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Abstract

This work addresses the problem of optimizing mixed sparse and dense tensor algebra
in a compiler. I show that standard loop transformations, such as strip-mining, tiling,
collapsing, parallelization and vectorization, can be applied to irregular loops over
sparse iteration spaces. I also show how these transformations can be applied to the
contiguous value arrays of sparse tensor data structures, which I call their position
spaces, to unlock load-balanced tiling and parallelism.

These concepts have been prototyped in the open-source TACO system, where they are
exposed as a scheduling API similar to the Halide domain-specific language for dense
computations. Using this scheduling API, I show how to optimize mixed sparse/dense
tensor algebra expressions, how to generate load-balanced code by scheduling sparse
tensor algebra in position space, and how to generate sparse tensor algebra GPU code.
As shown in the evaluation, these transformations allow us to generate code that is
competitive with many hand-optimized implementations from the literature.
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Chapter 1

Introduction

Dense tensor algebra compilers, such as TCE, TVM and Tensor Comprehensions,

build on decades of research on loop transformations for affine loop nests [48, 47, 26].

Sparse tensor algebra compilation was introduced by the TACO system, however it

lacks an analogous sparse loop transformation framework [22].

Without a loop transformation framework, sparse tensor algebra compilers leave

several optimization opportunities on the table. First, sparse tensor algebra expres-

sions are often a mix of dense and sparse tensor algebra, with some operands stored

in sparse data structures and some in dense arrays. Examples include (sparse matrix)

× (dense vector) multiplication (SpMV) and (sparse matrix) × (dense matrix) mul-

tiplication (SpMM). Second, sparse tensors often have some dense dimensions, such

as the blocked compressed sparse rows matrix format (BCSR) representing a sparse

matrix containing dense blocks. Without a loop transformation framework, sparse

tensor algebra compilers cannot optimize the dense loops in mixed sparse and dense

expressions. Furthermore, current sparse tensor algebra compilers cannot apply loop

transformations, such as strip-mining, loop reordering, and loop collapsing, to sparse

loops. I will show that such transformations are possible and that they can be used to

enable parallelization and make effective use of modern GPUs. Finally, I will show

that by tiling the contiguous nonzero value arrays in sparse tensors, we can generate

static load-balanced parallel code.
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Figure 1-1: A coordinate cut (purple) and a position cut (red) in the coordinate
iteration space of a matrix (left), and the same cuts in its compressed coordinate data
structure. The coordinate cut cleanly divides the iteration space, while the position
cut cleanly divides the values of the data structure.

Applying loop transformations to sparse loops is challenging as sparse loops

coiterate data structures, sparse inputs may not support random access, and naively

tiling the computation leads to load-imbalance. In contrast, dense loops iterate over a

fixed range and index into data structures. As dense inputs can be randomly accessed,

tiling the calculation of index values is sufficient to tile loads and stores. Sparse loops

may coiterate any number of data structures and the resulting imperative code may

contain while loops, conditionals and indirect memory references. Load-balancing a

sparse computation to execute in parallel requires partitioning based on the sparsity

pattern of data structures, which is not known until runtime. Efficient load-balancing

is crucial to achieving high performance for GPUs, which makes generating sparse

GPU code non-trivial.

In this thesis, I propose a unified loop transformation framework for loop nests

with both dense and sparse loops that come from sparse tensor algebra. The loop

transformations are applied to intermediate representations before generating imper-

ative code. The transformations allow us to strip-mine, reorder, collapse, vectorize,

and parallelize both dense and sparse loops subject to straightforward preconditions.

Furthermore, the transformations enable strip-mining sparse loops both in the normal

iteration space corresponding to dense loop nests and in the contiguous space given

by the nonzeros of its compressed data structure (Figure 1-1).
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Figure 1-2: The structure of the prototype based on the TACO sparse tensor algebra
compiler [22]. The user specifies the desired result using the Index Notation, Format,
and Schedule languages. These are used in the construction of various intermediate
representations until the final output Function is generated. The Function can be used
to compute tensor algebra directly within TACO or can be used as a high-performance
kernel in another application. Most components of TACO required modifications and
the components highlighted red are new contributions of this thesis.

I have prototyped these ideas in the open-source TACO sparse tensor algebra

compiler of Kjolstad et al. [22], which can generate code for any sparse tensor algebra

expression. The structure of this prototype is shown in Figure 1-2. We expose

the transformations as a loop scheduling API analogous to the Halide scheduling

language [32]. Unlike Halide, however, the transformations can apply to both sparse

and dense loops from mixed sparse and dense tensor algebra expressions. I leave

automatic scheduling—developing an optimization system to automatically decide

loop transformations—as future work. Experience from Halide demonstrates that

an automatic scheduler is not necessary for a high-performance language to still

be useful. Furthermore, recent work on creating ML-based automatic schedules for

Halide can easily be targeted to my system. Such systems can be built on top of the

transformations I propose here. With these transformations, for the first time, TACO

is able to generate performance comparable code to the best hand-optimized libraries

for GPUs.
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My specific contributions are:

1. introduced position iteration spaces to complement the standard coordinate

iteration spaces,

2. generalized standard loop transformations to sparse loops, and

3. constructed a CUDA GPU backend that allows generating high-performance

CUDA kernels for all sparse tensor algebra expressions and formats supported

by TACO.

The rest of this thesis is organized as follows:

Chapter 2 - SpMV Example describes the example problem of sparse matrix-

vector multiplication (SpMV) and how this work can be applied to this problem to

generate high-performance CPU and GPU kernels.

Chapter 3 - Coordinate & Position Iteration Spaces introduces position

iteration spaces and describes how a computation has a coordinate space and multiple

position spaces. A high-performance tiling strategy can require tiling multiple spaces

as there are different benefits of tiling these two types of iteration spaces.

Chapter 4 - Intermediate Representation describes provenance graphs to track

the derivation of transformed index variables and iteration graphs to describe nested

and fused iterations.

Chapter 5 - Transformations presents an optimization framework that allows

transforming the iteration space of a computation and mapping it to parallel hardware.

Chapter 6 - Code Generation describes extensions to the TACO code generator

to support transformed sparse iteration spaces and CUDA GPU code generation.

Chapter 7 - Scheduling API details the transformation interface provided as a

scheduling API in TACO.

16



Chapter 8 - Evaluation compares the performance of generated code against

hand-tuned libraries. This chapter also highlights the need for automatic generation of

these codes due to a large optimization space that is highly dependent on the sparsity

pattern, size, hardware, and expression combination that is being optimized.

Chapter 9 - Related Works connects this work to prior work on optimizations

and transformations for sparse matrix and tensor computations.

Chapter 10 - Conclusion and Future Work concludes with possible directions

for future work.

Appendix A - Schedules provides the schedules used to generate all code presented

in this thesis.

17



18



Chapter 2

SpMV Example

In this section, I demonstrate the capabilities of the loop transformation and code

generation framework using a motivating example. The main target of this framework

is all code expressing computations on mixed dense and sparse multidimensional tensor.

For simplicity, though, I use the well-known example of matrix-vector multiplication:

𝑎 = 𝐵𝑐, in which a vector 𝑐 (a one-dimensional tensor) is multiplied by a matrix 𝐵 (a

two-dimensional tensor).

When all operands are dense, the code is straightforward. Figure 2-1a shows

matrix-vector multiplication with dense operands (GEMV); the loops shown are easy

to optimize, since they iterate over a regular data structure. However, when the

matrix is sparse (SpMV), as shown in Figure 2-1b, iterating through the entries of the

matrix becomes more complex. This is due to the fact that sparse matrices are most

often stored in compressed structures1, which avoid storing zero entries. More details

about matrix storage are given in Section 3. The combination of complex iteration

and indirect storage, common to most sparse matrix formats, makes subsequent loop

transformations more difficult for sparse matrix-vector multiplication (SpMV).

In the simplest case, shown in Figure 2-1c, it is possible to tile SpMV by tiling the

outer dense loop. This code is suitable for further optimizations such as parallelizing

the loop over i2. Tiling by itself is also an important transformation to ensure that

caches are used effectively. However, the resulting code of this tiling can be load-
1In this example, I use the compressed sparse row (CSR) storage.

19



for (int i = 0; i < M; i++) {
  for (int j = 0; j < N; j++) {
    int p = i * N + j;
    a[i] += B[p] * c[j];
  }
}

(a) Unscheduled GEMV

for (int i = 0; i < M; i++) {
  for (int p = B_ptr[i]; p < B_ptr[i+1]; p++) {
    int j = B_crd[p];
    a[i] += B[p] * c[j];
  }
}

(b) Unscheduled SpMV

// IndexVar i1, i2;
// return stmt.split(i, i1, i2, 4);
for (int i1 = 0; i1 < CEIL(M,4); i1++) {
  for (int i2 = 0; i2 < 4; i2++) {
    int i = i1 * 4 + i2;
    if (i >= M) continue;

    for (int p = B_ptr[i]; p < B_ptr[i+1]; p++) {
      int j = B_crd[p];
      a[i] += B[p] * c[j];
    }
  }
}

(c) Strip-mined SpMV

// IndexVar f, p;
// return stmt.fuse(i, j, f)
//            .pos(f, p, B(i, j));
int i = 0;
for (int p = 0; p < B_nnz; p++) {
  int j = B_crd[p];
  while (p == B_ptr[i+1]) i++;
  a[i] += B[p] * c[j];
}

(d) Position Iterating SpMV

Figure 2-1: Matrix-vector multiplication computed in several different ways, controlled
by sparse iteration space transformations.
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// IndexVar f, p, p1, p2, block, warp, thread, thread_nz, thread_nz_pre;
// TensorVar precomputed(Type(Float64, {Dimension(thread_nz)}), taco::dense);
// return stmt.fuse(i, j, f)
//            .pos(f, p, B(i, j))
//            .split(p, block, p1, NNZ_PER_THREAD * BLOCK_SIZE)
//            .split(p1, warp, p2, NNZ_PER_THREAD * WARP_SIZE)
//            .split(p2, thread, thread_nz, NNZ_PER_THREAD)
//            .reorder({block, warp, thread, thread_nz})
//            .precompute(precomputedExpr, thread_nz, thread_nz_pre, precomputed)
//            .unroll(thread_nz_pre, NNZ_PER_THREAD)
//            .parallelize(block,  ParallelUnit::GPUBlock,  OutputRaceStrategy::IgnoreRaces)
//            .parallelize(warp,   ParallelUnit::GPUWarp,   OutputRaceStrategy::IgnoreRaces)
//            .parallelize(thread, ParallelUnit::GPUThread, OutputRaceStrategy::Atomics);
__global__ void gpuKernel(...) {
  ...
  int p_start = block * 8192 + warp * 512 + lane * 16;
  int i = binarySearch(B_ptr, block_row_starts[block], block_row_starts[block+1], p_start);
  double precomputed[16];

  #pragma unroll
  for (int thread_nz = 0; thread_nz < 16; thread_nz++) {
    int p = p_start + thread_nz;
    if (p >= B_nnz) break;

    int j = B_crd[p];
    precomputed[thread_nz] = B[p] * c[j];
  }
  
  double row_sum = 0.0;

  for (int thread_nz = 0; thread_nz < 16; thread_nz++) {
    int p = p_start + thread_nz;
    if (p >= B_nnz) break;
    while (p == B_ptr[i+1]) i++;

    row_sum += precomputed[thread_nz];
    if (p+1 == B_ptr[i+1]) {
      atomicAdd(&a[i], row_sum);
      row_sum = 0.0;
    }
  }
  atomicAddWarp<double>(a, i, row_sum);
}

void gpuKernel(...) {
  ...
  block_row_starts = search_block_starts<<<NUM_BLOCKS, 512>>>>(...);
  gpuKernel <<<B_nnz/4096, 512>>>(...);
  ...
}

Figure 2-2: GPU Optimized SpMV
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imbalanced, because different rows may contain different numbers of entries. Logically,

this approach tiles the 𝑖 outer dimension of the matrix 𝐵 while iterating through the

𝑖 and 𝑗 dimensions of the matrix.

The alternative approach is to instead directly iterate through the nonzeros of 𝐵

rather than traverse the coordinate hierarchy with multiple loops. As sparse data

structures are not defined for all coordinates, I find it useful to define the positions of

a data structure as the dense index of the nonzero elements (ie the second position is

the second coordinate & value pair that the data structure holds a nonzero value for).

Therefore, I refer to iterating through the nonzeros of a data structure, as iterating

through position space. Code for computing SpMV by iterating through position space

is shown in Figure 2-1d. This style of iteration can be easily tiled while maintaining

static load-balancing (segments of the loop of the same size contain the same amount

of work) and can be used as the basis for high performance implementations on GPUs.

Figure 2-2 shows an optimized GPU implementation of SpMV, which iterates through

position space. This code requires a number of further transformations, including

further tiling for GPU blocks, warps, and threads, as well as loop unrolling and

precomputation. Transforming SpMV to iterate through position space, however, is

the basis on which the rest of the transformations are applied.

While the code in Figure 2-1a-b can be generated by TACO, the extensions in this

work enable the compiler to automatically generate the optimized implementations

shown in the rest of the figure. In the rest of the thesis, I describe how I automate

transforming code to iterate through position space for sparse tensors, and present a

scheduling language users can use to explicitly apply this transformation along with

others required to generate high performance sparse tensor code on CPUs and GPUs.
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Chapter 3

Coordinate & Position Iteration

Spaces

There are two types of iteration spaces: coordinate spaces and position spaces. A

coordinate space is a multi-dimensional Cartesian combination of coordinates that

encode each dimension of the iteration space. Transforming the coordinate space of a

computation was first introduced by Leslie Lamport in 1974 [24]. Position spaces, on

the other hand, are the positions along the space-filling curve created by imposing an

ordering on these coordinates. There are many different orderings, but in this thesis

I will only consider lexicographical orderings. Transforming the position space of a

computation is newly introduced by this work.

Dense coordinate spaces, such as those that arise from dense linear and tensor

algebra, can be visualized as a multi-dimensional lattice (i.e., a grid). Figure 3-1a

shows a dense matrix-vector multiplication example 𝑎 = 𝐵𝑐, and Figure 3-1b its two-

dimensional 𝑚× 𝑛 coordinate space, lexicographically ordered with the 𝑖 coordinates

before the 𝑗 coordinates. The resulting loop nest, shown in Figure 2-1a, iterates

over (𝑖, 𝑗) coordinates and computes a position 𝑝 to access the matrix using a strided

formula 𝑖 * 𝑛 + 𝑗. Figure 3-1c shows the multiplication’s one-dimensional position

space, consisting of the positions along the lexicographical ordering of the coordinate

space. The resulting loop nest would iterate over these positions 𝑝 and compute the

coordinates with the formulas 𝑖 = 𝑝/𝑁 and 𝑗 = 𝑝%𝑁 . As these are often expensive
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Figure 3-1: The dense matrix-vector multiplication (𝑎 = 𝐵𝑐) data structures, coordi-
nate space and position space.
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Figure 3-2: The sparse matrix-vector multiplication (SpMV) data structures, coordi-
nate space and position space.

to compute, position iteration over a dense matrix primarily makes sense when the

coordinates are not needed, such as when scaling a matrix.

Sparse iteration spaces appear when a loop iterates over one or more data structures

that encode subsets of the coordinates in an iteration space dimension. Sparse tensors

are stored in hierarchical compressed data structures. Figure 3-2a shows an example

of a matrix 𝐵 whose coordinates are stored in a compressed hierarchy that contains

only those coordinates that lead to a nonzero matrix value. Note that, although we

chose to show the coordinate hierarchy abstractly as a forest, in computer memory it

would be stored as a concrete data structure, such as compressed sparse rows (CSR) or

doubly-compressed sparse rows (DCSR). See Kjolstad et al. [22] or Chou et al. [10] for

in-depth descriptions of the relationships between coordinate hierarchies and concrete

matrix/tensor data structures.

Sparse coordinate spaces can be visualized as a multi-dimensional lattice with

holes. The holes appear because the coordinate hierarchy data structures compress out
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coordinates corresponding to zero entries, and the sparse iteration space is described

by the coordinates that are visited when loops iterate over these data structures.

Figure 3-2b shows the sparse iteration space of the SpMV operation. The resulting

loop nest that iterates over it was shown in Figure 2-1b. The outer loop iterates over

the rows of 𝐵, stored as (coordinate, position) pairs. The positions are the locations

of the coordinate at that level of the hierarchy, so the 𝑖 coordinate 2 is stored at

the second position after coordinate 0. The inner loop iterates over the nonempty

(nonzero) components of the current row in the outer loop. The loops together iterate

over the coordinate hierarchy of 𝐵 and thus the sparse iteration space of 𝐵𝑐. (It is not

necessary to iterate over dense 𝑐 as the intersection resulting from the multiplication

makes it sufficient to iterate over the smaller operand.)

Sparse position spaces are the sequence of nonzero coordinates in the order they

are stored in a coordinate hierarchy, which may be thought of as a sparse space-filling

curve through nonzero values. Their main advantage is that, although the coordinate

space of a sparse tensor expression is sparse and irregular, its position space is a dense

one-dimensional space that can be effectively tiled into equal-size blocks. This makes

it possible to transform tensor expressions into statically load-balanced parallel code

and to make effective use of vectorization and GPUs. Figure 3-2c shows the position

space of the SpMV expression as a sequence of positions with coordinates attached.

Figure 2-1d shows the single loop that iterates through the sparse position space

of the SpMV operation. Like the dense position space, the loop increments a position

variable 𝑝. Based on the position it retrieves the coordinate 𝑗 from the matrix 𝐵’s

coordinate array. In addition, it keeps track of the current coordinate 𝑖 by incrementing

it every time it reaches the end of a row. The increment of 𝑖 is placed in a while loop

to increment past empty rows. If there were more dimensions to the matrix 𝐵 then

the code would keep track of each coordinate above 𝑖 using the same strategy.

Figure 3-3 shows how position space iteration generalizes to higher-order tensors.

Instead of traversing the coordinate hierarchy in a typical top-down approach, the

generated code instead traverses the positions of a specific level of the coordinate

hierarchy (corresponding to a single dimension) directly. Once the end of a subtree is
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Figure 3-3: Position space iteration of a 3-tensor is shown by the red arrows running
across the leaves of the coordinate tree. When the end of a subtree is reached, the i
and j coordinate values are incremented accordingly.

reached, the appropriate upper-level coordinate values are incremented. Instead of

requiring a conditional for every upper-level coordinate on every loop iteration, we

can nest these conditionals, as a larger subtree can only end if the smaller right-most

nested subtree also ends. This means that iterating over an 𝑛-order tensor requires at

most 𝑛− 1 conditionals, but most iterations will fail the first conditional and not have

to evaluate the rest. If a coordinate level can have duplicate values (such as repeated

row pointers for empty rows in CSR), then a while loop is necessary to skip past

duplicate values; otherwise nested if statements are sufficient for unique values (such

as in compressed sparse fiber, or CSF, which compresses out multiple levels of sparsity

for higher-order tensors). The information needed to do this type of iteration is the

same that is needed to perform a typical top-down iteration and therefore all sparse

tensor formats that support top-down iteration can also be iterated in the position

space.

We can tile the coordinate space or the position space of a sparse tensor algebra

expression’s loop nest. Tiling its coordinate space is conceptually straightforward and

similar to how tiling works for dense loops. We simply split the dimensions of the

sparse space into coordinate sets that are assigned to separate tiles. The challenge

with tiling a sparse iteration space is that the tiles may not have the same number

of nonzeros and will therefore have different sizes in memory. This means that a
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potentially expensive search is required to determine the starting location of each tile

when iterating over them. Furthermore, varying sized blocks lead to different amounts

of computation and thus load-imbalanced parallel execution. Figure 3-4 demonstrates

the issue: although the cuts result in tiles with equal area, each tile contains a very

different number of nonzero points in its iteration space. We see this clearly when

projecting the cut to the coordinate hierarchy data structure of 𝐵, where the number

of values in each tile substantially differs.

Tiling the position space of a sparse tensor algebra expression opens up new and

exciting opportunities. The key property of position spaces is that they, in contrast to

coordinate spaces, are always dense and contiguous. The tiles therefore have the same

size and can easily be located. This lets us create statically load-balanced parallel

code and makes it possible to generate code that is tuned for GPUs, which tend to

benefit more from regular execution than CPUs. Figure 3-5 shows the effect of tiling

in the position space on the sparse coordinate space of the SpMV example and on its

data structures. The position tiles, in contrast to coordinate space tiles, are irregular

in the coordinate space, but lead to equal-sized tiles in the position space. However,

tiling in the position space introduces book-keeping code to keep track of coordinates

above the cut (e.g., what row we are on in the SpMV example). As rows can also span

multiple tiles, it is also necessary to deal with conflicting writes using synchronization

instructions. Furthermore, we can only cut the position space with respect to the data

structure of one of the operands of the expression. The resulting code, as we will see

in Chapter 6, iterates over this operand, computes coordinates, and then finds the

position of those coordinates in the other operands. Despite these drawbacks, I find

that position tiles are often crucial, especially on inflexible compute platforms such as

GPUs. It is a crucial strategy that I use to match the performance of well-studied

high-performance GPU kernels (shown in Chapter 8), while generalizing to many

tensor algebra expressions not previously studied.
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Figure 3-4: Tiling the coordinate space.
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Figure 3-5: Tiling the position space of the column coordinates.
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Figure 3-6: Tiling the position space of the row coordinates.
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Finally, we can generalize position tiling to apply to any dimension of the iteration

space, which corresponds to different levels of coordinate hierarchy in the data structure

whose positions we are tiling. This lets us create tiles with a fixed number of coordinates

in any dimension. For example, we can tile a SpMV operation in the position space of

the rows of matrix 𝐵. This creates tiles that have the same number of nonempty rows;

however, the rows themselves may have different numbers of nonzeros. Figure 3-6

shows a position cut in the row dimension of the iteration space, which corresponds

to the first level of the coordinate hierarchy. The cut evenly divides the nonempty

rows, whereas the position cut in the lowest level of the hierarchy evenly divides

the nonzeros. The benefit of a cut in a higher level of the hierarchy is that the cut

does not divide a row in two. This results in less book-keeping code and avoids the

synchronization overhead to handle conflicting writes.

In this chapter, I introduced position spaces, which are dense and contiguous

sections tied to a specific data structure. Coordinate and position spaces will be

tiled by transformations described in Chapter 5. The 𝑃𝑜𝑠 transformation will allow

specifying a specific position space to schedule over and the 𝐶𝑜𝑜𝑟𝑑 transformation will

allow further tiling a space that has already been tiled in position space. Chapter 6 will

describe how code is generated to tile and iterate over these spaces using intermediate

representations described in Chapter 4. Ultimately, these transformations and the

concept of position spaces will be directly exposed to the user via a scheduling API

described in Chapter 7. Tiling position space through this API will be essential to the

high-performance GPU kernels evaluated in Chapter 8.
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Chapter 4

Intermediate Representation

In order to carry out the iteration space transformations in this thesis, I extend the

iteration graph intermediate representation of Kjolstad et al. [22] with the concepts

of derived index variables, position index variables, and parallel index variables. An

iteration graph describes the lexicographically ordered sparse iteration space that

results from iterating over coordinate hierarchies, and transformations on the graph

transform the corresponding iteration space. I also introduce the provenance graph

intermediate representation, which formulates the relationships between derived index

variables as a directed acyclic graph. This allows for specifying iteration graph code

generation algorithms, described in Chapter 6, as directed traversals on a provenance

graph. The code generation algorithms output loop nests that iterate over the space

by coiterating over coordinate hierarchies. The transformations described in Chapter 5

directly transform iteration graphs and provide sufficient information in the SuchThat

node to allow constructing a provenance graph.

4.1 Iteration Graph Background

We can symbolically describe an iteration space by a lexicographical ordering of index

variables that represent dimensions, as in the polyhedral model. We extend this to a

tree of such variables, where the concatenated ranges of the variables of each tree level

together encode a dimension. This is analogous to an imperfect loop nest where an
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Figure 4-1: Coordinate hierarchies and iteration spaces of a sparse matrix B and
sparse tensor c are multiplied (SpMSpV).

outer loop contains two or more sequenced loops. These index variable trees describe

the full, or dense, iteration space of a tensor algebra expression.

Sparse iteration graphs extend iteration variable trees with paths through index

variable nodes. Each path represents a data structure’s coordinate hierarchy. Different

data structures contain different subsets of the iteration space. In tensor algebra

these coordinate hierarchies, as we saw in the previous chapter, come from the data

structures that encode the nonzero values of tensors. Figure 4-1a shows two abstract

coordinate hierarchies for the matrix-vector multiplication example. The expression

has two index variables that we choose to lexicographically order 𝑖 before 𝑗. Figure 4-1b

shows the two symbolic paths induced by these hierarchies. The matrix 𝐵 enumerates

both 𝑖 and 𝑗 coordinates and therefore its path go through both variables, where

the vector 𝑐 only enumerates 𝑗 coordinates. Finally, Figure 4-1c shows the iteration

graph that contains both paths, since the whole expression must coiterate over both

coordinate hierarchies. The graph is annotated with an intersection operation between

the two paths incoming on 𝑗. Thus, the iteration space of 𝑗 is the intersection of each

row of 𝐵 and the vector 𝑐. It is an intersection because multiplying any value by zero

yields a zero. It is therefore sufficient to iterate over those coordinates where both

operands have a value in order to compute the output nonzeros. Conversely, a tensor

addition would induce a union between incoming paths.
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4.2 Iteration Graph Extensions

I extend iteration graphs with the concept of derived index variables. These new

dimensions are added to an expression’s iteration space by the 𝑆𝑝𝑙𝑖𝑡, 𝐷𝑖𝑣𝑖𝑑𝑒, 𝐹𝑢𝑠𝑒,

𝑃𝑜𝑠, 𝐶𝑜𝑜𝑟𝑑, and 𝐵𝑜𝑢𝑛𝑑 iteration space transformations (described in Section 5) and

can be in either coordinate space or position space. Figure 4-2 shows an iteration space

before and after it has been tiled by splitting and reordering the index variables. The

tiling increases the iteration space’s dimensionality from two to four. All four of these

index variables are derived as they do not appear in the original iteration space. Since

we cannot cleanly visualize a four-dimensional space, however, we visualize the tiled

iteration space in terms of its iteration order when projected onto the original iteration

space. The nested iteration diagrams show the iteration of each index variable as

differently colored arrows. For example, in the original iteration space, the iteration

proceeds along the first blue arrow before it moves along the first red arrow to the next

row. The unrolled iteration space shows the order of the overall iteration. Mapping

between iteration spaces is important for code generation, since emitted loops iterate

in the transformed space, while data structures must be accessed by coordinates in

the original space. As well as allowing for derived index variables in the nodes of an

iteration graph, I also allow tagging these nodes with additional information. I will

leverage these tags to allow specifying hardware units to parallelize over and how to

resolve data races.

I also add a new type of node to iteration graphs called a SuchThat node, which

can optionally appear as the root of an iteration graph. This node provides context to

the iteration graph that is needed to determine the iteration space represented by it.

I leverage this new SuchThat node to store all transformations that yielded one or

more new derived index variables. This allows for the code generator to determine

how any given derived index variable is related to the original set of index variables

in the untransformed iteration graph. These relationships are the edges of an index

variable provenance graph, as described in the next section. This allows for trivially

constructing the provenance graph of a given iteration graph as needed.
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Figure 4-2: Iteration graphs, nested iteration orderings, and unrolled iteration orderings
are shown for an untiled row-major iteration (top) and a tiled iteration (bottom).

4.3 Provenance Graphs

Index variable provenance graphs track the derivation of derived index variables

from the original index variables in an index expression. Provenance graphs let us

map between the transformed iteration space and the original space, so that the code

generator can compute coordinates in the original space as needed to index into data

structures. Figure 4-3 shows the provenance graph after creating a load-balanced

SpMV kernel by tiling the expression in the position space. The derived index variables

that represent the dimensions of the final iteration space, p0 and p1, are tracked back

to the index variables in the original space through the transformations they went

through (transformations are described in the next chapter).

The transformations described in Chapter 5 create reversible relations between

index variables. During code generation, we must build up expressions by following

or reversing these relationships. An index variable provenance graph has a node for

every index variable and for every relationship. Edges connect index variables to

relationships. The edges are directed such that an index variable that is used in
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matrix’s position space. The graph maps derived index variables back to the index
variables they derived from. Blue variables are in position space.

a transformation points to the transformation and index variables created from a

transformation are pointed to from the transformation. Variables are only created

once and the set of transformations do not allow transforming variables that have

already been replaced by a transformed variable. This means that all index variables

in a provenance graph have at most one in-edge and one out-edge. Nodes that have

no in-edges are dimensions in the original iteration space and nodes with no out-edges

are dimensions in the transformed iteration space. I call these nodes respectively

underived and fully derived and variables that are created from a transformation

are derived from the variables used in the transformation. Untransformed index

variables are considered both underived and fully derived.

By walking this graph, we are able to determine useful attributes about a given

index variable. For example, an index variable is in position or coordinate space if

there is a 𝐶𝑜𝑜𝑟𝑑 or 𝑃𝑜𝑠 transformation along its derivation path. Also, it can be

determined if an index variable can be used to directly iterate over a position space

by checking that it is never the outer variable in a 𝑆𝑝𝑙𝑖𝑡 or 𝐷𝑖𝑣𝑖𝑑𝑒 transformation

(which results in a strided iteration). As well as allowing us to determine properties

about index variables, the code generation algorithm will use this graph to build up

expressions needed to lower transformed iteration spaces.
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Chapter 5

Transformations

In this chapter, I will describe a transformation framework for sparse, dense, and

mixed sparse/dense iteration spaces. The framework operates on the iteration graph

intermediate representation discussed in the previous chapter. These transformations

let us control the order of computation, so that we can optimize data access locality

and parallelism.

The transformations in this thesis—Coord, Pos, Reorder, Fuse, Split, Divide,

Parallelize, Bound, and Unroll—provide a comprehensive framework for controlling

iteration order through sparse iteration spaces. Figure 5-1 shows the effect of the

𝑅𝑒𝑜𝑟𝑑𝑒𝑟, 𝐹𝑢𝑠𝑒 and 𝑆𝑝𝑙𝑖𝑡 transformations on an 𝑖, 𝑗 iteration space. Although they

are here shown separately, transformations are typically used together, with some

adding or removing iteration space dimensions that other transformations reorder

or tag for parallel execution. All transformations apply to index variables in both

the coordinate space and the position space, and the Coord and Pos transformations

transition index variables between these spaces.

Key to my approach is that the transformations operate on the iteration graph

intermediate representation before sparse code is generated. Similar to unimodular

transformation space for dense loops [46], this representation makes it possible to

reason about sparse iteration spaces algebraically without the need for sophisticated

dependency and control flow analysis of sparse code, which may contain while loops,
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Figure 5-1: An original row-major nested iteration of a two-dimensional coordinate
iteration space is shown alongside various transformed nested iterations caused by
different iteration space transformations.

conditionals, and indirect accesses. The sparse code is then introduced when iteration

graphs are lowered to code, as described in the next chapter.

Transformations need to be general enough to allow expressing high-performance

techniques, but they also must be constrained enough to prevent producing incorrect

code. If a user or autoscheduler cannot rely on the correctness of transformations,

they are forced to test generated code against different sized inputs and concurrent

interleavings. Not only does this make the code generator significantly less usable,

it also can make autoscheduling searches intractable. If the following preconditions

are checked, I believe that no transformation will ever lead to generated code that

produces a different result. Formally proving this is left to future work.

Preconditions are checked during each transformation and the iteration graph to

be transformed is assumed correct. If the supplied iteration graph is not valid then

no guarantees can be made about the transformed iteration graph. In addition, all

transformations have a precondition that the index variables to be transformed are in

the provided iteration graph.
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In Chapter 6, I specify per-transformation routines that will be used to build up

generated code for transformed spaces. In Chapter 7, I explain how these transforma-

tion primitives are exposed to the user as a scheduling API. This scheduling API also

enforces the preconditions specified in this chapter to ensure the correctness of the

generated code.

5.1 Pos

Description The Pos transformation takes an index variable in the coordinate

space and replaces it with a new derived index variable that operates over the same

iteration range, but with respect to one input’s position space. This has the effect of

mode switching other commands such as Split and Divide to transform the position

space rather than their default mode of operating on the coordinate space. If further

commands are not used after this mode switch, this transformation has no effect. Even

though the iteration graph now has a position variable as a node, it is important to

realize that this does not signify that this forall node will iterate through all positions of

the input. If the generated code’s iteration pattern was changed by this transformation,

it would be incorrect in the cases that iterating through the positions of one input

does not iterate over all points where a computation is necessary. Instead the iteration

graph produces the same generated code before and after the transformation and the

mode switch only applies for further transformations.

Preconditions The index variable supplied to the Pos transformation must be

in coordinate space. The Pos transformation also takes an input to indicate which

position space to use. This input must appear in the computation expression and also

be indexed by this index variable. If the index variable is derived from multiple index

variables, these variables must appear directly nested in the mode ordering of this

data structure. This allows for transforming multi-dimensional position spaces.
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5.2 Coord

Description The Coord transformation takes an index variable in position space and

replaces it with a new derived dimensional iterator that iterates over the corresponding

iteration range in the coordinate iteration space. Similar to the Pos transformation,

this causes for a mode switch for other transformations, but does not change the

generated code by itself.

Preconditions The index variable supplied to the Coord transformation must be

in position space.

5.3 Reorder

Description The Reorder transformation swaps two directly nested index variables

in an iteration graph. This changes the order of iteration through the space and the

order of tensor accesses. Figure 5-1b shows the effect of the Reorder transformation

on a two-dimensional iteration space, in terms of iteration order on the original space.

Whereas the original space was iterated through in row-major order, the reordering

creates a new space that is equivalent to iterating through the original space in

column-major order.

Preconditions The precondition of a Reorder transformation is that it must not

hoist a tensor operation outside a reduction that it does not distribute over. Otherwise,

this will alter the contents of a reduction and change the value of the result. In addition,

we check that the result of the reorder transformation does not cause tensors to be

iterated out of order; certain sparse data formats can only be accessed in a given mode

ordering and we verify that this ordering is preserved after the reorder.
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5.4 Fuse

Description The Fuse transformation collapses two directly nested index variables.

It results in a new fused index variable that iterates over the product of the coordinates

of the fused index variables. This transformation by itself does not change iteration

order, but it does change how the space is iterated. This transformation is useful, for

example, to expose additional parallelism as one loop now iterates over all points that

multiple loops would iterate over. Figure 5-1c shows the iteration order of the fused

space in terms of the original space. The fused space is a one-dimensional space that

is equivalent to iterating over the original space in a linearized order. The linearized

order is determined by the nesting order. If the rows index variable is nested below

the columns index variable, then the linearized order will be column-major (and the

opposite nesting will be row-major).

Preconditions The Fuse transformation takes in two index variables. The second

index variable must be directly nested under the first index variable in the iteration

graph. In addition, the first index variable must be in coordinate space. To work

with a multi-dimensional position space, it is instead necessary to fuse the coordinate

dimensions and then use the Pos transformation. This allows us to isolate the necessary

preconditions to the Pos transformation. The Fuse transformation does not require

any reduction-related preconditions as the order of the iteration is maintained through

this transformation and reductions can be computed in the same order.

5.5 Split

Description The Split transformation splits (strip-mines) an index variable into

two nested index variables, where the size of the inner index variable is constant.

The size of the outer index variable is the size of the original index variable divided

by the size of the inner index variable, and the product of the new index variables

sizes therefore equals the size of the original index variable (or is slightly larger if the

original index variable is not evenly divisible by the size of the inner index variable).
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Note that in the generated code, when the size of the inner index variable does not

perfectly divide the original index variable, a tail strategy is employed such as emitting

a variable sized loop that handles remaining iterations. Figure 5-1d shows the effect

of the split transformation as an iteration order over the original space. The split

replaces the 𝑗 node with two nodes that together iterate over the same space. This

transformation is useful for tiling to stream a workload over a fixed size resource such

as a cache, CPU vector unit, or GPU thread-block.

Preconditions The split factor must be a positive non-zero integer.

5.6 Divide

Description The Divide transformation splits one index variable into two nested

index variables, where the size of the outer index variable is constant. The size of the

inner index variable is thus the size of the original index variable divided by the size

of the outer index variable. The Divide transformation is important in sparse codes

because locating the starting point of a tile can require an 𝑂(𝑛) or 𝑂(log(𝑛)) search.

Therefore, if we want to parallelize a blocked loop, then we want a fixed number of

blocks and not a number proportional to the tensor size. A common misconception is

that Divide is simply the result of Split followed by Reorder. However, Split-Reorder

results in a strided iteration, where consecutive iterations are split factor apart. Divide,

like Split, keeps the same iteration order, but simply divides it into a constant number

of chunks. This transformation is useful for statically load-balancing a fixed number

of partitions of a workload such as parallelizing over all CPU cores.

Preconditions The divide factor must be a positive non-zero integer.

5.7 Parallelize

Description The Parallelize transformation tags an index variable for parallel

execution. The transformation takes as an argument the type of parallel hardware to
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execute on. The set of parallel hardware is extensible and our current code generation

algorithm supports SIMD vector units, CPU threads, GPU thread blocks, GPU

warps, and individual GPU threads. Parallelizing the iteration over an index variable

changes the iteration order of the loop and therefore requires all reductions inside

the iteration space represented by the subtree rooted at this index variable to be

associative. Furthermore, if the computation uses a reduction strategy that does not

preserve the order, such as atomic instructions, then the reductions must also be

commutative.

Preconditions Once a Parallelize transformation is used, no other transformations

may be applied on the iteration graph as the preconditions for other transformations

assume serial code. In addition there are sometimes hardware-specific rules to how

things can be parallelized, such as that a CUDA warp has a fixed size of 32 threads or

that to parallelize over CUDA threads one must also parallelize over CUDA thread-

blocks. These hardware-specific rules are checked in the hardware-specific backend

rather than before the transformation.

In addition to hardware-specific preconditions, there are preconditions related

to coiteration that apply for all hardware. An index variable that indexes into

multiple sparse data structures cannot be parallelized as it will become a while loop.

Instead this loop can be parallelized by first strip-mining it with the Split or Divide

transformation to create a parallel for loop with a serial nested while loop. Expressions

that have an output in a format that does not support random insert can also not

be parallelized. Parallelizing these expressions would require creating multiple copies

of a data structure and then merging them, which is left to future work. Note that

there is a special case where the output’s sparsity pattern is the same as one of the

inputs. For example, this is true of sampled dense-dense matrix multiply (SDDMM),

tensor times vector (TTV), and tensor times matrix (TTM) kernels when choosing

certain sparse data structures. This does not require creating multiple copies, but the

implementation does not yet handle this special case.
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Finally, there are preconditions related to data races during reductions. The

Parallelize transformation allows for supplying a strategy to handle these data races.

The NoRaces strategy has the precondition that there can be no reductions in the

computation. The IgnoreRaces strategy has the precondition that for the given inputs

the code generator can assume that no data races will occur. For all other strategies

other than Atomics, there is the precondition that the racing reduction must be over

the index variable being parallelized. Other output race strategies will be described in

Chapter 7.

5.8 Bound

Description The Bound transformation fixes the range of an index variable, which

lets the code generator avoid inserting unnecessary conditionals and enables other

transformations that require fixed size loops, such as vectorization. The Bound

transformation allows specifying equality and inequality constraints. Additionally, it

allows specifying if the range of an index variable is divisible by a constant.

Preconditions All provided constraints must hold for inputs of the generated code.

5.9 Unroll

Description The Unroll transformation tags an index variable to result in an

unrolled loop with a given unroll factor. This reduces the amount of control flow

logic at the cost of increased code size. Any early exit conditions for the loop will be

hoisted outside of the loop before unrolling. This results in either a fully unrolled loop

being executed or a normal loop with the early exit condition that is not unrolled.

Preconditions The unroll factor must be a positive non-zero integer.
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Chapter 6

Code Generation

I extend the sparse tensor algebra code generator described by Kjolstad et al. [22] to

support iteration graphs with derived index variables and to generate optimized CPU

and CUDA GPU code. The TACO code generator generates an intermediate AST that

is then targeted to a specific language and hardware by the backend. Previously, only

untiled C code for CPUs could be generated. This C code generator was extended to

allow scheduling over CPU vector units and threads. I also constructed a new CUDA

backend and modified the code generation algorithm to generate an intermediate AST

that contains loops that represent GPU blocks, warps, and threads. Lowering this

AST to CUDA code follows a straightforward process as all high-level transformations

have already been carried out. This provides the opportunity to more easily add

additional backends to target new languages and hardware.

The existing code generator operates on iteration graphs and generates nested

loops to iterate over each index variable. For each index variable, one or more loops

are generated to either iterate over a full dimension (a dense loop) or to coiterate

over levels of one or more coordinate hierarchy data structures. Coiteration code is

generated using a construct called a merge lattice that enumerates the intersections

that must be covered to iterate over the sparse domain of the dimension. This may

result in a single for loop, a single while loop, or multiple while loops.

To generate loops that iterate, or coiterate, over derived index variables, the

code generator must first compute their iteration domains. Figure 6-1 provides an
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#pragma omp parallel for schedule(runtime, 1)
for (int p0 = 0; p0 < CEIL(B2_pos[B1_dim],16); p0++) {
  int i = search(B2_pos, 0, B1_dim, p0*16);
  double t = 0.0;
  for (int p1 = 0; p1 < 16; p1++) {
    int p = p0 * 16 + p1;
    if (p >= B2_pos[B1_dim]) break;
    int j = B2_crd[p] % B2_dim;
    while (p == B2_pos[(i+1)]) i++;

    t += B[p] * c[j];
    if (p+1 == B2_pos[(i+1)]) {
      #pragma omp atomic
      a[i] += t;
      t = 0.0;
    }
  }
  #pragma omp atomic
  a[i] += t;
}

Figure 6-1: Generated code for parallel sparse matrix-vector multiply. Red code
recovers index variables, green code shows iteration bounds of derived index variables,
and blue code depicts iteration guards.

example of a generated SpMV implementation that highlights derived loop bounds

(green), iteration guards (blue), and index variable recovery (red). The following

sections describe each of these extensions. These domains are computed by an

iteration domain propagation algorithm, and they affect the bounds of generated

loops (green in Figure 6-1). In cases where a fixed range index variable was split off

from another index variable and its size does not evenly divide the original variable,

the code generation algorithm also generates an iteration guard tail strategy (blue in

Figure 6-1).1

1Note that I show the iteration guards inside the loop for readability, but in the implementation,
the loop is cloned and an iteration guard determines which loop to enter.
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To generate code for transformed sparse iteration spaces, I extend the TACO code

generator to:

1. coiterate tiled and fused iteration spaces with a modified merge lattice construc-

tion algorithm (Section 6.1),

2. generate code to recover coordinates in the original iteration space from coordi-

nates in the transformed iteration space (Section 6.2),

3. determine derived index variable bounds by propagating the bounds placed on

the underived index variables (Section 6.3),

4. generate iteration guards to prevent iteration over invalid values from causing

incorrect behavior (Section 6.4), and

5. generate SIMD vectorized, OpenMP CPU, and CUDA GPU code with reductions

(Section 6.5).

6.1 Merge Lattice Construction

TACO uses merge lattices to optimize the coiteration of sparse ranges [22]. I extend

the construction and optimizations on these merge lattices to support tiled and fused

iterations. Merge lattices already support reasoning about intersections and unions of

sparse tensor ranges where some ranges may become exhausted of values before others.

I reuse these same concepts to add the additional functionality and therefore avoid

making changes to the underlying merge lattice representation. As during lowering,

the merge lattice construction process queries information from a provenance graph.

The prior merge lattice construction algorithm assumed that every node in an

iteration graph performed a full coiteration of all data structures defined on the given

dimension. For a tiled iteration, there are iteration graph nodes that iterate on an

integer range rather than directly on tensors and there are nodes that coiterate on

a segment of a dimension rather than the entire dimension (see Figure 4-2). The

new algorithm uses a provenance graph to determine if an iteration graph node is
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iterating on an integer range and in this case produces the degenerate merge lattice

that results in a simple for loop over the given index variable. When constructing a

merge lattice for the coiteration of a segment of a dimension, the modified algorithm

adds an additional intersecting data structure during construction, which is defined

on values within the segment and zero otherwise. As this data structure should

not actually be coiterated, (it does not exist), its iterator is only used to bound the

iteration. In merge lattice terminology, the iterator of this data structure is a ranger,

but not a merger. I also modify the merge lattice optimizations to still apply correctly

for these segment coiterations. This formulation of tiled coiteration allows the reuse

of much of the original merge lattice construction machinery.

When coiterating over a fused dimension, the modified algorithm constructs new

iterators for this fused dimension that are equivalent to the iterators for the deepest

nested dimension except that they are not nested within the iterator of the outer

dimension. These iterators iterate through an entire level of a tensor rather than one

segment of the level. Iterators in TACO are chained together such that all iterators

have a parent iterator that iterates on the previous mode of the same data structure.

The fused iterators skip the outer dimension in this chain. The values for the skipped

iterators are recovered using the position space iteration strategy shown in Figure 3-3.

This construction allows for us to merge data structures on fused dimensions just as

we would on a single dimension. This does have the side effect however of losing the

ability to merge on the outer dimension separately. For example, when performing

element-wise multiply on two DSCR matrices A & B, we normally would be able to

skip a row in B if it is empty in A, however iterating in the fused space does not

allow this. I believe that position space iteration can be extended to allow this type

of merge, but I leave this to future work.

6.2 Coordinate Recovery

In a transformed iteration space, dimensions are tiled and represented by derived

index variables. The generated loops iterate over the coordinate ranges defined by
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these derived index variables. But the coordinate hierarchy data structures of the

tensors contain and are accessed by coordinates in the original iteration space. The

code generator must therefore emit code to map between these iteration spaces. I call

this coordinate recovery.

It may be necessary to recover original or derived coordinates. Recovering original

coordinates is required when they are used to index into tensor data structures,

which are stored in the original coordinate space. Recovering derived coordinates,

on the other hand, is required when a coordinate in the original coordinate space is

loaded from a coordinate hierarchy, but a coordinate in the derived space is needed to

determine iteration guard exit conditions.

The code generator defines two functions on the provenance graph to map coordi-

nates between original and derived index variables, and vice versa. These are:

recover_original, which computes the coordinate of an index variable from its

derived index variables in a provenance graph (red arrows in Figure 6-2), and

recover_derived, which computes the coordinate of an index variable from the

variable it derives from and its siblings (green arrows in Figure 6-2).

Coordinate recovery may require an expensive search, so I define an optimization

that computes the next coordinate faster than computing an arbitrary coordinate. Such

tracking code implements iteration through recovered coordinates. The coordinate

tracking code has two parts, an initialization that finds the first coordinate and

tracking that advances it. The initialization is done with the following code generation

function on provenance graphs:

recover_track, which computes the next coordinate during a fused iteration pattern

(red stippled arrow in Figure 6-2).

Figure 6-1 uses the tracking optimization to track the i coordinate. It starts by

finding the first i coordinate using a binary search, but then simply advances to the

next i coordinate when it finds the end of a row segment.
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Figure 6-2: An index variable provenance graph annotated with arrows that depict
different ways that an unknown index variable’s coordinates can be recovered from
known index variables. Red arrows depict original coordinate recovery and green
arrows derived coordinate recovery.

Recovery functions are defined for each transformation that appears in the provenance

graph:

Coordinate and Position Transformations I define two functions:

coord_from_pos and pos_from_coord. The function recover_original for the position

transformation and the function recover_derived for the coordinate transformation

use the pos_from_coord function. The other recovery function for each of these

transformations instead uses coord_from_pos. The function pos_from_coord searches

the coordinate array of the underlying tensor to determine the position that indexes

to this coordinate (or the coordinate directly preceding it) in the array. The function

coord_from_pos indexes into the coordinate array at the given position index and

retrieves the coordinate value. When iterating over a fused position space, the code

generator is only able to retrieve the inner-most dimension’s coordinate value and

must search for upper-level coordinate values. This motivates the recover_track

optimization.

// pos(i, B(i)) -> p

int i = B_crd[p]; // recover_original

int p = search(B_crd, i); // recover_derived

// coord(p) -> p_coord

int p = search(B_crd, p_coord); // recover_original

int p_coord = B_crd[p]; // recover_derived

50



Fuse The function recover_original is defined separately for the outer and inner

index variables. To recover the outer variable from the fused variable, the fused

variable is divided by the size of the inner index variable’s range. To recover the

inner variable, division is replaced by modulo. The function recover_derived uses the

simple equation fused = outer * inner_size + inner.

// fuse(i, j) -> f

int i = f / j_size; // recover_original i

int j = f % j_size; // recover_original j

int f = i * j_size + j; // recover_derived

Split Split defines the relationship original = outer * split_factor + inner. Solving

for the various variables in this equation results in the definitions of recover_original

and recover_derived.

// split(i, split_factor) -> i1, i2

int i = i1 * split_factor + i2; // recover_original

int i1 = (i - i2) / split_factor; // recover_derived i1

int i2 = i - i1 * split_factor; // recover_derived i2

Divide Divide is similar to split except split_factor = dimension_size/divide_factor

Once the size of the dimension is known and split_factor becomes a constant, the

recovery functions are the same.

// divide(i, divide_factor) -> i1, i2

int i = i1 * CEIL(i_size, divide_factor) + i2; // recover_original

int i1 = (i - i2) / CEIL(i_size, divide_factor); // recover_derived i1

int i2 = i - i1 * CEIL(i_size, divide_factor); // recover_derived i2

Bound The Bound transformation simply passes through the value of the parent

to the derived variable (and assumes that the value satisfies the Bound ’s constraint).

Therefore recovery is performed with the identity function.

// bound(i, ...) -> i_bound

int i = i_bound; // recover_original

int i_bound = i; // recover_derived
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6.3 Derived Bounds Propagation

To determine the iteration domain of derived index variables, we propagate bounds

through the index variable provenance graph (see Figure 4-3). I have defined propaga-

tion rules for each transformation and calculating the iteration domain of the derived

index variables involves applying the propagation rules to each arrow in turn, from

the original index variables to the derived index variables.

The bound propagation functions for each transformation that appears in the

provenance graph are defined below:

Coordinate and Position Transformations The bounds of a Coord transfor-

mation are found by indexing into the coordinate array with the current position

bounds. The bounds of a Pos transformation are determined by searching for bounds

of the original variable in the coordinate array and determining the position bounds

that correspond to these coordinate bounds. We can avoid this search cost when the

position transformation is applied to an index variable that spans the entire dimension

(ie it has not been tiled). In this case, we can set the position bounds to run from 0

to the size of this position space.

// pos(i, B(i)) -> p

int p_min = search_ceil(B_crd, i_min);

int p_max = search(B_crd, i_max - 1) + 1;

// coord(p) -> p_coord

int p_coord_min = B_crd[p_min];

int p_coord_max = B_crd[p_max - 1] + 1;

Fuse Both the max and min bounds of the derived variable are equal to

the bound of the outer variable multiplied by the size of the inner dimen-

sion and added to the bound of the inner variable. When both variables

are bounded to fill the dimension, this results in the size of the derived di-
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mension being a multiplication of the size of the two dimensions being fused.

// fuse(i, j) -> f

int f_min = i_min * (j_max - j_min) + j_min;

int f_max = i_max * (j_max - j_min) + j_max;

Split The iteration bounds for the inner variable always run from 0 to the split

factor. The iteration bounds for the outer variable are determined by taking the

original bounds and dividing them by split factor and then rounding the minimum

bound down and the maximum bound up.

// split(i, split_factor) -> i1, i2

int i1_min = i_min / split_factor;

int i1_max = CEIL(i_max, split_factor);

int i2_min = 0;

int i2_max = split_factor;

Divide The same rules as Split are used except split factor is replaced by the size

of the dimension divided by the the divide factor.

// divide(i, divide_factor) -> i1, i2

int i1_min = i_min / CEIL(i_max - i_min, divide_factor);

int i1_max = CEIL(i_max, CEIL(i_max - i_min, divide_factor));

int i2_min = 0;

int i2_max = CEIL(i_max - i_min, divide_factor);

Bound The Bound transformation replaces one or more of the bounds of the derived

variable with a compile-time value.

// bound(i, value, MIN_EXACT) -> i_bound

int i_bound_min = value;

int i_bound_max = i_max;

// bound(i, value, MIN_CONSTRAINT) -> i_bound

int i_bound_min = (i_min < value) ? value : i_min;

int i_bound_max = i_max;
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6.4 Iteration Guards

Unlike the coordinate tree iteration pattern that is generated for unscheduled computa-

tions, tiled iteration and position space iteration can not simply perform a computation

at every coiterated point. When a loop is tiled with a tile size that does not evenly

divide the total number of iterations, additional iterations may occur at invalid values.

This can lead to computing incorrect results or for the program to crash due to a

segmentation fault. During position space iteration, it is necessary to determine when

subtrees of the coordinate tree have been fully iterated (see Chapter 3) to prevent

reducing values into the wrong location.

To prevent this incorrect behavior, iteration guards are generated. Tiled iteration

guards cause an early exit of the loop and position space iteration guards determine

when a subtree has ended and properly handles updating upper-level coordinate values,

writing out results, and resetting temporaries. Position space iteration guards are

generated depending on the format of the coordinate tree that is being iterated. The

same process for generating loop bounds for a normal coordinate tree iteration is used

to generate these guards. Similarly, the same process for writing results is used except

the results are written only when the guard condition evaluates true instead of at the

end of a nested loop. See Figure 6-1 for examples of both the position space iteration

guards and tiled iteration guards.

Tiled iterations are guarded to ensure that no incorrect behavior occurs. Incorrect

behavior occurs when an index variable is out-of-bounds of its own defined range

and is used with the assumption that it is in-bounds. The original computation has

dimensions that are defined by the sizes of input tensors. These dimensions can not

be violated and a guard is placed if one of the underived index variables can possibly

be out-of-bounds, as soon as the underived variable is recovered. This condition,

however, is not sufficient to ensure correct execution of the code. Even if the original

computation is never allowed to execute on an invalid point, generated code that

indexes and searches over data structures to correctly coiterate could read invalid
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values or crash. It is therefore necessary to also generate a guard before an index

variable that may be out-of-bounds is used to index or search over a data structure.

To determine if an index variable can become out-of-bounds, we start with the fully

derived variables and work backwards through the provenance graph to determine this

quality for all index variables. Fully derived variables are guaranteed to be in-bounds

as their bounds appear in the bounds of loops generated in Section 6.3. However,

the parents of Split and Divide transformations lose this quality and are marked as

possibly being out-of-bounds. If the bound transformation supplies a constraint that

guarantees that the parent of a Split or Divide transformation has a range that is

evenly divided by the tile size, then they are also guaranteed to be in-bounds. The

parent of a Pos or Coord transformation is guaranteed to be in-bounds even if it

has a child that is out-of-bounds. This is because a guard will always be inserted to

ensure that a data structure is not indexed or searched with an out-of-bounds value

and therefore the value being read from a data structure must be valid and in-bounds.

All other transformations will propagate the guarantee or lack-of-guarantee of being

in-bounds from child index variables to parents. In this way it can be determined if

any given index variable is guaranteed to be in-bounds.

6.5 Parallel and GPU Code Generation

Parallelization and vectorization are applied to the high-level iteration graph IR and

their safety can therefore be assured without heavy analysis. A parallelization strategy

is tagged onto an index variable and the code generator generates parallel constructs

from it, whether they are SIMD vector instructions, a parallel OpenMP loop, or a

GPU thread array. The parallelization command can easily be extended with other

parallelization strategies, and parallel code generators are easy to write as they only

mechanically translate the common TACO lower-level intermediate representation,

instead of having to also perform target-specific optimizations.

It is the responsibility of the parallel code generators to emit code that safely

manages parallel reductions. I have implemented two strategies. The first strategy is to
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detect data races, by inspecting whether a reduction is dominated by an index variable

that is summed over, and insert atomic instructions. A second strategy is to separate

the loop into worker and reduction loops that communicate through a workspace [21]

(e.g., an array). The threads in the parallel loop reduce into separate parts of the

workspace. When they finish, the second loop reduces across the workspace, either

sequentially or in parallel. I have implemented this strategy on CPUs using SIMD

instructions, and on GPUs with CUDA warp-level reduction primitives. It is also

possible to control the reduction strategy at each level of parallelism to optimize for

each level of parallel hardware. For example, on a GPU the user can choose a loop

separation strategy within a warp and atomics across warps.
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Chapter 7

Scheduling API

I expose the sparse transformation primitives as a scheduling API in TACO, inspired

by the Halide system for dense stencil computations [32]. The scheduling language

is independent of both the algorithm language (used to specify computations) and

the format language (used to specify tensor data structures). This allows users to

schedule tensor computations independently of data structure choice while ensuring

correctness for the overall algorithm. This separation further enables efficient execution

on different hardware without changing the algorithm. I add the following member

functions to the IndexStmt class, which implements the iteration graphs described in

Section 4.1:

IndexStmt pos(IndexVar i, IndexVar p, Access a);

IndexStmt coord(IndexVar p, IndexVar p_coord);

IndexStmt reorder(IndexVar i, IndexVar j);

IndexStmt order(vector<IndexVar> reorderedVars);

IndexStmt fuse(IndexVar i, IndexVar j, IndexVar f);

IndexStmt split(IndexVar i, IndexVar i1, IndexVar i2, size_t size);

IndexStmt divide(IndexVar i, IndexVar i1, IndexVar i2, size_t size);

IndexStmt parallelize(IndexVar i, ParallelUnit pu, OutputRaceStrategy rs);

IndexStmt unroll(IndexVar i, size_t unrollFactor);

IndexStmt bound(IndexVar i, IndexVar i_bound, BoundType type, size_t val);

IndexStmt precompute(IndexExpr e, IndexVar i, IndexVar i_pre, Tensor w);
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Tensor<double> A("A", {NUM_I, NUM_J}, CSR);
Tensor<double> x("x", {NUM_J}, {Dense});
Tensor<double> y("y", {NUM_I}, {Dense});
...
x.pack();
A.pack();

IndexVar i, j;
y(i) = A(i, j) * x(j);
IndexVar k, p, p0, p1;
IndexStmt stmt = y.getAssignment().concretize();
stmt = stmt.fuse(i, j, k)

.pos(k, p, A(i,j))

.split(p, p0, p1, CHUNK_SIZE)

.parallelize(p0, ParallelUnit::CPUThread,
OutputRaceStrategy::Atomics);

y.compile(stmt);
y.assemble();
y.compute();
std::cout << y;

Figure 7-1: The schedule to parallelize SpMV over the nonzeros of the CSR matrix
is shown. The transformations in this schedule correspond to the provenance graph
in Figure 4-3 and it generates the code in Figure 6-1. Also depicts the implemented
interface to use a schedule when computing a tensor result within the TACO library.

Iteration graphs are immutable data structures and so each of these member

functions return a new transformed graph. This allows for chaining together scheduling

API calls. An example schedule is shown in Figure 7-1. We first generate an iteration

graph by using the concretize function and then apply successive transformations

using scheduling language primitives.

These primitives directly correspond to transformations described in Section 5,

but specifics of these API calls are described below:

pos(IndexVar i, IndexVar p, Access a) creates a new relationship, which specifies

that the index variable p iterates the same range in position space as i iterates in

coordinate space. This relationship is stored in the SuchThat node of the iteration

graph. The access expression provided (ex. B(i, j)) is used to determine which

position space that p should iterate over. The access expression provided must match

an expression used in the original index notation that specifies the computation. The
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specific position space to use from this tensor is determined by comparing the derivation

of i to the index variables used in the access expression. Using this transformation does

not change the iteration pattern of the computation and is only used to mode-switch

further transformations. More details and preconditions of this transformation are in

Section 5.1.

coord(IndexVar p, IndexVar p_coord) creates a new relationship, which specifies

that the index variable p_coord iterates the same range in coordinate space as p

iterates in position space. This relationship is stored in the SuchThat node of the

iteration graph. Using this transformation does not change the iteration pattern of the

computation and is only used to mode-switch further transformations. More details

and preconditions of this transformation are in Section 5.2.

reorder(IndexVar i, IndexVar j) returns a new iteration graph, which is identical

except that the nesting positions of these two index variables have been swapped.

More details and preconditions of this transformation are in Section 5.3.

order(vector<IndexVar> reorderedVars) is a higher-order command that takes a

new ordering for a set of index variables that are directly nested in the iteration order.

This command identifies the nested region of the iteration graph that contains all of

the variables in reorderedVars out-of-order. Once it has identified this region and the

current ordering, it uses the reorder command repeatedly to attempt to reach the

desired order. If no set of reorderings exist that pass the preconditions of the reorder

command, then this command will also fail.

fuse(IndexVar i, IndexVar j, IndexVar f) creates a new relationship, which speci-

fies that the index variable f iterates the cartesian combination of the regions iterated

by i and j. This relationship is stored in the SuchThat node of the iteration graph.

Additionally, the corresponding iteration graph nodes to i and j are replaced by a new

node that corresponds to f. More details and preconditions of this transformation are

in Section 5.4.
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split(IndexVar i, IndexVar i1, IndexVar i2, size_t size) creates a new rela-

tionship, which specifies that the index variables i1 and i2 together iterate the

range iterated by i and that i2 has a fixed range [0, size). This relationship is

stored in the SuchThat node of the iteration graph. Additionally, the iteration graph

node corresponding to i is replaced by two nested nodes for i1 and i2. More details

and preconditions of this transformation are in Section 5.5.

divide(IndexVar i, IndexVar i1, IndexVar i2, size_t size) creates a new rela-

tionship, which specifies that the index variables i1 and i2 together iterate the range

iterated by i and that i1 iterates over a size-length range. This relationship is stored

in the SuchThat node of the iteration graph. Additionally, the iteration graph node

corresponding to i is replaced by two nested nodes for i1 and i2. More details and

preconditions of this transformation are in Section 5.6.

parallelize(IndexVar i, ParallelUnit pu, OutputRaceStrategy rs) tags the iter-

ation graph node corresponding to i to indicate that each iteration of the node’s

range is to be executed in parallel. Included in the tag is the parallel hardware unit

to execute on and the strategy for dealing with output races. The implemented hard-

ware units and strategies are shown in Figure 7-2. Based on the strategy additional

transformations on the iteration graph may occur such as performing precompute

transformations or tagging racing store instructions as atomic. Additionally, if the

hardware element size does not evenly divide the number of loop iterations (such

as is often the case when using CPU vector units), the loop is cloned and leftover

loop iterations are handled serially. Section 6.5 provides further information about

parallel code generation. More details and preconditions of this transformation are in

Section 5.7.

unroll(IndexVar i, size_t unrollFactor) tags the iteration graph node corre-

sponding to i to indicate that generated code for this node should unroll all loops.

The unrollFactor parameter is optional and the loop is fully unrolled if omitted.

Otherwise, unrollFactor iterations are unrolled. To be able to unroll loops that
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ParallelUnit::CPUThread generates a pragma to parallelize over CPU threads

ParallelUnit::CPUVector generates a pragma to utilize a CPU vector unit

ParallelUnit::GPUBlock must be used with GPUThread to create blocks of GPU threads

ParallelUnit::GPUWarp can be optionally used to allow for GPU warp-level primitives

ParallelUnit::GPUThread causes for every iteration to be executed on a separate GPU thread

OutputRaceStrategy::NoRaces raises a compile-time error if an output race exists

OutputRaceStrategy::Atomics replaces racing instructions with atomics

OutputRaceStrategy::Temporary uses a temporary array for outputs that is serially reduced

OutputRaceStrategy::ParallelReduction uses reduction operations across a warp/vector

OutputRaceStrategy::IgnoreRaces allows the user to specify that races can be safely ignored

Figure 7-2: Implemented enum values for ParallelUnit and OutputRaceStrategy, which
are used in the parallelize scheduling API.

contain iteration guards, the lowering process clones the loop and unrolls one copy of

the loop. The lowering process then generates guards to prevent the unrolled loop

from being executed if the guard would have caused an early-exit. This process is

described in Section 6.4. More details and preconditions of this transformation are in

Section 5.9.

bound(IndexVar i, IndexVar i_bound, BoundType type, size_t val) creates a new

relationship, which specifies that the index variable i_bound iterates the same dimension

as i, but with one of the iteration bounds replaced with a compile-time constant. This

relationship is stored in the SuchThat node of the iteration graph. More details and

preconditions of this transformation are in Section 5.8.

precompute(IndexExpr e, IndexVar i, IndexVar i_pre, Tensor w) creates a new

relationship, which specifies that the index variable i_pre iterates the same range as

i. This transformation is described in prior work [21], but by adding this relationship

to the SuchThat node, it composes with the set of transformations described in this

thesis. This transformation precomputes the expression described by e into a new
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tensor workspace w. The producer loop is over i_pre and the consumer loop is over

i. In this way, the producer and consumer can continue to be scheduled separately.

Depending on the parallel index variables that the precomputed index variable is

nested inside, the code generator can choose to specialize what memory the temporary

is stored in. On GPUs, if the precomputed index variable appears outside of the

ParallelUnit::GPUBlock index variable, the temporary is placed in global memory. If

it appears between the ParallelUnit::GPUBlock and ParallelUnit::GPUThread index

variables, the temporary is placed in shared memory. And finally if the temporary

is nested inside a ParallelUnit::GPUThread index variable, the temporary is placed

either in registers or in local memory.
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Chapter 8

Evaluation

I carry out experiments to compare the performance of code generated by this technique

with different schedules to state-of-the-art library implementations of three important

expressions: SpMV, SpMM, and MTTKRP. I choose these expressions because they

have been heavily studied in the performance engineering literature. I show that it is

possible to express schedules that have competitive performance for these expressions.

This work has the additional advantage that it can be applied to all sparse tensor

algebra expressions and formats supported by TACO and also allows creating multiple

different schedules that take advantage of the specific sparsity patterns of the inputs.

I carry out several studies to highlight situations where the best schedule differs

depending on the situation. For example, the best CPU and GPU schedules differ for

the same computations, and the best GPU SpMV schedule depends on whether the

computation is load-balanced or not. I carry out these studies on the simplest kernels

that are sufficient to make the point. For most studies this is the SpMV kernel, except

for the locality study in Section 8.6 where I use the SpMM expression, since it has

two dense loops to tile over.

8.1 Methodology

I implement the transformation framework as an extension to the TACO compiler,

which is freely available under the MIT license. To evaluate it, I compare the
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performance of code that has been optimized using the introduced transformations on

CPU to Intel MKL 2020 [17], Eigen 3.3.7 [13], SPLATT 1.1.1 [36], and the original

TACO system (commit 331188). On GPUs, I compare to cuSPARSE v9.0 [29], the

Merge-Based SpMV implementation of Merrill and Garland [27], and hand-optimized

GPU kernels presented by Nisa et al. [28]. For the comparative studies, I use all

real-valued matrices from the SuiteSparse sparse matrix repository [11] and tensors

from the Formidable Repository of Open Sparse Tensors and Tools (FROSTT) [35]. I

exclude matrices and tensors, which can not fit in memory of the machine used to

run the experiment. For GPU, I generate one code for order-3 MTTKRP and use

the order-3 tensors in FROSTT and the 1998DARPA tensor from the 1998 DARPA

Intrusion Detection Evaluation Dataset [18]. For sparse matrices, I use the standard

compressed sparse row (CSR) format and for sparse tensors, I use the standard

compressed sparse fiber (CSF) format. I also carry out studies to evaluate the value

of a scheduling language. The load-balance study uses synthetic matrices designed

to show at what load imbalance it makes sense to move to a statically load-balanced

kernel. I have made all schedules available in the appendix.

All CPU experiments are run on a dual-socket, 12-core with 24 threads, 2.5

GHz Intel Xeon E5-2680 v3 machine with 30 MB of L3 cache per socket and

128 GB of main memory, running Ubuntu 18.04.3 LTS. On CPU, I compile

code that our technique generates using Intel icpc 19.1.0.166 with -O3, -DNDEBUG,

-march=native, -mtune=native,–ffast-math, and -fopenmp. I run CPU experi-

ments with a cold cache 25 times and report median execution times recorded with

std::chrono::high_resolution_clock.

All GPU experiments are run on an NVIDIA DGX system with 8 V100 GPUs with

32 GB of global memory, 6 MB of L2 cache and 128 KB of L1 cache per SM (80 SMs),

and a bandwidth of 897 GB/s. Only one GPU is used at a time. I compile the generated

code with NVIDIA nvcc 9.0.176 with -O3, -gencode arch=compute_70,code=sm_70,

and –use_fast_math. I run GPU experiments 25 times and report median execution

times recorded with CUDA events. The generated code relies on CUDA unified

memory, but I modify the kernels to use device pointers and explicitly copy the
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memory as the libraries I compared to did not use unified memory. I exclude the time

of copying and allocating memory and freshly copy all data to the device for each

trial. The L1 cache is automatically flushed between kernel invocations and the L2

cache is not flushed between trials.

8.2 Comparative Performance

The first experiments validate that the performance of the code generated using our

transformation framework performs well compared to other systems. These are shown

in Figures 8-1–8-6.

8.2.1 SpMV CPU (Figure 8-1)

The generated code parallelizes SpMV with chunks of size 32. This strategy (Appendix

A.1) performs well on larger matrices and achieves a 6.8% geometric mean speedup

over MKL for the entire dataset. The Original TACO code performs better for smaller

matrices and this code can be generated within Scheduled TACO with a different

schedule. As a simple example of the power of generating multiple schedules for

the same expression, if I use the Original TACO code for matrices with fewer than

20k nonzeros and the Scheduled TACO code otherwise, I achieve a geometric mean

speedup of 22.0% over MKL and 20.2% over Eigen.

8.2.2 SpMV GPU (Figure 8-2)

The generated code parallelizes the nonzeros of the sparse matrix over GPU threads.

Each thread also precomputes its results into registers and unrolls this loop before

writing out the results. The provides additional instruction-level parallelism, which

as discussed in Section 8.3 is crucial for performance. This schedule (Appendix A.2)

exhibits better load-balancing than the cuSPARSE default strategy, but with slightly

more overhead. The overhead of load-balancing causes for performance of already load-

balanced matrices to be slightly degraded compared to cuSPARSE, but this strategy
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Figure 8-1: Generated SpMV CPU code (Scheduled TACO) compared to other high-
performance implementations on all SuiteSparse matrices. [11] A log-scale is used to
plot the execution time against the number of nonzeros in the matrix. The schedule
used by Scheduled TACO is in Appendix A.1.
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Figure 8-2: Generated SpMV GPU code (Scheduled TACO) compared to other high-
performance implementations on all SuiteSparse matrices. [11] A log-scale is used to
plot the execution time against the number of nonzeros in the matrix. The schedule
used by Scheduled TACO is in Appendix A.2.

is far more resilient to the sparsity patterns of the matrices and is therefore more

consistent. Scheduled TACO also requires additional kernel launches to perform its

load-balancing scheme, which can dominate the performance for smaller matrices. The

geometric mean speedup over cuSPARSE for this dataset is 39.0%. The Merge-Based

SpMV strategy performs similarly to this strategy. They also load-balance the reads

of empty row pointers in the CSR matrix, but this load-balancing incurs additional

overhead. I achieve 99.0% of the geometric mean performance of Merge-Based SpMV

while still retaining the benefits of a general optimization framework.

8.2.3 SpMM CPU (Figure 8-3)

The schedule (Appendix A.3) tiles the nonzero positions of each row of the sparse

matrix to cache, vectorizes along the columns of the output, and parallelizes chunks

of 8 rows. The additional overhead of this schedule causes for comparatively worse
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Figure 8-3: Generated SpMM CPU code (Scheduled TACO) compared to other high-
performance implementations on all SuiteSparse matrices. [11] A log-scale is used to
plot the execution time against the number of nonzeros in the matrix. The schedule
used by Scheduled TACO is in Appendix A.3.

performance on small matrices with fewer than 15k nonzeros. The geometric mean

speedup for the entire dataset over Original TACO is 7.3% and when the dataset is

restricted to all matrices with greater than 15k nonzeros, this schedule achieves a

11.6% speedup. This schedule achieves 96.3% of MKL’s performance. If I use the

Original TACO schedule for matrices with fewer than 15k nonzeros and the Scheduled

TACO schedule otherwise, I achieve a geometric mean 0.2% speedup over MKL for

this dataset.

8.2.4 SpMM GPU (Figure 8-4)

For SpMM GPU (Appendix A.4), I tile 16 nonzero elements of the sparse matrix

per GPU warp. I tile the dense matrix so that there are 4 tiles of 32 columns each.

Each GPU warp loads a nonzero and each thread in the warp multiplies by a different

column of the dense matrix. All threads reduce across its set of nonzeros and then
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Figure 8-4: Generated SpMM GPU code (Scheduled TACO) compared to other high-
performance implementations on all SuiteSparse matrices. [11] A log-scale is used to
plot the execution time against the number of nonzeros in the matrix. The schedule
used by Scheduled TACO is in Appendix A.4.

atomically add into the result matrix. I use a column-major output as cuSPARSE

does not provide a kernel for a row-major output. This kernel imposes significant

overhead for small matrices, but these matrices are often more efficiently computed

on CPU anyway as they do not benefit from the parallelism offered by GPUs. For

matrices with more than 1 million nonzeros in this dataset, I achieve 85.9% of the

performance of cuSPARSE. cuSPARSE also modifies the GPU assembly generated by

the nvcc compiler, which we are unable to do within this framework.

8.2.5 MTTKRP CPU (Figure 8-5)

I generate 3 different codes for order-3 (Appendix A.5), order-4 (Appendix A.6), and

order-5 MTTKRP (Appendix A.7). In index notation, these kernels correspond to:

𝐴(𝑖, 𝑗) = 𝐵(𝑖, 𝑘, 𝑙)*𝐶(𝑘, 𝑗)*𝐷(𝑙, 𝑗) (order-3), 𝐴(𝑖, 𝑗) = 𝐵(𝑖, 𝑘, 𝑙,𝑚)*𝐶(𝑘, 𝑗)*𝐷(𝑙, 𝑗)*

𝐸(𝑚, 𝑗) (order-4), and 𝐴(𝑖, 𝑗) = 𝐵(𝑖, 𝑘, 𝑙,𝑚, 𝑛) * 𝐶(𝑘, 𝑗) *𝐷(𝑙, 𝑗) * 𝐸(𝑚, 𝑗) * 𝐹 (𝑛, 𝑗)
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Figure 8-5: Generated MTTKRP CPU code (Scheduled TACO) compared to other
high-performance implementations on all FROSTT tensors. [35] The speedup of
implementations over the SPLATT baseline are plotted for all tensors. Different
implementations are used depending on the order of the tensor. The schedules used
by Scheduled TACO are in Appendices A.5, A.6, and A.7.

(order-5). All input tensors other than 𝐵 have 32 columns and are stored densely.

To match SPLATT, the first dimension of the 𝐵 tensor is stored densely and all

other levels are compressed. I use the precompute transformation to create 1, 2, or

3 𝑗-sized workspaces for order-3, order-4, and order-5 MTTKRP respectively. This

avoids redundant work, but imposes some additional overhead. I then parallelize the

outer loop with chunks of 32. This provides a geometric mean speedup of 7.5% over

Original TACO and achieves 86.7% of the performance of SPLATT.

8.2.6 MTTKRP GPU (Figure 8-6)

The schedule for MTTKRP GPU (Appendix A.8) parallelizes chunks of 4 nonzeros of

the sparse tensor across GPU warps. Each thread in the warp multiplies the nonzero

with values from the dense matrices corresponding to different 𝑗. Each thread reduces
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Figure 8-6: Generated MTTKRP GPU code (Scheduled TACO) compared to high-
performance kernels written for different GPU-optimized tensor formats by Nisa et
al. [28] Throughput in GFLOPs is reported for Order-3 FROSTT tensors and the
1998 DARPA Intrusion Detection Evaluation Dataset [35, 18] The schedule used by
Scheduled TACO is in Appendix A.8.

across the nonzeros and then atomically adds into separate positions in the result

tensor. This kernel is particularly difficult to write by hand given the multiple levels of

searches required to tile the position space of a tensor that is not required for a matrix.

I compare the performance of this code to four different kernels presented by Nisa et

al. [28]. These kernels were targeted at a NVIDIA P100 (Pascal) device rather than

the NVIDIA V100 (Volta) device, I used to run the experiments. The performance of

GPU kernels tend to be tuned to a specific machine, which is an additional benefit

of a generated kernel, which can be easily rescheduled, over a hand-tuned kernel.

These kernels also take advantage of different formats that are built to load-balance

well on GPU, while I use the standard CSF format and incur the runtime overhead

of load-balancing. The Scheduled TACO kernel achieves a 29.0% geometric mean

speedup over the best performance of all 4 kernels for each tensor. For the 1998DARPA

tensor, the GFLOPs recorded for the HCSR, B-CSF, and HYB kernels are all less than

3.5. This is possibly due to the high skew in the number of nonzeros per outer-most

dimension of the tensor.
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8.3 Scheduling for GPUs

Good GPU schedules are different from good CPU schedules, and it is important to

have transformations that let us order operations to fit the machine at hand. GPUs are

sensitive to the order of loads and to thread divergence, and they typically require more

involved schedules to ensure operations are done in the right order. For instance, the

best parallel CPU SpMV schedule compiled to and executed on a GPU performs 6.9x

worse than the warp-per-row GPU schedule on a matrix with four million randomly

allocated nonzeros.

The best CPU schedule for the SpMV operation when the matrix is load-balanced

is a simple strip-mining of the outer dense loop to create parallel blocks, followed

by parallelizing the outer loop. The resulting code assigns a set of rows to each

CPU thread executing in parallel. The analogous schedule is a disaster on a GPU.

Since threads in a warp execute separate rows, they cannot coalesce memory loads.

This results in poor effective memory bandwidth and thus poor performance for the

memory-bound SpMV kernel. Furthermore, if there are a different number of nonzeros

on the rows executed by different threads in a warp, then they will experience thread

divergence.

By contrast, more optimized GPU schedules are more carefully tiled. The warp-

per-row schedule assigns an equal number of nonzero elements of the row to each

thread and uses warp-level synchronization primitives to efficiently reduce these partial

sums. The optimized SpMV schedule that I use in Figure 8-2 tiles the position

space of the sparse matrix across threads. I also use a temporary to allow unrolling

the loop that performs loads and then later use atomic instructions to store the

results in the output. This provides better memory access patterns and increased

instruction-level parallelism, but makes hand-writing such a kernel difficult. On a

matrix with four million randomly allocated nonzeros, this increased instruction-level

parallelism provides a 36% speedup for our optimized schedule over the same schedule

without the temporary or loop unrolling. The schedules with and without the unrolling

optimization are shown, respectively, in Appendices A.2 and A.11.
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8.4 Scheduling for Load Balance

This study shows that the best GPU schedules differ for load-balanced and load-

imbalanced computations. The SpMV computation demonstrates the issue, as it is

sensitive to a skewed distribution of nonzeros in the matrix. The challenge, however,

generalizes to any expression with a sparse tensor.

The previous section outlined an effective warp-per-row GPU SpMV schedule

where threads in a warp collectively work on a matrix row at a time. If distribution of

nonzeros across matrix rows is skewed, this kernel suffers from load imbalance. The

optimized SpMV schedule used in Figure 8-2 where the two loops are fused and then

split in the position space provides perfect static load balancing for loads of the sparse

tensor values at the cost of overhead from coordinate recovery. Figure 8-7 shows

the performance of the warp-per-row schedule and the load-balanced position split

schedule as the distribution of nonzeros per row becomes more skewed according to an

exponential function. The number of nonzeros remains fixed and rows are randomly

shuffled. As expected, the warp-per-thread schedule performs worse as skew increases,

while the load-balanced schedule benefits from long rows and performs better with

increased skew. For skewed matrices, the load-balanced kernel is thus preferable.

8.5 Scheduling for Maximal Parallelism

Loop fusion to increase the amount of parallelism, despite higher overhead, can

make sense in parallelism-constrained situations. The warp-per-row GPU SpMV

schedule described in Section 8.3 assigns each row to be executed by a different warp.

For matrices with few rows, however, this results in too little parallelism to occupy

the GPU. For such matrices, fusing before parallelizing the two loops creates more

parallelism. For example, I execute the SpMV kernels generated from both schedules

on a short and wide 100× 100k matrix with 10k nonzeros per row. As expected from

the experiment design, the warp-per-row kernel has too little parallelism and the fused

kernel runs 4.5 times faster on average across 10 runs.
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Figure 8-7: Performance comparison of warp-per-row and load-balanced SpMV on
a matrix with a fixed number of nonzeros as the distribution per rows become more
skewed. The number of nonzeros in row 𝑖 is given by the formula 𝑘 * 𝑐𝑖. 𝑐 is the factor
that appears on the x-axis of the graph (when 𝑐 = 1, all rows have the same number
of nonzeros). For every 𝑐, I choose 𝑘 so that the number of nonzeros for the entire
matrix is always 400 million. Nonzeros are generated uniformly random within a row
and then all rows are shuffled. Schedules used to generate code in Appendices A.9
and A.10.
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8.6 Scheduling for Locality

Sparse tensor algebra expressions can have dense loops that may be tiled for better

temporal locality. I demonstrate this for the SpMM expression. Since a sparse matrix

is multiplied by a dense matrix, the resulting kernel has two dense loops that can be

tiled. I implement a tiled and an untiled schedule (Appendices A.12 and A.13) for

this expression and run the resulting kernels on a 100k × 100k sparse matrix with

an average of 1000 randomly distributed nonzeros per row multiplied by a 100k × 32

dense matrix. Not surprisingly, the tiled kernel performs 2.1x better.
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Chapter 9

Related Works

There is a long history of optimizations and transformations for sparse matrix [45, 16,

11] and tensor computations. I divide prior work into the categories described in the

following sections.

Sparse compilation The work by Bik and Wijshoff [8, 7] was an early attempt

to apply compiler techniques to sparse matrix codes. They use a technique called

guard encapsulation to turn dense loops over dense arrays into sparse loops over only

nonzeros. The Bernouilli [23] system followed soon thereafter and lifts matrix codes

to relational algebra, which is then optimized and emitted as sparse code. More

recent works on compiling and transforming sparse loops have been done using the

polyhedral model [40, 5, 41, 4]. These generally employ inspector-executor techniques,

which combine run-time inspection of data with compile-time transformations. Venkat

et al. [43] use the polyhedral model to turn dense loops with conditional guards

into loops over a sparse matrix, enabling further optimizations including wavefront

parallelism [44] and tiling of dense loops inside sparse codes [2]. Pugh et al. [31]

designed SIPR, an intermediate representation for sparse compilation. Most recently,

the TACO compiler generalizes sparse and dense tensor operations in a variety of

formats, automatically generating code for any computation [22, 10, 21]. I build on

TACO in this work, adding scheduling and GPU code generation.
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Dense tensor compilation Recent works on dense tensor algebra have focused on

two application areas: quantum chemistry and machine learning. While the two areas

share some similarities, different types of tensors and operations are important in each

domain. The Tensor Contraction Engine [3] automatically optimizes dense tensor

contractions and is developed primarily for chemistry applications. Libtensor [12]

and CTF [39] cast tensor contractions as matrix multiplications by flattening and

transposing tensors. In machine learning, TensorFlow [1] and other frameworks [30, 19]

combine tensor operations to efficiently apply gradient descent for learning and are

among the most popular packages used for deep learning. TVM [9] takes this further

by adopting and modifying Halide’s scheduling language to make it possible for

machine learning practitioners to control schedules for dense tensor computations.

Tensor Comprehensions (TC) [42] is another framework for defining new deep learning

building blocks over tensors, utilizing the polyhedral model.

Scheduling Halide [33, 34] is a widely used domain specific language in industrial

applications, partially due to its flexible scheduling language that lets users express how

a high-level algorithm is efficiently executed. Many of our constructs are inspired by

Halide, though we deal with sparse loops while Halide only considers dense loops. TVM

uses a variant of Halide’s scheduling language, modified for deep learning applications.

Most recently, GraphIt [49] and Taichi [15] built scheduling languages for graph

algorithms and sparse irregular spatial data structures, respectively. In the polyhedral

framework, CHiLL [43] allows users to specify sequences of loop transformations,

similar to a scheduling language.

Hand-optimized sparse tensor code Finally, researchers have studied how to

manually optimize sparse linear and tensor algebra code for CPUs and GPUs. We

will mention a few prominent examples. The Intel MKL library is a fast sparse linear

algebra library for CPUs that employs some inspector-executor techniques to choose

formats [17]. Bell and Garland describe a set of techniques for optimizing SpMV for

several different data structures on GPUs, including the vectorized kernel we use in
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our evaluation [6]. Furthermore, Merrill and Garland showed how to develop a load-

balanced SpMV implementation by generalizing a parallel merge algorithm [27]. The

SPLATT library includes an efficient implementation of the MTTKRP kernel [37] and

HiCOO explores new coordinate-based formats that further improves performance [25].

Nisa et al. describe techniques for how to effectively parallelize the MTTKRP kernel

for GPUs [28]. Finally, the Cyclops library shows how to scale sparse kernels to

distributed machines [38].
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Chapter 10

Conclusion and Future Work

This thesis presents a comprehensive theory of transformations on sparse iteration

spaces. The resulting transformation machinery and code generator can recreate tiled,

vectorized, parallelized and load-balanced CPU and GPU codes from the literature,

and it generalizes to far more tensor algebra expressions and optimization combinations.

Furthermore, as the sparse iteration space transformation machinery works on a high-

level intermediate representation that is independent of target code generators, it

points towards portable sparse tensor algebra compilation. With this work, sparse

tensor algebra is finally on the same optimization and code generation footing as dense

tensor algebra and array codes.

While my prototype provides a system that is usable by experts and demonstrates

the efficacy of the transformations described in this thesis, there is more work needed

to allow this work to be used by non-experts. Autoscheduling is a necessity for users

who are not performance engineers. Additionally, a higher-level scheduling API is

needed to make standard optimization patterns apparent to users. The pos and coord

commands in the scheduling API force the user to recognize the costs associated with

mode switching between tiling different spaces. But they are also easily mistaken as

commands that change how the space should be iterated. A higher-level API could

hide these commands and expose this overhead in another way.

The current implementation is unable to parallelize computations with sparse

results for reasons described in the 𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙𝑖𝑧𝑒 preconditions (Section 5.7). Many
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sparse computations rely on a sparse result so relaxing this precondition by allowing

for assembling and merging per-thread copies of a tensor is also important future work.

Finally, this work only supports the formats described in the original TACO paper

[22]. Extending these optimization strategies to all formats described in [10] would

greatly expand the number of useful kernels that can be generated.

This work has also been prototyped such that it is possible to explore extensions to

new hardware and new optimization strategies. As most optimizations are done at a

higher-level representation, specifics of a new hardware platform and language can be

added with relative ease. Dense and sparse tensor algebra accelerators such as TPU

[20] and ExTensor [14] are becoming increasingly numerous and prevalent. I expect

that unifying the optimization strategies for these accelerators into a single framework

will become increasingly necessary. While there are plenty of different optimization

strategies to explore, I believe that the most important ones to explore first are those

that consider how to more efficiently split up and load-balance a computation. In this

thesis, I explore two basic transformations Split and Divide. These could be extended

to handle optimization strategies such as dynamic load- balancing, using different

optimization strategies based on the row length, bucketing rows by number of nonzeros,

and splitting based on different types of searches such as the merge-path search [27]. If

these transformations were extended to allow for a user-provided function to determine

the split points, then these different strategies could be explored without making

changes to the compiler.
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Appendix A

Schedules

A.1 Scheduled TACO SPMV CPU (Figure 8-1)

int CHUNK_SIZE = 32;

IndexVar i("i"), j("j");

y(i) = A(i, j) * x(j);

IndexVar i0("i0"), i1("i1"), kpos("kpos"), kpos0("kpos0"), kpos1("kpos1");

IndexStmt stmt = y.getAssignment().concretize();

stmt = stmt.split(i, i0, i1, CHUNK_SIZE)

.order({i0, i1, j})

.parallelize(i0, ParallelUnit::CPUThread, OutputRaceStrategy::NoRaces);
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A.2 Scheduled TACO SPMV GPU (Figure 8-2)

int NNZ_PER_THREAD = 7;

int NNZ_PER_WARP = 7 * 32;

int NNZ_PER_TB = 7 * 512;

IndexVar i("i"), j("j");

IndexExpr precomputedExpr = A(i, j) * x(j);

y(i) = precomputedExpr;

IndexVar f("f"), fpos("fpos"), fpos1("fpos1"), fpos2("fpos2");

IndexVar block("block"), warp("warp"), thread("thread");

IndexVar thread_nz("thread_nz"), thread_nz_pre("thread_nz_pre");

TensorVar precomputed("precomputed",

Type(Float64, {Dimension(thread_nz)}), taco::dense);

IndexStmt stmt = y.getAssignment().concretize();

stmt = stmt.fuse(i, j, f)

.pos(f, fpos, A(i, j))

.split(fpos, block, fpos1, NNZ_PER_TB)

.split(fpos1, warp, fpos2, NNZ_PER_WARP)

.split(fpos2, thread, thread_nz, NNZ_PER_THREAD)

.order({block, warp, thread, thread_nz})

.precompute(precomputedExpr, thread_nz, thread_nz_pre, precomputed)

.unroll(thread_nz_pre, NNZ_PER_THREAD)

.parallelize(block, ParallelUnit::GPUBlock,

OutputRaceStrategy::IgnoreRaces)

.parallelize(warp, ParallelUnit::GPUWarp,

OutputRaceStrategy::IgnoreRaces)

.parallelize(thread, ParallelUnit::GPUThread,

OutputRaceStrategy::Atomics);
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A.3 Scheduled TACO SPMM CPU (Figure 8-3)

int CHUNK_SIZE = 8;

int TILE_SIZE = 8;

IndexVar i("i"), j("j"), k("k");

C(i, k) = A(i, j) * B(j, k);

IndexVar i0("i0"), i1("i1"), kbounded("kbounded"), k0("k0"), k1("k1");

IndexVar jpos("jpos"), jpos0("jpos0"), jpos1("jpos1");

IndexStmt stmt = C.getAssignment().concretize();

stmt = stmt.split(i, i0, i1, CHUNK_SIZE)

.pos(j, jpos, A(i,j))

.split(jpos, jpos0, jpos1, TILE_SIZE)

.order({i0, i1, jpos0, k, jpos1})

.parallelize(i0, ParallelUnit::CPUThread, OutputRaceStrategy::NoRaces)

.parallelize(k, ParallelUnit::CPUVector, OutputRaceStrategy::IgnoreRaces);
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A.4 Scheduled TACO SPMM GPU (Figure 8-4)

int NUM_COLS = 128;

int NNZ_PER_WARP = 16;

int NNZ_PER_TB = 16 * (512 / 32);

IndexVar i("i"), j("j"), k("k");

C(i, k) = A(i, j) * B(j, k);

IndexVar f("f"), fpos("fpos"), block("block"), fpos1("fpos1"), warp("warp");

IndexVar nnz_pre("nnz_pre"), nnz("nnz");

IndexVar dense_val_unbounded("dense_val_unbounded");

IndexVar dense_val("dense_val"), thread("thread"), thread_nz("thread_nz");

TensorVar precomputed("precomputed", Type(Float64,

{Dimension(nnz)}), taco::dense);

IndexStmt stmt = C.getAssignment().concretize();

stmt = stmt.order({i, j, k})

.fuse(i, j, f)

.pos(f, fpos, A(i, j))

.split(fpos, block, fpos1, NNZ_PER_TB)

.split(fpos1, warp, nnz, NNZ_PER_WARP)

.split(k, dense_val_unbounded, thread, WARP_SIZE)

.bound(dense_val_unbounded, dense_val,

NUM_COLS / WARP_SIZE, BoundType::MaxExact);

.order({block, warp, dense_val, thread, nnz})

.parallelize(block, ParallelUnit::GPUBlock,

OutputRaceStrategy::IgnoreRaces)

.parallelize(warp, ParallelUnit::GPUWarp,

OutputRaceStrategy::IgnoreRaces)

.parallelize(thread, ParallelUnit::GPUThread,

OutputRaceStrategy::Atomics);
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A.5 Scheduled TACO MTTKRP Order-3 CPU (Fig-

ure 8-5)

int CHUNK_SIZE = 32;

IndexVar i("i"), j("j"), k("k"), l("l");

IndexVar i1("i1"), i2("i2");

IndexExpr precomputedExpr = B(i,k,l) * D(l,j);

A(i,j) = precomputedExpr * C(k,j);

IndexStmt stmt = A.getAssignment().concretize();

TensorVar precomputed("precomputed", Type(Float64,

{Dimension(j)}), taco::dense);

stmt = stmt.order({i1, i2, k, l, j})

.precompute(precomputedExpr, j, j, precomputed)

.split(i, i1, i2, CHUNK_SIZE)

.parallelize(i1, ParallelUnit::CPUThread,

OutputRaceStrategy::NoRaces);
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A.6 Scheduled TACO MTTKRP Order-4 CPU (Fig-

ure 8-5)

int CHUNK_SIZE = 32;

IndexVar i("i"), j("j"), k("k"), l("l"), m("m");

IndexVar i1("i1"), i2("i2");

IndexExpr BE = B(i,k,l,m) * E(m,j);

IndexExpr BDE = BE * D(l, j);

A(i,j) = BDE * C(k,j);

IndexStmt stmt = A.getAssignment().concretize();

TensorVar BE_workspace("BE_workspace", Type(Float64,

{Dimension(j)}), taco::dense);

TensorVar BDE_workspace("BDE_workspace", Type(Float64,

{Dimension(j)}), taco::dense);

stmt = stmt.order({i, k, l, m, j})

.precompute(BDE, j, j, BDE_workspace)

.precompute(BE, j, j, BE_workspace)

.split(i, i1, i2, CHUNK_SIZE)

.parallelize(i1, ParallelUnit::CPUThread, OutputRaceStrategy::NoRaces);
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A.7 Scheduled TACO MTTKRP Order-5 CPU (Fig-

ure 8-5)

int CHUNK_SIZE = 32;

IndexVar i("i"), j("j"), k("k"), l("l"), m("m"), n("n");

IndexVar i1("i1"), i2("i2");

IndexExpr BF = B(i,k,l,m,n) * F(n,j);

IndexExpr BEF = BF * E(m,j);

IndexExpr BDEF = BEF * D(l, j);

A(i,j) = BDEF * C(k,j);

IndexStmt stmt = A.getAssignment().concretize();

TensorVar BF_workspace("BF_workspace", Type(Float64,

{Dimension(j)}), taco::dense);

TensorVar BEF_workspace("BEF_workspace", Type(Float64,

{Dimension(j)}), taco::dense);

TensorVar BDEF_workspace("BDEF_workspace", Type(Float64,

{Dimension(j)}), taco::dense);

stmt = stmt.order({i, k, l, m, n, j})

.precompute(BDEF, j, j, BDEF_workspace)

.precompute(BEF, j, j, BEF_workspace)

.precompute(BF, j, j, BF_workspace)

.split(i, i1, i2, CHUNK_SIZE)

.parallelize(i1, ParallelUnit::CPUThread, OutputRaceStrategy::NoRaces);
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A.8 Scheduled TACO MTTKRP GPU (Figure 8-6)

int NUM_COLS = 32;

int NNZ_PER_WARP = 4;

int NNZ_PER_TB = 4 * (512 / WARP_SIZE);

IndexVar i("i"), j("j"), k("k");

A(i,j) = B(i,k,l) * C(k,j) * D(l,j);

IndexVar kl("kl"), f("f"), fpos("fpos"), block("block"), fpos1("fpos1");

IndexVar warp("warp"), nnz("nnz"), dense_val("dense_val");

IndexVar dense_val_unbounded("dense_val_unbounded"), thread("thread");

IndexStmt stmt = A.getAssignment().concretize();

stmt = stmt.order({i,k,l,j})

.fuse(k, l, kl)

.fuse(i, kl, f)

.pos(f, fpos, B(i, k, l))

.split(fpos, block, fpos1, NNZ_PER_TB)

.split(fpos1, warp, nnz, NNZ_PER_WARP)

.split(j, dense_val_unbounded, thread, WARP_SIZE)

.bound(dense_val_unbounded, dense_val,

NUM_COLS / WARP_SIZE, BoundType::MaxExact)

.order({block, warp, dense_val, thread, nnz})

.parallelize(block, ParallelUnit::GPUBlock,

OutputRaceStrategy::IgnoreRaces)

.parallelize(warp, ParallelUnit::GPUWarp,

OutputRaceStrategy::IgnoreRaces)

.parallelize(thread, ParallelUnit::GPUThread,

OutputRaceStrategy::Atomics);
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A.9 SpMV Thread per Row on GPU (Section 8.3)

IndexVar i("i"), j("j");

y(i) = A(i, j) * x(j);

IndexVar block("block"), warp("warp"), thread("thread");

IndexVar thread_nz("thread_nz"), i1("i1"), jpos("jpos");

IndexVar block_row("block_row"), warp_row("warp_row");

IndexStmt stmt = y.getAssignment().concretize();

stmt = stmt.split(i, block, thread, ROWS_PER_TB)

.parallelize(block, ParallelUnit::GPUBlock,

OutputRaceStrategy::NoRaces)

.parallelize(thread, ParallelUnit::GPUThread,

OutputRaceStrategy::NoRaces);

A.10 SpMV Warp per Row on GPU (Section 8.3)

IndexVar i("i"), j("j");

IndexExpr precomputedExpr = A(i, j) * x(j);

y(i) = precomputedExpr;

IndexVar block("block"), warp("warp"), thread("thread");

IndexVar i1("i1"), jpos("jpos"), block_row("block_row");

IndexVar warp_row("warp_row"), thread_nz("thread_nz");

TensorVar precomputed("precomputed",

Type(Float64, {Dimension(thread_nz)}), taco::dense);

IndexStmt stmt = y.getAssignment().concretize();

stmt = stmt.split(i, block, block_row, ROWS_PER_TB)

.split(block_row, warp_row, warp, BLOCK_SIZE / WARP_SIZE)

.pos(j, jpos, A(i, j))

.split(jpos, thread_nz, thread, WARP_SIZE)

.order({block, warp, warp_row, thread, thread_nz})

.parallelize(block, ParallelUnit::GPUBlock,

OutputRaceStrategy::IgnoreRaces)

.parallelize(warp, ParallelUnit::GPUWarp,

OutputRaceStrategy::IgnoreRaces)

.parallelize(thread, ParallelUnit::GPUThread,

OutputRaceStrategy::Temporary);
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A.11 SpMV on GPU with no Unrolling (Section 8.3)

IndexVar i("i"), j("j");

IndexExpr precomputedExpr = A(i, j) * x(j);

y(i) = precomputedExpr;

IndexVar f("f"), fpos("fpos"), fpos1("fpos1"), fpos2("fpos2");

IndexVar block("block"), warp("warp");

IndexVar thread("thread"), thread_nz("thread_nz");

IndexStmt stmt = y.getAssignment().concretize();

stmt = stmt.fuse(i, j, f)

.pos(f, fpos, A(i, j))

.split(fpos, block, fpos1, NNZ_PER_TB)

.split(fpos1, warp, fpos2, NNZ_PER_WARP)

.split(fpos2, thread, thread_nz, NNZ_PER_THREAD)

.order({block, warp, thread, thread_nz})

.parallelize(block, ParallelUnit::GPUBlock,

OutputRaceStrategy::IgnoreRaces)

.parallelize(warp, ParallelUnit::GPUWarp,

OutputRaceStrategy::IgnoreRaces)

.parallelize(thread, ParallelUnit::GPUThread,

OutputRaceStrategy::Atomics);

A.12 SpMM on CPU Tiled (Section 8.6)

IndexVar i("i"), j("j"), k("k");

C(i, k) = A(i, j) * B(j, k);

IndexVar i0("i0"), i1("i1");

IndexVar jpos("jpos"), jpos0("jpos0"), jpos1("jpos1");

IndexStmt stmt = C.getAssignment().concretize();

stmt = stmt.pos(j, jpos, A(i,j))

.split(jpos, jpos0, jpos1, TILE_SIZE)

.order({i, jpos0, k, jpos1});
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A.13 SpMM on CPU No Tiling Section 8.6)

IndexVar i("i"), j("j"), k("k");

C(i, k) = A(i, j) * B(j, k);

IndexStmt stmt = C.getAssignment().concretize();
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