i has a fever)), even though the response is
linearly related with the underlying probabilities of the symptoms. The objective in such

a setting is to accurately recover MB* given (y, Z).

Current Practice

A common practice for regression with categorical variables is to build a separate regression
model for every possible combination of the categorical outcomes (i.e., to build a separate
regression model conditioned on each outcome). In the healthcare example above, this
would amount to building 2P separate regression models corresponding to each combination
of the observed p binary symptoms. This is clearly not ideal for the following two major
reasons: (i) the sample complexity is exponential in p; (ii) we do not have access to
the underlying probabilities M; (recall Z; € {0, 1}7), which is what we actually want to

regress y against.

Returning to our Framework

Recall from Property 4.1.5 that the key structure we require of the covariate noise is that
E[H] = 0. Now even though Z; € {0,1}, it still holds that E[Z;] = p! = My, which
immediately implies E[H] = E[Z — M] = 0. Further, the entries of H are sub-Gaussian as
they are bounded by one in absolute value. Thus, the key conditions on the noise are
satisfied for PCR to effectively (in the ¢, -norm) de-noise Z to recover the underlying
probability matrix M, this, in turn, allows PCR to produce accurate estimates //\ZE through
regression, as seen by Theorem 5.3.2. Pleasingly, the required sample complexity grows
with the rank of M (the inherent model complexity), rather than exponentially in p. Further,
the de-noising step allows us to regress against the estimated latent probabilities rather

than their “noisy”, binary outcomes.

Extension from Bernoulli to General Categorical Distributions
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Recall from above that a cateqgorical random variable has support in [G] for G € N. In this
case, one can translate a categorical random variable to a a collection of binary random
variables using the standard one-hot encoding method. It is worth highlighting that by
using one-hot encoding, the entries within any row of H are not independent as they
encodes the same categorical variable. However, from Property 4.1.5, we only require
independence of the noise across rows, not within them. Thus, this lack of independence
is not an issue. Further, the generalization to multiple categorical variables, in addition
to continuous covariates, is achieved by simply appending these features to each row and

collectively de-noising the entire matrix before the regression step.

B 5.6 Proofs: Equivalence

Proof of Proposition 5.3.1. To prove the equivalence of the model parameter estimators,

observe that
W = (ZranVi)Ty = (USH)Ty = S0y,

where W is defined as in Algorithm 2. As a result, it follows that BPER = k§;1 Ty.
Since ﬂtram = ngk VkT, we have that

BT = My = ViS5 ' Uly.
This establishes the first equivalence.

Using the above, observe that

ZiainB"R = USVIV,S U]y = U U] y

and
//V\’tra[nEHSVT = Z]k:S\k /VkT /\7/<§I<_1 UkTU = Uk akTy
This concludes the proof. |

B 5.7 Proof Notations

For ease of notation, we adopt the following notation throughout the rest of the proofs in

this chapter:
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Underlying Covariates. We denote the latent training and testing covariate matrices as
M = Myain  and M’ = My,

respectively. Further, we assume their SVDs take the following form:

r r
M = UySuV), = ZS@U@ ®ve and M = UySuV), = Zs'gu'e ® vj.
=1 /=1

Perturbations. We denote the training and testing covariate perturbations as

H = Hiain  and H = Hiest.

Observed Covariates. We denote the observed training and testing covariate matrices as
Z = Zyan  and 7' = Ziest,
respectively, which admit the following SVDs:

Z=U;5;V] =) 5iy®V and Z'=UpSyVj =) Sy ®7,
>1 >1

Due to the perturbations of H and H’, Z and Z’ may be full-rank.

Estimators. We denote the estimates of the latent training and testing covariate matrices
via HSVT as

M =HSVT(Z,r) and M =HSVT(Z,F),
respectively, with the following SVDs:

—~

M

™) =

~ o~ 1 — . —~ 1~ A A 1 — o
mMSMV), = 5 ZSgUg ®Vv, and M = ﬁuM,sM, V), = > Zs}u} RV,
=1 =1

where (p, p’) are the proportion of observed entries in (Z, Z’).

Projection Matrices. For any matrix Q with orthonormal columns, let Po := QQ' denote

the projection matrix onto the subspace spanned by the columns of Q.
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Constants & Model Parameters. Throughout these proofs, we will let C > 0 denote an
absolute constant that is independent of any model parameters. For ease of notation, we
will allow the value of C to change from line to line. The dependencies on the model

parameters (e.g., 0, y, K) will be made explicit.

Remark 5.7.1. Although Property 4.1.5 states that the entries of H and H' are indepen-
dent, our analyses allow for independent rows (as opposed to entries). For the proofs
to follow through, we only need the response (target unit) noise to be independent from
the covariate (donor) noise. Thus, for the remainder of these proofs, we operate in the
more general setting where we have row-wise independence of H and H’, instead of just

restricted entry-wise independence.

B 5.8 Proofs: Impact of Measurement Noise and Sparsity

In this section, we study the impact of measurement noise and sparsity in the covariate
observations through the matrix Z — pM. Specifically, we analyze the impact of perturba-
tions through the operator (spectral) norm and ¢, ..-norm, and state the primary results
in Lemmas 5.8.4 and 5.8.6, respectively. These results will be critical as we bound the

prediction and parameter estimation errors in high probability.

Importantly, we highlight that the following results hold for any M that satisfies Property
4.1.2, H that satisfies Property 4.1.5, and Z that satisfies Property 4.1.6. For any n x p
matrix Q, let Q; € R and Q; € R” denote the i-th row and j-th column of Q, respectively.

B 5.8.1 Operator Norm

Lemma 5.8.1. Suppose that Y € R” and P € {0,1}" are random vectors. Then,
¥ ol < ¥l

Proof. Given a deterministic binary vector Py € {0,1}", let Ip, = {i € [n]: Poi = 1}.
Observe that
YoPy= Z eie] Y.
iE/pO
Here, o denotes the Hadamard product (entrywise product) of two matrices. By definition

of the ¢-norm,

”Ysz: sup HUTYH¢1 = sup 'mf{t>0:Ey[exp(|uTY|2/t2)]32}.

uesSn-1 uesSn1
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Let ug € S"~" denote the maximum-achieving unit vector (such ug exists because inf{- - -}

is continuous with respect to u and S"~' is compact). Then,

HYOPH¢2 :ngR1 )uTYoP "
:ngR1 lnf{t>0:Ey,p[exp(|uTYoP|2/l‘2)] SZ}
:u;gg1tnf t>0: Ep[Ey[exp(|uTYoP| /t? ) ‘ P]] Sz}

-1
ues” i€lp

= sup inf
uesr1

t>0: Ep Ey[exp (‘(Ze[eTU)TY

ielp

{
- { oo (jo T eev]0) | ]| <2
{

For any u € S"~" and Py € {0,1}", observe that

e [o (|( T eers) |

ielp

2) ’ p_ PO] < Ey[exp(|u0TY|2/t2)].

Therefore, taking supremum over u € S"~', we obtain

1Yo Pl,, < ¥l

Lemma 5.8.2. Assume Properties 4.1.2, 4.1.5, 4.1.6 hold. Then for all i € [m],
HZ‘ —le'sz S C(1 + K)

Proof. Let P € {0,1}™*" denote a random matrix of independent Bernoulli random
variables with parameter p. Further, let Y = M + H. Note that Z; = Y; o P; when
Property 4.1.6 is assumed and * is identified with 0. By triangle inequality,

2= pn, = (i P) = pM],

= [|(Yro P) = (Myo P) = pM; + (M 0 P,
< ”(Yz —M;)o P"Ht,bz + H(Mio Pi) _pMi}}L/’z'
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By the definition of Y, Property 4.1.5, and Lemma 5.8.1, we have that
(V= yo 2, < 1Vi— M, = [I#],, < K.

Moreover, Property 4.1.2 and the ii.d. property of P;; for different j gives

2
||(Mi°Pi)_pMiH2¢2= sup Z”/ i (P —p)
ueSn1 "
S sup Z uj || My (Py — )lepz
uesn-1 j=1
2
< (0, 2 mas o) 1ol
< [|P1s —P}|¢2~

The first inequality follows from Property 3.2.2, the second inequality is immediate, and
the last inequality follows from Property 4.1.2. Lastly, HP11 — p“w2 < C because P11 —p

is a bounded random variable in [—p, 1 — p]. [

Lemma 5.8.3. Suppose Property 4.1.6 holds. Then,
HE(Z — M) (Z - pM)H < p(1—p) (Hdiag(MTM)H + Hdlag(E[HTH])H) + pZHE[HTH]H.

Proof. We follow the proof of Lemma A.2 of Shah and Song (2018) and state it here for
completeness. Throughout, for any matrix Q@ € R"*?, let Qy € RP denote its ¢-th row.

To begin, let Y = M + H. Further, observe that
n
E[(Z — pM)(Z — pM)| = ) _E[(Zs — pMe) ® (Zs — pMy)].
=1
Importantly, we highlight the following relations: for any (¢, i) € [n] x [p],

E[Zei] = pMoi
E[Z;] = p°E[Y/].
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Now, let us fix a row ¢ € [n] and denote
W = (Z, — pMe) ® (Zy — pMe).

Using the linearity of expectations, the expected value of the (i, j)-th entry of W) can

be written as
E[W,\) = E[Z0iZuj) — pE[ZeiMej) — pEZejMei) + p*EIMeiMey).
Suppose i = j, then
E[W) = pE[Y2] — p*M2 = p(1 — p)E[YZ] + pE[(Yei — Mei)?). (55)
On the other hand, if i # j,
E| W}I."’] = P?E[(Yei — Mai)(Yej — Me))] (5.6)

Therefore, we can express W) as the sum of two matrices where the diagonal components

are generated from (5.5) and the off-diagonal components are generated from (5.6), i.e.,

E[W] = E(p(1 — p)diag(Ye ® V) + p’diag(He & Hy) ) + E( p2(He @ He) — pPdiag(He @ Hy))
= p(1 — p)E[diag(Ve ® Ye)] + p?E[He ® Ho].

Taking the sum over all rows ¢ € [n] yields
E[(Z — pM)"(Z — pM)] = p(1 — p)diag(E]Y Y)) + pE[H H]. (5.7)
To complete the proof, we apply triangle inequality to (5.7) to obtain
Bz = pM)(Z = pM)]| < p(1 = p)|diag(ELY T Y] | + o?||EIHT H]|
Since H is zero mean, we have

Hdlag(E[YTY])H - Hdlag(MTM) + diag(E[HTH])H
< Hdlag(MTM)H + Hdiag(E[HTH])H.

Collecting terms completes the proof. |



Sec. 5.8. Proofs: Impact of Measurement Noise and Sparsity 85

Lemma 5.8.4. Assume Properties 4.1.2, 4.1.5, 4.1.6 hold. Then for any s > 0, the following
holds w.p. at least 1 — 2exp(—s?):

|- pM] < VE (Vi + VB +3),

where C' = C(1 + a)(1 + y?)(1 + K?).

Proof. Let H = Z — pM with second moment matrix £ = (1/n)E[H" H]. Applying triangle
inequality gives

1 2

1
n n

)H

By Lemma 5.8.2, we establish that the rows of H are sub-gaussian with

=] < e+
n

HTH_zH.

which are also independent by assumption; hence, we can apply Lemma 3.2.5 to obtain

HTH-%| < CK? 2 h - \F =
H_C max(0, 0°), where 0 =C n+ﬁ

1
n

with probability at least 1 — exp(—sz). Next, we apply Lemma 5.8.3, which gives

=) <L (p(1 — ) (Hdiag(MTM)H + Hdiag(E[HTH])H) + pZHE[HTH]H)

< p(1=p)(1+0%) + p°y>.
Let C' = C(1 + y?)(1 + K?)(1 4+ ¢2). Combining the above results yields,

110~ 112
;”H” < p(1 = p)(1 + a%) + p*y* + CK? max(3, 5°)
< C'(1 + max(d, 6%))
< C'(1+49)?

52

<C (1 +2y ) :
n n
Putting everything together, we conclude

|Z—pM| < VC (Vn+p+s).
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W 58.2 ¢ ,-norm

To prove Lemma 5.8.6, we will establish that the columns of Z— pM are also sub-gaussian.

Lemma 5.8.5. Assume Properties 4.1.2, 4.1.5, 4.1.6 hold. Then for every j € [p],
12 = P, < CK.

Proof. Let e; denote the j-th canonical vector. Observe that

2

1Z; = pMjlf,, = sup L'T(Z/'—P/\/’/')Hw2

uesSn—1

= 2
= sup ||u (Z—pM)eI-H
i

UES"71
n 2
= sup ui(Zi — pMi)e;
ueSn-1 i=1 dn
(a) =, 2
< C sup Zuz (Z _pM[)ej||L/J2
uesSn—1 i=1

2
< C[g% 12 = pMi[;,.

where (a) follows from Property 3.2.2. The conclusion then follows from Lemma 5.8.2. W

Lemma 5.8.6. Assume Properties 4.1.2, 4.1.5, 4.1.6 hold. For any s > 0, the following

inequality holds w.p. at least1 —p - exp[—c min (Ks—jn %)]

2
max ||Zj — p/\/IjH2 < n(a’p+p(1—p)) +s.
j€lp]
Proof. By Lemma 5.8.5, we have that the columns of Z — pM are sub-gaussian random
vectors in R" satisfying
HZ/ _PM/'HLpZ <CK

for all j € [p]. Further, since the rows of Z — pM are assumed to be independent, it
follows that for every column j € [p], the coordinates of Z; — pM; are independent, mean

zero, sub-gaussian random variables.

To that end, let us fix j € [p] and define X = Z; — pM; € R" where X; = Z;j — pM;;.
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Observe that

n

X115 = EllxIl; = 3% - EX7)
i=1

is a sum of independent, mean zero, sub-exponential random variables with

Hxﬁ - E[XE]”% < CHX? < cl|x|?, < k2.

’
Moreover, observe that
E[X?] = Var(X;) = Var(Z;) < a’p + p(1 — p).
As a result, using Bernstein’s inequality (Theorem 3.2.1), we have that
12 = oM|[5 < niap + p(1 = p) + 5
with probability at least 1 — exp[—c min (KSTZn %)]
We now unfix j by applying a union bound. Thus, for any s > 0

S

2
2 ~2 . S
? (mas 12— oM 209 ) <penp| -emin (. 2 ) |

where 82 = 02p + p(1 — p). This completes the proof.

B 5.9 Proofs: HSVT Estimation Error

In order to establish Lemma 5.2.1, we state its deterministic counterpart in Lemma 5.9.6,

which expresses the estimation error in terms of the operator and ¢, .,-norms of Z — pM.

Lemmas 5.8.4 and 5.8.6 of Appendix 5.8 are then utilized to analyze our particular setting of

interest, i.e., when Properties 4.1.2, 4.1.5, and 4.1.6 hold. The remainder of the subsection

is dedicated to proving the helper lemmas of these results. We begin, however, with

notation and a useful observation of the HSVT operation.

Notation. Throughout this section, let

v =z pM]|

(5.8)
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Further, for any n x p matrix Q, let Q; € RP denote the j-th column of Q.

B 5.9.1 A Column Representation for the HSVT Operator
Consider a matrix Q € R"*? with the following SVD

nAp
Q=) owi®vi=ULV'
i=1

We say Q = HSVT(Q, k) if
0= Z ou;®vi = ULV,
i=1

here, U, € R™k and V, € R"™*k denote the matrices consisting of the top k left and right
singular vectors of Q, respectively, and S, = diag(s1, ..., s;) € R**¥. We now show how
Pu, € R™*™ relates to the HSVT operation that retains the top k singular components.

Lemma 5.9.1. Let Q = HSVT(Q, k). Then for any j € [p],
Pu,0; = 0.

Proof. Let e; € RP denote the canonical basis vector in RP. Then using the orthonormality

property of U, it follows that

P
T
Pu.Q; = Z uiu; Q;
i=1
r nAp
T T
= Zuiui (ZU@U@V@ ) €;
i=1 =1
r nAp
(ZZO’@U{UZU@VQT) €j

i=1 ¢=1

P
T ~
(ZU,‘U,‘Vi ) e = Q/'.
i=1

This completes the proof. |

Remark 5.9.1. Suppose we have randomly missing data. By Lemma 5.9.1, and linearity
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of the projection operator, we note that

M; = (1/p) Py, (Z)). (5.9)

W 5.9.2 High Probability Bounds on Noise Deviation

High-Probability Events. We define the following events: for any 04, 82, 03, 04 > O,

Ey = {w < C\/(1 + a?)(1+ y3)(1 + K?) (ﬁ+ \/ﬁ+\/log(1/61))}

C log(1/42) . 1
E, = 1T— ——— <p<
’ ( npp p=r= 1-_./& l(;g)(;/éz)p

E = {max HZ, —p/\/leg < n(a?p + p(1 — p)) + CK?/n log(p/ég)}

J€lp]

Eq = {;ne?px] |1Pun(Z — pM,)Hg < r(a?p + p(1 — p)) + CK>\/r log(p/64)} .
Finally, we denote
E=EnEnNEnE,. (5.10)

E1 occurs with high probability.

Lemma 5.9.2. Assume Properties 4.1.2, 4.1.5, and 4.1.6 hold. Then for any 01 > 0, it
follows that P(EY) < 01.

Proof. The proof follows immediately from Lemma 5.8.4 for any s > C+/log(1/01). |
E> occurs with high probability.

Lemma 5.9.3. Assume Property 4.1.6 holds. Then for any 0, > 0, it follows that
P(ES) < 0.

Proof. By the Binomial Chernoff bound, for a > 1,

a—1)?
a+1

- (@ —1)?
npp and P(p < pla)<exp|— 5q2 PP

P(p> ap) < exp (—(
By the union bound,

Plpla<p<ap)>1—P(p>ap)—P(p<pla).
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Noticing @ +1 < 2a < 2a? for all @ > 1, and setting the above probability to be at least
1 — 0, and solving for 0, completes the proof. |

E3 and E4 occur with high probability.

Lemma 5.9.4. Assume Properties 4.1.2, 4.1.5, and 4.1.6 hold. Then for any 03 > 0, it
follows that P(E3) < 03.

Proof. The proof follows immediately from Lemma 5.8.6 for any s > CK?+/nlog(p/d3). W

Lemma 5.9.5. Assume Properties 4.1.2, 4.1.5, and 4.1.6 hold. Then for any 64 > 0, it
follows that P(E) < 04.

Proof. Using the arguments made in the proof of Lemma 5.8.6, we see that the columns of
Z — pM are sub-gaussian random vectors with independent, mean zero, sub-gaussian

coordinates. Additionally, its sub-gaussian norms are bounded by CK.

Now, let us fix a column j € [p], and let X = Z; — pM; such that X; = Z;; — pM;;. Then,

we Ccan eXpreSS
1Pu(Z = pM)|[5 = [[Pu X5

By Hanson-Wright's inequality (Theorem 3.2.4), we obtain

[P XI5 < EIPuX; +5

2

with probability at least 1 — exp[—c min (ﬁ %)] Note that we have made use of the

following facts: ||Py,,|| =1 and HPUMH'ZE = r. To bound the expected value, observe that
E|[Pu,X|5 = Y ENX, u)?] =Y Var((X, uy)),
i=1

i=1

where u; denotes the i-th column of Uy, (the i-th left singular vector of M). By the

independence of the entries of X and the orthonormality of Uy,

Var((X,u)) =Y ufVar(X,) =) ufVar(Zy) < 0”p + p(1 — p).
t=1 t=1
We now unfix j by applying a union bound, which yields for any s > 0,

2
2 - . S S
i (?‘6?% IPunt2 = oMl > ro” “) =P exp[‘cm”‘ (,@,@)]
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where 62 = 0?p + p(1 — p). Setting the above probability to be less than d4 and

solving for s, we establish that the probability is bounded above by d4 if and only if
s > CK?/rlog(p/os). |

Bl 5.9.3 Proof of Lemma 5.2.1

We begin by stating the key lemma used to prove Lemma 5.2.1.
Lemma 5.9.6. Suppose p/a < p < ap for some a > 1. Then,

—~  4a’V? 4a? 2(a —1)?
S 0 < 2 (2= M + M) + 42 a2 = .+ 2

Proof. We prove our key lemma in three steps.
Step 1. Fix a column index j € [p]. Observe that
My — My = (M =Py M) + Py, M — M)

—~

Since rank(M) = r, it follows that PUM is an orthogonal projection operator onto the span

of the top r left singular vectors of Z, namely, span {ﬁ1, o ,ﬂr}. Therefore,
PUM/\/I]- — M; € span{uy, . .. ,ﬁr}l.

Additionally, by (5.9), we have that

~ 1 —~ ~
M; _PUMMI = EPUMZ/' — PUM/VIj € span{u1,...,Ur}.

Hence, (/\A/I, — PUM/VI,-,PDM/\/II- —M;) =0, and
. 2 - 2 2
R B R

by the Pythagorean theorem. It remains to bound the terms on the right hand side of
(5.11).

Step 2. We begin by bounding the first term on the right hand side of (5.11). Again,

applying Lemma 5.9.1, we can rewrite

~ 1 ~
M; = P, M; = 5Py, 2 = Po,M; = Py, ((1/p) 2 = M;)
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1 pP—P
= 5P0, = PM) + =Py, (M)

Using the Parallelogram Law (or, equivalently, combining Cauchy-Schwartz and AM-GM

inequalities), we obtain

~ 2
-, -

1 p—p
< 2| 2Pg, (2 = pM) 2+2H —Ppy (M)
2 2 p—p\’ 2
< ﬁHPU (Z] le)HZ R M]3
2a? 2 2
< ?HPUM(Z, — oM +2(a = 1Ml (5.12)

To arrive at the above inequality, note that Condition 2 implies 1/p < a/p and (p—p)/p*> <
(o — 1)2. Further, using the Parallelogram Law, observe that the first term of (5.12) can

be decomposed as

HPUM(Z/' - PM/')HE < ZHPUM(ZJ — PMj) = Puu(Z; - P/V’/)H; +2[[Pun(Z = pM
(5.13)

We now bound the first term on the right hand side of (5.13) separately. First, we apply
Theorem 3.1.1 to arrive at the following inequality:

_2lz—pm| _ 2w,

Hs'm @(UM, U/\/])H <
PSr PSr

, (5.14)

where Uys and Uy denote the top r left singular vectors of Z and M, respectively. Then,
it follows that

[Po, 2~ M)~ Pz~ om)|[, < Jsin @@, v 12— oM

2v2 2
< pT;%HZI - M5
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Combining the inequalities together, we have

~ 4 2
|- Po, s < 255012 - M+ 22 Puuiz - oM+ 20—

(5.15)
Step 3. We now bound the second term of (5.11). Using (5.23), we obtain
2 2
o = -
~ 2
< [[sin @@ )| M1
2v1

< 2 (516)

Inserting (5.15) and (5.16) back into (5.11), and observing that this inequality holds for
every column j € [p] completes the proof. [

Completing Proof of Lemma 5.2.1
Proof. In Lemmas 5.9.2, 5.9.3, 5.9.4, and 5.9.5, set 0; = 0/4 for any 0 > 0. Then,

4
E)<Y P(ES) <8, (5.17)
i=1

where E is given by (5.10).

Let C' = C(1 + o?)(1 + y?)(1 + K?). We then have the following bounds:

vi < C'(n+ p + log(1/))

2
vi r klog(1/)
52 <C (n/\p + o )
*HZ pMI[2 . < C(1+ 0% + CK? l°9(5/5)
”PUMZ PM)[5,, < CO1+ ) +CK2\/W

;HMHM <1
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), for sufficiently large absolute constant C, we have that

. Clog(1/6
Further since, p > o

a=(1_ Clgw&) <c
np

(@ —1)? < C log(1/9)
<=2

Collecting and simplifying the above bounds, we apply Lemma 5.9.6 to obtain

Eusv(M) < Q4 ( S rl09(1/6)) ((1 +0?) + K? log(p/é))
pr\nAp np n

C 1 2 K2\/k1 0
+2(( o, °9(p/0) + 2(a — 1)?
P n n
G r
Si ’
ptnAp
where
Ci1K?
A=

r log(p/0) + rlog(1/0) + rlog(1/0) log(p/é)) + CK?+/rlog(p/d)

pt \nAp n np np3/2 pn

and C; = C(1 4+ aM(1 + y)(1 + K?). Letting G = G K2(1 + log>?(1/6)), we bound A as
follows:

1 r 1
A<G|———+—=Y")/logn.
- 2(p“ﬁ(n/\p)er2 n ) °9n

Relabeling the above bound as A completes the proof. |

B 5.9.4 Corollaries: Bounds in Expectation
Corollary 5.9.1. Suppose the conditions of Lemma 5.2.1 hold. Then for any 6 > 0,

- C
E[Sasvr(M) | E] < r

/
<= +T,
ptnnp

where and

e rlog(1/9) Vr
=G SA/n(n A p) + on V/ log(p/0),
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C) = C(1+ a1+ y)(1+K?), and C, = C;K2.

Proof. The proof follows that of Lemma 5.2.1 under the event E, which is given by
(5.10). [

B 5.10 Proofs: Training Prediction Error

Throughout, we will make use of Proposition 5.3.1, iLe., /\A/ltmLn = ZE = ﬂ/@ This allows
us to analyze Mirain through the lens of the HSVT estimator.

B 5.10.1 Proof of Lemma 5.3.1

Lemma 5.10.1. Suppose Property 4.1.4 holds. Consider M = HSVT(Z, r). Then,
AAD 2 AAD * A *|[2
Erain(MB) < —(e, M(B = B7)) + Ensv(M) || 87|
Proof. By (5.1), we have that

Hﬁé - ij = Hﬁﬁ — MB* 2 + llel3 — 2(e, (ﬁf; — MB¥)). (5.18)

On the other hand, the optimality of /§ yields

MB —y ‘< MB* —y . (M — M)B* 2+||e||§—2<e, (M — M)B*). (5.19)
2 2 2

Combining (5.18) and (5.19), we have

R e

We now apply (generalized) Holder’s inequality with g1 = 1 and g2 = oo to obtain

—~ R e 2 2
|- mas] < [ -], -1

Normalizing by n gives the desired result. |

Lemma 5.10.2. Suppose Property 4.1.4 holds. Consider M = HSVT(Z, r). Then for any
0 > 0, the following holds w.p. at least 1 — 0:

(e M(B — B) < %r + CK (KVr + V||, + v - €18, (M)[|B*], ) tog(1/3).
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Proof. Let Q = MM? € R Since Q is an orthogonal projection operator, it follows
that HQHZF =r, HQH =1, and HQu”2 < llull for any u € R". Now, observe that

(e M(B—B")) = (€. MB) — (e, MB")
= (&, QMB*) + (&, Qe) — (e, MB*). (5.20)

It remains to bound each term independently. To begin, for any s1 > 0, Lemma 3.2.4 gives

P ((2,0¢) ~Elle, 0] = 1) < e[ -emin 5. 2 )|

Using the law of total expectations and the independence within the entries of &, we

bound the expectation as

E[(e, Qe)]= ) E[E[Qyeic; | Q] < 0 ) E[Qu] = 0’E[tr(Q)] = o”r.

i,j=1 i=1

Further, for any s > 0, Lemma 3.2.2 gives

P ((e, OMB*) > s2) < exp

At the same time, if we let .
MpB*
V= ——

[

2
then for any s3 > 0, Lemma 3.2.2 yields

2
P(—(e v)>s3) < exp(—%’),

which implies that, with probability at least 1 — exp(—cs%/KZ),

~(e.MB") < |MB*

- S3.
2
By triangle inequality, it follows that

[

< |- mp

L M, < Vi g8 M [|B7|, + [MB7|
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Further, we have

IMB[|, < [IMI],,. 18"l < Vol | B

where the final inequality follows from Property 4.1.2. To complete the proof, we fix any
0 > 0 and set the above probabilities to be less than 0/3 to solve for s1,s2, and s3. W

Completing Proof of Lemma 5.3.1

Proof. Let us fix some 0 > 0. We define the event

Evain = {(&. M(B = B) < 0%r + CK (K + Va8l + v - 4, (M) [|B*],) tog(1/3)}

which occurs with probability at least 1T — 0 by Lemma 5.10.2. Recall Lemma 5.10.1:

SN

Evain(MB) < (e, M(B — B)) + Ensvr (M) || 8|

We note the following simplification:

1 ~
WEAEZVT(M) log(1/3)| 6,
C1I’

C . . A .
< s 81+ o toga], + [+ 2 gt

A %k
< g+ ol + 2 ot o)

where Cy, A are given by (5.2), and G5 = C4(1 + log(1/9)). Additionally,

e[+ 2 togttsa e

EnsvT(M) Hﬁ*Hf +

C C VGori 1 .
S(pwfrhp o N P e (L ]

Viog p|1B°[,

(i 41
p*ni(n Ap)

where G, is given by (5.2) and G4 = G K2(1 + log%(1 /0)). Thus, under Eiain, we use the
above results to conclude

o~ 20°r Gsr Cyr+/lo Cs+/rlo C
Enan(MB) < +— 3 * f 4 A gp L= ’ gp B* f 4 B,
n pnAp) ptni(n Ap) pn vn
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2
< 20 r+ 4C3I’ }B* f‘*‘ C4r;/logp N C4x//;logp {B* f+&}3* 1
n pHnAp) ptni(n A p) pen vn
20%r  Gyr/logp .2 Ci o
< 200 SO gt S
Relabeling C4 completes the proof. |

B 5.10.2 Corollaries: Bounds in Expectation

Lemma 5.10.3. Suppose Property 4.1.4 holds. Consider M = HSVT(Z,r). Then,
E(e, M(B — B*)) < dr.

Proof. Let Q = MMT e Rr>n, Using the arguments that led to (5.20) and linearity of

expectations, we obtain
E(e, M(B — B*)) = E(e, OMB*) + E(e, Q¢) — E(e, MB*).
Under the independence assumptions, we have the following equalities:

E(e, QMB*) =0
E(e, MB*) = 0.

Using the cyclic and linearity properties of the trace operator, we further have

E(e, Qe) = E[tr(Qee’)]
= tr(E[Q] - E[ee"))
< o%E[tr(Q)] = o°r.
This completes the proof. |

Corollary 5.10.1. Suppose the conditions of Lemma 5.3.1 hold. Then for any 6 > 0,

e 20%r C! r w12
E[gtrain(MB) | E] < n + ;ln /\P”B H1 + r1’
where
, rlog(1/9) VT 2
=0 == . vV L F) 1|7, 5.21
i wamAm+w7V@W7WW (5.21)
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C) = C(1+ a1+ y)(1+K?), and C, = C;K2.

Proof. We follow the proof of Lemma 5.3.1. In particular, under the event E (given by
(5.10)), we apply Lemma 5.10.1 to obtain

N

El€wain(MB) | E] < ZE[(e, M(B — B*)) | E]+ El&usvt(M) | E]- ||B*|%.

n

We complete the proof by applying Lemmas 5.10.3 and 5.2.1. |

B 5.11 Proofs: Parameter Estimation

Proof Sketch. In order to provide a bound on the parameter estimation error (Theorem
5.3.1), we will first show that \A/M is a good approximation to the latent feature space
spanned by the columns of Vj,, provided that Z is thresholded appropriately (Lemma
5.11.1).

Next, we state Lemma 5.11.3, which bounds the error between E and any B* that is a
solution to (5.1), when projected onto the subspace spanned by the columns of VM. Since
our estimator [A% lies within QM, which is shown to be close to Vjs as per Lemma 5.11.1, it
follows that E is a good approximation of the component of 8* that lives within V). This

is formalized in Lemma 5.11.4. For a geometric picture of the proof sketch, see Figure 5.2.

Notation. Throughout, we will denote Uy; € R"*(1=1) and Vi, € RP*P=1 as the

orthogonal complements to Uy, and Viy. We continue to define vi = HZ — pM” as in
(5.8), and also define

2w
= e

0y (5.22)

B 5.11.1 Learning Subspaces

We first state Lemma 5.11.1, which bounds the misalignment between the subspaces

spanned by Vi and V.
Lemma 5.11.1. Consider//\z = HSVT(Z, r). Then,

- 2
Hs'm O(Vi, vM)H <
PSr
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Figure 5.2: Interaction between the row and column space of M on any % and the effect of
misaligned subspaces between VM and V on the gap between B (which lives in VM) and Py, B*.
Proof. From Theorem 3.1.1 we have:

Hsm@(VM V) H “ZP:MH pSr, (5.23)

where Vis and Vj denote the top r right sinqular vectors of Z and M, respectively. H

H 5.11.2 Bounding the Projected Parameter Estimation Error

Having shown that Vi is close to Vi in Lemma 5.11.1, we now bound the gap between
E and any B* that satisfies (5.1) in the subspace spanned by Vii; this is formalized in
Lemma 5.11.3.

Lemma 5.11.2. Recall that’s; denotes the i-th singular value of Z. Then,

pPSi — W <5 < psi + vy,
Proof. Observing that Z = (Z — pM) + pM and applying Weyl's Inequality (Lemma 3.1.1)
completes the proof. |

Lemma 5.11.3. Suppose Property 4.1.4 holds. Consider M = HSVT(Z, r). Then, for any
B* that is a solution to (5.1),
. 2 2p%n
[Py, B -8 £

2 (psr - V1)

s (EninlMB) + Eusr(M) [IE7]17)
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Proof. Recall that's; denotes the i-th singular value of Z. To achieve our desired result,

we will upper and lower bound the &-norm of M\(E — B*). To begin, observe that

Now, recall that pM UMSM ! Letting x = /9 B*and y = VMTX it follows that

—~ 2
(M —M)g*

5

— 12 ~ A AT~ A A
ﬁZHMXHZ = X" Vi Su U, On S Viix

TS, Tk
= Zgzy? > SZZy, =32 |y|>.

Applying Lemma 5.11.2 and combining the above results completes the proof. |

Below, we state Lemma 5.11.4, which provides a deterministic bound between é and the

unique B* satisfying (5.1) with minimum &-norm.

Lemma 5.11.4. Suppose Property 4.1.4 holds. Consider M = HSVT(Z, r) and the unique
B* that satisfies (5.1) with minimum ¢;-norm. Then,

2 252
< Ll

-6 (5:24)

5 (EvainMB) + Euisvr(M) 877 ) + A% 18711

27 (psr —w) 2’
where Ay is given by (5.22).

Proof. To begin, observe that

I?-

To bound the first term of the above inequality, we can appeal to Lemma 5.11.3. Thus, it

* P @

V/\/u

remains to bound the second expression.

Observing that VALE = 0 yields

[P, &5, = [Pe..e7[

VML

Let Vi1 € RP*(P~1) denote the orthogonal complement of V. Since VAZLB* =0 by
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assumption, we apply Lemma 5.11.1 to obtain

HPVMLB* z= (Py,,, = Pvmi)B" + Py B j
= |(Py,,, — Pvn)B’ j
= | Pw — o087,
< [sinovu v 11 < A% -1

where Ay is given by (5.24). Putting everything together and applying Lemma 5.11.3, we
arrive at the following inequality:

~ N 2 R . 2 5 12
[6-#[, = IPou @~ 8+ Ml
Zﬁzn MB v |2 %]2
S Pr—"" (Euin(MB) + Ensvi (M) [ 8°]17) + A% 18715 (525)
This completes the proof. -

B 5.11.3 Proof of Theorem 5.3.1

Proof. From Lemma 5.11.4, we have

2 2’\2 o~ _ % *
, < ﬁ (gtra'm(MB) + Ensvt(M) ||B H$) + A 1871

|86

Now, suppose E, given by (5.10), occurs. Then by Lemmas 5.2.1 and 5.3.1, we note that

v —~ 20’r  Gry/logp ..
Enain(MB), Ensvi(M) < —— + ;4(2//;}}3 13+ A, (5.26)

where , Aq are given by (5.3). Further, under E and Property 4.1.3,

vi < G3(n + p + log(1/8))
C log(1/0
G o og(1/9)

Ny <
M=p2 \nap np

where Gz = C(1 4 ¢?)(1 + y?)(1 + K?). Our conditions on p additionally yield

2/\2
P el (5.27)
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Collecting terms and simplifying gives us the desired bound:

2<r(C02r+sz\/@
S

p\ n p*(n A p)

|B-#

) Gr 12
1B7[[7 + 2 | + m”ﬁ [
The proof is complete after relabeling constants. |

B 5.12 Proofs: Testing Prediction Error

Having shown that VM is close to Vs (Lemma 5.11.1), and E is close to the unique B*
that lives within Vi (Theorem 5.3.1), we are now ready to complete the proof for our

post-intervention (test) counterfactual prediction error.

Notation. As before, we define v; = ||Z — pMH and Ay = 2vq/(ps,), given by (5.8) and
(5.22), respectively. Additionally, we define v = ||Z’ — pM'|.

We also define the following events: for any d > 0,

Ef= {vﬁ < /(1 + o)1+ )1+ K2) (Vi + \/ﬁ+\/log(—1/6))}

. (1_ Clogmw))pgﬁ,g :
1_

mpp C log(1/9) P
V " mpp

2
£y = {m?X] 7] = pMj||, < m(op + p(1 = p)) + CK? mlog(p/5)}
j€lp
2
Ey= {m?x] Pun(Z = pM))|, < r'(o°p + p(1 = p)) + CK*/ 1’ log(p/é)}
j€lp
E'=En E nE;, N E;N Ey, (5.28)

where E is given by (5.10).

B 5.12.1 Helper Lemmas

Lemma 5.12.1. Let Property 4.1.4 hold. Consider M = HSVT(Z, r), M’ = HSVT(Z', r'),

and the unique B* that satisfies (5.1) with minimum &,-norm. Then,

2(p)*(1 + Ny
(psr — v1)?

(M@ -8

<205 " (Evan B + s 0 |87 7) + A7 )

2 12
o v Bl
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Proof. Let x = E — B*. Further, it is convenient to express M’ as
M = /\/’I'P\/M + MI'P\/ML.
This yields

V][5 = M Py + MPy, X
= [M Py + [M Py (5.29)

Term 1. To bound the first term of (5.29), observe that
5 2
M Py, x| = HM’(PVM — Py X+ MI'P\A/MXHZ
) 2 2
<2|M| (H(m — P, + HP%XHZ) . (5.30)
Recalling (5.25) and applying Lemma 5.11.1 yields
2 e (o 22 < A2 S RIPTE
H(PVM . PVM)XHZ < Hsm oV, VM)H Xl < /\MHP%XHZ + A8
Plugging the above result into (5.30) and applying Lemma 5.11.4 gives

IMPux3 < 2st)? ((1 +R[Po | + AM!B*Hi)

2(5{] )2 ( 2(ﬁ,)2(1 + /\/2\/1)”

<
(psr —v1)?

(&rain(ﬂg) + gHSVT(//V’\) HB*H?) + /\;\‘/IHB*Hg) :
Term 2. Now, to bound the second term of (5.29), which yields

2
.

2
<M Vi Vo P2

IM Py x5 = | U Swa Vil P x

~

Recall that Py,,, B* = 0 and PVMLB = 0; hence,

5 112 112
[Pl = [P, = [P =P,
N 2 a2 112
< [[swortae via"- ], < i 2]

where the final inequality follows from Lemma 5.11.1.
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Conclusion. Collecting the above terms completes the proof. |

Ml 5.12.2 Proof of Theorem 5.3.2

Lemma 5.12.2. Suppose Properties 4.1.1, 4.1.2, 4.1.4, 4.1.6 hold. Consider M =
HSVT(Z, r), M = HSVT(Z’, r'), and the unique B* that satisfies (5.1) with minimum
Y>-norm. Then,

Siay o 16p7(s1)%(1 + AZg)n
gtest(M B) S m(,OSr _ V1)2

(arain(ﬁg) + Ensvi(M) HB*Hf)

’\2 . e
m(:;zs(vl)‘z)z (gtraln(MB) + Ensvt(M) HB*H?)
16(v})?A 8p2(s! )2A4
2t ) ||+ S 2+ 2 S N
A v ]

Proof. By construction,

:rZ TRV +Zslul®v—p'ﬂ/l\'+E'.

i>r

Letting x = B — B*, we have that

|m'x Z — B[}

1
2zw||(

1 ,
=W||(pM'+<Z’—pM>— |3

2
e+ 2 - oM —
Using the above result, we then obtain

o~ 2 — 112 —~ 2
|8 = e, < 2w+ 2 = wee

4/32 ’ o112 4 ’ ’ ’ 2 A *
< oMl + il = oM = s+ 2w = )

§
(5.31)

We will now proceed to bound each term independently.
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Term 1. We apply Lemma 5.12.1 to obtain
2(p")*(1 + Agg)n
(psr —w1)?

2 a2
+2(sh)2A2, - HVAZ,VMLH H3H2 (5.32)

IMx||? < 2(s))? ( (Evain(MB) + Euisvr(M) [|87][7) + AMB*H;)

Term 2. To begin, since rank(M’) = r/, Weyl's Inequality (Lemma 3.1.1) gives
|E] =% < |2 - oM,

As a result, it follows that

1(Z' = pM’ — E'Nx||> < 2||Z = oM|)> - 1x13 + 2| E7|| - 11x1
< 4|z’ = pM|) - 1x13

2
= 42 |[Po, x|, + 4nPAk 8711

Applying Lemma 5.11.4 gives

8(0")2(v)2 R e
M (&rain(MB) + Esvt(M) HB*”?)

+ (Vi AL 1B7 )5 (533)

12" = pM’ = E'x|[; <

Term 3. Since rank(//\Z’) = rank(M'’), we have

| My < m - (A |67 534)

Conclusion. Plugging in (5.32), (5.33), (5.34) into (5.31) and normalizing completes the
proof. |

Lemma 5.12.3. Assume the conditions of Theorem 5.3.1 hold. Then,

—~ r
&est(M,B) S FAtra'Ln + AHSVT’ + Agen + Amodelr

where
Ca’r Cgrx/log .
A‘rrain - n P (n/\p ||B ||1 +A
C3r Gr'y/logp 2
Apsyr = alralr

pH(m A p)
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G p r r rlog?(1/3) r 2
Agen_p“n/\m/\p(n/\p(1+r’)+ np (1+r’p) ”BHZ

C2rp
p2r'(n A p)

Amodel

Tl (J5-#

2
2+ Hﬁ*ug) ; 535)

G3, A1 are given by (5.3); C4 = C(1 + a?)(1 + y?)(1 + K?); and G5 = C4(1 + log(1/0)).
Proof. By Lemma 5.12.3, we have

.~ 16p%(s))2(1 + A3y)n
&est(M B) S m(PSr — W )2

32(v/)2n —— o~
m(ps(,1—)v1)2 (Stra[n(MB) + 8HSVT(M) HB H$)
+ 2805 () 7] + 22

/ P
e A

(&rain(//\/\lé) + SHSVT(//V\’) HB*Hf)

8
VAP e 2 S Mg

We will bound each term independently. However, we first use the arguments that led to
(5.17) to establish P(E’) > 1 — 9, where E’ is given by (5.28). Throughout, we suppose
E’ occurs. Importantly, we highlight that under E” and Property 4.1.3,

A2, < C4( r. rlog(1/5))' (5.36)

“pt\nnp np
where Cy = C(1 + ?)(1 + y?)(1 + K?).

Term 1. Recall from (5.26),

n

2
EuanlMB), Easvi(M) < 20+ OV gty
pHn A !

where (3,1 are given by (5.3). Further, Property 4.1.3 and (5.27) yield

2(\2
p(sy)n <Cf

m(ps, —v1)2 = 1

Given that /\%V, = o(1), we conclude

{term1}<— Ca’r C3rw/log

T SR
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Term 2. We follow the proof of term 1. By Property 4.1.3, we have vq < 5%. As a result,
we conclude that the second term is bounded above by the first term.

Term 3. We apply Lemma 5.2.1 to obtain

<GV

{term 3} = 2&5vT(M )||B* ||1 < i m A p) Bl

where G3 is given by (5.3).

Term 4. We use (5.36) to obtain

2 2
G (1+p) r +rlog (1/9) '
nAp np

r2 N 2 log?(1/6)
(n A p)? (np)? '

This yields

PNy G [ P rPlg’(1/d)
(P')2m = ptr’ \(nAp)? (np)? '

Combining the bounds for terms 4 and 5 gives us the following upper bound:

2 2
Gty (s () 280 (1 )

{term 4 + term 5} < —-
ptnAmAp \nAp r np

(5.37)
Term 6. Using the arguments from above, we obtain

(3)°Ay G rp
m = p*r'(nAp)

where G5 = C4(1 + log(1/9)). Further, we note that

2 2
2l

Bl <2[e-#
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Combining the above yields

2
{term 6} < =

v (8-

).

Conclusion. Putting everything together, we conclude
o~ r
Stest(M,B) S FAtra'Ln + AHSVT/ + Agen + Amodelr

where Atain, Aysyrs Agen, Amodel are given in (5.35). [ |
Completing Proof of Theorem 5.3.2.

Proof. We will simplify the terms in Lemma 5.12.3. To begin, since span(Vr) C span(Vu),
it follows that Apedel = 0, r > r/, and

Ca?r Gry/logp | .12
Atratn + Apsyr < - n + pi(n AmAp) HB H1 + A (5.38)
where (3, A1 are given by (5.3). Further,
CZr rp rlog
Agen < —3= |12, 5.39
9. = oty (n/\m/\p)2+ (n/\m/\p HB|2 (5:39)

where (4 is given by (5.35). Collecting and simplifying the above results gives the

following:
r [ Co? r GG ry/logp
Eex(MB) < | — ;f,,AmApHB I3 + %WHB I+,

where Cj is given by (5.3) and G¢ = GK?(1 + logz(‘l/é)). The proof is complete after
relabeling constants and observing that &est(/\A/ltest) < aest(ﬂ'é). [ |

B 5.12.3 Corollaries: Bounds in Expectation

Corollary 5.12.1. Suppose the conditions of Theorem 5.3.2 hold. Then for any § > 0,

r 20°r C’C’rlog (p/0)
/

(G3)°rp «||2
n p(n/\m/\p 2||B HZ +46'

E es A/}IES S T4/ ~ .~ 1\
[& t( tt)] n/\m/\p

Iy +
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where C} is given by (5.21); and C} = C(1 + ?)(1 + v?)(1 + K?).

Proof. The proof follows that of Theorem 5.3.2. As shown in the proof of Lemma 5.12.3,
P(E’) > 1 — 0, where E’ is given by (5.28). Now, observe that

E[€est(Mhest)] < El€test(Mhest) | E'1+ 0 - El€est(Mhest) | (E)):

We proceed to bound each term separately.

Term 1. Suppose E occurs. Using Lemma 5.12.3, we arrive at the following inequality:

~ /\I/\ r
gtest(Mtest) < gtest(M B) < PApre + AHSVT’ + Agen + Amodel~

First, note that our assumptions give Apeget = 0 and r > r’. We then use (5.38), coupled
with Corollaries 5.9.1 and 5.10.1, to establish

| =

(202r Cir

.
—Npre + A r < +
proPre T THSVIE = n pHn AmAp)

1k

/

Cjrlog(1/6 '
+(p4 priog(1/9) G rm))\/WHB Hf)

nAminAmAp)  pAnA

-

where C[, G, are given by (5.21). At the same time, following the arguments that led to
(5.39), we obtain

CIZ 215
£ G (s D

pt r\(nAmAp)?2  n(n AmAp)

where G5 = C(1 + y2)(1 + K?). Therefore, combining and simplifying the above results
yield

20°r CCérlog (p/0)
n pt(n A m A p)

(C)’rp
/\—m/\pz”B ”2) :

Term 2. By Property 4.1.2 and Algorithm 3, it immediately follows that

E[gtest(/\/htest)] S % ( ||B ||1

Stest(/\/htest) S 4

Conclusion. Collecting terms completes the proof. |
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Completing Proof of Corollary 5.3.1

Proof. The result follows immediately after applying Corollary 5.12.1 with n = ©(m) =
O(p)- u

B 5.13 Proofs: A Subspace Inclusion Hypothesis Test

Lemma 5.13.1. Suppose Properties 4.1.1, 4.1.2, 4.1.3, 4.1.5, 4.1.6 hold. Consider
rank(//\Z) = rank(M) = r and rank(M\’) = rank(M’) = r’. Then under Hy,

| Var =Py, Var

2 N 2 . 2
<2 (Hsme(vM, vM)H + Hsin o(Vir, VM,)H ) .
Proof. Observe that
v vl V|l
=] = [,

VL

~ ~ 2
= H(PVML — Pvy ) Vv + Py, V/\/”HF

~ 2 ~ 2
< 2”(73% —Pu) V| + ZHPVML VM’HF' (5.40)

We will now bound each term independently.

For the first term, we have

H(PA — Pup ) Var

VL

2 ~ 2 ~ 2 ~ 2
< Hsin O(Vi, VM)H . HVM/”F — /. Hsln@(VM, VM)H (5.41)

Further, under Hp, recall that Py,,, Viy = 0. Therefore, using the isometric property of

Vi, we obtain

2

L ]

;
Jrutre, Pl
< [Py I - [sin @, Vi

<r. Hsme(w, vM,)HZ. (5.42)

Plugging in (5.41) and (5.42) into (5.40) completes the proof. |
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M 5.13.1 Proof of Theorem 5.4.1

Proof. Let us first fix some a > 0. Let C' = C(1 + %)(1 + y?)(1 + K?). By Lemma 5.8.4,
it follows that with probability at least 1 — «,

|1Z - pM”2 < C'(n+p+ log(1/a))
|2/ = pM'||” < €' (m + p + log(1/a).

Combining the above with Lemma 5.11.1 then yields

Hs'm o(Vu. VM)H2 < Cr ( 1 n l09(1/0f))

P2 \nAp np
-~ 2. Cr 1 log(1

Hsin (Vv Vmr)|| < Zr ( + ll /a)).
p2 \mAp "~ mp

Plugging the above into Lemma 5.13.1 concludes the proof. |



Chapter 6

Robust Synthetic Control

B 6.1 Introduction

During the early 1970’s, Basque Country, one of the wealthiest regions in Spain, began
to experience terrorist activity. Intuitively, this political and social unrest should have
had adverse effects on the region’s economic wealth. However, evidence of this belief is
difficult to establish since it is impossible to simultaneously observe (and thus compare)
Basque Country's economic health in the presence and absence of terrorist conflict. This

is the fundamental missing data problem of causal inference.

Given that experimental studies (ESs) are simply infeasible in such a setting, a first
order attempt may be to identify a control region for comparison. Unfortunately, a simple
juxtaposition of Basque's economic trajectory with that of a nearby Spanish region would
not provide a statistically valid conclusion unless that region proved to be demonstrably
similar to Basque sans the political and societal instability. In general, there may not
ever exist a natural control state, and subject-matter experts tend to disagree on the
most appropriate control for comparison. At this point, one may opt to apply a pure time
series analysis instead. However, this approach will also often prove to be futile. To see
this, consider the situation where the economy was already in decline prior to the start
of the decade. If the economy continues to fall thereafter, then it would be difficult to
attribute the source of the downturn to the underlying trend or the terrorist activity. This

summarizes a major bottleneck of observational studies (OSs).

M 6.1.1 Problem Statement

More formally, we are interested in outcomes (e.g., per-capita GDP) associated with N
units (e.g., Spanish regions) across T measurements (e.g., time points). In the context of
standard OS settings, it follows that D = 2, where (without loss of generality) we denote

the “no-intervention” state (or control) with d = 1 and let d = 2 represent an actual

113
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intervention (e.g., terrorism). For simplicity, we consider the single metric case (P = 1)

and suppress all dependencies on the metric.

Observations

Throughout this chapter, we let unit n = 1 represent our target unit of interest, which is
assumed to be exposed to intervention d = 2 during the post-intervention period; thus,
712 = {1}. Meanwhile, all other units form our universe of donors, yielding Z(" = [N]\ {1}
and NV = N —1.

We encode our observations into a T x N x 2 tensor Z = [Zt(g)], where

~

Y 2 forallt [T n>1,d=1
sy Vi oy, forallt<To,n=1,d=1
th —

Yt(12)'71'ﬁ), forallt> To,n=1,d=2

*, otherwise.

\

In words, our donor units remain in the no-intervention state across all measurements.
Our target unit, on the other hand, is also unaffected during the pre-intervention period,

but receives intervention d = 2 during the post-intervention period.

Aim
Given Z, our goal is to infer the potential outcomes in the absence of any intervention for

the target unit during the post-intervention period, i.e., /\/Iﬂ) for all t > Tp.

MW 6.1.2 Classical Synthetic Control

As a suggested remedy to overcome the limitations of OSs, Abadie and Gardeazabal
(2003) proposed a powerful, data-driven approach known as synthetic control (SC). Indeed,
SC has grown to become a standard method in econometrics for comparative case studies
and policy evaluation, and since its conception, it has been analyzed in Abadie et al.
(2010), Doudchenko and Imbens (2016), Athey and Imbens (2016), Athey et al. (2017),
Hsiao et al. (2018).

Returning to our example, SC predicts Basque Country's counterfactual economic evolution
without terrorism by constructing a “synthetic” control region, which is represented by

the combination of donor units (assumed to be unaffected) that best resembles Basque
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Country prior to the outset of political unrest. More formally, SC learns B¢ € RN~ as

To N 2
B> € arg minZ (Ytq) — Z WnYt(,l)) )
n=2

weSC =1

where the constraint set SC C RN=1 differs across variants of the method, but is classically
taken to be over the probability simplex, i.e, B;° > 0 and }_, B; =1, (cf. Abadie and
Gardeazabal (2003); Abadie et al. (2010)). Subsequently, Y4/*“ = YN gsc _y{}) is the
estimate for the target unit under no-intervention for t > To. Comparing )A/tq)’sc with Yt(f)
for t > Tp evaluates the impact of intervention 2 on the target unit compared to the

no-intervention effect.

Limitations

Within the SC literature, two standard assumptions are made: (i) The potential outcomes
under the null-intervention follow a factor model; that is, /VIS,) = (uy, vp) for all (t, n),
where u¢, v, € R are the latent factors associated with measurement and unit, respectively.
We note that this a special case of the proposed tensor factor model given by Property
4.1.1 which only considers the frontal slice of the order-three potential outcomes tensors
corresponding to metric p = 1. (ii) There exists a synthetic control for the target unit that
is formed as a weighted combination of the donor units. Indeed, the latter assumption
is the fundamental hypothesis that drives all SC-related works, but it is not clear when

such a hypothesis holds.

Algorithmically, despite its widespread applicability, the classical SC method is unable
to handle settings with noisy and sparse covariates (donor data), typical characteristics
of modern datasets. Theoretically, a quantitative hypothesis test to check the appropri-
ateness of applying SC-like methods and meaningful non-asymptotic analysis (under
a high-dimensional framework), particularly that which captures the behavior of the

post-intervention error, have also remained elusive.

B 6.2 Robust Synthetic Control

As the primary contribution of this chapter, we present the robust synthetic control (RSC)

algorithm, which overcomes the limitations of the classical SC method described above.
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W 6.2.1 Algorithm

Having established the robustness and generalization properties of PCR in Chapter 5, we
utilize it as the key subroutine within RSC (Algorithm 4) to learn a synthetic control. For
a graphical depiction of the input and output of RSC, please refer to Figure 1.3.

Notation. Recall that unit 1 is our target unit. In consistency with (4.1), we represent the
pre- and post-intervention observation matrices associated with the donors, which remain

in the no-intervention state (d = 1) across all 7, as

Z(1) — [Z(” Tt < TO,n > 1] = RT()X(/\/—1)

pre tn
Z0 =120t > To,n > 1] e RT-TND),
Further, we denote yg” = [Yﬁ) : t < Top)] as the pre-intervention observations for our target

unit, which is also observed under d = 1. We are now ready to state the RSC algorithm.

Algorithm 4: RSC
Data: ¢!, Z\), ZV K, Kk’

post’

Result: /\A/I1(1) = [/(\/Ilq) tt> Tol

1. Learn synthetic target model:
(a) B — PCR(Z, y", k)
2. Predict counterfactual prediction outcomes:

(@) M HsvT(Z!) k)

post post’
A 1

(b) /\/121) — Truncate(ﬂl(m)stg)

Algorithmic Intuition

In words, RSC first builds a synthetic control of the target unit using the entire collection
of donor units; that is, RSC finds the set of weights, defined by /.?3 that best approximates
the outcome variables of the target unit during the pre-intervention period. Crucially,
RSC uses PCR to protect against over-fitting to the idiosyncrasies of the data beyond
the inherent model complexity in the target and donor trajectories (recall PCR learns a
linear model in the reduced subspace spanned by the top principal components of Zé:g)

Once the model is learned, RSC rescales the observed outcome variables associated with
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the donor units during the post-intervention period according to the set of weights E As
with the first step (pre-intervention model learning phase), RSC performs HSVT on the

donor post-intervention data for de-noising and reqularization purposes.

Importantly, we underscore that both the model learning and prediction processes only
utilize data under the no-intervention state. This distinction will be made clear when we

discuss synthetic interventions in Chapter 8.

H 6.2.2 Existence of SC

Up until this point, we have not justified the regression step of RSC. In fact, across the
many SC variants, (reqularized) regression is consistently employed as a key subroutine
in learning a synthetic control without any justification. As described in Section 6.1.2, it
is a standard, fundamental assumption within the SC literature that a synthetic control
for the target unit exists within the reservoir of donors; for instance, the classical works of
Abadie and Gardeazabal (2003); Abadie et al. (2010) assume that the target unit can be
expressed as a convex combination of the donors. To the best of our knowledge, despite

the ubiquity of this assumption, it is not clear when such a hypothesis holds.

However, as stated by Proposition 4.1.1 of Chapter 4, the standard matrix factor model
within the SC literature (a simplified version of Property 4.1.1) implies that an invariant
linear model between the target unit and donors persists across measurements with high
probability; effectively, with probability at least 1 — r/(N — 1), where r is the dimension
of the latent unit and time factors. This is the key result that justifies RSC (and, more
generally, learning a linear model). Therefore, under the standard SC setting, we establish
that a linear synthetic control (almost) always exists and need not be assumed as an

axiom as is traditionally done in the literature.

B 6.2.3 Theoretical Performance Guarantees

Objective

Recall that our aim is to recover the underlying potential outcomes for our target unit 1
under control (d = 1), i.e,, qu) for all t > Ty.

Notation. Since we are only interested in recovering the counterfactuals under the
no-intervention state, we suppress dependencies on d = 1 for ease of notation, e.g.,
Zye = Z[()lg and rpost = rank(MI(;O)St), where Mél)st is given by (4.1). Further, let g* = (1),
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where B0'1) is given in (4.3).

Evaluation Metric

Hence, we evaluate the RSC algorithm based on its post-intervention squared prediction
error. Specifically, we define the post-intervention (or test) error for unit n = 1 under the

null-intervention d = 1 as

T

Gt = s 3 6]
t=To+1

where /\7’1 = [/(\/’S) > TO] = RSC(yLZpre,Zpostr Ipre, rpost)~

Remark. Although Property 4.1.5 assumes independent noise entries, our results are
stated when &4, can be dependent across donors for a given t, i.e.,, only the target and

donor noise must remain independent.

Post-intervention Prediction Error

Below, we present our main results, which bound RSC's post-intervention prediction error
in both high probability and expectation under a special case (i.e., the standard matrix
factor model) of the setting described in Chapter 4.

Theorem 6.2.1 (RSC Error in High-Probability). Let Properties 4.1.1, 4.1.2, 4.1.3, 4.1.4,
4.1.5, 4.1.6 hold. Consider the unique B* of minimum ¢-norm that satisfies (4.3). For any

0> 0 and some C >0, if p >/ C}\/%\r?,re, then the following holds w.p. at least 1 — 9:

~ lpre CUerre G Grpren/logN" 112 CfrpreN’ w112
Epost(Mh) < rpost( o T NAT) 18715 +m”3 ||2+A),

where N' =N —1, T" = To A (T — Tp),
CZ * 4 2 2 2 2
A:ﬁ\\ﬁ |, G =Cll+d)(1+y)1+K%), C=GK(1+log*(1/3)).

Proof. The result is immediate from Theorem 5.3.2. [ |
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Corollary 6.2.1 (RSC Error in Expectation). Let the conditions of Theorem 6.2.7 hold.
Then for any 0 > 0,

C? rpre
HN'AT)?

(202rpre N G3Carpre log?(N'/6)

~ r
< pre
E[gpost(M1 )] — TO (N/ /\ T/

I'post

e + e ;) + 40,

where C3 = CK?(1 + o*)(1 + y?)(1 + K?) and Cy = C(1 + a?)(1 + y))(1 + K?).
Proof. The result is immediate from Corollary 5.3.1. |

Intepretation. For simplicity, let To = ©(N) = O(T). Ignoring log factors, Corollary 6.2.1
states that the post-intervention error decays linearly with Tp, in expectation. In words,
Theorem 6.2.1 and Corollary 6.2.1 establish that RSC produces consistent counterfactual
estimates of the potential outcomes in the absence of any intervention. To the best of our
knowledge, Theorem 6.2.1 and Corollary 6.2.1 provide the first finite-sample analysis that
captures the behavior of the post-intervention prediction error (with respect to the latent

potential outcomes) of SC-like methods.

W 6.2.4 Empirical Validation: Placebo Studies

We have provided the theoretical performance of RSC in Section 6.2.3, and shown it to
be a consistent estimator of the unobservable counterfactuals. However, the question
still remains: how does one determine the empirical performance of a counterfactual
estimation method without access to ground-truth values? Although it is possible to use
the pre-intervention data to cross-validate the performance of any estimation method, such
a methodology ignores the actual period of interest, i.e., the post-intervention period, and
is prone to over-fitted results that may not be indicative of the counterfactual performance.
An alternate and more effective approach is to study the performance of an estimation
method on units that do not experience the intervention, i.e., the donor units. Indeed, since
RSC (like other SC variants) is designed to predict the counterfactuals in the absence of
any intervention, performing RSC with the donor units (as opposed to the exposed unit)
as the targets should ideally reproduce the observed trajectories; this is precisely the
placebo studies proposed by Abadie and Gardeazabal (2003); Abadie et al. (2010). Thus,
if the method is able to accurately estimate the observed post-intervention evolution of the
donor units, it would be reasonable to assume that it would perform well in estimating the
unobserved counterfactuals for the target unit of interest. This post-intervention period
placebo study, or cross-validation (as its known within the machine learning/statistics

literature), becomes our primary empirical metric of evaluation in all of our case studies.
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B 6.3 Empirical Case Studies

Here, we present empirical results using the RSC method and several known datasets in

the literature to explain the nuances of the results stated above.

B 6.3.1 Terrorism in Basque Country

One canonical case study within the SC Literature investigates the impact of terrorism on
the economy in Basque Country (see Abadie and Gardeazabal (2003)). Here, the target
unit of interest is Basque Country, the donor pool consists of neighboring Spanish regions,
and the intervention is represented by the first wave of terrorist activity in 1970. The aim
in this study is to isolate the effect of terrorism on the GDP of Basque Country. That is,
to evaluate the effect of terrorism, we aim to estimate the unobservable counterfactual
GDP growth in the absence of terrorism for Basque Country using observations from the

other Spanish regions, which are assumed to be unaffected by the political unrest.

Empirical Results and Key Takeaways

We will use two evaluation metrics: (i) Since we do not have access to Basque’s counter-
factual GDP post 1970 without terrorism, we will use the celebrated results of Abadie
and Gardeazabal (2003) as our baseline; this is our chosen “ground-truth” because these
counterfactual trajectories have been widely accepted by the econometrics community. (ii)
We also perform placebo studies (i.e., cross-validation), as described in Section 6.2.4, by

iteratively designating each neighboring Spanish region (donor for Basque) as the target.

Importance of Regularization. As stated above, we use the results of Abadie and Gardeaz-
abal (2003) as the ground-truth counterfactuals. Recall that the classical SC method
proposed by Abadie and Gardeazabal (2003) enforces the learnt model to have non-
negative weights and sum to one. This offers two benefits: (i) qualitatively, the model
offers an intuitive interpretation of the synthetic control unit (e.g., synthetic Basque is 85%
Catalonia and 15% Madrid), and (ii) quantitatively, this form of reqularization protects
the model from overfitting to the data. RSC, on the other hand, removes the convexity
constraint on the model and instead employs PCR to reqularize (see Chapter 5.5.2 for

details) and learn a linear synthetic control.

To highlight the importance of the PCA subroutine (and, more generally, reqularization),
we construct a synthetic Basque via vanilla OLS. As seen in Figure 6.1a, OLS clearly

overfits to the pre-intervention training data and fails to extrapolate post-intervention. In
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(a) Synthetic Basque via OLS. (b) Spectrum of Basque's donor
data.

Figure 6.1: Plots highlight the importance of reqularization and justification for PCR. Specifically,
(a) illustrates how OLS overfits to the training data while (b) displays the low-dimensional
structure of the donor data, which motivates the usage of PCR since it regresses on the reduced
subspace spanned by the top principal components.

fact, the synthetic Basque GDP as predicted by OLS suggests that terrorism actually
benefited the Basque economy in the long-term(!), which contradicts the conclusions

drawn by the econometrics community.

The first step of PCR (i.e,, PCA) is even more starkly empirically motivated by inspecting
the singular value spectrum of the donor data, which is shown in Figure 6.1b. Clearly,
the data exhibits low-dimensional structure with over 99% of the spectral energy captured
in the top sinqular value in both settings, which fits the conditions under which our
theoretical results imply low pre- and post-intervention prediction errors. Hence, it is
reasonable to first extract the signal by filtering out the low principal components, which
correspond to idiosyncratic noise, prior to learning a synthetic control; in other words,

PCR is a natural and empirically justified regularization method to employ in this setting.

Robustness of RSC. To highlight the robustness of RSC, we begin by randomly obfuscating
data, ranging from 5-20%, and plotting the resulting synthetic Basque GDPs predicted
via convex regression on the outcome GDP data, i.e., the original Synthetic Control
method without auxiliary covariates, in Figure 6.2a; here, the solid blue and orange lines
represent the observed and synthetic Basque (predicted by Abadie and Gardeazabal
(2003)), respectively, while the dashed lines represent the synthetic Basques (learned
without auxiliary covariates) under varying levels of missing data. As seen from the
figure, the original SC method is not robust to sparse observations, which may explain its

dependency on auxiliary covariates to learn its model.

The resulting synthetic Basque as per RSC is shown in Figure 6.2h, which pleasingly
closely matches that of Abadie and Gardeazabal (2003). Similarly, in Figure 6.2¢c, we
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Convex Regression without Auxiliary Covariates Basque Country (Pais Vasco)
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and Gardeazabal (2003) (without and Abadie and Gardeazabal under varying levels of missing
auxiliary covariates) under vary- (2003). data.

ing levels of missing data.

Figure 6.2: Counterfactual estimates of Basque Country’s GDP in the absence of terrorism. While
Figure 6.2b demonstrates that RSC (without covariate data) and Abadie and Gardeazabal (2003)
(with covariate data) produce similar results when all observations are accessible, Figures 6.2a and
6.2c highlight RSC's robustness to sparsity compared to the classical SC method (when covariate
data is withheld).

display various synthetic Basque GDPs after randomly obfuscating the donor observations.
Across the varying levels of missing data from 5-20%, the synthetic Basque GDPs continue
to resemble the baseline estimates of Abadie and Gardeazabal (2003) such that the same

negative economic effects of terrorism can be drawn.

Importantly, we underscore that all of the results computed via RSC shown in Figures
6.2b and 6.2c only use the outcome data and without any access to the auxiliary covariate
information that was required to achieve the results in Abadie and Gardeazabal (2003),
i.e., only the per-capita GDP values are utilized in the PCR learning process. Hence,
PCR exhibits desirable robustness properties with respect to missing and noisy data, and

with less stringent data requirements to achieve similar counterfactual estimates.

Placebo Studies: Cross-Validation. In Table 6.1, we show the results of the hypothesis test
and median R?-score across all neighboring Spanish donor regions. The hypothesis test
passes at a significance level of o = 0.05, which suggests that we cannot reject the null
hypothesis where the post-intervention donor subspace lies within the pre-intervention
donor subspace; recall that this is the key condition that enables RSC to generalize to
unseen data and produce reliable post-intervention counterfactual estimates. Pleasingly,
the post-intervention median R?-score of 0.84 also supports this claim, i.e., our cross-
validation results indicate that RSC is able to accurately reproduce the observed economic
trajectories for the donor regions — for reference, we display the predictions associated

with three regions (namely, Andalucia, Aragon, and Canarias) in Figures 6.3a, 6.3b, and
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(a) Synthetic Andalucia via RSC. (b) Synthetic Aragon via RSC. (c) Synthetic Canarias via RSC.

Figure 6.3: Validating RSC: donor Spanish regions unaffected by terrorist activity.

6.3c, respectively, which are representative of our general results. This further validates

the counterfactual estimates of RSC for Basque Country.

Intervention

No terrorism

Hypo. Test (o = 0.05)

Pass

R2-score

0.84

Table 6.1: Hypothesis test and median R?-score for RSC for Basque Country case study.

Key Takeaways. Importantly, the RSC model of the target region is always fit in the
pre-intervention period. Still, the learnt model is able to accurately reproduce the post-
intervention observations (as evidence of the hypothesis test results and cross-validation
R?-scores). This helps validate the RSC framework and the hypothesis test.

B 6.3.2 California Proposition 99

Another popular case study investigates the impact of California’s Proposition 99, an
anti-tobacco legislation, on the per-capita cigarette consumption in California (cf. Abadie
et al. (2010)). Here, the authors of Abadie et al. (2010) considered California as the
target state, the collection of states in the U.S. that did not adopt some variant of a
tobacco control program as the donor pool, and Proposition 99 (enacted in 1988) as the
intervention. As with the Basque example, we will use the widely accepted counterfactual
estimates of Abadie et al. (2010) as our baseline for California and also measure the

efficacy of RSC via the placebo (cross-validation) studies.

Empirical Results and Key Takeaways

Robustness of RSC. To motivate the usage of PCR, we first plot the sinqular value spectrum
of the California Prop. 99 dataset, seen in Figure 6.4. Notably, over 99% of the cumulative

spectral energy is again captured by the top singular value, which fits the setting under
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Figure 6.4: Spectrum of California’s donor data, which exhibits highly low-dimensional structure.
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Figure 6.5: Counterfactual estimates of California’s cigarette sales in the absence of Prop. 99.
While Figure 6.5b demonstrates that RSC and Abadie et al. (2010) (with covariate data) produce
similar results when all observations are accessible, Figures 6.5a and 6.5¢ highlight RSC's
robustness to sparsity compared to the classical SC method (when covariate data is withheld).

which our theoretical results apply and motivates the application of PCR.

Further, we plot the resulting synthetic Californias learned via convex regression without
auxiliary covariates and under varying levels of missing data (5-20%) in Figure 6.5a;
similar to the Basque case study, this figure highlights the poor performance of the

original SC method in the presence of missing data.

Empirically, we observe that the resulting synthetic California predicted via PCR, also
displayed in Figure 6.5b, closely matches the baseline. Much like the previous Basque
example, across the varying levels of missing data from 5-20%, the synthetic California
per-capita cigarette consumption trajectories continue to mirror the baseline estimates of
Abadie et al. (2010); even in the presence of missing data, the counterfactual estimates
produced by RSC suggest that Prop. 99 successfully cut smoking in California. This
is indeed expected from the theoretical analysis given the extremely low-dimensional

structure of the data and the robustness of PCR.
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Figure 6.6: Validating RSC: donor states without tobacco control programs (including raised state
cigarette taxes).

Placebo Studies: Cross-Validation. In Table 6.2, we show the results of the hypothesis
test and median R?-score across all donor states (for the specific 38 states that were
considered donors, please see Section 3.2 of Abadie et al. (2010)). Interestingly, the
hypothesis test fails at a significance level of a = 0.05, and so we can reject the null
hypothesis. This suggests that RSC's synthetic control, which is learned during the pre-
intervention period, should not generalize to the post-intervention regime. Correspondingly,
the post-intervention median R?-scores (across all donor states) suffers a low prediction
accuracy of -0.58. For reference, we display the predictions associated with three states
(namely, New Mexico, Texas, and Delaware) in Figures 6.6a, 6.6b, and 6.6¢, respectively,
which are representative of our general results. As we can see from these figures, the
“counterfactual” estimates for Texas and Delaware do not match the observed trajectories,

which is alarming.

Intervention No Prop. 99
Hypo. Test (o = 0.05) | Fail
R’-score -0.58

Table 6.2: Hypothesis test and prediction accuracy results for RSC in the context of California
Proposition 99 study.

Key Takeaways. Although the impact of Prop. 99 on California is a canonical case study
within the SC literature, our hypothesis test results suggest that the post-intervention
data is “more complex” than the pre-intervention data; hence, a (linear) model learned
during the pre-intervention regime should not generalize to the post-intervention regime.
Coupled with the low cross-validation R?-scores, our results possibly indicate that the
counterfactual estimates for California (as shown in Figure 6.5b) may not be as reliable

as hoped.
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B 6.4 Discussion

B 6.4.1 Connection to Matrix Completion

We discuss the connection between the SC framework and that of matrix estimation.
As discussed, the problem of estimating the unobservable counterfactuals for the target
unit can be formulated as recovering a segment of a matrix whose rows correspond to
time, columns correspond to units, and entries contain the potential outcomes under the
null-intervention. While it may be of interest to de-noise the noisy realizations of our
data (i.e., donor observations or pre-intervention target data), our primary concern is to
recover the post-intervention counterfactuals, which are never accessible (including the
noisy instantiations). Therefore, given the unique sparsity patterns of our data, it is not
reasonable to simply impute the missing, counterfactual values via a direct application
of standard matrix completion/estimation techniques (e.g., nuclear norm minimization or
SVT on the entire dataset with both target and donors). Additionally, from a theoretical
standpoint, performance guarantees often only hold with respect to the Frobenius and
spectral norms across the entire matrix, and thus are unable to make any statements
with respect to recovering the missing segment of interest. Instead, the utility of matrix
estimation techniques lies in their ability to de-noise the donor observations, which can
be viewed as covariates in the context of supervised learning, to extract the latent signal

and assist in the model learning subroutine.

M 6.4.2 Generalized Factor Models

Here, we consider a generalized factor model, or latent variable model (LVM), which is a
natural extension of the linear factor model (a special case of Proposition 4.1.1) typically
assumed within the SC literature. Throughout this section, for simplicity and ease of
notation, let M = [M;, : t < T,n < N]with My, = /\/Iil), i.e., M is the matrix of potential

outcomes across all units and time under the null-intervention d = 1.

More formally, we say M is generated as per a LVM if for all (t, n),
an = g(utr Vn): (61)

where u; € RP?" and v, € RP? are latent features that capture time and unit specific
information, respectively, for some p1, p2 > 1; and the latent function g : R?* x RP2 - R

captures the model relationship; again, we note that if g is a linear function, then we
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recover the standard factor model and M is exactly low-rank. More generally, if g is “well-
behaved” (e.g., Holder continuous) and the latent spaces are compact, then Proposition

6.4.1 shows M is approximately low-rank.

Establishing (Approximate) Low-rankness

We first define the Holder class of functions, which is widely adopted in the non-parametric
regression literature (see Xu (2017); Tsybakov (2008)). Given a function g : [0, 1) — R,
and a multi-index k € NP1, let the partial derivate of g at x € [0, 1) (if it exists) be

denoted as,

Ikl g (x
Vig(x) = a( af)(x) (6.2)

Definition 6.4.1 ((a, £)-Hdlder Class). Let a, L be two positive numbers. The Hélder
class H(a, L) on [0,1)P" is defined as the set of functions g : [0,1)"" — R whose partial

derivatives satisfy
1 a—|a !
> 17kl = vegl)| < Lx =X forattxx €0, 177 (63)
k:lk|=[a]
Here, | a| denotes the largest integer strictly smaller than a.

Remark 6.4.1. Note if a € (0,1], then (6.3) is (a, L£)-Lipschitz, i.e.,
l9(x) — ()| < L|jx =X ||t for all x, ¥ € [0, 1)1,

However, for a > 1, (a, L)-Hdélder no longer implies (a, L)-Lipschitz.

Proposition 6.4.1 (Holder-Smoothness Induces Approximate Low-rankness — adapted from
Xu (2017)). Let M satisfy (6.1) with uy, v, € [0,1)P' as latent parameters. Further, for all
vp, let g(-, vy) € H(a, L), as defined in (6.3). Then for any 0 > 0, there exists a low-rank
matrix A of rank r < C(a, p1)0~P" such that

IM—A||l _<LC-5% (6.4)

Here, C(a, p1) is a constant that depends only on a and p1.

Interpretation. In words, Proposition 6.4.1 establishes that if the potential outcomes follow

a LVM, then the corresponding potential outcomes matrix M is approximately low-rank.

"The domain is easily extended to any compact subset of R”1.
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Additionally, by setting 0 = 1/(N A Tp), it is quaranteed that the approximation error,

HM —A||max, vanishes as more data is collected.

Remark 6.4.2. We remark on the Hélder continuity of a typical linear factor model, i.e.,
g(u¢, va) = (uy, vp). It is easily seen that such a model satisfies Definition 6.4.1 for all
a € N and L = C for some C > 0. Thus, one can think of Hélder continuous functions as

generalizations of typical linear factor models to (sufficiently smooth) non-linear functions.

Existence of (Approximate) SC

In what follows, we show that the approximate low-rank property of the underlying

potential outcomes matrix implies the existence of an approximate linear synthetic control.

Proposition 6.4.2 (Existence of Approximate SC). Assume the conditions of Proposition
6.4.1 hold. For intervention d = 1 and unit 1, suppose Property 4.1.4 holds for A =
[Ata] = 34—y UteVae, where r and A are given by (6.4). Then, there exists a B* € RN~
such that for all t € [T),
N
Ma =) Biq M+ ¢r,

n=2
where ¢; < (C(a, pq)EHB*HOO) - ola=p),
Interpretation. Combined with Proposition 4.1.2, Proposition 6.4.2 establishes that
(approximate) synthetic controls (almost) always exist under a LVM; additionally, the
model mismatch error, ¢, vanishes as more data is collected. Therefore, in a very general
sense, pleasingly, a synthetic control almost always exists and need not be assumed as

a hypothesis or axiom.

B 6.5 Proofs for Generalized Factor Model

B 6.5.1 Proof of Proposition 6.4.1

As previously stated, the following analysis is adapted from Xu (2017) and is stated here

for completeness. Before we dive into the proofs, let us introduce some useful notation.

Definition 6.5.1 (Piecewise Polynomials). Let £ denote a partition of the cube [0,1)¢
into a finite number (|€|) of cubes A. Let ¢ € N. Then Pg 4 :[0,1)? — R is a piecewise
polynomial of degree ¢ if

Peo(x) =) Paelx)-L(x € A), (6.5)
Ae€
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where P (x) : [0,1)¢ — R denotes a polynomial of degree at most £.

Proof. We will achieve our result by decomposing the proof into three parts. First, we
will discretize the compact latent feature spaces. Then, we will show that g can be well
approximated by piecewise polynomials. We conclude the proof by constructing A from
these piecewise polynomials, which have been shown to be entry-wise close to M, and
establish its low-rank structure. For brevity, we will suppress the dependence of g on the

latent feature v, such that g(u) := g(-, vy).

Step 1: Partitioning the latent spaces. For our purposes, it suffices to consider an
equipartition of [0, 1)P1. More precisely, for any T € N, we partition [0, 1) into 1/7 half-
open intervals of length 1/, i.e, [0,1) = U"_,[(i — 1)/7, /7). It follows that [0, 1)"" can be
partitioned into 7P' cubes of the form ®f;1[(ij — 1)/t,ij/T) with i; € [T]. Let &, be such

a partition of [0,1)P" with /..., l,, denoting all such cubes and zq,...,zp1 € [0, 1)P
denoting the centers of those cubes.

Step 2: Approximating g via piecewise polynomials. Let ¢ = |a]|. For every cube J;

with i € [1P1], we define Py, ¢(u) as the degree-¢ Taylor’s series expansion of g(u) centered

at z;:
1
Pie(u) = Z E(u — 7))V q(z), (6.6)
K:|k|< O
where k = (k1,...,Kp,) is @ multi-index with k! = Hf;1 k!, and V,g(z) is the partial

derivative defined (6.2) evaluated at z;. Further, we define a degree-¢ piecewise polynomial
as in (6.5):

1
Pe,o(u) =Y Po(u) - L(u € ), (6.7)
i=1
where Py, ¢ is defined as in (6.6).

We are now ready to show that g is well approximated by a piecewise polynomial. To that
end, let z/ = 6z;+ (1 — O)u for every i € [tP'] and some O € (0,1). Since g(u) € H(a, L),

it follows from Taylor’s theorem (using the Lagrange remainder form) that

sup|g(u) — P, ¢(u)|

= sup sup|g(u) — Pg, ¢(u)]

i€[tP1uel;
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= sup sup| ) vKg(z")(u —z)+ ) ka!(zi)(u — )" — P, o(u)

ie[tP1]uel;

— up sup Z VKQ(Zi)(u_Z[)K + Z V.q(z]) — VKQ(ZI)(U —2) = Peo(u)

ig[tP1)uel; Kl

= sup sup
ie[tP1)uel; K:|k|=¢

IA

¢
sup sup HU — ZiHoo .
iE[Tp1]UE/,‘

Z Vg(z)) — Vig(z)
k!
k:|Kk|=¢

< £ sup sup [lu— 2z, - [|6z+ (1 — O)u — 2|

iG[Tpﬂ uel;

ie[tP1)uel;

Observe that we have used (6.3) to establish the second inequality above.

Step 3: Constructing A and establishing its low-rank structure. We now construct

A = [Asn] as follows: for every (t, n), let
Atn = Pg,e(ut, vn),

where Pg, ¢ is defined as in (6.7). Since My, = g(uy, vy), it follows that
M= Al < £re

which was established in the previous section.

It remains to bound the rank of A. Since Pg, ¢ is a piecewise polynomial of degree /, it

admits the following decomposition:

™1

Atn =) (S(ue), Biy,) - Lur € 1),

i=1

where
<D(ut):(1,ut1,...,utp1,...,uf1,...,ufp1)T

denotes the collection of all monomials of degree |k|< ¢; and By, denotes the corre-
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sponding coefficient vector. Thus, for any fixed u;, we have that

1 ¢T(U1) (w1 € 1)

A= Z : [/9/,-,v1 : ~~Bli,vN] :
i=1

q)T(uT) : IL(uT € Ii)

Since there are C(a, p1) := Zf:o (?flﬂ

dimension at most C(a, p1). As a result, the rank of A is bounded by °'- C(a, p1). Setting

) degree-¢ monomials, ¢(u;) and B, are of

T = 1/0 completes the proof. |

B 6.5.2 Proof of Proposition 6.4.2

Proof. Let A = [A¢;] € RT*N be defined as in Proposition 6.4.1. By appealing to its SVD,
A has the following representation: for all (¢, n),

r
Atp = Z UteVne.
/=1

Therefore, it follows that there exists a B* with HB*HO < r such that Property 4.1.4 holds;

let us define Z = {n : B} # 0} as the support of B*. This implies that

An =Y BiAm.

nel

Using the above with Proposition 6.4.1, we obtain

Ma =Y BiMuw = (Ma =Y BiAw) + () Bi(Am — Mu))

nel nel nel

= (M1 — An) + (3 Bj(Atn — Min))

nel

< £o(1 + 7|87

Noting r < C(a, p1)0~—P' completes the proof. |
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Chapter 7

Multi-dimensional RSC

B 7.1 Introduction

As discussed in Chapter 6.2.4, placebo (or cross-validation) studies can be used to evaluate
the statistical performance of SC-like methods since ground-truth counterfactuals are
never accessible. At the same time, through the lens of time series analysis, the same
evaluation measures can be viewed as a forecasting methodology. That is, as long as
the temporal or sequential dimension of the data is relative and not absolute, i.e., the
donor pool has already undergone the future evolution in “time”, SC-like methods can
be used to forecast the future evolution for any unit of interest that is unexposed to
treatments. However, even though RSC is proven to exhibit attractive theoretical and
empirical properties, it (like other SC variants) may still suffer from poor estimation when

the amount of training data (i.e., the length of the pre-intervention period) is too small.

Consider the problem of estimating demand in retail. Typically, the amount of data
available for the outcome variable of interest is sparse; e.g., given the massive scale of
users and products, the observed matrix of transactions has very few nonzero realizations.
To avoid overfitting to the idiosyncrasies of the training data, it is commonplace to employ
reqgularization when learning a model (e.g., convex regression a la classical SC or PCR);
this reduces the variance of the estimator at the expense of higher bias. Still, algorithmic
remedies such as regularization do not enable these methods to generalize if the training

data is too small to capture the underlying signal or trend.

In such settings, a data remedy may be the only remaining option. While acquiring
more data of the same variable type is frequently infeasible, other types of data (e.q.,
browse and search histories, responses to promotions to name a few) are often readily
available. We refer to this as the problem of estimation (e.g., recovering counterfactuals
or forecasting demand) with auxiliary metrics (i.e., data of different types, beyond the

outcome variable of interest).

133
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B 7.1.1 Problem Statement

We are interested in outcomes (e.g., sales) associated with N units (e.g., retail stores)
across T measurements (e.g., weeks). Continuing the interventional storyline of Chapter
6, we consider D = 2, where (without loss of generality) we denote the “no-intervention”
state with d = 1 and let d = 2 represent an actual intervention (e.g., storewide sale).
However, while we are again in the interest of estimating outcomes for a particular metric
(e.g., true demand of umbrellas), we now have access to auxiliary metrics in the form of

additional metrics (e.g., transactions for clothes), i.e., we let P > 1.

Observations

Throughout this chapter, we let unit n = 1 represent our target unit of interest, which is
assumed to receive intervention d = 2 during the post-intervention period; thus, Z(?) = {1}.
Meanwhile, all other units form our universe of donors, yielding Z) = [N]\ {1} and
N1 = N —1. We encode our observations into a T x N x 2 x P tensor Z = [Z}ﬁ’"’)],

where

YO 2P forallt e [T,n>1,d=1,p [P
yiP P forallt < To,n=1,d=1,p € [P]
VP 2P orall t > To,n =1,d = 2,p € [P]

*, otherwise.

Aim
Given Z, our goal is to infer the potential outcomes in the absence of any intervention

for the target unit under metric p* during the post-intervention period, ie., /\/Iﬂ’p*) for all
t> Tp.

B 7.2 Multi-dimensional Robust Synthetic Control

As the primary contribution of this chapter, we present multi-dimensional RSC (MRSC),
a natural extension of RSC that incorporates auxiliary metrics. In what follows, we will
show how MRSC offers a simple, theoretically justified approach in exploiting auxiliary

data to overcome the limitations of sparsity and limited training (pre-intervention) data.
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B 7.2.1 Algorithm

As established in Chapter 6, RSC exhibits desirable robustness and generalization

properties. Hence, we generalize RSC to utilize multiple metrics in a principled manner.

Notation. Recall that unit 1 is our target unit. In consistency with (4.1), we represent the
pre- and post-intervention observation matrices associated with the donors for metric p,

which remain in the no-intervention state (d = 1) across all T, as

A [Z“"’) 1t < To,n > 1] € RN
ZUP 1 Z0P) -t > To,n > 1] € RU-Tox(N-1),

post
Further, for every p, we denote y1 = [Y(1 Pt < To] as the corresponding pre-
intervention observations for our target unit, which is also observed under d = 1. We are
now ready to state the MRSC algorithm, which holds for any metric p of interest. For

simplicity, we consider estimating the counterfactuals for the target under p*.

Algorithm 5: MRSC
Data: {(y“ P, Z0PY:p e [P]} VANAN N Y

post '

Result: M\ = [MUP) ¢ > Tq]

1. Concatenate:
(a) donors: Zé:g — [Zy'p) :pe|P] e RPTox(N-1)
(b) target: gg) “y! (1.p) . . p €[P]] € RPTo

2. Learn synthetic target model:
(@) B — PCR(Zirt, 4!, K)

3. Predict counterfactual prediction outcomes:

1
(a) Mlgogu HSVT(Z! post k)

(b) Mgp <—Truncate( post E)
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Algorithmic Intuition

In words, MRSC simply performs RSC with the added pre-processing procedure of
concatenating the pre-intervention donor data across all metrics. Effectively, this step

augments the amount of training data.

Weighted Least Squares

MRSC, as stated in Algorithm 5, implicitly assumes that each data type is of equal
importance, i.e., the model learning subroutine (PCR) assigns uniform weight to each
measurement across all metrics. However, if it is known a priori that certain data types are
more similar or important to the primary outcome variable of interest p*, then Algorithm 5
can be modified to assign greater weights to those data types in the PCR step. More
formally, if we denote our weighting matrix as

1 1

. 1 1
W=diag| —,...,—,...,—, ..., — e RPToxPTo,
w1 W1 wp wp

To To

where w, represents the relative importance of metric p, then we can redefine

B« PCRW'2Z(), w2V k).
In words, the model is now learned via weighted least squares in the reduced subspace
spanned by the top principal components of the augmented pre-intervention donor data.
We note that wy = --- = wp = 1 recovers Algorithm 5. In general, the weights can
be chosen in a data-driven manner via standard machine learning techniques such as

cross-validation.

Bl 7.2.2 Existence of SC Across Metrics

Consider an order-three tensor factor model (a simplified version of Property 4.1.1) where
the potential outcomes correspond to the universe of units, time, and metrics under the
null-intervention d = 1. Then Proposition 4.1.1 of Chapter 4 states that an invariant linear
model between the target unit and donors holds across all measurements and metrics
with high probability. This result suggests that the auxiliary metrics (i.e., metrics p # p*)
can effectively be viewed as additional measurements. Thus, from both a theoretical and
algorithmic perspective, this justifies and motivates MRSC to concatenate the auxiliary

data (thereby, performing “data augmentation”) and learn a single linear model E
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B 7.2.3 Theoretical Performance Guarantees

Obijective

Recall that our aim is to recover the underlying potential outcomes for our target unit
n = 1 under the null-intervention d = 1 associated with metric p*, i.e., Mﬂ’p*) for all

t > To. As a benefit, we are also given access to auxiliary metrics (gg1’p),Z(1'P)) for

p#p

Notation. Throughout the rest of this chapter, let

1 PTox(N—1
Mpre [M[()I'ep) p € [P]] € R OX( )

denote the concatenation of potential outcomes under the null-intervention d = 1 for the

pool of donor units across all metrics; let rpe = rank(M,()lZ,). Since we are only interested

in recovering the counterfactuals under the no-intervention state, we henceforth suppress

= rank(M''?)),

dependenaes on d = 1 for ease of notation, e.g., Zpre = ZF(,lep and r bost

where M

post

is given by (4.1). Further, let 8* = B, where BV is given in (4.3).

ost

Evaluation Metric

We evaluate MRSC based on its post-intervention squared prediction error. Specifically,
we define the post-intervention error for unit n = 1 under the null-intervention d = 1 and

metric p* as

T

A~ * 1 A~ 1’ * 1’ *
5post(M§p )) = T_T Z (M§1 P M§1 P ))2'
0 =Tyt

where M{") = (M - t > To| = MRSCU{(y", ZF) - p € [PI}. Zyto). e, ot

post’ post/’

Post-intervention Prediction Error

We consider the tensor factor model under the null-intervention, a special case of the
setting described in Chapter 4. However, rather than assuming a general sub-gaussian
noise model (Property 4.1.5), we analyze the i.i.d. Gaussian contamination model instead.

This is formalized by the property detailed below.
‘,‘Z'P) be a sequence of independent mean zero

,p)) — 2.

Property 7.2.1 (Gaussian noise). Let €

. . . d
Gaussian random variables with Var(sg,,
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We are now ready to present our main results, which bound MRSC's post-intervention
prediction error in both high probability and expectation. We relegate the proofs to the
end of this chapter.

Theorem 7.2.1 (MRSC Error in High-Probability). Let Properties 4.1.1, 4.1.2, 4.1.3, 4.1.4,

7.2.1, 4.1.6 hold. Consider the unique B* of minimum ¢-norm that satisfies (4.3). For any

0 > 0 and some C > 0, if p > C)\%\r?,re, then the following holds w.p. at least 1 — &:

(o) Fpre CUZ"pre G Czrpre\/m C rpreN
Epost (VP < iy (7 IS TR EReTes i o A FRY )

where N =N —1, T" = PTo A (T — To),

WHB I, G =C(1+d%), G =Cd*(1+log’(1/3)).

Corollary 7.2.1 (MRSC Error in Expectation). Let the conditions of Theorem 7.2.1 hold.
Then for any 0 > 0,

ZUerre G Cyrpre log (N'/9)
To PHN'AT)

CfrpreN’
PPTo(N' AT

A~ (¥ Ior
ElEpose(MP)] < 122
post

el + 18°]13) +45,

where C3 = C(1 4 ¢%) and Cy = C(1 + o).

Interpretation. The impact of auxiliary metrics is made precise by the dependence on P.
If P =1, then we return to setting of Chapter 6 (without access to auxiliary metrics) and
recover Theorem 6.2.1. However, for any P > 1, the generalization error (third term of
Theorem 7.2.1) decreases linearly with P, the total number of metrics used in the model

learning procedure.

To gain greater intuition, let To = O(N) = O(T). In such a setting, observe that the first
two terms of Corollary 7.2.1, ignoring log factors, decay linearly with Ty. This suggests
that the benefit of auxiliary metrics can only reduce the overall testing prediction error
up to a certain point, irrespective of the amount of additional information. Hence, the
benefit of utilizing auxiliary metrics is to help alleviate the problem of sparsity, as desired.
More specifically, as opposed to requiring on the order of ry. entries per sample in our
training set, we may now only need to observe ry./P entries per sample. This establishes
a trade-off in data acquisition; specifically, trading off sparsity of one type of data for

data of a different type.
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B 7.3 Empirical Case Studies

B 7.3.1 Forecasting in Retail

We consider the problem of forecasting weekly sales in retail. Here, we highlight a key
utility of MRSC over RSC in the presence of sparse data. More specifically, our results
demonstrate that when the pre-intervention period (training set) is short, then standard
RSC methods fail to generalize well. On the other hand, by using auxiliary information
from other metrics, MRSC effectively “augments” the training data, which allows it to

overcome the difficulty of extrapolating from small sample sizes.

Experimental Setup

We consider the Walmart dataset, which contains T = 143 weekly sales information
across N = 45 stores and P = 81 departments. We arbitrarily choose store one as the
treatment unit, and introduce an “artificial” intervention at various points; this is done
to study the effect of the pre-intervention period length on the predictive power for both
MRSC and RSC methods. In particular, we consider the following pre-intervention points
to be 15,43, and 108 weeks, representing small to large pre-intervention periods (roughly
10%, 30%, and 75% of the entire time horizon T, respectively). Further, we consider
three department subsets (representing three different metric subgroups): Departments
{2,5,6,7,14,23,46,55}, {17,21,22,32,55}, and {3,16,31,56}.

Empirical Results

In Table 7.1, we show the effect of the pre-intervention length on the RSC and MRSC's
ability to forecast. In particular, we compute the average pre-intervention (training) and
post-intervention (testing) MSEs across each of the three departmental subgroups (as
described above) for both methods and for varying pre-intervention lengths. Although the
RSC method consistently achieves a smaller average pre-intervention error, the MRSC
consistently outperforms the RSC method in the post-intervention regime, especially when
the pre-intervention stage is short. This is in line with our theoretical findings of the
post-intervention error behavior, as stated in Theorem 7.2.1 and Corollary 7.2.1; i.e., the
benefit of incorporating multiple relevant metrics is exhibited by the MRSC algorithm’s
ability to generalize in the post-intervention regime despite high levels of sparsity.

We present Figures 7.1 and 7.2 to highlight two settings, departments 56 (left) and 22
(right), respectively, in which MRSC drastically outperforms RSC in extrapolating from a
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small training set (7o = 15 weeks). We highlight that the weekly sales axes between the
subplots for each department, particularly department 56, are different; indeed, since the
RSC algorithm was given such little training data, the RSC algorithm predicted negative
sales values for department 56 and, hence, we have used different sales axes ranges to
underscore the prediction quality gap between the two methods. As seen from these
plots, the RSC method struggles to extrapolate beyond the training period since the
pre-intervention period is short. In general, the RSC method compensates for lack of data
by overfitting to the pre-intervention observations and, thus, misinterpreting noise for
signal (as seen also by the smaller pre-intervention error in Table 7.1). Meanwhile, the
MRSC overcomes this challenge by incorporating sales information from other departments.
By effectively augmenting the pre-intervention period, MRSC becomes robust to sparse
data. However, it is worth noting that both methods are able to extrapolate well in the
presence of sufficient data.

Store 1 Department 56 Sales: rsc Store 1 Department 56 Sales: mrsc

20000 : 17500 4 —— observed

A
100004 A% f\ /\k,\
! J 15000
1 J \\Aa\_-\._/ \w\ S

~10000 4

Counterfactual

" i 4 10000
£ -20000 - i =
@ i Y 7500
~30000
~40000 ; 5000
~50000 { — observed 2500 \MJ\‘ f \//\
Counterfactual \/N\/
—60000 1 01 T - T T T T T T T
0 20 4 60 s 100 120 140 0 20 40 60 80 100 120 140
Wweek Week
(a) Dept. 56 (RSC) (b) Dept. 56 (MRSC)

Figure 7.1: MRSC and RSC forecasts for department 56 of store 1 using To = 15 weeks.

Store 1 Department 22 Sales: rsc Store 1 Department 22 Sales: mrsc
30000 1 — observed 23000 H —— Observed
Ccunterfactua\ 22500 Counterfactual
25000 1 20000 1 i
17500 4 E
20000 1 H |
8 £ 15000 : l |
© = H
8 & : , |
15000 1 12500 4 : | \A 1[
H 10000 1 \J\ (| ]
10000 4 | ,‘IJ‘ v"
; M 7500 1 w W/\
M“\f L& i
5000 5000 !
0 20 a0 60 80 00 120 130
Week Week
(a) Dept. 22 (RSC) (b) Dept. 22 (MRSC)

Figure 7.2: MRSC and RSC forecasts for department 22 of store 1 using To = 15 weeks.
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Train Error (10°)  Test Error (10°)
To [RSC  RSC RSC MRSC
10% | 1.54 3.89 210  5.25
30% | 2.21 3.51 194  4.62
75% | 4.22 5.33 332 248
10% | 0.67 2.61 144 2.48
30% | 0.79 1.21 213 1.97
75% | 1.18 2.78 131 0.77
10% | 1.28 6.10 846 125
30% | 2.60 3.45 3.72 413
75% | 2.29 2.65 492 472

Table 7.1: Average pre-intervention (train) and post-intervention (test) MSE for RSC and MRSC
methods.

B 7.4 Discussion

B 7.4.1 Connection to Matrix & Tensor Completion

Much like the discussion in Chapter 6.4.1, we formalize our problem as recovering a
segment of a matrix whose rows and columns correspond to time and units, respectively,
and entries contain the potential outcomes in the absence of any intervention. Through this
lens, we view side information as additional matrices of conforming dimension. Together
with the primary matrix of interest (corresponding to what we often referred to as metric p*),
we can encode our data into an order-three tensor, where each frontal slice corresponds
to a unique data type or metric. Since we hope to recover a specific segment of the frontal
tensor slice, standard matrix and tensor estimation techniques (even those that incorporate
side information a la Farias and Li (2019)) are again insufficient for our purposes. MRSC,
on the other hand, is a natural consequence of this tensor perspective (particularly, under

a tensor factor model), and is well-suited for our setting of interest.

B 7.5 Proofs

Throughout, we adopt the notation established in Section 5.7 of Chapter 5 with the

modification that the number of training samples is now kn for some k > 1.



142 CHAPTER 7. MULTI-DIMENSIONAL RSC

B 7.5.1 Preservation of Gaussians

Lemma 7.5.1. Let A be an m x n matrix whose rows A; are independent, mean-zero,
isotropic Gaussian random vectors in R", i.e, A; ~ N (0, azl,,x,,). Let U € R™k gnd
V € Rk pe matrices with orthonormal columns. Then, A" = UTQV is a ki x ko matrix
whose rows Af are independent, mean-zero, isotropic Gaussian random vectors in Rk e,
Al ~ N(0, 0l xky)-

Proof. To begin, consider the matrix X = AV € R™*%, Let X; = (A;, V) denote the i-th
row of X. Then, it follows that E[X;] = 0 and

cov(Xi) = VT cov(A)V = 0% liyxi,.
Thus, the rows of X are independent, mean-zero, isotropic Gaussian random vectors in

Rk distributed as N'(0, 0%l x,)-

Now, consider the matrix Y = UTA € RK*"_ |et A; € R™ denote the j-th column of A,
and let ¥; = UTAj € RM denote the j-th column of Y. By assumption, it follows that the
entries of A; are independent Gaussian random variables with mean zero and variance o

Hence, it follows that E[Y;] = 0 and
—_ T _ 2
cov(Y)) = U cov(A))U = 0%l xy.

Since uncorrelation implies independence for Gaussian distributions, the rows of Y

are independent, mean-zero, isotropic Gaussian random vectors in R” distributed as

N0, 0% 1,x,).
Observing that A’ = YV = UT X completes the proof. |

W 7.5.2 Learning Subspaces

Below, we state an alternative version of Lemma 5.11.1 in Lemma 7.5.2, which provides a

sharper bound under the i.i.d. Gaussian noise assumption (Property 7.2.1).

Notation. Let Uy, € R”*("=") and V), € RP*P=") denote the orthogonal complements
to Ups and Vi, respectively. Further, letting H = Y — pM, we write

- Hi Hiy v/
A=[uy vy |-] 0 T2 , (7.1)
[ MM ] [ H>1 Hxp ] [ Vi,
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where

Hiy = UL AV, Hio = UL AV,
Hy = Ul HVy, Hop = Ul AV,

are matrices of dimensions r x r,r x (p—r),(n—r) x r, and (n —r) x (p — r), respectively.
Lemma 7.5.2. Suppose Property 4.1.1 holds, and M = HSVT(Y, r). Then,
(s + ]} [Fee] + [Fea] -

) e - |

Hsln@(VM, VM)H <

- ol )

where ’:IH , I:IQ, I:I21, and I:Izz are defined in (7.1).
Proof. Since rank(M) = r, it follows that
U, Y Vi = U (oM + H)Vi = pSwni + U HVi = pSwi + Hi1.
Applying Weyl's inequality (Lemma 3.1.1), we obtain
] < < 5+ o]

where a is as defined in (3.5). Similarly, since Uy, is the orthogonal complement of Uy

(equivalently, Vi1 is orthogonal to V)), it holds that
U/\CU_YV/VU_ = U/\7;IJ_(pM+ H)VMJ_ = U/Z;U_HVMJ_ = I:Izz,
which yields B = H’:IQZH where B is also defined as in (3.5).

By the construction of M, Py,, is an orthogonal projection onto the subspace spanned by

the top r right singular vectors of Y. Therefore, Theorem 3.1.2 gives
(e [Fin]]) [Pa]| + o] - [P

o) e -

Hsme(\?M, vM)H <

s ol o]

This completes the proof. |
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B 7.5.3 Proof of Theorem 7.2.1

Proof. We follow the proof of Theorem 5.3.2 with a slight modification. In particular,
Lemma 7.5.1 states that the entries of I:I12, given in (7.1), are independent, mean-zero
Gaussian random variables with variance ¢?; thus, for any d > 0 and some C > 0,
Theorem 3.2.2 states that with probability at least 1 — 9,

o < Vi (Vi + B +Vog(T79))

where C; = C(1 4 ¢*). Using the above inequality with Lemma 7.5.2, we modify (5.36) to

obtain

A< 2
M= pf

G rlog(1/9)
(kn * knp ) '

Plugging the above into (5.37) yields

Ct | r p r log?(1/0) 2
{term 4 + term 5}§p4(kn(1++r,kn)+ FKnp ||B ||2
Therefore, it follows that (5.39) becomes
C?r r rlog?(1/3) N
Agen < 7]‘*, P 3 ( HB HZ
ptr’ \ kn(lkn AmAp)  kn(kn A mAp)
Collecting and simplifying the above results gives the following:
r [ Ca’r C1C2 r~/logp . rp )
gtest(Mtest) < *, ( n P4 kn Am /\P”B ||1 4 kn(kn Am /\P HB HZ +A1 ,

where & = Cio?(1 + logz(1 /0)) and A1 is given by (5.3). The proof is complete after

relabeling constants.
[



Chapter 8

Synthetic Interventions

B 8.1 Introduction

As the COVID-19 pandemic began to rapidly spread within the United States (U.S.),
the U.S. government responded by implementing policies to enforce social distancing.
Unfortunately, these policies only led to a less than 5% reduction in mobility goo, and
many lives were tragically lost. This begs the questions: Would greater reductions in
mobility, say 30% or 60%, have led to significantly better societal health outcomes? And
moving forward, what trade-offs between health outcomes and economic impact can be
achieved through different policies? Although it is infeasible to answer either question
through actual experimentation, it is possible to leverage information from across the
globe. Given that different regions and/or countries have implemented various policies,

valuable observation data is readily available and can be used to answer these questions.

H 8.1.1 Problem Statement

We are interested in outcomes (e.g.,, COVID-19 death counts) associated with N units
(e.g., countries) across T measurements (e.g., days) and D possible interventions (e.g.,
different mobility restriction interventions). For simplicity, we consider the single metric
case (K = 1) and suppress all dependencies on the metric. As before, we also denote the

control or “no-intervention” state with d =1 (e.g., no mobility restriction enacted).

Observations

We encode our observations into a T x N x D tensor Z = [Zt(g)], where

Y,(:,) - nfn”’), forallt < To,n,d=1,p €[P]
Zf‘nj’ = Y,(g) : nﬁ‘,{'m, forall t > To,n € I, d € [D], p € [P]

*, otherwise;

145
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here, T'9) is given by (1.1). In words, all units are under control during the pre-intervention
phase (t < Tp), but is exposed to some intervention or remains under control during the

post-intervention phase (t > Tp).
Aim

Given Z, our goal is to infer the potential outcomes under all interventions for every unit

during the post-intervention period, ie., /\/Igg) forall n,d, and t > Ty.

Hl 8.1.2 Synthetic Control (SC), A Partial Solution

Recall that SC Abadie and Gardeazabal (2003); Abadie et al. (2010) provides a solution
for a restricted setting: D = 2 with ZU) = [N]\ {1}, Z?®) = {1} (see Chapter 6 for
details). That is, SC can only infer outcomes for unit 1 in the absence of any intervention,
e, /\/Ig) for t > Tgy. In our COVID example, this corresponds to the situation where the
U.S. (i.e., unit 1 in this case) implemented a mobility restriction of less than 5% while all
other countries did nothing. Using such observations, SC can only estimate the number
of deaths in the U.S. if it had done nothing to combat COVID-19. Therefore, SC provides
an incomplete answer to the COVID-19 question laid out above.

B 8.2 Synthetic Interventions (Sl), A Complete Solution

In order to quantify the trade-offs of different policies before having to enact them, we
need to estimate potential outcomes under treatment, as opposed to only control. As
the primary contribution of this chapter and thesis, we introduce synthetic interventions
(SI), which provides a solution to this important open problem. In short, SI estimates the

potential outcome under control and every treatment of interest for every unit.

W 8.2.1 Algorithm

Methodologically, S| pleasingly turns out to be straightforward extension of SC, making
it easy to implement. For a graphical depiction of the input and output of SI, please refer

to Figure 1.4.

Notation. Suppose unit i is our target unit. In consistency with (4.1), we represent the

pre- and post-intervention observation matrices associated with donors that receive d as

79 =zt < To,n € TD] € RToXN

pre
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Zpgglt [Z( ) t>To,n EI ]E R(T—To)x N(d)

We note that if unit i receives d, then we define Z(¢ D\ {i}, N9 = [T\ {i}].

0 = [Yt(i) : t < Tp] denote the pre-intervention observations for our target

Finally, let y;
unit i, which is observed under d = 1. We are now ready to state the Sl algorithm in

Algorithm 6, which holds for every unit i and intervention d of interest.

Algorithm 6: SI
Data: y!", Z\%, Z\) K, Kk

i post’

Result: /\A/Il(d) = [/\A/Igi) it > To

1. Learn synthetic target model:
(@) B — PCR(Z{, yy, k)

2. Predict counterfactual prediction outcomes:
(a) M HSVT(Z9) k)

post post’

(b) M?  Truncate(M) B4:))

Algorithmic Intuition

In words, much like (M)RSC (see Algorithms 4 and 5), Sl first builds a synthetic version
of the target unit i, represented by E(d'i), using the donors within Z(9) via PCR. Once the
model is learned, S| rescales the observed outcome variables associated with the donor
units within Z(9) during the post-intervention period according to E(d'i). Effectively, the
re-scaling subroutine performs a synthetic intervention d for the target unit i and provides
the corresponding counterfactual potential outcomes under such a setting. Importantly,
we highlight that when d = 1, the model, E(d'i), effectively represents a synthetic control;
however, for any d # 1 (corresponding to an actual intervention), this model now represents

a synthetic treatment group.

Incorporating Auxiliary Metrics

SI can incorporate auxiliary data types by simply concatenating the additional measure-
ments a la the pre-processing step of MRSC (given in Algorithm 5). The rest of the

algorithm flows as described above.
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H 8.2.2 Existence of SlI

Though Sl is methodologically similar to SC in terms of learning a model to estimate
counterfactual outcomes, it is conceptually significantly different. Specifically, as in SC,
the model in Sl is learnt using pre-intervention data under the no-intervention (d = 1)
setting; however, to produce post-intervention counterfactual estimates, SI now applies
the learnt model to any intervention d. A priori, it is not clear why the model can be

transferred between interventions.

However, as stated by Proposition 4.1.1 of Chapter 4, our proposed tensor factor model
(Property 4.1.1) implies that an invariant linear model between any target unit i and

subgroup of donors Z(9)

persists across both measurements and interventions whp — indeed,
this is the key result that justifies SI. Algorithmically, it allows us to learn a linear model
under any intervention framework during the pre-intervention period and then transfer the

learned model to any other intervention framework during the post-intervention period.

B 8.2.3 Theoretical Performance Guarantees

Obijective

We state Theorem 8.2.1 and Corollary 8.2.1, which hold for all interventions d and units
n. Thus, for simplicity and ease of notation, we restrict our attention to estimating the
post-intervention counterfactual potential outcomes under a specific intervention d and

for unit n = 1, i.e., we aim to recover /\/Iﬁ) for all t > Ty.

Notation. Given the above, we suppress dependencies on d for ease of notation. Instead, to
distinguish between the pre- and post-intervention data (corresponding to no-intervention
and intervention d, respectively), we make explicit their dependencies through appropriate
subscripts, e.g., Zpe = Zégg and rpost = rank(MF(,‘;)St), where MI()?S,[ is given by (4.1). Further,
let B* = BN, where Bl91) is given in (4.3). To avoid confusion, we do not alter N9

Evaluation Metric

We evaluate S| based on its post-intervention squared prediction error. Specifically, we

define the post-intervention (or test) error for unit n = 1 under intervention d as

T

> 1 o(d d
Epost(Mh) = —— S (M — M9,
T=To 5,
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where /\7’1 = [/(\/Iﬁ) t> TO] = Sl(y’].zprer ZpOStr Ipre, rpost)-

Remark. Although Property 4.1.5 assumes independent noise entries, our results are
stated when g, can be dependent across donors for a given ¢, i.e., only the target and

donor noise must remain independent.

Post-intervention Prediction Error

We now state the post-intervention counterfactual prediction errors of SI under the setting
described in Chapter 4.

Theorem 8.2.1 (S| Error in High-Probability). Let Properties 4.1.1, 4.1.2, 4.1.3, 4.1.4,
4.1.5, 4.1.6 hold. Consider the unique B* of minimum ¢-norm that satisfies (4.3). For any

0> 0 and some C >0, if p >/ C/Q/g)zi/rf’;f, then the following holds w.p. at least 1 — 9:

- Fore { CO%r C1 Corpren/log N C? rpre N1
Epost(M1) < r:;:t( ot 1p (?\r/e(d o IF + WHB I5+a).

where T = Ty A (T — Top),

G 4 2 2 2 2
= — CG=C(1+ 1+ 1+K9), G =0CGK(1+1 1/9)).
Jﬁ‘ 1 (1+a")(1+ v)( ) 2 = GK=(1 + log“(1/9))
Proof. The result is immediate from Theorem 5.3.2. [ |

Corollary 8.2.1 (S| Error in Expectation). Let the conditions of Theorem 8.2.1 hold. Then
for any 0 > 0,

E[gpost(/\/;h )] <

Ipre (202rpre N GG Carpre og (N /5 HB H
1

Crre
RN T sl 1)

H(NE) A

Ipost
where C3 = CK?(1 + a*)(1 + y?)(1 + K?) and Cy = C(1 + o?)(1 + y2)(1 + K?).
Proof. The result is immediate from Corollary 5.3.1. |

Intepretation. For simplicity, let To = O(N(?) = O(T). Ignoring log factors, Corollary
8.2.1 states that the post-intervention error decays linearly with Ty, in expectation.
Again, we highlight that Theorem 8.2.1 and Corollary 8.2.1 do not make any distributional
assumptions. While standard generalization error analyses anchor on i.i.d. data generating
assumptions, we skirt such an assumption as potential outcomes from different interventions

are likely to come from different distributions. Instead, we rely on a linear algebraic
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condition, which can be verified in a data-driven manner in practice, as described in
Section 5.4 of Chapter 5.

Finally, it is not a coincidence that our theoretical performance guarantees for Sl closely
match that of RSC (see Theorem 6.2.1 and Corollary 6.2.1). Indeed, this phenomena
reflects the fact that SI mirrors RSC methodologically, and the only significant departure

of Sl from RSC (and SC-like methods in general) is purely conceptual in nature.

W 8.3 Empirical Case Studies

We extensively test the validity and widespread applicability of Sl on real-world data. In
particular, we consider four case studies: (i) analyzing the impact of mobility-restricting
interventions in mitigating the COVID-19 pandemic with observational data; (ii) exploring
the effect of different discount strategies to increase user engagement in an A/B testing
framework for a large e-commerce company; (iii) studying how 20 different interventions
affected immunization rates in Haryana, India as part of a large developmental economics
study Banerjee et al. (2018) with RCT data; (iv) investigating the effect of drug therapies
on cells in in-vitro studies with experimental data. Our results indicate that Sl can not
only be useful in guiding policy-makers as they weigh the trade-offs of different policy
interventions, but also in performing personalized, data-efficient randomized control trials

and drug discovery.

Quantifying Counterfactual Prediction Accuracy

To quantify the accuracy of the counterfactual predictions produced by SI, we need

meaningful baselines to compare against. To that end, we define erct =1- &, where
rct

T T

d)  o(d d d d 1 d

SSes= 3 (Vi =MV, SSa= 3 (7 =YW Vidk= g 2 v
t=Ty+1 t=To+1 neZ\d)

Interpretation. y

¢ ret 1S the average outcome across all donors that experienced intervention

d at time t. If the units were homogeneous (i.e., they all reacted identically to each
intervention), then Yt(":gt will be a good predictor of the counterfactual outcome for the
¢ N /\A/Iﬁ), and erct

erct—score captures the gain by “personalizing” the prediction to the target unit using

target unit, i.e. Y(d)

trc will be correspondingly small. In other words, the

the SI method over the natural baseline of taking the average outcome of all units who

receive that particular intervention. Thus, erct > 0 indicates the success of SI.
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Figure 8.1: Observation pattern for COVID-19 case study.

W 8.3.1 COVID-19: What-if Scenario Planning

Aim, Setup and Key Modeling Choices

We apply Sl to study the impact of mobility restriction policies on COVID-19 related

health outcomes at a national level. Below, we list our key modeling decisions.

Choosing Metric of Interest: Daily Death Counts. Due to its relative reliability and
availability, we use daily COVID-19 related death counts as our outcome variable of
interest. Another standard metric, number of daily infections, is much less reliable due to

the inconsistencies in testing and reporting across regions.

Choosing Interventions of Interest: Daily Mobility Rates. Each country has implemented
numerous policies to combat the spread of COVID-19. This makes it difficult to analyze
any particular policy (e.g., stay-at-home orders vs. schools shutting down) in isolation.
However, almost all such policies have been directed towards restricting how individuals
move and interact. Thus, we adopt mobility as our notion of intervention, and investigate
how a country’s change in mobility level translates to the number of potential COVID-19
related deaths. To that end, we use Google’s mobility reports goo to study the change in

a country’s mobility compared to their respective national baseline from January 2020.

Categorizing Countries by Intervention Received: Average (Lagged) Mobility Score.
Studies have shown that there is a median lag of 20 days from the onset of infection to the
day of death (e.g., see Wilson N (2020)). Thus, a country’s death count on a particular day
is a result of the infection levels from approximately 20 days prior. In order to analyze the
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effect of a mobility restricting intervention from “Day 0" (this will denote our intervention
point, Tg) onwards, we consider a country’s mobility score from Day -20 to Day -1. Given
that the mobility score in goo is changing every day, we take the average mobility score
of a country from Day -20 to Day -1 and then bucket it into the three distinct, mutually
exclusive intervention groups defined as follows (see Figure 8.2 for a visual depiction of

this clustering):

(@) Low Mobility Restricting Intervention — reduction in mobility is below 5% compared

to national baseline from January 2020;

(b) Moderate Mobility Restricting Intervention — reduction in mobility is between 5% to

35% compared to national baseline from January 2020;

(c) Severe Mobility Restricting Intervention — reduction in mobility is greater than 35%

compared to national baseline from January 2020.

Choosing Pre- and Post-Intervention Periods: Number of Deaths in Country. To apply
Sl, it is crucial to have well-defined pre- and post-intervention period; in particular,
the effects of each country’s enacted interventions should only be observed during the
post-intervention period. Using Google’s mobility reports, we verify that 20 days prior to
cumulative 80 deaths in a country (and any time before), none of the selected countries
enacted a mobility restricting intervention. Thus, we choose the day a country has
cumulative 80 deaths as Day 0, and the pre- and post-intervention periods refer to the

days before and after Day 0, respectively.

Observation Pattern. For a graphical depiction of the observation pattern, please refer to

Figure 8.1.

Empirical Results and Key Takeaways

We apply Sl using the setup above to produce counterfactual predictions of the daily
death counts for 15 days following Day 0 under the three different mobility interventions
of interest. This analysis is carried out for 27 countries selected as follows: we (i) only
include countries whose mobility changes are tracked by Google mobility reports; (it)
remove countries that have enacted a mobility restricting intervention 20 days prior to
Day 0; (iii) remove countries with not enough data in the pre-intervention period of
interest. That is, countries that had less than 80 cumulative COVID-19 related deaths
in the pre-intervention period. We then group the 27 countries into the three buckets

defined above based on their average mobility score, as shown in Figure 8.2.
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2: Average reduction in mobility and the assigned intervention group for the 27 countries.

Intervention low moderate | severe
Hypo. Test (a = 0.05) | Pass | Pass Pass
R2,-score 074 | 0.14 0.12

Hypothesis test and prediction accuracy results for Sl in the context of COVID-19

under different levels of mobility restriction.
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Figure 8.3: Validating Sl: countries with low mobility restricting interventions.
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Figure 8.4: Validating SI: countries with moderate mobility restricting interventions.

Empirical Results. In Table 8.1, we show the results of the hypothesis test for the three
mobility restricting interventions and the median erct—score for all 27 countries. The
hypothesis test passes for all three interventions at a significance of a = 0.05. A median
erct—score of [0.74,0.14,0.12] across the three interventions indicates there is indeed
significant heterogeneity amongst the countries on how mobility interventions affect the
national death trajectories. Thus, there is significant gains to be had by using SI over
naively averaging the outcome across countries that experienced a particular level of

mobility reduction.

For every mobility restriction level, we display the counterfactual predictions associated
with two representative countries that enacted that intervention. We note similar results
hold generally across all countries. For the low mobility restricting regime, we show results
for the United States and the United Kingdom in Figures 8.3a and 8.3c, respectively. The
dashed lines on Days 0 - 15 are the predicted values under all possible mobility restriction
levels and the solid line represents the true national death trajectory. Pleasingly,
the predictions produced by Sl closely matches the observed death rates in the post-

intervention period. Similarly, for the moderate and severe mobility restricting regimes,
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Figure 8.5: Validating SI: countries with severe mobility restricting interventions.

we display results for Turkey, Brazil, India, and Ireland in Figures 8.4c, 8.4a, 8.5a, and
8.5¢, respectively. Again, the predictions produced from Sl closely matches the observed
death rates under all different interventions, i.e., mobility restrictions. For each of the
countries listed above, we display their top four donor countries (under each intervention)
that most closely resemble them. These are shown in Figures 8.3b, 8.3d, 8.4d, 8.4b, 8.5b,
and 8.5d respectively.

Key Takeaways. Importantly, the S| model of the target country is fit in the pre-intervention
period, when no intervention has yet occurred. Still, the learnt model transfers to an
intervention setting, i.e., when the interventions take effect within the donor countries.
This helps validate the S| framework. An “optimistic” conclusion one can draw from the
figures above is that, uniformly across all countries, there is a significant drop in the
number of deaths with even a “moderate” drop in mobility (i.e, a 5-35% drop compared
to the national baseline). After this point, gains by further restricting mobility seem to
be diminishing. We hope this case study shows how Sl can be used to quide important

policy decisions.
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Figure 8.6: Observation pattern for A/B testing case study.

B 8.3.2 Web A/B Testing: Towards Data Efficient RCTs

Aim, Setup and Key Modeling Choices

We consider an A/B testing dataset from a large e-commerce company' that issued
different discount strategies (interventions) to engage its customer base: 10%, 30%, and
50% discounts over the reqular subscription cost. Users were segmented into 25 groups
(~ 10,000 users per group) based on the historical time and money spent on the platform.
The aim of the e-commerce company was to find how these different levels of discounts
affected user engagement for each of the 25 user groups. The A/B test was performed
by randomly partitioning users in each of the 25 user groups into 4 sub-groups; these
sub-groups corresponded to either one of the 3 discount strategies or a control group
that received a 0% discount. User engagement in each of these 100 sub-groups (25 user

groups multiplied by 4 discount strategies) was measured daily over 8 days.

Suitability of Case Study to Validate SI. This web A/B testing case study is particularly
suited to validate S| as we get to observe the engagement levels of each customer
group under each of the three discount strategies, i.e., we observe every “counterfactual”
trajectory. This is in contrast to the COVID-19 case study where we only observe
the death trajectory for a country for the particular intervention it enacted during the

post-intervention period.

Choosing Pre- and Post-Intervention Periods. For each of the 25 user groups, we

"We anonymize the identity of the company due to privacy considerations.
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Intervention Groups 1-8 Groups 9-16  Groups 17-25 Intervention Groups 1-8 Groups9-16  Groups 17-25
Control v v v Control v v v
10% Discount v 10% Discount v v v
30% Discount v 30% Discount v v v
50% Discount v 50% Discount v v 4
(a) Experimental setup under SI. (b) Experimental setup of e-commerce company.

Figure 8.7: Experimental setups for A/B testing case study.

denote the daily user engagement trajectories of the sub-groups associated with the
control — those who do not receive a discount on their reqular subscription — as the
pre-intervention period. Correspondingly, for each of the 25 user groups, we denote the
daily user trajectories associated with the 10%, 30%, and 50% discount coupons as the

post-intervention period.

Choosing Donor Groups. We randomly partition the 25 user groups into three clusters,
denoted as user groups 1-8, 9-16, and 17-25. For the 10% discount coupon strategy, we
choose user groups 1-8 as our donor pool, i.e., we use their post-intervention data under a
10% discount to create the synthetic trajectories of user engagement for user groups 9-25
under a 10% discount. We do the same with the 30% and 50% discount coupon strategies,
and user groups 9-16 and 17-25, respectively. See Figure 8.7a for a visual depiction of

the set of experiments/observations the Sl algorithm uses to make predictions.

Observation Pattern. For a graphical depiction of the observation pattern, please refer to
Figure 8.6.

Empirical Results and Key Takeaways

We apply Sl using the setup above to produce the “counterfactual” trajectories for each
of the 25 user groups under the three discount strategies. We evaluate the accuracy
under the 10% discount coupon strategy using only the estimated trajectories of user
groups 9-25 (as we use user groups 1-8 as our donors). Similarly, we use the estimated
trajectories of user groups 1-8 and 17-25 for the 30% discount coupon strategy, and user

groups 1-16 for the 50% discount coupon strategy.

Empirical Results. In Table 8.2, we show the hypothesis test results for the three discount

2

strategies and the median R‘,-score of the 25 user groups. The hypothesis test passes

r

for all three interventions at a significance of a = 0.05. Additionally, SI achieves a

median erct—score of 0.98 across the three discount strategies. This indicates significant
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heterogeneity amongst the user groups in how they respond to discounts, and thus

warrants having to run separate A/B tests for each of the 25 groups.

Intervention 10% discount | 30% discount | 50% discount
Hypo. Test (o = 0.05) | Pass Pass Pass
RZ,-score 0.98 0.99 0.98

Table 8.2: Hypothesis test and prediction accuracy results for Sl in the context of A/B testing.

Key Takeaways. Recall that there were a total of 100 distinct experiments run in the A/B
testing framework as there were 25 user groups and 4 interventions (0%, 10%, 30%, and
50% discount coupons). However, the SI framework only required observations from 50
experiments. That is, two experiments for each of the 25 user user groups: one in the
pre-intervention period (under 0% discount rate) and one in the post-intervention period
(under exactly one of the three discount coupon strategies). See Figure 8.7b for a visual
depiction of the experiments conducted by the e-commerce company in comparison to

what is required by S, as shown in Figure 8.7a.

More generally, if there are N user groups and D interventions, an ideal RCT performs
N x D experiments to estimate the best “personalized” intervention for every user group.
With SI, assuming the tensor factor model holds and D < N, one only needs to perform
2N experiments. Crucially, the number of required experiments does not scale with D,
which becomes significant as the number of interventions, i.e, the level of personalization,
grows. Also, if pre-intervention data has been or is being collected, then Sl only requires

N experiments. This can be significant when experimentation is costly (e.g., clinical trials).

W 8.3.3 Development Economics: Towards “Personalized” RCTs

Aim, Setup and Key Modeling Choices

We use data from a large real-world development economics case study, which aimed to
increase vaccination rates in seven districts in the state of Haryana, India. This study,
carried out by the authors of Banerjee et al. (2018) in collaboration with the Haryana
state government, is the first large scale evaluation of the effects of different types of
interventions on childhood immunization rates. The Haryana immunization trials were
conducted with 2523 villages, with data collected monthly over 13 months, and included a
total of 74 different interventions. Each intervention can be encoded by a 3-dimensional
discrete-valued vector where its entries represent different levels of (1) financial incentives,

(2) social network influence, and (3) information campaigns to encourage vaccinations.
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Figure 8.8: Observation pattern for development economics case study.

“Personalized” RCTs via SI. As is standard in RCTs, the authors in Banerjee et al. (2018)
randomly partitioned the 2523 villages into 74 groups, corresponding to the 74 different
interventions they aimed to study. They then measured the average increase in immuniza-
tion rates for each of these 74 groups over the 13 month trial period. Subsequently, they
made a single policy recommendation to the Haryana state government, corresponding to

the intervention that yielded the highest average increase in immunization rates.

The aim of this case study is to estimate whether there would have been a greater uptake
in immunization amongst the villages if, instead of a single policy recommendation for all

villages, a tailored intervention recommendation was made for each village.

Data Pre-Processing. We restrict our attention to the 20 most frequent interventions,
where the frequency of an intervention is measured by the number of villages that
experienced said intervention, e.g., 175 villages experienced the most frequent intervention
while 18 villages experienced the twentieth most frequent intervention. Let D denote the
collection of these 20 interventions. There were N = 1302 villages that received one of the
top 20 most frequent interventions. Based on conversations with the authors of Banerjee
et al. (2018), it was appropriate to denote the first four months as the pre-intervention

period, i.e.,, Top = 4 months.

Observation Pattern. For a graphical depiction of the observation pattern, please refer to
Figure 8.8.

Empirical Results and Key Takeaways

We follow the same setup as in the COVID-19 case study. That is, we iterate over
the 1302 villages such that each village is designated to be the target village for some

iteration. In the pre-intervention period, we build a model of the target village under each
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of the twenty interventions using the appropriate donor village sub-groups. Then in the
post-intervention phase, we estimate the counterfactual immunization rates of the target
village under each intervention using data from the appropriate donor village sub-group

and fitted linear model.

Empirical Results. In Tables 8.3 and 8.4, we show the results of the hypothesis test for the

twenty interventions considered and the median R?

“;-scores. The hypothesis test passes

for all but four interventions at a significance of a = 0.05. Indeed, the corresponding
median R.-scores are among the lowest, with three of four being the minimum achieved
scores. This highlights the use of the hypothesis test as a helpful robustness check
for when to trust the counterfactual predictions produced by Sl. For the remaining 17
interventions that do pass the hypothesis test, we generally see significantly higher

erct—scores, indicating again that there is significant heterogeneity amongst villages.

Intervention Code 000 | 001 002 | 010 | 031 032 | 040 | 050 | 100 | 101
Hypo. Test (o« = 0.05) | Pass | Pass | Fail | Pass | Pass | Pass | Pass | Pass | Pass | Pass
RZ2,-score 055 | 050 | 048 | 0.73 | 062 | 0.73 | 057 | 0.75 | 0.50 | 0.68

Table 8.3: Hypothesis test and prediction accuracy results for Sl in the context of immunization
case study for top 1-10 most frequent interventions.

Intervention Code 102 | 200 | 201 202 | 300 | 301 302 | 400 | 401 | 402
Hypo. Test (@ = 0.05) | Pass | Pass | Pass | Pass | Fail | Pass | Pass | Fail | Fail | Pass
RZ2,-score 048 | 070 | 066 | 045 | 034 | 046 | 0.60 | 0.29 | 0.29 | 0.42

Table 8.4: Hypothesis test and prediction accuracy results for Sl in the context of immunization
case study for top 11-20 most frequent interventions.

Key Takeaways. The question we set out to answer was whether providing “personalized”
intervention recommendations to each village would have led to significant increases in
the immunization rates for that village over the single intervention recommendation made
by the authors of Banerjee et al. (2018), as is standard practice in a RCT. Using the
counterfactual estimates produced by SI, we define the average utility of intervention d

for village n as

.
~ 1 oi(d)
= M9

=10

In words, for a particular intervention d, this is the average increase in immunization rates
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over the post-intervention phase. Further, let

N
. . ~ 1 . .
Urand = U(nr dn): Uit = ?ax Z U(nr d)r Utailored = X U n d

n|\/]z

where d,, ~ Uniform(D). In words, Urand represents the estimated average utility across
all villages if a randomly sampled intervention had been administered. Uret represents
the estimated best single intervention across all villages in hindsight (i.e., the RCT
policy). Lastly, Usaitored is the estimated average utility for each village under its optimal

intervention.

Normalizing Drand as 1.0, we find Urct and U‘[a[lored are 1.3x and 2.8x higher, respectively,
compared to Urand. Thus, if the units of interest are heterogeneous, then using Sl to
produce tailored interventions can lead to large gains. We stress these are only estimated
utilities as we, of course, never observe each village under all interventions. Lastly, we note
the estimated single best policy that maximized Drct matched the policy recommendation
made in Banerjee et al. (2018).

H Recommendation Type Average Utility H
Urand: Random Assignment 1.0
Uit Single-best RCT Policy 13
Ukailored: Personalized Recommendation 2.8

Table 8.5: Average utilities associated with three types of intervention interventions per village:
random assignment, single-best RCT policy, and personalized intervention recommendation.

H 8.3.4 In-Vitro Life Sciences: Drug Discovery

The standard drug delivery pipeline begins with exploratory, in-vitro studies on animal
and/or human cell, which are used to determine the drug candidates that should be
investigated in the clinical stages involving human subjects. Unfortunately, the traditional
paradigm is known to suffer from inefficiency, high costs, and high failure rates, only to
deliver “one-drug-fits-most” treatment options. This begs several important questions:
(1) can we identify the most promising candidate therapies early on so we do not waste
resources in the latter stages? (2) can we personalize our therapies based on the particular
characteristics of individuals (i.e., achieve precision medicine)? In this study, we tackle

the first question using in-vitro data.
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Figure 8.9: Observation pattern for in-vitro case study.

Aim, Setup and Key Modeling Choices

We continue our application of SI in the context of in-vitro studies. More specifically, we
consider the task of predicting the effects of chemical therapies (drugs) on cell types, using
the publicly available LINCS dataset. Due to sparsity concerns, we analyze a subset
of the dataset that is comprised of the 20 most administered therapies and a control,
DMS10, which yields 24 unique cell types. Each of the cells is observed under the control
therapy and a subset of the 20 other therapies; in total, we observe the gene expressions
for approximately 60% of all possible cell-therapy pairs. Therefore, our goal is to use our
existing data (the 60% of observed gene expressions) to infer the gene expressions of the

remaining untested cell-therapy pairs.

However, unlike the previous studies where each unit (cell) only experiences a single
intervention (therapy) during the post-intervention period, the units in this study re-
ceive multiple interventions. In turn, we can learn relationships either across units or

interventions. We detail the nuances below.

1. Learning Relationships between Cells. To gain a better intuition for the experimen-
tal setup, consider (for concreteness) the task of estimating the gene expression for
cell 1 under therapy yellow. The same principles are then applied to all untested

cell-therapy pairs.

(@) Choosing Donor Groups. Given the discussion above, we define the donor cells

for target cell 1 as the subset of cells that receive therapy yellow.

(b) Choosing Pre- and Post-intervention Data. To begin, we consider the pre-

intervention data as cell 1's observed gene expression under the control, DMS10.
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(cell types)

T

Figure 8.10: Experimental setup for Sl on cells.

However, since cells are exposed to multiple therapies rather than just one,
we identify the largest common subset of therapies (not including control) that
were exposed to cell 1 and the donor cells (that receive therapy yellow). The
gene expressions under the common subset of therapies can then be interpreted
as "auxiliary metrics”; this effectively augments the pre-intervention data and,
as suggested by our theoretical and empirical results in Chapter 7, behooves
the S| estimator. Restating the above, we define the pre-intervention data as
the collection of gene expressions under all commonly tested therapies and
control. Correspondingly, the post-intervention donor data is represented by
the observed gene expressions of our donor cells under therapy yellow. For a
graphical depiction, please refer to Figure 8.10.

(c) Algorithm. To infer the gene expression of cell 1 under therapy yellow, we apply
the standard Sl algorithm (using side information) as before, i.e., we learn a linear
model between cell 1 and the donor cells, and perform a synthetic intervention
by rescaling the donor gene expressions under therapy yellow via the learnt
(linear) coefficients. To distinguish this approach from the discussion to follow,

we will refer to this method as Sl on cells.

2. Learning Relationships between Therapies. Consider the above example of esti-
mating cell 1's gene expressions under therapy yellow. However, rather than learning
a linear model between cells, we will now exploit the symmetry of our tensor factor

model and the structure of our data to learn a linear model between interventions.

(@) Choosing Donor Groups. By symmetry, we define the donor therapies for therapy

yellow as the subset of therapies (including control) that cell 1 experienced.
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(theragies)

I

Figure 8.11: Experimental setup for S| on therapies.

(b) Choosing Pre- and Post-intervention Data. In a similar spirit to the above

setup, we first identify the largest common subset of cells that experienced the
donor therapies and therapy yellow. Our pre-intervention donor data is then
represented by the amalgam of gene expressions of these cells under the donor
therapies, while our pre-intervention target data is represented by the gene
expressions of these cells under therapy yellow. Therefore, our post-intervention
donor data are the gene expressions of cell 1 under the donor therapies. For a

graphical depiction, please refer to Figure 8.11.

(c) Algorithm. Under this new setup, we apply the Sl algorithm along the therapies

instead. That is, we learn a linear model between therapy yellow and the donor
therapies using the data described above. Then, we use the learnt model to
rescale the gene expressions of cell 1 under the donor therapies to effectively
perform a synthetic intervention. As such, we refer to this method as Sl on

therapies.

Empirical Results and Key Takeaways

We apply Sl on both cells and therapies to produce two different estimates of the gene

expressions for each cell-therapy pair (not including control data). However, as before,

we evaluate our method on the observed gene expressions. To do so, we iteratively hold

out one tested cell-therapy pair and apply the two methods described above using the

remaining observations to infer its resulting gene expression.

Empirical Results. We display a histogram of the test statistics of our hypothesis test for

Sl on cells and therapies in Figures 8.12a and 8.12b, respectively. Recalling Theorem 5.4.1
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(a) Histogram of test statistics for Sl on cells. (b) Histogram of test statistics for Sl on therapies.

Figure 8.12: Histogram of test statistics for both SI methods; namely, applied to cells and
therapies. As suggested by Theorem 5.4.1, Sl on therapies should outperform Sl on cells, given
the left skewness of the test statistics in (b).

and the discussion in Chapter 5.4, we remind the reader that, for all practical purposes,
the closer the test statistic is to zero, the more likely SI will be able to generalize. As
such, the histograms suggest that S| on therapies should outperform Sl on cells since the
post-intervention data, in the context of Sl on cells, is likely to be more complex than

that of the corresponding pre-intervention data.

We display a heatmap of median standard R?-scores (across receiving cells) for each
of the 20 therapies in Figure 8.13a, where greener entries correspond to higher scores
and redder entries correspond to lower scores. In line with the previous case studies, we
compare our two methods, Sl on cells and on therapies, against their “RCT" estimator
counterparts, i.e., the RCT estimator on cells simply takes the average gene expression
levels across all donor cells as its estimate, and the RCT estimator on therapies is defined
analogously. As evident from the figure, we identify that Sl on therapies outperforms its
competitors almost uniformly across all therapies. Pleasingly, this is in agreement with
our hypothesis test results (namely, the histogram of test statistics), which continue to
be a useful guide in testing for generalizability. For convenience, we further summarize
Figure 8.13a via a boxplot in Figure 8.14b, which displays the median R?-score, and

corresponding lower and upper quantile bounds, for each method across all therapies.

Key Takeaways. Because experiments can be costly, therapies are commonly tested on a
subset of cells. The therapies that are the most promising on average across the tested
cells are then likely to move onto the clinical stages. Thus, our baseline “RCT" (average)

estimators reflect a standard inference procedure utilized in modern practice. However,
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Figure 8.13: In (a), we see that, almost uniformly across all therapies, S| on therapies is the
highest performing approach. (b) summarizes the heatmap in (a) via a boxplot, which displays
the median R’-score across therapies for each method, with its corresponding upper and lower
quantile bounds.
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as shown in the figures above, S| (on therapies) can far exceed standard baselines with
respect to inference. Therefore, in settings such as bench and clinical research, where
any gain in R’-values is of significance, S| can be largely beneficial for researchers.
Specifically, S| has the ability to accurately infer the potential outcomes for untested
cell-therapy pairs. In turn, we hope this may guide researchers (in a data-driven manner)
on which promising pairs to invest in and perform experimentation. At the same time, our
hypothesis tests can inform the researchers on which estimates to confidently trust in and
which to disregard. In short, SI can effectively be viewed as a recommendation engine for

researchers.

B 8.4 Discussion

B 8.4.1 Connection to Tensor Estimation

The penultimate goal of this chapter (and thesis) is to infer the counterfactual potential
outcomes for all unit-intervention tuples during the post-intervention period. Therefore,
unlike the standard SC settings (see Chapters 6.4.1 and 7.4.1) where the primary interest
is in recovering a specific segment of a matrix, our problem is now formalized as recovering
all of the “interesting” (post-intervention period) aspects of the order-three tensor whose
dimensions correspond to measurements, units, and interventions?. Because each unit is
only exposed to a single intervention or remains unaffected during the post-intervention
period, the studies induce a block sparsity pattern. Further, we aim to provide guarantees
across all post-intervention measurements for every unit-intervention tuple. As such,
standard tensor estimation methods, which typically assume observations are revealed at
random and commonly provided guarantees on average (with respect to Frobenius norm)

across the entire tensor, may be ill-suited for our purposes.

On the other hand, Sl is tactfully designed to handle the particular block sparsity and
provides statistical guarantees for every unit-intervention pair, as desired. Since the units
are assumed to operate under a common state for 7o measurements and the measurement
factors evolve from the pre- to post-intervention periods, S| explores and learns the
correlations amongst the units during this pre-intervention phase. This is crucial as the
latent unit factors are the only objects that are simultaneously diverse during the training
period (allowing us to extract signal) yet remain fixed in the post-intervention period

(enabling generalization).

2Recall that we analyze the single metric P = 1 for simplicity, but can easily extend to the multiple
metric case.
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(a) Input (block sparsity) and output of causal inference setting.

y_l_— y_l_—

(b) Input (uniform sparsity) and output of standard tensor estimation problems.

Figure 8.14: Comparison of sparsity patterns and objectives of causal inference and standard
tensor estimation problems.

B 8.4.2 Connection to Transfer Learning & Transportability

Since the effects of interventions can vary, potential outcomes associated with the pre-
and post-intervention periods may come from different domains. Additionally, we are
only given access to the target unit's pre-intervention labels, as its post-intervention
labels are precisely the unobservable counterfactuals we wish to estimate. Therefore, our
problem of interest also places us within the transductive transfer learning setting and
bears connections to transportability. That is, using the language of transfer learning,
the source (pre-intervention) and target (post-intervention) domains may be different yet
related, and only the source domain labels are available. Nevertheless, as we have proven
in Theorem 8.2.1 and Corollary 8.2.1, S| can extrapolate from our observed outcomes,
which may be observed under one interventional framework, to estimate the counterfactual
potential outcomes under a distinct interventional framework. Importantly, we can apply
our subspace inclusion hypothesis test (see Chapter 5.4) to validate when Sl can reliably

transfer models between frameworks in practice.
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B 8.4.3 Broader Impacts

What-if Scenario Planning

It is clear that the COVID-19 pandemic has led to an unprecedented disruption of modern
society at a global scale. What is much less clear, however, is the effect that various
interventions that have been put into place have had on health and economic outcomes.
For example, perhaps a 30% and 60% clampdown in mobility have similar societal health
outcomes, yet vastly different implications for the number of people who cannot go to work
or file for unemployment. Having a clear understanding of the trade-offs between these
interventions is crucial in charting a path forward on how to open up various sectors of
society. A key challenge is that policy makers do not have the luxury of actually enacting
a variety of interventions and seeing which has the optimal outcome. In fact, at a societal
level, this is simply infeasible. Arguably, an even bigger challenge is that the COVID-19
pandemic, and the resulting policy choices ahead of us, are unprecedented in scale. Thus,
it is difficult to reliably apply lessons from previous pandemics (e.g., SARS, H1N1). This
is only further exacerbated when taking into the account the vastly different economic,

cultural, and societal factors that make each town/city/state/country unique.

S| provides a data-driven and statistically principled way to perform what-if scenario
planning, i.e., for policy makers to understand the trade-offs between different interventions
before having to actually enact them. In essence, the SI method leverages information
from different interventions that have already been enacted across the world and fits it
to a policy maker's setting of interest — for example, to estimate the effect of mobility-
restricting interventions on the U.S., we use daily death data from countries that enforced
severe mobility restrictions to create a “synthetic low-mobility U.S." and predict the
counterfactual trajectory of the U.S. if it had indeed applied a similar intervention. We

highlight a few desirable attributes of this methodology.

e Personalized Predictions — Sl takes into account the heterogeneity of the particular
(geographical) purview of a policy-maker. For example, SI would provides different
predictions for the effects of a 40% drop in mobility for the U.S. vs. India vs. Italy etc.

based on the particulars of that country.

e Simplicity & Interpretability — S| relies on building “synthetic” versions of each geo-
graphical location under different interventions by simply using a weighted combination
of geographical locations that did indeed enact such an intervention. Thus, S| requires

relatively little hyper-parameter tuning. We hope that the simplicity, interpretability,
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and robustness (yet surprising accuracy) of SI will encourage policy makers to apply

S| without fear of over-fitting to the idiosyncracies of their data.

e Low Data Requirement — S| produces accurate forecasts using only (i) a few “donor”
regions, i.e., Sl only requires a small number of regions, approximately 5-10, to have
gone through the intervention of interest; (it) measurements over a small number of time
periods, approximately 10-30 days (this can be viewed as the amount of training data);
(iit) data corresponding to the metric of interest from each geographical location (e.g.,
daily national death rates), i.e., it does not require additional covariate information
about each location; however, if auxiliary information is available, then the SI method

can naturally incorporate these data points in the model learning procedure as well.

Randomized Control Trials (RCTs)

Data-Efficient RCTs. Consider the setting with N > 1 types of customers coming to
an e-commerce website, which has D > 1 types of promotions to offer. The goal is to
find which of the D promotions is best suited for each of the N different customer types.
Traditionally, this is be achieved by running N x D RCTs (i.e., A/B tests). As detailed
in Section 8.3.2, using actual e-commerce A/B testing data, we show that Sl can infer
these N x D outcomes by running only 2N experiments® (assuming D < N); crucially,

this does not depend on D.

Personalized RCTs. A core assumption in such RCTs is that a blanket policy works
well for all units, i.e., all interventions have essentially the same effect on all units.
However, this assumption is often violated, and the inherent diversity between different
groups of people is increasingly taken into consideration. Sl, on the other hand, provides
personalized recommendations for each group, yet essentially only requires the same data
as what is generated in a classical RCT. Indeed, as detailed in Section 8.3.3, we find that
personalized recommendations can have significant gains over the optimal RCT policy
(see Table 8.5 for details).

Beyond Traditional Paradigms. In general, it is worth noting that all of our results
have direct implications for other important applications where RCT-like experiments
are an integral part of the decision-making pipeline. In particular, there has been a

large, recent wave towards precision (i.e., personalized) medicine. As discussed above, Sl

3|f one has or is already collecting pre-intervention data, then Sl only requires N experiments. Further,
we note that Sl only requires outcomes across all N user types under a common intervention, i.e., the model
does not necessarily have to be learned under a no-intervention setting.
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provides a way to potentially perform personalized clinical trials without having to run
an infeasible number of experiments on the various patient groups. Within clinical trials,
patient recruitment and compliance is especially costly due to the monetary expenses
and ethical considerations (e.g., placebo trials). Thus, the potential application of S,
especially in the context of personalized drug design or clinical trials, if successful, can

have a large impact.
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Chapter 9

Discussion, Conclusions, and Future Work

In this thesis, we reinterpret the classical potential outcomes framework through the
lens of tensors (Chapter 4). As such, studies can be characterized by unique block
sparsity patterns, and the problem of estimating counterfactuals is equivalent to tensor
estimation. Under a low-rank assumption, we prove the existence of synthetic controls and
interventions, and argue that PCR is a natural algorithm that arises from our setting of
interest. In Chapter 5, we address a long-standing problem of showing PCR is surprisingly
robust to a wide array of problems that plague large-scale modern datasets, including
high-dimensionality and noisy, sparse, and mixed valued covariates. In particular, we
provide meaningful non-asymptotic bounds for both the parameter estimation and test
prediction errors for these settings, and furnish a data-driven hypothesis test to check when
the key condition that enables generalizability holds. Having established the robustness
of PCR, we present a robust variant of SC in Chapter 6 that uses PCR as a key subroutine
to estimate counterfactual potential outcomes under control. As such, our finite-sample
analysis of PCR immediately provides a theoretical foundation for the RSC estimator. For
particularly sparse datasets, we present MRSC, an extension of RSC that incorporates
auxiliary metrics in a principled manner, in Chapter 7. Finally, we present Sl in Chapter
8, a computationally and statistically efficient method towards estimating counterfactual
potential outcomes under both control and treatment. Consequently, SI enables effective
decision making with notable applications towards what-if policy evaluation/scenario
planning, drug discovery, and personalized, data efficient RCTs (A/B tests). Of course,
there is still significant room for further improvement and extensions of this thesis, which

we briefly discuss below.
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B 9.1 Algorithmic Fine Print

W 9.1.1 Incorporating Covariates

In order for PCR (and thus RSC, MRSC, and Sl) to recover the underlying model parameter
(Theorem 5.3.1) and generalize to unseen data (Theorem 5.3.2 and Corollary 5.12.1),
it is essential that PCA (the key subroutine of PCR) accurately estimates the latent
subspace spanned by the top principal components of the underlying training covariates,
Virain € RP*7. At the same time, we may have access to auxiliary covariate information,
which we denote as A € RP**. For concreteness, consider the setting SC and SI, where
Virain describes the latent relationship between units and A contains s features per unit.
Then, as suggested by Farias and Li (2019), the auxiliary information can be incorporated
by expanding the estimated feature space Vtram with A, and then proceeding normally. In
turn, this expansion should ideally better describe the relationship between units, which
is crucial for generalization given that the key enabling condition required for PCR is
span(Viest) C span(Virain) (see Chapters 5.3.5 and 5.4 for details).

W 9.1.2 Finding a Low-Dimensional Representation

In essence, Chapter 5 shows that the PCA component of PCR is an effective pre-processing
tool in finding a linear low-dimensional embedding of the covariates, which carries the
added benefits of implicit de-noising, noise-model agnostic, and regularization. When
the covariate data is “unstructured” (e.g., speech or video), however, it may be the case
that more complex covariate pre-processing techniques a la variational auto-encoders or
general adversarial networks are needed to discover useful nonlinear low-dimensional
embeddings that can also achieve similar implicit benefits. Therefore, we hope that this
work provides an architectural guideline and theoretical framework of first de-noising and

then performing a prediction algorithm in the presence of more general datasets.

W 9.1.3 Beyond PCA and HSVT

As per the discussion above, this thesis advocates for a simple algorithmic architecture
that is comprised of two primary steps: (1) first, to de-noise the covariate (donor) data
and (2) then learn a mapping from the de-noised covariates to the target for the purposes
of prediction. While we argue that PCA and HSVT are powerful de-noising techniques
with provable statistical quarantees, they are, by no means, the only options. Therefore,

it is the analyst’s discretion to decide which method (e.g., alternating least squares or
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nuclear norm minimization) is most appropriate for his or her setting of interest.

Bl 9.2 Future Work

B 9.2.1 Causal Forecasts under Novel Sequence of Interventions

As mentioned, SI (Chapter 8) represents the culmination of this thesis and has strong
implications towards effective decision making across a wide net of applications. Nev-
ertheless, there are inevitable limitations of SI. Namely, Sl, like any causal inference
procedure, produces counterfactuals for the past; at the same time, even though Sl can
estimate potential outcomes under both control and treatment, these estimates can only
be constructed if some subset of units has actually undergone these interventions of
interest. This enables S| to answer questions such as what would have happened two
weeks ago if the U.S. had imposed severe mobility restrictions? From this perspective,
Sl can be viewed as a “causal imputation” algorithm. However, it may be of interest to
produce “counterfactual forecasts” under a novel sequence of interventions. To elucidate
this extension, consider the following contrived scenario: Suppose none of the countries
ever transitioned from severe to low mobility restrictions. Then, an example question that
is beyond the current scope of SI would be what will happen to the U.S. a month from
now if it had imposed high mobility restrictions two weeks ago and now relaxes to low
mobility restrictions moving forward? Because this a forecasting problem and none of the
countries ever experienced this interventional shift, S| cannot address such a query. As a
result, an interesting line of future work (which is currently underway) would be to build

upon Sl to overcome these limitations.

B 9.2.2 Open Question

A primary contribution of this work is to view causal inference through a new lens.
Specifically, we encode our data into a tensor and reformulate the problem of estimating
counterfactuals into one of tensor completion. Although we have presented one algorithm
(i.e., SI) that is able to recover the tensor under a tensor factor model, it remains an
open problem as to which sparsity patterns and corresponding objectives are achievable.
Answering this question may have profound consequences for new study frameworks and

inference schemes.
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