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Causal Inference: a Tensor’s Perspectiveby Dennis Shen
Submitted to the Department of Electrical Engineering and Computer Sciencein partial fulfillment of the requirements for the degree ofDoctor of Philosophy

AbstractQuantifying the causal effect of an intervention is a ubiquitous problem that spans awide net of applications. Typically, this quantity is measured through the difference inoutcomes under treatment (e.g., novel drug) and control (e.g., placebo). However, only oneoutcome ever be revealed – this is the fundamental challenge in causal inference. In orderto overcome this obstacle, there have been two main types of studies: experimental (ES)and observational (OS). While the former conducts carefully designed experiments, thelatter utilizes observed data.In this thesis, we reinterpret the classical potential outcomes framework of Rubin throughthe lens of tensors. Formally, each entry of the potential outcomes tensor is associatedwith a tuple of entities; namely, the measurement (e.g., time), unit (e.g., patient type),and intervention (e.g., drug). Subsequently, each study can be characterized by aunique sparsity pattern, which allows us to translate the age old problem of estimatingcounterfactuals into one of tensor estimation. As an added benefit, our tensor formulationalso opens the door to discussions about the computational and statistical trade-offs ofcausal inference methods, a conversation (to the best of our knowledge) that has largelynot yet been had.Ultimately, this novel perspective, coupled with basic principles of the popular syntheticcontrol method for OSs, enables us to provably estimate counterfactual potential outcomesfor every unit under all treatments and control with low sample and computational com-plexity. As a result, we can customize treatment plans for every unit in a computationallytractable and data-efficient manner. Pleasingly, we show that this result bears implica-tions towards what-if scenario planning, drug discovery, and personalized, data-efficientrandomized control trials. Methodically, we furnish a data-driven hypothesis test to checkwhen our algorithm can reliably recover the underlying tensor.The key technical contribution of this thesis advances the state-of-the art analysis forprincipal component regression.
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3



4

Thesis Co-Supervisor: Mark AbramsonTitle: Principal Member Technical Staff Draper Laboratory, Inc.



Acknowledgments

Five years ago, I stumbled upon one of those “good” problems to have: I was fortunateto have the privilege of deciding where to attend graduate school. Initially, I struggledbetween staying in California and venturing out east to Boston, but I was lucky to havemet a friend during my school visits who avidly insisted I come here. In particular, heurged me to reach out to this young superstar professor in LIDS. Thankfully, I took hisadvice and emailed Devavrat, and even more thankfully, Devavrat took a gamble on me.It’s been an absolute honor and blessing to have been advised by Devavrat, who seemsto never run out of energy or ideas when it comes to research. To this day, he stillgoes through every line of proofs, manages to remember all of the little details of myprojects despite juggling so many responsibilities, and is always happy to have impromptumeetings (particularly, when coffee is involved). Devavrat has allowed me to explore myinterests at my own pace, and has counterweighted with guidance and nudges whenappropriate. I really can’t thank Devavrat enough, and if anything good comes of me inmy future, be it academically or personally, it will be largely be because of his influence.
I am also grateful to my committee members, Anette Peko Hosoi and Caroline Uhler, fortheir mentorship during my graduate studies and guidance for my future career directions.Anyone who knows me knows that I am a massive sports fanatic. Fortunately, Pekohas been extremely supportive in giving me opportunities to explore the intersection ofsports and technology, ranging from one-on-one meetings and group lunch discussions toparticipating at the annual MIT Sports Summit – including a dinner with the Spurs CEO,R.C. Buford! At the same time, I am so happy that I had the opportunity to collaboratewith and learn from Caroline and her lab through our joint project working with biologicaldata. Previously, I could never quite get myself interested in the life sciences, but thisproject has flipped the script and motivated me to pursue future endeavors in applyingstatistics and machine learning to in-vitro and clinical research.

5



6

Further, I greatly appreciate Mark Abramson and John Irvine for their guidance andsupport through the years. Both Mark and John have always made time for me out oftheir busy schedules to discuss new applications for my research, and given me freshperspectives. More broadly, I am thankful to Draper for supporting me; in particular, forpaying my bills and feeding me for the past several years. I am also thankful towardsNPSC, NSA, and MIT for also funding my research.
Of course, none of this would have been possible without my amazing collaborators:Jehangir Amjad, Anish Agarwal, Abdullah Alomar, Romain Cosson, Vishal Misra, DogyoonSong, and Chandler Squires. I am beyond thankful that I have had the pleasure to workwith each of you; you have all taught me so much, many times even beyond research,and helped me grow as both a researcher and individual. I will always cherish our funconversations, and I hope to work on more projects together in the future. I also want tosend a big thank you to Alberto Abadie, Rahul Singh, Zhi Xu (the mystery friend whopushed me to come to Boston), and Christina Lee Yu. Although I haven’t (yet!) had theopportunity to work on a project with any of you, each of you has still taken the time todiligently discuss my work and provide immensely helpful feedback. For obvious reasons,I want to give an extra thanks to Alberto who is the mastermind behind synthetic control,since I might not have had a thesis without his brilliance.
More broadly, I am thankful to SPPIN and the LIDS/IDSS/MIT community at large formaking my time here so enjoyable. I really appreciate all of the staff members – withspecial thanks Rachel Cohen, Lynne Dell (congratulations on your retirement!), GracieGao, Jeannille Hiciano, Francisco Jaimes, Brian Jones, and Richard Lay – for keepingeverything running so smoothly. I am also so grateful for the friendships that I have builtduring my time here, which have certainly greatly enhanced my student life and mental(and even physical) health.
I am deeply indebted to my amazing mentors and friends through the years, here in Bostonand back home in California. I want to first thank my professors at UCSD – particularly,professors Shadi Dayeh, Sujit Dey, Paul Siegel, and Mohan Trivedi – who not onlyincited and sustained my interest in engineering and research, but also supported all ofmy goals. This thesis would have never seen the light of day if it wasn’t for their guidanceand encouragement. At the same time, I am grateful for all of my buddies, especiallyBehnam Hedayatnia and Dillon Quan, from UCSD – HKN4lyfe! I also want to send ashout-out to my intramural basketball team for all of the super fun games and weekendget-togethers; regardless of the score, we always won in my book. Further, I am thankful



7

for my awesome roommates, and want to highlight Zach Ferris for feeding me during theweek leading up to my defense and Anton Nguyen and Stephanie McCoy for alwaysplaying Nintendo Switch with me. Finally, I am especially thankful for my closest groupof friends who’ve been with me from the very beginning, the Dunedaine clain: RobertFriedland, Chris Huh, Alan Hung, Logan Ma, Alex Tsai, and Jonathan Yeh. Our groupname has gone through several variations through the years, but I am so blessed that ourfriendship has never wavered.
Everything I have is because of my family. I owe my blessings to their love and sacrifices.As such, I want to dedicate this work to them; particularly, my grandparents who are nolonger with us today. I hope I have made you proud.
Ten years ago, my parents brought me to Boston for the first time. At that stage of mylife, my world solely revolved around art, music, and, of course, the Lakers (rest in peace,Kobe Bryant). Unsurprisingly, I was quite unhappy and felt out-of-place to be spendingan afternoon in Killian Court. Fast forward eight years, and we’re in the exact same spotbut under entirely different circumstances – celebrating my master’s graduation. And now,I’m about to wrap up my graduate studies. Every step of this transformation was becauseof my mom and dad’s sacrifices, and unconditional love and encouragement. Like a kitefloating with the wind, I had the freedom to happily explore my various interests and findmy own path, with the secure knowledge that both my mom and dad were always holdingonto me for support. I am so amazed by my parent’s love for me, and I am beyond thankfulthat my mom and dad are not only the best parents I could have ever asked for, but alsomy best friends.
I am blessed to have met so many devoted supporters throughout my life. In accordancewith the spirit of synthetic control, a central aspect of this thesis, I am a convex combinationof every individual above. Without them, I certainly would not be where I am today. Thankyou all so much.



8



Contents

Abstract 3

Acknowledgments 5

List of Figures 15

1 Introduction 191.1 Motivating Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221.3 Synthetic Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241.4 Summary of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251.4.1 Principal Component Regression (Chapter 5) . . . . . . . . . . . . . 261.4.2 Robust Synthetic Control (Chapter 6) . . . . . . . . . . . . . . . . . 281.4.3 Multi-dimensional RSC (Chapter 7) . . . . . . . . . . . . . . . . . . 301.4.4 Synthetic Interventions (Chapter 8) . . . . . . . . . . . . . . . . . . . 311.4.5 Comparison with SC Literature . . . . . . . . . . . . . . . . . . . . . 331.5 Bibliographic Note . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2 Literature Survey 352.1 Causal Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352.1.1 Synthetic Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352.1.2 Heterogeneous Treatment Effects. . . . . . . . . . . . . . . . . . . . . 362.2 Error-in-variable Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . 372.3 Principal Component Regression . . . . . . . . . . . . . . . . . . . . . . . . . 382.4 Matrix & Tensor Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3 Preliminaries 413.1 Linear Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

9



10 CONTENTS
3.1.1 Matrix Norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433.1.2 Isometries and Projections . . . . . . . . . . . . . . . . . . . . . . . . 443.1.3 Perturbation Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453.1.4 Tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483.2 Concentration Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483.2.1 Sub-gaussian Distributions . . . . . . . . . . . . . . . . . . . . . . . 493.2.2 Sub-exponential Distributions . . . . . . . . . . . . . . . . . . . . . . 513.2.3 Random Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4 Potential Outcomes Tensor 594.1 Tensor Factor Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 594.1.1 Potential Outcomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 594.1.2 Observed Outcomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 624.2 Proof of Existence of SC and SI . . . . . . . . . . . . . . . . . . . . . . . . . 634.2.1 Proof of Proposition 4.1.1 . . . . . . . . . . . . . . . . . . . . . . . . 634.2.2 Proof of Proposition 4.1.2 . . . . . . . . . . . . . . . . . . . . . . . . 64
5 Principal Component Regression 655.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 655.2 Hard Singular Value Thresholding (HSVT) . . . . . . . . . . . . . . . . . . . 675.2.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 675.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 675.3 Principal Component Regression (PCR) . . . . . . . . . . . . . . . . . . . . . 685.3.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 685.3.2 Equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 695.3.3 PCR Training Prediction Error . . . . . . . . . . . . . . . . . . . . . 695.3.4 PCR Parameter Estimation Error . . . . . . . . . . . . . . . . . . . . 70Synthetic Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 715.3.5 PCR Testing Prediction Error . . . . . . . . . . . . . . . . . . . . . . 735.4 A Subspace Inclusion Hypothesis Test . . . . . . . . . . . . . . . . . . . . . 755.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 765.5.1 New Perspective on High-Dimensional Regression . . . . . . . . . . 765.5.2 PCR Robustness Properties . . . . . . . . . . . . . . . . . . . . . . . 765.5.3 Regression with Mixed Valued Covariates . . . . . . . . . . . . . . . 775.6 Proofs: Equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 795.7 Proof Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79



CONTENTS 11

5.8 Proofs: Impact of Measurement Noise and Sparsity . . . . . . . . . . . . . 815.8.1 Operator Norm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 815.8.2 `2,∞-norm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 865.9 Proofs: HSVT Estimation Error . . . . . . . . . . . . . . . . . . . . . . . . . 875.9.1 A Column Representation for the HSVT Operator . . . . . . . . . . 885.9.2 High Probability Bounds on Noise Deviation . . . . . . . . . . . . . 895.9.3 Proof of Lemma 5.2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 91Completing Proof of Lemma 5.2.1 . . . . . . . . . . . . . . . . . . . . 935.9.4 Corollaries: Bounds in Expectation . . . . . . . . . . . . . . . . . . . 945.10 Proofs: Training Prediction Error . . . . . . . . . . . . . . . . . . . . . . . . 955.10.1 Proof of Lemma 5.3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 95Completing Proof of Lemma 5.3.1 . . . . . . . . . . . . . . . . . . . . 975.10.2 Corollaries: Bounds in Expectation . . . . . . . . . . . . . . . . . . . 985.11 Proofs: Parameter Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 995.11.1 Learning Subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 995.11.2 Bounding the Projected Parameter Estimation Error . . . . . . . . . 1005.11.3 Proof of Theorem 5.3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . 1025.12 Proofs: Testing Prediction Error . . . . . . . . . . . . . . . . . . . . . . . . . 1035.12.1 Helper Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1035.12.2 Proof of Theorem 5.3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . 1055.12.3 Corollaries: Bounds in Expectation . . . . . . . . . . . . . . . . . . . 109Completing Proof of Corollary 5.3.1 . . . . . . . . . . . . . . . . . . . 1115.13 Proofs: A Subspace Inclusion Hypothesis Test . . . . . . . . . . . . . . . . . 1115.13.1 Proof of Theorem 5.4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6 Robust Synthetic Control 1136.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1136.1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1136.1.2 Classical Synthetic Control . . . . . . . . . . . . . . . . . . . . . . . 1146.2 Robust Synthetic Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1156.2.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1166.2.2 Existence of SC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1176.2.3 Theoretical Performance Guarantees . . . . . . . . . . . . . . . . . . 1176.2.4 Empirical Validation: Placebo Studies . . . . . . . . . . . . . . . . . 1196.3 Empirical Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1206.3.1 Terrorism in Basque Country . . . . . . . . . . . . . . . . . . . . . . . 120



12 CONTENTS
6.3.2 California Proposition 99 . . . . . . . . . . . . . . . . . . . . . . . . . 1236.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1266.4.1 Connection to Matrix Completion . . . . . . . . . . . . . . . . . . . . 1266.4.2 Generalized Factor Models . . . . . . . . . . . . . . . . . . . . . . . 1266.5 Proofs for Generalized Factor Model . . . . . . . . . . . . . . . . . . . . . . 1286.5.1 Proof of Proposition 6.4.1 . . . . . . . . . . . . . . . . . . . . . . . . 1286.5.2 Proof of Proposition 6.4.2 . . . . . . . . . . . . . . . . . . . . . . . . 131

7 Multi-dimensional RSC 1337.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1337.1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1347.2 Multi-dimensional Robust Synthetic Control . . . . . . . . . . . . . . . . . . 1347.2.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1357.2.2 Existence of SC Across Metrics . . . . . . . . . . . . . . . . . . . . . 1367.2.3 Theoretical Performance Guarantees . . . . . . . . . . . . . . . . . . 1377.3 Empirical Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1397.3.1 Forecasting in Retail . . . . . . . . . . . . . . . . . . . . . . . . . . . 1397.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1417.4.1 Connection to Matrix & Tensor Completion . . . . . . . . . . . . . . 1417.5 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1417.5.1 Preservation of Gaussians . . . . . . . . . . . . . . . . . . . . . . . . 1427.5.2 Learning Subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1427.5.3 Proof of Theorem 7.2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . 144
8 Synthetic Interventions 1458.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1458.1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1458.1.2 Synthetic Control (SC), A Partial Solution . . . . . . . . . . . . . . 1468.2 Synthetic Interventions (SI), A Complete Solution . . . . . . . . . . . . . . . 1468.2.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1468.2.2 Existence of SI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1488.2.3 Theoretical Performance Guarantees . . . . . . . . . . . . . . . . . . 1488.3 Empirical Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1508.3.1 COVID-19: What-if Scenario Planning . . . . . . . . . . . . . . . . 1518.3.2 Web A/B Testing: Towards Data Efficient RCTs . . . . . . . . . . . 1568.3.3 Development Economics: Towards “Personalized” RCTs . . . . . . . 158



CONTENTS 13

8.3.4 In-Vitro Life Sciences: Drug Discovery . . . . . . . . . . . . . . . . . 1618.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1678.4.1 Connection to Tensor Estimation . . . . . . . . . . . . . . . . . . . . 1678.4.2 Connection to Transfer Learning & Transportability . . . . . . . . . 1688.4.3 Broader Impacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
9 Discussion, Conclusions, and Future Work 1739.1 Algorithmic Fine Print . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1749.1.1 Incorporating Covariates . . . . . . . . . . . . . . . . . . . . . . . . . 1749.1.2 Finding a Low-Dimensional Representation . . . . . . . . . . . . . . 1749.1.3 Beyond PCA and HSVT . . . . . . . . . . . . . . . . . . . . . . . . . 1749.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1759.2.1 Causal Forecasts under Novel Sequence of Interventions . . . . . . 1759.2.2 Open Question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
Bibliography 177



14 CONTENTS



List of Figures

1.1 Tensor of potential outcomes M for a particular metric p. . . . . . . . . . . 221.2 Observation tensor Z for a particular metric p, where each slice representsthe observation patterns associated with the corresponding control orintervention. The latent counterfactuals are given in white, while theobservations are given in gray, blue, and green. . . . . . . . . . . . . . . . . 231.3 RSC predicts counterfactual potential outcomes under control (light gray)for the target unit, which is exposed to some intervention (blue) after T0. . 291.4 SI predicts counterfactual potential outcomes under control (light gray)and all treatments of interest (blue and green) for all units. . . . . . . . . . 32
5.1 Plots of `2-norm error against β∗ in 5.1a and β in 5.1b, versus the rescaledsample size n/(r2√logp) after running PCR with rank r = p 14 . As predictedby Theorem 5.3.1, the curves for different values of p under 5.1a roughlyalign and decay to zero as n increases. . . . . . . . . . . . . . . . . . . . . . 725.2 Interaction between the row and column space of M on any β∗, and theeffect of misaligned subspaces between V̂M and V on the gap between β̂(which lives in V̂M ) and PVMβ∗. . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.1 Plots highlight the importance of regularization and justification for PCR.Specifically, (a) illustrates how OLS overfits to the training data while (b)displays the low-dimensional structure of the donor data, which motivatesthe usage of PCR since it regresses on the reduced subspace spanned bythe top principal components. . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

15



16 LIST OF FIGURES
6.2 Counterfactual estimates of Basque Country’s GDP in the absence ofterrorism. While Figure 6.2b demonstrates that RSC (without covariatedata) and Abadie and Gardeazabal (2003) (with covariate data) producesimilar results when all observations are accessible, Figures 6.2a and6.2c highlight RSC’s robustness to sparsity compared to the classical SCmethod (when covariate data is withheld). . . . . . . . . . . . . . . . . . . . 1226.3 Validating RSC: donor Spanish regions unaffected by terrorist activity. . . 1236.4 Spectrum of California’s donor data, which exhibits highly low-dimensionalstructure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1246.5 Counterfactual estimates of California’s cigarette sales in the absence ofProp. 99. While Figure 6.5b demonstrates that RSC and Abadie et al.(2010) (with covariate data) produce similar results when all observationsare accessible, Figures 6.5a and 6.5c highlight RSC’s robustness to sparsitycompared to the classical SC method (when covariate data is withheld). . . 1246.6 Validating RSC: donor states without tobacco control programs (includingraised state cigarette taxes). . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
7.1 MRSC and RSC forecasts for department 56 of store 1 using T0 = 15 weeks.1407.2 MRSC and RSC forecasts for department 22 of store 1 using T0 = 15 weeks.140
8.1 Observation pattern for COVID-19 case study. . . . . . . . . . . . . . . . . . 1518.2 Average reduction in mobility and the assigned intervention group for the27 countries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1538.3 Validating SI: countries with low mobility restricting interventions. . . . . . 1538.4 Validating SI: countries with moderate mobility restricting interventions. . 1548.5 Validating SI: countries with severe mobility restricting interventions. . . . 1558.6 Observation pattern for A/B testing case study. . . . . . . . . . . . . . . . . 1568.7 Experimental setups for A/B testing case study. . . . . . . . . . . . . . . . . 1578.8 Observation pattern for development economics case study. . . . . . . . . . 1598.9 Observation pattern for in-vitro case study. . . . . . . . . . . . . . . . . . . . 1628.10 Experimental setup for SI on cells. . . . . . . . . . . . . . . . . . . . . . . . . 1638.11 Experimental setup for SI on therapies. . . . . . . . . . . . . . . . . . . . . . 1648.12 Histogram of test statistics for both SI methods; namely, applied to cellsand therapies. As suggested by Theorem 5.4.1, SI on therapies shouldoutperform SI on cells, given the left skewness of the test statistics in (b). 165



LIST OF FIGURES 17

8.13 In (a), we see that, almost uniformly across all therapies, SI on therapiesis the highest performing approach. (b) summarizes the heatmap in (a) viaa boxplot, which displays the median R2-score across therapies for eachmethod, with its corresponding upper and lower quantile bounds. . . . . . . 1668.14 Comparison of sparsity patterns and objectives of causal inference andstandard tensor estimation problems. . . . . . . . . . . . . . . . . . . . . . . 168



18 LIST OF FIGURES



Chapter 1

Introduction

Quantifying the causal effect of an intervention is a problem of interest across a widearray of domains. From policy making to engineering and medicine, estimating thetreatment effect is critical to understanding existing systems and moving towards innovation.Typically, this quantity is measured by the difference in outcomes under treatment (e.g.,novel drug) and control (e.g., placebo or standard therapy). However, only one outcomecan ever be revealed – this is the fundamental challenge of causal inference.
Traditionally, there have been two primary, distinct types of studies: experimental studies(ESs) and observational studies (OSs). While the former conducts carefully designedexperiments, the latter utilizes observed data. One canonical ES is a randomized controltrial (RCT); as its name suggests, RCTs randomly assign eligible participants to either atreatment or control group. Because the assignments are random (thus reducing biasesand confoundedness), the differences between the groups can often be attributed to thetreatment, i.e., the treatment is the cause. For this reason, RCTs are considered thegold standard mechanism to draw causal conclusions. However, due to practical andethical concerns, ESs are not always feasible. This gives rise to OSs, which provide analternate mechanism to enable causal inferences and may be the only way to explorecertain questions.
In this thesis, we follow the classical potential outcomes framework of Rubin, and reinterpretit through the lens of tensors. More formally, we encode our data into a tensor, whereeach entry is the potential outcome associated with a tuple of entities; namely, themeasurement (e.g., time), unit (e.g., patient type), and intervention (e.g., drug). Throughthis lens, we associate the observations of each study with a particular sparsity pattern,and recast its aim as recovering aspects of the tensor. In general, we translate the ageold problem of estimating unobservable counterfactuals into one of tensor estimation.This perspective begs the following questions: (1) modeling: which sparsity patterns
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allow recovery? (2) algorithmic: if recovery is possible, what are the computational andstatistical trade-offs? Indeed, if such an approach exists, then customized treatment plansfor every unit can be achieved in computationally tractable and data-efficient manner.
� 1.1 Motivating Applications

The problem of estimating treatment effects is ubiquitous, spanning a wide variety offields. As such, we consider several impactful problems, which will serve as motivation forthe rest of this thesis.
Example 1.1.1 (Importance of Controls in OSs: Evaluating the Impact of Gun Restrictionson Violence). On November 8, 2016, in the aftermath of several high profile mass-shootings,voters in California passed Proposition (Prop.) 63 into law BallotPedia (2016). Prop.63 “outlaw[ed] the possession of ammunition magazines that [held] more than 10 rounds,requir[ed] background checks for people buying bullets,” and was proclaimed as aninitiative for “historic progress to reduce gun violence” McGreevy (2016). Imagine thatwe wanted to study the impact of Prop. 63 on the rates of violent crime in California.Although RCTs are ideal mechanisms to draw causal conclusions, they are not applicablehere since only one California exists. Instead, a statistical comparative study could beconducted where the rates of violent crime in California are compared to a “control” stateafter November 2016, which we refer to as the post-intervention period. To reach astatistically valid conclusion, however, the control state must be demonstrably similar toCalifornia sans the passage of a Prop. 63 style legislation. In general, there may notexist a natural control state for California, and subject-matter experts tend to disagree onthe most appropriate state for comparison.
Example 1.1.2 (Importance of “Synthetic” Interventions: What-if Scenario Planningfor COVID-19). It is clear that the COVID-19 pandemic has led to an unprecedenteddisruption of modern society at a global scale. What is much less clear, however, isthe effect that various interventions that have been put into place have had on healthand economic outcomes. For example, perhaps a 30% and 60% clampdown in mobilityhave similar societal health outcomes, yet vastly different implications for the number ofpeople who cannot go to work or file for unemployment. Having a clear understandingof the trade-offs between these interventions is crucial in charting a path forward onhow to open up various sectors of society. A key challenge is that policy makers donot have the luxury of actually enacting a variety of interventions and seeing which hasthe optimal outcome (a la RCTs). In fact, at a societal level, this is simply infeasible
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and socially irresponsible. Arguably, an even bigger challenge is that the COVID-19pandemic, and the resulting policy choices ahead of us, are unprecedented in scale. Thus,it is difficult to reliably apply lessons from previous pandemics (e.g., SARS, H1N1). Thisis only further exacerbated when taking into the account the vastly different economic,cultural, and societal factors that make each town/city/state/country unique. Althoughepidemiological models (e.g., SIR, SIRS) can shed some insight, they often make strongparametric assumptions. Therefore, in order to understand the unique trade-offs betweendifferent policies for every region (while avoiding a heavy reliance on parametric modeling),we need a data-driven, statistically principled way to estimate their potential outcomesunder these policies before having to actually enact them.
Example 1.1.3 (Towards Personalized RCTs: Development Economics). In the study ofBanerjee et al. (2018), the authors collaborated with the Haryana state government inimplementing the first large scale evaluation of the effects of different types of interventionson childhood immunization rates. The Haryana immunization trials were conducted with2523 villages, with data collected monthly over 13 months, and included a total of 74different interventions. As is standard in RCTs, the authors in Banerjee et al. (2018)randomly partitioned the 2523 villages into 74 groups, corresponding to the 74 differentinterventions they aimed to study. They then measured the average increase in immuniza-tion rates for each of these 74 groups over the 13 month trial period. Subsequently, theymade a single policy recommendation to the Haryana state government, correspondingto the intervention that yielded the highest average increase in immunization rates. Acore assumption in such RCTs is that villages are homogenous (i.e., all interventions haveessentially the same effect on all units) and thus a blanket policy works well. However,this assumption is often violated, and the inherent diversity between different groups ofpeople should be increasingly taken into consideration.
Example 1.1.4 (Towards Data-Efficient, Personalized RCTs: Drug Discovery & PrecisionMedicine). Consider an FDA approved clinical trial with D new candidate drugs and
N patient types. The goal is to prescribe the optimal drug for each of the N patienttypes. In an ideal world, this can be achieved by administering every drug to each patienttype, amounting to N ×D RCTs. Although this framework enables our desired level ofpersonalization, in almost all scenarios, the number of required trials is simply infeasible.Within clinical trials, patient recruitment and compliance is especially costly due tomonetary expenses and ethical considerations (e.g., placebo trials). Therefore, the name ofthe game is to design an experimental protocol and inferencing scheme that can achievethe personalization of the ideal setting yet retain the feasibility of standard RCTs, which
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are the bread and butter of clinical research. Indeed, the potential application of such aframework, especially in the context of personalized drug design or clinical trials, canhave a large impact.
� 1.2 Problem Statement

Throughout, we follow the potential outcomes framework of Neyman (1923) and Rubin(1974a). More formally, we are interested in outcomes associated with N ≥ 1 units,across T ≥ 1 measurements, P ≥ 1 metrics, and D ≥ 1 possible interventions. Unlessstated otherwise, we index units with n ∈ [N ], measurements with t ∈ [T ], metrics with
p ∈ [P ], and interventions with d ∈ [D]. Throughout, let M (d,p)

tn denote the potentialoutcome of the t-th measurement for unit n under intervention d and metric p; similarly,we define Y (d,p)
tn as the associated observed outcome, where E[Y (d,p)

tn ] = M (d,p)
tn . Withoutloss of generality, we denote the control or “null-intervention” with d = 1.

Tensor Framework

Crucially, we encode the universe of potential outcomes across measurements, units,interventions, and metrics into an order-four tensor M ∈ RT×N×D×P (see Figure 1.1 for agraphical depiction). As we will see in Chapter 4, the tensor structure is a convenientrepresentation to capture inter-dependencies along multiple dimensions.

Figure 1.1: Tensor of potential outcomes M for a particular metric p.
Pre- and Post-Intervention Periods

Throughout, we will assume that all units are under a common intervention (e.g., control)for some number of measurements T0 ≤ T ; this will partition our T measurements into twodistinct segments: (i) the “pre-intervention” period, t ≤ T0, when all units are assumed,without loss of generality, to be in the no intervention state; and (ii) the “post-intervention”period, t > T0, when each unit receives some intervention or remains unaffected. We
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group the units by the intervention they receive during the post-intervention period. Thatis, we denote
I (d) = {n : unit n experiences intervention d for all t > T0} (1.1)

as the subgroup of units that experience intervention d, and N (d) = |I (d)|≥ 1 as its size.
Observations

As previously mentioned, every study will inevitably suffer from an inherent “missing data”problem, i.e., unobservable counterfactuals. Thus, each study can be represented by aunique observation pattern. Formally, we encode our observations into a sparse, noisytensor Z = [Z (d,p)
tn ] ∈ RT×N×D×P (see Figure 1.2), where

Z (d,p)
tn =


Y (1,p)
tn · π(1,p)

tn , for all t ≤ T0, n, d = 1, p ∈ [P ]
Y (d,p)
tn · π(d,p)

tn , for all t > T0, n ∈ I (d), d ∈ [D], p ∈ [P ]
?, otherwise; (1.2)

here, π(d,p)
tn ∼ Bernoulli(ρ) with ρ ∈ (0, 1] and ? denotes an unobservable counterfactual.Note, this observation model includes the standard consistency assumption made in thepotential outcomes literature (see Hernán and Robins (2020)) with the generalization thatthere may still be randomly missing data.

Figure 1.2: Observation tensor Z for a particular metric p, where each slice represents the observa-tion patterns associated with the corresponding control or intervention. The latent counterfactualsare given in white, while the observations are given in gray, blue, and green.
Aim

Given Z , we aim to infer potential outcomes for every unit under all interventions andmetrics during the post-intervention period, i.e., M (d,p)
tn for all n, p, d, and t > T0.
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� 1.3 Synthetic Control

We begin by introducing synthetic control (SC) Abadie and Gardeazabal (2003); Abadieet al. (2010, 2014); Abadie (2019), whose principles will serve as the bedrock of ouranalytical framework and algorithmic developments. Over the years, SC has emerged asa standard tool to estimate the outcomes in the absence of an intervention using onlyOS data. Indeed, it has been regarded as “arguably the most important innovation in thepolicy evaluation literature in the last 15 years” Athey and Imbens (2016). In our context,it provides a solution for a restricted setting: D = 2 with I (1) = [N ] \ {1}, I (2) = {1},i.e., only unit 1 (often referred to in the SC literature as the “target” unit) experiencesintervention 2 after T0 while all other N − 1 “donor” units, i.e., I (1), remain under theno-intervention state. The goal in SC is to infer the potential outcomes for unit 1 underthe no-intervention state only, i.e., M (1,p)
t1 for t > T0 and some metric p.

Algorithm

To produce the counterfactuals, SC, as its name suggests, constructs a “synthetic” controlfor the target unit from donor unit data. Specifically, using pre-intervention data, asynthetic version of unit 1 is created as a weighted combination of the remaining N − 1units. The learnt model is then used to produce counterfactual predictions for the targetunit under the no-intervention state during the post-intervention period.
For simplicity, consider the single metric case (P = 1). Here, SC learns βsc ∈ RN−1 as

βsc ∈ arg min
w∈SC

T0∑
t=1
(
Y (1)
t1 − ∑

n∈I (1) wnY
(1)
tn

)2
,

where the constraint set SC ⊆ RN−1 differs across variants of the method, but is classicallytaken to be over the probability simplex, i.e., βsc
n ≥ 0 and ∑n βsc

n = 1, (cf. Abadie andGardeazabal (2003); Abadie et al. (2010)). Subsequently, Ŷ (1),sc
t1 = ∑n∈I (1) βsc

n Y
(1)
tn is theestimate for the target unit under no-intervention for t > T0. Comparing Ŷ (1),sc

t1 with Y (2)
t1for t > T0 allows us to evaluate the impact of intervention 2 on the target unit comparedto the control.

Limitations

The last few decades have seen an unprecedented explosion in the availability of dataacross a myriad of domains. In many applications, however, datasets are plagued by
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high-dimensional, noisy, sparse, and mixed valued observations. Meanwhile, despite itswidespread applicability and popularity, the original SC method was not designed tohandle such scenarios.
Theoretically, the finite-sample properties of SC estimators is also surprisingly sparse.Abadie et al. (2010) proved that the classical SC estimator (i.e., where the weights areenforced to form a convex combination) is asymptotically unbiased; however, the authorsnot only assume the existence of a convex model, but also analyze the estimator using theselatent convex weights (as opposed to the model estimates outputted from the algorithm)under a classical regression setting where the dimension of the covariates is fixed. Infact, across the different SC variants, it is typically assumed that a synthetic control forthe target unit exists within the universe of donors (this is the fundamental hypothesisthat drives SC-like methods); however, it is not clear when such a hypothesis holds, andmeaningful finite-sample analysis that captures the behavior of the post-interventionprediction error with respect to the potential outcomes (rather than the observed outcomes)has remained elusive.
Additionally, given SC’s widespread use across a plethora of domains, there are excellentheuristic hypothesis tests proposed in the literature (see Abadie (2019)) that serve asrobustness checks for whether SC is valid to use; however, to the best of our knowledge,none of them are quantitative nor come with rigorous theoretical guarantees.
In summary, SC, though a powerful method, provides an incomplete answer to ourobjective laid out above – it only allows one to produce counterfactual estimates inthe absence of an intervention, while we are also interested in making counterfactualestimates in the presence of an intervention. Indeed, extending SC to handle multipleinterventions, as required in our setting, is an important open problem (see Abadie (2019)).Empirically, the classical SC estimator is ill-equipped to handle sparse, noisy, andhigh-dimensional datasets; and theoretically, the SC literature is missing an analyticallymotivated hypothesis test and a tighter finite-sample analysis with post-interventionprediction error rates.
� 1.4 Summary of Results

This thesis provides a solution to the objective described above; that is, producingcounterfactual estimates of potential outcomes under all interventions and metrics for
every unit. To do so, we build upon both the SC estimator and framework, addressing the
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limitations detailed in Section 1.3. Along the way, we advance the theoretical analysis ofPrincipal Component Regression (see Jolliffe (1982)), a key subroutine of our proposedSC variants, by viewing it through the lens of the Hard Singular Value Thresholding(HSVT) method (e.g., Chatterjee (2015b), Gavish and Donoho (2014)), which we alsoestablish stronger guarantees for with respect to the `2,∞-norm rather than the Frobeniusor spectral norms as is commonly done in the matrix estimation literature. Below, weprovide an overview of our contributions.
� 1.4.1 Principal Component Regression (Chapter 5)
We begin our journey by analyzing Principal Component Regression (PCR), which willserve as a key subroutine in our algorithms in producing counterfactual potential outcomes(see Algorithms 4, 5, 6). Therefore, in order to bound the post-intervention counterfactualprediction errors of our proposed algorithms, we first establish that PCR generalizes fromtraining (pre-intervention) data to testing (post-intervention) data in a high-dimensionalerror-in-variable regression setting.
Problem Setup

In Linear Regression, the data is believed to be generated as per a latent linear modeland the goal is to learn the linear predictor. More precisely, for each sample i ≤ n,the response yi ∈ R is linked to the underlying covariate Mi ∈ Rp via the followingmodel: yi = 〈Mi, β∗〉+ εi, where β∗ ∈ Rp is the latent model parameter and εi denotesidiosyncratic noise. In an error-in-variable regression setting, we are given access to alabeled dataset {(yi,Zi) : i ≤ n}, where Zi ∈ Rp represents the observed, contaminatedversion of Mi that is to be utilized in the learning process.
It is well established that PCR is an effective prediction algorithm when the covariatesexhibit low-rank structure. However, its ability to handle settings with noisy, missing, andmixed (discrete and continuous) valued covariates (i.e., learning with Zi as opposed to Mi)is not understood and remains an important open challenge, cf. Chao et al. (2019). As acontribution of this thesis, we establish the robustness of PCR in this respect, and providemeaningful finite-sample analysis with a theoretically motivated, data-driven hypothesistest to verify when PCR generalizes to unseen data.
Connection to HSVT

In order to prove the robustness and generalization properties of PCR, we first establish
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its connection to HSVT via Proposition 5.3.1. This allows us to analyze PCR throughthe lens of HSVT, which will prove to be a fruitful approach. Along the way, we provethat HSVT is a consistent estimator of the underlying mean matrix with respect to the
`2,∞-norm (Lemma 5.9.6), which is a stronger guarantee than the standard Frobeniusnorm, i.e., a bound on the `2,∞-norm immediately implies a bound for the Frobenius norm.
Parameter Estimation

Formally, under the high-dimensional error-in-variable setting, we prove that PCRconsistently learns the model parameter β∗ with the error rate scaling as 1/n, where
n represents the number of training samples (Theorem 5.3.1). Compared to the richliterature of high-dimensional error-in-variable regression (cf. Loh and Wainwright (2012);Datta and Zou (2017); Rosenbaum and Tsybakov (2013)), our method achieves a similarerror rate (with respect to n) for model identification without explicit knowledge of theunderlying covariate noise model or a sparsity assumption on the model parameter; instead,we require the covariates to be low-rank. Moreover, the literature in error-in-variableregression often assumes a restricted eigenvalue condition on the covariate matrix, whilewe require the non-zero singular values of the covariate matrix to be well-balanced.
Test Prediction Error

Using our model identification result, we prove that PCR also achieves a test (out-of-sample) error rate of 1/n in expectation (see Corollary 5.3.2); we state its highprobability version in Theorem 5.3.2. Of particular note, we underscore that Theorem5.3.2 and Corollary 5.3.2 do not make any distributional assumptions. That is, whiletypical generalization error analyses (e.g., Rademacher complexity techniques) adopt anindependent and identically distributed (i.i.d.) data generating assumption, our analysisrelies on a purely linear algebraic “subspace inclusion” condition. This distinction ispivotal as i.i.d. assumptions can be unrealistic in our setting since potential outcomesfrom different interventions are likely to come from different distributions; more generally,the data generating process pre- and post-intervention may not be identically distributed.
Importantly, we highlight that the error-in-variable regression literature does not providetest prediction error bounds since the existing algorithms do not provide a method to“de-noise” corrupted test covariates; PCR, on the other hand, does provide a de-noisingapproach. We provide a summary of comparisons with notable works from the error-in-variable regression literature in Table 1.1.
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Literature Assumptions Knowledge ofNoise Distribution ParameterEstimation Test (Out-of-Sample)Prediction ErrorLasso-based sparsity Yes 1/n –restricted eigenvalue cond.This thesis low-rank No 1/n 1/nwell-balanced spectra (Thm. 5.3.1) (Cor. 5.3.1)

Table 1.1: Comparison with some notable Lasso-based works Loh and Wainwright (2012); Dattaand Zou (2017); Rosenbaum and Tsybakov (2013) in the high-dimensional error-in-variableregression literature.
Hypothesis Test

As aforementioned, our test error relies on a “subspace inclusion” property, which enablesPCR to generalize to unseen data. Consequently, we furnish a simple, data-drivenhypothesis test with provable guarantees to check for this condition in practice. Indeed,we argue that for any given significance level α ∈ (0, 1), the test statistic is smaller thanan explicit critical value τα with probability at least 1− α (see Theorem 5.4.1). In thecontext of our causal inference framework, this serves as a quantitative test to validatewhen we can reliably extrapolate from our observed outcomes to estimate unobservable,counterfactual potential outcomes.
� 1.4.2 Robust Synthetic Control (Chapter 6)
We begin our discussion of counterfactual estimation in the context of OSs by addressingthe limitations of the SC method described in Section 1.3. As the primary contributionsof Chapter 6, we prove the existence of a linear “synthetic” control for a target unit ofinterest, and propose robust synthetic control (RSC), a robust variant of the classical SCmethod to estimate potential outcomes under control given noisy and sparse observations,with provable statistical guarantees.
Problem Setup

We consider a standard OS (and SC) setting, where there is a single metric of interest (forsimplicity) and target unit 1, which receives some intervention after t > T0, with all otherdonors, i.e., I (1), remaining unaffected during the entire time horizon T . Using our earliernotation, this translates to P = 1, and D = 2 with I (1) = [N ] \ {1}, I (2) = {1}. Our goalis to infer the potential outcomes for the target unit in the absence of any intervention,i.e., M (1)
t1 for all t > T0. For a graphical depiction of the input and output of RSC, seeFigure 1.3.
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Figure 1.3: RSC predicts counterfactual potential outcomes under control (light gray) for thetarget unit, which is exposed to some intervention (blue) after T0.
Existence of a Synthetic Control

In the SC literature, two standard assumptions are made: (i) First, the potential outcomesunder control (d = 1) follow a linear factor model. Specifically, this model (also consideredin Abadie et al. (2010)) states potential outcomes under control are M (1)
tn = 〈ut , vn〉, where

ut ∈ Rr and vn ∈ Rr are latent factors associated with measurement and unit, respectively.(ii) Second, there exists a linear (or even convex) relationship between the target anddonor units.
As a contribution to the SC literature, we establish that a linear relationship between thetarget and donor units is actually implied with high probability under the factor modeldescribed above; thus, the existence of a linear synthetic control does not have to beseparately assumed as an axiom as is traditionally done, cf. Abadie and Gardeazabal(2003); Abadie et al. (2010).
Robustness to Noise and Sparsity in a High-Dimensional Framework

Having established the robustness properties of PCR in the presence of noisy and sparsecovariates in a high-dimensional setting, we introduce RSC, which utilizes PCR as a keysubroutine (see Algorithm 4). Consequently, PCR’s test error bounds (Theorem 5.3.2 andCorollary 5.3.2) immediately provide meaningful finite-sample post-intervention predictionerror bounds for RSC (Theorem 6.2.1 and Corollary 6.2.1), which have been (to the best ofour knowledge) absent in the literature. Specifically, we establish that, in expectation, theerror scales as O(r/T0); recall that T0 denotes the length of the pre-intervention periodand can thus be interpreted as the number of training samples, and r is the inherentmodel complexity (dimension of the latent spaces).
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Empirical Studies: Importance of De-noising

We highlight the robustness properties of RSC through two canonical case studies: theeconomic impact of terrorism in Basque Country Abadie and Gardeazabal (2003) and theeffect of Proposition 99 in the state of California Abadie et al. (2010). In both studies, wealso utilize the subspace inclusion hypothesis test since it serves as a natural quantitativetest for the validity of when to apply SC-like methods. Interestingly, our hypothesis testsuggests that RSC (and possibly the classical SC method) should not be applied towardsthe Proposition 99 case study.
� 1.4.3 Multi-dimensional RSC (Chapter 7)
We continue the discussion of estimating potential outcomes under control using observa-tional studies via SC-like principles. In particular, we present multi-dimensional RSC(MRSC), a natural extension of RSC, to incorporate auxiliary metrics in a statisticallyprincipled manner, and provide theoretical guarantees to highlight its ability to overcomehigh levels of sparsity.
Problem Setup

We consider an extension to the setup in Section 1.4.2 with P ≥ 1 metrics. Our interestremains in estimating the potential outcomes for the target unit (n = 1) in the absence ofany intervention (d = 1) for some primary metric of interest p∗ during the post-interventionperiod, i.e., M (1,p∗)
t1 for all t > T0 and some p∗. However, we now have access to auxiliarymetrics of conforming dimension, i.e., Z (p) for all p, which can be utilized to learn a model.

Incorporating Auxiliary Metrics

We extend the standard matrix factor model to a tensor factor model. Formally speaking,we assume the potential outcomes under control follow M (1,p)
tn = ∑r

`=1 ut`vn`wp` , where
ut , vn ∈ Rr are defined as before and wp ∈ Rr is the latent factor associated with metric
p. Under this factor model, we again establish that a linear synthetic control exists withinthe reservoir of donors, which holds across all time and metrics. This suggests a naturalextension of RSC (stated in Algorithm 5), which we refer to as multi-dimensional RSC(MRSC), that concatenates the pre-intervention data across all metrics in learning asingle linear model, thereby augmenting the number of training samples by a factor of P .
Benefits of Auxiliary Metrics



Sec. 1.4. Summary of Results 31

As before, we utilize the PCR test error results to establish that the overall post-intervention prediction error scales as O(r/T0) (see Theorem 7.2.1 and Corollary 7.2.1).However, the generalization error now decays as O(r/PT0). Since the training (in-sample)error grows as O(r/T0), the benefit of auxiliary metrics can only reduce the overall testingprediction error up to a certain point, irrespective of the amount of additional information.Therefore, the impact of auxiliary metrics is to help alleviate the problem of sparsity.More specifically, as opposed to requiring on the order of r entries per sample in ourtraining set, we may now only need to observe r/P entries per sample.
Empirical Study: Overcoming Limited Training Data & Time Series Forecasting

MRSC’s ability to overcome sparsity and limited training samples is further elucidated inan empirical retail case study of forecasting weekly sales at Walmart stores. Across allour experiments, we consistently find that MRSC significantly outperforms RSC whenthe pre-intervention data is small; however, the two methods perform comparably in thepresence of substantial pre-intervention data. These empirical findings are in line with ourtheoretical results, i.e., in the presence of sparse training data, MRSC provides significantgains over RSC by utilizing information from auxiliary metrics.
Additionally, our mechanism for validating MRSC’s performance is also an important andrelated contribution of this work: episodic time series prediction. Specifically, we proposea method to predict the future evolution of a time series based on limited data when thenotion of time is relative and not absolute, i.e., where we have access to a donor pool thathas already undergone the desired future evolution.
� 1.4.4 Synthetic Interventions (Chapter 8)
Our journey culminates with the presentation of synthetic interventions (SI), a method thatprovides counterfactual estimates of potential outcomes for each unit under all treatmentsand control. We establish its theoretical performance and discuss its implications towardswhat-if analysis, drug repurposing, and personalized, data efficient RCTs.
Problem Setup

Here, we consider a significant extension to the setup described in Section 1.4.2 with
D ≥ 2 interventions of interest; for simplicity, we consider P = 1. Our objective isequivalent to that described in Section 1.2: to infer the potential outcomes for everyunit under all interventions (including control), i.e., M (d)

tn for all n, d, and t > T0. For a
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Figure 1.4: SI predicts counterfactual potential outcomes under control (light gray) and alltreatments of interest (blue and green) for all units.
graphical depiction of the input and output of SI, see Figure 1.4; we highlight that theinput matrix sparsity patterns reflect standard ES and OS data.
Estimating Counterfactuals Under Treatments

Methodologically, SI pleasingly turns out to be straightforward extension of SC, making iteasy to implement. Specifically, as in the variants of SC, the model in SI is learnt usingpre-intervention data under the no-intervention (d = 1) setting; however, to produce post-intervention counterfactual estimates, SI now applies the learnt model to any intervention
d, including control (thus, SC can be viewed as a special instance of SI).
Transferring Between Interventional Frameworks

Although SI is methodologically similar to SC in terms of learning a model to estimatecounterfactual outcomes, it is conceptually significantly different. In particular, it is notclear a priori why the model can be transferred between interventions. To establish thevalidity of SI, we consider a tensor factor model. Specifically, the potential outcomes follow
M (d)
tn = ∑r

`=1 ut`vn`wd` , where ut , vn are defined as before, and wd ∈ Rr now representsthe latent factor associated with intervention d. Under this setting, we establish thatthere exists an invariant linear model that persists across measurements and interventions.
Moreover, we show SI produces consistent post-intervention counterfactual estimates for
all units under all interventions. Formally, SI’s post-intervention prediction error scales as
O(r/T0) in expectation (Corollary 8.2.1). The statement in high-probability, with explicitdependence on the noise parameters and model complexity, is given in Theorem 8.2.1.



Sec. 1.4. Summary of Results 33

Empirical Studies: Toward Personalized, Data-Efficient Treatments

Given that SI can estimate potential outcomes under treatment (as well as control) acrossall units, SI can effectively simulate treatment groups. As a result, we apply SI toseveral case studies to highlight its ability to enhance what-if analysis and improveRCTs, the gold standard mechanism in drawing causal conclusions. Most notably, weuse real-world observational data to quantify the trade-offs between different policies tocombat COVID-19 via SI. While standard OS methods (a la SC variants) can only inferthe counterfactual death trajectories if countries did nothing to combat COVID-19, SI canadditionally, and arguably more importantly, infer counterfactual trajectories if countriesimplemented different policies than what was actually enacted. Indeed, understandingthe impact of various policies before having to actually enact them may provide guidanceto policy makers in making statistically informed decisions as they weigh the difficultchoices ahead of them. Furthermore, we use real-world experimental data from a largedevelopment economics and e-commerce website to perform data-efficient, personalizedRCTs and A/B tests. Finally, we finish our whirlwind tour of case studies with an in-vitrocell-therapy study (with experimental data) that bears implications towards data-efficientdrug discovery, thereby establishing SI’s widespread applicability.
� 1.4.5 Comparison with SC Literature
In Table 1.2, we list some of the key comparisons between SC and the extensions (i.e.,RSC, MRSC, SI) presented in this thesis. More specifically, we highlight that (M)RSCaddresses the limitations of the classical SC work by providing finite-sample guaranteesfor the post-intervention counterfactual prediction error and a quantitative hypothesis testto check when SC-like methods are appropriate for use, both of which have been missing inthe literature. Finally, while the above methods can only produce counterfactual estimatesfor a target unit under control, SI can also provably estimate the counterfactual potentialoutcomes under treatment and for all units.
Literature Intervention Framework Theoretical Guarantees# Interventions Recipient Counterfactual Estimates Finite Sample Hypo. TestSC 1 Target control – –(M)RSC 1 Target control 1/T0 YesSI ≥ 1 Target, Donors control, treatment 1/T0 Yes
Table 1.2: Comparison between classical SC literature Abadie and Gardeazabal (2003); Abadieet al. (2010) and extensions presented in this thesis.
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� 1.5 Bibliographic Note

Preliminary versions of the results on PCR (Chapter 5) appeared in Agarwal et al. (2019).Similarly, preliminary versions on the generalizations to the synthetic control method tobeing robust to noise and missing data (Chapter 6) and incorporating multiple metrics(Chapter 7), i.e., analyzing the utility of side information, appeared in Amjad et al. (2018)and Amjad et al. (2019), respectively. Finally, synthetic interventions (Chapter 8) iscurrently under submission; a memo version that details an application of syntheticinterventions towards COVID-19 and a full preprint version can be found at Agarwal et al.(2020b) and Agarwal et al. (2020a), respectively.



Chapter 2

Literature Survey

� 2.1 Causal Inference

Causal inference has long been an interest for researchers from a wide array of communities,ranging from economics to machine learning (see Pearl (2009); Rubin (1974b, 1973); PaulR. Rosenbaum (1983) and the references therein). The focus of this work, however, will beon extending the synthetic control literature.
� 2.1.1 Synthetic Control
Synthetic control (SC) has received widespread attention since its conception by Abadieand Gardeazabal in their pioneering work Abadie et al. (2010); Abadie and Gardeazabal(2003). It has been employed in numerous case studies, ranging from criminology Saunderset al. (2014) to health policy Kreif et al. (2015) to online advertisement to retail; othernotable studies include Abadie et al. (2014); Billmeier and Nannicini (2013); Adhikariand Alm (2016); Aytug et al. (2016). Within the clinical realm, a growing trend is to applySC-like methods to construct synthetic control arms in placebo studies syn (2019). Intheir paper on the state of applied econometrics for causality and policy evaluation, Atheyand Imbens assert that synthetic control is “one of the most important development[s] inprogram evaluation in the past decade” and “arguably the most important innovation inthe evaluation literature in the last fifteen years” Athey and Imbens (2016).
Among the many variants of SC, we note two of particular relevance here. As in ourframework, Arkhangelsky et al. (2018) assumes that the observed data is a corrupted(additive noise model) of the true potential outcomes, which follows a factor model, i.e., alow-rank matrix; however, they do not allow for missing data beyond the unobservablecounterfactuals. Here, the authors perform convex regression (with `2-norm constraints)along both the unit and measurement (time) axes (unlike standard SC methods, whichonly consider regression along the unit axis) to estimate the causal average treatment

35
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effect. As is standard, however, the authors of Arkhangelsky et al. (2018) assume thatconvex weights exist rather than prove its existence. Further, the results of Arkhangelskyet al. (2018) are asymptotic, i.e., they hold when N,T → ∞, while our results arenon-asymptotic. Another work that is less related, but is worth commenting on, as it alsoheavily relies on matrix estimation techniques for SC, is Athey et al. (2017). Here, theauthors consider an underlying low-rank matrix of N units and T measurements per unit,and the entries of the observed matrix are considered “missing” once that unit has beenexposed to a treatment. To estimate the counterfactuals, Athey et al. (2017) applies anuclear norm regularized matrix estimation procedure. Some key points of difference arethat the performance bounds are with respect to the Frobenius norm over all entries (i.e.,units and measurements) in the matrix; meanwhile, we provide a stronger bound that isspecific to the single treated unit and only during the post-intervention period.
We refer the reader to Abadie (2019) and references therein for a detailed overview ofSC-like methods. Please refer to Table 1.2 and the related discussion in Section 1.4 fora comparison of our results with previous work in the SC literature.
� 2.1.2 Heterogeneous Treatment Effects.
Randomized control trials (RCTs) are popular methods to study the average treatmenteffects (ATEs) when the units under consideration are approximately homogeneous. How-ever, RCTs suffer when the units are highly heterogeneous, i.e., when each unit of interestmight react very differently to each intervention. A complementary and exciting line ofwork to tackle this problem has been on estimating heterogeneous treatment effects (seeImbens and Rubin (2015) for a textbook style reference); here, the goal is to estimatethe effect of a single intervention (or treatment), conditioned on a sufficiently rich set ofcovariates about a unit. The setting of SI differs from these works in two important ways:(i) it does not require covariate information regarding the units (this is in line with thework of Athey et al. (2017)), yet can estimate the heterogeneous treatment effect; (ii) itleverages the latent structure across interventions (via a tensor factor model) to estimatethe optimal intervention per unit. An interesting line of future work would be to combinethe literature on heterogeneous treatment effects with SI to exploit covariate informationabout units.
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� 2.2 Error-in-variable Regression

There exists a rich body of work regarding high-dimensional error-in-variable regression(see Loh and Wainwright (2012), Datta and Zou (2017), Rosenbaum and Tsybakov (2010),Rosenbaum and Tsybakov (2013), Belloni et al. (2017b), Belloni et al. (2017a), Chen andCaramanis (2012), Chen and Caramanis (2013), Kaul and Koul (2015)). Three commonthreads of these works include: (1) a sparsity assumption on the model parameter, β∗;and (2) an “incoherence”-like structure, such as the restricted eigenvalue condition (cf.Loh and Wainwright (2012) and references therein), on the underlying covariate matrix. Inall of these works, the goal is to recover the underlying model, β∗. Some notable worksinclude Loh and Wainwright (2012), Datta and Zou (2017), Rosenbaum and Tsybakov(2013), which are described in some more detail next.
In Loh and Wainwright (2012), a non-convex `1-penalization algorithm is proposed basedon the plug-in principle to handle covariate measurement errors. This approach requiresexplicit knowledge of the unobserved noise covariance matrix ΣH and the estimator
changes based on their assumption of ΣH . They also require explicit knowledge of abound on ∥∥β∗∥∥2, the object they aim to estimate. In contrast, PCR does not require anysuch knowledge about the distribution of the noise matrix (i.e., PCR does not explicitlyuse this information to recover the model parameter or make predictions).
The work of Datta and Zou (2017) builds upon Loh and Wainwright (2012) by proposinga convex formulation of Lasso. Although the algorithm introduced does not requireknowledge of ∥∥β∗∥∥2, it does also require access to ΣH ; in other words, their algorithm isalso not noise-model agnostic. In fact, many works (e.g., Rosenbaum and Tsybakov (2010),Rosenbaum and Tsybakov (2013), Belloni et al. (2017b)) require either ΣH to be knownor the structure of the covariance noise is such that it admits a data-driven estimator forits covariance matrix.
It is worth noting that all of these works only focus on parameter estimation (i.e., learning
β∗) and not explicitly de-noising the observed covariates. Thus, even with the knowledgeof β∗, it is not clear how these methods can be used to produce predictions of the responsevariables associated with unseen, noisy covariates.
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� 2.3 Principal Component Regression

The effectiveness of Principal Component Regression (PCR) is well established when thecovariates exhibit low-rank structure. Additionally, the regularization property of PCR iswell known, at least empirically, due to its ability to reduce the variance. However, itsability to handle settings with noisy, missing, and mixed (discrete and continuous) valuedcovariates is not understood and remains an important open challenge, cf. Chao et al.(2019). In fact, the formal literature providing an analysis of PCR is surprisingly sparse,especially given its ubiquity in practice. A notable work is that of Bair et al. (2006), whichsuggests a variation of PCR to infer the direction of the principal components. However,it stops short of providing meaningful finite sample analysis beyond what is naturallyimplied by that of standard Linear Regression.
� 2.4 Matrix & Tensor Estimation

Matrix estimation has spurred tremendous theoretical and empirical research acrossnumerous fields, including recommendation systems (see Keshavan et al. (2010a,b);Negahban and Wainwright (2011); Chen and Wainwright (2015); Chatterjee (2015a); Leeet al. (2016); Candès and Tao (2010); Recht (2011); Davenport et al. (2014)), social networkanalysis (see Abbe and Sandon (2015a,b, 2016); Anandkumar et al. (2013); Hopkins andSteurer (2017)), graph learning (graphon estimation) (see Airoldi et al. (2013); Zhanget al. (2015); Borgs et al. (2015, 2017)), time series analysis (see Agarwal et al. (2018,2020c)), reinforcement learning (see Shah et al. (2020)), and adversarial learning (seeYang et al. (2019a,b)). Traditionally, the end goal is to recover the underlying mean matrixfrom an incomplete, noisy sampling of its entries, and possibly with side information (seeFarias and Li (2019)). In general, the quality of the estimate is often measured throughthe spectral or Frobenius norms. Further, entry-wise independence and sub-gaussiannoise is typically assumed. A key property of many matrix estimation methods is theyare noise-model agnostic (i.e., the de-noising procedure does not change with the noiseassumptions). We advance state-of-art for hard singular value thresholding (HSVT), aspecific (arguably the most ubiquitous) matrix estimation method by analyzing its errorwith respect to the `2,∞-norm, which is a stronger measure than its Frobenius counterpart.This generalization enables us to prove that PCR, which can be viewed through the lensof HSVT (see Proposition 5.3.1 of Chapter 5), recovers the underlying model parameterand achieves consistent out-of-sample prediction error.
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Recently, there has also been exciting developments in tensor estimation. In particular,much theoretical work has focused on convex optimization approaches a la Ji Liu et al.(2009), Gandy et al. (2011). Additionally, there has also been advancements with newalgorithms and provable guarantees (see Jain and Oh (2014), Huang et al. (2015), Zhangand Barzilay (2015), Barak and Moitra (2016)). For a thorough review of tensors, we referthe interested reader to Kolda and Bader (2009). We take this opportunity to note thatwhile we take a tensor perspective on counterfactual estimation, we cannot directly applythese standard methods. This is due to a stark difference in modeling assumptions (blocksparsities of our setting versus uniform sparsity in standard setups) and objectives (i.e.,we require guarantees for every unit-intervention tuple, while standard methods provideguarantees on average across entire tensor). For a more detailed discussion, please seeChapter 8.4.1.
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Chapter 3

Preliminaries

A common thread of modern datasets is that observations are often contaminated, bothby measurement noise and missing data, and may even be high-dimensional. In otherwords, we only have access to a sparse, noisy representation of certain phenomena ofinterest, which may live in a high-dimensional ambient space. To understand how theseperturbations affect our ability to recover the underlying signal, we rely on techniquesranging from random matrix theory to non-asymptotic probability theory. As a result,we take this opportunity to review relevant concepts from linear algebra and probabilitytheory in this chapter, which are central in analyzing our problems of interest.
In particular, we will study the geometry of linear operators through the prism of singularvalues and subspaces, and how these objects change under perturbations. Additionally, wepresent concentration inequalities, which quantify how random empirical quantities deviatearound their deterministic population counterparts, and the speed to which they convergeto these quantities. We will anchor on these results to then derive non-asymptotic ratesat which the probabilities of “bad” events vanish to zero.
� 3.1 Linear Algebra

Consider a real-valued m× n matrix A. Recall that A can always be represented via its
singular value decomposition (SVD), which we write as

A = r∑
i=1 siuiv

T
i , (3.1)

where r = rank(A). Here, si denote the singular values of A (typically arranged innon-increasing order with si = 0 for all i > r), while the vectors ui ∈ Rm and vi ∈ Rndenote the corresponding left and right singular vectors, respectively, of A. Equivalently,
41
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in matrix notation, we can write

A = USV T ,

where U = [u1, . . . , ur ] ∈ Rm×r ,V = [v1, . . . , vr ] ∈ Rn×r , and S = diag(s1, . . . , sr) ∈ Rr×r .
Importantly, the left singular vectors ui are also the orthonormal eigenvectors of AAT ;similarly, the right singular vectors vi are the orthonormal eigenvectors of ATA. Thesingular values si are thus the square roots of the eigenvalues λi of both AAT and ATA.
The Moore-Penrose pseudoinverse of A, denoted as A† , inverts A where A is invertible,i.e., between the row space and column space of A. We write the pseudoinverse as

A† = V S−1UT = r∑
i=1 (1/si) viuTi .

In general, we can express A as
A = [ U U⊥

]
·
[

S 00 S⊥

]
·
[

V T

V T
⊥

]
, (3.2)

where U ∈ Rm×r ,V ∈ Rn×r and S ∈ Rr×r are defined as before, and U⊥ ∈ Rm×(m−r),V⊥ ∈
Rn×(n−r), and S⊥ ∈ R(m−r)×(n−r). Observe that if rank(A) = r, then S⊥ = 0. Further,we note that the columns of U and V span the column and row spaces, respectively,of A. As a result, U⊥ denotes the left null space of A and V⊥ denotes the null spaceof A. Since the columns of U ,U⊥,V , and V⊥ are orthonormal, we will often refer tothem as matrices and subspaces interchangeably, where the subspaces are spanned bytheir columns. Hence, we will denote PU = UUT and PV = V V T as the orthogonalprojection operators onto the column and row spaces of A, respectively; similarly, wedefine PU⊥ = U⊥UT

⊥ and PV⊥ = V⊥V T
⊥ as the projections onto the left null space andnull space, respectively.

Moving forward, for any matrix Q ∈ Rm×n with orthonormal columns, we denote PQ =
QQT ∈ Rm×m as the orthogonal projection operator onto the n-dimensional subspace of
Rm spanned by the columns of Q.
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� 3.1.1 Matrix Norms
There are several ways to measure the size of a matrix. We will mention three of them –operator (or spectral), Frobenius, and `2,∞-norms.
The matrix A is a linear operator from Rn to Rm. Its operator (or spectral) norm is defined∥∥A

∥∥ = max
x∈Sn−1

∥∥Ax
∥∥2 = max

x∈Sn−1,y∈Sm−1〈Ax, y〉,

where Sn−1 and Sm−1 are the unit spheres in Rn and Rm, respectively. Equivalently, thespectral view of the operator norm states that∥∥A
∥∥ = s1,

i.e., the operator norm of A is the largest singular value of A.
From the perspective of the entries of A, the Frobenius norm of a matrix is the extensionof the standard Euclidean `2-norm on vectors:

∥∥A
∥∥2
F = tr(ATA) = m∑

i=1
n∑
j=1 A

2
ij ,

where tr denotes the trace operator. In terms of its singular values, the Frobenius normcan also be represented as
∥∥A
∥∥2
F = r∑

i=1 s
2
i .

Thus, if s ∈ Rr denotes the vector of singular values, then∥∥A
∥∥ = ∥s∥∞ and ∥∥A

∥∥
F = ∥s∥2,

which yields the inequality ∥∥A
∥∥
F ≤
√
r ·
∥∥A
∥∥, where rank(A) = r.

Finally, we introduce the `2,∞-norm, which is a mixed-norm on A:
∥∥A
∥∥22,∞ = max

j∈[n]
∥∥Aj∥∥2 = max

j∈[n]
m∑
i=1 A

2
ij ,

where Aj ∈ Rm denotes the j-th column of A. Thus, the `2,∞-norm measures the maximum
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`2-norm on the columns of A. As an important side note, observe that

1
mn
∥∥A
∥∥2
F = 1

mn

m∑
i=1

n∑
j=1 A

2
ij ≤

1
m max

j∈[n]
m∑
i=1 A

2
ij = 1

m
∥∥A
∥∥22,∞.

This formalizes how the `2,∞-metric is a stronger guarantee than the Frobenius norm.
� 3.1.2 Isometries and Projections
The singular values of A have an important geometric interpretation. Specifically, thesingular values of A satisfy

sn ·
∥x∥2 ≤ ∥∥Ax

∥∥2 ≤ s1 · ∥x∥2 for all x ∈ Rn.

Because A acts as an operator from Rn to Rm, the singular values of A characterize theamount of distortion in the size of x after its transformation. In particular, the operatornorm of A measures the maximum distortion of the geometry of Rn under the action of A.
Operators that preserve distances exactly, called isometries, are of particular interesthere. We say that a matrix A (with m ≥ n) is an isometry if∥∥Ax

∥∥2 = ∥x∥2 for all x ∈ Rn.

Clearly, this implies that the singular values of A are all equal to 1, i.e., s1 = sn = 1.Additionally, it follows that
ATA = I,

and PA = AAT is an orthogonal projection onto an n-dimensional subspace of Rm. Auseful consequence is that any subset of the columns of an orthogonal (unitary) matrix isimmediately an isometry.
Projection matrices, and particularly orthogonal projection operators, will play an importantrole in this exposition. Thus, we review some their distinguishing properties. To begin,recall that any projection operator (not necessarily orthogonal), P : Rn → Rn, satisfies
P2 = P. Intuitively, this means if we start with any vector x ∈ Rn, then Px lies in thesubspace P projects onto, and applying the projection again does nothing to the resultingvector. An orthogonal projection matrix further satisfies P = PT . An important spectral
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property of P is that its eigenvalues are either 1 or 0. As a result, it follows that∥∥Px∥∥2 ≤ ∥x∥2 for all x ∈ Rn.

Thus, P is a bounded operator.
If we let A be defined as in (3.2) with rank r, then we can decompose any x ∈ Rn as

x = PV x + PV⊥x,
where PV and PV⊥ refer to the orthogonal projections onto the row space and null spaceof A, respectively. A useful representation for the PV⊥ is then PV⊥ = I − PV ; similarly,
PU⊥ = I −PU . We take this opportunity to remind the reader that all the action under Aoccurs between V and U . To see this, observe that applying A to x yields

Ax = A · (PV x + PV⊥x) = A · PV x.

Since A = USV T , it follows that A · PV x = Ax while A · PV⊥x = 0. In words, only thecomponent of x that lives within the row space of A gets mapped to the column spacewhile any component of x within the null space is mapped to 0.
� 3.1.3 Perturbation Theory
Often, our observed data is a perturbed version of our true underlying signal. To recoverthe latent signal, it is important to understand the effects of the perturbation. Perturbationtheory describes how the spectrum of our signal changes under “small” matrix perturbations,and they play a critical role in analyzing spectral methods (e.g., SVDs).
Let A, as defined in (3.2), describe our signal matrix, which is approximately rank r (i.e.,
sr � sr+1). We denote H ∈ Rm×n as the perturbation matrix (i.e., noise). We partitionthe SVD of our observation matrix

Z = A + H

as follows:
Z = [ Û Û⊥

]
·
[

Ŝ 00 Ŝ⊥

]
·
[

V̂ T

V̂ T
⊥

]
, (3.3)
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where Û , Û⊥, Ŝ, Ŝ⊥, V̂ , and V̂⊥ have the same structures as U ,U⊥,S,S⊥,V , and V⊥,respectively.
Perturbation of Singular Subspaces

There are several characterizations to measure the distance between two subspaces, say
V and V̂ . One viewpoint is through their orthogonal projection operators:

d1(V , V̂ ) = ∥∥PV − PV̂∥∥.
Another perspective is through the prism of principal angles:

d2(V , V̂ ) = ∥∥∥sin Θ(V , V̂ )∥∥∥.
The following proposition states that the two definitions, which are both unaffected byglobal orthonormal transformations, are equivalent, i.e., d1 and d2 are equivalent metrics.
Proposition 3.1.1. Suppose [V ,V⊥] and [V̂ , V̂⊥] are orthogonal matrices, where V⊥ and
V̂⊥ are orthogonal complements to V and V̂ , respectively. Then,

d(V , V̂ ) = ∥∥PV − PV̂∥∥ = ∥∥∥sin Θ(V , V̂ )∥∥∥.
There are two primary, canonical results from the field of perturbation theory that havespurred tremendous research in recent years: the Davis-Kahan sinΘ Theorem (Davisand Kahan (1970)) for eigenspaces and Wedin’s modified version for singular subspaces(Wedin (1972)). Of the many exciting works to come out of this field, we highlight that Yuet al. (2015) extends the analyses to provide a useful variant of the results in terms of thepopulation parameters (i.e., the singular values associated with A).
Theorem 3.1.1 (Wedin’s generalized sinΘ theorem; Corollary 1.4.10 in Stratos (2016)).
Let A and Z = A + H be defined as in (3.2) and (3.3), respectively. Then,∥∥∥sin Θ(V , V̂ )∥∥∥ ∨ ∥∥∥sin Θ(U , Û)∥∥∥ ≤ 2∥∥H

∥∥
sr − sr+1 ,

where si denotes the i-th singular value of A.Despite its wide applicability, Wedin’s perturbation bound (Wedin (1972)) may be subop-timal in certain settings. Specifically, since Wedin’s bound is uniform for both the leftand right singular spaces, it may not be useful to apply Wedin’s bound when the row andcolumn dimensions of the matrix differ significantly. To that end, Cai and Zhang (2018)
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resolves this gap by establishing separate optimal rates for the left and right singularsubspaces under the same perturbation.
Before we present their results, we make the convenient decomposition of H :

H = [ U U⊥
]
·
[

H11 H12
H21 H22

]
·
[

V T

V T
⊥

]
, (3.4)

where
H11 = UTHV , H12 = UTHV⊥, H21 = UT

⊥HV , and H22 = UT
⊥HV⊥.

Theorem 3.1.2 (Perturbation bounds for singular subspaces Cai and Zhang (2018)). Let
A,Z , and H be given as (3.2), (3.3), and (3.4), respectively. Further, let hij := ∥∥Hij

∥∥ for
i, j = 1, 2. Denote

α := σmin(UTZV ) and β := UT
⊥ZV⊥. (3.5)

If α2 > β2 + h212 ∧ h221, then∥∥∥sin Θ(V , V̂ )∥∥∥ ≤ αh12 + βh21
α2 − β2 − (h221 ∧ h212) ∧ 1∥∥∥sin Θ(U , Û)∥∥∥ ≤ αh21 + βh12
α2 − β2 − (h221 ∧ h212) ∧ 1.

In Chapter 5, we will invoke Theorems 3.1.1 and 3.1.2 to show that Principal ComponentAnalysis (PCA) and hard singular value thresholding (HSVT) can accurately recover thesingular subspaces of the signal matrix.
Perturbation of Singular Values

Analogous to the bounds for singular subspaces are perturbation bounds for singularvalues. These results study how the singular values of the signal matrix A change underperturbations. The most well known results are attributed to Weyl, which we state below.
Lemma 3.1.1 (Perturbation of singular values (Weyl’s inequality)). Let si and τi denote the
singular values of A and Z , respectively, in decreasing order and repeated by multiplicities.
Suppose Z = A + H . Then,

max
i∈[m∧n] |si − τi| ≤

∥∥H
∥∥.
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� 3.1.4 Tensors
Here, we briefly overview a tensors, a convenient representation for multi-dimensionaldata (a la spatio-temporal models; see Bahadori et al. (2014), Agarwal et al. (2020c)). Inparticular, the structure of tensors naturally lends itself to capturing inter-dependenciesalong the multiple dimensions.
For convenience, we focus on order-three tensors (though this can be easily extendedto higher dimensions). More formally, we denote T as a m× n × p order-three tensor.Since T can be viewed as a stack of p matrices of size m×n, it will be convenient for usto represent multi-dimensional data in the form of a tensor. As such, we will provide avery review of an important tensor structure – its rank. Unlike matrices, however, tensorshave several notions of rank. For our purposes, we will discuss the canonical polyadic(CP) rank, which is the tensor analogue to the traditional notion of matrix rank.
CP Rank

The canonical polyadic (CP) rank of a tensor T is related to its orthogonal decompositions,and can be regarded as the natural generalization of the matrix SVD (see (3.1)). We saythat T is a rank-one tensor if it is expressed as the outer product of three vectors, say
u, v , and w for u ∈ Rm, v ∈ Rn, and w ∈ Rp, i.e.,

T = u ⊗ v ⊗ w,

where the (i, j, k)-th entry of T can be written as Tijk = uivjwk . More generally, we saythat T has CP rank r if T can be expressed as
T = r∑

`=1 u` ⊗ v` ⊗ w` ,
i.e., r is the minimum number such that T can be expressed as a sum of r rank-one tensors.
Remark 3.1.1. For a more thorough treatment of tensors, we refer the interested reader
to Kolda and Bader (2009).

� 3.2 Concentration Inequalities

Let X be a random variable. Recall that the quantities E[X k ] and E[(X − EX )k ] for
k ∈ N represent the k-th moment and k-th central moment of X , respectively (assuming
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E[|X |k ] < ∞). The first moment and second central moment are well known as the meanand variance of X . Further, we denote the moment generating function (MGF) of X as
MX (s) = E[esX ], (3.6)

which is well defined for all s ∈ R for which (3.6) is finite. We will see that moments of arandom variable capture useful information about its tail, i.e., P(X ≥ x) and P(X ≤ x),which denote the upper (right) and lower (left) tails, respectively. In essence, MGFscharacterize the rate at which random variables converge to their population quantities(e.g., mean).
For instance, one notable tool, known as Markov’s inequality, bounds the tail of anon-negative random variable in terms of its expectation.
Lemma 3.2.1 (Markov’s inequality). For any non-negative random variable X and scalar
t > 0, we have

P(X ≥ t) ≤ E[X ]
t .

Proof. We begin by fixing any t > 0. Observing that X ≥ t · 1(X ≥ t) and takingexpectations completes the proof, i.e., E[X ] ≥ E[t · 1(X ≥ t)] = t · P(X ≥ t). �

To entertain the interested reader, we provide the proofs for Lemmas 3.2.2, 3.2.4, and 3.2.5,which utilize common proof techniques (e.g., Chernoff’s exponentiation trick, epsilon nets)to establish concentration. Additionally, we will use these lemmas to prove our resultsin Chapter 5. Finally, we refer the reader to Vershynin (2018) for a detailed review ofhigh-dimensional probability.
� 3.2.1 Sub-gaussian Distributions
We introduce an important class of probability distributions known as sub-gaussian
distributions. As the name suggests, these distributions are an extension of the famousGaussian (Normal) distribution, and thus exhibit similar desirable properties; namely,tails that decay at least as fast as that of a Gaussian. Belonging to this rich class includedistributions such as the Bernoulli, truncated Poisson, and all bounded distributions. Assuch, many results in probability, data science, and machine learning are proved under asub-gaussian setting.
Sub-gaussian random variables satisfy many properties – we highlight a few that will be ofparticular importance. For a sub-gaussian random variable X , we denote its sub-gaussian
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norm as ∥∥X∥∥ψ2 = inf {t > 0 : E

[exp(X2/t2)] ≤ 2} .
Property 3.2.1. If EX = 0, then

E[exp(λX )] ≤ exp(cλ2∥∥X∥∥2
ψ2
)

for all λ ∈ R,

where c is an absolute constant.

Property 3.2.2. Let X1, . . . , Xn be a sequence of independent, mean zero sub-gaussian
random variables. Then

∑n
i=1 Xi is also a sub-gaussian random variable, and∥∥∥∥∥ n∑

i=1 Xi
∥∥∥∥∥

2
ψ2
≤ C

n∑
i=1
∥∥Xi∥∥2

ψ2 ,

where C is an absolute constant.

We now state a modified version of Hoeffding’s inequality in Lemma 3.2.2. Effectively,Hoeffding’s inequality, which is a more useful restatement of Property 3.2.2, establishesthe concentration of sums of independent sub-gaussian random variables.
Lemma 3.2.2 (Modified General Hoeffding’s inequality). Let X = (X1, . . . , Xn) be a random
vector whose entries are independent, mean zero sub-gaussian random variables. Let
a = (a1, . . . , an) ∈ Rn be a random vector, independent of X , satisfying ∥a∥2 ≤ b for
some constant b ≥ 0. Then, for every t ≥ 0, we have

P

(∣∣∣∣∣ n∑
i=1 aiXi

∣∣∣∣∣ ≥ t
)
≤ 2 exp(− ct2

K 2b2
)
,

where K = maxi ∥∥Xi∥∥ψ2 .
Proof. Let Sn = ∑n

i=1 aiXi. Then applying Markov’s inequality (Lemma 3.2.1) for any
λ > 0, we have

P (Sn ≥ t) = P (exp(λSn) ≥ exp(λt))
≤ E [exp(λSn)] · exp(−λt)= Ea [E [exp(λSn) | a]] · exp(−λt).

We note that the above is an example of Chernoff’s exponentiation trick, i.e., applyingMarkov’s inequality to exp(λSn) as opposed to simply Sn.
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Now, conditioned on the random vector a, observe that
E [exp(λSn)] = n∏

i=1 E [exp(λaiXi)] ≤ exp(CK 2λ2∥a∥22) ≤ exp(CK 2λ2b2),
where the equality follows from conditional independence, the first inequality by Property3.2.1, and the final inequality by assumption. Therefore,

P (Sn ≥ t) ≤ exp(CK 2λ2b2 − λt).
Optimizing over λ yields the desired result:

P (Sn ≥ t) ≤ exp(− ct2
K 2b2

)
.

Applying the same arguments for −〈X, a〉 gives a tail bound in the other direction. �

Sub-gaussian Random Vectors

The concept of sub-gaussian distributions extends to higher dimensions. In particular,we say that a random vector X ∈ Rn is sub-gaussian if all one-dimensional marginals,i.e., 〈X, u〉 of X for u ∈ Rn, are sub-gaussian random variables. The correspondingsub-gaussian norm is then defined as∥∥X∥∥ψ2 = sup
u∈Sn−1

∥∥〈X, u〉∥∥ψ2 .

� 3.2.2 Sub-exponential Distributions
While sub-gaussian distributions form a wide class of distributions, there are severalnatural random distributions (e.g., Laplacian, χ2), which are not sub-gaussian but rather
sub-exponential. Although these distributions have heavier tails, we will see that theyhave a close connection with our friendly sub-gaussian distributions.
Lemma 3.2.3 (Sub-exponential is sub-gaussian squared Vershynin (2018)). A random
variable X is sub-gaussian if and only if X2 is sub-exponential. Moreover,∥∥∥X2∥∥∥

ψ1 = ∥∥X∥∥2
ψ2 .

The following statement can be seen as a version of Hoeffding’s inequality (Lemma 3.2.2)for sub-exponential distributions.



52 CHAPTER 3. PRELIMINARIES
Theorem 3.2.1 (Bernstein’s inequality). Let X1, . . . , Xn be independent, mean zero, sub-
exponential random variables. Then, for every t ≥ 0, we have

P

(∣∣∣∣∣ n∑
i=1 Xi

∣∣∣∣∣ ≥ t
)
≤ 2 exp−cmin t2∑n

i=1 ∥∥Xi∥∥2
ψ1
, tmaxi ∥∥Xi∥∥ψ1

,
where c > 0 is an absolute constant.

Quadratic Forms

Thus far, our focus has been studying sums of independent random variables. However,quadratic forms of the type 〈X,AX〉 for a random variable X ∈ Rn and matrix of coefficients
A ∈ Rn×n, find their way in several important applications. Unfortunately, these terms,often called chaos in probability theory, are harder to establish concentration due to thedependence of the terms in the sum.
To that end, we state Lemma 3.2.4, which is a modified version of the Hanson-Wrightinequality where A is also a random object.
Lemma 3.2.4 (Modified Hanson-Wright inequality). Let X ∈ Rn be a random vector with
independent mean-zero sub-Gaussian coordinates with

∥∥Xi∥∥ψ2 ≤ K. Let A ∈ Rn×n be a
random matrix, independent of X , satisfying

∥∥A
∥∥ ≤ a and

∥∥A
∥∥2
F ≤ b almost surely for

some a, b ≥ 0. Then for any t ≥ 0,

P
(∣∣∣XTAX − E[XTAX ]∣∣∣ ≥ t) ≤ 2 · exp[−cmin( t2

K 4b, t
K 2a

)]
.

Proof. The proof follows similarly to that of Theorem 6.2.1 of Vershynin (2018). Usingthe independence of the coordinates of X , we have the following useful diagonal andoff-diagonal decomposition:
XTAX − E[XTAX ] = n∑

i=1
(
AiiX2

i − E[AiiX2
i ]) +∑

i6=j AijXiXj .
Therefore, letting

p = P
(
XTAX − E[XTAX ] ≥ t) ,
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we can express
p ≤ P

( n∑
i=1
(
AiiX2

i − E[AiiX2
i ]) ≥ t/2) + P

∑
i6=j AijXiXj ≥ t/2

 =: p1 + p2.
We will now proceed to bound each term independently.
Step 1: diagonal sum. Let Sn = ∑n

i=1(AiiX2
i − E[AiiX2

i ]). Applying Markov’s inequalityfor any λ > 0, we have
p1 = P (exp(λSn) ≥ exp(λt/2))
≤ EAE [[exp(λSn) | A]] · exp(−λt/2).

Since the Xi are independent, sub-Gaussian random variables, X2
i −E[X2

i ] are independentmean-zero sub-exponential random variables, satisfying∥∥∥X2
i − E[X2

i ]∥∥∥
ψ1 ≤ C1∥∥∥X2

i

∥∥∥
ψ1 ≤ C2∥∥Xi∥∥2

ψ2 ≤ C2K 2.
Conditioned on A, we have that

E [exp(λSn)] = E

[exp( n∑
i=1 λAii(X2

i − E[X2
i ]))]

= n∏
i=1 E

[exp(λAii(X2
i − E[X2

i ]))]
≤

n∏
i=1 exp(CK 4λ2A2

ii

)
≤ exp(CK 4λ2∥∥A

∥∥2
F

)
≤ exp(CK 4λ2b),

where |λ| ≤ c/(aK 2). Therefore, optimizing over λ yields
p1 ≤ exp(CK 4λ2b − λt/2) ≤ exp[−cmin( t2

K 4b, t
K 2a

)]
.

Step 2: off-diagonals. Let S = ∑
i6=j AijXiXj . Again, applying Markov’s inequality for
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any λ > 0, we have

p2 = P (exp(λS) ≥ exp(λt/2)) ≤ EA [E [exp(λS) | A]] · exp(−λt/2).
Let g be a standard multivariate gaussian random vector. Further, let X ′ and g′ beindependent copies of X and g, respectively. Conditioning on A yields
E [exp(λS)] ≤ E

[exp(4λXTAX ′
)] (by Decoupling Remark 6.1.3 of Vershynin (2018))

≤ E
[exp(C1λgTAg′

)] (by Lemma 6.2.3 of Vershynin (2018))
≤ exp(C2λ2∥∥A

∥∥2
F

) (by Lemma 6.2.2 of Vershynin (2018))
≤ exp(C2λ2b),

where |λ| ≤ c/a. Optimizing over λ then gives
p2 ≤ exp[−cmin( t2

K 4b, t
K 2a

)]
.

Step 3: combining. Putting everything together completes the proof. �

� 3.2.3 Random Matrices
Here, we consider m× n matrices A with random entries. For a detailed overview, pleaserefer to Vershynin (2010).
Independent Entries

We begin with the simplest, classical model of random matrices where its entries areindependent standard Gaussian random variables. Below, we state the behavior of theextreme singular values of such a random matrix.
Theorem 3.2.2 (Gaussian matrices; Corollary 5.35 of Vershynin (2010)). Let A be a m×n
matrix whose entries are independent standard normal random variables. Then for every
t ≥ 0, the following holds with probability at least 1− 2 exp(−t2/2):∥∥A

∥∥ ≤ √m+√n+ t.
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Independent Rows

We now consider settings where the rows of our matrix are independent random vectorsin Rn. Such settings are important in data science and machine learning since the rowsof A denote samples from a potentially high-dimensional distribution. As such, there isno reason to suspect that the columns of A, corresponding to features, are not correlated.
As aforementioned, it is important for us to understand the effects of random perturbationsto our underlying signal. Luckily for us, as the dimensions of the matrices grow, thespectrum of A tends to “stabilize”. This formalized in Lemma 3.2.5, which describes thedistribution of the singular values of A under the setting described above.
Lemma 3.2.5. Let A be an m × n matrix whose rows Ai are independent, mean zero,
sub-gaussian random vectors in Rn with second moment matrix Σ = (1/m) · E[ATA]. Then
for any t ≥ 0, the following inequality holds with probability at least 1− exp(−t2):∥∥∥∥ 1

mATA− Σ
∥∥∥∥ ≤ K 2 max(δ, δ2), where δ = C

√
n
m + t√

m
;

here, K = maxi ∥∥Ai∥∥ψ2 and C > 0 is an absolute constant.

Remark 3.2.1. Observe that Lemma 3.2.5 implies that for any t ≥ 0,

√
m ·
∥∥Σ
∥∥1/2 − CK 2(√n+ t) ≤ smin(A) ≤ s1(A) ≤ √m · ∥∥Σ

∥∥1/2 + CK 2(√n+ t)
with probability at least 1− 2 exp(−t2).
Proof. The following proof extends the proof of Theorem 4.6.1 of Vershynin (2018) for thenon-isotropic setting; we present it here for completeness. Recall that the operator normof A can computed by maximizing the following quadratic form:∥∥A

∥∥ = max
x∈Sn−1,y∈Sm−1〈Ax, y〉,

where Sn−1, Sm−1 denote the unit spheres in Rn and Rm, respectively. Rather thansearching through the entire unit spheres, we will discretize the spheres using an ε-netargument to establish a tight control of the quadratic term 〈Ax, y〉 for any pair of fixedunit vectors x, y. Then, we will take a union bound over all x, y in the net.
Step 1: Approximation. We will use Corollary 4.2.13 of Vershynin (2018) to establish a1/4-net of N of the unit sphere Sn−1 with cardinality |N | ≤ 9n. Applying Lemma 4.4.1 of
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Vershynin (2018), we obtain∥∥∥∥ 1

mATA− Σ
∥∥∥∥ ≤ 2 max

x∈N

∣∣∣∣〈( 1
mATA− Σ

)
x, x
〉∣∣∣∣ = 2 max

x∈N

∣∣∣∣ 1m∥∥Ax
∥∥22 − xTΣX

∣∣∣∣.
To achieve our desired result, it remains to show that

max
x∈N

∣∣∣∣ 1mAx22−xTΣX
∣∣∣∣ ≤ ε2 ,

where ε = K 2 max(δ, δ2).
Step 2: Concentration. Let us fix a unit vector x ∈ Sn−1 and write

∥∥Ax
∥∥22 − xTΣx = m∑

i=1
(
〈Ai, x〉2 − E[〈Ai, x〉2]) =: m∑

i=1
(
Y 2
i − E[Y 2

i ]) .
Since the rows of A are assumed to be independent sub-gaussian random vectors with∥∥Ai∥∥ψ2 ≤ K , it follows that Yi = 〈Ai, x〉 are independent sub-gaussian random variableswith ∥∥Yi∥∥ψ2 ≤ K . Therefore, Y 2

i − E[Y 2
i ] are independent, mean zero, sub-exponentialrandom variables with∥∥∥Y 2

i − E[Y 2
i ]∥∥∥

ψ1 ≤ C1∥∥∥Y 2
i

∥∥∥
ψ1 ≤ C2∥∥Yi∥∥2

ψ2 ≤ C2K 2.
As a result, we can apply Bernstein’s inequality to obtain

P

(∣∣∣∣ 1m∥∥Ax
∥∥22 − xTΣx

∣∣∣∣ ≥ ε2
) = P

(∣∣∣∣∣ 1m m∑
i=1 (Y 2

i − E[Y 2
i ])∣∣∣∣∣ ≥ ε2

)
≤ 2 exp[−c1 min( ε2

K 4 , εK 2
)
m
]

= 2 exp[−c1δ2m]
≤ 2 exp[−c1C2(n+ t2)],

where the last inequality follows from the definition of δ and because (a+ b)2 ≥ a2 + b2for a, b ≥ 0.
Step 3: Union bound. We now apply a union bound over all elements in the net.
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Specifically,
P

(max
x∈N

∣∣∣∣ 1m∥∥Ax
∥∥22 − xTΣx

∣∣∣∣ ≥ ε2
)
≤ 9n · 2 exp[−c1C2(n+ t2)] ≤ 2 exp(−t2),

for large enough C . This concludes the proof. �
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Chapter 4

Potential Outcomes Tensor

In this chapter, we formally present our potential outcomes tensor. This framework willenable us to characterize both ESs and OSs by unique block sparsity patterns, and relatecounterfactual estimation to tensor estimation. The following chapters (namely, Chapters6, 7, and 8) will analyze instances of this general setting.
� 4.1 Tensor Factor Model

Throughout, we adopt the potential outcomes framework of Neyman (1923) and Rubin(1974a). As an important contribution, we represent the universe of potential outcomesthrough a tensor object. This structural representation will then allow us to view theestimation of counterfactuals as equivalent to recovering aspects of this tensor, and willallow us to not only establish a relationship between the units, interventions, and metrics,but also prove the existence of synthetic controls and interventions.
� 4.1.1 Potential Outcomes
Let M ∈ RT×N×D×P be an order-four tensor where its (t, n, d, p)-th element, M (d,p)

tn ,represents the potential outcome of the t-th measurement for unit n under intervention
d and metric p. It is convenient to think of M as a collection of P order-three tensors,where each tensor represents the collection of potential outcomes across all units, time,and interventions for a particular metric. In particular, for any metric p, let M (d,p) ∈ RT×Ndenote the d-th frontal slice of the p-th tensor, which represents the matrix of potentialoutcomes across all measurements and units under intervention d. Further, we denote

M (d,p)pre = [M (d,p)
tn : t ≤ T0, n ∈ I (d)] ∈ RT0×N(d) (4.1)

M (d,p)post = [M (d,p)
tn : t > T0, n ∈ I (d)] ∈ R(T−T0)×N(d)

59
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as the pre- and post-intervention sub-matrices of M (d,p) restricted to those donors in I (d)(defined as in (1.1)). For ease of notation, we note that if unit i is the target and receivesintervention d, then I (d) := I (d)\{i} and N (d) := ∣∣I (d)\{i}∣∣.
In consistency with the standard econometrics literature, we consider a factor model.Specifically, we extend the standard matrix factor model to a tensor factor model. The low-rank assumption reflects the belief that correlations exist within the different dimensions(i.e., time, units, interventions, and metrics), and thus the potential outcomes can bedescribed by a few latent factors. This is formalized by the following property.
Property 4.1.1 (Low-rank). The canonical polyadic tensor rank of M is r. That is, there
exists vectors {ui} ∈ RT , {vi} ∈ RN , {wi} ∈ RD , and {qi} ∈ RP for all i ∈ [r], such that

M = r∑
`=1 u` ⊗ v` ⊗ w` ⊗ q` .

Interpretation. Property 4.1.1 implies that every frontal slice M (d,p) can be written as
M (d,p) = r∑

`=1(wd`qk` · u` )⊗ v` = U (d,p)V T , (4.2)
where U (d,p) ∈ RT×r , and V ∈ RN×r has (without loss of generality) orthonormal columns.Hence, the low rank tensor model implies there exists an r-dimensional linear subspaceof RN , denoted by V , that describes a latent relationship between units that is invariantacross interventions. Under every metric p, each intervention can then be interpreted assome linear transformation, denoted by U (d,p), applied to this subspace.
Property 4.1.2 (Bounded). The entries of M are bounded by one in absolute value.

Property 4.1.3 (Well-balanced spectra). For every intervention d and metric p, the non-
zero singular values si of M (d,p)pre are well-balanced, i.e., s2

i = Θ(N (d)T0/r(d,p)pre ), whererank(M (d,p)pre ) = r(d,p)pre . Similarly, the non-zero singular values τi of M (d,p)post satisfy τ2
i =Θ(N (d)(T − T0)/r(d,p)post ), where rank(M (d,p)post ) = r(d,p)post .

Example 4.1.1 (Embedded Gaussian Features). One classical example in which Property4.1.3 holds is the probabilistic model for PCA, cf. Bishop (1999); Tipping and Bishop(1999).
Example 4.1.2 (Well-balanced Entries). Another natural setting in which Property 4.1.3holds is if M (d,p)

tn = Θ(1) and the non-zero singular values of M (d,p)pre satisfy s2
i = Θ(ζ) for
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some ζ . Then, Cζr(d,p)pre = ∥∥∥M (d,p)pre ∥∥∥2
F

= Θ(N (d)T0) for some C > 0. An identical argumentapplies to M (d,p)post .
Existence of Synthetic Control & Synthetic Interventions

We begin by stating a natural property that theoretically justifies SC-like methods andSI, i.e., artificially constructing control and treatment groups. Let vn denote the n-th rowof V , given in (4.2), which is the latent factor associated with unit n.
Property 4.1.4. Given intervention d and unit i, let vi lie within span({vn}n∈I (d)). That
is, there exists a β(d,i) ∈ RN

(d) such that vi = ∑n∈I (d) β(d,i)
n · vn.

Proposition 4.1.1 (Existence of SC & SI). Suppose Property 4.1.1 holds. For a given
intervention d and unit i, suppose Property 4.1.4 holds. Then for all (t, d′, p) ∈ [T ] ×[D]× [P ], we have

M (d′,p)
ti = ∑

n∈I (d) β
(d,i)
n · M (d′,p)

tn .

Interpretation. Under a low-rank tensor factor model, Proposition 4.1.1 states that thetarget unit can be expressed as a linear combination of every donor subgroup across all
measurements, interventions, and metrics. Indeed, this is the key result that enables both(M)RSC and SI to “transfer” the learned linear model from the pre- to post-interventionperiod, even if the interventional frameworks differ between the two periods. In Proposition4.1.2 below, we show that Property 4.1.4 holds with high-probability.
Proposition 4.1.2 (SC & SI Exist whp). Suppose Property 4.1.1 holds. Let the N units
be re-indexed as per some permutation chosen uniformly at random. Then for any unit i,
Property 4.1.4 holds w.p. at least 1− r/N (d).
Interpretation. By the union bound, β(d,i) exists for all d simultaneously w.p. at least1 − ∑D

d=1 r/N (d). Proposition 4.1.2 circumvents the “pathological” case where vi isorthogonal to all other rows in V . Since there are at most r − 1 such rows in any rank rmatrix, Proposition 4.1.2 establishes that, with respect to the unit indexing randomness,this pathological case will not occur w.h.p. Importantly, we highlight that Proposition 4.1.2
does not imply that the units need to be randomly administered interventions, i.e., therandom re-indexing is purely an analytical tool and makes no experimental statements.
Remark 4.1.1 (Linearity with respect to metric). By symmetry, we note that a linearrelationship between interventions holds across units and time. Therefore, analogous
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statements such as Property 4.1.4 and Propositions 4.1.1 and 4.1.2 hold for interventions.However, as with units, it is important to note that this does not imply that interventions(or units) are linear combinations of one another, e.g., the chemical structure of drug A isnot necessarily a linear combination of the chemical structures of other drugs. Rather,these results simply state, under a low-rank tensor factor model (Property 4.1.1), there isa linear relationship between interventions (or units) with respect to the outcome variableof interest (metric). In general, the low-rank notion simply materializes the ideal thatstructure is shared across dimensions of the tensor; hence, even though there are N units(and D interventions), there are only a few canonical profiles for which all units (andinterventions) are linear combinations of these profiles under the metric of interest.
� 4.1.2 Observed Outcomes
We assume every observed outcome is corrupted by noise and satisfies

Y (d,p)
tn = M (d,p)

tn + ε(d,p)
tn ,

where ε(d,p)
tn represents measurement noise. We make the following assumptions.

Property 4.1.5 (Sub-gaussian noise). Let ε(d,p)
tn be a sequence of independent mean

zero sub-gaussian random variables with variance bounded by σ2, and
∥∥∥ε(d,p)

t

∥∥∥
ψ2 ≤ K,∥∥∥E[ε(d,p)

t ⊗ ε(d,p)
t ]∥∥∥ ≤ γ2, where ε(d,p)

t = [ε(d,p)
tn : n ∈ I (d)] ∈ RN

(d) .
Interpretation. Since ε(d,p)

tn are independent, K and γ2 are constants. However, ouranalysis goes through for the more general case where the noise is dependent across the
donor units for a given t; here, K and γ2 quantify the level of dependence in the noisebetween the donors at a given time.
Property 4.1.6 (Missing at random). The non-counterfactual entries of Z are indepen-
dently observed w.p. ρ ∈ (0, 1], i.e., π(p)

tn , given by (1.2), are a sequence of i.i.d. Bernoulli(ρ)
random variables.

Interpretation. Beyond the unobservable counterfactuals, we allow the observed outcomesthemselves to be missing at random.
Connection to Error-in-variable Regression

Without loss of generality, consider unit i in Proposition 4.1.1. Then, the observedoutcomes for the target unit i during the pre-intervention period (response vector) follow
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a linear model. That is, for every I (d) and any metric p,
Y (1,p)
ti = ∑

n∈I (d) β
(d,i)
n · M (d,p)

tn + ε(1,p)
ti for all t ≤ T0. (4.3)

Since we only ever observe a noisy instantiation of M (d,p)
tn , namely Y (d,p)

tn , this is exactlythe setting of error-in-variable regression.
Parameter Estimation

To estimate the post-intervention counterfactual potential outcomes, we require a goodestimate of β(d,i), given in (5.1). It is well known, however, that recovering the latentmodel parameter without any additional assumptions is ill-defined since infinitely manysolutions to (5.1) exist. Thus, for the purposes of model identification, it is standard withinthe error-in-variable regression literature to assume, for instance, β(d,i) is sparse and
M (d,p)pre satisfies the restricted eigenvalue condition; see Loh and Wainwright (2012) andreferences therein. However, for the purposes of prediction, we argue only the componentof β(d,i) within the row space of M (d,p)pre matters since any component within the nullspace is mapped to zero. This particular β(d,i) is unique and has minimum `2-norm; weshow PCR accurately estimates this vector, which may be of independent interest in theerror-in-variable regression literature.
� 4.2 Proof of Existence of SC and SI

� 4.2.1 Proof of Proposition 4.1.1
Proof. For all (t, d′, k) ∈ [T ]× [D]× [K ], we have that

M (d′,k)
ti = r∑

`=1 ut` · vi` · wd′` · qk`
= r∑

`=1 ut` ·
( ∑
n∈I (d) β

(d,i)
n · vn`

)
· wd′` · qk`

= ∑
n∈I (d) β

(d,i)
n ·

( r∑
`=1 ut` · vn` · wd′` · qk`

)
= ∑

n∈I (d) β
(d,i)
n · M (d′,k)

tn .

This completes the proof. �
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� 4.2.2 Proof of Proposition 4.1.2
Proof. Fix any d, and recall I (d) is the corresponding, randomly sampled donor group.Under Property 4.1.1, rank(V ) = r; hence, it must be that dim(span{(vn)n∈I (d)∪{1}}) ≤ r.Since I (d) and the target unit i are sampled randomly from [N ], the probability that
v1 /∈ span{(vn)n∈I (d)} is at most r/N (d) (since among the I (d) ∪ {i} units, there can be atmost r linearly independent vectors). Thus, P(Ed) ≥ 1− r/N (d), where

Ed := {∃β(d,i) ∈ RN
(d) s.t. v1 = ∑

n∈I (d) β
(d,i)
n · vn

}
.

�



Chapter 5

Principal Component Regression

As stated in Chapter 4, we assume the potential outcomes follow a low-rank factor model(Property 4.1.1). In a high-dimensional framework where the ambient dimension of thefeature space is large, it is well known (particularly, empirically) that Principal ComponentRegression (PCR), see Jolliffe (1982), is an effective prediction algorithm if the covariatesexhibit low-dimensional structure; this motivates the usage of PCR in our context topredict counterfactual potential outcomes.
However, despite PCR’s tremendous success in a variety of applications, its ability tohandle settings with noisy, sparse, and mixed (discrete and continuous) valued covariatesis not understood and remains an important challenge, cf. Chao et al. (2019). Asa contribution of this thesis, we establish the robustness of PCR to these scenariosand provide finite-sample guarantees with respect to its parameter estimation and test(out-of-sample) prediction errors.
� 5.1 Setup

We begin by describing our setup and formalizing our model, observations, and objective.
Training Data

Throughout this chapter, let Mtrain denote a n × p training covariate matrix of rank
r < n ∧ p:

Mtrain = r∑
i=1 siui ⊗ vi.

65
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Rather than directly observing Mtrain, we only have access to its corrupted version, Ztrain:

Ztrain = n∧p∑
i=1 ŝiûi ⊗ v̂i.

We assume the observed covariates are generated via the model:
Ztrain = (Mtrain + Htrain) ◦ Ptrain,

where Htrain ∈ Rn×p is the measurement noise and Ptrain ∈ {0, 1}n×p is a masking matrix.Finally, let y ∈ Rn denote the response vector (training labels), which is related to theunderlying covariates Mtrain via the following linear model:
y = Mtrainβ∗ + ε, (5.1)

where β∗ ∈ Rp is the underlying model parameter and ε ∈ Rn is the response noise.
Testing Data

We denote the SVD of the m× p rank r′ < m ∧ p testing covariate matrix Mtest as
Mtest = r′∑

i=1 = τiµi ⊗ νi.

Similar to the above setup, we denote the perturbed version of Mtest as Ztest, which isgenerated as
Ztest = (Mtest + Htest) ◦ Ptest,

and admits the following SVD:
Ztest = m∧p∑

i=1 τ̂iµ̂i ⊗ ν̂i.
We note that Htest ∈ Rm×p and Ptest ∈ {0, 1}m×p are defined analogously as above.
Objective

Given (y,Ztrain,Ztest), our aim is to recover the true model parameter β∗ and predict theunderlying out-of-sample response vector Mtestβ∗.
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� 5.2 Hard Singular Value Thresholding (HSVT)

Before we analyze PCR, we briefly digress to examine HSVT, a powerful matrix estimationtechnique to de-noise observations and impute missing values. As we will show inProposition 5.3.1, HSVT is closely related to PCR.
� 5.2.1 Algorithm
It is well known that the principal components of the data often capture most of the signal.Thus, much like the spirit of Principal Component Analysis (PCA) – a key subroutine ofPCR – HSVT retains the top singular components of the data and shaves off the remainingsingular components, which often represent noise. We state the HSVT algorithm below.

Algorithm 1: HSVT
Data: Z = ∑i ŝiûi ⊗ v̂i ∈ Rn×p, k ∈ [n ∧ p]
Result: M̂ ∈ Rn×p1. M̂ ← (1/ρ̂)∑k

i=1 ŝiûi ⊗ v̂i, where ρ̂ is the fraction of observed entries in Z

� 5.2.2 Results
Due to its immense popularity, HSVT has been widely studied in the literature; however,much of the analyses has been devoted to bounding its estimation error with respect tothe Frobenius and operator norms. For our purposes, however, we require a bound on the
`2,∞-norm. To that end, we denote the HSVT estimation error of M̂train as

EHSVT(M̂train) = 1
n

∥∥∥M̂train −Mtrain∥∥∥2
2,∞.

We note that the HSVT error of M̂test is defined similarly. The following statement boundsthe HSVT estimation error when the singular values are chosen correctly under the settingdescribed in Chapter 4.
Lemma 5.2.1 (HSVT `2,∞-norm Error). Suppose Mtrain satisfies Properties 4.1.2, 4.1.3,
Htrain satisfies Property 4.1.5, and Ptrain satisfies Property 4.1.6. Consider M̂train =HSVT(Ztrain, r). For any δ > 0 and some C > 0, if ρ ≥ C log(1/δ)

np , then the following holds
w.p. at least 1− δ:

EHSVT(M̂train) ≤ C1
ρ4 r
n ∧ p + ∆,
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where

∆ = C2
( 1
ρ2
√
r
n + 1

ρ4 r√
n(n ∧ p)

)√logp, (5.2)
C1 = C (1 + σ4)(1 + γ2)(1 + K 2), and C2 = C1K 2(1 + log3/2(1/δ)).
Interpretation. Lemma 5.2.1 states that the HSVT estimation error vanishes as n, p grow.Further, we note that the above bound is stated in the more general noise setting wherethe rows of Htrain are independent sub-gaussian random vectors rather than the entry-wiseindependence setting given by Property 4.1.5 (see Chapter 4.1.2 for details). Additionally,the bound holds between M̂test and Mtest with (n, r) replaced by (m, r′). Given the ubiquityof HSVT, Lemma 5.2.1 may be of interest in its own right.
� 5.3 Principal Component Regression (PCR)

� 5.3.1 Algorithm
Often, our underlying signal of interest has low-dimensional structure, but is masked byour perturbed observations that live in a high-dimensional ambient space. It is widelyknown, however, that the principal components (top singular components) of the datacapture most of its information, and can be uncovered via Principal Component Analysis(PCA). As a result, PCR, which uses PCA is a key subroutine, is a widely used techniqueto extract the latent factors that drive the correlation structure of the data prior to learninga linear model. We state the PCR algorithm below.

Algorithm 2: PCR
Data: Z = ∑i ŝiûi ⊗ v̂i ∈ Rn×p, y ∈ Rn, k ∈ [n ∧ p]
Result: β̂ ∈ Rp

1. ŵ ← arg min
w∈Rk

∥∥∥y − (1/ρ̂)ZV̂kw
∥∥∥2

2, where V̂k = [v̂1, . . . , v̂k ] ∈ Rp×k and ρ̂ is thefraction of observed entries in Z

2. β̂ ← V̂k ŵ

PCR Intuition

Using the observed covariates, PCR first finds a k � p dimensional representation foreach feature via PCA; specifically, PCA projects every covariate Zi onto the subspace
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spanned by the top k right singular vectors of the covariate matrix. PCR then uses the
k-dimensional features to perform linear regression.
Choosing k

In general, the correct number of principal components k = r to use is not known a priori.However, under reasonable signal-to-noise scenarios, Weyl’s inequality (Lemma 3.1.1)implies that a “sharp” threshold or gap should exist between the top r singular valuesand remaining singular values of the observed data Z . This gives rise to a natural “elbow”point and suggests choosing a threshold within this gap. Another standard approachis to use a “universal” thresholding scheme that preserves the singular values above aprecomputed threshold (see Chatterjee (2015b) and Gavish and Donoho (2014)). Finally,data-driven approaches developed around cross-validation can also be employed.
� 5.3.2 Equivalence
Since our observed covariates are contaminated, a natural algorithm to recovering asolution to (5.1) is to first de-noise our data via HSVT and then perform Ordinary LeastSquares (OLS) to learn a linear model. We note that OLS can be equivalently viewed asPCR with hyper-parameter k = n ∧ p. Pleasingly, it turns out that HSVT with OLS isequivalent to PCR. This is formalized in Proposition 5.3.1.
Proposition 5.3.1 (Equivalence). Let k ∈ [n ∧ p]. Suppose β̂PCR = PCR(Ztrain, y, k).
Further, consider M̂train = HSVT(Ztrain, k) and β̂HSVT = PCR(M̂train, y, n ∧ p). Then,

β̂PCR = β̂HSVT
Ztrainβ̂PCR = M̂trainβ̂HSVT.

Interpretation. Given the above equivalence, we can analyze properties of PCR throughthe lens of the HSVT estimator. In particular, we will utilize Lemma 5.2.1 to prove Lemma5.3.1 and Theorems 5.3.1, 5.3.2.
� 5.3.3 PCR Training Prediction Error

Evaluation Metric

For any estimate M̂train ∈ Rn of Mtrainβ∗, we define the corresponding training (in-sample)
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prediction error as

Etrain(M̂train) = 1
n

∥∥∥M̂train −Mtrainβ∗∥∥∥2
2.

Estimator

We consider M̂train = Ztrainβ̂ with β̂ = PCR(Ztrain, y, r) as the estimate of Mtrainβ∗.
Results

We state the training error bound of M̂train in high probability below.
Lemma 5.3.1 (PCR Train Error). Suppose (Mtrain,Mtrainβ∗) satisfy Properties 4.1.2, Mtrain
satisfies Property 4.1.3, (Htrain, ε) satisfy Property 4.1.5, and Ptrain satisfies Property
4.1.6. Let β∗ be any solution to (5.1). For any δ > 0 and some C > 0, if ρ ≥ C log(1/δ)

np ,
then the following holds w.p. at least 1− δ:

Etrain(M̂train) ≤ 2σ2r
n + C2

ρ4 r
√logp
n ∧ p

∥∥β∗∥∥21 + ∆1,
where

∆1 = C2√
n
∥∥β∗∥∥1, C1 = C (1 + σ4)(1 + γ2)(1 + K 2), C2 = C1K 2(1 + log2(1/δ)). (5.3)

Interpretation. The first term in the result of Lemma 5.3.1 above represents the minmax errorrate from low-dimensional ordinary least squares regression with noiseless covariates;the second term corresponds to the HSVT estimation error as the training covariatematrix is noisily observed; the third term corresponds to the error due to providing ahigh-probability bound (which will be absent if we choose the expected error to be ourmetric of choice).
� 5.3.4 PCR Parameter Estimation Error
In a high-dimensional framework, there may be an infinite number of models that satisfy(5.1). However, as described in Chapter 4.1.2, only the component of β∗ that lives withinthe rowspace of Mtrain is important for the purposes of prediction. For that reason, weconsider, without loss of generality, the unique β∗ of minimum `2-norm that satisfies (5.1).The following result states that PCR can recover this particular model parameter even inthe presence of contaminated covariates.
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Theorem 5.3.1 (PCR Parameter Estimation Error). Let the conditions of Lemma 5.3.1
hold. Further, let β∗ be the unique vector of minimum `2-norm that satisfies (5.1). For
any δ > 0 and some C > 0, if ρ ≥

√
C2r
n∧p , then the following holds w.p. at least 1− δ:

∥∥∥β̂ − β∗∥∥∥2
2 ≤ r

p

(Cσ2r
n + C2

ρ4 r
√logp
n ∧ p

∥∥β∗∥∥21 + ∆) + C1
ρ2 r
n ∧ p

∥∥β∗∥∥22,
where C1, C2,∆ are given by (5.3).
Interpretation. The first term within the parentheses on the RHS is exactly the in-sampleprediction error for PCR (given in Lemma 5.3.1). The second term is the additional costpaid for directly estimating β∗. Now, consider the special case where the followingtwo conditions hold: (i) Mtrain is directly observed, i.e., there are no missing valuesor measurement errors in the donor data; and (ii) the columns of Mtrain are linearlyindependent (i.e., β∗ lies within its row space). Then, the bound above agrees withclassical parameter estimation results for ordinary least squares (e.g., Remark 2.3 ofRigollet and Hütter (2017) under Property 4.1.3.)
Comparison with Literature. Suppose n ≤ p. Since ∥∥β∗∥∥1 ≤ √p∥∥β∗∥∥2, the parameterestimation error scales as O(∥∥β∗∥∥22/n) with high probability; this is with respect to theminimum `2-norm β∗. We note that this rate is in line with previous works (c.f. Loh andWainwright (2012); Datta and Zou (2017); Rosenbaum and Tsybakov (2013)), where theerror also grows as O(∥∥β∗∥∥22/n). Note, however, these previous works make a key sparsityassumption that ∥∥β∗∥∥0 ≤ r, which we do not require for our results. Instead, we make alow-rank assumption on the covariate (donor) matrix. Further, the estimators proposedin Loh and Wainwright (2012); Datta and Zou (2017); Rosenbaum and Tsybakov (2013)explicitly require knowledge of the noise distribution (i.e., its second moment matrix).PCR, on the other hand, does not require this.
Synthetic Simulation

To study the scaling of the parameter estimation error, we performed simulations underan additive noise model. We detail the setup and results below.
Model. We construct our underlying training covariates M ∈ Rn×p via the probabilisticPCA model as described in Chapter 4.1.1. That is, we first generate Mr ∈ Rn×r bysampling each entry from a standard normal distribution, independently of other entries.Then, we sample a transformation matrix Q ∈ Rr×p, where each entry is uniformlyand independently sampled from {−1/√r, 1/√r}. The final matrix then takes the form
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M = MrQ. We define rank(M) = r = p 14 , where p ∈ {128, 256, 512}.
Next, we generate β ∈ Rp by first sampling from a multivariate standard normal vectorwith independent entries and then arbitrarily scaling the resulting values by 5. Theunderlying response vector a ∈ Rn is then defined to be the product a = Mβ. Finally,the model parameter of interest, β∗, is then computed as

minimize ∥w∥22 subject to Mw = a.

Observations. We consider an additive noise model. Specifically, the entries of ε ∈ Rnare sampled i.i.d. from a normal distribution with mean zero and variance σ2 = 0.2. Theentries of H ∈ Rn×p are sampled in an identical fashion. We then define our observedresponse vector as y = a+ ε and corrupted covariate matrix as Z = M + H .
Results. Using (y,Z ), we perform PCR to yield β̂. To demonstrate that PCR can accuratelyrecover β∗, the minimum `2-norm solution, we compute the `2-norm parameter estimationerror, or root-mean-squared-error (RMSE), with respect to β∗ and β in Figures 5.1a and5.1b, respectively. As suggested by Figure 5.1a, the RMSE with respect to β∗ roughlyaligns for different values of n, after rescaling the sample size as n/(r2√logp), and decaysto zero as the sample size increases; this is predicted by Theorem 5.3.1. On the otherhand, Figure 5.1b shows that the RMSE with respect to β stays roughly constant acrossdifferent values of p. Therefore, as established in Theorem 5.3.1, PCR performs recoversthe minimum-norm solution.

(a) `2-norm error of β̂ with respect to theminimum `2-norm solution of (5.1), i.e., β∗. (b) `2-norm error of β̂ with respect to arandom solution to (5.1).
Figure 5.1: Plots of `2-norm error against β∗ in 5.1a and β in 5.1b, versus the rescaled samplesize n/(r2√logp) after running PCR with rank r = p 14 . As predicted by Theorem 5.3.1, the curvesfor different values of p under 5.1a roughly align and decay to zero as n increases.
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Remark. Recall the discussion of Theorem 5.3.1. That is, if we apply the inequality∥∥β∗∥∥1 ≤ √p∥∥β∗∥∥2, then for any fixed δ , the parameter estimation error scales as
O(r2√logp∥∥β∗∥∥22/(n ∧ p)). Thus, we choose our rescaled sample size to be n/(r2√logp).
� 5.3.5 PCR Testing Prediction Error

Evaluation Metric

For any estimate M̂test ∈ Rm of Mtestβ∗, we define the corresponding testing (out-of-sample) prediction error as
Etest(M̂test) = 1

m

∥∥∥M̂test −Mtestβ∗∥∥∥2
2.

Estimator

Assume Mtestβ∗ satisfies Property 4.1.2. We consider the following prediction estimateof Mtestβ∗. Let M̂test = Truncate(M̂testβ̂) be a truncated version of M̂testβ̂, where M̂test =HSVT(Ztest, r′), β̂ = PCR(Ztrain, y, r), and Truncate(·) is defined below.
Algorithm 3: Truncate

Data: X = [Xi : i ≤ n]
Result: X (trunc) = [X (trunc) : i ≤ n]1. For every i ≤ n:

X (trunc)
i =


Xi, if Xi ∈ [−1, 1]1, if Xi > 1
−1, if Xi < −1.

Interpretation. In words, since the underlying test responses are assumed to be boundedunder Property 4.1.2, we also restrict our estimates to lie within the unit interval.
Results

In what follows, we denote the right singular vectors of the underlying training (Mtrain)and testing (Mtest) covariate matrices as Vtrain ∈ Rp×r and Vtest ∈ Rp×r
′ , respectively. Weare now ready to state PCR’s test error bound in both high probability and expectation.
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Theorem 5.3.2 (PCR Test Error in High-Probability). Let the conditions of Theorem 5.3.1
hold. Suppose (Mtest,Mtestβ∗) satisfy Property 4.1.2, Mtest satisfies Property 4.1.3, Htest
satisfies Property 4.1.5, and Ptest satisfies Property 4.1.6. Let span(Vtest) ⊆ span(Vtrain).
For any δ > 0, if ρ ≥

√
C1C2r
n∧m∧p , then the following holds w.p. at least 1− δ:

Etest(M̂test) ≤ r
r′
(Cσ2r

n + C1C2
ρ4 r

√logp
n ∧ m ∧ p

∥∥β∗∥∥21 + C21
ρ4 rp(n ∧ m ∧ p)2∥∥β∗∥∥22 + ∆),

where C1, C2,∆ are given by (5.3).
Corollary 5.3.1 (PCR Test Error in Expectation). Let the conditions of Theorem 5.3.2
hold. Then for any δ > 0,

E[Etest(M̂test)] ≤ r
r′
(2σ2r

n + C3C4
ρ4 r log2(p/δ)

n ∧ m ∧ p
∥∥β∗∥∥21 + C24

ρ4 rp(n ∧ m ∧ p)2∥∥β∗∥∥22
) + 4δ,

where C3 = CK 2(1 + σ4)(1 + γ2)(1 + K 2) and C4 = C (1 + σ2)(1 + γ2)(1 + K 2).
Interpretation. For simplicity, we let n = Θ(m) = Θ(p), and suppress dependencieson β∗ and logp. The error bound in Theorem 5.3.2 is quantified by four terms: (i) thefirst term, scaling as O(r/n), corresponds to the minmax in-sample prediction error forlow-dimensional ordinary least squares with noiseless covariates; (ii) the second term,scaling as O(r/(ρ4n)) is the additional error due to the sparsity and noise in the covariates;(iii) the third term, scaling as O(r/(ρ4n)) is the generalization error; (iv) the fourth term,∆ = O(1/√n), disappears if the error is taken in expectation (Corollary 5.3.1); finally, thescaling, r/r′, is the ratio of the training and testing covariate matrix ranks, which may bea remnant of our proof technique.
Remarks. It is worth mentioning that Theorem 5.3.2 does not make any distributional
assumptions of having i.i.d. covariates. Instead, the key assumption that enables Theorem5.3.2 is a linear algebraic condition: span(Vtest) ⊆ span(Vtrain). This allows PCR to“generalize” to unseen data. A more general test error result when this condition fails tohold can be found in Lemma 5.12.3 of Section 5.12.
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� 5.4 A Subspace Inclusion Hypothesis Test

As shown in Theorem 5.3.2, a key assumption that enables PCR to generalize isspan(Vtest) ⊆ span(Vtrain). This condition gives rise to a natural hypothesis test:
H0 : span(Vtest) ⊆ span(Vtrain)
H1 : span(Vtest) * span(Vtrain).

Under H0, we have Vtest = PVtrainVtest, where PVtrain = VtrainV Ttrain. However, given thatthe right singular vectors are never observable, we use the top right singular vectors of
Ztrain,Ztest, denoted as V̂train, V̂test, as proxies. Hence, a natural test statistic is the gapbetween V̂test and PV̂trainV̂test. In particular,

τ̂ = ∥∥∥V̂test − PV̂trainV̂test∥∥∥2
F

H0
Q
H1
τα , (5.4)

where τ̂ is our test statistic, τα is the critical value, and α is the significance level.
Theorem 5.4.1 (Subspace Inclusion Type I Error). Suppose (Mtrain,Mtest) satisfy Prop-
erties 4.1.2, 4.1.3, (Htrain,Htest) satisfy Property 4.1.5, and (Ptrain,Ptest) satisfy Property
4.1.6. Consider M̂train = HSVT(Ztrain, r) and M̂test = HSVT(Ztest, r′). For any α ∈ (0, 1)
and some C > 0, if ρ ≥ C log(1/α)(n∧m)p , then P (τ̂ ≥ τα |H0) ≤ α with

τα = C ′
ρ2
( rr′
n ∧ m ∧ p + rr′ log(1/α)(n ∧ m)p )

,

where C ′ = C (1 + σ2)(1 + γ2)(1 + K 2).
Interpretation. Returning to our problem of causal inference, we note that (5.4) alsofunctions as a quantitative hypothesis test to check when we can apply SI and thus SC,something which, to the best of our knowledge, is missing from the literature. Roughlyspeaking, if our test statistic is smaller than our critical value, then SI can extrapolatefrom our observed outcomes to estimate the unobservable potential outcomes of interest.As we will see in our empirical studies, the post-intervention (cross-validation) predictionerror also corresponds closely to whether this hypothesis test passes or fails, as desired.
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� 5.5 Discussion

� 5.5.1 New Perspective on High-Dimensional Regression
It is well established that lasso (`1-regularization) methods have been the de factoalgorithmic approach in the context of high-dimensional regression problems. This islargely motivated because identifying model parameters (e.g., β∗) is of fundamental interestin statistics. As such, the sparsity constraint provides one notion of identifiability thatis achievable; in turn, this perspective has spurred tremendous theoretical work andhas had a profound impact in many important real-world applications (e.g., magneticresonance imaging Lustig et al. (2007); Lustig et al. (2008)). Meanwhile, we hope that ourPCR results offer a new, complementary perspective, where the notion of identifiabilityis associated with the minimum `2-norm model parameter – in the context of prediction,this also pleasingly corresponds to the only model of importance. Additionally, it isworth remarking that an added benefit of PCR is that its conditions can be verified inpractice by simply observing the spectrum of the covariates. That is, if they exhibitlow-dimensional structure, then our results suggest that PCR should achieve desirableprediction performance. This is contrast with standard sparsity assumptions, which arearduous to verify in general.
� 5.5.2 PCR Robustness Properties

Implicit De-noising

By Theorem 5.3.1, we argue that PCR, without any change, is robust to noisy and sparsecovariates. In particular, despite only having access to Ztrain – the corrupted version of
Mtrain with noisy, missing entries – we show that PCR recovers the underlying modelparameter β∗ with high probability. In fact, PCR’s parameter estimation error rate matchesthe minmax rate achieved by OLS (up to logarithmic factors) if one had perfectly observedthe true covariates.
Noise Agnostic

Importantly, we note that PCR does not require any knowledge about the underlyingnoise model that corrupts the covariates to achieve consistency with respect to bothparameter estimation (Theorem 5.3.1) and prediction (Theorem 5.3.2 and Corollary 5.3.1).This can be also be seen through PCR’s connection to HSVT, as stated by Proposition5.3.1, since it is well-known that HSVT can recover the ground-truth matrix from its noisy
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observations without knowledge of the underlying noise distribution (e.g., see Chatterjee(2015a)). In contrast, despite the exciting recent advancements in the high-dimensionalerror-in-variable regression literature (e.g., Loh and Wainwright (2012); Datta and Zou(2017); Rosenbaum and Tsybakov (2013)), the current inventory of methods falls short asthey require knowledge of the underlying covariate noise model (i.e., its second momentmatrix) to recover a sparse model parameter.
Implicit Regularization

It is well-known that PCR can be viewed as a regularized estimator. To see this, considerany k ∈ [n ∧ p]. Then β̂ = PCR(Z , y, k) can equivalently be expressed as
β̂ = argmin

w∈Rp

∥∥y − (1/ρ̂)Zw∥∥22 subject to V̂ T
p−kw = 0,

where V̂p−k = [v̂k+1, . . . , v̂p] ∈ Rp×(p−k) denotes an orthonormal basis that is orthogonalto the subspace spanned by the top k principal components of Z . Thus, if only a propersubset of principal components are chosen (i.e., k < n ∧ p), then PCR enforces a hardconstraint that the resulting estimator must lie within the subspace spanned by theselected principal components.
� 5.5.3 Regression with Mixed Valued Covariates

Setup and Question

Regression models with mixed discrete and continuous covariates are ubiquitous in practice.With respect to discrete covariates, a standard generative model assumes the covariatesare generated from a categorical distribution (i.e., a multinomial distribution). Formally, acategorical distribution for a random variable X is such that X has support in [G] and theprobability mass function (pmf) is given by P(X = g) = ρg for g ∈ [G] with ∑G
g=1 ρg = 1.

For simplicity, we focus on the case where the regression is being done with a collectionof Bernoulli random variables (i.e., each X has support in {0, 1}). The extension to generalcategorical random variables, in addition to continuous covariates, is straightforward anddiscussed below.
A standard model in regression with Bernoulli random variables assumes that the responsevariable is a linear function of the latent parameters of the observed discrete outcomes.Formally, Mi = [ρ(i)1 , ρ(i)2 , . . . , ρ(i)

p ]T ∈ Rp, where ρ(i)
j for j ∈ [p] is the latent Bernoulli
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parameter for the j-th feature and i-th measurement. Further, the mean of the responsevariable satisfies E[yi] = ∑p

j=1 ρ(i)
j βj . However, for each feature, we only get binaryobservations, i.e., Z = [Zij ] ∈ {0, 1}n×p.

As an example, consider E[Zi] to be the expected health outcome of patient i. Let there bea total of p possible observable binary symptoms (e.g., cold, fever, headache, etc.). Then
Mi denotes the vector of (unobserved) probabilities that patient i has some collectionof symptoms (e.g., Mi1 = P(patient i has a cold),Mi2 = P(patient i has a fever), . . . ).However, for each patient, we only observe the binary outcome of these symptoms (i.e.,
Zi1 = 1(patient i has a cold), Zi2 = 1(patient i has a fever)), even though the response islinearly related with the underlying probabilities of the symptoms. The objective in sucha setting is to accurately recover Mβ∗ given (y,Z ).
Current Practice

A common practice for regression with categorical variables is to build a separate regressionmodel for every possible combination of the categorical outcomes (i.e., to build a separateregression model conditioned on each outcome). In the healthcare example above, thiswould amount to building 2p separate regression models corresponding to each combinationof the observed p binary symptoms. This is clearly not ideal for the following two majorreasons: (i) the sample complexity is exponential in p; (ii) we do not have access tothe underlying probabilities Mi (recall Zi ∈ {0, 1}p), which is what we actually want toregress y against.
Returning to our Framework

Recall from Property 4.1.5 that the key structure we require of the covariate noise is that
E[H ] = 0. Now even though Zij ∈ {0, 1}, it still holds that E[Zij ] = ρ(i)

j = Mij , whichimmediately implies E[H ] = E[Z −M ] = 0. Further, the entries of H are sub-Gaussian asthey are bounded by one in absolute value. Thus, the key conditions on the noise aresatisfied for PCR to effectively (in the `2,∞-norm) de-noise Z to recover the underlyingprobability matrix M; this, in turn, allows PCR to produce accurate estimates M̂β̂ throughregression, as seen by Theorem 5.3.2. Pleasingly, the required sample complexity growswith the rank of M (the inherent model complexity), rather than exponentially in p. Further,the de-noising step allows us to regress against the estimated latent probabilities ratherthan their “noisy”, binary outcomes.
Extension from Bernoulli to General Categorical Distributions
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Recall from above that a categorical random variable has support in [G] for G ∈ N. In thiscase, one can translate a categorical random variable to a a collection of binary randomvariables using the standard one-hot encoding method. It is worth highlighting that byusing one-hot encoding, the entries within any row of H are not independent as theyencodes the same categorical variable. However, from Property 4.1.5, we only requireindependence of the noise across rows, not within them. Thus, this lack of independenceis not an issue. Further, the generalization to multiple categorical variables, in additionto continuous covariates, is achieved by simply appending these features to each row andcollectively de-noising the entire matrix before the regression step.
� 5.6 Proofs: Equivalence

Proof of Proposition 5.3.1. To prove the equivalence of the model parameter estimators,observe that
ŵ = (ZtrainV̂k )†y = (Ûk Ŝk )†y = Ŝ−1

k ÛT
k y,

where ŵ is defined as in Algorithm 2. As a result, it follows that β̂PCR = V̂k Ŝ−1
k ÛT

k y.Since M̂train = Ûk Ŝk V̂ T
k , we have that

β̂HSVT = M̂†trainy = V̂k Ŝ−1
k ÛT

k y.

This establishes the first equivalence.
Using the above, observe that

Ztrainβ̂PCR = ÛŜV̂ T V̂k Ŝ−1
k ÛT

k y = Ûk ÛT
k y

and
M̂trainβ̂HSVT = Ûk Ŝk V̂ T

k V̂k Ŝ−1
k ÛT

k y = Ûk ÛT
k y.

This concludes the proof. �

� 5.7 Proof Notations

For ease of notation, we adopt the following notation throughout the rest of the proofs inthis chapter:
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Underlying Covariates. We denote the latent training and testing covariate matrices as

M = Mtrain and M ′ = Mtest,
respectively. Further, we assume their SVDs take the following form:

M = UMSMV T
M = r∑

`=1 s`u` ⊗ v` and M ′ = UM ′SM ′V T
M ′ = r′∑

`=1 s
′
`u′` ⊗ v ′` .

Perturbations. We denote the training and testing covariate perturbations as
H = Htrain and H ′ = Htest.

Observed Covariates. We denote the observed training and testing covariate matrices as
Z = Ztrain and Z ′ = Ztest,

respectively, which admit the following SVDs:
Z = ÛZ ŜZ V̂ T

Z =∑
`≥1 ŝ` û` ⊗ v̂` and Z ′ = ÛZ ′ŜZ ′V̂ T

Z ′ =∑
`≥1 ŝ

′
` û′` ⊗ v̂ ′` .

Due to the perturbations of H and H ′, Z and Z ′ may be full-rank.
Estimators. We denote the estimates of the latent training and testing covariate matricesvia HSVT as

M̂ = HSVT(Z , r) and M̂ ′ = HSVT(Z ′, r′),
respectively, with the following SVDs:

M̂ = 1̂
ρ ÛMŜMV̂ T

M = 1̂
ρ

r∑
`=1 ŝ` û` ⊗ v̂` and M̂ ′ = 1̂

ρ′ ÛM ′ŜM ′V̂ T
M ′ = 1̂

ρ′
r′∑
`=1 ŝ

′
` û′` ⊗ v̂ ′` ,

where (ρ̂, ρ̂′) are the proportion of observed entries in (Z ,Z ′).
Projection Matrices. For any matrix Q with orthonormal columns, let PQ := QQT denotethe projection matrix onto the subspace spanned by the columns of Q.
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Constants & Model Parameters. Throughout these proofs, we will let C > 0 denote anabsolute constant that is independent of any model parameters. For ease of notation, wewill allow the value of C to change from line to line. The dependencies on the modelparameters (e.g., σ, γ, K ) will be made explicit.
Remark 5.7.1. Although Property 4.1.5 states that the entries of H and H ′ are indepen-
dent, our analyses allow for independent rows (as opposed to entries). For the proofs
to follow through, we only need the response (target unit) noise to be independent from
the covariate (donor) noise. Thus, for the remainder of these proofs, we operate in the
more general setting where we have row-wise independence of H and H ′, instead of just
restricted entry-wise independence.

� 5.8 Proofs: Impact of Measurement Noise and Sparsity

In this section, we study the impact of measurement noise and sparsity in the covariateobservations through the matrix Z −ρM . Specifically, we analyze the impact of perturba-tions through the operator (spectral) norm and `2,∞-norm, and state the primary resultsin Lemmas 5.8.4 and 5.8.6, respectively. These results will be critical as we bound theprediction and parameter estimation errors in high probability.
Importantly, we highlight that the following results hold for any M that satisfies Property4.1.2, H that satisfies Property 4.1.5, and Z that satisfies Property 4.1.6. For any n × pmatrix Q, let Qi ∈ Rp and Qj ∈ Rn denote the i-th row and j-th column of Q, respectively.
� 5.8.1 Operator Norm
Lemma 5.8.1. Suppose that Y ∈ Rn and P ∈ {0, 1}n are random vectors. Then,∥∥Y ◦ P∥∥ψ2 ≤

∥∥Y∥∥ψ2 .
Proof. Given a deterministic binary vector P0 ∈ {0, 1}n, let IP0 = {i ∈ [n] : P0i = 1}.Observe that

Y ◦ P0 = ∑
i∈IP0

eieTi Y .

Here, ◦ denotes the Hadamard product (entrywise product) of two matrices. By definitionof the ψ2-norm,∥∥Y∥∥ψ2 = sup
u∈Sn−1

∥∥∥uTY∥∥∥
ψ2 = sup

u∈Sn−1 inf {t > 0 : EY
[ exp (|uTY |2/t2)] ≤ 2} .
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Let u0 ∈ Sn−1 denote the maximum-achieving unit vector (such u0 exists because inf{· · ·}is continuous with respect to u and Sn−1 is compact). Then,∥∥Y ◦ P∥∥ψ2 = sup

u∈Sn−1
∥∥∥uTY ◦ P∥∥∥

ψ2= sup
u∈Sn−1 inf {t > 0 : EY ,P

[ exp (|uTY ◦ P|2/t2) ] ≤ 2}
= sup

u∈Sn−1 inf {t > 0 : EP
[
EY
[ exp (|uTY ◦ P|2/t2) ∣∣∣ P]] ≤ 2}

= sup
u∈Sn−1 inf

t > 0 : EP

[
EY

[ exp(∣∣∣uT ∑
i∈IP

eieTi Y
∣∣∣2/t2) ∣∣∣∣ P]] ≤ 2


= sup

u∈Sn−1 inf
t > 0 : EP

[
EY

[ exp(∣∣∣∣(∑
i∈IP

eieTi u
)T
Y
∣∣∣∣2/t2) ∣∣∣∣ P]] ≤ 2

 .

For any u ∈ Sn−1 and P0 ∈ {0, 1}n, observe that
EY

[ exp(∣∣∣∣(∑
i∈IP

eieTi u
)T
Y
∣∣∣∣2/t2) ∣∣∣∣ P = P0

]
≤ EY

[ exp (|uT0 Y |2/t2)].
Therefore, taking supremum over u ∈ Sn−1, we obtain∥∥Y ◦ P∥∥ψ2 ≤

∥∥Y∥∥ψ2 .
�

Lemma 5.8.2. Assume Properties 4.1.2, 4.1.5, 4.1.6 hold. Then for all i ∈ [m],∥∥Zi − ρMi
∥∥
ψ2 ≤ C (1 + K ).

Proof. Let P ∈ {0, 1}m×n denote a random matrix of independent Bernoulli randomvariables with parameter ρ. Further, let Y = M + H . Note that Zi = Yi ◦ Pi whenProperty 4.1.6 is assumed and ? is identified with 0. By triangle inequality,∥∥Zi − ρMi
∥∥
ψ2 = ∥∥(Yi ◦ Pi)− ρMi

∥∥
ψ2= ∥∥(Yi ◦ Pi)− (Mi ◦ Pi)− ρMi + (Mi ◦ Pi)∥∥ψ2

≤
∥∥(Yi −Mi) ◦ Pi∥∥ψ2 + ∥∥(Mi ◦ Pi)− ρMi

∥∥
ψ2 .
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By the definition of Y , Property 4.1.5, and Lemma 5.8.1, we have that∥∥(Yi −Mi) ◦ Pi∥∥ψ2 ≤
∥∥Yi −Mi

∥∥
ψ2 = ∥∥Hi∥∥ψ2 ≤ K.

Moreover, Property 4.1.2 and the i.i.d. property of Pij for different j gives
∥∥(Mi ◦ Pi)− ρMi

∥∥2
ψ2 = sup

u∈Sn−1

∥∥∥∥∥∥
n∑
j=1 ujMij

(
Pij − ρ

)∥∥∥∥∥∥
2
ψ2

≤ sup
u∈Sn−1

n∑
j=1 u

2
j
∥∥Mij (Pij − ρ)∥∥2

ψ2

≤
( sup
u∈Sn−1

n∑
j=1 u

2
j max
i∈[m]

∣∣Mij
∣∣2) · ∥∥P11 − ρ∥∥2

ψ2
≤
∥∥P11 − ρ∥∥2

ψ2 .
The first inequality follows from Property 3.2.2, the second inequality is immediate, andthe last inequality follows from Property 4.1.2. Lastly, ∥∥P11 − ρ∥∥ψ2 ≤ C because P11−ρis a bounded random variable in [−ρ, 1− ρ]. �

Lemma 5.8.3. Suppose Property 4.1.6 holds. Then,∥∥∥E(Z − ρM)T (Z − ρM)∥∥∥ ≤ ρ(1− ρ) (∥∥∥diag(MTM)∥∥∥ + ∥∥∥diag(E[HTH ])∥∥∥) + ρ2∥∥∥E[HTH ]∥∥∥.
Proof. We follow the proof of Lemma A.2 of Shah and Song (2018) and state it here forcompleteness. Throughout, for any matrix Q ∈ Rn×p, let Q` ∈ Rp denote its `-th row.
To begin, let Y = M + H . Further, observe that

E[(Z − ρM)T (Z − ρM)] = n∑
`=1 E[(Z` − ρM` )⊗ (Z` − ρM` )].

Importantly, we highlight the following relations: for any (`, i) ∈ [n]× [p],
E[Z`i] = ρM`i

E[Z 2̀
i] = ρ2E[Y 2̀

i].
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Now, let us fix a row ` ∈ [n] and denote

W (`) = (Z` − ρM` )⊗ (Z` − ρM` ).
Using the linearity of expectations, the expected value of the (i, j)-th entry of W (`) canbe written as

E[W (`)
ij ] = E[Z`iZ`j ]− ρE[Z`iM`j ]− ρE[Z`jM`i] + ρ2E[M`iM`j ].

Suppose i = j , then
E[W (`)

ii ] = ρE[Y 2̀
i]− ρ2M 2̀

i = ρ(1− ρ)E[Y 2̀
i] + ρ2E[(Y`i −M`i)2]. (5.5)

On the other hand, if i 6= j ,
E[W (`)

ij ] = ρ2E[(Y`i −M`i)(Y`j −M`j )]. (5.6)
Therefore, we can express W (`) as the sum of two matrices where the diagonal componentsare generated from (5.5) and the off-diagonal components are generated from (5.6), i.e.,
E[W (`)] = E

(
ρ(1− ρ)diag(Y` ⊗ Y` ) + ρ2diag(H` ⊗H` )) + E

(
ρ2(H` ⊗H` )− ρ2diag(H` ⊗H` ))= ρ(1− ρ)E[diag(Y` ⊗ Y` )] + ρ2E[H` ⊗H` ].

Taking the sum over all rows ` ∈ [n] yields
E[(Z − ρM)T (Z − ρM)] = ρ(1− ρ)diag(E[Y TY ]) + ρ2E[HTH ]. (5.7)

To complete the proof, we apply triangle inequality to (5.7) to obtain∥∥∥E[(Z − ρM)T (Z − ρM)]∥∥∥ ≤ ρ(1− ρ)∥∥∥diag(E[Y TY ])∥∥∥ + ρ2∥∥∥E[HTH ]∥∥∥.
Since H is zero mean, we have∥∥∥diag(E[Y TY ])∥∥∥ = ∥∥∥diag(MTM) + diag(E[HTH ])∥∥∥

≤
∥∥∥diag(MTM)∥∥∥ + ∥∥∥diag(E[HTH ])∥∥∥.

Collecting terms completes the proof. �
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Lemma 5.8.4. Assume Properties 4.1.2, 4.1.5, 4.1.6 hold. Then for any s ≥ 0, the following
holds w.p. at least 1− 2 exp(−s2):∥∥Z − ρM

∥∥ ≤ √C ′ (√n+√p+ s
)
,

where C ′ = C (1 + σ2)(1 + γ2)(1 + K 2).
Proof. Let H̃ = Z −ρM with second moment matrix Σ = (1/n)E[H̃T H̃ ]. Applying triangleinequality gives

1
n

∥∥∥H̃
∥∥∥2 = ∥∥∥∥1

nH̃T H̃
∥∥∥∥ ≤ ∥∥Σ

∥∥ + ∥∥∥∥1
nH̃T H̃ − Σ

∥∥∥∥.
By Lemma 5.8.2, we establish that the rows of H̃ are sub-gaussian with∥∥∥H̃i∥∥∥

ψ2 ≤ CK,

which are also independent by assumption; hence, we can apply Lemma 3.2.5 to obtain∥∥∥∥1
nH̃T H̃ − Σ

∥∥∥∥ ≤ CK 2 max(δ, δ2), where δ = C
√
p
n + s√

n

with probability at least 1− exp(−s2). Next, we apply Lemma 5.8.3, which gives
∥∥Σ
∥∥ ≤ 1

n

(
ρ(1− ρ) (∥∥∥diag(MTM)∥∥∥ + ∥∥∥diag(E[HTH ])∥∥∥) + ρ2∥∥∥E[HTH ]∥∥∥)

≤ ρ(1− ρ)(1 + σ2) + ρ2γ2.
Let C ′ = C (1 + γ2)(1 + K 2)(1 + σ2). Combining the above results yields,

1
n

∥∥∥H̃
∥∥∥2
≤ ρ(1− ρ)(1 + σ2) + ρ2γ2 + CK 2 max(δ, δ2)
≤ C ′(1 + max(δ, δ2))
≤ C ′(1 + δ)2
≤ C ′

(1 + p
n + s2

n

)
.

Putting everything together, we conclude∥∥Z − ρM
∥∥ ≤ √C ′ (√n+√p+ s

)
.
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�

� 5.8.2 `2,∞-norm
To prove Lemma 5.8.6, we will establish that the columns of Z −ρM are also sub-gaussian.
Lemma 5.8.5. Assume Properties 4.1.2, 4.1.5, 4.1.6 hold. Then for every j ∈ [p],∥∥Zj − ρMj

∥∥
ψ2 ≤ CK.

Proof. Let ej denote the j-th canonical vector. Observe that
∥∥Zj − ρMj

∥∥2
ψ2 = sup

u∈Sn−1
∥∥∥uT (Zj − ρMj

)∥∥∥2
ψ2

= sup
u∈Sn−1

∥∥∥uT (Z − ρM) ej∥∥∥2
ψ2

= sup
u∈Sn−1

∥∥∥∥∥ n∑
i=1 ui(Zi − ρMi)ej∥∥∥∥∥

2
ψ2(a)

≤ C sup
u∈Sn−1

n∑
i=1 u

2
i
∥∥(Zi − ρMi)ej∥∥2

ψ2
≤ C max

i∈[n]
∥∥Zi − ρMi

∥∥2
ψ2 ,

where (a) follows from Property 3.2.2. The conclusion then follows from Lemma 5.8.2. �
Lemma 5.8.6. Assume Properties 4.1.2, 4.1.5, 4.1.6 hold. For any s ≥ 0, the following
inequality holds w.p. at least 1− p · exp[−cmin ( s2

K 4n , s
K 2
)]

:

max
j∈[p]

∥∥Zj − ρMj
∥∥22 ≤ n(σ2ρ + ρ(1− ρ)) + s.

Proof. By Lemma 5.8.5, we have that the columns of Z − ρM are sub-gaussian randomvectors in Rn satisfying ∥∥Zj − ρMj
∥∥
ψ2 ≤ CKfor all j ∈ [p]. Further, since the rows of Z − ρM are assumed to be independent, itfollows that for every column j ∈ [p], the coordinates of Zj − ρMj are independent, meanzero, sub-gaussian random variables.

To that end, let us fix j ∈ [p] and define X = Zj − ρMj ∈ Rn where Xi = Zij − ρMij .
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Observe that
∥∥X∥∥22 − E

∥∥X∥∥22 = n∑
i=1 (X2

i − E[X2
i ])

is a sum of independent, mean zero, sub-exponential random variables with∥∥∥X2
i − E[X2

i ]∥∥∥
ψ1 ≤ C

∥∥∥X2
i

∥∥∥
ψ1 ≤ C

∥∥Xi∥∥2
ψ2 ≤ CK 2.

Moreover, observe that
E[X2

i ] = Var(Xi) = Var(Zij ) ≤ σ2ρ + ρ(1− ρ).
As a result, using Bernstein’s inequality (Theorem 3.2.1), we have that∥∥Zj − ρMj

∥∥22 ≤ n(σ2ρ + ρ(1− ρ)) + s

with probability at least 1− exp[−cmin ( s2
K 4n , s

K 2
)].

We now unfix j by applying a union bound. Thus, for any s ≥ 0
P

(max
j∈[p]

∥∥Zj − ρMj
∥∥22 ≥ nσ̃2 + s

)
≤ p · exp[−cmin( s2

K 4n, sK 2
)]
,

where σ̃2 = σ2ρ + ρ(1− ρ). This completes the proof. �

� 5.9 Proofs: HSVT Estimation Error

In order to establish Lemma 5.2.1, we state its deterministic counterpart in Lemma 5.9.6,which expresses the estimation error in terms of the operator and `2,∞-norms of Z − ρM .Lemmas 5.8.4 and 5.8.6 of Appendix 5.8 are then utilized to analyze our particular setting ofinterest, i.e., when Properties 4.1.2, 4.1.5, and 4.1.6 hold. The remainder of the subsectionis dedicated to proving the helper lemmas of these results. We begin, however, withnotation and a useful observation of the HSVT operation.
Notation. Throughout this section, let

ν1 = ∥∥Z − ρM
∥∥. (5.8)
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Further, for any n × p matrix Q, let Qj ∈ Rp denote the j-th column of Q.
� 5.9.1 A Column Representation for the HSVT Operator
Consider a matrix Q ∈ Rn×p with the following SVD

Q = n∧p∑
i=1 σiui ⊗ vi = UΣV T .

We say Q̂ = HSVT(Q, k) if
Q̂ = r∑

i=1 σiui ⊗ vi = UrΣrV T
r ;

here, Ur ∈ Rm×k and Vr ∈ Rn×k denote the matrices consisting of the top k left and rightsingular vectors of Q, respectively, and Sr = diag(s1, . . . , sr) ∈ Rk×k . We now show how
PUr ∈ Rm×m relates to the HSVT operation that retains the top k singular components.
Lemma 5.9.1. Let Q̂ = HSVT(Q, k). Then for any j ∈ [p],

PUrQj = Q̂j .

Proof. Let ej ∈ Rp denote the canonical basis vector in Rp. Then using the orthonormalityproperty of U , it follows that
PUrQj = r∑

i=1 uiu
T
i Qj

= r∑
i=1 uiu

T
i

(n∧p∑
`=1 σ`u`v

T
`

)
ej

= ( r∑
i=1

n∧p∑
`=1 σ`uiu

T
i u`vT`

)
ej

= ( r∑
i=1 σiuiv

T
i

)
ej = Q̂j .

This completes the proof. �

Remark 5.9.1. Suppose we have randomly missing data. By Lemma 5.9.1, and linearity
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of the projection operator, we note that

M̂j = (1/ρ̂) PÛM (Zj ). (5.9)
� 5.9.2 High Probability Bounds on Noise Deviation
High-Probability Events. We define the following events: for any δ1, δ2, δ3, δ4 > 0,

E1 = {ν1 ≤ C√(1 + σ2)(1 + γ2)(1 + K 2) (√n+√p+√log(1/δ1))}
E2 =


(1−√C log(1/δ2)

npρ

)
ρ ≤ ρ̂ ≤ 11−√C2 log(1/δ2)

npρ

ρ


E3 = {max

j∈[p]
∥∥Zj − ρMj

∥∥22 ≤ n(σ2ρ + ρ(1− ρ)) + CK 2√n log(p/δ3)}
E4 = {max

j∈[p]
∥∥PUM (Zj − ρMj )∥∥22 ≤ r(σ2ρ + ρ(1− ρ)) + CK 2√r log(p/δ4)} .

Finally, we denote
E = E1 ∩ E2 ∩ E3 ∩ E4. (5.10)

E1 occurs with high probability.

Lemma 5.9.2. Assume Properties 4.1.2, 4.1.5, and 4.1.6 hold. Then for any δ1 > 0, it
follows that P(Ec1 ) ≤ δ1.

Proof. The proof follows immediately from Lemma 5.8.4 for any s ≥ C√log(1/δ1). �

E2 occurs with high probability.

Lemma 5.9.3. Assume Property 4.1.6 holds. Then for any δ2 > 0, it follows that
P(Ec2 ) ≤ δ2.

Proof. By the Binomial Chernoff bound, for α > 1,
P (ρ̂ > αρ) ≤ exp(− (α − 1)2

α + 1 npρ
) and P (ρ̂ < ρ/α) ≤ exp(− (α − 1)22α2 npρ

)
.

By the union bound,
P (ρ/α ≤ ρ̂ ≤ αρ) ≥ 1− P (ρ̂ > αρ)− P (ρ̂ < ρ/α) .
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Noticing α + 1 < 2α < 2α2 for all α > 1, and setting the above probability to be at least1− δ2 and solving for δ2 completes the proof. �

E3 and E4 occur with high probability.

Lemma 5.9.4. Assume Properties 4.1.2, 4.1.5, and 4.1.6 hold. Then for any δ3 > 0, it
follows that P(Ec3 ) ≤ δ3.

Proof. The proof follows immediately from Lemma 5.8.6 for any s ≥ CK 2√n log(p/δ3). �
Lemma 5.9.5. Assume Properties 4.1.2, 4.1.5, and 4.1.6 hold. Then for any δ4 > 0, it
follows that P(Ec4 ) ≤ δ4.

Proof. Using the arguments made in the proof of Lemma 5.8.6, we see that the columns of
Z − ρM are sub-gaussian random vectors with independent, mean zero, sub-gaussiancoordinates. Additionally, its sub-gaussian norms are bounded by CK .
Now, let us fix a column j ∈ [p], and let X = Zj − ρMj such that Xt = Ztj − ρMtj . Then,we can express ∥∥PUM (Zj − ρMj )∥∥22 = ∥∥PUMX∥∥22.By Hanson-Wright’s inequality (Theorem 3.2.4), we obtain∥∥PUMX∥∥22 ≤ E

∥∥PUMX∥∥22 + s

with probability at least 1− exp[−cmin ( s2
K 4r , s

K 2
)]. Note that we have made use of thefollowing facts: ∥∥PUM∥∥ = 1 and ∥∥PUM∥∥2

F = r. To bound the expected value, observe that
E
∥∥PUMX∥∥22 = r∑

i=1 E[〈X, ui〉2] = r∑
i=1 Var(〈X, ui〉),

where ui denotes the i-th column of UM (the i-th left singular vector of M). By theindependence of the entries of X and the orthonormality of UM ,
Var(〈X, ui〉) = n∑

t=1 u
2
itVar(Xt) = n∑

t=1 u
2
itVar(Ztj ) ≤ σ2ρ + ρ(1− ρ).

We now unfix j by applying a union bound, which yields for any s ≥ 0,
P

(max
j∈[p]

∥∥PUM (Zj − ρMj )∥∥22 ≥ rσ̃2 + s
)
≤ p · exp[−cmin( s2

K 4r , sK 2
)]
,
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where σ̃2 = σ2ρ + ρ(1 − ρ). Setting the above probability to be less than δ4 andsolving for s, we establish that the probability is bounded above by δ4 if and only if
s ≥ CK 2√r log(p/δ4). �

� 5.9.3 Proof of Lemma 5.2.1
We begin by stating the key lemma used to prove Lemma 5.2.1.
Lemma 5.9.6. Suppose ρ/α ≤ ρ̂ ≤ αρ for some α ≥ 1. Then,

EHSVT(M̂) ≤ 4α2ν21
ρ4ns2

r

(∥∥Z − ρM
∥∥22,∞ + ∥∥M

∥∥22,∞
) + 4α2

ρ2n
∥∥PUM (Z − ρM)∥∥22,∞ + 2(α − 1)2

n
∥∥M
∥∥22,∞.

Proof. We prove our key lemma in three steps.
Step 1. Fix a column index j ∈ [p]. Observe that

M̂j −Mj = (M̂j − PÛMMj
) + (PÛMMj −Mj

)
.

Since rank(M̂) = r, it follows that PÛM is an orthogonal projection operator onto the spanof the top r left singular vectors of Z , namely, span {û1, . . . , ûr}. Therefore,
PÛMMj −Mj ∈ span{û1, . . . , ûr}⊥.

Additionally, by (5.9), we have that
M̂j − PÛMMj = 1̂

ρPÛMZj − PÛMMj ∈ span{û1, . . . , ûr}.
Hence, 〈M̂j − PÛMMj , PÛMMj −Mj〉 = 0, and∥∥∥M̂j −Mj

∥∥∥2
2 = ∥∥∥M̂j − PÛMMj

∥∥∥2
2 + ∥∥∥PÛMMj −Mj

∥∥∥2
2 (5.11)

by the Pythagorean theorem. It remains to bound the terms on the right hand side of(5.11).
Step 2. We begin by bounding the first term on the right hand side of (5.11). Again,applying Lemma 5.9.1, we can rewrite

M̂j − PÛMMj = 1̂
ρPÛMZj − PÛMMj = PÛM ((1/ρ̂)Zj −Mj

)
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= 1̂
ρPÛM (Zj − ρMj ) + ρ − ρ̂

ρ̂ PÛM (Mj ).
Using the Parallelogram Law (or, equivalently, combining Cauchy-Schwartz and AM-GMinequalities), we obtain

∥∥∥M̂j − PÛMMj

∥∥∥2
2 = ∥∥∥∥ 1̂

ρPÛM (Zj − ρMj ) + ρ − ρ̂
ρ̂ PÛM (Mj )∥∥∥∥2

2
≤ 2∥∥∥∥ 1̂

ρPÛM (Zj − ρMj )∥∥∥∥2
2 + 2∥∥∥∥ρ − ρ̂ρ̂ PÛM (Mj )∥∥∥∥2

2
≤ 2̂
ρ2
∥∥∥PÛM (Zj − ρMj )∥∥∥2

2 + 2(ρ − ρ̂ρ̂
)2 ∥∥Mj

∥∥22
≤ 2α2

ρ2
∥∥∥PÛM (Zj − ρMj )∥∥∥2

2 + 2(α − 1)2∥∥Mj
∥∥22. (5.12)

To arrive at the above inequality, note that Condition 2 implies 1/ρ̂ ≤ α/ρ and (ρ−ρ̂)/ρ̂2 ≤(α − 1)2. Further, using the Parallelogram Law, observe that the first term of (5.12) canbe decomposed as∥∥∥PÛM (Zj − ρMj )∥∥∥2
2 ≤ 2∥∥∥PÛM (Zj − ρMj )− PUM (Zj − ρMj )∥∥∥2

2 + 2∥∥PUM (Zj − ρMj )∥∥22.(5.13)
We now bound the first term on the right hand side of (5.13) separately. First, we applyTheorem 3.1.1 to arrive at the following inequality:∥∥∥sin Θ(ÛM ,UM )∥∥∥ ≤ 2∥∥Z − ρM

∥∥
ρsr

= 2ν1
ρsr

, (5.14)
where ÛM and UM denote the top r left singular vectors of Z and M , respectively. Then,it follows that∥∥∥PÛM (Zj − ρMj )− PUM (Zj − ρMj )∥∥∥2

2 ≤
∥∥∥sin Θ(ÛM ,UM )∥∥∥2

·
∥∥Zj − ρMj

∥∥22
≤ 2ν21
ρ2s2

r

∥∥Zj − ρMj
∥∥22.
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Combining the inequalities together, we have∥∥∥M̂j − PÛMMj

∥∥∥2
2 ≤ 4α2ν21

ρ4s2
r

∥∥Zj − ρMj
∥∥22 + 4α2

ρ2 ∥∥PUM (Zj − ρMj )∥∥22 + 2(α − 1)2∥∥Mj
∥∥22.(5.15)

Step 3. We now bound the second term of (5.11). Using (5.23), we obtain∥∥∥PÛMMj −Mj

∥∥∥2
2 = ∥∥∥PÛMMj − PUMMj

∥∥∥2
2

≤
∥∥∥sin Θ(ÛM ,UM )∥∥∥2

·
∥∥Mj

∥∥22
≤ 2ν21
ρ2s2

r

∥∥Mj
∥∥22. (5.16)

Inserting (5.15) and (5.16) back into (5.11), and observing that this inequality holds forevery column j ∈ [p] completes the proof. �

Completing Proof of Lemma 5.2.1

Proof. In Lemmas 5.9.2, 5.9.3, 5.9.4, and 5.9.5, set δi = δ/4 for any δ > 0. Then,
P(Ec) ≤ 4∑

i=1 P(Eci ) ≤ δ, (5.17)
where E is given by (5.10).
Let C ′ = C (1 + σ2)(1 + γ2)(1 + K 2). We then have the following bounds:

ν21 ≤ C ′ (n+ p+ log(1/δ))
ν21
s2
r
≤ C ′

(
r

n ∧ p + k log(1/δ)
np

)
1
n
∥∥Z − ρM

∥∥22,∞ ≤ C (1 + σ2) + CK 2√log(p/δ)
n1

n
∥∥PUM (Z − ρM)∥∥22,∞ ≤ C (1 + σ2) rn + CK 2√r log(p/δ)

n1
n
∥∥M
∥∥22,∞ ≤ 1.
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Further since, ρ ≥ C log(1/δ)

np , for sufficiently large absolute constant C , we have that
α = (1−√C log(1/δ)

np

)−1
≤ C

(α − 1)2 ≤ C log(1/δ)
np .

Collecting and simplifying the above bounds, we apply Lemma 5.9.6 to obtain
EHSVT(M̂) ≤ C ′

ρ4
(

r
n ∧ p + r log(1/δ)

np

)((1 + σ2) + K 2√log(p/δ)
n

)
+ C
ρ2
((1 + σ2)r

n + K 2√k log(p/δ)
n

)+ 2(α − 1)2
≤ C1
ρ4 r
n ∧ p + ∆,

where
∆ = C1K 2

ρ4
(

r
n ∧ p

√log(p/δ)
n + r log(1/δ)

np + r log(1/δ)√log(p/δ)
np3/2

)+ CK 2√r log(p/δ)
ρ2n

and C1 = C (1 + σ4)(1 + γ2)(1 + K 2). Letting C2 = C1K 2(1 + log3/2(1/δ)), we bound ∆ asfollows:
∆ ≤ C2

( 1
ρ4 r√

n(n ∧ p) + 1
ρ2
√
r
n

)√logn.
Relabeling the above bound as ∆ completes the proof. �

� 5.9.4 Corollaries: Bounds in Expectation
Corollary 5.9.1. Suppose the conditions of Lemma 5.2.1 hold. Then for any δ > 0,

E[EHSVT(M̂) | E ] ≤ C ′1
ρ4 r
n ∧ p + Γ,

where and

Γ = C ′2
(

r log(1/δ)
ρ4√n(n ∧ p) + √rρ2n

)√log(p/δ),
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C ′1 = C (1 + σ4)(1 + γ2)(1 + K 2), and C ′2 = C ′1K 2.

Proof. The proof follows that of Lemma 5.2.1 under the event E , which is given by(5.10). �

� 5.10 Proofs: Training Prediction Error

Throughout, we will make use of Proposition 5.3.1, i.e., M̂train = Z β̂ = M̂β̂. This allowsus to analyze M̂train through the lens of the HSVT estimator.
� 5.10.1 Proof of Lemma 5.3.1
Lemma 5.10.1. Suppose Property 4.1.4 holds. Consider M̂ = HSVT(Z , r). Then,

Etrain(M̂β̂) ≤ 2
n〈ε, M̂(β̂ − β∗)〉+ EHSVT(M̂) ∥∥β∗∥∥21.

Proof. By (5.1), we have that∥∥∥M̂β̂ − y
∥∥∥2

2 = ∥∥∥M̂β̂ −Mβ∗
∥∥∥2

2 + ∥ε∥22 − 2〈ε, (M̂β̂ −Mβ∗)〉. (5.18)
On the other hand, the optimality of β̂ yields∥∥∥M̂β̂ − y

∥∥∥2
2 ≤

∥∥∥M̂β∗ − y
∥∥∥2

2 = ∥∥∥(M̂ −M)β∗∥∥∥2
2 + ∥ε∥22 − 2〈ε, (M̂ −M)β∗〉. (5.19)

Combining (5.18) and (5.19), we have∥∥∥M̂β̂ −Mβ∗
∥∥∥2

2 ≤
∥∥∥(M̂ −M)β∗∥∥∥2

2 + 2〈ε, M̂(β̂ − β∗)〉.
We now apply (generalized) Hölder’s inequality with q1 = 1 and q2 =∞ to obtain∥∥∥(M̂ −M)β∗∥∥∥2

2 ≤
∥∥∥M̂ −M

∥∥∥2
2,∞ ·

∥∥β∗∥∥21.
Normalizing by n gives the desired result. �

Lemma 5.10.2. Suppose Property 4.1.4 holds. Consider M̂ = HSVT(Z , r). Then for any
δ > 0, the following holds w.p. at least 1− δ:

〈ε, M̂(β̂ − β∗)〉 ≤ σ2r + CK
(
K
√
r +√n∥∥β∗∥∥1 +√n · E1/2HSVT(M̂) ∥∥β∗∥∥1

) log(1/δ).
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Proof. Let Q = M̂M̂† ∈ Rn×n. Since Q is an orthogonal projection operator, it followsthat ∥∥Q

∥∥2
F = r, ∥∥Q

∥∥ = 1, and ∥∥Qu
∥∥2 ≤ ∥u∥2 for any u ∈ Rn. Now, observe that

〈ε, M̂(β̂ − β∗)〉 = 〈ε, M̂β̂
〉
− 〈ε, M̂β∗〉

= 〈ε,QMβ∗〉+ 〈ε,Qε〉 − 〈ε, M̂β∗〉. (5.20)
It remains to bound each term independently. To begin, for any s1 ≥ 0, Lemma 3.2.4 gives

P (〈ε,Qε〉 − E [〈ε,Qε〉] ≥ s1) ≤ exp[−cmin( s21
K 4r , s1

K 2
)]
.

Using the law of total expectations and the independence within the entries of ε, webound the expectation as
E [〈ε,Qε〉] = n∑

i,j=1 E
[
E[Qijεiεj | Q]] ≤ σ2 n∑

i=1 E[Qii] = σ2E[tr(Q)] = σ2r.
Further, for any s2 ≥ 0, Lemma 3.2.2 gives

P (〈ε,QMβ∗〉 ≥ s2) ≤ exp(− cs22
K 2∥∥Mβ∗

∥∥22
)
.

At the same time, if we let
v = M̂β∗∥∥∥M̂β∗

∥∥∥2
,

then for any s3 ≥ 0, Lemma 3.2.2 yields
P (−〈ε, v〉 ≥ s3) ≤ exp(−cs23

K 2
)
,

which implies that, with probability at least 1− exp(−cs23/K 2),
−〈ε, M̂β∗〉 ≤

∥∥∥M̂β∗
∥∥∥2 · s3.

By triangle inequality, it follows that∥∥∥M̂β∗
∥∥∥2 ≤

∥∥∥(M̂ −M)β∗∥∥∥2 + ∥∥Mβ∗
∥∥2 ≤ √n · E1/2HSVT(M̂) ∥∥β∗∥∥1 + ∥∥Mβ∗

∥∥2.
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Further, we have ∥∥Mβ∗
∥∥2 ≤ ∥∥M

∥∥2,∞∥∥β∗∥∥1 ≤ √n∥∥β∗∥∥1,where the final inequality follows from Property 4.1.2. To complete the proof, we fix any
δ > 0 and set the above probabilities to be less than δ/3 to solve for s1, s2, and s3. �
Completing Proof of Lemma 5.3.1

Proof. Let us fix some δ > 0. We define the event
Etrain = {〈ε, M̂(β̂ − β∗)〉 ≤ σ2r + CK

(
K
√
r +√n∥∥β∗∥∥1 +√n · E1/2HSVT(M̂) ∥∥β∗∥∥1

) log(1/δ)} ,
which occurs with probability at least 1− δ by Lemma 5.10.2. Recall Lemma 5.10.1:

Etrain(M̂β̂) ≤ 2
n〈ε, M̂(β̂ − β∗)〉+ EHSVT(M̂) ∥∥β∗∥∥21.

We note the following simplification:
EHSVT(M̂) ∥∥β∗∥∥21 + 1√

n
E1/2HSVT(M̂) · log(1/δ)∥∥β∗∥∥1

≤ C1r
ρ4(n ∧ p)∥∥β∗∥∥21 + 1√

n

√
C1r

ρ4(n ∧ p) log(1/δ)∥∥β∗∥∥1 + ∆∥∥β∗∥∥21 +√∆
n log(1/δ)∥∥β∗∥∥1

≤ C3r
ρ4(n ∧ p)∥∥β∗∥∥21 + ∆∥∥β∗∥∥21 +√∆

n log(1/δ)∥∥β∗∥∥1,
where C1,∆ are given by (5.2), and C3 = C1(1 + log(1/δ)). Additionally,
∆∥∥β∗∥∥21 +√∆

n log(1/δ)∥∥β∗∥∥1
≤
(

C2r
ρ4√n(n ∧ p) + C2√r

ρ2n
)√logp∥∥β∗∥∥21 +( √

C2r
ρ2n 14 (n ∧ p) + √C2r 14

ρn

) log 14 n · log(1/δ)∥∥β∗∥∥1
≤ C4

(
r

ρ4n 14 (n ∧ p) + √rρ2n
)√logp∥∥β∗∥∥21,

where C2 is given by (5.2) and C4 = C1K 2(1 + log 74 (1/δ)). Thus, under Etrain, we use theabove results to conclude
Etrain(M̂β̂) ≤ 2σ2r

n + C3r
ρ4(n ∧ p)∥∥β∗∥∥21 +( C4r√logp

ρ4n 14 (n ∧ p) + C4√r logp
ρ2n

)∥∥β∗∥∥21 + C4√r
n

∥∥β∗∥∥1 + C4√
n
∥∥β∗∥∥1
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≤ 2σ2r

n + C3r
ρ4(n ∧ p)∥∥β∗∥∥21 +( C4r√logp

ρ4n 14 (n ∧ p) + C4√r logp
ρ2n

)∥∥β∗∥∥21 + C4√
n
∥∥β∗∥∥1

≤ 2σ2r
n + C4r√logp

ρ4(n ∧ p) ∥∥β∗∥∥21 + C4√
n
∥∥β∗∥∥1.

Relabeling C4 completes the proof. �

� 5.10.2 Corollaries: Bounds in Expectation
Lemma 5.10.3. Suppose Property 4.1.4 holds. Consider M̂ = HSVT(Z , r). Then,

E〈ε, M̂(β̂ − β∗)〉 ≤ σ2r.
Proof. Let Q = M̂M̂† ∈ Rn×n. Using the arguments that led to (5.20) and linearity ofexpectations, we obtain

E〈ε, M̂(β̂ − β∗)〉 = E〈ε,QMβ∗〉+ E〈ε,Qε〉 − E〈ε, M̂β∗〉.

Under the independence assumptions, we have the following equalities:
E〈ε,QMβ∗〉 = 0

E〈ε, M̂β∗〉 = 0.
Using the cyclic and linearity properties of the trace operator, we further have

E〈ε,Qε〉 = E[tr(QεεT )]= tr(E[Q] · E[εεT ])
≤ σ2E[tr(Q)] = σ2r.

This completes the proof. �

Corollary 5.10.1. Suppose the conditions of Lemma 5.3.1 hold. Then for any δ > 0,

E[Etrain(M̂β̂) | E ] ≤ 2σ2r
n + C ′1

ρ4 r
n ∧ p

∥∥β∗∥∥21 + Γ1,
where

Γ1 = C ′2
(

r log(1/δ)
ρ4√n(n ∧ p) + √rρ2n

)√log(p/δ) ∥∥β∗∥∥21, (5.21)



Sec. 5.11. Proofs: Parameter Estimation 99

C ′1 = C (1 + σ4)(1 + γ2)(1 + K 2), and C ′2 = C ′1K 2.

Proof. We follow the proof of Lemma 5.3.1. In particular, under the event E (given by(5.10)), we apply Lemma 5.10.1 to obtain
E[Etrain(M̂β̂) | E ] ≤ 2

nE[〈ε, M̂(β̂ − β∗)〉 | E ] + E[EHSVT(M̂) | E ] · ∥∥β∗∥∥21.
We complete the proof by applying Lemmas 5.10.3 and 5.2.1. �

� 5.11 Proofs: Parameter Estimation

Proof Sketch. In order to provide a bound on the parameter estimation error (Theorem5.3.1), we will first show that V̂M is a good approximation to the latent feature spacespanned by the columns of VM , provided that Z is thresholded appropriately (Lemma5.11.1).Next, we state Lemma 5.11.3, which bounds the error between β̂ and any β∗ that is asolution to (5.1), when projected onto the subspace spanned by the columns of V̂M . Sinceour estimator β̂ lies within V̂M , which is shown to be close to VM as per Lemma 5.11.1, itfollows that β̂ is a good approximation of the component of β∗ that lives within VM . Thisis formalized in Lemma 5.11.4. For a geometric picture of the proof sketch, see Figure 5.2.
Notation. Throughout, we will denote UM⊥ ∈ Rn×(n−r) and VM⊥ ∈ Rp×(p−r) as theorthogonal complements to UM and VM . We continue to define ν1 = ∥∥Z − ρM

∥∥, as in(5.8), and also define
ΛM = 2ν1

ρsr
. (5.22)

� 5.11.1 Learning Subspaces
We first state Lemma 5.11.1, which bounds the misalignment between the subspacesspanned by V̂M and VM .
Lemma 5.11.1. Consider M̂ = HSVT(Z , r). Then,∥∥∥sin Θ(V̂M ,VM )∥∥∥ ≤ 2ν1

ρsr
.
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Figure 5.2: Interaction between the row and column space of M on any β∗, and the effect ofmisaligned subspaces between V̂M and V on the gap between β̂ (which lives in V̂M ) and PVMβ∗.
Proof. From Theorem 3.1.1 we have:∥∥∥sin Θ(V̂M ,VM )∥∥∥ ≤ ∥∥Z − ρM

∥∥
ρsr

= 2ν1
ρsr

, (5.23)
where V̂M and VM denote the top r right singular vectors of Z and M , respectively. �
� 5.11.2 Bounding the Projected Parameter Estimation Error
Having shown that V̂M is close to VM in Lemma 5.11.1, we now bound the gap between
β̂ and any β∗ that satisfies (5.1) in the subspace spanned by V̂M ; this is formalized inLemma 5.11.3.
Lemma 5.11.2. Recall that ŝi denotes the i-th singular value of Z . Then,

ρsi − ν1 ≤ ŝi ≤ ρsi + ν1.
Proof. Observing that Z = (Z −ρM) +ρM and applying Weyl’s Inequality (Lemma 3.1.1)completes the proof. �

Lemma 5.11.3. Suppose Property 4.1.4 holds. Consider M̂ = HSVT(Z , r). Then, for any
β∗ that is a solution to (5.1),∥∥∥PV̂M (β̂ − β∗)∥∥∥2

2 ≤ 2ρ̂2n(ρsr − ν1)2 (Etrain(M̂β̂) + EHSVT(M̂) ∥∥β∗∥∥21
)
.



Sec. 5.11. Proofs: Parameter Estimation 101

Proof. Recall that ŝi denotes the i-th singular value of Z . To achieve our desired result,we will upper and lower bound the `2-norm of M̂(β̂ − β∗). To begin, observe that∥∥∥M̂(β̂ − β∗)∥∥∥2
2 ≤ 2∥∥∥M̂β̂ −Mβ∗

∥∥∥2
2 + 2∥∥∥(M̂ −M)β∗∥∥∥2

2.
Now, recall that ρ̂M̂ = ÛMŜMV̂ T

M . Letting x = β̂ − β∗ and y = V̂ T
Mx , it follows that

ρ̂2∥∥∥M̂x
∥∥∥2

2 = xT V̂MŜMÛT
MÛMŜMV̂ T

Mx= xT V̂MŜ2
MV̂ T

Mx.

= r∑
i=1 ŝ

2
i y2

i ≥ ŝ2
r

r∑
i=1 y

2
i = ŝ2

r ·
∥∥y∥∥22.

Applying Lemma 5.11.2 and combining the above results completes the proof. �

Below, we state Lemma 5.11.4, which provides a deterministic bound between β̂ and theunique β∗ satisfying (5.1) with minimum `2-norm.
Lemma 5.11.4. Suppose Property 4.1.4 holds. Consider M̂ = HSVT(Z , r) and the unique
β∗ that satisfies (5.1) with minimum `2-norm. Then,∥∥∥β̂ − β∗∥∥∥2

2 ≤ 2ρ̂2n(ρsr − ν1)2 (Etrain(M̂β̂) + EHSVT(M̂) ∥∥β∗∥∥21
) + Λ2

M
∥∥β∗∥∥22, (5.24)

where ΛM is given by (5.22).
Proof. To begin, observe that∥∥∥β̂ − β∗∥∥∥2

2 = ∥∥∥PV̂M (β̂ − β∗)∥∥∥2
2 + ∥∥∥PV̂M⊥(β̂ − β∗)∥∥∥2

2.To bound the first term of the above inequality, we can appeal to Lemma 5.11.3. Thus, itremains to bound the second expression.
Observing that V̂ T

M⊥β̂ = 0 yields∥∥∥PV̂M⊥(β̂ − β∗)∥∥∥2
2 = ∥∥∥PV̂M⊥β∗∥∥∥2

2.
Let VM⊥ ∈ Rp×(p−r) denote the orthogonal complement of VM . Since V T

M⊥β∗ = 0 by
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assumption, we apply Lemma 5.11.1 to obtain∥∥∥PV̂M⊥β∗∥∥∥2

2 = ∥∥∥(PV̂M⊥ − PVM⊥)β∗ + PVM⊥β∗∥∥∥2
2= ∥∥∥(PV̂M⊥ − PVM⊥)β∗∥∥∥2

2= ∥∥∥(PVM − PV̂M )β∗∥∥∥2
2

≤
∥∥∥sin Θ(V̂M ,VM )∥∥∥2

·
∥∥β∗∥∥22 ≤ Λ2

M ·
∥∥β∗∥∥22,

where ΛM is given by (5.24). Putting everything together and applying Lemma 5.11.3, wearrive at the following inequality:∥∥∥β̂ − β∗∥∥∥2
2 ≤

∥∥∥PV̂M (β̂ − β∗)∥∥∥2
2 + Λ2

M
∥∥β∗∥∥22

≤ 2ρ̂2n(ρsr − ν1)2 (Etrain(M̂β̂) + EHSVT(M̂) ∥∥β∗∥∥21
) + Λ2

M
∥∥β∗∥∥22. (5.25)

This completes the proof. �

� 5.11.3 Proof of Theorem 5.3.1
Proof. From Lemma 5.11.4, we have∥∥∥β̂ − β∗∥∥∥2

2 ≤ 2ρ̂2n(ρsr − ν1)2 (Etrain(M̂β̂) + EHSVT(M̂) ∥∥β∗∥∥21
) + Λ2

M
∥∥β∗∥∥22.

Now, suppose E , given by (5.10), occurs. Then by Lemmas 5.2.1 and 5.3.1, we note that
Etrain(M̂β̂), EHSVT(M̂) ≤ 2σ2r

n + C2r√logp
ρ4(n ∧ p) ∥∥β∗∥∥21 + ∆1, (5.26)

where C2,∆1 are given by (5.3). Further, under E and Property 4.1.3,
ν21 ≤ C3(n+ p+ log(1/δ))

Λ2
M ≤

C3
ρ2
(

r
n ∧ p + r log(1/δ)

np

)
,

where C3 = C (1 + σ2)(1 + γ2)(1 + K 2). Our conditions on ρ additionally yield
2ρ̂2n(ρsr − ν1)2 ≤ C rp. (5.27)
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Collecting terms and simplifying gives us the desired bound:
∥∥∥β̂ − β∗∥∥∥2

2 ≤ r
p

(
Cσ2r
n + C2r√logp

ρ4(n ∧ p) ∥∥β∗∥∥21 + ∆1
)+ C3r

ρ2(n ∧ p)∥∥β∗∥∥22.
The proof is complete after relabeling constants. �

� 5.12 Proofs: Testing Prediction Error

Having shown that V̂M is close to VM (Lemma 5.11.1), and β̂ is close to the unique β∗that lives within VM (Theorem 5.3.1), we are now ready to complete the proof for ourpost-intervention (test) counterfactual prediction error.
Notation. As before, we define ν1 = ∥∥Z − ρM

∥∥ and ΛM = 2ν1/(ρsr), given by (5.8) and(5.22), respectively. Additionally, we define ν′1 = ∥∥Z ′ − ρM ′∥∥.
We also define the following events: for any δ > 0,

E ′1 = {ν′1 ≤ C√(1 + σ2)(1 + γ2)(1 + K 2) (√m+√p+√log(1/δ))}
E ′2 =


(1−√C log(1/δ)

mpρ

)
ρ ≤ ρ̂′ ≤ 11−√C log(1/δ)

mpρ

ρ


E ′3 = {max

j∈[p]
∥∥∥Z ′j − ρM ′j∥∥∥2

2 ≤ m(σ2ρ + ρ(1− ρ)) + CK 2√m log(p/δ)}
E ′4 = {max

j∈[p]
∥∥∥PUM (Z ′j − ρM ′j )∥∥∥2

2 ≤ r′(σ2ρ + ρ(1− ρ)) + CK 2√r′ log(p/δ)}
E ′ = E ∩ E ′1 ∩ E ′2 ∩ E ′3 ∩ E ′4, (5.28)

where E is given by (5.10).
� 5.12.1 Helper Lemmas
Lemma 5.12.1. Let Property 4.1.4 hold. Consider M̂ = HSVT(Z , r), M̂ ′ = HSVT(Z ′, r′),
and the unique β∗ that satisfies (5.1) with minimum `2-norm. Then,∥∥∥M ′(β̂ − β∗)∥∥∥2

2 ≤ 2(s′1)2(2(ρ̂′)2(1 + Λ2
M )n(ρsr − ν1)2 (

Etrain(M̂β̂) + EHSVT(M̂) ∥∥β∗∥∥21
) + Λ4

M
∥∥β∗∥∥22

)
+ 2(s′1)2Λ2

M ·
∥∥∥V T

M ′VM⊥

∥∥∥2
·
∥∥∥β̂∥∥∥2

2.



104 CHAPTER 5. PRINCIPAL COMPONENT REGRESSION
Proof. Let x = β̂ − β∗. Further, it is convenient to express M ′ as

M ′ = M ′PVM + M ′PVM⊥ .

This yields ∥∥M ′x
∥∥22 = ∥∥M ′PVMx + M ′PVM⊥x

∥∥22= ∥∥M ′PVMx
∥∥22 + ∥∥M ′PVM⊥x

∥∥22. (5.29)
Term 1. To bound the first term of (5.29), observe that

∥∥M ′PVMx
∥∥22 = ∥∥∥M ′(PVM − PV̂M )x + M ′PV̂Mx

∥∥∥2
2

≤ 2∥∥M ′∥∥2(∥∥∥(PVM − PV̂M )x∥∥∥2
2 + ∥∥∥PV̂Mx∥∥∥2

2
)
. (5.30)

Recalling (5.25) and applying Lemma 5.11.1 yields∥∥∥(PV̂M − PVM )x∥∥∥2
2 ≤

∥∥∥sin Θ(V̂M ,VM )∥∥∥2
· ∥x∥22 ≤ Λ2

M

∥∥∥PV̂Mx∥∥∥2
2 + Λ4

M
∥∥β∗∥∥22.

Plugging the above result into (5.30) and applying Lemma 5.11.4 gives
∥∥M ′PVMx

∥∥22 ≤ 2(s′1)2((1 + Λ2
M )∥∥∥PV̂Mx∥∥∥2

2 + Λ4
M
∥∥β∗∥∥22

)
≤ 2(s′1)2(2(ρ̂′)2(1 + Λ2

M )n(ρsr − ν1)2 (
Etrain(M̂β̂) + EHSVT(M̂) ∥∥β∗∥∥21

) + Λ4
M
∥∥β∗∥∥22

)
.

Term 2. Now, to bound the second term of (5.29), which yields
∥∥M ′PVM⊥x

∥∥22 = ∥∥∥UM ′SM ′V T
M ′PVM⊥x

∥∥∥2
2

≤
∥∥M ′∥∥2 · ∥∥∥V T

M ′VM⊥

∥∥∥2
·
∥∥PVM⊥x∥∥22.

Recall that PVM⊥β∗ = 0 and PV̂M⊥ β̂ = 0; hence,
∥∥PVM⊥x∥∥22 = ∥∥∥PVM⊥ β̂∥∥∥2

2 = ∥∥∥(PVM⊥ − PV̂M⊥)β̂∥∥∥2
2

≤
∥∥∥sin Θ(V̂M ,VM )∥∥∥2

·
∥∥∥β̂∥∥∥2

2 ≤ Λ2
M ·
∥∥∥β̂∥∥∥2

2,where the final inequality follows from Lemma 5.11.1.
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Conclusion. Collecting the above terms completes the proof. �

� 5.12.2 Proof of Theorem 5.3.2
Lemma 5.12.2. Suppose Properties 4.1.1, 4.1.2, 4.1.4, 4.1.6 hold. Consider M̂ =HSVT(Z , r), M̂ ′ = HSVT(Z ′, r′), and the unique β∗ that satisfies (5.1) with minimum
`2-norm. Then,

Etest(M̂ ′β̂) ≤ 16ρ2(s′1)2(1 + Λ2
M )n

m(ρsr − ν1)2 (
Etrain(M̂β̂) + EHSVT(M̂) ∥∥β∗∥∥21

)
+ 32(ν′1)2n
m(ρsr − ν1)2 (Etrain(M̂β̂) + EHSVT(M̂) ∥∥β∗∥∥21

)
+ 2EHSVT(M̂ ′) ∥∥β∗∥∥21 + 16(ν′1)2Λ2

M(ρ̂′)2m ∥∥β∗∥∥22 + 8ρ2(s′1)2Λ4
M(ρ̂′)2m ∥∥β∗∥∥22

+ 2(s′1)2Λ2
M

m

∥∥∥V T
M ′VM⊥

∥∥∥2
·
∥∥∥β̂∥∥∥2

2.
Proof. By construction,

Z ′ = r′∑
i=1 ŝ

′
iû′i ⊗ v̂ ′i +∑

i>r′
ŝ′iû′i ⊗ v̂ ′i = ρ̂′M̂ ′ + E ′.

Letting x = β̂ − β∗, we have that∥∥∥M̂ ′x
∥∥∥2

2 = 1(ρ̂′)2∥∥(Z ′ − E ′)x∥∥22
= 1(ρ̂′)2∥∥(ρM ′ + (Z ′ − ρM ′)− E ′)x∥∥22
≤ 2ρ2(ρ̂′)2∥∥M ′x

∥∥22 + 2(ρ̂′)2∥∥(Z ′ − ρM ′ − E ′)x∥∥22.
Using the above result, we then obtain∥∥∥M̂ ′β̂ −M ′β∗

∥∥∥2
2 ≤ 2∥∥∥M̂ ′x

∥∥∥2
2 + 2∥∥∥(M̂ ′ −M ′)β∗∥∥∥2

2
≤ 4ρ2(ρ̂′)2∥∥M ′x

∥∥22 + 4(ρ̂′)2∥∥(Z ′ − ρM ′ − E ′)x∥∥22 + 2∥∥∥(M̂ ′ −M ′)β∗∥∥∥2
2.(5.31)

We will now proceed to bound each term independently.
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Term 1. We apply Lemma 5.12.1 to obtain
∥∥M ′x

∥∥22 ≤ 2(s′1)2(2(ρ̂′)2(1 + Λ2
M )n(ρsr − ν1)2 (

Etrain(M̂β̂) + EHSVT(M̂) ∥∥β∗∥∥21
) + Λ4

M
∥∥β∗∥∥22

)
+ 2(s′1)2Λ2

M ·
∥∥∥V T

M ′VM⊥

∥∥∥2
·
∥∥∥β̂∥∥∥2

2. (5.32)
Term 2. To begin, since rank(M ′) = r′, Weyl’s Inequality (Lemma 3.1.1) gives∥∥E ′

∥∥ = ŝ′r′+1 ≤ ∥∥Z ′ − ρM ′∥∥.
As a result, it follows that∥∥(Z ′ − ρM ′ − E ′)x∥∥22 ≤ 2∥∥Z ′ − ρM ′∥∥2 · ∥x∥22 + 2∥∥E ′

∥∥2 · ∥x∥22
≤ 4∥∥Z ′ − ρM ′∥∥2 · ∥x∥22= 4(ν′1)2∥∥∥PV̂Mx∥∥∥2

2 + 4(ν′1)2Λ2
M
∥∥β∗∥∥22.

Applying Lemma 5.11.4 gives
∥∥(Z ′ − ρM ′ − E ′)x∥∥22 ≤ 8(ρ̂′)2(ν′1)2n(ρsr − ν1)2 (Etrain(M̂β̂) + EHSVT(M̂) ∥∥β∗∥∥21

)
+ 4(ν′1)2Λ2

M
∥∥β∗∥∥22. (5.33)

Term 3. Since rank(M̂ ′) = rank(M ′), we have∥∥∥(M̂ ′ −M ′)β∗∥∥∥2
2 ≤ m · EHSVT(M̂ ′) ∥∥β∗∥∥21. (5.34)

Conclusion. Plugging in (5.32), (5.33), (5.34) into (5.31) and normalizing completes theproof. �

Lemma 5.12.3. Assume the conditions of Theorem 5.3.1 hold. Then,

Etest(M̂ ′β̂) ≤ r
r′∆train + ∆HSVT′ + ∆gen + ∆model,

where

∆train = Cσ2r
n + C3r√logp

ρ4(n ∧ p) ∥∥β∗∥∥21 + ∆1
∆HSVT′ = C3r′√logp

ρ4(m ∧ p) ∥∥β∗∥∥21
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∆gen = C24
ρ4 p

n ∧ m ∧ p

(
r

n ∧ p

(1 + r
r′
) + r log2(1/δ)

np

(1 + r
r′p

))∥∥β∗∥∥22
∆model = C25 rp

ρ2r′(n ∧ p)∥∥∥V T
M ′VM⊥

∥∥∥2
·
(∥∥∥β̂ − β∗∥∥∥2

2 + ∥∥β∗∥∥22
) ; (5.35)

C3,∆1 are given by (5.3); C4 = C (1 + σ2)(1 + γ2)(1 + K 2); and C5 = C4(1 + log(1/δ)).
Proof. By Lemma 5.12.3, we have

Etest(M̂ ′β̂) ≤ 16ρ2(s′1)2(1 + Λ2
M )n

m(ρsr − ν1)2 (
Etrain(M̂β̂) + EHSVT(M̂) ∥∥β∗∥∥21

)
+ 32(ν′1)2n
m(ρsr − ν1)2 (Etrain(M̂β̂) + EHSVT(M̂) ∥∥β∗∥∥21

)
+ 2EHSVT(M̂ ′) ∥∥β∗∥∥21 + 16(ν′1)2Λ2

M(ρ̂′)2m ∥∥β∗∥∥22 + 8ρ2(s′1)2Λ4
M(ρ̂′)2m ∥∥β∗∥∥22

+ 2(s′1)2Λ2
M

m

∥∥∥V T
M ′VM⊥

∥∥∥2
·
∥∥∥β̂∥∥∥2

2.We will bound each term independently. However, we first use the arguments that led to(5.17) to establish P(E ′) ≥ 1− δ , where E ′ is given by (5.28). Throughout, we suppose
E ′ occurs. Importantly, we highlight that under E ′ and Property 4.1.3,

Λ2
M ≤

C4
ρ2
(

r
n ∧ p + r log(1/δ)

np

)
, (5.36)

where C4 = C (1 + σ2)(1 + γ2)(1 + K 2).
Term 1. Recall from (5.26),

Etrain(M̂β̂), EHSVT(M̂) ≤ 2σ2r
n + C3r√logp

ρ4(n ∧ p) ∥∥β∗∥∥21 + ∆1,
where C3,∆1 are given by (5.3). Further, Property 4.1.3 and (5.27) yield

ρ2(s′1)2n
m(ρsr − ν1)2 ≤ C r

r′ .

Given that Λ2
M = o(1), we conclude

{term 1} ≤ r
r′

(
Cσ2r
n + C3r√logp

ρ4(n ∧ p) ∥∥β∗∥∥21 + ∆1
)
.
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Term 2. We follow the proof of term 1. By Property 4.1.3, we have ν′1 ≤ s′1. As a result,we conclude that the second term is bounded above by the first term.
Term 3. We apply Lemma 5.2.1 to obtain

{term 3} = 2EHSVT(M̂ ′)∥∥β∗∥∥21 ≤ C3r′√logp
ρ4(m ∧ p) ∥∥β∗∥∥21,

where C3 is given by (5.3).
Term 4. We use (5.36) to obtain

(ν′1)2Λ2
M(ρ̂′)2m ≤ C24

ρ4
(1 + p

m

)( r
n ∧ p + r log2(1/δ)

np

)
.

Term 5. By (5.36), observe that
Λ4
M ≤

C24
ρ4
(

r2(n ∧ p)2 + r2 log2(1/δ)(np)2
)
.

This yields
ρ2(s′1)2Λ4

M(ρ̂′)2m ≤ C24p
ρ4r′

(
r2(n ∧ p)2 + r2 log2(1/δ)(np)2

)
.

Combining the bounds for terms 4 and 5 gives us the following upper bound:
{term 4 + term 5} ≤ C24

ρ4 p
n ∧ m ∧ p

(
r

n ∧ p

(1 + r
r′
) + r log2(1/δ)

np

(1 + r
r′p

))∥∥β∗∥∥22.(5.37)
Term 6. Using the arguments from above, we obtain

(s′1)2Λ2
M

m ≤ C5
ρ2 rp
r′(n ∧ p) ,

where C5 = C4(1 + log(1/δ)). Further, we note that∥∥∥β̂∥∥∥2
2 ≤ 2∥∥∥β̂ − β∗∥∥∥2

2 + 2∥∥β∗∥∥22
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Combining the above yields
{term 6} ≤ C25

ρ2 rp
r′(n ∧ p)∥∥∥V T

M ′VM⊥

∥∥∥2
·
(∥∥∥β̂ − β∗∥∥∥2

2 + ∥∥β∗∥∥22
)
.

Conclusion. Putting everything together, we conclude
Etest(M̂ ′β̂) ≤ r

r′∆train + ∆HSVT′ + ∆gen + ∆model,
where ∆train,∆HSVT′ ,∆gen,∆model are given in (5.35). �

Completing Proof of Theorem 5.3.2.

Proof. We will simplify the terms in Lemma 5.12.3. To begin, since span(VM ′ ) ⊆ span(VM ),it follows that ∆model = 0, r ≥ r′, and
r
r′∆train + ∆HSVT′ ≤ r

r′

(
Cσ2r
n + C3r√logp

ρ4(n ∧ m ∧ p)∥∥β∗∥∥21 + ∆1
)
, (5.38)

where C3,∆1 are given by (5.3). Further,
∆gen ≤ C24

ρ4 rr′
(

rp(n ∧ m ∧ p)2 + r log2(1/δ)
n(n ∧ m ∧ p)

) ∥∥β∗∥∥22, (5.39)
where C4 is given by (5.35). Collecting and simplifying the above results gives thefollowing:
Etest(M̂ ′β̂) ≤ r

r′

(
Cσ2r
n + C1C6

ρ4 r
√logp

n ∧ m ∧ p
∥∥β∗∥∥21 + C24

ρ4 rp(n ∧ m ∧ p)2∥∥β∗∥∥22 + ∆1
)
,

where C1 is given by (5.3) and C6 = C1K 2(1 + log2(1/δ)). The proof is complete afterrelabeling constants and observing that Etest(M̂test) ≤ Etest(M̂ ′β̂). �

� 5.12.3 Corollaries: Bounds in Expectation

Corollary 5.12.1. Suppose the conditions of Theorem 5.3.2 hold. Then for any δ > 0,

E[Etest(M̂test)] ≤ r
r′

(2σ2r
n + C ′2C ′3r log2(p/δ)

ρ4(n ∧ m ∧ p) ∥∥β∗∥∥21 + (C ′3)2rp
ρ4(n ∧ m ∧ p)2∥∥β∗∥∥22

)+ 4δ,
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where C ′2 is given by (5.21); and C ′3 = C (1 + σ2)(1 + γ2)(1 + K 2).
Proof. The proof follows that of Theorem 5.3.2. As shown in the proof of Lemma 5.12.3,
P(E ′) ≥ 1− δ , where E ′ is given by (5.28). Now, observe that

E[Etest(M̂test)] ≤ E[Etest(M̂test) | E ′] + δ · E[Etest(M̂test) | (E ′)c ].
We proceed to bound each term separately.
Term 1. Suppose E occurs. Using Lemma 5.12.3, we arrive at the following inequality:

Etest(M̂test) ≤ Etest(M̂ ′β̂) ≤ r
r′∆pre + ∆HSVT′ + ∆gen + ∆model.

First, note that our assumptions give ∆model = 0 and r ≥ r′. We then use (5.38), coupledwith Corollaries 5.9.1 and 5.10.1, to establish
r
r′∆pre + ∆HSVT′ ≤ r

r′
(2σ2r

n + C ′1r
ρ4(n ∧ m ∧ p)∥∥β∗∥∥21

+ ( C ′2r log(1/δ)
ρ4√n ∧ m(n ∧ m ∧ p) + C ′2√r

ρ2(n ∧ m))√log(p/δ)∥∥β∗∥∥21
)
,

where C ′1, C ′2 are given by (5.21). At the same time, following the arguments that led to(5.39), we obtain
∆gen ≤ (C ′3)2

ρ4 r
r′

(
rp(n ∧ m ∧ p)2 + r log2(1/δ)

n(n ∧ m ∧ p)
) ∥∥β∗∥∥22,

where C ′3 = C (1 + γ2)(1 + K 2). Therefore, combining and simplifying the above resultsyield
E[Etest(M̂test)] ≤ r

r′

(2σ2r
n + C ′2C ′3r log2(p/δ)

ρ4(n ∧ m ∧ p) ∥∥β∗∥∥21 + (C ′3)2rp
ρ4(n ∧ m ∧ p)2∥∥β∗∥∥22

)
.

Term 2. By Property 4.1.2 and Algorithm 3, it immediately follows that
Etest(M̂test) ≤ 4.

Conclusion. Collecting terms completes the proof. �
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Completing Proof of Corollary 5.3.1

Proof. The result follows immediately after applying Corollary 5.12.1 with n = Θ(m) =Θ(p). �

� 5.13 Proofs: A Subspace Inclusion Hypothesis Test

Lemma 5.13.1. Suppose Properties 4.1.1, 4.1.2, 4.1.3, 4.1.5, 4.1.6 hold. Considerrank(M̂) = rank(M) = r and rank(M̂ ′) = rank(M ′) = r′. Then under H0,∥∥∥V̂M ′ − PV̂M V̂M ′
∥∥∥2
F
≤ 2r′(∥∥∥sin Θ(V̂M ,VM )∥∥∥2 + ∥∥∥sin Θ(V̂M ′ ,VM ′)∥∥∥2)

.

Proof. Observe that∥∥∥V̂M ′ − PV̂M V̂M ′
∥∥∥2
F

= ∥∥∥PV̂M⊥V̂M ′
∥∥∥2
F= ∥∥∥(PV̂M⊥ − PVM⊥)V̂M ′ + PVM⊥V̂M ′

∥∥∥2
F

≤ 2∥∥∥(PV̂M⊥ − PVM⊥)V̂M ′
∥∥∥2
F

+ 2∥∥∥PVM⊥V̂M ′
∥∥∥2
F
. (5.40)

We will now bound each term independently.
For the first term, we have∥∥∥(PV̂M⊥ − PVM⊥)V̂M ′

∥∥∥2
F
≤
∥∥∥sin Θ(V̂M ,VM )∥∥∥2

·
∥∥∥V̂M ′

∥∥∥2
F

= r′ ·
∥∥∥sin Θ(V̂M ,VM )∥∥∥2

.(5.41)
Further, under H0, recall that PVM⊥VM ′ = 0. Therefore, using the isometric property of
V̂M ′ , we obtain ∥∥∥PVM⊥V̂M ′

∥∥∥2
F

= ∥∥∥PVM⊥PV̂ ′M∥∥∥2
F= ∥∥∥PVM⊥(PV̂ ′M − PV ′M )∥∥∥2

F

≤
∥∥PVM⊥∥∥2 · ∥∥∥sin Θ(V̂M ′ ,VM ′)∥∥∥2

F

≤ r′ ·
∥∥∥sin Θ(V̂M ′ ,VM ′)∥∥∥2

. (5.42)
Plugging in (5.41) and (5.42) into (5.40) completes the proof. �
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� 5.13.1 Proof of Theorem 5.4.1
Proof. Let us first fix some α > 0. Let C ′ = C (1 + σ2)(1 + γ2)(1 + K 2). By Lemma 5.8.4,it follows that with probability at least 1− α ,∥∥Z − ρM

∥∥2 ≤ C ′ (n+ p+ log(1/α))∥∥Z ′ − ρM ′∥∥2 ≤ C ′ (m+ p+ log(1/α)) .
Combining the above with Lemma 5.11.1 then yields∥∥∥sin Θ(V̂M ,VM )∥∥∥2

≤ C ′r
ρ2
( 1
n ∧ p + log(1/α)

np

)
∥∥∥sin Θ(V̂M ′ ,VM ′)∥∥∥2

≤ C ′r′
ρ2

( 1
m ∧ p + log(1/α)

mp

)
.

Plugging the above into Lemma 5.13.1 concludes the proof. �



Chapter 6

Robust Synthetic Control

� 6.1 Introduction

During the early 1970’s, Basque Country, one of the wealthiest regions in Spain, beganto experience terrorist activity. Intuitively, this political and social unrest should havehad adverse effects on the region’s economic wealth. However, evidence of this belief isdifficult to establish since it is impossible to simultaneously observe (and thus compare)Basque Country’s economic health in the presence and absence of terrorist conflict. Thisis the fundamental missing data problem of causal inference.
Given that experimental studies (ESs) are simply infeasible in such a setting, a firstorder attempt may be to identify a control region for comparison. Unfortunately, a simplejuxtaposition of Basque’s economic trajectory with that of a nearby Spanish region wouldnot provide a statistically valid conclusion unless that region proved to be demonstrablysimilar to Basque sans the political and societal instability. In general, there may notever exist a natural control state, and subject-matter experts tend to disagree on themost appropriate control for comparison. At this point, one may opt to apply a pure timeseries analysis instead. However, this approach will also often prove to be futile. To seethis, consider the situation where the economy was already in decline prior to the startof the decade. If the economy continues to fall thereafter, then it would be difficult toattribute the source of the downturn to the underlying trend or the terrorist activity. Thissummarizes a major bottleneck of observational studies (OSs).
� 6.1.1 Problem Statement
More formally, we are interested in outcomes (e.g., per-capita GDP) associated with Nunits (e.g., Spanish regions) across T measurements (e.g., time points). In the context ofstandard OS settings, it follows that D = 2, where (without loss of generality) we denotethe “no-intervention” state (or control) with d = 1 and let d = 2 represent an actual

113
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intervention (e.g., terrorism). For simplicity, we consider the single metric case (P = 1)and suppress all dependencies on the metric.
Observations

Throughout this chapter, we let unit n = 1 represent our target unit of interest, which isassumed to be exposed to intervention d = 2 during the post-intervention period; thus,
I (2) = {1}. Meanwhile, all other units form our universe of donors, yielding I (1) = [N ]\{1}and N (1) = N − 1.
We encode our observations into a T × N × 2 tensor Z = [Z (d)

tn ], where

Z (d)
tn =


Y (1)
tn · π

(1)
tn , for all t ∈ [T ], n > 1, d = 1

Y (1)
t1 · π(1)

t1 , for all t ≤ T0, n = 1, d = 1
Y (2)
t1 · π(2)

t1 , for all t > T0, n = 1, d = 2
?, otherwise.

In words, our donor units remain in the no-intervention state across all measurements.Our target unit, on the other hand, is also unaffected during the pre-intervention period,but receives intervention d = 2 during the post-intervention period.
Aim

Given Z , our goal is to infer the potential outcomes in the absence of any intervention forthe target unit during the post-intervention period, i.e., M (1)
t1 for all t > T0.

� 6.1.2 Classical Synthetic Control
As a suggested remedy to overcome the limitations of OSs, Abadie and Gardeazabal(2003) proposed a powerful, data-driven approach known as synthetic control (SC). Indeed,SC has grown to become a standard method in econometrics for comparative case studiesand policy evaluation, and since its conception, it has been analyzed in Abadie et al.(2010), Doudchenko and Imbens (2016), Athey and Imbens (2016), Athey et al. (2017),Hsiao et al. (2018).
Returning to our example, SC predicts Basque Country’s counterfactual economic evolutionwithout terrorism by constructing a “synthetic” control region, which is represented bythe combination of donor units (assumed to be unaffected) that best resembles Basque
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Country prior to the outset of political unrest. More formally, SC learns βsc ∈ RN−1 as
βsc ∈ arg min

w∈SC
T0∑
t=1
(
Y (1)
t1 −

N∑
n=2wnY

(1)
tn

)2
,

where the constraint set SC ⊆ RN−1 differs across variants of the method, but is classicallytaken to be over the probability simplex, i.e., βsc
n ≥ 0 and ∑n βsc

n = 1, (cf. Abadie andGardeazabal (2003); Abadie et al. (2010)). Subsequently, Ŷ (1),sc
t1 = ∑N

n=2 βsc
n−1Y (1)

tn is theestimate for the target unit under no-intervention for t > T0. Comparing Ŷ (1),sc
t1 with Y (2)

t1for t > T0 evaluates the impact of intervention 2 on the target unit compared to theno-intervention effect.
Limitations

Within the SC literature, two standard assumptions are made: (i) The potential outcomesunder the null-intervention follow a factor model; that is, M (1)
tn = 〈ut , vn〉 for all (t, n),where ut , vn ∈ Rr are the latent factors associated with measurement and unit, respectively.We note that this a special case of the proposed tensor factor model given by Property4.1.1 which only considers the frontal slice of the order-three potential outcomes tensorscorresponding to metric p = 1. (ii) There exists a synthetic control for the target unit thatis formed as a weighted combination of the donor units. Indeed, the latter assumptionis the fundamental hypothesis that drives all SC-related works, but it is not clear whensuch a hypothesis holds.

Algorithmically, despite its widespread applicability, the classical SC method is unableto handle settings with noisy and sparse covariates (donor data), typical characteristicsof modern datasets. Theoretically, a quantitative hypothesis test to check the appropri-ateness of applying SC-like methods and meaningful non-asymptotic analysis (undera high-dimensional framework), particularly that which captures the behavior of thepost-intervention error, have also remained elusive.
� 6.2 Robust Synthetic Control

As the primary contribution of this chapter, we present the robust synthetic control (RSC)algorithm, which overcomes the limitations of the classical SC method described above.
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� 6.2.1 Algorithm
Having established the robustness and generalization properties of PCR in Chapter 5, weutilize it as the key subroutine within RSC (Algorithm 4) to learn a synthetic control. Fora graphical depiction of the input and output of RSC, please refer to Figure 1.3.
Notation. Recall that unit 1 is our target unit. In consistency with (4.1), we represent thepre- and post-intervention observation matrices associated with the donors, which remainin the no-intervention state (d = 1) across all T , as

Z (1)pre = [Z (1)
tn : t ≤ T0, n > 1] ∈ RT0×(N−1)

Z (1)post = [Z (1)
tn : t > T0, n > 1] ∈ R(T−T0)×(N−1).

Further, we denote y(1)1 = [Y (1)
t1 : t ≤ T0] as the pre-intervention observations for our targetunit, which is also observed under d = 1. We are now ready to state the RSC algorithm.

Algorithm 4: RSC
Data: y(1)1 ,Z (1)pre,Z (1)post, k, k ′
Result: M̂ (1)1 = [M̂ (1)

t1 : t > T0]1. Learn synthetic target model:
(a) β̂ ← PCR(Z (1)pre, y(1)1 , k)2. Predict counterfactual prediction outcomes:
(a) M̂ (1)post ← HSVT(Z (1)post, k ′)(b) M̂ (1)1 ← Truncate(M̂ (1)postβ̂)

Algorithmic Intuition

In words, RSC first builds a synthetic control of the target unit using the entire collectionof donor units; that is, RSC finds the set of weights, defined by β̂, that best approximatesthe outcome variables of the target unit during the pre-intervention period. Crucially,RSC uses PCR to protect against over-fitting to the idiosyncrasies of the data beyondthe inherent model complexity in the target and donor trajectories (recall PCR learns alinear model in the reduced subspace spanned by the top principal components of Z (1)pre).Once the model is learned, RSC rescales the observed outcome variables associated with
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the donor units during the post-intervention period according to the set of weights β̂. Aswith the first step (pre-intervention model learning phase), RSC performs HSVT on thedonor post-intervention data for de-noising and regularization purposes.
Importantly, we underscore that both the model learning and prediction processes onlyutilize data under the no-intervention state. This distinction will be made clear when wediscuss synthetic interventions in Chapter 8.
� 6.2.2 Existence of SC
Up until this point, we have not justified the regression step of RSC. In fact, across themany SC variants, (regularized) regression is consistently employed as a key subroutinein learning a synthetic control without any justification. As described in Section 6.1.2, itis a standard, fundamental assumption within the SC literature that a synthetic controlfor the target unit exists within the reservoir of donors; for instance, the classical works ofAbadie and Gardeazabal (2003); Abadie et al. (2010) assume that the target unit can beexpressed as a convex combination of the donors. To the best of our knowledge, despitethe ubiquity of this assumption, it is not clear when such a hypothesis holds.
However, as stated by Proposition 4.1.1 of Chapter 4, the standard matrix factor modelwithin the SC literature (a simplified version of Property 4.1.1) implies that an invariantlinear model between the target unit and donors persists across measurements with highprobability; effectively, with probability at least 1− r/(N − 1), where r is the dimensionof the latent unit and time factors. This is the key result that justifies RSC (and, moregenerally, learning a linear model). Therefore, under the standard SC setting, we establishthat a linear synthetic control (almost) always exists and need not be assumed as anaxiom as is traditionally done in the literature.
� 6.2.3 Theoretical Performance Guarantees

Objective

Recall that our aim is to recover the underlying potential outcomes for our target unit 1under control (d = 1), i.e., M (1)
t1 for all t > T0.

Notation. Since we are only interested in recovering the counterfactuals under theno-intervention state, we suppress dependencies on d = 1 for ease of notation, e.g.,
Zpre = Z (1)pre and rpost = rank(M (1)post), where M (1)post is given by (4.1). Further, let β∗ = β(1,1),
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where β(1,1) is given in (4.3).
Evaluation Metric

Hence, we evaluate the RSC algorithm based on its post-intervention squared predictionerror. Specifically, we define the post-intervention (or test) error for unit n = 1 under thenull-intervention d = 1 as
Epost(M̂1) = 1

T − T0
T∑

t=T0+1 (M̂ (1)
t1 −M (1)

t1 )2,
where M̂1 = [M̂ (1)

t1 : t > T0] = RSC(y1,Zpre,Zpost, rpre, rpost).
Remark. Although Property 4.1.5 assumes independent noise entries, our results arestated when εtn can be dependent across donors for a given t, i.e., only the target anddonor noise must remain independent.
Post-intervention Prediction Error

Below, we present our main results, which bound RSC’s post-intervention prediction errorin both high probability and expectation under a special case (i.e., the standard matrixfactor model) of the setting described in Chapter 4.
Theorem 6.2.1 (RSC Error in High-Probability). Let Properties 4.1.1, 4.1.2, 4.1.3, 4.1.4,
4.1.5, 4.1.6 hold. Consider the unique β∗ of minimum `2-norm that satisfies (4.3). For any
δ > 0 and some C > 0, if ρ ≥

√
C1C2rpre
N ′∧T ′ , then the following holds w.p. at least 1− δ:

Epost(M̂1) ≤ rpre
rpost

(Cσ2rpre
T0 + C1C2rpre√logN ′

ρ4(N ′ ∧ T ′) ∥∥β∗∥∥21 + C21 rpreN ′
ρ4(N ′ ∧ T ′)2∥∥β∗∥∥22 + ∆),

where N ′ = N − 1, T ′ = T0 ∧ (T − T0),
∆ = C2√

T0
∥∥β∗∥∥1, C1 = C (1 + σ4)(1 + γ2)(1 + K 2), C2 = C1K 2(1 + log2(1/δ)).

Proof. The result is immediate from Theorem 5.3.2. �
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Corollary 6.2.1 (RSC Error in Expectation). Let the conditions of Theorem 6.2.1 hold.
Then for any δ > 0,

E[Epost(M̂1)] ≤ rpre
rpost

(2σ2rpre
T0 + C3C4rpre log2(N ′/δ)

ρ4(N ′ ∧ T ′) ∥∥β∗∥∥21 + C24 rpreN ′
ρ4(N ′ ∧ T ′)2∥∥β∗∥∥22

) + 4δ,
where C3 = CK 2(1 + σ4)(1 + γ2)(1 + K 2) and C4 = C (1 + σ2)(1 + γ2)(1 + K 2).
Proof. The result is immediate from Corollary 5.3.1. �

Intepretation. For simplicity, let T0 = Θ(N) = Θ(T ). Ignoring log factors, Corollary 6.2.1states that the post-intervention error decays linearly with T0, in expectation. In words,Theorem 6.2.1 and Corollary 6.2.1 establish that RSC produces consistent counterfactualestimates of the potential outcomes in the absence of any intervention. To the best of ourknowledge, Theorem 6.2.1 and Corollary 6.2.1 provide the first finite-sample analysis thatcaptures the behavior of the post-intervention prediction error (with respect to the latentpotential outcomes) of SC-like methods.
� 6.2.4 Empirical Validation: Placebo Studies
We have provided the theoretical performance of RSC in Section 6.2.3, and shown it tobe a consistent estimator of the unobservable counterfactuals. However, the questionstill remains: how does one determine the empirical performance of a counterfactualestimation method without access to ground-truth values? Although it is possible to usethe pre-intervention data to cross-validate the performance of any estimation method, sucha methodology ignores the actual period of interest, i.e., the post-intervention period, andis prone to over-fitted results that may not be indicative of the counterfactual performance.An alternate and more effective approach is to study the performance of an estimationmethod on units that do not experience the intervention, i.e., the donor units. Indeed, sinceRSC (like other SC variants) is designed to predict the counterfactuals in the absence ofany intervention, performing RSC with the donor units (as opposed to the exposed unit)as the targets should ideally reproduce the observed trajectories; this is precisely theplacebo studies proposed by Abadie and Gardeazabal (2003); Abadie et al. (2010). Thus,if the method is able to accurately estimate the observed post-intervention evolution of thedonor units, it would be reasonable to assume that it would perform well in estimating theunobserved counterfactuals for the target unit of interest. This post-intervention periodplacebo study, or cross-validation (as its known within the machine learning/statisticsliterature), becomes our primary empirical metric of evaluation in all of our case studies.
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� 6.3 Empirical Case Studies

Here, we present empirical results using the RSC method and several known datasets inthe literature to explain the nuances of the results stated above.
� 6.3.1 Terrorism in Basque Country
One canonical case study within the SC Literature investigates the impact of terrorism onthe economy in Basque Country (see Abadie and Gardeazabal (2003)). Here, the targetunit of interest is Basque Country, the donor pool consists of neighboring Spanish regions,and the intervention is represented by the first wave of terrorist activity in 1970. The aimin this study is to isolate the effect of terrorism on the GDP of Basque Country. That is,to evaluate the effect of terrorism, we aim to estimate the unobservable counterfactualGDP growth in the absence of terrorism for Basque Country using observations from theother Spanish regions, which are assumed to be unaffected by the political unrest.
Empirical Results and Key Takeaways

We will use two evaluation metrics: (i) Since we do not have access to Basque’s counter-factual GDP post 1970 without terrorism, we will use the celebrated results of Abadieand Gardeazabal (2003) as our baseline; this is our chosen “ground-truth” because thesecounterfactual trajectories have been widely accepted by the econometrics community. (ii)We also perform placebo studies (i.e., cross-validation), as described in Section 6.2.4, byiteratively designating each neighboring Spanish region (donor for Basque) as the target.
Importance of Regularization. As stated above, we use the results of Abadie and Gardeaz-abal (2003) as the ground-truth counterfactuals. Recall that the classical SC methodproposed by Abadie and Gardeazabal (2003) enforces the learnt model to have non-negative weights and sum to one. This offers two benefits: (i) qualitatively, the modeloffers an intuitive interpretation of the synthetic control unit (e.g., synthetic Basque is 85%Catalonia and 15% Madrid), and (ii) quantitatively, this form of regularization protectsthe model from overfitting to the data. RSC, on the other hand, removes the convexityconstraint on the model and instead employs PCR to regularize (see Chapter 5.5.2 fordetails) and learn a linear synthetic control.
To highlight the importance of the PCA subroutine (and, more generally, regularization),we construct a synthetic Basque via vanilla OLS. As seen in Figure 6.1a, OLS clearlyoverfits to the pre-intervention training data and fails to extrapolate post-intervention. In
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(a) Synthetic Basque via OLS. (b) Spectrum of Basque’s donordata.
Figure 6.1: Plots highlight the importance of regularization and justification for PCR. Specifically,(a) illustrates how OLS overfits to the training data while (b) displays the low-dimensionalstructure of the donor data, which motivates the usage of PCR since it regresses on the reducedsubspace spanned by the top principal components.
fact, the synthetic Basque GDP as predicted by OLS suggests that terrorism actuallybenefited the Basque economy in the long-term(!), which contradicts the conclusionsdrawn by the econometrics community.
The first step of PCR (i.e., PCA) is even more starkly empirically motivated by inspectingthe singular value spectrum of the donor data, which is shown in Figure 6.1b. Clearly,the data exhibits low-dimensional structure with over 99% of the spectral energy capturedin the top singular value in both settings, which fits the conditions under which ourtheoretical results imply low pre- and post-intervention prediction errors. Hence, it isreasonable to first extract the signal by filtering out the low principal components, whichcorrespond to idiosyncratic noise, prior to learning a synthetic control; in other words,PCR is a natural and empirically justified regularization method to employ in this setting.
Robustness of RSC. To highlight the robustness of RSC, we begin by randomly obfuscatingdata, ranging from 5-20%, and plotting the resulting synthetic Basque GDPs predictedvia convex regression on the outcome GDP data, i.e., the original Synthetic Controlmethod without auxiliary covariates, in Figure 6.2a; here, the solid blue and orange linesrepresent the observed and synthetic Basque (predicted by Abadie and Gardeazabal(2003)), respectively, while the dashed lines represent the synthetic Basques (learned
without auxiliary covariates) under varying levels of missing data. As seen from thefigure, the original SC method is not robust to sparse observations, which may explain itsdependency on auxiliary covariates to learn its model.
The resulting synthetic Basque as per RSC is shown in Figure 6.2b, which pleasinglyclosely matches that of Abadie and Gardeazabal (2003). Similarly, in Figure 6.2c, we
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(a) Synthetic Basque via Abadieand Gardeazabal (2003) (withoutauxiliary covariates) under vary-ing levels of missing data.
(b) Synthetic Basque via RSCand Abadie and Gardeazabal(2003).

(c) Synthetic Basque via RSCunder varying levels of missingdata.
Figure 6.2: Counterfactual estimates of Basque Country’s GDP in the absence of terrorism. WhileFigure 6.2b demonstrates that RSC (without covariate data) and Abadie and Gardeazabal (2003)(with covariate data) produce similar results when all observations are accessible, Figures 6.2a and6.2c highlight RSC’s robustness to sparsity compared to the classical SC method (when covariatedata is withheld).
display various synthetic Basque GDPs after randomly obfuscating the donor observations.Across the varying levels of missing data from 5-20%, the synthetic Basque GDPs continueto resemble the baseline estimates of Abadie and Gardeazabal (2003) such that the samenegative economic effects of terrorism can be drawn.
Importantly, we underscore that all of the results computed via RSC shown in Figures6.2b and 6.2c only use the outcome data and without any access to the auxiliary covariateinformation that was required to achieve the results in Abadie and Gardeazabal (2003),i.e., only the per-capita GDP values are utilized in the PCR learning process. Hence,PCR exhibits desirable robustness properties with respect to missing and noisy data, andwith less stringent data requirements to achieve similar counterfactual estimates.
Placebo Studies: Cross-Validation. In Table 6.1, we show the results of the hypothesis testand median R2-score across all neighboring Spanish donor regions. The hypothesis testpasses at a significance level of α = 0.05, which suggests that we cannot reject the nullhypothesis where the post-intervention donor subspace lies within the pre-interventiondonor subspace; recall that this is the key condition that enables RSC to generalize tounseen data and produce reliable post-intervention counterfactual estimates. Pleasingly,the post-intervention median R2-score of 0.84 also supports this claim, i.e., our cross-validation results indicate that RSC is able to accurately reproduce the observed economictrajectories for the donor regions – for reference, we display the predictions associatedwith three regions (namely, Andalucia, Aragon, and Canarias) in Figures 6.3a, 6.3b, and
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(a) Synthetic Andalucia via RSC. (b) Synthetic Aragon via RSC. (c) Synthetic Canarias via RSC.
Figure 6.3: Validating RSC: donor Spanish regions unaffected by terrorist activity.

6.3c, respectively, which are representative of our general results. This further validatesthe counterfactual estimates of RSC for Basque Country.
Intervention No terrorism
Hypo. Test (α = 0.05) Pass
R2-score 0.84

Table 6.1: Hypothesis test and median R2-score for RSC for Basque Country case study.
Key Takeaways. Importantly, the RSC model of the target region is always fit in thepre-intervention period. Still, the learnt model is able to accurately reproduce the post-intervention observations (as evidence of the hypothesis test results and cross-validation
R2-scores). This helps validate the RSC framework and the hypothesis test.
� 6.3.2 California Proposition 99
Another popular case study investigates the impact of California’s Proposition 99, ananti-tobacco legislation, on the per-capita cigarette consumption in California (cf. Abadieet al. (2010)). Here, the authors of Abadie et al. (2010) considered California as thetarget state, the collection of states in the U.S. that did not adopt some variant of atobacco control program as the donor pool, and Proposition 99 (enacted in 1988) as theintervention. As with the Basque example, we will use the widely accepted counterfactualestimates of Abadie et al. (2010) as our baseline for California and also measure theefficacy of RSC via the placebo (cross-validation) studies.
Empirical Results and Key Takeaways

Robustness of RSC. To motivate the usage of PCR, we first plot the singular value spectrumof the California Prop. 99 dataset, seen in Figure 6.4. Notably, over 99% of the cumulativespectral energy is again captured by the top singular value, which fits the setting under
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Figure 6.4: Spectrum of California’s donor data, which exhibits highly low-dimensional structure.

(a) Synthetic California viaAbadie et al. (2010) (without aux-iliary covariates) under varyinglevels of missing data.
(b) Synthetic California via RSCand Abadie et al. (2010). (c) Synthetic California via RSCunder varying levels of missingdata.

Figure 6.5: Counterfactual estimates of California’s cigarette sales in the absence of Prop. 99.While Figure 6.5b demonstrates that RSC and Abadie et al. (2010) (with covariate data) producesimilar results when all observations are accessible, Figures 6.5a and 6.5c highlight RSC’srobustness to sparsity compared to the classical SC method (when covariate data is withheld).
which our theoretical results apply and motivates the application of PCR.
Further, we plot the resulting synthetic Californias learned via convex regression withoutauxiliary covariates and under varying levels of missing data (5-20%) in Figure 6.5a;similar to the Basque case study, this figure highlights the poor performance of theoriginal SC method in the presence of missing data.
Empirically, we observe that the resulting synthetic California predicted via PCR, alsodisplayed in Figure 6.5b, closely matches the baseline. Much like the previous Basqueexample, across the varying levels of missing data from 5-20%, the synthetic Californiaper-capita cigarette consumption trajectories continue to mirror the baseline estimates ofAbadie et al. (2010); even in the presence of missing data, the counterfactual estimatesproduced by RSC suggest that Prop. 99 successfully cut smoking in California. Thisis indeed expected from the theoretical analysis given the extremely low-dimensionalstructure of the data and the robustness of PCR.
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(a) Synthetic New Mexico viaRSC. (b) Synthetic Texas via RSC. (c) Synthetic Delaware via RSC.
Figure 6.6: Validating RSC: donor states without tobacco control programs (including raised statecigarette taxes).
Placebo Studies: Cross-Validation. In Table 6.2, we show the results of the hypothesistest and median R2-score across all donor states (for the specific 38 states that wereconsidered donors, please see Section 3.2 of Abadie et al. (2010)). Interestingly, thehypothesis test fails at a significance level of α = 0.05, and so we can reject the nullhypothesis. This suggests that RSC’s synthetic control, which is learned during the pre-intervention period, should not generalize to the post-intervention regime. Correspondingly,the post-intervention median R2-scores (across all donor states) suffers a low predictionaccuracy of -0.58. For reference, we display the predictions associated with three states(namely, New Mexico, Texas, and Delaware) in Figures 6.6a, 6.6b, and 6.6c, respectively,which are representative of our general results. As we can see from these figures, the“counterfactual” estimates for Texas and Delaware do not match the observed trajectories,which is alarming.

Intervention No Prop. 99
Hypo. Test (α = 0.05) Fail
R2-score -0.58

Table 6.2: Hypothesis test and prediction accuracy results for RSC in the context of CaliforniaProposition 99 study.
Key Takeaways. Although the impact of Prop. 99 on California is a canonical case studywithin the SC literature, our hypothesis test results suggest that the post-interventiondata is “more complex” than the pre-intervention data; hence, a (linear) model learnedduring the pre-intervention regime should not generalize to the post-intervention regime.Coupled with the low cross-validation R2-scores, our results possibly indicate that thecounterfactual estimates for California (as shown in Figure 6.5b) may not be as reliableas hoped.
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� 6.4 Discussion

� 6.4.1 Connection to Matrix Completion
We discuss the connection between the SC framework and that of matrix estimation.As discussed, the problem of estimating the unobservable counterfactuals for the targetunit can be formulated as recovering a segment of a matrix whose rows correspond totime, columns correspond to units, and entries contain the potential outcomes under thenull-intervention. While it may be of interest to de-noise the noisy realizations of ourdata (i.e., donor observations or pre-intervention target data), our primary concern is torecover the post-intervention counterfactuals, which are never accessible (including thenoisy instantiations). Therefore, given the unique sparsity patterns of our data, it is notreasonable to simply impute the missing, counterfactual values via a direct applicationof standard matrix completion/estimation techniques (e.g., nuclear norm minimization orSVT on the entire dataset with both target and donors). Additionally, from a theoreticalstandpoint, performance guarantees often only hold with respect to the Frobenius andspectral norms across the entire matrix, and thus are unable to make any statementswith respect to recovering the missing segment of interest. Instead, the utility of matrixestimation techniques lies in their ability to de-noise the donor observations, which canbe viewed as covariates in the context of supervised learning, to extract the latent signaland assist in the model learning subroutine.
� 6.4.2 Generalized Factor Models
Here, we consider a generalized factor model, or latent variable model (LVM), which is anatural extension of the linear factor model (a special case of Proposition 4.1.1) typicallyassumed within the SC literature. Throughout this section, for simplicity and ease ofnotation, let M = [Mtn : t ≤ T , n ≤ N ] with Mtn = M (1)

tn , i.e., M is the matrix of potentialoutcomes across all units and time under the null-intervention d = 1.
More formally, we say M is generated as per a LVM if for all (t, n),

Mtn = g(ut , vn), (6.1)
where ut ∈ Rp1 and vn ∈ Rp2 are latent features that capture time and unit specificinformation, respectively, for some p1, p2 ≥ 1; and the latent function g : Rp1 × Rp2 → Rcaptures the model relationship; again, we note that if g is a linear function, then we
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recover the standard factor model and M is exactly low-rank. More generally, if g is “well-behaved” (e.g., Hölder continuous) and the latent spaces are compact, then Proposition6.4.1 shows M is approximately low-rank.
Establishing (Approximate) Low-rankness

We first define the Hölder class of functions, which is widely adopted in the non-parametricregression literature (see Xu (2017); Tsybakov (2008)). Given a function g : [0, 1)p1 → R,and a multi-index κ ∈ Np1 , let the partial derivate of g at x ∈ [0, 1)p1 (if it exists) bedenoted as,
Oκg(x) = ∂|κ|g(x)(∂x)κ (6.2)

Definition 6.4.1 ((α, L)-Hölder Class). Let α, L be two positive numbers. The Hölder
class H(α, L) on [0, 1)p11 is defined as the set of functions g : [0, 1)p1 → R whose partial
derivatives satisfy∑

κ:|κ|=bαc
1
κ! ∣∣Oκg(x)− Oκg(x ′)∣∣ ≤ L∥∥x − x ′∥∥α−bαc∞ for all x, x ′ ∈ [0, 1)p1 . (6.3)

Here, bαc denotes the largest integer strictly smaller than α.

Remark 6.4.1. Note if α ∈ (0, 1], then (6.3) is (α, L)-Lipschitz, i.e.,∣∣g(x)− g(x ′)∣∣ ≤ L∥∥x − x ′∥∥α−bαc∞ for all x, x ′ ∈ [0, 1)p1 .
However, for α > 1, (α, L)-Hölder no longer implies (α, L)-Lipschitz.

Proposition 6.4.1 (Hölder-Smoothness Induces Approximate Low-rankness – adapted fromXu (2017)). Let M satisfy (6.1) with ut , vn ∈ [0, 1)p1 as latent parameters. Further, for all
vn, let g(·, vn) ∈ H(α, L), as defined in (6.3). Then for any δ > 0, there exists a low-rank
matrix A of rank r ≤ C (α, p1)δ−p1 such that∥∥M − A

∥∥max ≤ L · δα . (6.4)
Here, C (α, p1) is a constant that depends only on α and p1.

Interpretation. In words, Proposition 6.4.1 establishes that if the potential outcomes followa LVM, then the corresponding potential outcomes matrix M is approximately low-rank.
1The domain is easily extended to any compact subset of Rp1 .
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Additionally, by setting δ = 1/(N ∧ T0), it is guaranteed that the approximation error,∥∥M − A

∥∥max, vanishes as more data is collected.
Remark 6.4.2. We remark on the Hölder continuity of a typical linear factor model, i.e.,
g(ut , vn) = 〈ut , vn〉. It is easily seen that such a model satisfies Definition 6.4.1 for all
α ∈ N and L = C for some C > 0. Thus, one can think of Hölder continuous functions as
generalizations of typical linear factor models to (sufficiently smooth) non-linear functions.

Existence of (Approximate) SC

In what follows, we show that the approximate low-rank property of the underlyingpotential outcomes matrix implies the existence of an approximate linear synthetic control.
Proposition 6.4.2 (Existence of Approximate SC). Assume the conditions of Proposition
6.4.1 hold. For intervention d = 1 and unit 1, suppose Property 4.1.4 holds for A =[Atn] = ∑r

`=1 ut`vn` , where r and A are given by (6.4). Then, there exists a β∗ ∈ RN−1
such that for all t ∈ [T ],

Mt1 = N∑
n=2 β

∗
n−1 · Mtn + φt ,

where φt ≤
(
C (α, p1)L∥∥β∗∥∥∞) · δ (α−p1).

Interpretation. Combined with Proposition 4.1.2, Proposition 6.4.2 establishes that(approximate) synthetic controls (almost) always exist under a LVM; additionally, themodel mismatch error, φ, vanishes as more data is collected. Therefore, in a very generalsense, pleasingly, a synthetic control almost always exists and need not be assumed asa hypothesis or axiom.
� 6.5 Proofs for Generalized Factor Model

� 6.5.1 Proof of Proposition 6.4.1
As previously stated, the following analysis is adapted from Xu (2017) and is stated herefor completeness. Before we dive into the proofs, let us introduce some useful notation.
Definition 6.5.1 (Piecewise Polynomials). Let E denote a partition of the cube [0, 1)d
into a finite number (|E |) of cubes ∆. Let ` ∈ N. Then PE ,` : [0, 1)d → R is a piecewise
polynomial of degree ` if

PE ,` (x) = ∑
∆∈E P∆,` (x) · 1(x ∈ ∆), (6.5)
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where P∆,` (x) : [0, 1)d → R denotes a polynomial of degree at most `.

Proof. We will achieve our result by decomposing the proof into three parts. First, wewill discretize the compact latent feature spaces. Then, we will show that g can be wellapproximated by piecewise polynomials. We conclude the proof by constructing A fromthese piecewise polynomials, which have been shown to be entry-wise close to M , andestablish its low-rank structure. For brevity, we will suppress the dependence of g on thelatent feature vn such that g(u) := g(·, vn).
Step 1: Partitioning the latent spaces. For our purposes, it suffices to consider anequipartition of [0, 1)p1 . More precisely, for any τ ∈ N, we partition [0, 1) into 1/τ half-open intervals of length 1/τ , i.e., [0, 1) = ∪τi=1[(i − 1)/τ, i/τ). It follows that [0, 1)p1 can bepartitioned into τp1 cubes of the form ⊗p1

j=1[(ij − 1)/τ, ij /τ) with ij ∈ [τ ]. Let En be sucha partition of [0, 1)p1 with I1, . . . , Ip1 denoting all such cubes and z1, . . . , zτp1 ∈ [0, 1)p1denoting the centers of those cubes.
Step 2: Approximating g via piecewise polynomials. Let ` = bαc. For every cube Iiwith i ∈ [τp1 ], we define PIi,` (u) as the degree-` Taylor’s series expansion of g(u) centeredat zi:

PIi,` (u) = ∑
κ:|κ|≤`

1
κ! (u − zi)κ∇κg(zi), (6.6)

where κ = (κ1, . . . , κp1) is a multi-index with κ!= ∏p1
i=1 κi!, and ∇κg(zi) is the partialderivative defined (6.2) evaluated at zi. Further, we define a degree-` piecewise polynomialas in (6.5):

PEn,` (u) = τp1∑
i=1 PIi,` (u) · 1(u ∈ Ii), (6.7)

where PIi,` is defined as in (6.6).
We are now ready to show that g is well approximated by a piecewise polynomial. To thatend, let z′i = θzi + (1−θ)u for every i ∈ [τp1 ] and some θ ∈ (0, 1). Since g(u) ∈ H(α, L),it follows from Taylor’s theorem (using the Lagrange remainder form) that

sup
u
|g(u)− PEn,` (u)|

= sup
i∈[τp1 ] sup

u∈Ii
|g(u)− PEn,` (u)|
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= sup
i∈[τp1 ] sup

u∈Ii

∣∣∣∣∣∣ ∑κ:|κ|<` ∇κg(zi)
κ! (u − zi)κ + ∑

κ:|κ|=`
∇κg(z′i)
κ! (u − zi)κ − PEn,` (u)

∣∣∣∣∣∣
= sup

i∈[τp1 ] sup
u∈Ii

∣∣∣∣∣∣ ∑κ:|κ|≤` ∇κg(zi)
κ! (u − zi)κ + ∑

κ:|κ|=`
∇κg(z′i)−∇κg(zi)

κ! (u − zi)κ − PEn,` (u)
∣∣∣∣∣∣

= sup
i∈[τp1 ] sup

u∈Ii

∣∣∣∣∣∣ ∑κ:|κ|=` ∇κg(z′i)−∇κg(zi)
κ! (u − zi)κ

∣∣∣∣∣∣
≤ sup

i∈[τp1 ] sup
u∈Ii

∥∥u − zi∥∥`∞ ·
∣∣∣∣∣∣ ∑κ:|κ|=` ∇κg(z′i)−∇κg(zi)

κ!
∣∣∣∣∣∣

≤ L sup
i∈[τp1 ] sup

u∈Ii

∥∥u − zi∥∥`∞ · ∥∥θzi + (1− θ)u − zi∥∥α−`∞

≤ L sup
i∈[τp1 ] sup

u∈Ii

∥∥u − zi∥∥α∞ = Lτ−α .
Observe that we have used (6.3) to establish the second inequality above.
Step 3: Constructing A and establishing its low-rank structure. We now construct
A = [Atn] as follows: for every (t, n), let

Atn = PEn,` (ut , vn),
where PEn,` is defined as in (6.7). Since Mtn = g(ut , vn), it follows that∥∥M − A

∥∥max ≤ Lτ−α ,
which was established in the previous section.
It remains to bound the rank of A. Since PEn,` is a piecewise polynomial of degree ` , itadmits the following decomposition:

Atn = τp1∑
i=1 〈Φ(ut), βIi,vn〉 · 1(ut ∈ Ii),

where Φ(ut) = (1, ut1, . . . , utp1 , . . . , u`t1, . . . , u`tp1)Tdenotes the collection of all monomials of degree |κ|≤ ` ; and βIi,vn denotes the corre-
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sponding coefficient vector. Thus, for any fixed ut , we have that
A = τp1∑

i=1

 ΦT (u1) · 1(u1 ∈ Ii)...ΦT (uT ) · 1(uT ∈ Ii)
[βIi,v1 . . . βIi,vN] .

Since there are C (α, p1) := ∑`
i=0 (i+p1−1

p1−1 ) degree-` monomials, φ(ut) and βIi,vn are ofdimension at most C (α, p1). As a result, the rank of A is bounded by τp1 ·C (α, p1). Setting
τ = 1/δ completes the proof. �

� 6.5.2 Proof of Proposition 6.4.2
Proof. Let A = [Atn] ∈ RT×N be defined as in Proposition 6.4.1. By appealing to its SVD,
A has the following representation: for all (t, n),

Atn = r∑
`=1 ut`vn` .

Therefore, it follows that there exists a β∗ with ∥∥β∗∥∥0 ≤ r such that Property 4.1.4 holds;let us define I = {n : β∗n 6= 0} as the support of β∗. This implies that
At1 = ∑

n∈I
β∗nAtn.

Using the above with Proposition 6.4.1, we obtain
Mt1 −∑

n∈I
β∗nMtn = (Mt1 −∑

n∈I
β∗nAtn) + (∑

n∈I
β∗n(Atn −Mtn))

= (Mt1 − At1) + (∑
n∈I

β∗n(Atn −Mtn))
≤ Lδα (1 + r

∥∥β∗∥∥∞).
Noting r ≤ C (α, p1)δ−p1 completes the proof. �
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Chapter 7

Multi-dimensional RSC

� 7.1 Introduction

As discussed in Chapter 6.2.4, placebo (or cross-validation) studies can be used to evaluatethe statistical performance of SC-like methods since ground-truth counterfactuals arenever accessible. At the same time, through the lens of time series analysis, the sameevaluation measures can be viewed as a forecasting methodology. That is, as long asthe temporal or sequential dimension of the data is relative and not absolute, i.e., thedonor pool has already undergone the future evolution in “time”, SC-like methods canbe used to forecast the future evolution for any unit of interest that is unexposed totreatments. However, even though RSC is proven to exhibit attractive theoretical andempirical properties, it (like other SC variants) may still suffer from poor estimation whenthe amount of training data (i.e., the length of the pre-intervention period) is too small.
Consider the problem of estimating demand in retail. Typically, the amount of dataavailable for the outcome variable of interest is sparse; e.g., given the massive scale ofusers and products, the observed matrix of transactions has very few nonzero realizations.To avoid overfitting to the idiosyncrasies of the training data, it is commonplace to employregularization when learning a model (e.g., convex regression a la classical SC or PCR);this reduces the variance of the estimator at the expense of higher bias. Still, algorithmicremedies such as regularization do not enable these methods to generalize if the trainingdata is too small to capture the underlying signal or trend.
In such settings, a data remedy may be the only remaining option. While acquiringmore data of the same variable type is frequently infeasible, other types of data (e.g.,browse and search histories, responses to promotions to name a few) are often readilyavailable. We refer to this as the problem of estimation (e.g., recovering counterfactualsor forecasting demand) with auxiliary metrics (i.e., data of different types, beyond theoutcome variable of interest).
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� 7.1.1 Problem Statement
We are interested in outcomes (e.g., sales) associated with N units (e.g., retail stores)across T measurements (e.g., weeks). Continuing the interventional storyline of Chapter6, we consider D = 2, where (without loss of generality) we denote the “no-intervention”state with d = 1 and let d = 2 represent an actual intervention (e.g., storewide sale).However, while we are again in the interest of estimating outcomes for a particular metric(e.g., true demand of umbrellas), we now have access to auxiliary metrics in the form ofadditional metrics (e.g., transactions for clothes), i.e., we let P ≥ 1.
Observations

Throughout this chapter, we let unit n = 1 represent our target unit of interest, which isassumed to receive intervention d = 2 during the post-intervention period; thus, I (2) = {1}.Meanwhile, all other units form our universe of donors, yielding I (1) = [N ] \ {1} and
N (1) = N − 1. We encode our observations into a T × N × 2 × P tensor Z = [Z (d,p)

tn ],where

Z (d,p)
tn =


Y (1,p)
tn · π(1,p)

tn , for all t ∈ [T ], n > 1, d = 1, p ∈ [P ]
Y (1,p)
t1 · π(1,p)

t1 , for all t ≤ T0, n = 1, d = 1, p ∈ [P ]
Y (2,p)
t1 · π(2,p)

t1 , for all t > T0, n = 1, d = 2, p ∈ [P ]
?, otherwise.

Aim

Given Z , our goal is to infer the potential outcomes in the absence of any interventionfor the target unit under metric p∗ during the post-intervention period, i.e., M (1,p∗)
t1 for all

t > T0.
� 7.2 Multi-dimensional Robust Synthetic Control

As the primary contribution of this chapter, we present multi-dimensional RSC (MRSC),a natural extension of RSC that incorporates auxiliary metrics. In what follows, we willshow how MRSC offers a simple, theoretically justified approach in exploiting auxiliarydata to overcome the limitations of sparsity and limited training (pre-intervention) data.
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� 7.2.1 Algorithm
As established in Chapter 6, RSC exhibits desirable robustness and generalizationproperties. Hence, we generalize RSC to utilize multiple metrics in a principled manner.
Notation. Recall that unit 1 is our target unit. In consistency with (4.1), we represent thepre- and post-intervention observation matrices associated with the donors for metric p,which remain in the no-intervention state (d = 1) across all T , as

Z (1,p)pre = [Z (1,p)
tn : t ≤ T0, n > 1] ∈ RT0×(N−1)

Z (1,p)post = [Z (1,p)
tn : t > T0, n > 1] ∈ R(T−T0)×(N−1).

Further, for every p, we denote y(1,p)1 = [Y (1,p)
t1 : t ≤ T0] as the corresponding pre-intervention observations for our target unit, which is also observed under d = 1. We arenow ready to state the MRSC algorithm, which holds for any metric p of interest. Forsimplicity, we consider estimating the counterfactuals for the target under p∗.

Algorithm 5: MRSC
Data: {(y(1,p)1 ,Z (1,p)pre ) : p ∈ [P ]},Z (1,p∗)post , k, k ′

Result: M̂ (1,p∗)1 = [M̂ (1,p∗)
t1 : t > T0]1. Concatenate:

(a) donors: Z (1)pre ← [Z (1,p)pre : p ∈ [P ]] ∈ RPT0×(N−1)
(b) target: y(1)1 ← [y(1,p)1 : p ∈ [P ]] ∈ RPT0

2. Learn synthetic target model:
(a) β̂ ← PCR(Z (1)pre, y(1)1 , k)3. Predict counterfactual prediction outcomes:
(a) M̂ (1,p∗)post ← HSVT(Z (1,p∗)post , k ′)(b) M̂ (1,p∗)1 ← Truncate(M̂ (1,p∗)post β̂)
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Algorithmic Intuition

In words, MRSC simply performs RSC with the added pre-processing procedure ofconcatenating the pre-intervention donor data across all metrics. Effectively, this stepaugments the amount of training data.
Weighted Least Squares

MRSC, as stated in Algorithm 5, implicitly assumes that each data type is of equalimportance, i.e., the model learning subroutine (PCR) assigns uniform weight to eachmeasurement across all metrics. However, if it is known a priori that certain data types aremore similar or important to the primary outcome variable of interest p∗, then Algorithm 5can be modified to assign greater weights to those data types in the PCR step. Moreformally, if we denote our weighting matrix as
W = diag( 1

w1 , . . . ,
1
w1︸ ︷︷ ︸

T0
, . . . , 1

wP
, . . . , 1

wP︸ ︷︷ ︸
T0

)
∈ RPT0×PT0 ,

where wp represents the relative importance of metric p, then we can redefine
β̂ ← PCR(W 1/2Z (1)pre,W 1/2y(1)1 , k).

In words, the model is now learned via weighted least squares in the reduced subspacespanned by the top principal components of the augmented pre-intervention donor data.We note that w1 = · · · = wP = 1 recovers Algorithm 5. In general, the weights canbe chosen in a data-driven manner via standard machine learning techniques such ascross-validation.
� 7.2.2 Existence of SC Across Metrics
Consider an order-three tensor factor model (a simplified version of Property 4.1.1) wherethe potential outcomes correspond to the universe of units, time, and metrics under thenull-intervention d = 1. Then Proposition 4.1.1 of Chapter 4 states that an invariant linearmodel between the target unit and donors holds across all measurements and metricswith high probability. This result suggests that the auxiliary metrics (i.e., metrics p 6= p∗)can effectively be viewed as additional measurements. Thus, from both a theoretical andalgorithmic perspective, this justifies and motivates MRSC to concatenate the auxiliarydata (thereby, performing “data augmentation”) and learn a single linear model β̂.
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� 7.2.3 Theoretical Performance Guarantees

Objective

Recall that our aim is to recover the underlying potential outcomes for our target unit
n = 1 under the null-intervention d = 1 associated with metric p∗, i.e., M (1,p∗)

t1 for all
t > T0. As a benefit, we are also given access to auxiliary metrics (y(1,p)1 ,Z (1,p)) for
p 6= p∗.
Notation. Throughout the rest of this chapter, let

M (1)pre = [M (1,p)pre : p ∈ [P ]] ∈ RPT0×(N−1)
denote the concatenation of potential outcomes under the null-intervention d = 1 for thepool of donor units across all metrics; let rpre = rank(M (1)pre). Since we are only interestedin recovering the counterfactuals under the no-intervention state, we henceforth suppressdependencies on d = 1 for ease of notation, e.g., Z (p)pre = Z (1,p)pre and r(p)post = rank(M (1,p)post ),where M (1,p)post is given by (4.1). Further, let β∗ = β(1,1), where β(1,1) is given in (4.3).
Evaluation Metric

We evaluate MRSC based on its post-intervention squared prediction error. Specifically,we define the post-intervention error for unit n = 1 under the null-intervention d = 1 andmetric p∗ as
Epost(M̂ (p∗)1 ) = 1

T − T0
T∑

t=T0+1 (M̂ (1,p∗)
t1 −M (1,p∗)

t1 )2,
where M̂ (p∗)1 = [M̂ (1,p∗)

t1 : t > T0] = MRSC({(y(p)1 ,Z (p)pre) : p ∈ [P ]},Z (p∗)post, rpre, r(p∗)post);
Post-intervention Prediction Error

We consider the tensor factor model under the null-intervention, a special case of thesetting described in Chapter 4. However, rather than assuming a general sub-gaussiannoise model (Property 4.1.5), we analyze the i.i.d. Gaussian contamination model instead.This is formalized by the property detailed below.
Property 7.2.1 (Gaussian noise). Let ε(d,p)

tn be a sequence of independent mean zero
Gaussian random variables with Var(ε(d,p)

tn ) = σ2.
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We are now ready to present our main results, which bound MRSC’s post-interventionprediction error in both high probability and expectation. We relegate the proofs to theend of this chapter.
Theorem 7.2.1 (MRSC Error in High-Probability). Let Properties 4.1.1, 4.1.2, 4.1.3, 4.1.4,
7.2.1, 4.1.6 hold. Consider the unique β∗ of minimum `2-norm that satisfies (4.3). For any
δ > 0 and some C > 0, if ρ ≥

√
C1C2rpre
N ′∧T ′ , then the following holds w.p. at least 1− δ:

Epost(M̂ (p∗)1 ) ≤ rpre
r(p∗)post

(Cσ2rpre
T0 + C1C2rpre√logN ′

ρ4(N ′ ∧ T ′) ∥∥β∗∥∥21 + C21 rpreN ′
ρ4PT0(N ′ ∧ T ′)∥∥β∗∥∥22 + ∆),

where N ′ = N − 1, T ′ = PT0 ∧ (T − T0),
∆ = C2√

PT0
∥∥β∗∥∥1, C1 = C (1 + σ4), C2 = C1σ2(1 + log2(1/δ)).

Corollary 7.2.1 (MRSC Error in Expectation). Let the conditions of Theorem 7.2.1 hold.
Then for any δ > 0,

E[Epost(M̂ (p∗)1 )] ≤ rpre
r(p∗)post

(2σ2rpre
T0 + C3C4rpre log2(N ′/δ)

ρ4(N ′ ∧ T ′) ∥∥β∗∥∥21 + C24 rpreN ′
ρ4PT0(N ′ ∧ T ′)∥∥β∗∥∥22

) + 4δ,
where C3 = C (1 + σ6) and C4 = C (1 + σ4).
Interpretation. The impact of auxiliary metrics is made precise by the dependence on P .If P = 1, then we return to setting of Chapter 6 (without access to auxiliary metrics) andrecover Theorem 6.2.1. However, for any P > 1, the generalization error (third term ofTheorem 7.2.1) decreases linearly with P , the total number of metrics used in the modellearning procedure.
To gain greater intuition, let T0 = Θ(N) = Θ(T ). In such a setting, observe that the firsttwo terms of Corollary 7.2.1, ignoring log factors, decay linearly with T0. This suggeststhat the benefit of auxiliary metrics can only reduce the overall testing prediction errorup to a certain point, irrespective of the amount of additional information. Hence, thebenefit of utilizing auxiliary metrics is to help alleviate the problem of sparsity, as desired.More specifically, as opposed to requiring on the order of rpre entries per sample in ourtraining set, we may now only need to observe rpre/P entries per sample. This establishesa trade-off in data acquisition; specifically, trading off sparsity of one type of data fordata of a different type.
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� 7.3 Empirical Case Studies

� 7.3.1 Forecasting in Retail
We consider the problem of forecasting weekly sales in retail. Here, we highlight a keyutility of MRSC over RSC in the presence of sparse data. More specifically, our resultsdemonstrate that when the pre-intervention period (training set) is short, then standardRSC methods fail to generalize well. On the other hand, by using auxiliary informationfrom other metrics, MRSC effectively “augments” the training data, which allows it toovercome the difficulty of extrapolating from small sample sizes.
Experimental Setup

We consider the Walmart dataset, which contains T = 143 weekly sales informationacross N = 45 stores and P = 81 departments. We arbitrarily choose store one as thetreatment unit, and introduce an “artificial” intervention at various points; this is doneto study the effect of the pre-intervention period length on the predictive power for bothMRSC and RSC methods. In particular, we consider the following pre-intervention pointsto be 15, 43, and 108 weeks, representing small to large pre-intervention periods (roughly10%, 30%, and 75% of the entire time horizon T , respectively). Further, we considerthree department subsets (representing three different metric subgroups): Departments
{2, 5, 6, 7, 14, 23, 46, 55}, {17, 21, 22, 32, 55}, and {3, 16, 31, 56}.
Empirical Results

In Table 7.1, we show the effect of the pre-intervention length on the RSC and MRSC’sability to forecast. In particular, we compute the average pre-intervention (training) andpost-intervention (testing) MSEs across each of the three departmental subgroups (asdescribed above) for both methods and for varying pre-intervention lengths. Although theRSC method consistently achieves a smaller average pre-intervention error, the MRSCconsistently outperforms the RSC method in the post-intervention regime, especially whenthe pre-intervention stage is short. This is in line with our theoretical findings of thepost-intervention error behavior, as stated in Theorem 7.2.1 and Corollary 7.2.1; i.e., thebenefit of incorporating multiple relevant metrics is exhibited by the MRSC algorithm’sability to generalize in the post-intervention regime despite high levels of sparsity.
We present Figures 7.1 and 7.2 to highlight two settings, departments 56 (left) and 22(right), respectively, in which MRSC drastically outperforms RSC in extrapolating from a
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small training set (T0 = 15 weeks). We highlight that the weekly sales axes between thesubplots for each department, particularly department 56, are different; indeed, since theRSC algorithm was given such little training data, the RSC algorithm predicted negativesales values for department 56 and, hence, we have used different sales axes ranges tounderscore the prediction quality gap between the two methods. As seen from theseplots, the RSC method struggles to extrapolate beyond the training period since thepre-intervention period is short. In general, the RSC method compensates for lack of databy overfitting to the pre-intervention observations and, thus, misinterpreting noise forsignal (as seen also by the smaller pre-intervention error in Table 7.1). Meanwhile, theMRSC overcomes this challenge by incorporating sales information from other departments.By effectively augmenting the pre-intervention period, MRSC becomes robust to sparsedata. However, it is worth noting that both methods are able to extrapolate well in thepresence of sufficient data.

(a) Dept. 56 (RSC) (b) Dept. 56 (MRSC)
Figure 7.1: MRSC and RSC forecasts for department 56 of store 1 using T0 = 15 weeks.

(a) Dept. 22 (RSC) (b) Dept. 22 (MRSC)
Figure 7.2: MRSC and RSC forecasts for department 22 of store 1 using T0 = 15 weeks.
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Train Error (106) Test Error (106)
T0 RSC RSC RSC MRSC10% 1.54 3.89 21.0 5.2530% 2.21 3.51 19.4 4.6275% 4.22 5.33 3.32 2.4810% 0.67 2.61 14.4 2.4830% 0.79 1.21 2.13 1.9775% 1.18 2.78 1.31 0.7710% 1.28 6.10 84.6 12.530% 2.60 3.45 3.72 4.1375% 2.29 2.65 4.92 4.72

Table 7.1: Average pre-intervention (train) and post-intervention (test) MSE for RSC and MRSCmethods.
� 7.4 Discussion

� 7.4.1 Connection to Matrix & Tensor Completion
Much like the discussion in Chapter 6.4.1, we formalize our problem as recovering asegment of a matrix whose rows and columns correspond to time and units, respectively,and entries contain the potential outcomes in the absence of any intervention. Through thislens, we view side information as additional matrices of conforming dimension. Togetherwith the primary matrix of interest (corresponding to what we often referred to as metric p∗),we can encode our data into an order-three tensor, where each frontal slice correspondsto a unique data type or metric. Since we hope to recover a specific segment of the frontaltensor slice, standard matrix and tensor estimation techniques (even those that incorporateside information a la Farias and Li (2019)) are again insufficient for our purposes. MRSC,on the other hand, is a natural consequence of this tensor perspective (particularly, undera tensor factor model), and is well-suited for our setting of interest.
� 7.5 Proofs

Throughout, we adopt the notation established in Section 5.7 of Chapter 5 with themodification that the number of training samples is now kn for some k ≥ 1.
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� 7.5.1 Preservation of Gaussians
Lemma 7.5.1. Let A be an m × n matrix whose rows Ai are independent, mean-zero,
isotropic Gaussian random vectors in Rn, i.e., Ai ∼ N (0, σ2In×n). Let U ∈ Rm×k1 and
V ∈ Rn×k2 be matrices with orthonormal columns. Then, A′ = UTQV is a k1 × k2 matrix
whose rows A′i are independent, mean-zero, isotropic Gaussian random vectors in Rk2 , i.e.,
A′i ∼ N (0, σ2Ik2×k2).
Proof. To begin, consider the matrix X = AV ∈ Rm×k2 . Let Xi = 〈Ai,V 〉 denote the i-throw of X . Then, it follows that E[Xi] = 0 and

cov(Xi) = V T cov(Ai)V = σ2Ik2×k2 .
Thus, the rows of X are independent, mean-zero, isotropic Gaussian random vectors in
Rk2 distributed as N (0, σ2Ik2×k2).Now, consider the matrix Y = UTA ∈ Rk1×n. Let Aj ∈ Rm denote the j-th column of A,and let Yj = UTAj ∈ Rk1 denote the j-th column of Y . By assumption, it follows that theentries of Aj are independent Gaussian random variables with mean zero and variance σ2.Hence, it follows that E[Yj ] = 0 and

cov(Yj ) = UT cov(Aj )U = σ2In×n.

Since uncorrelation implies independence for Gaussian distributions, the rows of Yare independent, mean-zero, isotropic Gaussian random vectors in Rn distributed as
N (0, σ2In×n).Observing that A′ = Y V = UTX completes the proof. �

� 7.5.2 Learning Subspaces
Below, we state an alternative version of Lemma 5.11.1 in Lemma 7.5.2, which provides asharper bound under the i.i.d. Gaussian noise assumption (Property 7.2.1).
Notation. Let UM⊥ ∈ Rn×(n−r) and VM⊥ ∈ Rp×(p−r) denote the orthogonal complementsto UM and VM , respectively. Further, letting H̃ = Y − ρM , we write

H̃ = [ UM UM⊥

]
·
[

H̃11 H̃12
H̃21 H̃22

]
·
[

V T
M

V T
M⊥

]
, (7.1)
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where
H̃11 = UT

MH̃VM , H̃12 = UT
MH̃VM⊥,

H̃21 = UT
M⊥H̃VM , H̃22 = UT

M⊥H̃VM⊥

are matrices of dimensions r × r, r × (p− r), (n− r)×r, and (n− r)× (p− r), respectively.
Lemma 7.5.2. Suppose Property 4.1.1 holds, and M̂ = HSVT(Y , r). Then,

∥∥∥sin Θ(V̂M ,VM )∥∥∥ ≤
(
ρsr + ∥∥∥H̃11∥∥∥)∥∥∥H̃12∥∥∥ + ∥∥∥H̃22∥∥∥ · ∥∥∥H̃21∥∥∥(

ρsr −
∥∥∥H̃11∥∥∥)2

−
∥∥∥H̃22∥∥∥2

−
(∥∥∥H̃21∥∥∥2

∧
∥∥∥H̃12∥∥∥2) ,

where H̃11, H̃12, H̃21, and H̃22 are defined in (7.1).
Proof. Since rank(M) = r, it follows that

UT
MY VM = UT

M (ρM + H̃)VM = ρSM + UT
MH̃VM = ρSM + H̃11.

Applying Weyl’s inequality (Lemma 3.1.1), we obtain
ρsr −

∥∥∥H̃11∥∥∥ ≤ α ≤ ρsr + ∥∥∥H̃11∥∥∥,
where α is as defined in (3.5). Similarly, since UM⊥ is the orthogonal complement of UM(equivalently, VM⊥ is orthogonal to VM ), it holds that

UT
M⊥Y VM⊥ = UT

M⊥(ρM + H̃)VM⊥ = UT
M⊥H̃VM⊥ = H̃22,

which yields β = ∥∥∥H̃22∥∥∥, where β is also defined as in (3.5).
By the construction of M̂ , PV̂M is an orthogonal projection onto the subspace spanned bythe top r right singular vectors of Y . Therefore, Theorem 3.1.2 gives

∥∥∥sin Θ(V̂M ,VM )∥∥∥ ≤
(
ρsr + ∥∥∥H̃11∥∥∥)∥∥∥H̃12∥∥∥ + ∥∥∥H̃22∥∥∥ · ∥∥∥H̃21∥∥∥(

ρsr −
∥∥∥H̃11∥∥∥)2

−
∥∥∥H̃22∥∥∥2

−
(∥∥∥H̃21∥∥∥2

∧
∥∥∥H̃12∥∥∥2) .

This completes the proof. �
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� 7.5.3 Proof of Theorem 7.2.1
Proof. We follow the proof of Theorem 5.3.2 with a slight modification. In particular,Lemma 7.5.1 states that the entries of H̃12, given in (7.1), are independent, mean-zeroGaussian random variables with variance σ2; thus, for any δ > 0 and some C > 0,Theorem 3.2.2 states that with probability at least 1− δ ,∥∥∥H̃12∥∥∥ ≤√C1 (√r +√p+√log(1/δ)) ,
where C1 = C (1 + σ4). Using the above inequality with Lemma 7.5.2, we modify (5.36) toobtain

Λ2
M ≤

C1
ρ4
(
r
kn + r log(1/δ)

knp

)
.

Plugging the above into (5.37) yields
{term 4 + term 5} ≤ C21

ρ4
(
r
kn

(1 + p
m + r

r′kn

) + r log2(1/δ)
r′Knp

)∥∥β∗∥∥22.
Therefore, it follows that (5.39) becomes

∆gen ≤ C21
ρ4 rr′

(
rp

kn(kn ∧ m ∧ p) + r log2(1/δ)
kn(kn ∧ m ∧ p)

) ∥∥β∗∥∥22.
Collecting and simplifying the above results gives the following:
Etest(M̂test) ≤ r

r′

(
Cσ2r
n + C1C2

ρ4 r
√logp

kn ∧ m ∧ p
∥∥β∗∥∥21 + C21

ρ4 rp
kn(kn ∧ m ∧ p)∥∥β∗∥∥22 + ∆1

)
,

where C2 = C1σ2(1 + log2(1/δ)) and ∆1 is given by (5.3). The proof is complete afterrelabeling constants.
�



Chapter 8

Synthetic Interventions

� 8.1 Introduction

As the COVID-19 pandemic began to rapidly spread within the United States (U.S.),the U.S. government responded by implementing policies to enforce social distancing.Unfortunately, these policies only led to a less than 5% reduction in mobility goo, andmany lives were tragically lost. This begs the questions: Would greater reductions inmobility, say 30% or 60%, have led to significantly better societal health outcomes? Andmoving forward, what trade-offs between health outcomes and economic impact can beachieved through different policies? Although it is infeasible to answer either questionthrough actual experimentation, it is possible to leverage information from across theglobe. Given that different regions and/or countries have implemented various policies,valuable observation data is readily available and can be used to answer these questions.
� 8.1.1 Problem Statement
We are interested in outcomes (e.g., COVID-19 death counts) associated with N units(e.g., countries) across T measurements (e.g., days) and D possible interventions (e.g.,different mobility restriction interventions). For simplicity, we consider the single metriccase (K = 1) and suppress all dependencies on the metric. As before, we also denote thecontrol or “no-intervention” state with d = 1 (e.g., no mobility restriction enacted).
Observations

We encode our observations into a T × N ×D tensor Z = [Z (d)
tn ], where

Z (d)
tn =


Y (1)
tn · π

(1,p)
tn , for all t ≤ T0, n, d = 1, p ∈ [P ]

Y (d)
tn · π

(d,p)
tn , for all t > T0, n ∈ I (d), d ∈ [D], p ∈ [P ]

?, otherwise;
145
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here, I (d) is given by (1.1). In words, all units are under control during the pre-interventionphase (t ≤ T0), but is exposed to some intervention or remains under control during thepost-intervention phase (t > T0).
Aim

Given Z , our goal is to infer the potential outcomes under all interventions for every unitduring the post-intervention period, i.e., M (d)
tn for all n, d, and t > T0.

� 8.1.2 Synthetic Control (SC), A Partial Solution
Recall that SC Abadie and Gardeazabal (2003); Abadie et al. (2010) provides a solutionfor a restricted setting: D = 2 with I (1) = [N ] \ {1}, I (2) = {1} (see Chapter 6 fordetails). That is, SC can only infer outcomes for unit 1 in the absence of any intervention,i.e., M (1)

t1 for t > T0. In our COVID example, this corresponds to the situation where theU.S. (i.e., unit 1 in this case) implemented a mobility restriction of less than 5% while allother countries did nothing. Using such observations, SC can only estimate the numberof deaths in the U.S. if it had done nothing to combat COVID-19. Therefore, SC providesan incomplete answer to the COVID-19 question laid out above.
� 8.2 Synthetic Interventions (SI), A Complete Solution

In order to quantify the trade-offs of different policies before having to enact them, weneed to estimate potential outcomes under treatment, as opposed to only control. Asthe primary contribution of this chapter and thesis, we introduce synthetic interventions(SI), which provides a solution to this important open problem. In short, SI estimates thepotential outcome under control and every treatment of interest for every unit.
� 8.2.1 Algorithm
Methodologically, SI pleasingly turns out to be straightforward extension of SC, makingit easy to implement. For a graphical depiction of the input and output of SI, please referto Figure 1.4.
Notation. Suppose unit i is our target unit. In consistency with (4.1), we represent thepre- and post-intervention observation matrices associated with donors that receive d as

Z (d)pre = [Z (1)
tn : t ≤ T0, n ∈ I (d)] ∈ RT0×N(d)
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Z (d)post = [Z (d)
tn : t > T0, n ∈ I (d)] ∈ R(T−T0)×N(d) .

We note that if unit i receives d, then we define I (d) := I (d) \ {i}, N (d) := ∣∣I (d) \ {i}∣∣.Finally, let y(1)
i = [Y (1)

ti : t ≤ T0] denote the pre-intervention observations for our targetunit i, which is observed under d = 1. We are now ready to state the SI algorithm inAlgorithm 6, which holds for every unit i and intervention d of interest.
Algorithm 6: SI

Data: y(1)
i ,Z

(d)pre,Z (d)post, k, k ′
Result: M̂ (d)

i = [M̂ (d)
ti : t > T0]1. Learn synthetic target model:

(a) β̂(d,i) ← PCR(Z (d)pre, y(1)
i , k)

2. Predict counterfactual prediction outcomes:
(a) M̂ (d)post ← HSVT(Z (d)post, k ′)(b) M̂ (d)

i ← Truncate(M̂ (d)postβ̂(d,i))
Algorithmic Intuition

In words, much like (M)RSC (see Algorithms 4 and 5), SI first builds a synthetic versionof the target unit i, represented by β̂(d,i), using the donors within I (d) via PCR. Once themodel is learned, SI rescales the observed outcome variables associated with the donorunits within I (d) during the post-intervention period according to β̂(d,i). Effectively, there-scaling subroutine performs a synthetic intervention d for the target unit i and providesthe corresponding counterfactual potential outcomes under such a setting. Importantly,we highlight that when d = 1, the model, β̂(d,i), effectively represents a synthetic control;however, for any d 6= 1 (corresponding to an actual intervention), this model now representsa synthetic treatment group.
Incorporating Auxiliary Metrics

SI can incorporate auxiliary data types by simply concatenating the additional measure-ments a la the pre-processing step of MRSC (given in Algorithm 5). The rest of thealgorithm flows as described above.
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� 8.2.2 Existence of SI
Though SI is methodologically similar to SC in terms of learning a model to estimatecounterfactual outcomes, it is conceptually significantly different. Specifically, as in SC,the model in SI is learnt using pre-intervention data under the no-intervention (d = 1)setting; however, to produce post-intervention counterfactual estimates, SI now appliesthe learnt model to any intervention d. A priori, it is not clear why the model can be
transferred between interventions.
However, as stated by Proposition 4.1.1 of Chapter 4, our proposed tensor factor model(Property 4.1.1) implies that an invariant linear model between any target unit i andsubgroup of donors I (d) persists across both measurements and interventions whp – indeed,this is the key result that justifies SI. Algorithmically, it allows us to learn a linear modelunder any intervention framework during the pre-intervention period and then transfer thelearned model to any other intervention framework during the post-intervention period.
� 8.2.3 Theoretical Performance Guarantees

Objective

We state Theorem 8.2.1 and Corollary 8.2.1, which hold for all interventions d and units
n. Thus, for simplicity and ease of notation, we restrict our attention to estimating thepost-intervention counterfactual potential outcomes under a specific intervention d andfor unit n = 1, i.e., we aim to recover M (d)

t1 for all t > T0.
Notation. Given the above, we suppress dependencies on d for ease of notation. Instead, todistinguish between the pre- and post-intervention data (corresponding to no-interventionand intervention d, respectively), we make explicit their dependencies through appropriatesubscripts, e.g., Zpre = Z (d)pre and rpost = rank(M (d)post), where M (d)post is given by (4.1). Further,let β∗ = β(d,1), where β(d,1) is given in (4.3). To avoid confusion, we do not alter N (d).
Evaluation Metric

We evaluate SI based on its post-intervention squared prediction error. Specifically, wedefine the post-intervention (or test) error for unit n = 1 under intervention d as
Epost(M̂1) = 1

T − T0
T∑

t=T0+1 (M̂ (d)
t1 −M (d)

t1 )2,
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where M̂1 = [M̂ (d)
t1 : t > T0] = SI(y1,Zpre,Zpost, rpre, rpost).

Remark. Although Property 4.1.5 assumes independent noise entries, our results arestated when εtn can be dependent across donors for a given t, i.e., only the target anddonor noise must remain independent.
Post-intervention Prediction Error

We now state the post-intervention counterfactual prediction errors of SI under the settingdescribed in Chapter 4.
Theorem 8.2.1 (SI Error in High-Probability). Let Properties 4.1.1, 4.1.2, 4.1.3, 4.1.4,
4.1.5, 4.1.6 hold. Consider the unique β∗ of minimum `2-norm that satisfies (4.3). For any
δ > 0 and some C > 0, if ρ ≥

√
C1C2rpre
N(d)∧T ′ , then the following holds w.p. at least 1− δ:

Epost(M̂1) ≤ rpre
rpost

(Cσ2rpre
T0 + C1C2rpre√logN (d)

ρ4(N (d) ∧ T ′) ∥∥β∗∥∥21 + C21 rpreN (d)
ρ4(N (d) ∧ T ′)2∥∥β∗∥∥22 + ∆),

where T ′ = T0 ∧ (T − T0),
∆ = C2√

T0
∥∥β∗∥∥1, C1 = C (1 + σ4)(1 + γ2)(1 + K 2), C2 = C1K 2(1 + log2(1/δ)).

Proof. The result is immediate from Theorem 5.3.2. �

Corollary 8.2.1 (SI Error in Expectation). Let the conditions of Theorem 8.2.1 hold. Then
for any δ > 0,

E[Epost(M̂1)] ≤ rpre
rpost

(2σ2rpre
T0 + C3C4rpre log2(N (d)/δ)

ρ4(N (d) ∧ T ′) ∥∥β∗∥∥21 + C24 rpreN (d)
ρ4(N (d) ∧ T ′)2∥∥β∗∥∥22

) + 4δ,
where C3 = CK 2(1 + σ4)(1 + γ2)(1 + K 2) and C4 = C (1 + σ2)(1 + γ2)(1 + K 2).
Proof. The result is immediate from Corollary 5.3.1. �

Intepretation. For simplicity, let T0 = Θ(N (d)) = Θ(T ). Ignoring log factors, Corollary8.2.1 states that the post-intervention error decays linearly with T0, in expectation.Again, we highlight that Theorem 8.2.1 and Corollary 8.2.1 do not make any distributional
assumptions. While standard generalization error analyses anchor on i.i.d. data generatingassumptions, we skirt such an assumption as potential outcomes from different interventionsare likely to come from different distributions. Instead, we rely on a linear algebraic
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condition, which can be verified in a data-driven manner in practice, as described inSection 5.4 of Chapter 5.
Finally, it is not a coincidence that our theoretical performance guarantees for SI closelymatch that of RSC (see Theorem 6.2.1 and Corollary 6.2.1). Indeed, this phenomenareflects the fact that SI mirrors RSC methodologically, and the only significant departureof SI from RSC (and SC-like methods in general) is purely conceptual in nature.
� 8.3 Empirical Case Studies

We extensively test the validity and widespread applicability of SI on real-world data. Inparticular, we consider four case studies: (i) analyzing the impact of mobility-restrictinginterventions in mitigating the COVID-19 pandemic with observational data; (ii) exploringthe effect of different discount strategies to increase user engagement in an A/B testingframework for a large e-commerce company; (iii) studying how 20 different interventionsaffected immunization rates in Haryana, India as part of a large developmental economicsstudy Banerjee et al. (2018) with RCT data; (iv) investigating the effect of drug therapieson cells in in-vitro studies with experimental data. Our results indicate that SI can notonly be useful in guiding policy-makers as they weigh the trade-offs of different policyinterventions, but also in performing personalized, data-efficient randomized control trialsand drug discovery.
Quantifying Counterfactual Prediction Accuracy

To quantify the accuracy of the counterfactual predictions produced by SI, we needmeaningful baselines to compare against. To that end, we define R2rct = 1− SSresSSrct , where
SSres = T∑

t=T0+1(Y (d)
t1 − M̂ (d)

t1 )2, SSrct = T∑
t=T0+1(Y (d)

t1 − Y (d)
t,rct)2, Y (d)

t,rct = 1
N (d) ∑

n∈I (d) Y
(d)
tn .

Interpretation. Y (d)
t,rct is the average outcome across all donors that experienced intervention

d at time t. If the units were homogeneous (i.e., they all reacted identically to eachintervention), then Y (d)
t,rct will be a good predictor of the counterfactual outcome for thetarget unit, i.e. Y (d)

t,rct ≈ M̂ (d)
t1 , and R2rct will be correspondingly small. In other words, the

R2rct-score captures the gain by “personalizing” the prediction to the target unit usingthe SI method over the natural baseline of taking the average outcome of all units whoreceive that particular intervention. Thus, R2rct > 0 indicates the success of SI.
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Figure 8.1: Observation pattern for COVID-19 case study.
� 8.3.1 COVID-19: What-if Scenario Planning

Aim, Setup and Key Modeling Choices

We apply SI to study the impact of mobility restriction policies on COVID-19 relatedhealth outcomes at a national level. Below, we list our key modeling decisions.
Choosing Metric of Interest: Daily Death Counts. Due to its relative reliability andavailability, we use daily COVID-19 related death counts as our outcome variable ofinterest. Another standard metric, number of daily infections, is much less reliable due tothe inconsistencies in testing and reporting across regions.
Choosing Interventions of Interest: Daily Mobility Rates. Each country has implementednumerous policies to combat the spread of COVID-19. This makes it difficult to analyzeany particular policy (e.g., stay-at-home orders vs. schools shutting down) in isolation.However, almost all such policies have been directed towards restricting how individualsmove and interact. Thus, we adopt mobility as our notion of intervention, and investigatehow a country’s change in mobility level translates to the number of potential COVID-19related deaths. To that end, we use Google’s mobility reports goo to study the change ina country’s mobility compared to their respective national baseline from January 2020.
Categorizing Countries by Intervention Received: Average (Lagged) Mobility Score.Studies have shown that there is a median lag of 20 days from the onset of infection to theday of death (e.g., see Wilson N (2020)). Thus, a country’s death count on a particular dayis a result of the infection levels from approximately 20 days prior. In order to analyze the
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effect of a mobility restricting intervention from “Day 0” (this will denote our interventionpoint, T0) onwards, we consider a country’s mobility score from Day -20 to Day -1. Giventhat the mobility score in goo is changing every day, we take the average mobility scoreof a country from Day -20 to Day -1 and then bucket it into the three distinct, mutuallyexclusive intervention groups defined as follows (see Figure 8.2 for a visual depiction ofthis clustering):

(a) Low Mobility Restricting Intervention – reduction in mobility is below 5% comparedto national baseline from January 2020;
(b) Moderate Mobility Restricting Intervention – reduction in mobility is between 5% to35% compared to national baseline from January 2020;
(c) Severe Mobility Restricting Intervention – reduction in mobility is greater than 35%compared to national baseline from January 2020.

Choosing Pre- and Post-Intervention Periods: Number of Deaths in Country. To applySI, it is crucial to have well-defined pre- and post-intervention period; in particular,the effects of each country’s enacted interventions should only be observed during thepost-intervention period. Using Google’s mobility reports, we verify that 20 days prior tocumulative 80 deaths in a country (and any time before), none of the selected countriesenacted a mobility restricting intervention. Thus, we choose the day a country hascumulative 80 deaths as Day 0, and the pre- and post-intervention periods refer to thedays before and after Day 0, respectively.
Observation Pattern. For a graphical depiction of the observation pattern, please refer toFigure 8.1.
Empirical Results and Key Takeaways

We apply SI using the setup above to produce counterfactual predictions of the dailydeath counts for 15 days following Day 0 under the three different mobility interventionsof interest. This analysis is carried out for 27 countries selected as follows: we (i) onlyinclude countries whose mobility changes are tracked by Google mobility reports; (ii)remove countries that have enacted a mobility restricting intervention 20 days prior toDay 0; (iii) remove countries with not enough data in the pre-intervention period ofinterest. That is, countries that had less than 80 cumulative COVID-19 related deathsin the pre-intervention period. We then group the 27 countries into the three bucketsdefined above based on their average mobility score, as shown in Figure 8.2.
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Figure 8.2: Average reduction in mobility and the assigned intervention group for the 27 countries.
Intervention low moderate severe
Hypo. Test (α = 0.05) Pass Pass Pass
R2

rct-score 0.74 0.14 0.12
Table 8.1: Hypothesis test and prediction accuracy results for SI in the context of COVID-19under different levels of mobility restriction.

(a) U.S. under all interventions. (b) Top donor nations for the U.S.

(c) U.K. under all interventions. (d) Top donor nations for the U.K.
Figure 8.3: Validating SI: countries with low mobility restricting interventions.
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(a) Brazil under all interventions. (b) Top donor nations for Brazil.

(c) Turkey under all interventions. (d) Top donor nations for Turkey.
Figure 8.4: Validating SI: countries with moderate mobility restricting interventions.

Empirical Results. In Table 8.1, we show the results of the hypothesis test for the threemobility restricting interventions and the median R2rct-score for all 27 countries. Thehypothesis test passes for all three interventions at a significance of α = 0.05. A median
R2rct-score of [0.74, 0.14, 0.12] across the three interventions indicates there is indeedsignificant heterogeneity amongst the countries on how mobility interventions affect thenational death trajectories. Thus, there is significant gains to be had by using SI overnaively averaging the outcome across countries that experienced a particular level ofmobility reduction.
For every mobility restriction level, we display the counterfactual predictions associatedwith two representative countries that enacted that intervention. We note similar resultshold generally across all countries. For the low mobility restricting regime, we show resultsfor the United States and the United Kingdom in Figures 8.3a and 8.3c, respectively. Thedashed lines on Days 0 - 15 are the predicted values under all possible mobility restrictionlevels and the solid line represents the true national death trajectory. Pleasingly,the predictions produced by SI closely matches the observed death rates in the post-intervention period. Similarly, for the moderate and severe mobility restricting regimes,
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(a) India under all interventions. (b) Top donor nations for India.

(c) Ireland under all interventions. (d) Top donor nations for Ireland.
Figure 8.5: Validating SI: countries with severe mobility restricting interventions.

we display results for Turkey, Brazil, India, and Ireland in Figures 8.4c, 8.4a, 8.5a, and8.5c, respectively. Again, the predictions produced from SI closely matches the observeddeath rates under all different interventions, i.e., mobility restrictions. For each of thecountries listed above, we display their top four donor countries (under each intervention)that most closely resemble them. These are shown in Figures 8.3b, 8.3d, 8.4d, 8.4b, 8.5b,and 8.5d respectively.
Key Takeaways. Importantly, the SI model of the target country is fit in the pre-interventionperiod, when no intervention has yet occurred. Still, the learnt model transfers to anintervention setting, i.e., when the interventions take effect within the donor countries.This helps validate the SI framework. An “optimistic” conclusion one can draw from thefigures above is that, uniformly across all countries, there is a significant drop in thenumber of deaths with even a “moderate” drop in mobility (i.e, a 5-35% drop comparedto the national baseline). After this point, gains by further restricting mobility seem tobe diminishing. We hope this case study shows how SI can be used to guide importantpolicy decisions.



156 CHAPTER 8. SYNTHETIC INTERVENTIONS

Figure 8.6: Observation pattern for A/B testing case study.
� 8.3.2 Web A/B Testing: Towards Data Efficient RCTs

Aim, Setup and Key Modeling Choices

We consider an A/B testing dataset from a large e-commerce company1 that issueddifferent discount strategies (interventions) to engage its customer base: 10%, 30%, and50% discounts over the regular subscription cost. Users were segmented into 25 groups(∼ 10,000 users per group) based on the historical time and money spent on the platform.The aim of the e-commerce company was to find how these different levels of discountsaffected user engagement for each of the 25 user groups. The A/B test was performedby randomly partitioning users in each of the 25 user groups into 4 sub-groups; thesesub-groups corresponded to either one of the 3 discount strategies or a control groupthat received a 0% discount. User engagement in each of these 100 sub-groups (25 usergroups multiplied by 4 discount strategies) was measured daily over 8 days.
Suitability of Case Study to Validate SI. This web A/B testing case study is particularlysuited to validate SI as we get to observe the engagement levels of each customergroup under each of the three discount strategies, i.e., we observe every “counterfactual”trajectory. This is in contrast to the COVID-19 case study where we only observethe death trajectory for a country for the particular intervention it enacted during thepost-intervention period.
Choosing Pre- and Post-Intervention Periods. For each of the 25 user groups, we

1We anonymize the identity of the company due to privacy considerations.
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(a) Experimental setup under SI. (b) Experimental setup of e-commerce company.
Figure 8.7: Experimental setups for A/B testing case study.

denote the daily user engagement trajectories of the sub-groups associated with thecontrol – those who do not receive a discount on their regular subscription – as thepre-intervention period. Correspondingly, for each of the 25 user groups, we denote thedaily user trajectories associated with the 10%, 30%, and 50% discount coupons as thepost-intervention period.
Choosing Donor Groups. We randomly partition the 25 user groups into three clusters,denoted as user groups 1-8, 9-16, and 17-25. For the 10% discount coupon strategy, wechoose user groups 1-8 as our donor pool, i.e., we use their post-intervention data under a10% discount to create the synthetic trajectories of user engagement for user groups 9-25under a 10% discount. We do the same with the 30% and 50% discount coupon strategies,and user groups 9-16 and 17-25, respectively. See Figure 8.7a for a visual depiction ofthe set of experiments/observations the SI algorithm uses to make predictions.
Observation Pattern. For a graphical depiction of the observation pattern, please refer toFigure 8.6.
Empirical Results and Key Takeaways

We apply SI using the setup above to produce the “counterfactual” trajectories for eachof the 25 user groups under the three discount strategies. We evaluate the accuracyunder the 10% discount coupon strategy using only the estimated trajectories of usergroups 9-25 (as we use user groups 1-8 as our donors). Similarly, we use the estimatedtrajectories of user groups 1-8 and 17-25 for the 30% discount coupon strategy, and usergroups 1-16 for the 50% discount coupon strategy.
Empirical Results. In Table 8.2, we show the hypothesis test results for the three discountstrategies and the median R2rct-score of the 25 user groups. The hypothesis test passesfor all three interventions at a significance of α = 0.05. Additionally, SI achieves amedian R2rct-score of 0.98 across the three discount strategies. This indicates significant
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heterogeneity amongst the user groups in how they respond to discounts, and thuswarrants having to run separate A/B tests for each of the 25 groups.

Intervention 10% discount 30% discount 50% discount
Hypo. Test (α = 0.05) Pass Pass Pass
R2

rct-score 0.98 0.99 0.98
Table 8.2: Hypothesis test and prediction accuracy results for SI in the context of A/B testing.
Key Takeaways. Recall that there were a total of 100 distinct experiments run in the A/Btesting framework as there were 25 user groups and 4 interventions (0%, 10%, 30%, and50% discount coupons). However, the SI framework only required observations from 50experiments. That is, two experiments for each of the 25 user user groups: one in thepre-intervention period (under 0% discount rate) and one in the post-intervention period(under exactly one of the three discount coupon strategies). See Figure 8.7b for a visualdepiction of the experiments conducted by the e-commerce company in comparison towhat is required by SI, as shown in Figure 8.7a.
More generally, if there are N user groups and D interventions, an ideal RCT performs
N ×D experiments to estimate the best “personalized” intervention for every user group.With SI, assuming the tensor factor model holds and D ≤ N , one only needs to perform2N experiments. Crucially, the number of required experiments does not scale with D,which becomes significant as the number of interventions, i.e, the level of personalization,grows. Also, if pre-intervention data has been or is being collected, then SI only requires
N experiments. This can be significant when experimentation is costly (e.g., clinical trials).
� 8.3.3 Development Economics: Towards “Personalized” RCTs

Aim, Setup and Key Modeling Choices

We use data from a large real-world development economics case study, which aimed toincrease vaccination rates in seven districts in the state of Haryana, India. This study,carried out by the authors of Banerjee et al. (2018) in collaboration with the Haryanastate government, is the first large scale evaluation of the effects of different types ofinterventions on childhood immunization rates. The Haryana immunization trials wereconducted with 2523 villages, with data collected monthly over 13 months, and included atotal of 74 different interventions. Each intervention can be encoded by a 3-dimensionaldiscrete-valued vector where its entries represent different levels of (1) financial incentives,(2) social network influence, and (3) information campaigns to encourage vaccinations.
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Figure 8.8: Observation pattern for development economics case study.
“Personalized” RCTs via SI. As is standard in RCTs, the authors in Banerjee et al. (2018)randomly partitioned the 2523 villages into 74 groups, corresponding to the 74 differentinterventions they aimed to study. They then measured the average increase in immuniza-tion rates for each of these 74 groups over the 13 month trial period. Subsequently, theymade a single policy recommendation to the Haryana state government, corresponding tothe intervention that yielded the highest average increase in immunization rates.
The aim of this case study is to estimate whether there would have been a greater uptakein immunization amongst the villages if, instead of a single policy recommendation for allvillages, a tailored intervention recommendation was made for each village.
Data Pre-Processing. We restrict our attention to the 20 most frequent interventions,where the frequency of an intervention is measured by the number of villages thatexperienced said intervention, e.g., 175 villages experienced the most frequent interventionwhile 18 villages experienced the twentieth most frequent intervention. Let D denote thecollection of these 20 interventions. There were N = 1302 villages that received one of thetop 20 most frequent interventions. Based on conversations with the authors of Banerjeeet al. (2018), it was appropriate to denote the first four months as the pre-interventionperiod, i.e., T0 = 4 months.
Observation Pattern. For a graphical depiction of the observation pattern, please refer toFigure 8.8.
Empirical Results and Key Takeaways

We follow the same setup as in the COVID-19 case study. That is, we iterate overthe 1302 villages such that each village is designated to be the target village for someiteration. In the pre-intervention period, we build a model of the target village under each
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of the twenty interventions using the appropriate donor village sub-groups. Then in thepost-intervention phase, we estimate the counterfactual immunization rates of the targetvillage under each intervention using data from the appropriate donor village sub-groupand fitted linear model.
Empirical Results. In Tables 8.3 and 8.4, we show the results of the hypothesis test for thetwenty interventions considered and the median R2rct-scores. The hypothesis test passesfor all but four interventions at a significance of α = 0.05. Indeed, the correspondingmedian Rrct-scores are among the lowest, with three of four being the minimum achievedscores. This highlights the use of the hypothesis test as a helpful robustness checkfor when to trust the counterfactual predictions produced by SI. For the remaining 17interventions that do pass the hypothesis test, we generally see significantly higher
R2rct-scores, indicating again that there is significant heterogeneity amongst villages.

Intervention Code 000 001 002 010 031 032 040 050 100 101
Hypo. Test (α = 0.05) Pass Pass Fail Pass Pass Pass Pass Pass Pass Pass
R2

rct-score 0.55 0.50 0.48 0.73 0.62 0.73 0.57 0.75 0.50 0.68
Table 8.3: Hypothesis test and prediction accuracy results for SI in the context of immunizationcase study for top 1-10 most frequent interventions.

Intervention Code 102 200 201 202 300 301 302 400 401 402
Hypo. Test (α = 0.05) Pass Pass Pass Pass Fail Pass Pass Fail Fail Pass
R2

rct-score 0.48 0.70 0.66 0.45 0.34 0.46 0.60 0.29 0.29 0.42
Table 8.4: Hypothesis test and prediction accuracy results for SI in the context of immunizationcase study for top 11-20 most frequent interventions.
Key Takeaways. The question we set out to answer was whether providing “personalized”intervention recommendations to each village would have led to significant increases inthe immunization rates for that village over the single intervention recommendation madeby the authors of Banerjee et al. (2018), as is standard practice in a RCT. Using thecounterfactual estimates produced by SI, we define the average utility of intervention dfor village n as

Û(n, d) = 1
T − T0

T∑
t=T0+1 M̂

(d)
tn .

In words, for a particular intervention d, this is the average increase in immunization rates
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over the post-intervention phase. Further, let
Ûrand = 1

N

N∑
n=1 Û(n, dn), Ûrct = max

d∈D

1
N

N∑
n=1 Û(n, d), Ûtailored = 1

N

N∑
n=1 max

d∈D
Û(n, d)

where dn ∼ Uniform(D ). In words, Ûrand represents the estimated average utility acrossall villages if a randomly sampled intervention had been administered. Ûrct representsthe estimated best single intervention across all villages in hindsight (i.e., the RCTpolicy). Lastly, Ûtailored is the estimated average utility for each village under its optimalintervention.
Normalizing Ûrand as 1.0, we find Ûrct and Ûtailored are 1.3x and 2.8x higher, respectively,compared to Ûrand. Thus, if the units of interest are heterogeneous, then using SI toproduce tailored interventions can lead to large gains. We stress these are only estimatedutilities as we, of course, never observe each village under all interventions. Lastly, we notethe estimated single best policy that maximized Ûrct matched the policy recommendationmade in Banerjee et al. (2018).

Recommendation Type Average Utility

Ûrand: Random Assignment 1.0
Ûrct: Single-best RCT Policy 1.3

Ûtailored: Personalized Recommendation 2.8
Table 8.5: Average utilities associated with three types of intervention interventions per village:random assignment, single-best RCT policy, and personalized intervention recommendation.
� 8.3.4 In-Vitro Life Sciences: Drug Discovery
The standard drug delivery pipeline begins with exploratory, in-vitro studies on animaland/or human cell, which are used to determine the drug candidates that should beinvestigated in the clinical stages involving human subjects. Unfortunately, the traditionalparadigm is known to suffer from inefficiency, high costs, and high failure rates, only todeliver “one-drug-fits-most” treatment options. This begs several important questions:(1) can we identify the most promising candidate therapies early on so we do not wasteresources in the latter stages? (2) can we personalize our therapies based on the particularcharacteristics of individuals (i.e., achieve precision medicine)? In this study, we tacklethe first question using in-vitro data.



162 CHAPTER 8. SYNTHETIC INTERVENTIONS

Figure 8.9: Observation pattern for in-vitro case study.
Aim, Setup and Key Modeling Choices

We continue our application of SI in the context of in-vitro studies. More specifically, weconsider the task of predicting the effects of chemical therapies (drugs) on cell types, usingthe publicly available LINCS dataset. Due to sparsity concerns, we analyze a subsetof the dataset that is comprised of the 20 most administered therapies and a control,DMS10, which yields 24 unique cell types. Each of the cells is observed under the controltherapy and a subset of the 20 other therapies; in total, we observe the gene expressionsfor approximately 60% of all possible cell-therapy pairs. Therefore, our goal is to use ourexisting data (the 60% of observed gene expressions) to infer the gene expressions of theremaining untested cell-therapy pairs.
However, unlike the previous studies where each unit (cell) only experiences a singleintervention (therapy) during the post-intervention period, the units in this study re-ceive multiple interventions. In turn, we can learn relationships either across units orinterventions. We detail the nuances below.

1. Learning Relationships between Cells. To gain a better intuition for the experimen-tal setup, consider (for concreteness) the task of estimating the gene expression forcell 1 under therapy yellow. The same principles are then applied to all untestedcell-therapy pairs.
(a) Choosing Donor Groups. Given the discussion above, we define the donor cellsfor target cell 1 as the subset of cells that receive therapy yellow.(b) Choosing Pre- and Post-intervention Data. To begin, we consider the pre-intervention data as cell 1’s observed gene expression under the control, DMS10.
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Figure 8.10: Experimental setup for SI on cells.
However, since cells are exposed to multiple therapies rather than just one,we identify the largest common subset of therapies (not including control) thatwere exposed to cell 1 and the donor cells (that receive therapy yellow). Thegene expressions under the common subset of therapies can then be interpretedas “auxiliary metrics”; this effectively augments the pre-intervention data and,as suggested by our theoretical and empirical results in Chapter 7, behoovesthe SI estimator. Restating the above, we define the pre-intervention data asthe collection of gene expressions under all commonly tested therapies andcontrol. Correspondingly, the post-intervention donor data is represented bythe observed gene expressions of our donor cells under therapy yellow. For agraphical depiction, please refer to Figure 8.10.(c) Algorithm. To infer the gene expression of cell 1 under therapy yellow, we applythe standard SI algorithm (using side information) as before, i.e., we learn a linearmodel between cell 1 and the donor cells, and perform a synthetic interventionby rescaling the donor gene expressions under therapy yellow via the learnt(linear) coefficients. To distinguish this approach from the discussion to follow,we will refer to this method as SI on cells.

2. Learning Relationships between Therapies. Consider the above example of esti-mating cell 1’s gene expressions under therapy yellow. However, rather than learninga linear model between cells, we will now exploit the symmetry of our tensor factormodel and the structure of our data to learn a linear model between interventions.
(a) Choosing Donor Groups. By symmetry, we define the donor therapies for therapyyellow as the subset of therapies (including control) that cell 1 experienced.
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Figure 8.11: Experimental setup for SI on therapies.
(b) Choosing Pre- and Post-intervention Data. In a similar spirit to the abovesetup, we first identify the largest common subset of cells that experienced thedonor therapies and therapy yellow. Our pre-intervention donor data is thenrepresented by the amalgam of gene expressions of these cells under the donortherapies, while our pre-intervention target data is represented by the geneexpressions of these cells under therapy yellow. Therefore, our post-interventiondonor data are the gene expressions of cell 1 under the donor therapies. For agraphical depiction, please refer to Figure 8.11.(c) Algorithm. Under this new setup, we apply the SI algorithm along the therapiesinstead. That is, we learn a linear model between therapy yellow and the donortherapies using the data described above. Then, we use the learnt model torescale the gene expressions of cell 1 under the donor therapies to effectivelyperform a synthetic intervention. As such, we refer to this method as SI on

therapies.
Empirical Results and Key Takeaways

We apply SI on both cells and therapies to produce two different estimates of the geneexpressions for each cell-therapy pair (not including control data). However, as before,we evaluate our method on the observed gene expressions. To do so, we iteratively holdout one tested cell-therapy pair and apply the two methods described above using theremaining observations to infer its resulting gene expression.
Empirical Results. We display a histogram of the test statistics of our hypothesis test forSI on cells and therapies in Figures 8.12a and 8.12b, respectively. Recalling Theorem 5.4.1
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(a) Histogram of test statistics for SI on cells. (b) Histogram of test statistics for SI on therapies.
Figure 8.12: Histogram of test statistics for both SI methods; namely, applied to cells andtherapies. As suggested by Theorem 5.4.1, SI on therapies should outperform SI on cells, giventhe left skewness of the test statistics in (b).
and the discussion in Chapter 5.4, we remind the reader that, for all practical purposes,the closer the test statistic is to zero, the more likely SI will be able to generalize. Assuch, the histograms suggest that SI on therapies should outperform SI on cells since thepost-intervention data, in the context of SI on cells, is likely to be more complex thanthat of the corresponding pre-intervention data.
We display a heatmap of median standard R2-scores (across receiving cells) for eachof the 20 therapies in Figure 8.13a, where greener entries correspond to higher scoresand redder entries correspond to lower scores. In line with the previous case studies, wecompare our two methods, SI on cells and on therapies, against their “RCT” estimatorcounterparts, i.e., the RCT estimator on cells simply takes the average gene expressionlevels across all donor cells as its estimate, and the RCT estimator on therapies is definedanalogously. As evident from the figure, we identify that SI on therapies outperforms itscompetitors almost uniformly across all therapies. Pleasingly, this is in agreement withour hypothesis test results (namely, the histogram of test statistics), which continue tobe a useful guide in testing for generalizability. For convenience, we further summarizeFigure 8.13a via a boxplot in Figure 8.14b, which displays the median R2-score, andcorresponding lower and upper quantile bounds, for each method across all therapies.
Key Takeaways. Because experiments can be costly, therapies are commonly tested on asubset of cells. The therapies that are the most promising on average across the testedcells are then likely to move onto the clinical stages. Thus, our baseline “RCT” (average)estimators reflect a standard inference procedure utilized in modern practice. However,



166 CHAPTER 8. SYNTHETIC INTERVENTIONS

(a) Heatmap of median R2 values (per therapy) across various methods.

(b) Boxplot summary of (a).
Figure 8.13: In (a), we see that, almost uniformly across all therapies, SI on therapies is thehighest performing approach. (b) summarizes the heatmap in (a) via a boxplot, which displaysthe median R2-score across therapies for each method, with its corresponding upper and lowerquantile bounds.
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as shown in the figures above, SI (on therapies) can far exceed standard baselines withrespect to inference. Therefore, in settings such as bench and clinical research, whereany gain in R2-values is of significance, SI can be largely beneficial for researchers.Specifically, SI has the ability to accurately infer the potential outcomes for untestedcell-therapy pairs. In turn, we hope this may guide researchers (in a data-driven manner)on which promising pairs to invest in and perform experimentation. At the same time, ourhypothesis tests can inform the researchers on which estimates to confidently trust in andwhich to disregard. In short, SI can effectively be viewed as a recommendation engine forresearchers.
� 8.4 Discussion

� 8.4.1 Connection to Tensor Estimation
The penultimate goal of this chapter (and thesis) is to infer the counterfactual potentialoutcomes for all unit-intervention tuples during the post-intervention period. Therefore,unlike the standard SC settings (see Chapters 6.4.1 and 7.4.1) where the primary interestis in recovering a specific segment of a matrix, our problem is now formalized as recoveringall of the “interesting” (post-intervention period) aspects of the order-three tensor whosedimensions correspond to measurements, units, and interventions2. Because each unit isonly exposed to a single intervention or remains unaffected during the post-interventionperiod, the studies induce a block sparsity pattern. Further, we aim to provide guaranteesacross all post-intervention measurements for every unit-intervention tuple. As such,standard tensor estimation methods, which typically assume observations are revealed atrandom and commonly provided guarantees on average (with respect to Frobenius norm)across the entire tensor, may be ill-suited for our purposes.
On the other hand, SI is tactfully designed to handle the particular block sparsity andprovides statistical guarantees for every unit-intervention pair, as desired. Since the unitsare assumed to operate under a common state for T0 measurements and the measurementfactors evolve from the pre- to post-intervention periods, SI explores and learns thecorrelations amongst the units during this pre-intervention phase. This is crucial as thelatent unit factors are the only objects that are simultaneously diverse during the trainingperiod (allowing us to extract signal) yet remain fixed in the post-intervention period(enabling generalization).

2Recall that we analyze the single metric P = 1 for simplicity, but can easily extend to the multiplemetric case.
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(a) Input (block sparsity) and output of causal inference setting.

(b) Input (uniform sparsity) and output of standard tensor estimation problems.
Figure 8.14: Comparison of sparsity patterns and objectives of causal inference and standardtensor estimation problems.
� 8.4.2 Connection to Transfer Learning & Transportability
Since the effects of interventions can vary, potential outcomes associated with the pre-and post-intervention periods may come from different domains. Additionally, we areonly given access to the target unit’s pre-intervention labels, as its post-interventionlabels are precisely the unobservable counterfactuals we wish to estimate. Therefore, ourproblem of interest also places us within the transductive transfer learning setting andbears connections to transportability. That is, using the language of transfer learning,the source (pre-intervention) and target (post-intervention) domains may be different yetrelated, and only the source domain labels are available. Nevertheless, as we have provenin Theorem 8.2.1 and Corollary 8.2.1, SI can extrapolate from our observed outcomes,which may be observed under one interventional framework, to estimate the counterfactualpotential outcomes under a distinct interventional framework. Importantly, we can applyour subspace inclusion hypothesis test (see Chapter 5.4) to validate when SI can reliablytransfer models between frameworks in practice.



Sec. 8.4. Discussion 169

� 8.4.3 Broader Impacts

What-if Scenario Planning

It is clear that the COVID-19 pandemic has led to an unprecedented disruption of modernsociety at a global scale. What is much less clear, however, is the effect that variousinterventions that have been put into place have had on health and economic outcomes.For example, perhaps a 30% and 60% clampdown in mobility have similar societal healthoutcomes, yet vastly different implications for the number of people who cannot go to workor file for unemployment. Having a clear understanding of the trade-offs between theseinterventions is crucial in charting a path forward on how to open up various sectors ofsociety. A key challenge is that policy makers do not have the luxury of actually enactinga variety of interventions and seeing which has the optimal outcome. In fact, at a societallevel, this is simply infeasible. Arguably, an even bigger challenge is that the COVID-19pandemic, and the resulting policy choices ahead of us, are unprecedented in scale. Thus,it is difficult to reliably apply lessons from previous pandemics (e.g., SARS, H1N1). Thisis only further exacerbated when taking into the account the vastly different economic,cultural, and societal factors that make each town/city/state/country unique.
SI provides a data-driven and statistically principled way to perform what-if scenarioplanning, i.e., for policy makers to understand the trade-offs between different interventionsbefore having to actually enact them. In essence, the SI method leverages informationfrom different interventions that have already been enacted across the world and fits itto a policy maker’s setting of interest – for example, to estimate the effect of mobility-restricting interventions on the U.S., we use daily death data from countries that enforcedsevere mobility restrictions to create a “synthetic low-mobility U.S.” and predict the
counterfactual trajectory of the U.S. if it had indeed applied a similar intervention. Wehighlight a few desirable attributes of this methodology.
• Personalized Predictions – SI takes into account the heterogeneity of the particular(geographical) purview of a policy-maker. For example, SI would provides differentpredictions for the effects of a 40% drop in mobility for the U.S. vs. India vs. Italy etc.based on the particulars of that country.
• Simplicity & Interpretability – SI relies on building “synthetic” versions of each geo-graphical location under different interventions by simply using a weighted combinationof geographical locations that did indeed enact such an intervention. Thus, SI requiresrelatively little hyper-parameter tuning. We hope that the simplicity, interpretability,



170 CHAPTER 8. SYNTHETIC INTERVENTIONS
and robustness (yet surprising accuracy) of SI will encourage policy makers to applySI without fear of over-fitting to the idiosyncracies of their data.
• Low Data Requirement – SI produces accurate forecasts using only (i) a few “donor”regions, i.e., SI only requires a small number of regions, approximately 5-10, to havegone through the intervention of interest; (ii) measurements over a small number of timeperiods, approximately 10-30 days (this can be viewed as the amount of training data);(iii) data corresponding to the metric of interest from each geographical location (e.g.,daily national death rates), i.e., it does not require additional covariate informationabout each location; however, if auxiliary information is available, then the SI methodcan naturally incorporate these data points in the model learning procedure as well.
Randomized Control Trials (RCTs)

Data-Efficient RCTs. Consider the setting with N > 1 types of customers coming toan e-commerce website, which has D > 1 types of promotions to offer. The goal is tofind which of the D promotions is best suited for each of the N different customer types.Traditionally, this is be achieved by running N ×D RCTs (i.e., A/B tests). As detailedin Section 8.3.2, using actual e-commerce A/B testing data, we show that SI can inferthese N ×D outcomes by running only 2N experiments3 (assuming D ≤ N); crucially,this does not depend on D.
Personalized RCTs. A core assumption in such RCTs is that a blanket policy workswell for all units, i.e., all interventions have essentially the same effect on all units.However, this assumption is often violated, and the inherent diversity between differentgroups of people is increasingly taken into consideration. SI, on the other hand, providespersonalized recommendations for each group, yet essentially only requires the same dataas what is generated in a classical RCT. Indeed, as detailed in Section 8.3.3, we find thatpersonalized recommendations can have significant gains over the optimal RCT policy(see Table 8.5 for details).
Beyond Traditional Paradigms. In general, it is worth noting that all of our resultshave direct implications for other important applications where RCT-like experimentsare an integral part of the decision-making pipeline. In particular, there has been alarge, recent wave towards precision (i.e., personalized) medicine. As discussed above, SI

3If one has or is already collecting pre-intervention data, then SI only requires N experiments. Further,we note that SI only requires outcomes across all N user types under a common intervention, i.e., the modeldoes not necessarily have to be learned under a no-intervention setting.
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provides a way to potentially perform personalized clinical trials without having to runan infeasible number of experiments on the various patient groups. Within clinical trials,patient recruitment and compliance is especially costly due to the monetary expensesand ethical considerations (e.g., placebo trials). Thus, the potential application of SI,especially in the context of personalized drug design or clinical trials, if successful, canhave a large impact.
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Chapter 9

Discussion, Conclusions, and Future Work

In this thesis, we reinterpret the classical potential outcomes framework through thelens of tensors (Chapter 4). As such, studies can be characterized by unique blocksparsity patterns, and the problem of estimating counterfactuals is equivalent to tensorestimation. Under a low-rank assumption, we prove the existence of synthetic controls andinterventions, and argue that PCR is a natural algorithm that arises from our setting ofinterest. In Chapter 5, we address a long-standing problem of showing PCR is surprisinglyrobust to a wide array of problems that plague large-scale modern datasets, includinghigh-dimensionality and noisy, sparse, and mixed valued covariates. In particular, weprovide meaningful non-asymptotic bounds for both the parameter estimation and testprediction errors for these settings, and furnish a data-driven hypothesis test to check whenthe key condition that enables generalizability holds. Having established the robustnessof PCR, we present a robust variant of SC in Chapter 6 that uses PCR as a key subroutineto estimate counterfactual potential outcomes under control. As such, our finite-sampleanalysis of PCR immediately provides a theoretical foundation for the RSC estimator. Forparticularly sparse datasets, we present MRSC, an extension of RSC that incorporatesauxiliary metrics in a principled manner, in Chapter 7. Finally, we present SI in Chapter8, a computationally and statistically efficient method towards estimating counterfactualpotential outcomes under both control and treatment. Consequently, SI enables effectivedecision making with notable applications towards what-if policy evaluation/scenarioplanning, drug discovery, and personalized, data efficient RCTs (A/B tests). Of course,there is still significant room for further improvement and extensions of this thesis, whichwe briefly discuss below.

173
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� 9.1 Algorithmic Fine Print

� 9.1.1 Incorporating Covariates
In order for PCR (and thus RSC, MRSC, and SI) to recover the underlying model parameter(Theorem 5.3.1) and generalize to unseen data (Theorem 5.3.2 and Corollary 5.12.1),it is essential that PCA (the key subroutine of PCR) accurately estimates the latentsubspace spanned by the top principal components of the underlying training covariates,
Vtrain ∈ Rp×r . At the same time, we may have access to auxiliary covariate information,which we denote as A ∈ Rp×s. For concreteness, consider the setting SC and SI, where
Vtrain describes the latent relationship between units and A contains s features per unit.Then, as suggested by Farias and Li (2019), the auxiliary information can be incorporatedby expanding the estimated feature space V̂train with A, and then proceeding normally. Inturn, this expansion should ideally better describe the relationship between units, whichis crucial for generalization given that the key enabling condition required for PCR isspan(Vtest) ⊆ span(Vtrain) (see Chapters 5.3.5 and 5.4 for details).
� 9.1.2 Finding a Low-Dimensional Representation
In essence, Chapter 5 shows that the PCA component of PCR is an effective pre-processingtool in finding a linear low-dimensional embedding of the covariates, which carries theadded benefits of implicit de-noising, noise-model agnostic, and regularization. Whenthe covariate data is “unstructured” (e.g., speech or video), however, it may be the casethat more complex covariate pre-processing techniques a la variational auto-encoders orgeneral adversarial networks are needed to discover useful nonlinear low-dimensionalembeddings that can also achieve similar implicit benefits. Therefore, we hope that thiswork provides an architectural guideline and theoretical framework of first de-noising andthen performing a prediction algorithm in the presence of more general datasets.
� 9.1.3 Beyond PCA and HSVT
As per the discussion above, this thesis advocates for a simple algorithmic architecturethat is comprised of two primary steps: (1) first, to de-noise the covariate (donor) dataand (2) then learn a mapping from the de-noised covariates to the target for the purposesof prediction. While we argue that PCA and HSVT are powerful de-noising techniqueswith provable statistical guarantees, they are, by no means, the only options. Therefore,it is the analyst’s discretion to decide which method (e.g., alternating least squares or
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nuclear norm minimization) is most appropriate for his or her setting of interest.
� 9.2 Future Work

� 9.2.1 Causal Forecasts under Novel Sequence of Interventions
As mentioned, SI (Chapter 8) represents the culmination of this thesis and has strongimplications towards effective decision making across a wide net of applications. Nev-ertheless, there are inevitable limitations of SI. Namely, SI, like any causal inferenceprocedure, produces counterfactuals for the past; at the same time, even though SI canestimate potential outcomes under both control and treatment, these estimates can onlybe constructed if some subset of units has actually undergone these interventions ofinterest. This enables SI to answer questions such as what would have happened two
weeks ago if the U.S. had imposed severe mobility restrictions? From this perspective,SI can be viewed as a “causal imputation” algorithm. However, it may be of interest toproduce “counterfactual forecasts” under a novel sequence of interventions. To elucidatethis extension, consider the following contrived scenario: Suppose none of the countriesever transitioned from severe to low mobility restrictions. Then, an example question thatis beyond the current scope of SI would be what will happen to the U.S. a month from
now if it had imposed high mobility restrictions two weeks ago and now relaxes to low
mobility restrictions moving forward? Because this a forecasting problem and none of thecountries ever experienced this interventional shift, SI cannot address such a query. As aresult, an interesting line of future work (which is currently underway) would be to buildupon SI to overcome these limitations.
� 9.2.2 Open Question
A primary contribution of this work is to view causal inference through a new lens.Specifically, we encode our data into a tensor and reformulate the problem of estimatingcounterfactuals into one of tensor completion. Although we have presented one algorithm(i.e., SI) that is able to recover the tensor under a tensor factor model, it remains anopen problem as to which sparsity patterns and corresponding objectives are achievable.Answering this question may have profound consequences for new study frameworks andinference schemes.
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