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Abstract

One important goal in nuclear reactor core simulations is the computation of de-
tailed 3D power distributions that will enable higher confidence in licensing of next-
generation reactors and lifetime extensions/power up-rates for current-generation re-
actors. To date, there have been only a few demonstrations of such high-fidelity deter-
ministic neutron transport calculations. However, as computational power continues
to grow, such capabilities continue to move closer to being practically realized.

Predictive reactor physics needs both neutronics calculations and full-core, 3D cou-
pled multiphysics simulations (e.g., neutronics, fuel performance, fluid mechanics,
structural mechanics). Therefore, new reactor physics tools should harness supercom-
puters to enable full-core reactor simulations and be capable of coupling for multi-
physics feedback.

One candidate for full-core nuclear reactor neutronics is the method of characteris-
tics (MOC). Recent advancements have seen a pellet-resolved 3D MOC solution for the
BEAVRS benchmark. However, MOC is traditionally implemented using constructive
solid geometry (CSG) that makes it difficult (if not impossible) to accurately deform
material to capture physical feedback effects such as fuel pin thermal expansions, as-
sembly bowings, or core flowering.

An alternative to CSG is to use unstructured, finite-element mesh for spatial dis-
cretization of MOC. Such mesh-based geometries permit directly linking to unstruc-
tured mesh-based multiphysics tools, such as fuels performance. Utilizing unstruc-
tured mesh has been attempted in the past, but those attempts have fallen short of
producing usable 3D reactor simulators. Several key issues have hindered these at-
tempts: lack of fuel volume preservation, approximations of boundary conditions, in-
efficient spatial domain decompositions, excessive memory requirements, ineffective
parallel load balancing, and lack of scalability on massively parallel modern computer
clusters.

This thesis resolves these issues by developing a massively parallel, 3D, full-core
MOC code, called MOCkingbird, using unstructured meshes. Underpinning MOCking-

bird is a new algorithm for parallel ray tracing: the Scalable Massively Asynchronous
Ray Tracing (SMART) algorithm. This algorithm enables efficient parallel ray-tracing
across the full reactor domain, alleviating issues of reduced convergence associated
with standard parallel MOC algorithms.

In addition, to enable full-core simulation using unstructured mesh MOC, several
new algorithms are developed, including reactor mesh generation, sparse parallel com-
munication, parallel cyclic track generation, and weighted partitioning. Within this
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work MOCkingbird and SMART are tested for scalability from 10 to 20,000 cores on the
Lemhi supercomputer at Idaho National Laboratory. Accuracy is tested using a suite
of benchmarks that ultimately culminate in a first-of-a-kind, 3D, full-core, simulation
of the BEAVRS benchmark using unstructured mesh MOC.

Thesis Supervisor: Kord S. Smith
Title: Professor of the Practice of Nuclear Science and Engineering

Thesis Supervisor: Benoit Forget
Title: Professor of Nuclear Science and Engineering
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1 I N T R O D U C T I O N

1.1 motivation

Nuclear energy plays an essential role in our nation’s energy infrastructure. The near-
constant base-load generation from reactors is currently powering 20% of the electrical
grid. In addition, that power generation is CO2 free, an increasingly important fact as
the world’s climate changes. Keeping the existing reactors operating and bringing
online new reactor designs is critical to ensuring the energy security of our nation.

Modeling and simulation of nuclear reactors play a vital role in their life cycle. The
existing fleet has relied heavily on modeling and simulation, based on informed ap-
proximation from many experiments and many years of operating experience. How-
ever, next-generation designs and increased experimental costs increase the require-
ments for higher fidelity simulation tools. Many of the new designs, such as micro-
reactors, rely on multiphysics effects for safety and operation that cannot be captured
reliably with current approximation methods. Further, it would take significant ex-
perimental campaigns to demonstrate safe operation. Emerging reactor designs are
employing sophisticated geometrical features such as twisted fuel and heat pipes that
go beyond current modeling capabilities. Therefore, predictive modeling and simula-
tion tools are needed to support the economical development of new nuclear reactor
technologies.

These new tools need to be capable of high-fidelity, full-core neutron transport calcu-
lations. Also, they must handle heterogeneous, non-extruded geometries, and material
deformation. An operating nuclear reactor is a balance of many different physics (e.g.,
neutron transport, heat conduction, fluid flow, chemistry) interacting to produce the
behavior of the core. Therefore, a high-fidelity neutron physics simulator must also be
able to interact with other physics solvers to achieve a multiphysics reactor simulation.
Finally, due to the rise of cluster computing, a high-fidelity solver should scale well in
parallel to reduce time to solution.

Therefore, this work focuses on finding a neutron transport method that is accu-
rate, scalable, geometrically flexible, capable of full-core, 3D calculation, and able to
respond to complex multiphysics interactions such as geometric deformation.

18



1.2 objective 19

1.2 objective

This thesis develops a scalable, massively parallel, unstructured mesh-based, 3D, full-
core MOC neutron transport tool: MOCkingbird. The software has the following capa-
bilities:

• Both two- and three-dimensional

• Scalable on clusters, including:

– Scalable setup and track generation phase

– Weighted domain-decomposition for work balance

– Scalable ray-tracing during the transport sweep

– Scalable source update and convergence checking

– Scalable memory usage

• Parallel agnostic (same solution behavior in serial and parallel)

• Cyclic tracking for accurate representation of reflective boundary conditions

• LWR mesh generation for symmetric, volume-preserving pin-cells

• Straightforward integration path with multiphysics solvers

• Serial execution speed similar to contemporary, traditional MOC codes

MOCkingbird is capable of completing efficient, parallel, full-core, 3D, steady-state,
k-eigenvalue neutron transport solves utilizing unstructured, finite-element mesh for
the domain description.

1.3 thesis outline

This thesis proceeds by first providing some background on the method of charac-
teristics (MOC). The Boltzmann neutron transport equation is introduced, and it is
discretized it in energy, angle, and space. In addition, an introduction is given to tradi-
tional parallelization methods for MOC. Chapter 3 is meant to establish a basic vocab-
ulary for parallel computing terms that are used within the thesis. It also introduces
several of the code libraries which are relied upon by MOCkingbird

Chapter 4 explores the existing literature for unstructured mesh MOC, highlighting
many of the current barriers to 3D full-core simulation. Next, an introduction is given
for MOCkingbird, the 3D full-core, unstructured mesh MOC code developed in this the-
sis. In particular, the idea of using "real" long-characteristics in parallel is introduced.
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Chapter 5 develops the tools required by MOCkingbird for reactor mesh genera-
tion. It begins by introducing a pin-cell generation technique. Next, a novel mesh-
generation capability based around directed-acyclic-graphs (DAGs) is detailed. This
mesh-generation capability is massively parallel, enabling the generation of 3D full-
core meshes necessary for this thesis.

Chapter 6 studies several asynchronous communication algorithms suitable for use
within MOCkingbird. Two novel algorithms are discussed which can provide scalable
non-blocking communication for setting up the MOC calculation. This chapter will
also fully explore the scalability of these algorithms.

Chapter 7 develops the Scalable Massively Asynchronous Ray-Tracing (SMART) al-
gorithm that forms the core of the scalable transport sweep capability within MOC-

kingbird. An asynchronous ray-tracing algorithm performs the transport sweep. The
implementation of this algorithm is an object-oriented, pluggable system for defining
both on-segment calculations and boundary-conditions.

Chapter 8 details the MOCkingbird code itself. A new algorithm for parallel track
generation and claiming is developed. Data structures and object-oriented design is
explored, leading to an explanation of how SMART is utilized to perform massively
parallel transport sweeps. The latter part of Chapter 8 is devoted to thoroughly testing
the performance of the MOCkingbird code and SMART. Several different scaling studies
are run, and comparisons to other ray-tracing algorithms are made. In addition, a new
surface weighted partitioning scheme is developed and tested.

Finally, Chapter 9 tests the ability of MOCkingbird to solve a series of neutron trans-
port benchmark problems. Both 2D and 3D versions of the C5G7 benchmark are first
solved. These are used as the basis for several parameter studies. Next, the BEAVRS
benchmark is solved in 2D then in a 3D quarter core configuration. This chapter ends
with a first-of-a-kind solution of the 3D full-core BEAVRS benchmark using unstruc-
tured mesh MOC. Chapter 10 concludes the thesis and provides directions for future
work.



2 M E T H O D O F C H A R A C T E R I S T I C S

Neutron transport simulations can model shielding, neutron detectors, critical exper-
iments, and the distribution of neutron flux within a reactor core. The Method of
Characteristics (MOC) is a solution method that is used in many fields and has seen
broad adoption in the nuclear engineering community for solution of the neutron
transport equation[1]. The MOCkingbird code developed as part of this thesis utilizes a
traditional form of MOC which makes use of flat spatial source regions and transport-
corrected-P0 scattering cross sections. Many detailed treatments of this formulation
are found in the literature [2, 3, 4, 5, 6].

This chapter develops the characteristic form of the steady-state Boltzmann neutron
transport equation. The following sections simplify the equation through the use of
the multigroup approximation and the introduction of angular quadrature and spa-
tial discretization. Ultimately, a source iteration scheme is developed for the iterative
solution of the k-eigenvalue problem.

2.1 characteristic equation

A simplified form of the Boltzmann neutron transport equation is considered. In par-
ticular, steady state is assumed and an eigenvalue problem is formed:

Ω · ∇ψ(r, Ω, E) + Σt(r, E)ψ(r, Ω, E) =∫ ∞

0

∫
4π

Σs(r, Ω′ → Ω, E′ → E)ψ(r, Ω′, E′)dΩ′dE′

+
χ(r, E)
4πkeff

∫ ∞

0

∫
4π

νΣ f (r, E′)ψ(r, Ω′, E′)dΩ′dE′.

(2.1)

Equation 2.1 represents a balance equation between production and loss of neutrons,
with the fundamental eigenvalue, keff, balancing the system. The angular flux, ψ, is
the dependent variable in Equation 2.1. Solving for ψ allows for the computation
of reaction rates throughout the core. Σt, Σs and νΣ f are the continuous-in-energy
total, scatter and fission macroscopic cross sections, respectively. A position in three-
dimensional space is denoted by r. The direction of neutron travel is represented by Ω,
with E being the energy of the neutrons. The fission emission spectrum is represented
by χ in an equilibrium of prompt and delayed emissions.

Equation (2.1) needs to be further simplified and discretized in order to efficiently
find the angular flux and eigenvalue. The source terms from fission and scattering on
the right-hand side of Equation (2.1) is "lagged" and an iterative method, called "source

21



2.1 characteristic equation 22

iteration," is utilized to find a stationary point that satisfies the discretized form of the
equation. What follows is the construction of the simplified and discretized form of
the equation and development of the iteration scheme.

To begin, the right hand side of (2.1) is defined to be the total neutron source:

Q(r, Ω, E) =
∫ ∞

0

∫
4π

Σs(r, Ω′ → Ω, E′ → E)ψ(r, Ω′, E′)dΩ′dE′

+
χ(r, E)
4πkeff

∫ ∞

0

∫
4π

νΣ f (r, E′)ψ(r, Ω′, E′)dΩ′dE′.
(2.2)

The total source, Q, can be simplified by assuming isotropic scattering (scattering is
uniform in all angle) isotropic fission emission (neutrons are born uniformly in angle).
While an isotropic fission source is a good assumption, isotropic scattering may not
be (especially for collisions with light isotopes such as hydrogen). To account for this,
a transport correction is applied to the cross sections, as explained in §2.8. With these
simplifications, the scalar flux is defined as,

φ(r, E) =
∫

4π
ψ(r, Ω, E)dΩ, (2.3)

giving,

Q(r, E) =
1

4π

∫ ∞

0
Σs(r, E′ → E)φ(r, E′)dE′

+
χ(r, E)
4πkeff

∫ ∞

0
νΣ f (r, E′)φ(r, E′)dE′

(2.4)

With this substitution the transport equation becomes:

Ω · ∇ψ(r, Ω, E) + Σt(r, E)ψ(r, Ω, E) = Q(r, E). (2.5)

This equation can be considered along any "characteristic": a straight path through
the domain in the direction Ω. This path, or track, can be parameterized by specifying
r = r0 + sΩ where r0 is a reference location and s is a scalar. Therefore, sΩ is a distance
s along the track. Making this substitution:

Ω · ∇ψ(r0 + sΩ, Ω, E) + Σt(r0 + sΩ, E)ψ(r0 + sΩ, Ω, E) = Q(r0 + sΩ, Ω, E). (2.6)

After applying the differential along the direction of Ω, and letting s have implied
dependence on the reference location, the characteristic form of the neutron transport
equation can be written as:

d
ds

ψ(s, Ω, E) + Σt(s, E)ψ(s, Ω, E) = Q(s, Ω, E). (2.7)
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Equation 2.7 is now an ordinary differential equation with continuously varying
cross sections in space and energy. The differential equation can be solved using an
integrating factor,

e−
∫ s

0 Σt(s′,E)ds′ , (2.8)

which gives:

ψ(s, Ω, E) = ψ(r0, Ω, E)e−
∫ s

0 Σt(s′,E)ds′ +
∫ s

0
Q(s′′, Ω, E)e−

∫ s′′
0 Σt(s′,E)ds′ds′′. (2.9)

Equation 2.9 is the analytic solution to the characteristic form of the Boltzmann
equation given the stated assumptions. It provides the angular flux at a point located
a distance s along a track in the direction Ω. The first of the two terms on the right-
hand side includes a known "incoming" angular flux at the origin of the track. This
flux is being attenuated along this direction as s moves along the track. The second
term on the right-hand side represents the angular flux that results from a source of
neutrons emitted into this direction and energy, either by being born from fission or
scattering from some other direction and energy.

While Equation 2.9 can theoretically provide the angular flux at any point in space,
it is not yet useful for numerical solutions. In particular, the cross sections are continu-
ously varying in space and energy, complicating numerical evaluation of the integrals
required in 2.9. In addition, the spatially varying neutron flux needs to be computed
throughout the entire reactor, not just along one line. Therefore, a discretized form of
2.9 is paired with quadratures in both space and angle.

The following sections further simplify and discretize Equation 2.9 and form an
iterative method for finding the neutron flux throughout the reactor.

2.2 multigroup approximation and cross section condensation

The first simplification is to discretize continuous energy into G discrete energy groups:
g ∈ {1, 2, ..., G} where energy group g spans the energy range Eg to Eg−1. It is custom-
ary to order the energy group boundaries from highest energy to lowest energy, i.e.
Eg < Eg−1. To be able to utilize this multigroup simplification, group-wise cross sec-
tions need to be found.

As shown in Figure 2.1, a continuous energy cross section can be rapidly varying in
energy. Attempting to average this cross section in an energy range would result in a
poor representation of the true reaction probability and lead to errors in the calculated
reaction rates. Instead, a weighted average in energy is needed. To preserve reaction
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Figure 2-1: An illustration of forming multi-group cross-sections from continuous energy
cross-sections showing the continuous energy capture cross-section of U-238 (blue), the
neutron flux (green), and the multi-group representation with 16 groups (red).

where ⌃g
t is the total cross-section, �g is the neutron emission spectrum, ⌫ is the average

number of neutrons released per fission, ⌃g
f is the fission cross-section, ⌃g 0!g

s is the

scattering cross-section from group g 0 to group g, and the total number of energy groups

is G. The eigenvalue k is applied to the fission term as one way of forcing a non-trivial

solution when cross-sections are imperfectly known. If cross-sections and geometry

were known to infinite precision for a steady-state system, k would be exactly 1.0. The

deviation of k from 1.0 shows the degree to which the system is unbalanced for the

supplied cross-sections.

It is important to note that the multi-group transport equation used here assumes

isotropic scattering. However, neutron scattering off of light isotopes, such as hydrogen

found in water, is highly anisotropic. Therefore, a transport correction [36] is often ap-

plied to the cross-sections to retain solution accuracy. This is discussed more thoroughly

in Appendix F.3.
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Figure 2.1. U238 capture cross section (blue), example neutron flux (green) and 16 energy
group representation of the cross section. From [3]

.

rates, the cross section weighted with an assumed neutron flux spectrum is used to
condense continuous energy cross sections into energy groups,

Σx,g(r) =

∫ Eg−1
Eg

Σx(r, E)φ(r, E)dE∫ Eg−1
Eg

φ(E)dE
, (2.10)

where Σx represents the cross section of interest. It should be noted that the correct
weighting factor for a quantity may be something other than φ. For an in-depth explo-
ration see [4].

With Equation 2.10, it is possible to produce group-wise cross sections for all of
the cross sections present in Equation 2.9. However, a major difficulty with Equation
2.10 is that it requires the neutron flux, φ, which is a primary solution of the trans-
port equation we seek. Traditionally, resonance self-shielding calculations resolve this
interdependence [7] on simpler geometries than the full reactor. However, modern
techniques can now make use of full reactor Monte Carlo (MC) for multi-group cross
section calculation [4]. This thesis uses MC for computation of group cross sections.

Using this multi-group approximation for cross sections, the multi-group form of
Equation 2.9 can be written as,

ψg(s, Ω) = ψg(r0, Ω)e−
∫ s

0 Σt,g(s′)ds′ +
∫ s

0
Qg(s′′, Ω)e−

∫ s′′
0 Σt,g(s′)ds′ds′′, (2.11)
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where Qg is defined as:

Qg(r) =
1

4π

(
G

∑
g′

Σs,g′→g(r)φg′(r) +
χg(r)

keff

G

∑
g′

νΣ f ,g′(r)φg′(r)

)
. (2.12)

Here, Σs,g′→g is the scattering from energy group g′ to group g.

2.3 angular quadrature

It is important to note that there has been a recent development in the use of stochastic
angular quadrature. The Tramm Random Ray Method (TRRM) [8] integrates angular
flux across tracks chosen randomly within the domain. One significant advantage of
TRRM is reduced memory usage when compared to deterministic track laydowns.
MOCkingbird can perform solves using TRRM, but this thesis focuses on using tradi-
tional deterministic tracks.

To enable computation of Equation 2.12, the continuous integral used in the defini-
tion of the scalar flux in Equation 2.3 can be discretized using numerical quadrature.
Numerical quadratures approximate integrals by summing the product of weights
and evaluations of the integrand at points within the integration bounds,

∫ b

a
f (x)dx ≈∑

qp
ωqp f (xqp), (2.13)

where qp is an index over the quadrature points, ωqp are the weights associated with
each quadrature point and xqp is the position of each quadrature point. This idea
is very general, allowing computers to efficiently and accurately calculate numerical
integrals.

Many different families of quadrature rules exist that are tailored to specific solution
methodologies. This study utilizes equal spacing azimuthal quadrature with 3-angle
TY polar quadrature [9] in 2D and equal weight polar quadrature in 3D. The scalar
flux in Equation 2.12 can be discretized using both an azimuthal (2D plane) and polar
(out of plane) quadrature as,

φg(r) = ∑
m

∑
p

ωmωpψg(r, Ωm,p), (2.14)

where m and p are the indices for the azimuthal and polar quadratures, respectively.
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Figure 2.2. An example of a traditional flat source region treatment of a 4x4, pin-cell lattice.
From [2]

2.4 spatial discretization

Many terms within Equations 2.11, 2.12, 2.14 are still defined in terms of continuously
varying points in space. These include the cross sections (Σx), fission spectrum (χ) and
scalar flux (φ), that all need to be discretized in space.

Traditionally, spatial discretization for MOC has been accomplished by creating re-
gions, called flat source regions (FSRs), within the domain, as depicted by the various
colored regions in Figure 2.2. Within these regions, the cross sections, fission spec-
trum and average scalar flux (φg) are approximated as spatially constant. With this
approximation, the total source, Qg, is constant within each region (i),

Qi,g =
1

4π

(
∑
g′

Σs,i,g′→gφi,g′ +
χi,g

keff
∑
g′

νΣ f ,i,g′φi,g′

)
. (2.15)

where i represents an individual FSR, and

φi,g =

∫
Vi

φg(r)dr

Vi
, (2.16)

is the volume-averaged scalar flux, found by integrating the scalar flux in Equation 2.3
over the volume of one FSR (Vi).

The choice of the size and distribution of FSRs has consequences for the accuracy of
the simulation. If the FSRs are large where the source is highly variant, then increased
error occurs in the calculations. In MOCkingbird, the FSRs are constructed from ele-
ments of a finite-element mesh representing the reactor geometry. A more accurate
method, which approximates the source as linearly varying within an FSR [10], can
allow for the use of a much coarser mesh. Future work will address this extension.
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(a) Tracks

Segments along track:

Track

(b) Segments

Figure 2.3. Example equally spaced tracks and the segments that would lie along one such
track.

With these values being constant in an FSR, the 1D integrals in Equation 2.11 can
be exactly computed for a segment of the track which crosses a single FSR from s to
s′. By defining the optical length to be τi,g = Σt,i,g(s′ − s), Equation 2.11 becomes:

ψg(s′, Ω) = ψg(s, Ω)e−τi,g +
Qi,g

Σt,i,g
(1− e−τi,g). (2.17)

It is convenient to recast this equation in terms of the change in the angular flux across
a segment:

∆ψi,g(Ω) =

(
ψg(s, Ω)−

Qi,g

Σt,i,g

)
(1− e−τi,g). (2.18)

This equation prescribes how the angular flux will change after it crosses each of
the FSRs within the mesh. With a known starting angular flux at the outer domain
boundary, the angular flux can now be integrated/propagated completely across the
domain along one track.

2.5 tracks , segmentation, and ray tracing

The final computation left to determine is the scalar flux in each FSR. This is accom-
plished by numerically approximating the integral and volume (Vi) in Equation 2.16

using the tracks crossing each FSRi.
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It is necessary to have a sufficient number of tracks crossing each FSR to ensure
accurate evaluation of the scalar flux. The set of tracks laid down across the entire
geometry is referred to as a "lay down." Within each lay down, the tracks are indexed
by k. Figure 2.3a, shows one such set of tracks, although a realistic track lay down has
significantly more tracks crossing the geometry. The intersections of tracks with each
successive FSR define segments, as shown in Figure 2.3b. These segments can then
be used to integrate a portion of the angular flux into a tally of the scalar flux. Using
the fact that each track has an assigned spacing/width (ωk), essentially a quadrature
weight in space, the average scalar flux (after integrating across all the tracks passing
through an FSR) can be computed using:

φi,g =
4π

Σt,i,g

[
Qi,g +

1
Vi

∑
k

∑
p

ωm(k)ωpωk∆ψk,i,g,p

]
. (2.19)

Note that a particular track, k, is at a particular azimuthal angle, m, and thus defines
which weight will be used.

It is also important to note that the volume of each FSR (Vi) is also computed using
the spatial and angular quadrature from the tracks. That is, MOCkingbird utilizes the
"as tracked" approximation of the FSR volumes instead of the true volume.

These equations are applied to all segments of track. This can be viewed as a ray-
tracing step: rays are the tracks, they are "traced" from their starting point, on the
domain boundary, across the FSRs.

Finding all the segments is termed "segmentation." This is traditionally carried out
as a pre-processing step by MOC-based codes [2, 11], where the tracks are traced
and segments are stored in memory for later use during the iterative solution scheme.
However, the number of segments required in 3D calculations can overwhelm avail-
able computer resources; therefore, recent advancements have been made in "on-the-
fly" segmentation [3]. In this mode, ray-tracing is performed each time the track is
used to integrate the angular flux across the domain. This provides savings in mem-
ory [3], but also requires additional computational work.

With this last piece in place, it is possible then to see the development of an algo-
rithm to solve for the angular flux, scalar flux, and eigenvalue. It is an iterative method:
computing the angular flux by integrating over all tracks (called a "transport sweep"),
accumulating the scalar flux, updating the eigenvalue, then repeating. That algorithm,
termed "source iteration", will be explored in §2.7.
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angle to ensure the tracks are cyclic. Following the same notation used to describe the azimuthal
angles, the corrected polar angles will be denoted by ✓i,j . By tracking both forward and backward
along a track, the full 4⇡ angular space can be covered as shown in Fig. 1 for four azimuthal and
two polar angles.

Tracks are laid down such that they intersect with a complementary track at the boundaries.
Selecting an arbitrary cycle, T i

R,k, we follow a set of 3D tracks as they complete one 2D cycle. Fig.
5 highlights a particular 2D track cycle and a set of 3D tracks projected along that cycle.

Figure 5. Illustration of an arbitrary 2D track cycle (a), T i
R,k, and a set of 3D tracks projected

along the 2D track cycle (b).

To guarantee cyclic track wrapping of the 3D tracks, two conditions must be met:

1. For each azimuthal angle, �i, polar angle, ✓i,j , and 2D track cycle, T i
R,k, the distance between

the beginning and end of a 3D track projection along a 2D track cycle must be an integer
number of track spacings.

2. For each azimuthal angle, �i, and polar angle, ✓i,j , there must be an integer number of track
spacings along the z axis over the depth of geometry, �z.

The first condition guarantees that a 3D track cycle wraps back onto another 3D track when
the 2D reflective cycle is completed. The second condition guarantees that a 3D track cycle that
contains a reflection off a top or bottom surface still reflects into an existing 3D track when the
2D cycle is completed. In the next two sections, we show how both the 3DGT and MRT methods
comply with these conditions and what additional assumptions they make.

3.2 The 3D Global Tracking Method

The 3DGT method uses the conditions stated in the previous section for 3D cyclic ray tracing
to generate tracks for a rectangular geometry independent of any domain decomposition scheme.
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Figure 2.4. 2D and 3D cyclic tracking. The 3D tracks are defined as "stacks" above the 2D
tracks. From [12].

2.6 cyclic tracking

The previous section explained how it is possible to compute the scalar flux by ac-
cumulating the integrations of the angular flux on segments across each FSR. Many
different options exist for determining the tracks, including cyclic tracking [12], mod-
ular ray tracing [5], once-through [13] and back-projection [14]. The track laydown
algorithm used by MOCkingbird is cyclic, global tracking as developed within OpenMOC

[12].
Cyclic tracking creates track laydowns which form cycles through the domain. That

is, starting at the origin of one track it is possible to move along all connected tracks
in the cycle and arrive back at the starting position. Cyclic tracking is desirable for its
ability to accurately represent reflected, periodic, or rotational boundary conditions.
As can be seen in Figure 2.4, at the edges of the domain, each track meets the next
track in the cycle. This allows for the angular flux to pass from one track to the next
track. Without this feature, the incoming angular flux at the beginning of the tracks
would have to be approximated or known. In full-core calculations, the incoming
angular flux is often zero (vacuum), but having cyclic tracking capability makes the
code much more flexible for the calculation of symmetric problems (e.g., pin-cells and
assembly-level lattice calculations).

The cyclic tracking code utilized in MOCkingbird was initially developed for Open-

MOC as detailed in [12]. As shown in Figure 2.4, the algorithms produce 2D tracks by
specifying the number of azimuthal angles and the azimuthal spacing (space between
parallel tracks). For 3D tracks, the 2D tracks are generated first. Then, "stacks" are
made above each 2D track to create the 3D tracks. However, just as in segmentation,
the storage of all of the 3D track information can be prohibitive for a full-core 3D
calculation. The index of the 2D track uniquely identifies each 3D track it projects to,
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the index of its polar angle and its index in the z-stack of tracks. This allows MOCking-

bird to create a 3D track on-the-fly, enabling scalable, distributed track generation
which is explored in §8.1.

The track generation capability within OpenMOC also computes the angular quadra-
ture and track spacing weighting factors. Cyclic track generation is a complex under-
taking due to the small adjustments needed in these factors [12].

2.7 source iteration and transport sweeps

With the equations defined and track generation specified, a solution algorithm can
now be developed. The scheme solves for the angular fluxes along each track, scalar
fluxes in each FSR and the eigenvalue which balances the system. The algorithm is
called "source iteration" due to iterating between sweeping the angular flux across the
tracks and updating the flat source by recomputing the scalar fluxes.

Algorithm 1: Source Iteration Algorithm

1 Estimate Scalar and Domain Boundary Angular Flux
2 Compute Initial Source
3 while not converged do
4 Normalize Scalar and Boundary Angular Fluxes
5 Compute New Source
6 Zero The FSR Scalar Flux
7 Zero The FSR Volumes
8 Transport Sweep - Accumulates scalar fluxes and volumes
9 Compute New keff

10 Check Convergence Criteria
11 end

An outline of the algorithm is in Algorithm 1. First, the fluxes are initialized, then
the scalar fluxes are utilized to compute the initial source Q using Equation 2.15. The
scalar and domain boundary angular fluxes are then normalized by dividing by the
sum of the fission source:

F = ∑
i

∑
g

νΣi, f ,gφi,g. (2.20)

Normalization is necessary to keep the source values from continually increasing/de-
creasing (depending on the value of keff). Next, the source (Q) is computed using
Equation 2.15.

The scalar flux and FSR volumes are then zeroed for accumulation during the trans-
port sweep. The transport sweep itself is shown in Algorithm 2. Each segment of each
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track is iterated over, Equations 2.18 and 2.19 are applied to update the angular flux
and accumulate the scalar flux, respectively.

Algorithm 2: Transport sweep. The k tracks are iterated over, intersecting them
with the geometry. Equation 2.18 is used to update the angular flux and Equation
2.19 to accumulate the new scalar flux.

1 foreach track in tracks do
2 foreach segment in track do
3 foreach polar angle do
4 foreach group do
5 Update Angular Flux
6 Accumulate Scalar Flux
7 end
8 Accumulate Volume
9 end

10 end
11 end

After the transport sweep, the eigenvalue is updated using the ratio of the old and
new fission sources (as computed using Equation 2.20),

keff, new = keff, old ∗
Fnew
Fold

, (2.21)

and then convergence criteria are checked. For this thesis, the convergence criteria
used is based on the root mean squared (RMS) change of the element fission source:

FRMS =

√√√√∑Fissionable i

(
∑g Σ f ,i,gφi,g,new−∑g Σ f ,i,gφi,g,old

∑g Σ f ,i,gφi,g,old

)2

NFissionable
. (2.22)

Where "Fissionable" refers to FSRs which contain fissionable material and N is the
number of fissionable elements. The change in keff is also monitored:

∆k = |keff, new − keff, old| . (2.23)

Once FRMS or ∆k is small enough (typically 10−4 and 10−6), the iteration is termi-
nated. It should be noted that these conditions are sometimes referred to as "stopping
criteria" rather than "convergence criteria".

The scalar fluxes in each FSR are solved for using Algorithm1. In addition, the keff

which balances the system is obtained.
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2.8 transport correction and stabilization

The source iteration outlined above has been used for many years without issue. How-
ever, transport-corrected cross sections have recently been shown sometimes to cause
this iteration scheme to diverge [15]. The transport correction is a modification to the
cross sections to take first-order anisotropic effects into account. The development of
this correction is outside the scope of this thesis, for an in-depth treatment see [16].
Using ∆Σtr,g as the correction, it is applied through modification of the total and scat-
tering cross sections:

Σtr,g = Σt,g − ∆Σtr,g (2.24)

Σ̃s,g′→g = Σs,g′→g − ∆Σtr,gδg′,g. (2.25)

It is important to note the Kronecker delta function in Equation 2.25. The action of that
delta function is to only apply the transport correction to the in-group scatter cross
section (diagonal of the scattering matrix). The transport correction is straightforward
to apply through the use of these modified cross sections in place of the total and
scattering cross sections in an MOC code.

However, as mentioned at the beginning of this section, making these cross section
modifications can cause the source iteration scheme to become unstable. For an in-
depth analysis of why this is the case see [3, 15]. A simplified explanation is that
subtracting from the diagonal of the scattering matrix can lead to a system that is not
diagonally dominant, and therefore, the iterative solution scheme is not guaranteed to
converge.

A solution for stabilizing transport-corrected source iteration solvers was developed
in [15]. The amelioration takes the form of "damping" the iterative scheme by selec-
tively combining the newly obtained scalar flux with the previous (old) scalar flux.
This is achieved by defining a damping factor,

Di,g =


−ρΣ̃s,i,g→g

Σtr,i,g
, for Σs,i,g→g < 0

0, otherwise,
(2.26)

where ρ is a positive scalar which controls the amount of damping to apply for
FSRs that have negative in-group scattering cross sections. Larger values of ρ lead
to more damping. While the damping is sometimes necessary for convergence, too
much damping will also slow down the convergence rate [3].
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The application of this damping factor occurs immediately after the transport sweep.
The new scalar fluxes (φi,g,new) are combined with the scalar fluxes from the previous
iteration (φi,g,old) via a weighted average:

φi,g =
φi,g,new + Di,gφi,g,old

1 + Di,g
. (2.27)

The new ke f f is computed using this damped flux.
To stabilize Algorithm 1, Equation 2.27 is applied directly after the transport sweep.

However, the damping is only applied if ρ is specified to be a positive number, thus
only being used when problems require it, such as the BEAVRS benchmark in §9.4.

2.9 parallelism and domain decomposition

MOC is a highly parallelizable algorithm. The majority of the computational effort is
located within the transport sweep, and each independent track can be swept simul-
taneously. Many different MOC-based codes have implemented some level of paral-
lelism [3, 4, 5, 17].

Two types of parallelism that are ubiquitous within high-performance computing
today are shared memory and distributed memory. Shared memory parallelism is
implemented within a single node/computer where all tasks can access the same
memory. The programming models often used for shared memory parallelism are
threading [18] and OpenMP [19]. OpenMP, in particular, has seen use in many MOC
codes [2, 3, 4, 5, 17, 20].

Distributed memory parallelism is required when more than one computer/node is
used, typically in a cluster. In this case, network communication is needed to transfer
data from one computer to the next. The programming model typically employed
is the Message Passing Interface (MPI) [21], which is covered in detail in §3.2. In
MPI, many separate processes (called "ranks") communicate via sending and receiving
messages.

A natural way to use a distributed memory cluster is to distribute the reactor ge-
ometry among the MPI ranks. During a transport sweep, each rank is responsible for
segment integration across tracks which intersect the assigned portion of the domain.
Separating the domain is known as "partitioning," and the individual sub-domains as-
signed to each MPI rank are called "partitions" (Note: in many MOC studies partitions
are also called "domains"). In this thesis, "domain" refers to the full geometry.

Spatial domain decomposition (SDD) [22] is a common method used for partition-
ing reactor geometries [3, 5]. As shown in Figure 2.5, SDD, for LWRs, is a Cartesian
splitting of the geometry. For LWR geometries, this is often optimal as the partitions
can be chosen to be entire assemblies. If the assumption is made that each partition
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Figure 4.1 – 2-D sweep with domain decomposition 

 Unless approximations are introduced, the characteristic rays must be directly 

connected across these boundaries, in order to transfer the interface angular fluxes. 

Furthermore, because the incoming boundary condition must be stored on all surfaces 

shared between parallel subdomains the bi-directional sequential sweep algorithm 

illustrated in Figure 2.18 would be the preferred sweep algorithm in a given spatial 

subdomain. Another detail of this decomposition is the order by which the subdomains 

may be traversed during a single iteration. In the work here, the subdomains are allowed 

to perform their local sweeps simultaneously with all other subdomains. This is 

essentially equivalent in concept to a block Jacobi type iteration scheme. The KBA wave 

front algorithm [16] could also be used instead, which would have better convergence 

properties, but the block Jacobi scheme was chosen to be studied first since it will 

maximize parallelism. By allowing the subdomains to solve their local problems 

simultaneously, it fundamentally changes the iteration scheme, and therefore the rate of 

convergence when compared to the serial iteration. Interior subdomains will not have the 

same boundary condition as the serial problem until it has been communicated through 

all other subdomains between the interior subdomain and the problem boundary. This is 

also illustrated by Figure 4.1. 

 When choosing the optimal spatial decomposition, it is important to consider the 

advantages provided by modular ray tracing, which imposes a virtual structured grid, 
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Figure 2.5. Modular ray tracing combined with spatial domain decomposition. The domain
has been decomposed into 9 partitions. From [5]

has the same (or similar) geometry within it, then it is optimal to have square/cube
partitions. This is due to trying to minimize communication (which scales with the sur-
face area of the partitions) while maximizing work [5]. If all partitions are the same,
then the amount of work scales with the volume of the partitions.

There are two restrictions imposed by the use of SDD. The first is that the number
of MPI ranks used to solve the problem must be some multiple of the number of
Cartesian partitions. In 3D, the requirement is to have a multiple of the number of
partitions in the azimuthal plane. This restriction creates issues when trying to fit
full-core problems into available compute resources.

Another restriction is that modular ray tracing (MRT) [5] is often employed with
SDD. As shown in Figure 2.5, the rays in each partition are the same and meet each
other at boundaries. This allows for a simplified communication pattern with only
nearest neighbors. Each partition is treated as coupled, individual reactor physics
problems when using modular ray tracing. Within each source iteration, the incoming
angular flux is set, and all rays are traced from one edge of the partition boundary
to the next partition boundary. At the end of each sweep, the boundary fluxes are
communicated to neighboring partitions.

The outcome of this process is that angular flux data only moves across one partition
during each source iteration. In Figure 2.5, the track in red takes five source iterations
for the origin domain boundary angular flux to reach the opposite boundary. This can
degrade the convergence rate of the algorithm [3]. In [3], on a test problem involving
a single assembly, the effect was found to be small until many axial domains were
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used. However, in that test problem, only 1 radial domain was utilized. In a full-core
calculation, there are both many radial partitions and axial partitions, which may
further degrade the convergence rate.
MOCkingbird does not utilize either SDD nor MRT and hence, is not subject to these

limitations. Instead, finite-element partitioning processes are used to allow decompo-
sition into any number of partitions. Ray-tracing in MOCkingbird will use "true long
characteristics": the angular flux will be swept from domain boundary to domain
boundary in each transport sweep. In parallel, the integration across a track will be
swept across many partitions to reach from one side of the domain to another within
one iteration. Therefore, MOCkingbird will achieve the exact same convergence behav-
ior in parallel as in serial.

2.10 memory

Full-core reactor 3D simulations generate large problem sizes. For the 3D BEAVRS
benchmark calculation which will be presented in §9.5, there are 1.4e9 flat source re-
gions, 300e6 individual tracks and 70 energy groups. The storage of the scalar fluxes
and the domain boundary angular fluxes is approximately 140e9 double-precision
floating-point numbers or roughly 1TB of RAM. Therefore, it is important to consider
how parallelization affects memory consumption. Ideally, as the problem is decom-
posed into smaller partitions, the total memory used is roughly constant (i.e., it would
be perfectly split among the MPI ranks). However, with MRT, this is not the case.
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Figure 2.6. Growth of angular flux storage vs scalar flux storage when using modular ray
tracing. Computed using partitioning into cubes of MPI ranks. From [5]

When using MRT, the angular flux is often stored at both the beginning and the end
of each track on the partition. Therefore, as the number of partitions grows, so does
the memory usage. To compute an estimate of the total memory that would be used
by MRT for the 3D BEAVRS problem, a few assumptions are made:

• Domain size is 360cm x 360cm x 460cm

• 32 azimuthal angles

• 4 polar angles

• Tracks are isotropic (a reasonable approximation)

• Domain is partitioned using cubic numbers of MPI ranks

Using these assumptions, the graph in Figure 2.6 is produced, showing the amount
of memory used to store the partition boundary angular fluxes. In that data, angular
flux storage goes from 340GB in serial to 9.1TB when using 19683 MPI ranks. With that
many MPI ranks, the memory usage is almost exactly 10x as much as in serial (once
784GB for scalar fluxes is added). This represents an issue for usability on clusters with
small amounts of memory per CPU (an increasingly common trend). For instance, on
the Mira supercomputer at Argonne National Laboratory [23], each processor has
access to 1GB of RAM. At nearly 20k MPI ranks that would mean the angular flux
storage would be taking up half of the available RAM per CPU. Depending on other
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storage needs (cross sections, neutron source, geometry), the problem may not fit on
that machine.

It should be noted that the use of on-node, shared memory parallelism (such as
using openmp) can somewhat ameliorate this effect. If using only one MPI rank per
node, the number of partitions is divided by the number of on-node cores.

In contrast, MOCkingbird only stores angular flux on the domain boundaries. There-
fore, there is no increase in angular flux storage as the problem is decomposed into
smaller partitions. This will be explored later in §8.3.1.1.



3 C O M P U T I N G B A C K G R O U N D

The computing landscape is in a constant state of change. New processors, network
interconnect, memory, and GPUs combine to make high-performance computing an
ever-moving target. What follows is a basic introduction to the computing terms and
capability used throughout this thesis. These are meant to be high-level descriptions
with many of the details available in citations.

3.1 cluster computing

Early supercomputer designs [24] utilized many processors, often with wide vector
units, operating within a single system image. With these designs, all processors
worked within shared memory. While some remnants of this type of supercomputer
persisted into the late ’90s [25] and even early 2000s [26], by the turn of the millennium
the idea of using "clusters" of computers to carry out parallel workloads was taking
over [27, 28]. Cluster computing, where multiple separate computers linked over a
network work together, is the dominant form of high-performance computing today.

Modern cluster computing utilizes designs similar to the one shown in Figure 3.1.
Many (hundreds or even thousands) individual computers, called "nodes," are linked
together by a high-speed network. Each of these nodes contains multiple central pro-
cessing units (CPUs, "processors") with multiple "cores", which can all address the
"shared" memory on the node. These configurations are often referred to as "dis-
tributed" memory due to the fact that the CPUs within each node can only directly
address the memory within that node. This detail presents challenges for parallel algo-
rithms. In modern designs, there may be more organization than this within the node
such as multiple memory zones [29], multiple processor packages which each contain
multiple CPUs, and multiple levels of cache memory. However, for this thesis, nodes
are viewed as a collection of processors and one shared memory pool.

The network, or "interconnect," can have a significant impact on the efficacy of a
cluster. Most notably, the "speed" of the network (typically in gigabits/second) is im-
portant with modern interconnects having speeds of 50 Gb/s [30]. In addition to raw
speed, latency (i.e., how long a signal takes to reach its destination) is also an im-
portant consideration. Impacting both speed and latency is network "topology": the
network shape as determined by the links and switches. There are many choices for
network topology with "fat tree" [31] and "hypercube" [32] being two of the most
common. The differences between these two topologies is not critical to the current

38
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Figure 3.1. Pictorial of a modern cluster computer.

study. However, the results within this study utilized a cluster with a fat-tree network
architecture as detailed in §3.1.1.

One increasingly important aspect of cluster networks is the capability for hard-
ware "offload" of network communication. Offloading network communication to a
hardware unit allows CPUs to continue to do tasks while network communication is
handled for them. For instance, the BlueGene/Q supercomputer design contained an
extra processor dedicated to accelerating network communication [33]. The Infiniband
[30] interconnect provides an offloading capability for sends, receives, and collective
operations [34]. The Infiniband Host Channel Adapter (HCA) can directly read and
write memory both locally and on remote nodes through Remote Direct Memory Ac-
cess (RDMA). Messaging systems such as MPI [21] can utilize these capabilities to
allow the network to complete messages while CPUs continue to process data, al-
lowing overlapping of communication and computation. This thesis makes extensive
use of network communication offload to overlap communication and computation,
achieving sustained scalability.

3.1.1 Lemhi Supercomputer

All of the results presented in this work were developed using the Lemhi Supercom-
puter at Idaho National Laboratory. Lemhi has 504 nodes, each with two processors
containing 20 cores each giving a total of 20,160 cores. Each node is outfitted with
186GB of RAM and connected to the network using Intel OmniPath interconnect. Intel
OmniPath is a high-speed interconnect providing low latency, 40 Gb/s link speed in
a fat-tree configuration. Lemhi has a LINPACK [35] rating of 1 Petaflop/s.
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3.2 message passing interface

Over the last 40 years, there have been many approaches to distributed-memory par-
allel computing. One approach is that of "message passing," where the network is
utilized to send data from one node to another in discrete "messages." Some of the
earliest attempts at defining message passing interfaces [36] still bare many resem-
blances to the modern protocols defined within the newest Message Passing Interface
(MPI) specifications [37]. The MPI specification has continued to evolve, with multiple
projects dedicated to creating implementations of MPI. Three open-source MPI imple-
mentations are OpenMPI [38], MPICH [39] and MVAPICH [40]. MVAPICH, based on
MPICH, is specialized to target computers using Infiniband-like interconnects and is
used exclusively within this thesis.

MPI works by starting multiple instances of an application binary simultaneously.
Each of these instances can be called an MPI "process" or an MPI "rank." All of the MPI
processes started together can send and receive messages with each other by calling
functions from within MPI. This is true regardless of whether the MPI processes are
started on the same computer/node or separate nodes linked within a cluster.

It is important to distinguish between "process" and "processor." A modern oper-
ating system has many processes running simultaneously: word processors, spread-
sheets, terminal applications, web browsers, etc. Any number of processes can be ac-
tive at the same time - no matter how many processors (CPUs) the machine contains.
However, if multiple processes are attempting to utilize the same cores within a CPU
simultaneously, it causes a slowdown as the processes have to wait and take turns.

MPI processes are no different from these other processes. Any number of them
can be running simultaneously on a node in the cluster, regardless of the number
of CPUs present within that node. However, because scientific applications heavily
utilize CPUs, it rarely makes sense to "oversubscribe" (create more MPI processes
than the number of CPUs present within a node) MPI processes on nodes.

The communication methods within MPI can be loosely grouped into two major
sets: point-to-point and collective operations. Point-to-point operations involve indi-
vidual ranks sending and receiving information while collective operations typically
involve all ranks (or large amounts of ranks) sending and receiving. These are fur-
ther broken down into routines which are "blocking" (execution does not continue
until the routine finishes) and those which are "non-blocking" (execution can continue
while the routine executes in the background, also referred to as "asynchronous"). A
few of the message passing routines available are:

• MPI_Receive: Blocking receive

• MPI_Irecv: Non-blocking receive
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• MPI_Send: Blocking send

• MPI_Isend: Non-blocking send

• MPI_Issend: Non-blocking synchronous send (sender when receive started)

• MPI_Test: Test if non-blocking routine has finished

• MPI_Probe: Wait for incoming message

• MPI_Iprobe: Non-blocking check for incoming message

• MPI_Alltoall: Collective where every process sends to every other

• MPI_Ibarrier: Non-blocking collective routine to check if all processes have
reached a point in the program

• MPI_Iallreduce: Non-blocking collective where an operation is performed on
the data and every process receives the outcome of that operation. For instance:
summation.

Until recently, most message passing was accomplished using blocking methods:
that is, when a process began a messaging operation, the process would wait until
the operation was complete before allowing the program to continue. In the case of
point-to-point communications, this would mean both the sending and receiving ranks
would need to "post" (start) the requisite send/receive routines and wait for them to
complete before either of them could continue processing. In the case of collective
operations (such as an MPI_Alltoall), this would cause all processes to hold until the
collective operation was complete.

The major side-effect of this type of message passing is that a lot of computa-
tional potential can be "wasted" waiting for communication routines to start and finish.
While communication of data across the network has its own intrinsic time, it adds to
the calculation; this "lag" in waiting for communication to start and finish can often
be even more dominant - leading to poor parallel efficiency.

Utilizing blocking message passing routines can cause inefficiency. MPI ranks, which
reach communication points earlier than other ranks, need to wait. Time spent waiting
is lost time that could be used for computing. In addition, blocking routines take time
to set up the communication, adding to the amount of time lost. In particular, if one
process has a lot more work to do than others, it can often be the case that all other
ranks are waiting on one to finish before all of the communication can complete. This
"load imbalance" is particularly prevalent when working with unstructured mesh and
is explored in §8.3.3.
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Newer message passing specifications such as MPI-3 allow for both point-to-point
and collective operations to be "asynchronous" (or "non-blocking"). In this mode, pro-
cesses are allowed to start a messaging operation and then continue without waiting
for the operation to complete. Later, the process can then check the status of the opera-
tion (using MPI_Test) to see whether or not it is complete. This asynchronous commu-
nication can allow for significant speedups, especially in very unstructured parallel
algorithms. By allowing communication to complete in the "background" while a pro-
cess continues doing useful work, much of the latency and lag associated with the
communication of data within the parallel execution can be hidden.

Hardware support is critical for asynchronous communication to be effective. If a
process begins an asynchronous "send" operation, it is paramount that the comput-
er/network can take control over the successful movement of the data to the desti-
nation process. Within a shared-memory node of a cluster, it is straightforward for
one process to give another a message by merely advertising a memory address from
which the process can pull information. Over the network of a distributed memory
cluster, it is far less obvious how to achieve asynchronous communication. Some
clusters have specialized hardware or even have dedicated processors just for asyn-
chronous communication [33]. However, many modern clusters offload asynchronous
communication to the network infrastructure itself, including the network cards. As
mentioned earlier, this is the approach taken in Infiniband-based systems. In these
systems, the network card within each node can take control over an asynchronous
communication and see it through to completion while the process that started it con-
tinues doing other work.

This work heavily relies on MPI for all parallel communication. In particular, asyn-
chronous communication routines are utilized, and hardware offload is capitalized on
to achieve parallel scalability during the transport sweep for the method of character-
istics. All simulations for this study were executed using MVAPICH 2.3 [40].

3.3 meshes

A "mesh" is a data structure many numerical algorithms use as the description of
the geometry. It is composed of "elements" which make up the volume/surface of
the domain and "nodes" which link the elements together, typically at the vertices.
By combining many elements, linked through the nodes, a mesh can span an entire
computational domain. Numerical methods such as the finite-element, finite-volume,
and finite-difference all utilize a mesh. In addition to describing the geometry, the
mesh also often serves as the discretization of the volume.

Figure 3.2 shows three options for two-dimensional (2D) and three-dimensional
(3D) elements. A node is located at the vertices of each of these elements. There are
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Quadrilateral Triangle Hexahedral

Figure 3.2. Examples of two- and three-dimensional elements

(a) Structured mesh (b) Unstructured mesh

Figure 3.3. Examples of structured and unstructured meshes.

many more options for elements, including lines, prisms, tetrahedrals, and pyramids.
By using many of these elements (possibly skewed and stretched) linked together, it’s
possible to make nearly any shaped domain. This effort focuses on using quadrilateral
elements for 2D and hexahedral elements for 3D.

There are two primary types of meshes: "structured" and "unstructured." Both types
are visible in Figure 3.3. Structured meshes are also often referred to as "grids." Struc-
tured meshes excel at being compact in memory.

An unstructured mesh, as seen in Figure 3.3b, does not contain regularity. Instead
of having indices that can directly refer to the elements, the elements are instead
uniquely numbered. A data structure must be created, linking elements to nodes and
elements to neighboring elements. An unstructured mesh is far more flexible than
structured mesh at representing complex geometries. By allowing elements with ar-
bitrary rotations and connectivity, nearly any shaped domain can be approximated.
Also, it should be noted that structured meshes are a subset of unstructured meshes.
That is, an unstructured mesh data structure can perfectly replicate the domain of a
structured mesh (although typically with a memory overhead compared to utilizing a
structured mesh directly).

In this thesis, unstructured mesh is utilized to provide the flexibility needed to
discretize complicated geometries such as those found in nuclear reactors. However,
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perfect circles/cylinders are not representable with Lagrange based linear and second-
order elements used in finite-element meshes. Chapter 5 describes a method for gen-
erating pin-cell meshes which preserve the material volumes.

3.4 domain decomposition

3.4.1 Partitioning

In parallel, it is natural to split the work by assigning portions of the mesh/domain
to each MPI process. Ideally, this splitting should result in equal amounts of work
assigned to each MPI process. Any imbalance in work results in a loss in parallel ef-
ficiency as some MPI processes finish their work early and CPU time is wasted. The
mesh splitting procedure is known as "partitioning" and has been an important field
of study since researchers began using distributed memory clusters [41]. Many differ-
ent ways to partition a mesh have been studied including orthogonal decomposition,
spectral/eigenvalue decomposition, multilevel (k-way), space-filling curves, and more
advanced ideas such as hierarchical partitioning [42].

Of all of these types of partitioning strategies, the multilevel "k-way" based de-
composition methods (possibly with a spectral option) have been the most popular
[43, 44, 45, 46, 47]. To date, the most successful partitioning software is METIS [43]
and its parallel offshoot: ParMETIS [44]. These two pieces of software have dominated
finite-element mesh decomposition for over 20 years and are a good fit for the current
effort.

Both versions of METIS take, as input, the connectivity or "dual-graph" describing
the connectivity of the element. This graph is then used to solve for an optimal par-
titioning: one where work is balanced (over nodes) and communication is minimized
(over edges). This process is shown in Figure 3.4. In MOC, the nodes of the dual-
graph represent the work to be done on each element (ray-tracing and angular flux
integration) and the memory utilization for each element (scalar fluxes and cross sec-
tions). The edges of the dual-graph represent the communication pathways between
elements for angular flux/tracks. To best balance the mesh for MOC, a novel weighted
partitioning scheme is developed in §8.3.3.

3.4.2 Parallel Storage

Within MOCkingbird, there are two possibilities for how the mesh is stored in parallel:

1. Replicated: each MPI process holds a full copy of the mesh

2. Distributed: each MPI process holds only the portion of the mesh assigned to it
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(a) Mesh and Dual-Graph

Edge Cuts

Partitioning

(b) Partitioned Dual-Graph (c) Element Assignment

Figure 3.4. The partitioning process. First, a dual-graph is made from the mesh. Next, the dual-
graph is partitioned using partitioning software that tries to balance the work and
minimize the number of edge cuts. Finally, the elements are assigned MPI ranks
based on the partitioning.

The first option is the simplest; each MPI process has a full view of the geometry.
However, this comes with a significant memory overhead. With a large mesh, keeping
a full copy of the mesh within each MPI process may not be possible due to limited
memory on the computational nodes.

To alleviate this issue, a "distributed" mesh only stores the assigned mesh partition
within each MPI process. Assuming the partitioning process is working well (rela-
tively equal number of elements on each process), distributed storage should allow
for "memory scalability" (memory for each process decreases as the mesh is spread
out over more processes).
MOCkingbird can use either "replicated" or "distributed" meshes. However, due to

the massive memory inefficiency of "replicated," this thesis uses distributed mesh.

3.5 libmesh

The libMesh [48] open-source library provides the finite-element fundamentals neces-
sary for this thesis. It was originally developed at the University of Texas in Austin
as a tool for researching finite-element methods for fluid-flow applications [49]. The
core of libMesh is the finite-element capability it contains. It provides a complete
set of data structures for reading and writing meshes. In particular, it provides a
DistributedMesh object which provides a domain-decomposed parallel mesh object
that is utilized by MOCkingbird.
libMesh also provides interfaces to other open-source numerical software libraries

such as PETSc [50] and Hypre [51]. Through these interfaces, libMesh simplifies the
task of making a non-linear parallel finite-element solver. Developers using the library
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can read in meshes, create fields on them to solve for and invoke parallel non-linear
solvers to compute the solution. libMesh can then write the solution files out in several
different formats, with ExodusII [52] used in this these.

In this work, libMesh provides the domain-decomposed mesh data structure neces-
sary to hold the geometry. In addition to the mesh itself, it also provides many utili-
ties for working with the mesh, including an oct-tree based point location method[53]
which is used for locating the beginning point of tracks in §8.1. libMesh also manages
parallel vectors created by PETSc for storing the various fields needed by the method
of characteristics including total source, group scalar fluxes, total cross section. These
parallel vectors are distributed across the MPI ranks, and libMesh manages the paral-
lel indices.

3.6 moose

Built using libMesh, the open-source Multiphysics Object-Oriented Simulation Envi-
ronment (MOOSE) computational science framework [54] has been under development
by Idaho National Laboratory and their partners since 2008. MOOSE provides a package
for development of new multiphysics simulation tools. It is primarily focused on utiliz-
ing finite-element analysis (FEA) to solve fully-coupled systems of partial differential
equations (PDEs).
MOOSE has been successfully utilized in many areas of science and engineering in-

cluding reactor physics [55], nuclear fuel performance [56], geothermal [57], plasma-
liquid interface [58] and computational fluid dynamics [59]. It has also been suc-
cessfully applied to multiscale, multiphysics analysis [60]. The MOOSE framework can
model any geometry that can be meshed and has a large array of options for coupling
physics such as loose coupling or Picard. All of this capability makes MOOSE a good
fit for a new reactor physics capability that combines the method of characteristics
(MOC) with FEA to achieve a multiphysics simulation of a nuclear reactor.

MOOSE has previously been applied to the area of reactor multiphysics [61]. The
Rattlesnake [55] neutron transport code developed by Idaho National Laboratory is
built using MOOSE and has been successfully coupled to heat conduction, fluid flow, and
solid mechanics [62]. Rattlesnake utilizes second-order Sn and Pn methods to solve
neutron transport on unstructured mesh. Scalability of these methods has been a major
research topic [63]. However, these methods suffer from increased memory usage both
for storing angular flux degrees of freedom (DoFs) and creating matrices during the
solve. MOOSE has proven to be a good platform for reactor multiphysics. Therefore, a
neutron transport capability, such as MOC, that is not burdened with angular flux
storage, or matrix creation, is a significant contribution to the MOOSE community.
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3.6.1 Scalability

"Scalability" or "parallel efficiency" is a measure of how well a code can make use of
more processing capability. MOOSE is scalable to thousands of cores when using FEA to
solve systems of PDEs [64]. As with any parallel code, scalability deteriorates as the
problem is spread over more MPI processes.

MOCkingbird has different scalability limits. However, this recommendation should
be kept in mind due to the aforementioned goal of allowing multiphysics coupling.

3.7 openmoc

OpenMOC [2] is an open source, MOC-based neutron transport code primarily devel-
oped by the Computational Reactor Physics Group (CRPG) at MIT. The basis of Open-
MOC is a cyclic-track-based, steady state, eigenvalue solver using constructive solid
geometry (CSG) and accelerated by CMFD [65]. Many different areas of neutron trans-
port have been studied using OpenMOC including: parallelization [66], acceleration [67],
transients [68], cross section computation [4] and three-dimensional, full-core MOC
[3].
MOCkingbird utilizes the cyclic-track generation capability from OpenMOC that can

generate both two- and three-dimensional cyclic track "laydowns" (a set of cyclic
tracks) [12]. Of particular importance is the fact that the track generation capability
in OpenMOC can generate 3D tracks "on-the-fly," where the track information for any
3D track is programmatically generated without needing to hold all tracks in memory.
This feature is critical for the full-core, 3D calculations MOCkingbird performs, and it
plays a role in scalable track generation discussed in §8.1.

For this work, the track generation routines from OpenMOC were compiled directly
into MOCkingbird.



4 L I T E R AT U R E R E V I E W A N D MOCKINGBIRD O V E RV I E W

This chapter contrasts the current state-of-the-art capability for MOC on unstructured
mesh with the capabilities developed in this thesis for MOCkingbird. The first sec-
tion explores each of the existing implementations of MOC on unstructured mesh for
reactor physics problems. Following the literature review, a high-level overview of
MOCkingbird is presented.

4.1 literature review

4.1.1 MOCFE / Proteus-MOCEX

MOCFE is a MOC solver based on finite-element geometry developed at Argonne Na-
tional Laboratory [69]. It uses MPI for parallelism and includes domain-decomposition.
The original development [69] was capable of both 2D and 3D solutions.

MOCFE did not use cyclical tracking, instead, relying on approximations of boundary
fluxes for reflective boundary conditions. Track generation utilized a back-projection
method with trajectories started at domain boundaries, local partition boundaries, or
from every element. The stated reason for this type of track generation was that locat-
ing track starting and ending positions within the mesh from cyclic tracking would be
difficult. Track trajectories were generated in serial by the first MPI process and then
handed out to the rest. This was noted to be a scalability issue going forward.

For ray-tracing, it utilized the Moller-Troumbore algorithm [70] for finding intersec-
tions with 3D faces. The segments would be traced up-front and stored, leading to
significant memory use. During the eigenvalue solve it would use the true analytical
volume of the finite-elements as a correction factor.

The solver casts MOC into a matrix form, solving the resulting matrix using GMRES
[71]. The choice to use a matrix solver was made to sidestep the issue of multiply re-
entrant tracks on partition boundaries. However, one of the significant benefits of
a traditional MOC solution technique is that it doesn’t require a matrix, leading to
less memory usage [69]. By casting the MOC problem into a matrix MOCFE incurs
a prohibitive memory footprint [72] and scalability issues including load imbalance,
difficulty in preconditioning and a substantial increase in degrees of freedom as the
mesh is decomposed [71].

In addition to domain-decomposition, MOCFE also allows for decomposition in angle
and energy. With multiple MPI processes working on the same spatial partitions (with
different energies or angles), MOCFE requires global reductions to compute the scalar

48
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and boundary fluxes. In [71] scalability is shown up to 65,536 MPI processes. However,
that is only for the parallel GMRES solver and does not include global reductions.
Where the entire MOC solver is benchmarked, scaling up to 4 or 16 cores is shown.

The developers of MOCFE also cited large load imbalance issues [71]. This is due to
the domain decomposition placing an equal number of elements on each MPI rank,
but this would not mean an equal number of intersections would be dispersed. Correct
load balance was said to require additional research [71].

Due to "enormous memory and computational effort" [73] for 3D MOC it was ul-
timately abandoned as a separate project [72]. It was folded into Proteus; another
neutron transport package developed at Argonne National Laboratory where it was
used in 2D and 2D-1D schemes.

Within Proteus it has been further developed to allow for calculation on axially ex-
truded geometries [73]. It was used in simulation of the TREAT reactor [73], although
parallelism and scalability are unknown to this author.

4.1.2 MOCUM

MOC on Unstructured Mesh (MOCUM)[17] was developed at Purdue University as a 2D
only MOC solver. It focused heavily on a CSG meshing capability to convert CSG
geometry into triangles. This triangulation capability used a Delaunay triangulation
algorithm which led to non-symmetric meshes that didn’t preserve material volumes.
Parallelism within MOCUM was based solely around OpenMP. Cyclic tracking wasn’t
used; instead, approximations were made for reflective boundary conditions.

4.1.3 Linear Source On Meshes

A research code developed by the Bhabha Atomic Research Centre in Mumbai [74]
utilized a linear source approximation together with unstructured mesh to create a
MOC solver. Similarly to MOCUM a triangulation was used to generate the geometry.
Although they were able to show that using a linear source approximation allowed
for fewer elements, it also led to a representation of the geometry with more approx-
imation error. To better approximate the material volumes, the edges of triangles on
the boundary of materials were turned into curves. It’s unclear how ray-tracing was
handled with curved edges, and no parallel implementation was discussed.
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4.1.4 MoCha-Foam

MoCha-Foam[75] was developed using the OpenFoam open-source, PDE solver frame-
work. The reason for using unstructured mesh and OpenFoam was to allow for sim-
plified multiphysics solutions. The code has several limitations, including not being
parallel, not using cyclic ray-tracing and having very slow ray-tracing. However, it did
include a capability for anisotropic scattering.

4.2 mockingbird

Creating a scalable, unstructured mesh, MOC reactor physics tool capable of arbitrary
geometry, 3D, full-core simulation is to be problematic. This thesis seeks to overcome
many of the obstacles encountered by the codes in the previous section. In particular,
the following issues are addressed, with the relevant sections of this document shown
in parenthesis:

• Lack of volume preserving meshing (§5)

• Non-symmetric meshing (§5)

• Serial track generation (§8.1)

• Lack of track starting point location (§8.1)

• Serial track distribution (§8.1)

• Lack of cyclic tracking (§2.6)

• Approximations for reflective boundary conditions (§8)

• Lack of domain decomposed parallelization (§7)

• Struggling with partition re-entrant ray-tracing (§7)

• Excessive memory usage from a matrix representations (§8)

• Load imbalances (§8.3.3)

• Lack of scalability (8.3)

Each of these issues is treated, in detail in the following chapters. This section provides
an overview of MOCkingbird and serves as a guide for the rest of the document.
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MOCkingbird

MOOSE

libMesh

PETSc

OpenMOC

Figure 4.1. The relationship between MOCkingbird and libraries it uses. The orange libraries
represent the set of libraries a MOOSE-based code would normally use. OpenMOC is
set apart in green to show that it’s added for MOCkingbird.

4.2.1 Libraries Used

MOCkingbird has been developed using several software libraries: MOOSE, libMesh, PET-
Sc, and OpenMOC. Each of these libraries plays an important roll in providing func-
tionality to MOCkingbird. Figure 4.1 shows the relationship of MOCkingbird and the
libraries. What follows is a brief description of the functionality used by MOCkingbird

from each of these codes.
The most-used feature of PETSc within MOCkingbird are parallel vectors for stor-

age of scalar flux, neutron source, and total cross section. These parallel vectors are
managed by libMesh so that they are decomposed across the MPI ranks with the mesh.
Therefore, the storage of these values is scalable (the total memory used stays constant
as the problem is decomposed).
libMesh, which was described in detail in §3.5, plays many roles. As mentioned, it

manages the PETSc parallel vectors to distribute them with the mesh. libMesh also con-
tains the mesh data structure itself and the objects that make up the mesh: elements
and nodes. MOCkingbird can read and write many varied mesh formats due to ca-
pability in libMesh. libMesh also contains support for a wide array of finite-elements
geometric types allowing MOCkingbird to be used with meshes containing 1D, 2D, and
3D elements. While currently MOCkingbird has only been used with line, quadrilateral
and hexahedral elements, only a few lines of code would enable triangles, tetrahedrals,
prisms, and pyramids to be used. These options were not developed due to the lack
of need for this thesis. libMesh provides a uniform interface to elements, allowing the
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ray-tracing code detailed in §7 to be general and re-usable regardless of the type of
elements which exist in the mesh.

Other essential features of libMesh are the utilities for spatial search within a mesh.
As mentioned previously, libMesh provides a quad/octree spatial search capability
for locating the element containing a physical point in space. It also provides routines
for testing whether a point is within a given element or near it. These routines are
critical to solving the scalable, parallel track generation, and distribution problems, as
detailed in §8.1.

Finally, libMesh also provides an expansive C++ interface to MPI. This allows for
simplified parallel semantics within MOCkingbird for sending and receiving C++ ob-
jects and data.
MOOSE is a library for building multiphysics tools and, therefore, is a natural fit

for a code that will ultimately perform multiphysics analysis of reactors. MOOSE also
provides important infrastructure to MOCkingbird including:

• Input file reading: Flexible, human readable input

• Command-line parameter specification: Allows for parameter studies

• Mesh-file splitting: Off-line, parallel mesh decomposition

• Online postprocessing: Error calculations and more

• Auxiliary field calculations: Such as power or pin-power error

• Interface to partitioners: Allows for weighted partitioning

• Load balance metrics and visualization

• Parallel debugging assistance

• GridPartitioner: Perfect partitioning for lattices

• PerfGraph: Code timing

• MultiApp capability: For visualizing pin-power error

• CircularBuffer: Efficient work queue

• DependencyResolver: For directed acyclic graph mesh generation

• SharedPool: Pool for re-usable objects in memory

• StaticallyAllocatedSet: Efficient set container

• RankMap: Determines which MPI processes are on which nodes (and allows visu-
alization of that)
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MOOSE also provides the infrastructure for building and testing codes which use it.
The testing system allows regression tests to be created for MOCkingbird. As develop-
ment progresses, the tests are run to ensure existing functionality is not broken.

The only functionality MOCkingbird relies on from OpenMOC is also one of the most
critical: track generation [12]. OpenMOC contains routines for efficient generation of
cyclic 2D and 3D tracks. The ability to selectively generate 3D tracks based on a unique
ID is critical to efficient track generation and claiming as described in §8.1. In addition,
the track generation in OpenMOC also computes the necessary quadrature weights to use
with the tracks for angular and spatial integration.

4.2.2 Solution Methodology

MOCkingbird uses a conventional MOC formulation. Long characteristic tracks (do-
main boundary to domain boundary) are used in both serial and parallel: providing
the same solver behavior regardless of the number of MPI ranks used. MOCkingbird
uses flat source, isotropic scattering, isotropic fission source, and multigroup cross
section approximations just as many other codes. MOCkingbird does not contain cross
section generation capability; all cross sections must be developed externally. How-
ever, a flexible interface exists to allow reading many different types of cross section
databases.

Some interesting/unique aspects of MOCkingbird are:

• Unstructured mesh for geometry definition and spatial discretization

– Completely general, no geometric assumptions made in the solver

– Capable of working with moving mesh, e.g., from thermal expansion

• Parallel agnostic: same solution behavior in serial and parallel

• Parallel, scalable cyclic track generation, starting point location and track distri-
bution: described as "Track Claiming" in §8.1

• Use of asynchronous sparse data exchange algorithms during problem setup

• Flexible boundary condition specification, including vacuum, and reflective

• Scalable communication routines during problem setup

• Efficient, robust element traversal

• Scalable, domain decomposed ray-tracing

• Smart buffering for messages
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• Scalable memory usage

• Object pool utilization to reduce memory allocation and deallocation

• Weighted partitioning for load balance

• High parallel scalability (tested to over 18k cores)

• Developed using MOOSE for simplified linking to other physics codes

One aspect of MOCkingbird, which is critical to its efficacy, is asynchronous par-
allel ray-tracing which allows the integration of a complete track across the entire
domain decomposed geometry (domain boundary to domain boundary) without any
intermediate global synchronization or iterations. The algorithm that underpins this
capability is the Scalable Massively Asynchronous Ray-tracing (SMART) algorithm
and is explored in detail in Chapter 7.
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(a) 3x3 mesh. (b) Partitioned.

(c) Single track. (d) Source iterations for a block-Jacobi-like algo-
rithm.

Figure 4.2. The mesh is split for 3 MPI ranks, and one track is considered. With a block-Jacobi-
like algorithm, the boundary angular flux would only propagate to the other side
of the domain after 11 source iterations. In MOCkingbird the entire track is traced
in one iteration, without any intermediate global synchronization.

As mentioned in 2.9, many MOC codes employ modular ray tracing (MRT) and
modular spatial domain decomposition (SDD) [3, 5] in parallel. When using a modu-
lar decomposition, tracks are only integrated from one partition boundary to another
within one source iteration, creating a block-Jacobi-like method. As noted in [71], this
idea is untenable for arbitrarily decomposed unstructured mesh which is partitioned
with a mesh partitioner. Figure 4.2 shows why this is the case. With unstructured mesh
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partitioning, there are many jagged/re-entrant corners along partition boundaries. If a
track were to pass through the domain in such a way that it follows a partition bound-
ary, then a block-Jacobi-like tracing of that track would take many source iterations
before boundary information is propagated across the domain [3]. In a large 3D mesh
for a full reactor core with millions of tracks, this situation frequently occurs.

The unstructured MOC solver detailed in [71] attempted to solve this problem by
building a matrix for MOC and adding all of the partition boundary degrees of free-
dom to it. Then a Krylov solver was used to solve the resulting system. This proved
not to be viable, causing massive memory usage [72].

However, with the asynchronous, parallel, multi-hop algorithms developed in Chap-
ters 6, 7 MOCkingbird can efficiently trace the track shown in Figure 4.2c in one source
iteration without any intermediate global synchronization. This provides multiple ad-
vantages:

• Same behavior in parallel and serial

• No storage of partition angular fluxes required (therefore scalable in memory)

• No reduction in convergence rate as observed in [3]

As shown in [5], it is critical for MOC work to be distributed evenly. Therefore,
MOCkingbird utilizes a weighted partitioning scheme developed in §8.3.3. The goal of
weighted partitioning is to reduce communication and balance work by ensuring the
same number of intersections occur within each partition.

Using this asynchronous communication algorithm together with weighted parti-
tioning, MOCkingbird achieves excellent parallel scalability. This is explored in §8.3 for
a set of simplified problems and then revisited for each of the benchmarks presented
in Chapter 9.

4.2.3 Executing MOCkingbird

The first step to using MOCkingbird is discretizing the reactor geometry using unstruc-
tured mesh. As mentioned above, generating volume-preserving, symmetric mesh for
reactor geometries is essential and is covered in Chapter 5. Within the mesh, each ma-
terial region is denoted using a block ID which can be set within a meshing utility or
by using the MeshGenerator system detailed in 5.2.

Next, MOCkingbird requires a set of cross sections. MOCkingbird contains a flexible,
plug-in system for defining new cross section data formats. The current studies use a
simplified JSON [76] format for specifying the needed cross sections for each material
region existing within the mesh. Small python conversion utilities were developed to
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convert the cross sections for both the C5G7 and BEAVRS benchmarks explored in
Chapter 9.
MOCkingbird utilizes the MOOSE input file syntax for specification of all problem

parameters. The possible parameters include: mesh to be read or generated, track
generation parameters, boundary conditions, cross sections, number of energy groups,
number of iterations, convergence tolerances, and output formats. An example of this
input file syntax for a 2D, fully-reflective pin-cell problem can be found in Appendix
11.



5 N U C L E A R R E A C T O R M E S H I N G

While §3.3 provided an overview of the concept of a mesh, this chapter develops
methods for generating meshes of nuclear reactor geometries. This process, termed
"meshing," is critical to the viability of MOCkingbird as a reactor physics tool. The
finite-element world has been working on general meshing capability for over 40 years
[77], but has never been popular in the nuclear reactor physics world due to the lack
of symmetry and conservation of volume or surface area. Today, there are several
meshing tools to choose from, including both free [78] and commercial [79] packages.
Many commercial finite-element tools also contain meshing capabilities [80, 81, 82].
libMesh (and therefore MOCkingbird) can read many mesh formats while also contain-
ing interfaces for creation and modification of meshes which are useful for reactor
physics.

Reactor meshing, especially for light-water reactor (LWR) geometries, generally in-
volves a few major pieces: the 2D pin-cells (Figure 5.1), assemblies, reflector region,
and the pressure vessel. Each of these pieces of the reactor requires care in how it
is meshed. There are three main features of nuclear reactor meshes which must be
carefully considered:

• Volume/mass preservation

• Symmetry

• Mesh density/fineness

Volume preservation is critical for accurate eigenvalue solution. Symmetry is impor-
tant both for obtaining accurate solutions in inherently symmetrical problems and al-
lowing for reduced computational effort. Mesh density, within areas of rapidly chang-
ing source (such as in the moderator), plays a role in MOC solution fidelity.

This chapter describes the hybrid approach that has been utilized to mesh LWR
geometries for MOCkingbird. Firstly, Cubit [79] is used to create symmetric, volume-
preserving pin-cell meshes. These are then used within a graph-based mesh genera-
tion capability called the MeshGenerator system, which was added to MOOSE. Through
this system, the pin-cells can be manipulated, combined, extruded, and added to, in
order to get the final meshes needed for calculation.

This chapter proceeds by first describing the pin-cell generation process. Next, the
MeshGenerator system is described, detailing how the process of making an LWR
mesh can be cast into a directed acyclic graph (DAG) for flexible, memory-efficient
mesh generation.
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Fuel Gap Clad Moderator
Figure 5.1. Example LWR pin-cell.

Figure 5.2. The constructive solid geometry process. [83]

5.1 cubit pin-cells

The pin-cell is the traditional starting point of any LWR mesh. As shown in Figure 5.1,
it is a two-dimensional construct containing rings for fuel, gap, cladding, burnable
poisons, and moderator surrounding those. Generating high-quality pin-cell meshes
is critical to both accuracy and efficiency.

Volume preservation is desirable for an accurate solution. If the volume of fuel
is incorrect, then obtaining the correct eigenvalue is difficult. LWR nuclear fuel is
cylindrical: presenting a unique challenge to mesh with straight-sided finite-elements
such as quadrilaterals, triangles, hexahedrals, tetrahedrals. Meshing tools, such as Cu-

bit, generally rely on constructive solid geometry (CSG) to describe the geometry.
As shown in Figure 5.2, CSG geometries are built through union, intersection, and
subtraction operations on primitives. For simplified LWR geometries this often means
the geometry can be perfectly represented by CSG. However, when the geometry is
meshed, volume can be "lost"/"gained" in the process. As mentioned in Chapter 4.1,
some unstructured mesh MOC projects have attempted to ameliorate this issue in
various ways, including corrections based on the true volume, [84] and using curved
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(a) CSG for a C5G7 pin-cell.
Fuel area: 0.91609 cm2

(b) Simplest mesh, Fuel area:
0.91192 cm2

Figure 5.3. Constructive solid geometry and simple meshing of a C5G7 pin-cell.

edges on elements [74], while others didn’t have a solution [17]. Within this section, a
scheme is developed to directly create volume-preserving, for a broad class of, pin-cell
meshes.

Reactor geometries typically have a high degree of symmetry. While real-world
reactors may have non-symmetric features, such as non-symmetric coolant flow and
imperfections in assembly position, reactor models are often perfectly symmetric. This
symmetry should be reflected in the mesh. Without mesh symmetry, the solution
obtained cannot be perfectly symmetric. In addition, symmetry can be capitalized
on to reduce the computational domain to just a symmetric portion, greatly reducing
the computational effort needed to obtain a solution.

Figure 5.3a shows a 2D, fuel/moderator pin-cell from the C5G7 [85] benchmark as
developed within Cubit. The circle, square and their intersection are perfectly repre-
sented in CSG with the fuel having an area of 0.916088 cm2. Utilizing the simplest
meshing technique in Cubit generates the quadrilateral mesh in Figure 5.3b. While
this mesh might look reasonable, it has several undesirable qualities:

1. Volume (area) is not preserved. The fuel area is 0.91192 cm2representing a loss of
0.45%.

2. Little to no control over the amount of mesh in the moderator.

3. The mesh is not symmetric, ruling out symmetric solutions.

4. Boundary nodes are not at regular or symmetric intervals, making it impossible
to create an assembly mesh by tiling these pin-cells.

5. The mesh is not easily split along any axis, making it difficult to construct
half/quarter pin-cells.
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Figure 5.4. Meshing by quarters gives much better control and symmetry. Generated by Listing
5.1.

Creating a better mesh involves taking more control over the Cubit meshing pro-
cess. In particular, solving 5 will allow for simpler fixes to 3. Figure 5.4 shows a large
improvement utilizing quarter pin-cells. This guarantees symmetry but also provides
many surfaces for controlling the mesh generation. In Cubit, any surface allows for set-
ting the number of "intervals" along that surface. Intervals are the number of equally
spaced mesh segments which are along that surface. Interval control is critical to con-
trolling mesh density both within the fuel and in the moderator. Also, controlling
intervals on the exterior of the pin-cell, together with symmetry, allows pin-cells to be
"tiled" thus facilitating the creation of assembly meshes.

Even though using quarter pin-cells solves several of the issues with the previous
mesh, it still fails to address 1. The "volume" (surface area) of the fuel in this mesh is
.913475 cm2, which represents an error of 0.285%.

One idea, similar to the arbitrary polynomial fuel discretization scheme in NEWT
[86], is to mesh the fuel pin as a regular, n-sided polygon. In this manner, the node
positions can be corrected using the exact formula for the area of the cell, which is,

A =
1
2

nR2sin
2π

n
, (5.1)
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Listing 5.1. Cubit script which generates the mesh in Figure 5.4.

reset

create surface rectangle width 1.26 height 1.26 zplane
create surface circle radius .54 zplane
subtract volume 2 from volume 1 keep
delete Body 1

merge all

webcut body all plane xplane
webcut body all yplane

delete surface 8 10 14 12 13 15

compress all

color surface 1 yellow
color Surface 2 lightskyblue
graphics linewidth 3

mesh surface all

Volume all copy rotate 90 about z
Volume all copy rotate 180 about z

merge all
compress all �
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Figure 5.5. By utilizing (5.2) the exact fuel area can be meshed. Generated by Listing 5.2.

where n is the number of sides, and R is the distance from the center of the regular
polygon to one of its vertices. For the purposes of meshing the fuel pin while preserv-
ing area, this formula can be reorganized to solve for the radial distance of the vertices:

R =

√
2A

nsin2π
n

. (5.2)

Knowing the actual area (A) and the number of sides of the mesh surface (settable
within Cubit as an interval), R is obtained.

Figure 5.5 shows a mesh with the correct area for the fuel pin: 0.916088cm2. The
Python script found in Listing 5.2 was used to generate this mesh. It is similar to
Listing 5.1 with a few added pieces (besides the cubit.cmd() wrapping everything).
The most notable addition is the discretizedRadius() function at the top. It takes
in the real radius of the fuel pin and the number of regular sides of the polygon
that swill represent the fuel. It returns the radial distance at which all of the nodes
should be placed so that when the circle is meshed, the meshed volume is exactly the
correct volume of the fuel. Further, the number of regular mesh intervals around the
perimeter of the quarter circle is set to ensure that a regular polygon is produced with
the correct number of sides.
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Listing 5.2. Cubit script which generates the mesh in Figure 5.5.

#!python
import math

def discretizedRadius(real_radius, num_sides):
area = math.pi * real_radius * real_radius
return math.sqrt( (2.0*area) / ( float(num_sides) * math.sin( (2.0*math.pi) /

float(num_sides) ) ) )

total_num_sides = 48

cubit.cmd( ’ reset ’)

cubit.cmd( ’ create surface rectangle width 1.26 height 1.26 zplane ’)
cubit.cmd( ’ create surface circle radius ’ + str(discretizedRadius(0.54,

total_num_sides)) + ’ zplane ’)
cubit.cmd( ’ subtract volume 2 from volume 1 keep ’)
cubit.cmd( ’ delete Body 1 ’)

cubit.cmd( ’merge al l ’)

cubit.cmd( ’webcut body al l plane xplane ’)
cubit.cmd( ’webcut body al l yplane ’)

cubit.cmd( ’ delete surface 8 10 14 12 13 15 ’)

cubit.cmd( ’compress al l ’)
cubit.cmd( ’merge al l ’)

cubit.cmd( ’# Radial " rings" in fuel ’)
cubit.cmd( ’curve 3 5 interval 7 ’)

cubit.cmd( ’# Number of intervals along pin−cel l boundary ’)
cubit.cmd( ’curve 4 interval ’ + str(total_num_sides/4))

cubit.cmd( ’mesh surface al l ’)

cubit.cmd( ’Volume al l copy rotate 90 about z ’)
cubit.cmd( ’Volume al l copy rotate 180 about z ’)

cubit.cmd( ’merge al l ’)
cubit.cmd( ’compress al l ’)

cubit.cmd( ’ color surface 7 1 3 5 yellow ’)
cubit.cmd( ’ color Surface 8 2 4 6 lightskyblue ’)
cubit.cmd( ’graphics linewidth 3 ’) �



5.1 cubit pin-cells 65

(a) Quarter pin-cell with moder-
ator zones identified.

(b) Final mesh using moderator
zoning.

Figure 5.6. Meshing using moderator zoning.

Another improvement that can be made is to clean up the moderator mesh. In 5.5,
the moderator mesh is simply using a "pave" meshing scheme within Cubit. Pave
leads to a loss of symmetry, and worse, a loss in control of the element size. The mesh
density in the moderator impacts solution fidelity through better or worse representa-
tion of the scattering source with flat-source regions. To control the moderator mesh,
three zones are identified within the moderator quarter geometry, each having four
bounding curves. These three zones can be seen in Figure 5.6a. It should be noted that
in Figure 5.6a, there are a total of eight "azimuthal" intervals around the fuel. These
eight intervals are then mirrored on the outside (right and top) of the quarter pin-
cell. By distinguishing these three zones with four sides each and matching intervals
on each side, the meshing can be applied through a straightforward "submap" scheme
within Cubit. This provides a better mechanism to control mesh density in this region.

Of particular importance in Figure 5.6a is the "pink" zone which looks like a "box"
or "square" in the upper right corner. This zone must connect from the outer part of
the cladding to the outer surface of the pin-cell. As previously noted, the number of
intervals on the outer surface of the pin-cell is set by the number of azimuthal sectors
chosen. In Figure 5.6, the number of sectors is chosen to be 32 (so 8 in the quarter
pin-cell). Therefore there are 8 equally spaced mesh intervals on the outside of the
quarter pin-cell. Creating the pink "box" is accomplished by drawing lines from the
middle of the outer surface of the cladding to the nearest nodes on the outer surface
of the pin-cell. In Listing 5.3, the nearest nodes on the outside of the pin-cell have
been found manually. However, this could be accomplished with a simple loop over
the intervals on the outside of the pin-cell. This is the process used the Cubit scripts
created for the BEAVRS mesh discussed in §9.4.

The corner zone is as square as possible. The number of outer pin-cell intervals
contained within the pink box then sets the number of radial intervals in the modera-
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(a) Utilizing 64 azimuthal intervals for a
finer mesh.

(b) Biasing the mesh toward the outside of
the pin-cell.

Figure 5.7. Mesh modifications are straightforward using the zoned moderator algorithm.

tor. This scheme allows for adjusting to fuel/burnable poisons/guide tubes which are
closer or further away from the edge of the pin-cell.

The completed pin-cell can be seen in Figure 5.6b. The mesh is symmetric in each
cardinal direction and contains uniform mesh sizing/spacing. The Cubit script which
generates the mesh in Figure 5.6b can be found in Listing 5.3.

Also, using this scheme, it is straightforward to vary the mesh density. As seen in
Figure 5.7a, by changing the number of azimuthal intervals, everything else changes
smoothly. Also, as shown in Figure 5.7b, interval biasing, and extra intervals in the fuel
can provide rings toward the outside of the fuel, which would be useful for capturing
burnup/depletion effects.

Listing 5.3. Cubit script which generates the mesh in Figure 5.5.

#!python

c u b i t . cmd( ’ r e s e t ’ )

import math

def d i sc r e t izedRad ius ( rea l_rad ius , num_sides ) :
area = math . pi * r e a l _ r a d i u s * r e a l _ r a d i u s
return math . s q r t ( ( ( 2 . 0 * area ) / f l o a t ( num_sides ) ) * ( 1 . 0 / math . s in ( ( 2 . 0 * math . pi ) / f l o a t ( num_sides ) ) ) )

to ta l_number_of_azimuthal_sectors = 32

q u a r t e r _ s e c t o r s = tota l_number_of_azimuthal_sectors / 4

q u a r t e r _ s e c t o r s _ i n _ b o x = i n t ( q u a r t e r _ s e c t o r s / 2 . 4 5 )
qu ar t e r_ sec tor s_o uts ide _bo x = q u a r t e r _ s e c t o r s − q u a r t e r _ s e c t o r s _ i n _ b o x

outer_c lad_radius = disc re t izedRa dius ( 0 . 5 4 , to ta l_number_of_azimuthal_sectors )

c u b i t . cmd( ’ c r e a t e s u r f a c e c i r c l e radius ’ + s t r ( outer_c lad_radius ) + ’ zplane ’ )

# Compute the outermost node on the cladding location

outermost_xy = outer_c lad_radius / math . s q r t ( 2 . )

# The limits of the pin_cell
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h a l f _ p i t c h = 1 . 2 6 / 2 .

c u b i t . cmd( ’ webcut body a l l xplane ’ )
c u b i t . cmd( ’ webcut body a l l yplane ’ )

c u b i t . cmd( ’ d e l e t e s u r f a c e 4 6 7 ’ )

c u b i t . cmd( ’ merge a l l ’ )
c u b i t . cmd( ’ compress ’ )

# Create vertices on outside of cladding for moderator

c u b i t . cmd( ’ c r e a t e ver tex ’ + s t r ( outermost_xy ) + ’ ’ + s t r ( outermost_xy ) + ’ 0 on curve 2 ’ )
c u b i t . cmd( ’ imprint body 1 with ver tex 4 ’ )

c u b i t . cmd( ’ merge a l l ’ )
c u b i t . cmd( ’ compress ’ )

o n e _ i n t e r v a l = h a l f _ p i t c h / q u a r t e r _ s e c t o r s

# Put down vertices for outer part of pin-cell

c u b i t . cmd( ’ c r e a t e ver tex ’ + s t r ( h a l f _ p i t c h ) + ’ ’ + s t r ( 0 . ) + ’ 0 ’ )
c u b i t . cmd( ’ c r e a t e ver tex ’ + s t r ( h a l f _ p i t c h ) + ’ ’ + s t r ( qu ar t e r_ sec tor s_o uts ide _bo x * o n e _ i n t e r v a l ) + ’ 0 ’ )
c u b i t . cmd( ’ c r e a t e ver tex ’ + s t r ( h a l f _ p i t c h ) + ’ ’ + s t r ( h a l f _ p i t c h ) + ’ 0 ’ )
c u b i t . cmd( ’ c r e a t e ver tex ’ + s t r ( qu ar t e r_ sec tor s_o uts ide _bo x * o n e _ i n t e r v a l ) + ’ ’ + s t r ( h a l f _ p i t c h ) + ’ 0 ’ )
c u b i t . cmd( ’ c r e a t e ver tex ’ + s t r ( 0 . ) + ’ ’ + s t r ( h a l f _ p i t c h ) + ’ 0 ’ )

c u b i t . cmd( ’ merge a l l ’ )
c u b i t . cmd( ’ compress ’ )

# Create all of the bounding curves

c u b i t . cmd( ’ c r e a t e curve ver tex 2 5 ’ )
c u b i t . cmd( ’ c r e a t e curve ver tex 5 6 ’ )
c u b i t . cmd( ’ c r e a t e curve ver tex 6 4 ’ )

c u b i t . cmd( ’ merge a l l ’ )
c u b i t . cmd( ’ compress ’ )

c u b i t . cmd( ’ c r e a t e curve ver tex 6 7 ’ )
c u b i t . cmd( ’ c r e a t e curve ver tex 7 8 ’ )
c u b i t . cmd( ’ c r e a t e curve ver tex 8 4 ’ )

c u b i t . cmd( ’ merge a l l ’ )
c u b i t . cmd( ’ compress ’ )

c u b i t . cmd( ’ c r e a t e curve ver tex 8 9 ’ )
c u b i t . cmd( ’ c r e a t e curve ver tex 9 1 ’ )

c u b i t . cmd( ’ merge a l l ’ )
c u b i t . cmd( ’ compress ’ )

# Create the moderator surfaces

c u b i t . cmd( ’ c r e a t e s u r f a c e curve 3 5 6 7 ’ )
c u b i t . cmd( ’ c r e a t e s u r f a c e curve 7 8 9 10 ’ )
c u b i t . cmd( ’ c r e a t e s u r f a c e curve 4 10 11 12 ’ )

c u b i t . cmd( ’ merge a l l ’ )
c u b i t . cmd( ’ compress ’ )

# Set Intervals for meshing

c u b i t . cmd( ’ curve 7 10 8 9 i n t e r v a l ’ + s t r ( q u a r t e r _ s e c t o r s _ i n _ b o x ) )
c u b i t . cmd( ’ curve 3 6 4 11 i n t e r v a l ’ + s t r ( qu ar t e r_ sec tor s_o uts ide _bo x ) )

# Pellet interior

c u b i t . cmd( ’ curve 1 2 i n t e r v a l ’ + s t r ( ( q u a r t e r _ s e c t o r s /2) +2) )

# Mesh

c u b i t . cmd( ’ s u r f a c e 4 2 3 scheme SubMap ’ )
c u b i t . cmd( ’mesh s u r f a c e 1 2 4 3 ’ )

#Create the rest of the pin-cell

#cubit.cmd(’Volume all copy rotate 90 about z’)

#cubit.cmd(’Volume all copy rotate 180 about z’)

c u b i t . cmd( ’ merge a l l ’ )
c u b i t . cmd( ’ compress ’ )
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c u b i t . cmd( ’ c o l o r s u r f a c e 13 1 5 9 yellow ’ )
c u b i t . cmd( ’ c o l o r Surface 15 16 2 3 4 6 7 8 10 11 12 14 l i g h t s k y b l u e ’ )
c u b i t . cmd( ’ graphics l inewidth 3 ’ ) �

(a) Fuel pin-cell. (b) Burnable poison.

Figure 5.8. Meshed pin-cells from the BEAVRS benchmark [87].

This scheme is extendable to pin-cells containing multiple concentric rings such as
the fuel, gap, and clad represented in Figure 5.8a. The annular sections surrounding
the interior circle are given the same number of azimuthal intervals. Even complicated
structures, such as the burnable poison in Figure 5.8b, can be meshed. In addition, the
pin-cells in Figure 5.8 display how simplified spacer grids can be added to the outside
of the pin-cell.

While all of the meshing shown here is accomplished using Cubit, the algorithm
is straightforward enough to code up analytically. That is, the nodes and elements
can be laid down in a deterministic way that does not need the unstructured mesh
capability within Cubit and instead can be directly programmed.

5.2 graph-based mesh generation

The preceding section developed a strategy for generating a single volume-preserving
fuel pin-cell. However, reactors are built of combinations of more complicated struc-
tures including guide tubes, instrument tubes, burnable poisons, baffles, spacer grids,
and other structural pieces. For light water reactors (LWRs), there are many repeating
pieces of geometry. Using an unstructured meshing tool such as Cubit for these repet-
itive meshing tasks is both cumbersome and slow [88]. Instead, what is needed is an
efficient way to take the individual repeating pieces (such as pin-cells) and place them
together to form 2D/3D assemblies or cores. This section describes a new capability
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which was added to MOOSE to do graph-based mesh generation for generating reactor
meshes: the MeshGenerator system.

It’s important to recognize that the greater reactor simulation community has long
recognized and capitalized on this repetition of geometry. Many CSG-based reactor
simulation tools [2, 11, 89] utilize nested geometry where pin-cells, assemblies, etc. are
uniquely described and then placed into arrangements to complete the core. However,
the unstructured mesh reactor simulation community has not commonly made this
same connection. This is due to the added constraints of conforming unstructured
mesh: element sides must meet perfectly with their neighbors and nodes are shared
between neighbors. Therefore, it is not as simple to refer to a geometric pattern within
a nested hierarchy. Instead, the elements and nodes must actually be created and
linked (stitched) to create the complete mesh.

The MeshKit [90] project was able to make this connection. MeshKit allows for a
reactor mesh generation process to be described as a directed acyclic graph (DAG)
of steps to be taken to generate a mesh. Repeated cells of the reactor can be read
in, repeated, and stitched to create reactor cores. However, this process happened as
a pre-processing step to running the calculation, ruling out the ability to generate a
mesh in memory and then utilize it in a calculation. By developing a similar capability
within MOOSE, the mesh generation and modification capabilities can be run, in parallel,
during the execution of MOCkingbird.

Meshing a three-dimensional LWR core typically follows these steps:

1. Generate 2D pin-cells for fuel, burnable poisons, guide tubes, etc.

2. Combine pin-cells into 2D assemblies

3. Combine the assemblies into a 2D core

4. Add baffle and water mesh

5. Extrude the two-dimensional reactor mesh capturing material changes for each
unique elevation

A new capability within MOOSE called the MeshGenerator system is a way to specify
this "flow" of mesh from 2D pin-cell→ 2D assembly→ 2D core→ 3D core in a natural
way that is also memory and time-efficient. This flow can be visualized as a directed-
acyclic-graph (DAG), as shown in Figure 5.9. The MeshGenerator system is composed
of objects (in the object-oriented programming sense), where each object represents
a discrete action to be taken for building a mesh. These objects populate the mesh
generation graph.

As examples, MeshGenerator objects include (but are not limited to):

• FileMeshGenerator: Read a mesh from a file



5.2 graph-based mesh generation 70

Pin-Cells

Assemblies

Core

(a) Pictorial representation. (b) Graph representation with MeshGenerator object names.

Figure 5.9. Representations of the mesh generation process for LWR reactors.

• TransformGenerator: Rotate and translate meshes

• StitchedMeshGenerator: Take two meshes as input and make them one by stitch-
ing together their common nodes

• PatternedMeshGenerator: Take as input multiple meshes and create a tiling of
them from a specified pattern

• SubdomainIDGenerator: Set the "Block ID" of the elements in the mesh (used to
assign material properties)

• StackedMeshGenerator: Take 3D meshes as input and stack them and stitch them
together.

In Figure 5.9b, the pictorial representation of building a core from pin-cells and
assemblies has been translated into a DAG. Nodes of the DAG are labeled with a
unique name and the name of the MeshGenerator. Some of the MeshGenerator objects
such as FileMeshGenerator don’t require any input, but produce a mesh as output
while others both take input and produce output meshes.

It is important to distinguish this graph of processes and the hierarchy of geometry
within a typical, CSG-based reactor physics code. Here, the relationship is not neces-
sarily geometric. Each of the nodes of the DAG represents a discrete step in the mesh
generation process. Those steps might modify the geometry (stretch, skew, extrude,
change properties, delete elements, and add boundary IDs) or combine and repeat it.
The input and output of each node of the graph is an unstructured mesh with all ele-
ments and nodes represented. In contrast, a CSG-based geometric hierarchy describes
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the relationship between discrete pieces of geometry. The geometry is not modified; it
is combined by nesting the original instances of the individual pieces.

Once the MeshGenerator objects and DAG are created, the next step is to execute all
of the objects in the correct order. To achieve this, the DAG is first topologically sorted.
A topological sort [91] creates a linear ordering from a DAG such that visiting the
nodes in that ordering always satisfies the dependencies of each node before visiting
it. Note that, in general, a topological sorting is not unique: nodes which don’t have
either a direct or implied dependency can be listed in any order. As an example, a
valid topological sorting of the graph represented in Figure 5.9b would be:

1. Pin Cell 1

2. Pin Cell 2

3. Pin Cell 3

4. Assembly 1

5. Assembly 2

6. Core

A sorting that would be equally valid would be to transpose Pin Cell 1 and Pin Cell

3 for instance, or to swap the two Assembly nodes.
To create the DAG of MeshGenerator objects, a new set of custom input file syn-

tax was added to MOOSE. The input file syntax allows for the creation of each Mesh-

Generator (a node in the graph) and its dependencies (the inputs it needs - the edges
in the graph). An example of this syntax to build a mesh like the one in Figure 5.9 is
shown in Listing 5.4. From this syntax, MOOSE can build the requisite objects, topologi-
cally sort them and execute each one to create the final mesh.

5.2.1 Three-dimensional Reactor Meshing

The MeshGenerator system can be readily utilized to generate 3D meshes for re-
actors consisting of extruded geometry. A 2D fuel assembly can be created using
PatternedMeshGenerator and then extruded to 3D using MeshExtruderGenerator. The
MeshExtruderGenerator takes a 2D mesh as input along with the extrusion directional
vector and the number of layers to create. An example of this can be seen in Figure
5.10. In Figure 5.10, a 2D assembly mesh has been extruded into 3D with 5 total layers.

While the MeshExtruderGenerator can generate 3D geometries from 2D meshes,
real reactor geometries are not so simple. A real reactor assembly, such as the one
shown in Figure 5.11, contains many heterogeneities in the axial direction such as
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...
[MeshGenerators]
[pin_cell_1]
type = FileMeshGenerator
file = moderator.e

[]
[pin_cell_2]
type = FileMeshGenerator
file = fuel.e

[]
[pin_cell_3]
type = FileMeshGenerator
file = burnable_poison.e

[]

[assembly_1]
type = PatternedMeshGenerator
inputs = ’pin_cell_1 pin_cell_2 pin_cell_3’
pattern = ’0 0 0 0 0;

0 1 0 1 0;
0 0 2 0 0;
0 1 0 1 0;
0 0 0 0 0’

[]
[assembly_2]
type = PatternedMeshGenerator
inputs = ’pin_cell_1 pin_cell_2 pin_cell_3’
pattern = ’0 0 0 0 0;

0 2 0 2 0;
0 0 2 0 0;
0 1 0 1 0;
0 0 0 0 0’

[]

[core]
type = PatternedMeshGenerator
inputs = ’assembly_1 assembly_2’
pattern = ’1 0;

0 1’
[]

[]
... �

Listing 5.4. Example input file syntax for a mesh similar to that found in Figure 5.9
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(a) 2D assembly (b) 3D extrusion

Figure 5.10. 3D assemblies can be generated by extruding 2D assemblies.

Figure 5.11. Components of a nuclear fuel assembly. From [92]
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(a) Fuel pin-cell without spacer grid (b) Fuel pin-cell with spacer grid

Figure 5.12. The same mesh for a fuel pin-cell with different material assignments on the outer
edge to represent either moderator or spacer grid.

spacer grids that separate extruded sections. Each of the homogeneous axial sections
is referred to as an "elevation." Additionally, the top and bottom of each assembly
differ significantly from the pin structure.

This heterogeneity adds significant complexity. The mesh must be conforming (all
neighboring element’s nodes must meet each other); therefore, from one elevation to
the next, the mesh must match on the interface between the elevations. Within an ele-
vation, it is possible to have fully-unstructured mesh fill the volume, but that presents
all the difficulties and drawbacks already mentioned (plus adding significantly to the
degree of difficulty in 3D mesh generation). Therefore, keeping the mesh as an ex-
trusion bottom to top is key to efficient meshing. It ensures that every level matches
perfectly on the interface.

What is needed is to use the same mesh "template" in the radial direction for ev-
ery elevation. Each elevation can assign different material properties to portions of
that template and then extrude it to create the heterogeneity needed. Each extrusion
can then be stacked atop one another to build the full 3D assembly. One added com-
plication is that any radial feature to be tracked must be "in the mesh" from top to
bottom.

The simplest example of axial heterogeneity is the addition of spacer grids. As
seen in Figure 5.11, spacer grids are metal (typically zircaloy) grids that hold the
fuel rods in place. Spacer grids are distributed axially with wide spacing between
them. Representing the spacer grids is important for accurate full-core simulation.
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[ MeshGenerators ]
[ pin−c e l l ]

type = FileMeshGenerator
f i l e = f u e l _31 enr _ 6 . e

[ ]
[ pin−c e l l−grid ]

type = FileMeshGenerator
f i l e = f u e l _31 enr _6_ grid . e

[ ]
[ assembly ]

type = PatternedMeshGenerator
inputs = ’ pin−c e l l ’
pa t te rn = ’0 0 ;

0 0 ’
[ ]
[ assembly−grid ]

type = PatternedMeshGenerator
inputs = ’ pin−c e l l−grid ’
pa t te rn = ’0 0 ;

0 0 ’
[ ]
[ extrude ]

type = MeshExtruderGenerator
num_ l a y e r s = 5

ex t rus ion _ vec tor = ’0 0 2 ’
input = assembly

[ ]
[ extrude−grid ]

type = MeshExtruderGenerator
num_ l a y e r s = 5

ex t rus ion _ vec tor = ’0 0 2 ’
input = assembly−grid

[ ]
[ s tack ]

type = StackGenerator
dim = 3

inputs = ’ extrude extrude−grid extrude ’
[ ]

[ ] �
Figure 5.13. Input file syntax and resulting 3D assembly with spacer grids using the pin-cells

in Figure 5.12. The zircaloy elements have been highlighted.

The zircaloy absorbs some neutrons, but it also reduces the amount of moderator in
those sections of the reactor, leading to a dip in local thermal flux.

One possible way of modeling the spacer grids used in the BEAVRS benchmark
[87] (discussed in more detail in §9.4) is to add a thin zircaloy layer to the outside of
pin-cells that maintains the total mass and volume of the grid within the elevations
containing spacer grids. For simplified meshing, this requires that a thin layer of mesh
run from the top of the mesh to the bottom that surrounds every pin cell. As shown
in Figure 5.12, the very same mesh is used for all axial elevations of the fuel pins. To
produce the desired effect of only having the spacer grid during certain elevations,
the material in the spacer grid mesh is changed between being moderator or zircaloy
depending on the elevation.

An example of using this strategy can be found in Figure 5.13. The input file syntax
showing the MeshGenerator objects used is on the left with the resulting mesh on
the right. Two pin-cells are read from files; they are then be used to build 2x2 2D
assemblies, one with and one without zircaloy around the outside of the pin-cells.
Next, each assembly is extruded to create the 3D elevations. Finally, the 3D elevations
are "stacked" to create the full 3D assembly. Note the flexibility of the MeshGenerator
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system to mix, match, extrude, and stack meshes. An analogous procedure is utilized
to generate the 3D core in §9.5.

5.2.2 Meshing Conclusion

Meshing is a critical piece for performing MOC on unstructured mesh. It’s needed
to define the geometry and impacts solution fidelity. A meshing scheme was devel-
oped for creating pin-cells that can be tiled. These pin-cells are made of quadrilateral
elements, are symmetric and preserve volume. Also, it is possible to adjust the mesh
density within each zone of the pin-cell and even bias the mesh within the fuel. An
explanation was given for how the MeshGenerator system can be utilized to efficiently
generate 3D heterogeneous geometry critical to modeling real-world reactors. A DAG
of MeshGenerator objects can be used to read in, pattern, extrude, and stack meshes
to achieve the desired geometrical and mesh density needs.



6 S PA R S E , S C A L A B L E , A S Y N C H R O N O U S C O M M U N I C AT I O N
A L G O R I T H M S F O R P R O B L E M S E T U P

MOCkingbird requires several different methods for communication of data. Most-
obvious is the parallel communication of angular flux values during the transport
sweep, which is explored in detail within §7. Another sparse parallel algorithm is
required within the "setup phase," the period when the solver is started in parallel.
"Sparse" here means that each process communicates with only a few other processes,
generally just with "neighboring" processes (processes which own adjoining portions
of the domain-decomposed geometry). While problem startup time may not seem sig-
nificant when power iteration time should dwarf it, full 3D reactor simulations can
stress the startup algorithms.

In this chapter, several sparse, communication algorithms are tested for viability
within MOCkingbird. They are tested for scalability and robustness. Ultimately, one
is selected, and a novel interface is developed, enabling its use throughout libMesh,
MOOSE, and MOCkingbird. An example usage is the "track-claiming" algorithm in §8.1.

6.1 sparse data exchange algorithms

The geometric representation and accuracy needed in reactor physics requires a mas-
sive amount of computational capability. Therefore, parallelization is essential for any
neutron transport tool. As mentioned in §3.1, modern clusters are typically built utiliz-
ing many compute nodes connected using high-speed network infrastructure such as
Infiniband [30] or Intel OPA [93]. To make use of such a machine, a program must run
simultaneously on the nodes, with each instance of the program communicating with
the others across the network using MPI. These MPI processes need to coordinate and
collaborate to solve the problem at hand.

MPI contains two main types of communication: "point-to-point" and "collective."
Point-to-point operations have single-senders and single-receivers. As an example,
MPI rank 5 might send an array of data to MPI rank 8. Collective operations, on
the other hand, require all MPI processes to contribute. An example collective opera-
tion is global summation (which, in MPI, is a "reduction"): all ranks contribute to part
of the final value.

This goal of this section is to achieve scalable point-to-point communication with
only a few (thus, "sparse"), neighboring, processes. Traditional algorithms for sparse
communication make use of a collective operation for coordination. However, new
algorithms have been introduced which remove this step [94]. The following section

77
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Single-Hop

Rank-3 Rank-8

Multi-Hop

Rank-3 Rank-8 Rank-13 Rank-2

Figure 6.1. One-sided, single-hop vs. multi-hop messaging. Single-hop algorithms must glob-
ally sync between each communication. Multi-hop allows a message to move
through multiple MPI ranks without global synchronization.

tests traditional sparse exchange algorithms against more modern variants and intro-
duces two new sparse exchange algorithms.

6.1.1 Scalable Sparse Data Exchange

A key algorithm within MOCkingbird is when each MPI process sends data to a few
neighboring processes, sometimes with the need for a return message. This type of
"sparse" communication can be delineated into a few categories depending on the
need for a return message (one-sided vs. two-sided) and whether or not the message
travels between two ranks (one-hop) or multiple (multi-hop):

1. One-sided, one-hop

2. Two-sided, one-hop

3. One-sided, multi-hop.

Figure 6.1 shows the differences between a single-hop algorithm and a multi-hop
algorithm. Both of the algorithms depicted in Figure 6.1 are one-sided (there is no
return message), but in the case of the multi-hop algorithm, the message is passed to
multiple other MPI processes. Note: this is not just for "routing" of the message (such
as in [95]), a multi-hop algorithm is needed when each of the receivers needs to receive
that message, do some work with it, then pass it on. While it is possible to achieve
the same effect with multiple rounds of a single-hop algorithm (communicate, stop,
communicate again, repeat), a multi-hop algorithm allows messages to move through
as many ranks as necessary without stopping for synchronization.

As is discussed in §8.1, MOCkingbird employs single-hop algorithms during the
setup phase of the calculation to communicate track starting information. However,
the core of track integration engine for MOC is entirely multi-hop (3). This section
explores options for one- and two-sided single-hop communication; leaving the multi-
hop communication algorithm for Chapter 7 to detail domain-decomposed ray-tracing.
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Single-hop, sparse data exchange can be implemented in multiple ways using MPI.
In [96], Hoefler et al. outlined four methods for sparse data exchange:

1. PEX: Personalized Exchange

2. PCX: Personalized Census

3. RSX: Remote Summation

4. NBX: Nonblocking Consensus

Algorithm 3: One possibility for implementation of the Personalized Exchange
(PEX) algorithm from [96].

1 Fill number of MPI process length vector with zeros
2 Insert 1 into each position where this process will send
3 Call MPI_Alltoall
4 Inspect resultant vector to see who will send to this process
5 Begin MPI_Isend

6 Begin MPI_Receive

7 Wait for sends and receives to complete

Of these algorithms, PEX and NBX represent the "classic" and the "new" way, re-
spectively, for single-hop data exchange and are worth benchmarking for use within
MOCkingbird. As shown in Algorithm 3, PEX is straightforward to implement using an
MPI_Alltoall to notify all receivers of whom will be sending to them (and optionally
how much data or how many messages). First, a vector is created by each MPI process
that is the number of MPI processes in length. Next, each sender places a number into
the "rank" position of each receiver it will send to. That number can either, simply,
be "1" (stating an intention to send to that rank) or can represent the amount of data
or number of messages to be sent. That vector is then "transposed" across the MPI
processes using MPI_Alltoall, as shown in Figure 6.2. In this way, each MPI process
receives a vector that is the length of the total number of MPI processes long, with
each spot in the vector containing the intention of that rank to send (or not send) to
this MPI process. That is, each process receives a "personalized" vector containing who
will send to them (and possibly how much data).

However, although the PEX algorithm always begins with an MPI_Alltoall, to no-
tify receivers of the intention of the senders, there are several options for implementing
the actual communication. While [96] only specifies one option (posting nonblocking
sends/receives), several variations are viable and should be explored. These vary from
utilizing blocking sends and/or receives to whether or not to specify the rank to MPI_-

Receive from. Here are just some of the options:
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Before Alltoall

Rank-0

snd_rcv_array: 
{0,1,0,1} 

Rank-1

snd_rcv_array: 
{0,0,0,1} 

Rank-2

snd_rcv_array: 
{1,0,0,1} 

Rank-3

snd_rcv_array: 
{1,1,0,0} 

After Alltoall

Rank-0

snd_rcv_array: 
{0,0,1,1} 

Rank-1

snd_rcv_array: 
{1,0,0,1} 

Rank-2

snd_rcv_array: 
{0,0,0,0} 

Rank-3

snd_rcv_array: 
{1,1,1,0} 

Figure 6.2. Pictorial showing the action of the MPI_Alltoall within the PEX algorithm to notify
receivers of who will be sending to them.

1. Start non-blocking sends; do in-order blocking receives with sender specification
(isend_recv_in_order)

2. Start non-blocking sends; do any-order blocking receives without sender specifi-
cation (isend_irecv_any_order)

3. Start non-blocking sends; start all non-blocking receives with sender specifica-
tion (isend_irecv)

4. Start all non-blocking receives with sender specification; start all non-blocking
sends (irecv_isend)

Algorithm 4: Original NBX algorithm published in [96]

1 Start all MPI_Issend
2 while true do
3 if MPI_Iprobe then
4 Do MPI_Receive

5 Act on data
6 end
7 if MPI_Issend are complete and not started MPI_Ibarrier then
8 Start MPI_Ibarrier
9 end

10 if Started MPI_Ibarrier and MPI_Ibarrier Complete then
11 break out of loop
12 end
13 end

Of these options, 4 contains a theoretical advantage in the case of large messages
due to the pre-allocation of receive buffers. When the message from the sender arrives
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the memory has already been set aside for the incoming data, and MPI can very
readily fill it. However, one downside to option 4 is that no sending operations begin
for a moment, which could hinder its performance with small messages which MPI
may have been able to buffer internally. This could theoretically lead option 3 to have
an advantage with smaller messages. The two options that rely on blocking receives
should always be at a disadvantage due to lag in setting up the communication and
possibly waiting for specific senders.

Algorithm 5: Modified Nonblocking Exchange (NBX) algorithm utilizing non-
blocking receives.

1 Start all MPI_Issend
2 while true do
3 if MPI_Iprobe then
4 Start MPI_Irecv
5 Add to receive list
6 end
7 Clean up receive list using MPI_Test

8 Possibly act on data that has been completely received
9 if MPI_Issend are complete and not started MPI_Ibarrier then

10 Start MPI_Ibarrier
11 end
12 if Started MPI_Ibarrier and MPI_Ibarrier Complete and receive list empty then
13 break out of loop
14 end
15 end

The Nonblocking Consensus (NBX) algorithm shown in Algorithm 4 represents a
modern MPI-3 approach to sparse data exchange. Nonblocking, point-to-point MPI_-
Issend operations are immediately started. MPI_Issend only shows as complete using
MPI_Test if the message is acknowledged as starting to be received (it may be com-
pletely received, but possibly not - a positive return from MPI_Test implies that the
buffer being sent using the MPI_Issend can be reused). Once all of the messages from
a sender are beginning to be received, the sender can then start the MPI_Ibarrier.
Once all senders begin the MPI_Ibarrier, the algorithm is complete.

The Modified-Nonblocking-Exchange algorithm (MNBX) shown in Algorithm 5 was
developed for this work to overcome shortcomings in NBX. The improvement over the
NBX algorithm found in [96] is in the way receives are handled. In [96], receives are
handled using MPI_Receive while in Algorithm 5, nonblocking MPI_Irecv operations
are used for incoming messages. This change might appear to be minor, but it has
large implications. First, using MPI_Irecv can speed up receiving when useful work
can be done while messages are still being received (overlapping communication and
computation). It also could allow for overlapping larger communications coming from
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multiple sources. However, by utilizing MPI_Irecv, it is not possible to know when
every MPI process has completed the routine and exited it.

The asynchronous nature of Algorithm 5 allows some MPI processes to move through
to the next phase of the computation before others. If processes, which are finished,
begin sending other communications, the processes that have not yet finished the al-
gorithm may interpret those incoming messages as more messages that should be
received and begin receiving them into the wrong part of the calculation.

However, MPI contains a method for keeping this from happening: tags. MPI tags
are integers which are attached to each message that a developer can use to help
discern which message is meant for which part of the code. In this case, all that is
needed is every time the MNBX Algorithm 5 is invoked a new MPI tag is used and
no other portion of the code reuse that tag. In this way, every process working on
Algorithm 5 can know exactly which messages it needs to process for this particular
invocation of the algorithm. To ensure this, a unique, rolling MPI tag system was
created within libMesh. Each time Algorithm 5 is invoked, a new unique tag is given
to it. To avoid running out of tags, the algorithm wraps around to unused tags. The
PETSc library [50] uses a similar rolling MPI tag technique to avoid these issues.

In addition to the four sparse data options outlined in [96], another option exists
known as "crystal router." Originally developed in the 1980s and published in [95],
this method utilizes a hypercube (or virtual hypercube) topology to deliver point-
to-point messages efficiently. A message is routed through multiple compute nodes
along paths through a hypercube to end up at their final destination. This is an old
technique that is still in use today by some extremely high-performance codes such as
the Nek5000 CFD application [97]. The implementation from Nek5000 has been open-
sourced within the GSLIB library [98] making it possible to test a high-performance
implementation of this algorithm. It should be noted that the crystal router algorithm
here is not used to perform the data transmission; instead, it is used in place of the
MPI_Alltoall within a PEX-like algorithm to notify the receivers of the senders.

Finally, an experimental algorithm has also been developed that is the first step
towards the scalable multi-hop algorithm needed for ray-tracing. This algorithm is
referred to as "Fully Asynchronous" due to it being valid for anything to happen in
any order. One possibility can be found in Algorithm 6. This algorithm is similar to
the MNBX algorithm 5 in that nonblocking sends and receives are utilized, and a
nonblocking collective (MPI_Iallreduce vs. MPI_Ibarrier) is used for global consen-
sus. However, this algorithm is more flexible. It allows for an unknown number of
senders to send an unknown number of messages of unknown size to an unknown
number of receivers in an unknown order. Further, the sending can be mixed with the
receiving (although that’s not how it’s stated in Algorithm 6, for simplicity). As can
be seen later, it allows messages to start on one MPI process and navigate through
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Algorithm 6: Fully asynchronous one-sided, single-hop communication scheme

1 Start MPI_Isend operations
2 Count number of messages sent
3 Start MPI_Iallreduce to find the global number of messages sent
4 while true do
5 Check MPI_Iallreduce to find the global number of messages sent
6 while MPI_Test incoming messages do
7 Start MPI_Irecv for incoming message
8 Add it to a list of current receive operations
9 end

10 Clean up MPI_Irecv operations and act on data
11 Count the number of messages received
12 if Global number of messages is known then
13 if Not yet communicating the number of messages received then
14 Start MPI_Iallreduce for the global number of messages received
15 end
16 else
17 if MPI_Iallreduce of number of messages received is finished then
18 if global number of messages received == global number sent then
19 break loop
20 end
21 end
22 end
23 end
24 end
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Msg. Size in_order any_order irecv irecv_isend FA NBX MNBX CR

1 9.28 9.24 9.27 9.71 1.56 1.50 1.60 3.89

10 9.33 9.29 9.38 9.71 1.62 1.55 1.63 4.25

100 9.68 9.72 9.73 9.91 2.30 2.48 2.31 5.50

1000 23.91 23.85 23.66 25.52 18.84 19.08 18.59 20.67

10000 180.41 166.80 164.59 168.17 153.09 162.43 152.32 165.78

Table 6.1. Data for the message size testing of sparse data exchange algorithms. Each entry
represents the time in milliseconds for 10 iterations of the algorithm. This data is
also plotted within Figure 6.3.

several before stopping, something that isn’t achievable with the MPI_Issend required
by NBX/MNBX. However, that particular aspect of this algorithm won’t be utilized
until §8.3.1

6.1.2 Testing Scalable Sparse Data Exchange

The previous section outlined five algorithms that should be benchmarked for use
within MOCkingbird:

1. Personalized Exchange (PEX) (all four variations)

2. Nonbocking Consensus (NBX)

3. Modified Nonblocking Exchange (MNBX)

4. Crystal Router (CR)

5. Fully Asynchronous (FA).

To test these algorithms, a sample implementation of each was developed within
a targeted testing code. The test application times how long N communication steps
take with each algorithm. With each algorithm, M random receivers are chosen. They
are each sent a message of L double-precision floating-point numbers. The tests are
carried out on the Lemhi Supercomputer described in §3.1.1. Each test is run 3 times,
during each run, the algorithm is executed 10 times. The run with the fastest time for
each algorithm is used. The results of this study can be found in Figures 6.3, 6.4, 6.5.

A study was completed looking at how each algorithm behaves as message size is
increased. The study utilized 4096 MPI processes spread across 128 nodes. The number
of neighbors was chosen to be 26 to represent all of the neighbors surrounding a cube
in a perfect lattice. The results of this study can be found in Figure 6.3 and Table 6.1.2.
Immediately obvious when looking at 6.3 is that the PEX algorithms that rely on MPI_-

Alltoall are all at least an order of magnitude slower at delivering small messages.



6.1 sparse data exchange algorithms 85

Message Size

Ti
m

e 
(m

s)

5

10

50

100

1 10 100 1000 10000

isend_recv_in_order

isend_recv_any_order

isend_irecv

irecv_isend

full_async

nbx

mnbx

crystal_router
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Figure 6.3. Sparse data exchange scalability in message size. The test was run using 4096 MPI
processes spread across 128 nodes. Message sizes are in number of double precision
floating point numbers (64bit) and Time is based on 10 iterations of the algorithm.

NBX, MNBX, and FA all achieve very similar times. The CR algorithm falls somewhere
in-between the other two sets.

As the message size is increased, all of the algorithms achieve similar timings. This
is due to the dominant amount of time shifting to the actual transit time of the bytes
themselves across the network as message size grows. Even so, it is still interesting to
note that for a message size of 10,000, both MNBX (6.6%) and FA (6%) are faster than
NBX.

Next, weak scaling of the algorithms is tested. The message size is fixed at 100, and
the number of neighbors remained 26 while the number of MPI processes ranged from
32 to 8192. The results of this study can be found in Figure 6.4 and Table 6.2. While
all of the algorithms (other than CR) are fairly competitive up to 500 MPI processes,
at that point the MPI_Alltoall based algorithms start to show their increased algo-
rithmic complexity, in terms of the number of processes: p, of O(p) whereas FA, NBX
and MNBX all have a worst-case complexity of O(log(p)). Those three algorithms are
giving almost constant time over this large range in number of cores. There is a small
growth in those algorithms due to the O(log(p)) complexity of the reductions (MPI_-
Ibarrier and MPI_Iallreduce). This provides these algorithms excellent scalability.

The final test performed on these algorithms looks at increasing the number of
neighbors. Earlier, the number of neighbors was set to 26 to be representative of the
number of neighbors in a 3D simulation, in this case, the number of neighbors is varied
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Figure 6.4. Weak scalability of each sparse data exchange algorithm from 32 MPI processes to
8192. This is "weak" scaling: the number of neighbors is held constant at 26 and the
message size is held at 100 double precision floating point numbers. The raw data
for this plot can be found in Table 6.2

MPI in_order any_order irecv irecv_isend FA NBX MNBX CR

32 1.94 2.08 1.87 1.91 2.03 1.85 2.00 2.48

64 1.81 1.86 1.81 1.60 1.90 2.18 2.07 3.35

128 1.86 1.88 1.78 1.60 1.90 2.02 2.11 3.24

256 2.07 2.08 1.97 1.82 1.99 1.99 2.13 3.60

512 2.49 2.45 2.51 2.23 2.05 2.09 2.19 3.77

1024 3.33 3.36 3.32 3.14 2.10 2.09 2.23 4.23

2048 5.31 5.34 5.35 5.17 2.25 2.15 2.44 4.77

4096 9.68 9.80 9.65 9.85 2.30 2.48 2.40 5.67

8192 22.57 19.67 27.50 21.36 2.87 2.89 3.61 7.86

Table 6.2. Weak scaling of each sparse data exchange algorithm. The number of neighbors is
held constant at 26 while the message size is 100 double precision numbers. Each
entry represents the time in milliseconds for 10 iterations of the algorithm. This data
is also plotted within Figure 6.4.
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Figure 6.5. Testing each sparse data exchange algorithm’s ability to deal with decreasing spar-
sity. The test was run using 4096 MPI processes spread across 128 nodes. Message
size was held constant at 100 double precision floating point numbers. The time
represents 10 iterations of the algorithm. The raw data for these plots can be found
in 6.3

Neighbors in_order any_order irecv irecv_isend FA NBX MNBX CR

1 8.37 8.29 8.32 8.38 0.77 0.44 0.41 3.71

2 8.41 8.37 8.40 8.60 2.79 0.52 0.52 3.30

4 8.57 8.53 8.51 8.59 1.43 0.69 0.66 3.45

8 8.79 8.79 8.75 8.98 1.16 1.04 1.01 3.89

16 9.16 9.19 9.27 9.42 1.68 1.61 1.64 4.58

32 10.13 10.00 9.98 10.08 3.02 2.99 2.88 6.07

64 12.08 12.05 12.46 1,168.21 5.90 6.07 5.94 1,482.00

128 1,299.14 1,457.15 1,138.30 1,618.34 11.11 21.04 12.86 1,617.22

256 1,632.53 1,466.22 1,466.86 1,629.29 22.12 38.43 31.73 1,626.52

512 1,496.52 1,514.70 1,648.91 1,654.49 44.36 89.80 102.72 1,650.31

1024 1,708.59 1,697.63 1,693.57 1,704.62 130.44 1,808.43 243.77 1,706.50

Table 6.3. Scalability in the number of neighbors. Ran using 4096 MPI processes, messages
size is held constant at 100 double precision numbers. Each entry represents the
time in milliseconds for 10 iterations of the algorithm. This data is also plotted
within Figure 6.5.
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to see how the algorithms respond. The number of MPI processes was 4096 split over
128 nodes of the Lemhi cluster, and the message size stayed constant at 100 doubles.
The results of this study can be found in Figure 6.5 and Table 6.3. The MPI_Alltoall

based PEX algorithms all have a fixed upfront cost for the MPI_Alltoall itself. This
leads to those algorithms being 10x slower than the point-to-point based FA, NBX,
and MNBX. As the number of neighbors grows, the amount of communication done
by all the algorithms increases, and so does time.

Unfortunately, at around 64 neighbors, something breaks down in the nonblocking
send/receive routines of the PEX algorithms. It is suspected that some limit is reached
within the MVAPICH MPI implementation being used. Several MVAPICH options
were tried to attempt to overcome the issue, but nothing worked. OpenMPI was also
tried, but it showed a similar trend (although the breakdown in the algorithm didn’t
occur until 256 neighbors).

The other algorithms (FA, NBX, and MNBX) show excellent resiliency and stable
growth out to 500+ MPI processes. FA shows some interesting behavior with just
a few neighbors where the time spikes. This is most likely because FA can require
multiple MPI_Iallreduce operations depending on the order that messages come in.
Even so, FA is still faster than any of the PEX based algorithms and quickly goes
back to being competitive (and even faster than) NBX, and MNBX as the number of
neighbors grows.

To summarize these results, the PEX based algorithms are all encumbered by the
O(p) time the MPI_Alltoall takes to communicate sender’s intentions while FA, NBX,
and MNBX all communicate in constant time with a O(log(p)) overhead for sharing
completion data. This gives them all excellent scalability. MNBX is a good improve-
ment over NBX that allows for multiple messages to be received asynchronously and
those messages to be acted on as they are completely received. It also shows good
scalability in all the metrics tested here. Therefore, MNBX algorithm was chosen to
be utilized within the setup steps of MOCkingbird anytime neighbor data needs to be
exchanged (such as during track claiming, which is discussed in §8.1).

However, the FA algorithm is still impressive. It has nearly the same speed and
scalability metrics of NBX and MNBX while offering greater flexibility. In particular,
it allows for messages to be sent through multiple hosts (multi-hop) - which is not
possible with any of the algorithms presented here. The distributed-geometry ray-
tracing algorithm at the heart of MOCkingbird utilizes a (more complicated) version of
the FA algorithm.
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template <typename MapToVectors,
typename ActionFunctor>

void push_parallel_vector_data(const Communicator & comm,
const MapToVectors & data,
const ActionFunctor & act_on_data); �

Listing 6.1. Interface for a sparse send operation similar in ways to a sparse version of MPI_-
Scatterv.

6.1.3 An Interface For Sparse Data Exchange

The preceding section explored several algorithms for viability within MOCkingbird. It
was found that the Modified Nonblocking Exchange (MNBX) algorithm would be a
good fit for the types of neighbor communication needed during the setup phase of
MOCkingbird. However, the MNBX algorithm, even at its simplest, is about 100 lines
of code (not including the actual work to do with each incoming message). Further,
that’s for one-sided communication, and some of the setup tasks within MOCkingbird

require two-sided communication which would necessitate careful implementation
each time it is needed within the code.

A better idea is to attempt to encapsulate the MNBX algorithm (both one- and
two-sided) into functions with a flexible interface that can be reused throughout the
code. Working with Dr. Roy Stogner at University of Texas in Austin, a set of flexible
routines encapsulating the idea of sparse data exchange were developed and added to
the libMesh library: push_parallel_vectors() and pull_parallel_vectors(). These
two functions act as proxies for sparse versions of MPI_Scatterv and MPI_Gatherv and
are backed by a sparse data exchange algorithm.

The interface for push_parallel_vectors() can is shown in Listing 6.1. MapToVectors
is any "maplike" object (std::map, std::unordered_map, etc.) that holds MPI ranks
as keys and a "vectorlike" (i.e. std::vector) of data to send to that MPI rank. The
ActionFunctor is a function pointer, function-like object, or lambda function that spec-
ifies what to do with each piece of incoming data. As each message is received and
unpacked, the ActionFunctor is called to operate on the received data. Depending on
the algorithm behind push_parallel_vectors(), this processing of data may happen
asynchronously with the reception of the data.

The pull_parallel_vectors() interface can be seen in Listing 6.2. It is similar to
push_parallel_vectors() except the MapToVectors is this time filled with a vector of
"queries" for the remote MPI rank. The idea is to communicate a set of "questions"
to remote processes and let them respond with "answers." For instance, this can be
used to ask neighboring MPI ranks for information about variable values on elements
they own which border this MPI rank. In that scenario, the "queries" could contain the
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template <typename datum,
typename MapToVectors,
typename GatherFunctor,
typename ActionFunctor>

void pull_parallel_vector_data(const Communicator & comm,
const MapToVectors & queries,
GatherFunctor & gather_data,
ActionFunctor & act_on_data,
const datum * example); �

Listing 6.2. Interface for a sparse send and receive operation similar in ways to a sparse
versions of MPI_Scatterv followed by MPI_Gatherv.

element IDs this process is wanting information from. The requests are sent utilizing
a sparse data exchange algorithm. When the requests are received, each MPI process
calls the GatherFunctor and pass each of the received queries. The GatherFunctor

is responsible for fulfilling the request and returning the data. Another round of
sparse data exchange is then used to send the gathered data back to the requestors.
Finally, the requestors asynchronously receive the results of their queries, and the
ActionFunctor is invoked to act on that data.

There are many options for the implementation of push_parallel_vectors() and
pull_parallel_vectors(). After some discussion centering on the patterns of com-
munication, Dr. Stogner originally developed the interfaces and backed them with
something similar to a PEX algorithm. However, as shown in the preceding section, it
does not perform well with many thousands of MPI ranks. Therefore, for this thesis,
a new implementation of push_parallel_vectors() was developed, which utilizes a
similar algorithm to MNBX. The new implementation of pull_parallel_vectors()

then became two push_parallel_vectors() operations: push_parallel_vectors() is
called to create the requests then, once all of the requests have been handled, push_-
parallel_vectors() is then used to return the results.

While implementing pull_parallel_vectors() with two push_parallel_vectors()

operations is expedient and makes for maximum code reuse, it doesn’t exploit all of
the parallelism possible. During a pull_parallel_vectors(), many requests are being
sent, worked on, coming back, and acted upon. All four phases of that communication
pattern could be completed asynchronously. To achieve that, two MNBX algorithms
could be blended, which is left to future work.

Within MOCkingbird, these push_parallel_vectors() and pull_parallel_vectors()

routines are utilized during the setup phase of the calculation. In particular, they show
up during track generation and "claiming" as discussed in §8.1.



7 S C A L A B L E M A S S I V E LY A S Y N C H R O N O U S R AY T R A C I N G
(SMART )

The heart of a MOC code is the transport sweep: integration along tracks laid down
through the reactor. This can be viewed as a "ray tracing" problem: tracks are akin to
"rays" that pass through the reactor interacting with each material encountered. Pixar
software utilizes a very similar method for rendering computer-generated graphics
[99]. While ray-tracing for MOC has been extensively studied [8, 100] using the more
traditional constructive solid geometry, very little work has been done on unstructured
mesh [17, 84].

Using unstructured mesh has both pros and cons. As mentioned earlier, working
with unstructured mesh allows MOCkingbird to directly couple to other physics solved
using MOOSE, allows for a large amount of geometrical flexibility (anything that can be
meshed can be used as the domain) and makes it possible to deform the mesh (such
as with thermal expansion). However, scalable distributed memory parallelization is
not straightforward with unstructured mesh [84]. To tackle these difficulties, a new
parallel algorithm for tracing rays through unstructured mesh has been developed,
named Scalable Massively Asynchronous Ray Tracing (SMART).
SMART, itself, is agnostic of the physics being computed. Because it’s agnostic of

physics, an implementation of it has been added to MOOSE as a "physics module."
Physics modules in MOOSE are open-source sets of common physics that any MOOSE-
based application can utilize.

Several aspects of SMART are unique:

• Overlapping generation and propagation execution phases

• Completely asynchronous multi-hop messaging

• Asynchronous distributed stopping criteria

• Smart memory pools for rays, data, and messages

• Intelligent buffering

• Efficient execution on unstructured grids

Within this section, each of these capabilities is explored in detail.
This chapter develops an efficient ray-tracing algorithm for use on distributed mem-

ory clusters. The chapter proceeds by first exploring algorithms for how a Ray can
move from element to element through an unstructured mesh. While the algorithms
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for the intersection of rays with element-sides appears straightforward, many corner
cases must be addressed for robustness.

The second significant development is the Scalable Massively Asynchronous Ray
Tracing (SMART) algorithm itself. The utilization of asynchronous (non-blocking) mes-
sage passing for efficient ray tracing in a distributed memory setting is the primary
focus. The key idea being that if communication is overlapped with computation, then
the simulation time taken by message passing is minimized.

7.1 tracks and the ray object

Before any discussion about tracing a path through distributed, unstructured mesh,
the idea of the path, itself, needs to be explored. As explained in Chapter 2, the source
iteration scheme used by MOC to solve the Boltzmann transport equation requires the
ability to integrate along "lines" through the domain. Those lines are called "tracks"
and are typically laid down in regular patterns through the domain. Each track repre-
sents a line from one domain boundary to another, as shown in Figure 2.3a.

Traditionally, in MOC codes, the tracks were created and intersected with the ge-
ometry to create segments as in 2.3. This was done as a pre-processing step, with
the segments stored in memory. For each transport sweep, the MOC solver would
then iterate through the segments and compute the outgoing angular flux according
to Equation 2.18. This is time-efficient, with the intersection of each track with the
geometry only occurring twice. However, this is intractable for detailed, full-core 3D
analysis due to the memory requirements necessary to store each segment. This idea
is revisited in §10.2.2.

Instead, MOCkingbird utilizes "on-the-fly" segmentation: during each transport sweep,
each track is traced through the unstructured mesh, with each element crossing form-
ing a segment to be integrated. Other MOC implementations have used the same idea
to keep memory use to a minimum [3, 101]. A transport sweep in MOCkingbird traces
each track completely across the domain: from boundary to boundary. Each time the
tracing crosses an element, generating a segment, a routine within MOCkingbird is
called to integrate that segment.

The job of SMART is then to perform the ray-tracing on a parallel, distributed, un-
structured mesh. To do this, it "moves" a Ray object through the domain. A Ray is
a C++ object containing all of the data needed to trace the track’s path through the
domain, but it also contains data arrays capable of carrying other information such as
the angular flux and angular quadrature needed by MOC.

The Ray data-structure contains the members shown in Listing 7.1. The data mem-
ber is a generic, re-sizeable array that can carry any floating-point data; MOCkingbird
utilizes it for storing angular flux. The id is a unique ID assigned to the Ray, for MOC-
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Listing 7.1. The data members within a Ray object.

/// The data that is carried with the Ray
std::vector<Real> data;

/// A unique ID for this Ray.
unsigned long int id;

/// Start of the Ray
Point start;

/// End of the Ray
Point end;

/// The element the Ray begins in
const Elem * starting_elem;

/// The side of the the _starting element the ray is incoming on.
/// -1 if the Ray is starting _in_ the element
unsigned long int incoming_side = -1;

/// The id of the element the Ray ends in (used to optimize when
_ends_within_mesh)

dof_id_type ending_elem_id = DofObject::invalid_id;

/// Whether or not the Ray ends within the Mesh
bool ends_within_mesh = false;

/// The azimuthal spacing
Real azimuthal_spacing;

/// The azimuthal weight
Real azimuthal_weight;

/// The polar spacing
Real polar_spacing;

/// The sin of the polar angle for this Ray (just 1.0 for 3D)
std::vector<Real> polar_sins;

/// The weight for each polar angle (just 1.0 for 3D)
std::vector<Real> polar_weights;

/// True if this Ray was created as the reverse of another ray
bool is_reverse = false;

/// Wether or not the Ray should continue to be traced
bool should_continue = true; �
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kingbird this is set to the ID of the track coming from the track generator. The start

and end points define the beginning and ending of the Ray as a Point object which
contains x, y, z floating-point values. For the ray-tracing routines, explained in §7.2, it
is critical that the starting location within the unstructured mesh be completely de-
fined. This is handled by the starting_elem and incoming_side data members which
will be set during the track claiming phase explained in §8.1.

The rest of the data members are unique to MOC and are set directly from the track
data from the track generator discussed in §8.1. In traditional MOC codes, many of
these parameters, such as spacing and weights, are not stored for each track. Instead,
they are looked up in an array based on an azimuthal index, xy index and, in 3D, polar
index and z index. In MOCkingbird there are no loops over track indices (because the
tracks are domain decomposed); therefore the Ray would need to store these 4 indices
and do a lookup into the OpenMOC track generator to retrieve this information every
time the Ray is communicated. Therefore, it is much simpler for MOCkingbird to forego
storing these 4 indices and doing the lookup to instead store up to 9 doubles in 2D
(using TY polar quadrature) or 5 doubles in 3D. The storage and communication of
these values pales in comparison to the rest of the data stored on a Ray, especially the
angular flux. The angular flux alone adds 210 doubles to the Ray in 2D with 3 angles
of TY polar quadrature and 70 energy groups. Therefore, the convenience and utility
of having these MOC parameters instantly available makes up for the tiny increase in
memory used and extra communication.

It is important to consider that the Ray objects will between MPI ranks in parallel.
Therefore all of the data in Listing 7.1, including all of the values in the arrays, is to be
packed up (serialized), communicated, then unpacked (de-serialized) on the receiving
end. This is achieved using a libMesh mechanism where pack() and unpack() routines
are created for the type. These routines fill/read raw data buffers to be communicated
by MPI. For this thesis, libMesh was enhanced to asynchronously communicate arrays
containing these packable types.

As a Ray is packed and communicated to another MPI rank, the current rank no
longer needs to hold this object in memory. This is one of the advantages of fully trac-
ing rays from domain boundary to domain boundary: no partition boundary angular
fluxes need to be stored. However, it was found that the creation/destruction of Ray
objects and re-allocation of the data array was slow. Therefore, a memory pool keeps
a small number of reusable Ray objects on each rank. More detailed information about
the memory pool can be found in §7.3.3.
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7.2 element traversal algorithm

Before moving into parallel ray-tracing, it’s important to discuss how rays can move
through the mesh on one partition. Ray-tracing within unstructured mesh heavily
relies on the connectivity structure present within the mesh. As shown in Algorithm
7, each ray begins at the edge of a particular element. Each side of that element is
tested for intersection with the ray. The connectivity of the elements is then utilized
to find the next element the ray moves to, and then the algorithm repeats. By testing
each side and moving to neighboring elements, the ray can be traced entirely across
the domain from one domain boundary to another.

Algorithm 7 works on one ray at a time, moving it from the starting position to its
ultimate end. The end can be the boundary of the domain, specified end-point within
the domain or the edge of a process’s partition. For MOCkingbird it will always be the
domain boundary. Each iteration of the loop in Algorithm 7 moves the ray forward
through one more element. This is accomplished by testing the intersection of the ray
with each side of the current element.

Efficient infinite precision calculations would allow for ray-tracing routines to be ex-
act. However, computers work with finite-precision, and therefore ray-tracing routines
rely on tolerances for finding intersections. These tolerances, finite-precision arith-
metic, and rays exactly hitting nodes can lead to situations where more than one
or even no sides are found to intersect the ray. This leads to all of the "corner cases"
found within Algorithm 7 which will be discussed in detail in §7.2.1 below.

At the point where an intersection is found, Algorithm 7 calls back to the application
(such as MOCkingbird) to allow it to use the newly found "segment" (part of the ray
from the current position to the new intersection point) for calculation. The segment
calculations within SMART are completed using an object-oriented system named Ray-

Kernel. If the new intersection point is located on the domain boundary, then a RayBC

object is invoked to apply any relevant boundary conditions. Both of these systems
are discussed in §7.3.4.

One significant feature of Algorithm 7 is that it is agnostic of dimension. By abstract-
ing the idea of traversing through elements using element connectivity, the core ray-
tracing capability can operate in one-dimension (1D), two-dimensions (2D) or three di-
mensions (3D) with no restrictions on the domain shape (other than being meshable).
The SMART algorithm currently works with geometry made up of line, quadrilateral,
triangular, or hexahedral finite-elements. It would be straightforward to extend this to
other element types such as wedges, pyramids or tetrahedral elements.

While the core algorithm remains unchanged regardless of dimension or element
type, the side-intersection testing code is specialized depending on the type of element
side being intersected. In 1D, on line-elements, the intersection testing is straightfor-
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Algorithm 7: Element Traversal Algorithm
1 current_elem← starting element;
2 current_point← starting point;
3 while not finished with ray do
4 for each side of current_elem do
5 test intersection
6 end
7 if no intersection then
8 for each node on current_elem do
9 test for intersection

10 end
11 if still no intersection and in 3D then
12 for each edge on current_elem do
13 test for intersection
14 end
15 end
16 if still no intersection then
17 for each side of current_elem that lies on the domain boundary do
18 use floating-point test to see if the end of the ray lies on that side
19 end
20 end
21 if still no intersection and very near domain boundary then
22 apply boundary condition
23 if ray shouldn’t continue then
24 break loop
25 end
26 end
27 if still no intersection and near node or edge then
28 for all elements that touch this point do
29 look for longest path out
30 end
31 end
32 if still no intersection then
33 raise ERROR
34 end
35 end
36 if intersection found then
37 execute RayKernel objects on segment
38 if ray shouldn’t continue then
39 break loop
40 end
41 if neighbor exists across intersection then
42 current_point← optimal intersection;
43 current_elem← neighboring element;
44 else
45 apply RayBC
46 if at domain corner then
47 apply all RayBC objects at corner
48 end
49 end
50 if ray shouldn’t continue then
51 break loop
52 end
53 else
54 raise Error
55 end
56 end
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ward (only the left/right direction determines the intersection with the end of each
element). Two dimensional side-intersections are all completed using the line-line in-
tersection algorithm shown in Algorithm 21. Three-dimensional intersections, with the
quadrilateral sides of a hexahedral element, are handled by breaking the quadrilateral
into two triangles for performing intersection tests. These intersection algorithms are
detailed in Appendix 14.

7.2.1 Corner Cases

Unstructured mesh provides many opportunities for both figurative and literal corner
cases that must be carefully considered. For instance, a ray directly striking a junction
between four quadrilateral elements has difficulty traversing through the connectivity
structure to emerge on the other side. This is due to floating point tolerances inher-
ent to finite-precision arithmetic. Due to tolerances, the intersection algorithm can get
stuck in an infinite loop, alternating between intersecting sides that all meet at the
node. These cases are explicitly handled within the ray-tracing capability with special-
ized code that searches for pathways away from the current intersection point. Each
of these cases is examined in this section.

Within a three-dimensional (3D) mesh there are seven main cases to handle, in order
of most likely to least likely:

1. Intersecting a face of the current element

2. Intersecting an edge (the line between two nodes of a three-dimensional element)

3. Intersecting a node

4. End of ray lies on a face of the current element

5. Current point is already extremely near a boundary and near the end of the ray

6. Ray cannot find an intersection within the current element, need to look for a
way out through a neighbor

7. Ray cannot continue (should never happen)

These seven cases are each explicitly handled within the element traversal algo-
rithm, as shown in 7. For efficiency, the six cases are handled in the order given above
with one exception: intersecting a node is checked before intersecting an edge. This
is done because node-intersection is a much more severe case than edge intersection
and would most-likely be misinterpreted as an edge intersection.

When a ray strikes an interior node or 3D edge, each element connected to the
node/edge of the current element is inspected to see if it is a candidate for the ray
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Figure 7.1. Pictorial representation of an internal corner strike. The blue ray is hitting an inter-
nal shared corner and the orange intersection will be the next segment chosen.

to leave through. Longer path lengths are preferred; otherwise, a ray may infinitely
cycle through all of the elements meeting at the point due to floating-point tolerances.
Therefore, each element surrounding the point is searched, with the longest path out
of the corner chosen.

This same code path (choosing the neighbor with the longest path out) is also used
in case 6 where the incoming point on an element is extremely close to a node (but did
not hit it). In this case, all other intersection algorithms may fail due to floating-point
arithmetic. The best that can be done is to find a neighbor, which also contains the
incoming point, and has the longest path away from the current intersection point and
move to that neighbor. This case is handled last, not only because it would be better
for one of the other intersection algorithms to work, but also because this search can
be expensive.

Figure 7.1 shows an example of the process where a ray needs to move through
the neighbor with the longest distance out. The longest distance is chosen to move
away from the current position, avoiding floating point issues that can lead to infinite
looping. The (blue) ray is moving across element A and strikes a shared node between
multiple quadrilateral elements. Elements B, C, and D are searched for an intersec-
tion from the shared node along the path of the ray. The intersection from the shared
corner through element C is the longest and is chosen as the next segment (shown in
orange). It should be noted that this type of movement "across" an internal corner can
be problematic for MOC acceleration algorithms such as Coarse Mesh Finite Differ-
ence (CMFD) [65], due to a lack of balance of current through the element sides, and
therefore may need to be rethought in the future.
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Figure 7.2. Pictorial representation of an intersection very near an external domain boundary.

In the case where it can be detected that the end of of the ray lies within the face of
the current element, case 4 is used to short-circuit all other logic. Detecting the "end"
of a ray touching a face is particularly troublesome with floating-point round-off. If
through floating point precision loss, it’s deemed that the end of the ray is just short of
the face it’s supposed to hit on the boundary; then no intersection is found. Therefore,
this case is explicitly checked with floating-point tolerances. A positive check short-
circuits all other logic to end the ray at the end point.

A ray intersecting an element at a point near a boundary (within floating point tol-
erance) but not an element side that lies on the boundary may not be able to continue
to the boundary. In this case, as shown in Algorithm 7, the ray is considered to have
met the domain boundary. Next, each side in the current element that is on a bound-
ary and (within floating point tolerance) could contain the current intersection point
is searched. The intersection point is then assigned to that side, ultimately causing the
boundary condition to be applied to the ray and the ray-tracing to end for that ray.

Figure 7.2 demonstrates this case. The ray is passing through element B and strikes
the side of element B neighboring element C. However, with floating-point tolerances,
the intersection point on the side between elements B and C can be considered to
be at the boundary. It should be noted that in Figure 7.2, the intersection shown is
exaggerated away from the shared corner for ease of demonstration. Within MOCking-

bird, the tolerance for this check is currently 5e− 5cm. This is detected within the ray
tracing algorithm, and the sides of element B are searched to find one that both lies on
the external boundary and (within floating point tolerance) "contains" the intersection
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point. Any boundary conditions associated with that external boundary are applied
(possibly reflecting the ray for instance).

7.2.2 Corner Case Rarity

While the above section detailed the way the code deals with corner cases, these events
are very rare in practice. The vast majority of intersections are found using case 1:
ray/face intersection. As a demonstration, a 2D lattice of 144x144 pin-cells containing
26,542,080 elements was used with 128 azimuthal angles and 0.001cm spacing to do
one transport sweep. During the sweep, counts are kept for each of the cases from the
previous section. Only three cases occurred: 1, 4 and 6.

Table 7.1. Ray tracing statistics for one transport sweep.

Case Count Percent

Total 156714657017 100

Face Hit 156714525672 99.99991619

Moved Through Point Neighbor 130584 4.85595932e-7

End On Boundary 761 8.33259648e-5

The data for how often each case occurred can be found in Table 7.1. Nearly all in-
tersections were completed with the "regular" element traversal algorithm which finds
intersections of the rays with the element faces. However, just over 130k intersections
needed to do extra work to allow the ray to continue.

Figure 7.3 shows the spatial distribution within the domain for each of the three
intersection cases that occurred for this run. The run was executed using 2304 MPI
ranks and the GridPartitioner in a 48x48 grid. The totals shown in Figure 7.3 repre-
sent the total counts for each intersection case on the MPI ranks, which owned that
portion of the geometry.

Figure 7.3a shows that each MPI rank performed nearly the same number of inter-
sections: about 68 million. Some obvious symmetry is visible due to the symmetry
in the track generation and the symmetry of the domain. Figure 7.3b details how the
maximum number of case 6 (a ray moving out through a neighbor) on any MPI rank
was just 81 out of the 68 million intersections performed on each rank. Finally, the
MPI ranks where rays ended by following case 4 are shown in Figure 7.3c.

While the number of times a ray needs to use a more complicated algorithm to
move through the mesh is vanishingly small, these cases cannot be ignored. Even just
one single failure in billions is enough to kill a MOC solve. Therefore, even though
these events are rare, handling them is critical.
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(a) Face hit.

(b) Moved through point neighbor. (c) End on boundary.

Figure 7.3. Spatial distribution of intersection cases. The totals shown are the amount that
happened within each MPI rank that owned that portion of the geometry.



7.3 parallel ray tracing : smart 102

7.3 parallel ray tracing : smart

While the previous section detailed how to move rays through an unstructured mesh
from one end of the domain to the other, there was no parallel capability. To make
ray-tracing scale in parallel, the code needs to be able to communicate rays from one
MPI rank to another. This is what SMART was built to do. SMART could be thought of as
a more advanced version of Algorithm 6 that allows for sparse, one-sided, multi-hop
communication of Ray objects through the domain.

7.3.1 Overview

The SMART algorithm is completely asynchronous: all parts of the algorithm are occur-
ring simultaneously on every MPI rank. At every moment, every rank is doing the
work that it can while simultaneously pulling in more work and pushing finished
work to its neighbors. Here, "work" means using the algorithm in §7.2 to trace rays
through the portion of the domain assigned to it by mesh partitioning. The communi-
cation is performed using non-blocking, asynchronous, point-to-point MPI communi-
cation with the primary objective being to overlap communication and computation
in order to gain parallel efficiency.

The major "tasks" to be completed are:

1. Generate rays claimed in 8.1

2. Check for incoming rays and pull them into buffers

3. Use Algorithm 7 to trace a subset of rays called a "chunk"

4. Collect finished rays into buffers to be sent to other MPI ranks and send them

5. Check for completion

Again, it should be stressed that all of these tasks are happening simultaneously and
overlapping with each other. Within SMART these tasks are grouped into two phases:
"generation" and "propagation." During generation, MPI ranks create rays and begin
tracing them in subsets called "chunks." A chunk is a set of rays that are given to the
element traversal routine at one time. The idea is to start some parallel communica-
tion, then go do some work tracing a set of rays, then repeat. This is necessary so that
incoming rays can periodically be checked for, in-between tracing (Step 2). Ranks with-
out rays to generate, skip directly to propagation. A rank which starts by generating
rays enters the propagation phase once it has generated all rays. During propagation,
Tasks 2-5 are continuously executed until all rays have been completely traced.
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Figure 7.4. High-level overview of how a Ray traverses a domain decomposed unstructured
mesh.
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A high-level pictorialization of how one Ray traverses a domain decomposed un-
structured mesh is shown in Figure 7.4. Each MPI rank owns a ReceiveBuffer and
several SendBuffer objects, one for each MPI rank it sends to. With MOCkingbird a Ray

starts at a domain boundary, in this case on MPI rank 0. The algorithms in §7.2 are
then used to move it through the unstructured mesh elements until it reaches a parti-
tion boundary. At a partition boundary, the Ray is then added to the SendBuffer for
the MPI rank it needs to be sent to. As explained momentarily, once that SendBuffer
fills, it is then given to the network hardware to be asynchronously communicated to
the other MPI rank.

On the other MPI rank (rank 1 in this case), an asynchronous receive is started to
allow the network hardware to pull the Ray objects into the ReceiveBuffer. Once rank
1 is nearly out of work to do (which will be more concretely defined in Algorithm 10),
it gets the rays from the ReceiveBuffer and begins tracing them through its partition
until they reach the domain boundary (or another partition boundary).

This process is covered in great detail in the following sections.

7.3.2 Algorithms

All work during the execution of SMART flows into and out of the work_buffer. The
work_buffer is a custom-coded circular buffer. The work_buffer holds smart point-
ers to Ray objects (std::shared_ptr<Ray>). It is designed to reduce memory alloca-
tion/deallocation and allow for a first-in-first-out (FIFO) workflow. In addition, it is
possible to retrieve a contiguous range of Ray objects from the front of work_buffer (a
chunk) and pass it to the element traversal routine.

FIFO is important for SMART. In general, rays placed into the work_buffer earlier
have a longer distance to travel (and thus should be traced earlier so they can move
to the next rank). This is especially true on the boundaries: rays created during the
generation phase are filled into the work_buffer first. Then, as those rays are traced in
chunks, more rays are added to the work_buffer from incoming messages. However,
rays generated on the boundary have the longest distance left to travel, whereas rays
incoming to ranks holding boundary elements are, by definition, nearly finished trac-
ing. Therefore, it is vital to move generated rays off of boundary ranks as quickly as
possible and wait until later to trace rays incoming to the boundary rank.

A similar issue exists to a lesser extent in the interior of the domain. Although, once
the interior of the domain is saturated with rays being traced, the effect is diminished.
Tests were completed which gave specific priority to tracing rays which still had the
longest distance to travel without much improvement and therefore that mechanism
is not used in any of the results presented in this work (though the capability still
resides within the code).
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Before the Ray can be added to the work_buffer, the starting element, position,
and direction are set for the Ray. Without it, the tracing of the Ray might not be de-
terministic. Small differences in floating point round-off could send the Ray down a
slightly different path in subsequent source iterations. If this were to happen then
the algorithm is no longer deterministic and may not converge. The handling of track
information to make this possible will be covered in §8.1.

Algorithm 8: execute(): SMART start.

1 Call Algorithm 9

2 Call Algorithm 12

As previously mentioned, SMART is composed of two phases: generation and propa-
gation. As shown in Algorithm 8, this amounts to two function calls within the main
execute() method on the RayTracingStudy object (which will be examined in §7.3.4).
Also explained within §7.3.4, is the way applications can override the generate() func-
tion. As will be shown in §8.2.3, MOCkingbird overrides it to start rays associated with
MOC tracks along the boundary. Here, in Algorithm 9 a generic algorithm is given for
generation.

Algorithm 9: generate(): Ray Generation

1 local_rays_started← 0

2 work_buffer← Initialize empty CircularBuffer
3 for ray in rays_to_start do
4 work_buffer + = ray
5 local_rays_generated++
6 end
7 Call Algorithm 10 with start_receives_only = True

Keeping track of the number of rays that have been generated (as is done in Algo-
rithm 9 is critical to SMART. Each MPI rank tracks this number separately. Later, this
number is (asynchronously) summed and ultimately used to know when to stop.

Finally, Algorithm 9 ends by calling Algorithm 10. When it does, it specifies that
although receive operations can be started by Algorithm 10, those receive operations
should not add to the work_buffer. The reason to not add to the work_buffer at this
time is that there is, presumably, already a lot of work in work_buffer and checking
for finished receive operations can be expensive. Therefore, it’s best to trace existing
work, waiting until later to pull in new work.

Algorithm 10 is an important piece of SMART. In particular, this is the most direct
place to observe the overlap of communication and computation. Algorithm 10 will
remove a chunk_size amount of rays from the work_buffer and pass them to Algo-
rithm 11 for processing. However, as it is doing that, Algorithm 10 also overlaps the
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Algorithm 10: chunkyTraceAndBuffer(): traces chunks of rays from the work_-

buffer while also receiving incoming rays.

1 input: start_receives_only a boolean specifying whether incoming rays should
be added to the work_buffer or not

2 while work_buffer not empty do
3 if start_receives_only or work_buffer size > 2 ∗ chunk_size then
4 Use ReceiveBuffer to start asynchronously receiving rays without adding

received rays to the work_buffer

5 else
6 Use ReceiveBuffer to start asynchronously receiving rays and add

received rays to the work_buffer

7 end
8 Call Algorithm 11 to trace current_chunk_size amount of rays from the

work_buffer
9 end

tracing of rays with the receiving of new rays to be traced. This is key to maintain-
ing parallel efficiency. By doing this, as work is completed, new work already resides
within memory for this MPI rank.

When explicitly specified (by passing start_receives_only=true) or when enough
work already exists locally, Algorithm 10 will specify that the ReceiveBuffer should
only start receive operations without adding to the work_buffer. As has already been
mentioned, it is generally advantageous to trace rays that are already in the work_-

buffer. However, incoming messages containing rays should not be completely ig-
nored. Ignoring them fills up MPI buffers with incoming message data and causes
a slowdown in execution. Therefore it is important to start asynchronous receives so
that data can be transmitted in the background.

The process of completing a receive can take time. In particular, using MPI_Test to
check if a receive is finished takes time. Therefore, while there is still work left in the
work_buffer, or if explicitly specified, it’s better to only start asynchronous receives
and not check if they’re finished. Receives should be completed (and their contents
added to the work_buffer) only once the current work_buffer is depleted (less than
two chunks remain). This amount, of two chunks, is arbitrary but was found to work
well across a wide selection of problems.

Algorithm 10 calls Algorithm 11 with a contiguous chunk of rays to be traced across
the local mesh partition. Algorithm 11 loops over each ray in the chunk, calling 7. After
each ray has been traced across the local partition, it is then placed in a SendBuffer to
be sent to the next partition or, killed. Note that a RayBC may have added the ray to a
RayBank. More information is given about the RayBank in §8.2.3. If the Ray reaches the
edge of the domain, then the local_rays_finished counter is incremented. This local
counter is used in the stopping criteria in Algorithm 12.
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Algorithm 11: traceAndBuffer(): calls Algorithm 7 to trace a contiguous array
of Ray objects across the local domain then adds Ray objects which hit partition
boundaries to SendBuffer objects and Ray objects which intersect boundaries to
RayBank objects.

1 input: A contiguous set of Ray objects to be traced through the local partition
2 foreach ray in rays do
3 Call Algorithm 7

4 if ray intersected partition boundary then
5 Add ray to the correct SendBuffer
6 else if ray intersected domain boundary then
7 local_rays_finished++
8 else
9 Ray ended within domain, kill it (does not happen in MOC)

local_rays_finished++
10 end
11 end

The final major algorithm within SMART is the "propagation" loop which is respon-
sible for checking for new work and testing for the finishing criteria. Algorithm 12

shows the propagation loop. This algorithm is called on each rank once generation is
finished (possibly immediately if there is nothing to generate on the local rank).

The main feature of Algorithm 12 is the "while" loop. It loops indefinitely, checking
for incoming rays and calling Algorithm 10 to trace them. Note that once Algorithm 10

is called, that algorithm itself continues to pull in new work until the rank is ultimately
work starved (no work left to do). This is by design; it keeps the cores focused on
tracing rays while receiving data in the background and not losing time checking for
the finishing criteria, which is toward the end of Algorithm 12.

The next piece of Algorithm 12 deals with "forcing" the SendBuffer objects to send
their current contents. As is explained in §7.3.3, the SendBuffer objects buffer rays to
be sent to neighboring MPI ranks until the buffer is full and then it is sent. However,
after propagating the majority of the rays through the domain, a point is reached
where MPI ranks no longer have any incoming work. In this situation, the SendBuffer

objects have rays in partially filled buffers waiting to be sent. The algorithm detects
this state and tells the SendBuffer objects to send their partially filled buffers.

The final part of Algorithm 12, is to check the stopping criteria. Again, SMART can
be thought of as an advanced version of Algorithm 6 and therefore the stopping cri-
teria is similar. A non-blocking MPI_Iallreduce is used to sum the total number of
rays generated by all ranks (this happens in the background while rays are traced).
Later, when ranks run out of work, non-blocking MPI_Iallreduce is used again to
sum the total number of rays finished. If the two match, then everything is done and
the algorithm completes.
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Algorithm 12: propagate(): Called after Algorithm 9 to continue to receive, trace
and communicate Ray objects. Also responsible for checking for the finishing crite-
ria.

1 Start nonblocking MPI_Iallreduce to sum total_rays_generated

2 while not finished do
3 Check for and possibly receive rays
4 if rays in work_buffer then
5 Call Algorithm 10

6 else
7 Force all SendBuffer objects to send
8 end
9 if Finished MPI_Iallreduce for total_rays_generated then

10 if Finished or not started MPI_Iallreduce for total_rays_finished then
11 Start nonblocking MPI_Iallreduce to sum total_rays_finished

12 end
13 end
14 if Finished MPI_Iallreduce for total_rays_generated and

total_rays_finished and total_rays_generated == total_rays_finished

then
15 finished← true
16 end
17 end

It’s important to note that it may be necessary to check the finishing criteria, using
MPI_Iallreduce, multiple times. This happens as the number of rays left to trace is
low. As an example, if only one ray is left in the domain, as it is handed off from one
rank to the next, each rank it passes through believes that the simulation is finished
and could, theoretically, complete the MPI_Iallreduce. Each time it is completed it is
started again. In practice, anywhere between 3-10 MPI_Iallreduce calls were observed.

The MPI_Iallreduce to retrieve the number of rays that have finished is not com-
plete until every rank has called it. Once the MPI_Iallreduce is complete, all ranks
check the output value. If that number is not equal to the number of rays started,
then the ranks keep doing work until they run out of work again. When a rank is out
of work, it contributes to the next MPI_Iallreduce. The reason there are so few total
completions of MPI_Iallreduce is that they only complete when the sweep is nearly
finished, and all ranks are out of work.

All of these algorithms together comprise SMART. By overlapping generation, com-
munication and ray-tracing, SMART is able to keep cores working and, as is shown in
§8.3, is able to keep parallel efficiency high. The next section details some of the data
structures used by these algorithms.
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7.3.3 Data Structures

The previous section outlined the algorithms comprising SMART. Within those algo-
rithms, several data structures are utilized: SendBuffer, ReceiveBuffer, and an Object-

Pool. These data structures are critical to the working of SMART and warrant some
detail.

7.3.3.1 Object Pool

During a typical invocation of SMART, many millions (possibly billions) of Ray objects
are created, traced, communicated, and ultimately destroyed. However, as shown in
Listing 7.1, a Ray object has many data members, and the data arrays can be large.
For instance, when using a set of 70 energy groups for an MOC calculation, the _data

member contains 70 double-precision floating-point values: one for each energy group
making up the angular flux. Because of this, creating and destroying (allocating and
deallocating) millions or billions of these objects would not be efficient.

To rectify this problem SMART utilizes an "object pool." It reduces the need to ask
the operating system to allocate memory, which is a slow process. However, an object
pool goes one step further since it contains completely constructed objects. This not
only bypasses the need for retrieving memory from the operating system but it also
eliminates construction time.

The ObjectPool utilized by SMART is shown in Listing 15.1. The design of this object
started from [102] and has been enhanced to meet the needs of this thesis. The Object-

Pool can hold any C++ object and is therefore utilized in multiple places within SMART.
It is general enough that it was added to MOOSE as a utility.

To use the ObjectPool, code that would normally construct an object using new The-

Type(args) would instead ask for the object from the pool using: pool.acquire<The-
Type>(args). If an object of TheType already exists within the pool, then it is returned.
If the pool is empty, then a new object is constructed and returned.

The way the pool works is in the custom deleter, called ExternalDeleter in Listing
15.1. The ExternalDeleter maintains a pointer to the ObjectPool. When the object
is deleted, the custom deleter is called, returning the object to the pool instead of
destroying it.

The exact C++ mechanisms behind the usage of unique and shared pointers is be-
yond the scope of this thesis. However, it is essential to point out that the custom
deleter is called automatically anytime the object is no longer referenced. This allows
for objects like the Ray object to be held in multiple buffers. A Ray might end up in
multiple buffers due to the way boundary conditions might be implemented by the
code using SMART. For instance, MOCkingbird boundary conditions add the ray to a
RayBank, but that Ray will also temporarily remain in the work_buffer. Once the Ray
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is no longer needed (such as if it is communicated to another MPI rank), the Ray is
automatically returned to the pool.

Considering how the ObjectPool works with the Ray is important. The Ray object
itself has some data members that are reset during acquire(). However, the _data

member is not reset but it is zeroed. Therefore, when using many groups (many of
the studies in Chapter 8 use 70) the _data member of a Ray object that is being reused
from the pool is the correct size, zeroed, and ready to be traced.

Finally, the memory use of the pool is must be discussed. Each MPI rank has an
ObjectPool for efficient retrieval of Ray objects. Although, it was previously said that
SMART does not need to store any data (angular fluxes) along partition boundaries
(which is true), utilization of the ObjectPool will mean that there is some persistent
memory within each MPI process for Ray objects which contain allocated data arrays
(for MOCkingbird that length is set by the angular flux). MPI ranks along the domain
boundary request enough Ray objects from the pool to be able to start them all during
the generation phase.

Interior MPI ranks (those with partitions assigned which don’t touch the domain
boundary) make as many Ray objects as are needed concurrently during the execution
of SMART. For instance, a rank which ultimately has 1000 Ray objects trace through its
domain does not need to create 1000 Ray objects. Instead, it creates as many Ray objects
as the maximum which need to be held simultaneously. If Ray objects are received in
bunches of 10, then that number might be just 10: with the same 10 Ray objects being
reused hundreds of times. As shown in §8.3.1 this is less than if the boundary fluxes
were explicitly stored.

The amount of memory used by the ObjectPool for storing Ray objects and other
things within SMART (such as buffers for sending and receiving) is further explored in
the benchmarks in Chapter 8.

7.3.3.2 Communication Buffers

The two buffer objects: SendBuffer and ReceiveBuffer are both used for asynchronous
communication. A SendBuffer is created for each neighbor an MPI rank needs to send
to. As rays are traced by the rank, they contact a partition boundary and are then be
added to the correct SendBuffer for later communication. Only one ReceiveBuffer

gets created for each MPI rank. The reception of all Ray objects comes through that
one ReceiveBuffer.

Both types of buffers use asynchronous MPI: MPI_Isend for SendBuffer and MPI_-

Irecv in the ReceiveBuffer. In asynchronous MPI, two things are needed for commu-
nication a "buffer" (allocated memory space) to either send or receive from/to and a
MPI_Request. The MPI_Request object keeps track of the state of the communication,
whether it is in progress or complete. Therefore, the primary data member of both
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of these buffers is a std::list<std::pair<bufftype, MPIrequest». When the Send-

Buffer sends a data buffer to a remote rank, it creates a MPI_Request and joins them
together in a std::pair that is added to the list of in-progress communication.

The ReceiveBuffer works similarly, though it needs to detect the incoming message
first. To do so, it utilizes MPI_Iprobe. MPI_Iprobe returns a boolean/integer which sig-
nals whether or not an incoming message exists. If there is an incoming message, it
also returns a MPI_Status object with information about the incoming message includ-
ing the length. In the case where the ReceiveBuffer detects an incoming message, it
uses the information in the MPI_Status object to size a data buffer and creates a MPI_-

Request. The MPI_Request is then used to call MPI_Irecv to begin the nonblocking
reception of the message. Finally, it creates a pair of the buffer and the MPI_Request

and adds them to the list of in-progress communication.
Deciding when to send a buffer is a parameter within the SMART algorithm. For

sending, the main parameter is the max_buffer_size: how many Ray objects to queue
up for sending before starting communication. As shown in Chapter 6, MPI excels at
sending small to medium length messages. Therefore, it is important to choose a good
maximum buffer length. However, the nature of asynchronous communication means
that the performance of the overall algorithm is not very sensitive to this parameter.
All of the problems in the this thesis utilized a buffer size of either 100 or 200 Ray

objects. This would equate to about 60-120 kB of memory with 70 energy groups in
3D.

As mentioned earlier, sometimes it is necessary to "force send" (tell the SendBuffer

objects to send what they currently have buffered even if it’s only partially full). This
happens towards the end of a ray-tracing execution when only a few rays are left in
the system, and they need to be expedited through the mesh.

7.3.4 Object Oriented Design

One design goal for the ray-tracing component of MOCkingbird was to make it general
and separable so that it can be utilized by anyone using MOOSE and needing ray-tracing
capability. Therefore, the SMART algorithm has been encompassed in a C++ object called
RayTracingStudy. The RayTracingStudy is meant to be inherited from, with the intent
of overriding the generate() function. In this way, MOCkingbird can perform ray trac-
ing for deterministic MOC by creating an object called TrackListStudy which utilizes
the list of tracks found in §8.1 to generate rays.

In addition to ray generation being customizable, the new ray_tracing module
within MOOSE also provides a "plug-in" mechanism for specification of physics, bound-
ary conditions, and material properties. The most important of these is the RayKernel:
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a base class that can be inherited from to create calculations which occur at every
intersection of a Ray with the mesh.

Listing 7.2. RayKernel base class.

c l a s s RayKernel
{
publ ic :

RayKernel ( const InputParameters & params ) ;

/// Called at the beginning of a new Ray trace

v i r t u a l void r a y S t a r t ( ) { }

/**

* Called on each Segment

* @param start The beginning of the segment

* @param end The end of the segment

*/

v i r t u a l void onSegment ( const Elem * /*elem*/ ,
const Point & /*start*/ ,
const Point & /*end*/ ) = 0 ;

/// Set the current Ray that’s being worked on

v i r t u a l void setRay ( const std : : shared_ptr <Ray> & ray ) { _ray = ray . get ( ) ; }

protec ted :
/// Number of groups

unsigned long i n t _num_groups ;

/// The Ray that’s being worked on

Ray * _ray ;

/// Number of polar angles

unsigned long i n t _num_polar ;

/// Offest into the vectors associated with the RaySystem

dof_id_type & _ c u r r e n t _ o f f s e t ;

/// The current group values for this thread

P e t s c S c a l a r *& _group_solut ion_values ;
} ; �

An abbreviated declaration showing the RayKernel base class can be found in List-
ing 7.2. There is one virtual function an inheriting class must override: onSegment().
That function is each time the current Ray computes an intersection across an ele-
ment. The RayKernel receives the current element and the beginning and endpoint
of the segment (corresponding to the entry and exit point on the element’s surfaces).



7.3 parallel ray tracing : smart 113

onSegment() is where computations such as calculating the new angular flux using
Equation 2.18 can be accomplished.

The virtual function setRay() is called when a new ray is starting to be traced using
a RayKernel. Within setRay(), the RayKernel will typically cache data from the Ray

object such as quadrature weights and the position of the _data array. Any data from
the Ray that need to be accessed often should be pulled out of the Ray and cached
within the RayKernel.

In addition to these functions, a number of data members currently exist within
the RayKernel base class. For now, the number of energy groups (_num_groups) and
number of polar angles (_num_polar) are within the RayKernel base class. That will
change in the future as the module is generalized further. The _current_offset is
an index into the parallel solution vectors and changes based on the current element.
This data member is utilized to access into _group_solution_values both for reading
and writing.

The _group_solution_values data member is a parallel vector (a libMesh Petsc-

NumericVector) which holds the main solution values being computed by the Ray-

Kernel. In the case of MOC, this corresponds to the new values of the group-wise
scalar flux. More detail is given about how those values are arranged and accessed in
Chapter 8.

Listing 7.3. RayMaterial base class.

c l a s s RayMaterial
{
publ ic :

RayMaterial ( const InputParameters & params ) ;

/// Called on each segment so the material can recompute the sigma_t

v i r t u a l void reini tS igmaT ( const Elem * /*elem*/ ) { } ;

/// Called on each segment so the material can recompute all XS

v i r t u a l void r e i n i t ( const Elem * /*elem*/ ) { } ;
} ; �

The base class for the RayMaterial is shown in Listing 7.3. It is simple, with only
two virtual functions to possibly override. The purpose of a RayMaterial is to com-
pute coefficients for use by RayKernel objects. In the most general case, that means
overriding reinit() which gets called on each segment. For MOC, reinit() will be
responsible for computing the cross sections. However, there is a special case just
for MOC: reinitSigmaT() the purpose of which is a shortcut to compute Σt for use
during the transport sweep. More detail is given about this in Chapter 8.

One important aspect of RayKernel and RayMaterial objects is that they can couple
to any other variable in the MOOSE system. That includes the possibility of coupling
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to variables like "temperature" and "density" to effect cross section calculation. This is
one of the ways that MOCkingbird is well suited to multiphysics analysis.

Listing 7.4. RayMaterial base class.

c l a s s RayBC
{
publ ic :

RayBC ( const InputParameters & params ) ;

/// Called on the boundary.

v i r t u a l void apply ( const Elem * elem ,
const unsigned long i n t i n t e r s e c t e d _ s i d e ,
const Point & i n t e r s e c t i o n _ p o i n t ,
const std : : shared_ptr <Ray> & ray ) = 0 ;

protec ted :
/// The Ray Problem

RayProblemBase & _ray_problem ;

/// The Ray System

RaySystem & _ray_sys ;
} ; �

The RayBC encompasses algorithms that are executed when a Ray strikes an external
domain boundary. The RayBC is allowed to directly modify the Ray object that is passed
into the apply() virtual function. Possible options include modifying the direction of
the Ray (such as reflection), stopping the Ray or possibly storing the Ray for later
retrieval (as is the case for MOC).

These three types of objects: RayKernel, RayMaterial, and RayBC are sufficiently gen-
eral to allow many different types of physics to be modeled using the SMART algorithm.
This thesis utilizes a RayKernel to update the angular flux and accumulate scalar flux
for each segment, RayMaterial to compute cross sections and RayBC to create reflective
and vacuum boundary conditions. However, many other options exist including par-
ticle transport, photon transport, laser modeling, line sources in finite-elements, and
Monte Carlo neutron transport. All of these represent possible avenues of future study
using SMART.



8 M O C K I N G B I R D M O C

With mesh generation (§5), sparse communication algorithms (§6) and parallel ray-
tracing (§7) developed, these capabilities can now be combined to create a scalable, par-
allel MOC application capable of 3D, full-core, neutron transport calculations called
MOCkingbird.

This chapter proceeds by first discussing a critical capability for turning MOC tracks
into the Ray objects needed by SMART, and uniquely determining their starting MPI
process, position, and element. Next, a description of the parallel sweep is given. That
is followed by descriptions of the RayKernel and RayBC objects MOCkingbird will plug-
in to the SMART algorithm to perform a transport sweep. Finally, there is a detailed
look at the scalability of MOCkingbird and the SMART algorithm, including comparison
with other communication algorithms.

8.1 track generation and parallel ray claiming

As described earlier, MOC tracks are created for integration of the angular flux during
a transport sweep. Tracks have regular spacing, and their directions are determined
by angular quadrature such that both space and angle are adequately covered. In ad-
dition, the track creation used here is "cyclic," meaning that all tracks "reflect" at the
domain boundary to a track with a complimentary angle that is part of the quadrature.
Tracks form complete cycles. Cyclic tracking is desirable for its ability to model reflec-
tive boundary conditions. The determination of the tracks, their starting, and ending
positions is performed using track generation code from the OpenMOC project [2, 12].

As previously discussed, Parallel MOC solvers often employ "Spatial Domain De-
composition" (SDD) [22] where tracks begin and end at partition boundaries, and
boundary angular fluxes are exchanged after each iteration. As was shown in 2.10,
SDD requires the storage of angular fluxes at the intersection of every track with
every partition boundary, necessitating the use of a large, fixed amount of memory
within each process. While this may be a possibility for codes employing structured
geometry that can split into equal pieces, unstructured mesh partitioning can create
many partition boundaries which would create an excessive amount of memory uti-
lization for MOCkingbird, this aspect of unstructured mesh MOC has previously been
found to be an impediment to the creation of such a code [71].

To avoid this, MOCkingbird utilizes a "long characteristic" approach for MOC. For
each source iteration, during the transport sweep, all tracks start at the domain bound-
ary and are traced the full length of the domain until they intersect another domain

115
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Figure 8.1. Cyclic tracks from OpenMOC need to be mapped onto the partitioned, unstructured
mesh (in this case, partitioned for 3 MPI ranks). The starting position of each track
must be uniquely located within a single MPI rank.

boundary. That behavior is consistent with a MOC code running in serial. Therefore,
MOCkingbird has the same solver behavior (same iterations) in both serial and parallel.
Also, there are no partition boundary angular fluxes which require storage, reducing
the overall memory requirements of the application. However, as discussed in §7.3.3.1
MOCkingbird does use some memory for caching Ray objects, though this is less than
if the partition boundary angular fluxes were stored as is shown in §2.10

Critical to this capability is the assignment of track starting positions. As shown
in Figure 8.1, MOCkingbird must uniquely locate the MPI rank, and the element on
that rank, which contains each track’s starting position. Track generation routines
from OpenMOC are utilized to generate the long characteristic tracks, in memory, during
a startup phase. However, in 3D, it can be the case that merely generating all the
start and end positions would overwhelm available memory on each MPI rank. For
that reason, MOCkingbird employs a scalable multi-step process to create, claim, and
communicate track starting information in parallel.

An overview of track claiming is shown in Algorithm 13. The algorithm begins
by using OpenMOC functions to create tracks. From tracks, Ray objects are created and
communicated to MPI ranks that might own the mesh element where the Ray would
start. Next, a fine-grained search is done to attempt to locate the starting element for
each Ray. Finally, a round of communication accomplishes the task of each ray being
uniquely claimed by one MPI rank.

This set of algorithms is run once, at the beginning of the calculation. From that
point on, the MPI ranks which claimed each Ray are then responsible for starting that
Ray at the beginning of each transport sweep. After starting the Ray, SMART takes over
and traces it to its final destination.
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Algorithm 13: Overview of the track claiming algorithm.

1 Set up the track generator: Algorithm 14

2 Generate 2D tracks: Algorithm 14

3 Create Ray objects from the tracks: Algorithm 15

4 Find the MPI ranks holding nearby mesh: Algorithm 16

5 Communicate the Ray objects to MPI ranks which may hold their starting
position: Algorithm 17

6 Search for a local element containing the start point of each ray: Algorithm 17

7 Uniquely claim each Ray by one rank: 18

What follows is a detailed explanation of each of the steps in the claiming algorithm.
A central theme across these algorithms is a drive for parallelization and scalability.
Ultimately, millions or even billions of tracks are used for calculation; therefore, this
startup algorithm needs to be efficient.

Algorithm 14: Setting up the OpenMOC track generator.

1 Create a bounding box (BB) completely encompassing the entire mesh
2 Generate one OpenMOC Cell using that bounding box
3 Add "dummy" materials to OpenMOC for that Cell
4 Create an "inflated" local bounding box (BB) around this rank’s mesh partition
5 Create an OpenMOC track generator using the geometry
6 Call generate2DTracks() on the OpenMOC track generator to generate the 2D tracks
7 Continue to Algorithm 15

The first step in this process is detailed in Algorithm 14, which sets up the Open-

MOC track generator. A "bounding box" (an axis-aligned rectangle/rectangular prism
in 2D/3D respectively) is created around the entire mesh. Bounding boxes, as shown
in Figure 8.2, play a critical role throughout the setup process. The bounding box that
encompasses the entire domain is known as a "mesh bounding box." For OpenMOC, this
rectangular prism serves as a "Cell," which is the complete domain of the problem.
The OpenMOC track generation routines also expect a certain amount of material data
to be specified for each cell (in this case there is only one), so a dummy material
object is created and provided to satisfy the interface. MOCkingbird only needs track
information from OpenMOC; therefore, this material data is never used.

A "local bounding box" encompassing this MPI rank’s partition is then created, as
shown in Figure 8.2. This local bounding box is "inflated," all dimensions are increased
by a small amount (currently 1e− 8cm), to account for floating-point round-off.

With the geometry, material data and bounding boxes created, the last step in Algo-
rithm 14 is to call generate2DTracks(). This causes OpenMOC to create track informa-
tion for all 2D tracks. As detailed in [12], 3D tracks can be generated on-the-fly. The 3D
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Rank 0

Rank 1

Rank 2

Figure 8.2. Local partition bounding boxes for three partitions.

tracks are based on the 2D tracks and have a closed-form expression for computing
the starting and ending points.

The OpenMOC track generation routines are currently set up such that all MPI ranks
must create all 2D tracks. This is the only serial portion of the track claiming algorithm.
In practice, this isn’t a burden. As is shown in §9.5, even for large simulations this step
takes less than a minute. However, alleviating this requirement is the focus of future
work.

The next phase of track claiming is shown in Algorithm 15. This is where Ray objects
are created from each track. The 2D tracks in OpenMOC have IDs which are numbered
from 0 to num_2d_tracks. Each track can be uniquely retrieved using its ID. Therefore,
to parallelize Ray creation, the range of [0, num_2d_tracks] is evenly split among all of
the MPI ranks. Then, each MPI rank is responsible for creating Ray objects associated
with the 2D tracks for the portion of the range it is assigned.

With the ranges of 2D track IDs assigned, Algorithm 15 then creates rays and stores
them for later communication. If the domain is two-dimensional, the 2D track is di-
rectly turned into two Ray objects (one for the forward track and one for reverse).
However, for three-dimensional domains, the 3D tracks associated with the 2D track
need to be retrieved from OpenMOC then, similarly to 2D, turned into two Ray objects
for each 3D track.

The range of 2D tracks assigned to the MPI ranks in Algorithm 15 is unrelated to
the partitioning of the mesh. Each MPI rank is assigned a range based on its rank:
rank 0 is assigned the first range, rank 1 the next, etc. Due to this, the start position
of the Ray objects created by each MPI rank, most likely, won’t fall within the mesh
assigned to that rank. Therefore, in Algorithm 15, after the Ray objects are created,



8.1 track generation and parallel ray claiming 119

Algorithm 15: Partition the range of 2D tracks, create Ray objects for each 2D
track from the part of the range assigned to this MPI rank, check them against all
bounding boxes, store them in a data structure for communication.

1 local_2d_track_range← partitionRange(num_2d_tracks, num_ranks, this_rank)
2 bbs← Communicate the local BB to all ranks using MPI_Allgather

3 rays_to_communicate← Initialize a map of vectors of Ray objects
4 foreach track in local_2d_track_range do
5 Retrieve the 2D track from OpenMOC

6 if Domain is 2D then
7 Create a Ray object for forward and backward versions of the track
8 foreach bb in bbs do
9 if Ray start is within bb then

10 rays_to_communicate← Store the Ray with the rank for the bb
11 end
12 end
13 else
14 foreach 3D track associated with this 2D track do
15 Create a Ray object for forward and backward versions of the track
16 foreach bb in bbs do
17 if Ray start is within bb then
18 rays_to_communicate← Store the Ray with the rank for the bb
19 end
20 end
21 end
22 end
23 end
24 Continue to Algorithm 16
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the bounding box of every MPI rank is tested to see if the Ray starting position lies
within that MPI rank’s bounding box. If it does, the Ray is then added to a map of
rays_to_communicate. The communication of the rays is in a later step. Note that this
is not unique. The Ray object’s starting position may lie within multiple bounding
boxes and will, therefore, be stored for communication to multiple ranks. Multiple
copies of the Ray objects are avoided by having the rays_to_communicate data struc-
ture hold pointers.

Algorithm 16: Determine neighbor ranks

1 foreach remote BB do
2 if remote BB intersects local BB then
3 Store remote BB as a neighbor
4 end
5 end
6 Continue to Algorithm 17

Before continuing to the next phase of processing, each MPI rank needs to have an
understanding of which other MPI ranks are "neighbors." Neighboring MPI ranks are
found using Algorithm 16. The bounding boxes, which were exchanged at the begin-
ning of Algorithm 15, are tested for intersection against the local bounding box. In
this way, the set of neighboring MPI ranks are found. This "neighborhood" is utilized
for further communication.

At this point, each rank holds a set of Ray objects which need to be communicated.
In Algorithm 17, the asynchronous sparse data exchange method, push_parallel_-
vector_data() defined in Listing 6.1, is called to send Ray objects to remote ranks.
Simultaneously, Ray objects are received. As they are received, they are further pro-
cessed, overlapping communication and computation for efficiency.

For each incoming Ray in Algorithm 17, a fine-grained search is performed to at-
tempt to locate an element which contains the starting point of the Ray. This search is
done using findElementContainingPoint(). That routine utilizes a libMesh capability
to do a quad or octree search [53], in 2D or 3D respectively, for an element that exists
on the local rank which contains the given position in space. The return value of the
function is either a NULL pointer (meaning no element on the local rank contains the
starting position) or an Elem pointer.

In the case of a NULL pointer, the Ray is deleted. If the local rank owns the element,
then the Ray is added to a list of possibly_claimed_rays which is then further oper-
ated on in Algorithm 18. However, as mentioned in §5 The element returned from this
search may not belong to this rank. There are two possible cases: the starting point
of the Ray is not near the current rank’s elements and can be safely discarded, or the
starting point lies just on the border between an element this rank owns and one a
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Algorithm 17: Communicate Ray objects and find Ray objects which begin within
an element on this rank.

1 possibly_claimed_rays← Initialize a list of Ray objects this rank will might claim
2 begin
3 Call push_parallel_vector_data() as declared in Listing 6.1
4 // The following communication and processing happens simultaneously

5 Asynchronously send the data in rays_to_communicate to remote ranks
6 // Check each incoming Ray to see if the starting point

7 // actually lies within a mesh element owned by this rank

8 foreach Incoming Ray do
9 elem← findElementContainingPoint(Ray.start)

10 if elem not owned by this rank then
11 // Check neighbor elements to see if this point might lie on

12 // the side of an element which is owned by the local rank

13 foreach neighbor of elem do
14 if neighbor is owned by this rank and neighbor contains Ray.start then
15 elem← neighbor
16 end
17 end
18 end
19 if elem owned by this rank then
20 Add Ray to possibly_claimed_rays Ray.starting_elem = elem
21 end
22 end
23 end
24 Continue to Algorithm 18
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neighbor rank owns. In that case, the Ray must be saved locally for more processing
using Algorithm 18.

Algorithm 18: Uniquely claim Ray objects by ranks.

1 ids_attempting_to_claim← Initialize map of rank to vector of Ray IDs
2 // Build a data structure of claims to be communicated

3 foreach ray in possibly_claimed_rays from Algorithm 17 do
4 foreach neighbor do
5 if ray.id is even and neighbor’s rank > local rank then
6 ids_attempting_to_claim[neighbor rank]← ray.id
7 else if ray.id is odd and neighbor’s rank < local rank then
8 ids_attempting_to_claim[neighbor rank]← ray.id
9 end

10 end
11 end
12 ids_remotely_claimed← initialize a set of Ray IDs
13 begin
14 Call push_parallel_vector_data() as declared in Listing 6.1
15 // The following communication and processing happen simultaneously

16 Asynchronously communicate the data in ids_attempting_to_claim to
remote ranks

17 foreach id in every received vector do
18 ids_remotely_claimed← id
19 end
20 end
21 foreach id in ids_attempting_to_claim do
22 if id not in ids_remotely_claimed then
23 Claim the Ray and store it
24 end
25 end
26 Clear memory for all non-claimed Ray objects

The final step for track claiming involves parallel communication between neighbors
to have one rank uniquely claim each Ray. This is achieved with a single, one-sided,
asynchronous sparse communication step. The idea is that each rank assumes that it
has claimed the Ray objects it is holding until told otherwise by the communication
step.

The beginning of Algorithm 18 prepares two lists of Ray objects: one to be commu-
nicated to neighbors whose rank is larger than the local rank and one to be sent to
ranks lower than the local rank. The choice to send a message up or down is based on
the Ray ID being even or odd. This splitting is done for balance.

Next, once the lists have been prepared, the push_parallel_vector_data() inter-
face described in §6.1.3 is invoked to asynchronously send the lists to the neighbors.
During this asynchronous process, ranks are sending, receiving, and processing simul-
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Figure 8.3. The track starting positions for three tracks: orange, pink and blue

taneously. The incoming messages specify that other ranks are claiming those Ray IDs,
and hence, the local rank can safely discard it.

After the asynchronous communication and processing completes, any Ray object
left on the local rank is then uniquely owned by that rank. During each transport
sweep, the owning ranks are uniquely responsible for starting the Ray objects which
they own.

8.1.1 Claiming Example

A concrete example is presented for clarification of the track claiming algorithm. As
seen in Figure 8.3, there will be three tracks: orange, pink, and blue. The tracks are
represented with their starting positions and directions. In the non-partitioned mesh
shown in Figure 8.3, locating the starting position within the mesh is trivial.

The first step in the process is to partition the mesh, as shown in Figure 8.4a. In
this case, the mesh was split into three pieces and distributed to three MPI ranks. The
next step, as seen in Figure 8.4b is to generate the local bounding boxes and exchange
them with all other ranks (Algorithm 14). Also, during this step, the OpenMOC track
generation routines are initialized.

In step 3 each MPI rank is responsible for generating a range of tracks. In Figure 8.4c,
each MPI rank generates one of the three tracks for this demonstration. The tracks are
represented as being just outside the local mesh partition since they most likely won’t
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(b) Step 2: Local bounding boxes. (Alg 14)
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(c) Step 3: Generate Ray objects. (Alg 15)
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(d) Step 4: Communicate Ray objects. (Alg
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(f) Step 6: Uniquely claim. (Alg 18)

Figure 8.4. Steps of scalable track generation and claiming.
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be found within that geometry. In reality, each rank will most likely generate many
thousands of tracks.

The next step is to create lists of rays to send MPI ranks which may own their
starting position. This is done, as shown in Algorithm 15, by checking the bounding
box for each other partition to see if the starting position lies within that bounding
box and creating lists of tracks to send to other ranks.

After the lists to be sent are complete, an asynchronous communication step, de-
tailed in 17, is used to communicate the rays and simultaneously do a fine-grained
search on the local geometry for the starting positions of any incoming rays. As can
be seen in Figure 8.4d, the orange track is communicated twice: once to rank 1 and
once to rank 0. This is due to the starting position for that track falling within both
bounding boxes. This "duplication" of that track will be fixed in a later step. Similarly,
the pink track is also "duplicated" to rank 0 and rank 2. During this process, any in-
coming rays with starting positions that are not found within the local elements are
discarded, as is shown in Figure 8.4e.

The final step is to do one round of single-sided communication to claim the rays
uniquely. As is explained in Algorithm 18, asynchronous messages are sent to "neigh-
boring" MPI ranks (those with bounding boxes that intersect the local bounding box).
The messages state an intent to claim a ray. For balance, these messages are either sent
to higher or lower MPI ranks depending on the ID of the Ray. In this way, the pink ray
is uniquely claimed by rank 2 in Figure 8.4f.

After completing all of these steps, the three rays have had their starting positions
uniquely located within the domain decomposed geometry. If Figure 8.4f is compared
to Figure 8.3, it can be seen that the three tracks ended up in the correct positions.
Now, during each transport sweep, these ranks always start these tracks.

8.2 source iteration

Source iteration is used to solve the steady-state k-eigenvalue neutron transport prob-
lem, which was introduced in Chapter 2. All of the previous chapters and sections
have developed the capability needed for efficient, parallel, source iteration for MOC;
this section details how those capabilities are put together within MOCkingbird.

The source iteration algorithm within MOCkingbird is performed as stated in §2.7,
including, initializing the flux, computing the source, updating the eigenvalue, and
applying stabilization. Therefore, this section only provides detail into deviations MOC-
kingbird takes from standard MOC solvers. There are three main differences:

1. Parallel Storage: memory for values associated with elements is distributed across
MPI ranks using PETSc vectors.
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2. Object-Oriented: Segment integration, materials, and boundary conditions exist
as objects that are plugged into SMART.

3. Transport Sweep: The transport sweep is performed by passing Ray objects rep-
resenting the tracks to SMART.

These differences are explored in detail in the following sections.

8.2.1 Storage

With the mesh domain decomposed into partitions, the storage mechanism for spa-
tially varying data becomes important. There are four main spatially varying values
stored within MOCkingbird:

1. Scalar Flux (φg)

2. Total Cross Section (Σt,g)

3. Total Source (Qg)

4. Element Volume (V)

The arrays holding the scalar flux, total cross section, and total source are each ordered
such that they indexed by element (FSR) then by group. The volume vector is indexed
only by the element.

These arrays use a storage mechanism from libMesh: the NumericVector. A Numeric-

Vector in libMesh is an interface to a parallel, distributed PETSc vector, whose layout
matches the mesh partitioning. Therefore, the storage is scalable: as the mesh is de-
composed across MPI ranks, so is the storage. This is shown in Figure 8.5.

During a transport sweep, a RayKernel can both read and write to these parallel
vectors. For each segment, MOCkingbird computes the current index into the parallel
vectors for the current element. The RayKernel can then utilize the index to look up
values it needs for updating angular flux and accumulating scalar flux.

8.2.2 Object Oriented Design

As described in §7.3.4, the SMART implementation provides a pluggable set of inter-
faces for defining physics, boundary conditions, and material properties to be used
during ray-tracing. MOCkingbird utilizes these interfaces to plug in C++ objects which
compute the requisite values for performing a MOC calculation.

As first described in §4.2, MOCkingbird contains the ability to read cross sections
from data files. This is accomplished within RayMaterial derived objects. In §7.3.4
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Figure 8.5. Example of a NumericVector. The mesh is partitioned into three pieces, therefore
the scalar flux vector is also split into three contiguous pieces which are held on
the ranks whose elements are associated with those entries in the vector.

a RayMaterial was defined as an object which has two methods on it: reinit() for
computing all cross sections and reinitSigmaT() for only recomputing the total cross
section. Within MOCkingbird, the total cross section is cached into a parallel vector for
later retrieval by a RayKernel during the transport sweep.
MOCkingbird contains one RayKernel named FlatSource. When SMART begins trac-

ing a Ray, it will call the setRay() method on the FlatSource RayKernel. Since the Ray

was created from a track, as explained in §8.1, the Ray carries all of the quadrature
data needed for spatial and angular integration and a data vector containing the cur-
rent angular flux (ψg). During setRay(), FlatSource will cache these values internally
for easy access during each segment computation.

As SMART traces the Ray across the domain, the onSegment() method will be called
on the FlatSource RayKernel for each element crossing. Recall from §7.3.4 that the
onSegment() method receives a pointer to the current element and the start and end
point of the current segment. This, combined with the quadrature values and the
current parallel vector index computed by MOCkingbird, allows FlatSource to update
the angular flux using Equation 2.18 and accumulate ino the scalar flux within the
current element using Equation 2.19.

Once the Ray reaches the domain boundary, SMART executes active RayBC objects for
that boundary. In §7.3.4 the RayBC object was defined as having only one method on
it: apply(), which receives the current element, intersected side, intersection point
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and the Ray object itself. The RayBC performs operations to apply the boundary con-
dition. The VacuumBC object zeros out the angular flux held within the Ray, while a
ReflectingBC leaves the angular flux as it is. By leaving the angular flux untouched,
the ReflectingBC allows the Ray to start the next transport sweep with the outgoing
angular flux.

The RayBC objects within MOCkingbird also perform one other crucial activity: they
add the Ray to the RayBank. A RayBank object exists on each MPI rank and is a storage
area for Ray objects that have completed tracing during this transport sweep. At the
beginning of the next transport sweep, the Ray objects within the RayBank are pulled
out, given the direction and information of the next track in the cycle and passed to
SMART to trace across the domain. This is further clarified in the next section.

8.2.3 Transport Sweep

As mentioned in §7.3.4, MOCkingbird contains an object called TrackListStudy which
inherits from the SMART object called RayTracingStudy. TrackListStudy overrides the
generate() method to give SMART the Ray objects which represent MOC tracks. During
the very first transport sweep, TrackListStudy will retrieve the newly created Ray

objects from the track claiming algorithm described in §8.1. It will then add these rays
to the work_buffer and let SMART do the rest.

When a Ray reaches a domain boundary SMART calls the RayBC object that has been
specified for that boundary. The RayBC (whether it is vacuum or reflecting) adds the
Ray to the RayBank on the local MPI rank. During each subsequent transport sweep,
the TrackListStudy pulls Ray objects from the local RayBank, uses the track informa-
tion stored during track claiming to point the Ray in the direction of the next track
in the cycle, and then adds the Ray to the work_buffer. Once all Ray objects have
been processed from the RayBank the work_buffer will, again, be handed to SMART for
tracing.

This process is pictorialized in Figure 8.6. As a demonstration, only four Ray objects
are shown, while in a real calculation there are many more. Figure 8.6a shows the
starting state for every transport sweep after the first one: all of the Ray objects reside
within RayBank objects for each MPI rank. Also, note that each Ray object contains its
own group-wise angular flux (ψg) which moves with the Ray as it moves through the
domain.

When a transport sweep starts, the TrackListStudy pulls the Ray objects from the
RayBank and gives them to SMART to start tracing. The Ray objects instantly begin
traversing the domain. This is shown in Figure 8.6b where all of the Ray objects are
out in the middle of the domain. As the Ray moves through the domain SMART calls
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Figure 8.6. The evolution of a sweep. Four rays (yellow, pink, green, orange) and their angular
fluxes (ψg) are traced through the mesh. They start in the RayBank of an MPI rank.
During the sweep they move through the mesh, modifying ψg and accumulating
into φi,g in each element. When they reach the domain boundary they are put into
the RayBank on that rank and given the new direction (reflected) they travel during
the next sweep.
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on the FlatSource RayKernel to update the angular flux and add to the scalar flux for
each element crossed.

Figure 8.6c shows the state of the Ray objects after more time has elapsed during
the transport sweep. At this point, two Ray objects have reached the domain boundary.
When that happened a RayBC was called (likely ReflectingBC for a set of pin-cells
like this). The RayBC can then modify the angular flux (ReflectingBC does not) and
place the Ray in the local RayBank. In Figure 8.6c, both the green and orange rays have
completed and are now sitting in a RayBank. For illustrative purposes, these rays are
shown with their directions modified for the next track in the cycle. In MOCkingbird,
that step is not performed until the beginning of the next transport sweep, but it is
useful to think about it happening this way.

Finally, Figure 8.6d shows the end-state of the transport sweep. Every ray has moved
from one domain boundary to another, has had a RayBC applied to it, then has been
placed in a RayBank to await the next transport sweep.

It’s important to look at how memory is used during a transport sweep. Notice
that Ray objects (and hence, angular flux) are not stored anywhere in the interior of
the domain. The only apparent storage during the entire process is the angular flux
attached to each Ray object. That angular flux storage "moves" with the Ray such that
the total amount of memory used by the algorithm stays constant during the sweep.
However, as mentioned in §7.3.3.1, SMART utilizes an ObjectPool to reduce memory
allocation/deallocation as Ray objects move into and out of MPI ranks. Because of
this, there is still some residual memory usage, even for MPI ranks holding partitions
which don’t contain any of the domain boundary. This effect will be further explored
in §8.3.1.1.

8.3 scalability

Scalability is critical for a neutron transport tool. There is no end to the amount of com-
putational complexity that simulating a reactor can bring. Geometrically, reactors have
many intricate features to be modeled and attempting to do so in three-dimensions
creates a significant computational burden. Also, for MOC, using more angles and
energy groups is necessary for high-fidelity, predictive simulation. A full-core, three-
dimensional neutron transport simulation could be made to utilize the entirety of
even the largest supercomputers. Therefore, it is critical that as more computational
resources are used, they are used efficiently. This section explores the scalability of the
SMART algorithm and MOCkingbird in both two- and three-dimensional domains on up
to 20,000 cores.

For a MOC code like MOCkingbird, one of the most important measures of perfor-
mance is how fast it can perform segment integrations. That is, the time for each
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source iteration divided by the number of intersections multiplied by the number of
groups and, in 2D, by the number of polar angles,

NSI =
T

∑
k

∑
i

Ng ∗ Np
, (8.1)

where T is the time for one source iteration (in nanoseconds), k are the tracks, i are the
segments on each track, Ng is the number of groups and Np is the number of polar
angles in the 2D polar quadrature. NSI here stands for "nano-seconds-per-integration"
which is a measure that has been utilized in other MOC papers [2, 3].

A crucial point about NSI is that 2D calculations utilizing multiple polar angles
(such as 3 polar angles using TY quadrature [9]) have a floating-point operation (flop)
density advantage over 3D calculations. This is because, in 3D, each intersection only
integrates one polar angle (the one in the direction of the ray). Therefore, with the
same number of groups, a 2D intersection has 3x as many flops to compute as an
intersection in 3D. This means, all-other-things-being-equal (which they are not), that
3D NSI should be expected to be higher than 2D.

When considering scalability, if the number of cores is doubled, it would ideally be
the case that the time (T) would be cut in half and, therefore, NSI would also fall by
half. This provides one way to check the scalability of an algorithm: plot time versus
the number of cores utilized and compare to the ideal line. This is one of the primary
ways to present scaling results in the following sections.

Though plotting decreasing time as more computational resources are used can
provide a visual depiction of how well a code is scaling, the numbers themselves do
not mean much. Therefore, another measure is used: "Levelized" NSI, which is defined
as:

LNSI = Nprocs ∗ NSI. (8.2)

This essentially "re-scales" NSI back to a meaningful number that can be instantly
compared with other codes (even if they are serial). If a code is perfectly scaling, the
NSI stays constant.

Another measure of scalability is "parallel efficiency." As mentioned earlier, "ideal"
speedup would see the time divided directly by the number of cores in use. Therefore,
if something took 120s on one core, it should ideally take 30s on 4. However, in reality,
there can be some efficiency loss when utilizing more cores by using more MPI ranks:
communication costs and load imbalance, in particular, play a major role here. In the
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previous example if the code spent 40s computing while using 4 cores that would be
an efficiency of 75%, which is computed as,

E =
Tideal

Tactual
, (8.3)

where Tideal = T1/Nprocs: the serial compute time divided by the number of cores
currently in use and Tactual is simply the actual time the algorithm took.

It is often the case that it is not possible (or desirable) to get T1. This can happen
due to the problem simply being too large to run serially or, as is the case in most
modern computers, running using one core of a multicore processor is not directly
comparable to using many cores of that processor. There are several reasons for that,
including automatic frequency scaling and when CPU resources are shared, such as
memory bandwidth. In these cases, efficiency can be computed by comparing to the
time utilized by the run using the least number of cores (the "reference" (R) case),

EN =
LNSIR

LNSIN
, (8.4)

where R is the reference case, LNSIR is the levelized-nanoseconds-per-integration as
defined in Equation (8.2) and similarly for, N: the current number of cores used. As an
example, if the code were to achieve 25 levelized nanoseconds-per-integration when
using 40 cores and 50 levelized nanoseconds-per-integration when using 400 cores,
the parallel efficiency would be 50%.

8.3.1 Weak Scalability

A "weak scaling" study can be used to assess the efficacy of the SMART algorithm. Weak
scaling refers to a study where the amount of computation per core is held constant.
As the number of cores grows, so does the problem size (in equal proportion). Weak
scaling is very relevant to the engineering community. It represents the idea of running
a coarse (simplified) simulation on a laptop/desktop/workstation until it is working
correctly, then running the same simulation with 1000x more fidelity using 1000x more
cores on a cluster. Ideally, the two simulations should run in the same amount of time.

It should be noted that weak scaling for MOCkingbird and SMART is much more chal-
lenging than for traditional MOC codes using MRT and SDD. This is because, in MOC-

kingbird, true long characteristic rays are traced completely across the domain. As the
domain grows larger in weak scaling, the rays have to move farther and pass through
many more partitions. In addition, since rays only start on the domain boundary, work
has to propagate inward before interior partitions receive any work. This "lag" could,
theoretically, cause scaling issues, and this effect worsens as the domain size and num-
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ber of MPI ranks grows. Therefore, if MOCkingbird maintains high parallel efficiency
while weak scaling, that shows the algorithms are working well.

This is not the case with MRT and SDD. With those methods, the tracks are only
traced over one partition within a transport sweep. Therefore, for a perfectly repeating
lattice, precisely the same work is done by every core (by definition). This means that
MRT and SDD should be perfectly weak scalable (as is shown in [3]). However, that
does not mean that the solution time for MRT with SDD is perfectly weak scalable. As
the domain size grows, the percentage of the domain traced within a partition shrinks
with MRT and SDD. This causes a degradation in solver performance, leading to more
iterations being required [3]. That does not occur with MOCkingbird.

An alternative scalability measure called "strong scaling" also exists. In strong scal-
ing, the problem sized is fixed, and more compute capability is utilized to try to solve
it faster. This type of scalability is explored in §8.3.2.

Time is measured by the number of nanoseconds needed for each MOC integra-
tion. This is becoming a standard method of measuring the speed of MOC codes
[3, 8, 101] and is convenient to measure. It should be noted that the times reported in-
clude everything necessary for a MOC iteration: the transport sweep itself (integrating
across all of the tracks through the domain) and any pre/post calculations such as re-
computation of source terms and convergence checking. In practice, this "non-sweep"
time is negligible.

8.3.1.1 2D Weak Scalability

To begin, the scalability of the algorithm within a two-dimensional domain is explored.
The chosen simulation is based on the BEAVRS [87] benchmark. The cross sections are
a set of 70 group cross sections previously generated by [3]. In addition, TY quadra-
ture [9], utilizing three polar angles, is used for polar angle integration. This gives 210

individual angular fluxes to integrate on each segment. Further, the angular quadra-
ture has a fine spacing of 128 azimuthal angles with a 0.001 cm spacing. Each execution
is run 3 times (doing only one power iteration each time) with the best time taken.

A uniform lattice of 3.1 enriched fuel pin-cells is generated for each number of
partitions to be tested. The basic unit mesh for each partition can be seen in Figure 8.7.
Each pin-cell contains 1280 quadrilateral elements to describe the fuel, gap, clad, and
moderator, this brings the total element count per-partition to 11520.

Mesh partitioning is critical to achieving good scalability. In this case, with a per-
fect lattice, "optimal" partitioning can be achieved. This "optimal" partitioning is the
same as described for SDD in §2.9 A new object was added to MOOSE called the
HierarchicalGridPartitioner that takes into account the layout of the MPI processes
across the nodes of the cluster. The idea is to attempt to keep partitions grouped to-
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Figure 8.7. Unit cell for each partition within the 2D weak scalability study. 11520 quadrilateral
elements total.
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Figure 8.8. Mesh partitioning (each block represents the partition for a different MPI process)
for 144 MPI processes spread over 4 computational nodes (36 processes per node).
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gether on one compute node that are communicating with each other, thus reducing
network communication.

An example partitioning is shown in Figure 8.8. In that figure, the mesh has been
partitioned for nodes with 36 processes per node. The coloring is showing the rank
each part of the domain is assigned to (from 0 to 143). Each of the four large "squares"
(one in each quadrant) is a group of 36 partitions (6x6). The 36 partitions within each
quadrant of the mesh are assigned to the same computational node. Therefore, only
44 of the 144 MPI processes do network communication. All of the processes owning
partitions "interior" to each node’s mesh can communicate using much faster on-node
pathways within MPI [103].

While this type of partitioning can be "optimal," it is also challenging to work with.
Only particular numbers of MPI processes per node and numbers of nodes work with
a given set of pin-cells. In addition, thought must be used when scaling the domain
size and scaling up the number of cores. This is especially true for 3D. Therefore,
while this is a useful way to test the algorithm in a way that minimizes the impact of
partitioning, it is not a practical capability for production runs. These problems also
demonstrate some of the constraints inherent in SDD for traditional MOC codes. A
more involved treatment of partitioning options is given in §8.3.3.

As mentioned in §3.1.1, nodes in the Lemhi supercomputer contain 40 cores; how-
ever, 40 is not a very convenient number for Cartesian grid scaling. Therefore, for this
scaling study, two different sequences of cores were used: one based on 32 MPI ranks
per compute node and the other based on 36. The results show that that there is no
speed difference in leaving 8 or 4 cores unused. The full set of information for each
mesh utilized can be found in Table 8.1. These numbers were chosen due to the above
discussion; 32 and 36 are natural numbers to work with to create partitions using
the HierarchcialGridPartitioner. The results of the executions of both the 32- and
36-core series are graphed together as one result.

The timing results can be seen in Figure 8.9. In Figure 8.9a, the red line shows the
nanoseconds-per-integration that was achieved with each successive simulation. Note
that we should expect this line to go down linearly on a log-log plot, and it does,
following very close to the ideal line that is plotted. A more detailed way to look at
the efficacy of the algorithm is in Figure 8.9b. The 36 MPI process result is used as a
reference, and the efficiency is plotted in Figure 8.9b. Scaling from 36 cores to 16384 an
efficiency of 89% is maintained. This shows that MOCkingbird can make efficient use of
large clusters for solving highly detailed problems. Finally, the levelized nanoseconds
per integration (LNSI) are shown in 8.9c. Ideally, an LNSI plot should always be flat.
Here we have a very modest increase going from 36 MPI ranks to over 16k. The
absolute numbers are near 10 ns/integration, which is comparable to other published
MOC calculation speeds [3, 101, 104], even when working with 16384 MPI ranks.
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MPI Processes X-Pincells Y-Pincells Total Pincells Total Elems
64 24 24 576 737280

256 48 48 2304 2949120

1024 96 96 9216 11796480

4096 192 192 36864 47185920

16384 384 384 147456 188743680

36 18 18 324 414720

144 36 36 1296 1658880

576 72 72 5184 6635520

2304 144 144 20736 26542080

9216 288 288 82944 106168320

Table 8.1. The core and mesh sequences used for the 2D weak scaling study.

(a) ns/integration. (b) Parallel efficiency.

(c) LNSI

Figure 8.9. 2D weak scaling performance.
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Figure 8.10. Average memory used by each MPI process.

Another interesting aspect of scalability can also be studied with this problem setup:
that of memory scalability. An application which scales well in memory should use a
constant amount of memory per-process during weak scaling. Figure 8.10 shows the
average amount of memory MOCkingbird utilized for each MPI rank to store scalar and
angular flux information during the scaling study. A good result here would be simply
a flat line since each MPI rank has the same amount of information. However, memory
actually decreases as the number of MPI ranks increases. This is due to the way the
SMART algorithm opportunistically reuses Ray objects from the ObjectPool as they pass
through the partition. Along with showing MOCkingbird memory performance, Figure
8.10 also shows calculated values for three other cases:

• SMART: The theoretical lower limit for memory usage when using SMART.

• BJ MPI: A "block-Jacobi-like" algorithm (as mentioned in §2.10) using only MPI
for parallelism.

• BJ Hybrid: The same block-Jacobi-like algorithm, but using hybrid parallelism:
OpenMP for shared memory and MPI for distributed.

Each of these other three lines is calculated based on the ray-tracing diagnostic out-
put from MOCkingbird. In this case, due to the perfectly square partitioning, the BJ
algorithms represent the same memory storage that would be used for Modular Ray
Tracing (MRT) with Spatial Domain Decomposition (SDD) as described in §2.10. Fig-
ure 8.10 shows that SMART theoretically uses the least amount of memory. However, the
implementation in MOCkingbird uses more, due to buffering and using the ObjectPool

for efficiency. Even so, MOCkingbird, using only MPI, eventually uses less memory than
even the BJ Hybrid algorithm, with the crossover point falling near 1000 MPI ranks.
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Figure 8.11. Number of Ray objects held in the ObjectPool by each MPI process overlaid on
the domain.

MPI Processes X-Pincells Y-Pincells Z-Layers Total Elems
36 6 6 64 811008

288 12 12 128 6488064

2304 24 24 256 51904512

Table 8.2. The core and mesh sequences used for the 3D weak scaling study.

Figure 8.11 allows us to visually understand the use of the ObjectPool by each MPI
process. The figure shows the number of Ray objects created by each MPI process
overlaid on the physical domain for the 144 MPI process case. The MPI ranks owning
the boundary must generate all of the Ray objects they start. However, the interior
processes only need to generate as many Rays as they ever have "in-flight" at one time.
This leads to a dramatic decrease in the average amount of memory consumed per
process. Ultimately, this memory scalability shows that SMART can be utilized to solve
extremely large, detailed problems.

8.3.1.2 3D Weak Scalability

Weak scaling should also be checked with a three-dimensional (3D) problem as well.
Three-dimensional weak scaling can be difficult to perform, since each successive grid
is 8 times larger than the last, therefore requiring 8 times the number of MPI processes.
Because of these limitations, only a small series of tests was completed in 3D, but the
overall trend is very similar to 2D. More 3D testing is in Chapter 9
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(a) Whole mesh (moderator selected). (b) Mesh detail for moderator.

(c) Mesh detail for fuel.

Figure 8.12. The mesh for the 32 MPI process case for 3D weak scaling.

Table 8.2 shows the series of problems carried out to test 3D weak scaling. The
number of elements per MPI process is held constant at 22,528. That number is still
within the reasonable range of where a finite-element problem would normally be
run with MOOSE. Each mesh was created by starting with the two-dimensional set
of pin-cells and then using the MeshGenerator system within MOOSE to extrude the
two-dimensional mesh the specified number of z-layers. The height of the z-layers was
set to 1.25984 cm to generate relatively square elements in each pin-cell. Figure 8.12a
shows the mesh used for the 36 MPI process case. Each of the successive meshes looks
similar, just doubled in each direction.

The results for this scaling study are shown in Figure 8.13. Overall, a similar trend
to the 2D results is obtained, showing excellent scalability and speed. Note that speed
in three-dimensions is slower than in 2D for multiple reasons:

1. No polar quadrature, reducing the amount of work to do on each segment to
one-third of the 2D case.
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(a) ns/integration. (b) Parallel efficiency.

(c) LNSI

Figure 8.13. 3D weak scaling performance.

2. More faces to check for intersections on each element.

3. The intersection tests themselves are also more complicated and costly.

Therefore, a 2x slowdown when going from 2D to 3D is acceptable. The 20 ns/inte-
gration that MOCkingbird achieves on thousands of cores is similar to the performance
obtained for a small, 3D MOC calculation using 36 cores in [15].

8.3.2 Strong Scalability

While weak scaling shows the ability of the parallel algorithm to handle increased
fidelity using increasing amounts of computational resources, strong scaling shows
how the algorithm handles a fixed-size problem. Strong scaling is an essential test
because a user of an algorithm/code wants to know if they can solve their problem
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Figure 8.14. Pin-cell used for strong scaling. 352 elements total.

twice as fast if they use twice as many cores. For the 3D, full-core calculations targeted
by MOCkingbird, it is going to be paramount to be able to use more compute resources
to solve them faster.

To test strong scaling, a similar lattice to the one from §8.3.1.1 is used. The tar-
get number of cores for the problem to run well on is 1024. Therefore, the pin-cell
shown in 8.14 is used in a 192x192 configuration. Note that 192 was chosen so that
the HierarchicalGridPartitioner could evenly split the resulting lattice perfectly. In
§8.3.3 more exotic combinations will be tried for strong-scaling. This pin-cell contains
352 elements giving the final mesh 12,976,128 total elements. This test, then, is an
excellent challenge to see how SMART deals with a lack of work.

The results of this scaling study can be seen in 8.15. Excellent strong scaling was
achieved, with the final result, at 9216 MPI ranks, achieving 89% parallel efficiency.
With 9216 MPI ranks, each one is only working with 1408 elements. This shows ex-
cellent "algorithmic elasticity": the algorithm doesn’t seem to break down even when
work is spread very thin. This is a useful feature of any parallel code; it allows a user
to utilize whatever resources are available to solve the problem.

Looking at Figure 8.15b, an interesting phenomenon occurs with 256, 576, and 1024

MPI ranks: they are actually faster than with 36 MPI ranks. While these runs re-
quire more communication, it’s also possible that the lowered amount of memory
needed for each process meant gains were made in memory efficiency (including
cache-coherency). The effect is slight though, and turns over at 2304 and continues a
more conventional downward trend in parallel efficiency.

Looking at Figure 8.15c the same trend can be seen, MOCkingbird can achieve faster
integration speeds with 256, 576, and 1024 MPI ranks than with 32. Also, while the end
of the plot in Figure 8.15c looks like the code is slowing down by a lot, the vertical axis
must be taken into account. In reality, LNSI only grows by a little over 1 ns/integration
when scaling the same problem from 32 MPI ranks to 9216.



8.3 scalability 143

(a) ns/integration. (b) Parallel efficiency.

(c) LNSI

Figure 8.15. 2D strong scaling performance.
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Once again, these results were achieved using a "perfect" hierarchical partitioning
with the HierarchicalGridPartitioner. From this point on, we’ll investigate more
realistic setups using standard finite-element partitioning technology to see how the
algorithms fare.

8.3.3 Mesh Partitioning

All of the previous tests of scalability utilized a perfect lattice of pin-cells and capital-
ized on the ability to run using the ideal number of MPI processes to allow perfectly
splitting the work. Unfortunately, while that is an excellent way to test the SMART
algorithm without many side-effects, it does not translate well into real-world usage.
In reality, domains are not always made of perfectly repeating lattices. Even within
light-water reactors (LWRs), heterogeneity is provided by spacer grids, guide tubes,
burnable poisons, large moderator regions just outside the core and even the pressure
vessel. In addition, having to restrict the number of cores used based on the particular
numbers of pin-cells and vertical spacing is overly restrictive. Further, unstructured
mesh allows for more natural modeling of more exotic types of reactors that may be
devoid of a perfectly repeating lattice or might have a complex structure in 3D. Par-
allel efficiency of real applications of SMART is directly dependent on its ability to
balance the workload across a cluster.

This section explores the effect of different partitioning algorithms on the MOC
solve within MOCkingbird. Novel weighting of the dual-graph (connectivity graph) is
utilized to achieve better load balance and improved scalability. The first two schemes
tested are ParMETIS [44] and a "hierarchical" partitioner which is a multi-level compo-
sition of ParMETIS partitionings[42].

The ParMETIS results are the outcome of directly calling the ParMETIS routines and
passing the dual-graph of the finite-element mesh. The hierarchical partitioner is a
recent novel development within PETSc [42]. The hierarchical partitioner was devel-
oped to address a particular design trend within supercomputers: the growth of the
number of processor cores within a node of a cluster. In recent years, the number of
cores within one node of a supercomputer has significantly increased to numbers such
as 40, 48, and 64. Also, supercomputers that are deployed within the next year will
contain nodes with 128 or more cores.

As the number of cores within a supercomputer node increases, it becomes cru-
cial to take advantage of the fact that MPI processes running on the same node can
communicate with each other much more efficiently than those located on disparate
nodes [103]. MPI processes within the same node can utilize "shared memory" mes-
saging schemes developed within MPI; bypassing the overhead of network communi-
cation typically required with distributed memory parallelism. This has the potential
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to not only speed up those individual communications but also reduce contention for
available networking resources, potentially also improving communication speed for
messages that must be sent over the network.

"Hierarchical" partitioning then, is recognizing this two-level communication hier-
archy: the network and shared memory. Instead of treating the partitioning problem
as merely trying to balance work distribution and reduce communication, hierarchi-
cal partitioning strives to cluster partitions which communicate with each other often,
onto the same physical node within the cluster to reduce "off-node" network commu-
nication. The present work utilizes recent advances within PETSc [42] that allow for a
two-level hierarchical partitioning with many available partitioning packages. In this
case, ParMETIS is utilized at both levels: first to obtain a partitioning for the compute
nodes and secondly to partition the elements assigned to each node for each MPI
process on that node.

8.3.3.1 Perfect Lattice

To understand the impact of partitioning on the parallel performance of SMART, both
ParMETIS and hierarchical partitioning are contrasted with the solution speed on the
same perfect lattice problems from §8.3.2. In this case, the solver is pushed to 16200

MPI processes to understand how SMART works with less than perfect partitioning. At
that number of processes, there are only 800 elements per process - a real test for the
algorithm.

The results of this study can be found in 8.16. For this simple mesh, both ParMETIS

and the hierarchical partitioner perform similarly. Both of these schemes compare well
to the "perfect" partitioning of the grid partitioner. Further, unlike the grid partitioner,
these two schemes do not rely on particular numbers of MPI processes to map the
partitions to. This allows the study to push further and try 12600 and 16200 MPI
processes. Both ParMETIS and the hierarchical partitioner perform very well when
stretched to these limits: keeping nearly 80% efficiency even when only 800 elements
are assigned to each MPI process. It appears that SMART can overcome the increased
communication costs of these less than perfect partitions.

To look at the increased communication of these partitioning schemes compared to
the perfect grid partitioner the size of the off-node communication surfaces can be
compared. With tracks completely covering the domain, the amount of communica-
tion required is related to the surface area of the partitions. To look at any possible
differences between ParMETIS and the hierarchical partitioner Figure 8.17 shows the
surface area (in the case of this 2D study the "length") of the partition communication
surface. In the case of this simple mesh, ParMETIS performs similarly to the hierarchi-
cal partitioner, both of which show an increase in network communication compared
to the grid partitioner.
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(a) ns/integration. (b) Parallel efficiency.

(c) LNSI

Figure 8.16. Comparison of 2D strong scaling performance with three different partitioning
schemes.
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Figure 8.17. Total size (in cm) of the off-node communication surface area for each partitioning
scheme.

Another interesting aspect is how much memory the algorithm uses with less than
perfect partitioning. Figure 8.18 shows three different views of the memory perfor-
mance of the same four algorithms studied earlier. Firstly, Figures 8.18a 8.18b show
MOCkingbird scaling well in memory usage. The average amount of memory per MPI
rank decreases at a faster rate than either of the BJ methods. In addition, the cross-
over point between MOCkingbird and the hybrid BJ scheme is now less than 1000

cores. This is due to the increased storage requirements the BJ method would need
when the mesh decomposition is not perfect squares/cubes.

In Figure 8.18c, it can be seen that MOCkingbird uses the most memory for storing
angular flux data. The next largest use of memory within MOCkingbird is buffers for
receiving messages. This makes sense, the SMART algorithm is set up to start receive
operations often, but only complete them when the MPI rank is running out of work to
do. This means that a large number of messages get queued up in the ReceiveBuffer,
waiting to be pulled out and added to the work_buffer. It is possible that future work
could be done to optimize the memory usage further, cutting down on the need for
such a large percentage of memory being used for communication buffers.

8.3.3.2 Weighted Partitioning

The preceding section showed that with a perfect lattice of pin-cells, the SMART algo-
rithm could perform well, even when utilizing less-than-perfect partitioning and being
pushed to the limits of scalability. However, the real world doesn’t present a perfect
array of the same repeating pin-cell. Within a reactor mesh, there are finer areas of
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(a) Average memory use per core. (b) Total memory used by all processes.

(c) How memory is used in MOCkingbird.

Figure 8.18. Memory scalability with the hierarchical partitioner.
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mesh to capture, e.g., the intricacies of burnable poisons alongside coarser areas of
mesh for featureless regions such as in the reflector.

The differences in element size drive an imbalance of work attributed to each el-
ement. MOC track generation aims to deliver uniform angular and spatial coverage
of the physical domain. Therefore larger elements have more integrations to compute.
The number of integrations for an element are proportional to the surface area of the
element (the perimeter length in 2D). The larger the surface area, the more "work"
there is to perform for that element.

This is a subtle point. In both [5] and [3] there are statements made that MOC work
is proportional to the volume of a partition. Those two studies were using SDD to de-
velop partitions containing a similar geometry arrangement. In the case of repeating
geometry and same-sized partitions, their statements are true. However, if the parti-
tions contain differing geometry, then a partition with more FSR surface area within
it has more work to do, even if the partitions themselves are the same size.

The surface area of an FSR provides its probably for being intersected by a ray. This
idea is very similar to the fundamental ideas used in nuclear cross sections and nu-
clear shielding. Something with a larger solid angle is more likely to be struck by
tracks which are uniformly distributed in space and angle (which might not be en-
tirely true in 3D but is in 2D). Therefore, two FSRs/elements having the same volume,
but different surface areas have different probabilities of tracks cross them. The more
surface area, the more likely to be crossed. Thus, the amount of work to be done on
each element is proportional to its surface area.

The partitioning schemes utilized in §8.3.3.1 were blind to this effect: treating each
element as having the same amount of work. Therefore those schemes would try to
assign the same number of elements to each partition. However, given a mesh with
unequally sized elements, this assignment would cause a load imbalance, leading to a
loss in parallel efficiency. This loss in efficiency is due to MPI ranks sitting idle while
others are still working. In an ideal partitioning, each MPI rank would have the same
amount of work apportioned to it.

While the work for a partition is set by the amount of surface area contained within
it, the communication burden for a partition is proportional to the surface area of
the partition [3, 5]. A finer-grained statement is that the communication cost between
any two elements is proportional to the surface area of the face between them. There-
fore, a partitioner should prefer to "cut" surface/edges, which are smaller in order to
minimize communication.

Thinking back to the dual-graph introduced in §3.4.1, the relative workload asso-
ciated with the surface area of an element could be viewed as a "weight" associated
with a node of the dual-graph. Similarly, the surface area of each side represents a
"weight" associated with each edge in the dual-graph. Therefore, what’s needed is a
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partitioning algorithm which takes into account these node and edge weights. The
partitioner would seek to balance the amount of work done by each MPI process (as
expressed by the node weights) while minimizing the total communication cost of the
computation (found from the edge weights).

Fortunately, METIS and ParMETIS both allow the specification of these weights. Work-
ing with Dr.Fande Kong at Idaho National Laboratory, the Partitioner interface
within MOOSE was expanded to allow a simple way to specify these weights. The in-
terface is defined by two virtual function callbacks, as shown in Listing 8.1. Within
MOCkingbird, these functions were overridden to compute element and side weights
as the total surface area of the sides of the element and the surface area of the partic-
ular side of the element, respectively.

// Retrieve the "weight" (work-load) for the given mesh element

virtual long unsigned int computeElementWeight(Elem & elm);

// Retrieve the "weight" (communication burden) for a given side of an element

virtual long unsigned int computeSideWeight(Elem & elem, unsigned int side); �
Listing 8.1. MOOSE interface for specification of partitioning weights.

It is important to note that these functions return integers. This is due to the inter-
face in METIS and ParMETIS requiring weights be integers. The idea that the weights
should be integers is related to the idea that in finite-element problems the work-load
on an element is typically specified by the number of degrees of freedom on that ele-
ment (which is, in turn, due to the number of shape functions falling on that element).
However, the weights computed by MOCkingbird are floating-point values computed
from the surface areas of the elements.

In C++ a floating-point number which is cast to an integer loses all information after
the decimal point. As an example 3.4 would become simply 3. While this is a small
loss of information which would seem to be non-critical (the weights don’t need to be
perfect to work well), it can lead to a lack of quality in the output of the partitioners.
In particular, if a weight is less than 1 then the weight is cast to zero.

With a reactor mesh in centimeters, the surface areas of sides of elements are rou-
tinely less than one, leading to a significant loss in precision of the weights. To combat
this, MOCkingbird scales the weights by dividing by the smallest weight within the
mesh (making all weights >=1) then multiplying by 100. The 100, while arbitrary, pro-
vides several decimal points of precision and was found experimentally to be effective
across a wide range of reactor problems.

The exact procedure utilized by MOCkingbird for computing weights, can be found
in Listing 8.2. That listing shows the implementation of the SurfaceAreaWeighted-
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void
SurfaceAreaWeightedPart i t ioner : : _ d o _ p a r t i t i o n ( MeshBase & mesh , const unsigned i n t n )
{

// Loop over all of the elements and find the _smallest_ side area
_min_side_area = std : : numeric_l imits <Real > : : max ( ) ;
_min_elem_surface_area = std : : numeric_l imits <Real > : : max ( ) ;

f o r ( auto & elem : mesh . a c t i v e _ l o c a l _ e l e m e n t _ p t r _ r a n g e ( ) )
{

Real e lem_surface_area = 0 ;

f o r ( auto s : elem−>side_index_range ( ) )
{

auto s ide_area = elem−>bui ld_s ide ( s )−>volume ( ) ;

_min_side_area = std : : min ( s ide_area , _min_side_area ) ;

e lem_surface_area += s ide_area ;
}

_min_elem_surface_area = std : : min ( elem_surface_area , _min_elem_surface_area ) ;
}

// Find the min over all procs
_communicator . min ( _min_side_area ) ;
_communicator . min ( _min_elem_surface_area ) ;

// Call the base class
P e t s c E x t e r n a l P a r t i t i o n e r : : _ d o _ p a r t i t i o n ( mesh , n ) ;

}

s td : : unique_ptr < P a r t i t i o n e r >
SurfaceAreaWeightedPart i t ioner : : c lone ( ) const
{

re turn libmesh_make_unique <SurfaceAreaWeightedPart i t ioner >( _pars ) ;
}

dof_id_type
SurfaceAreaWeightedPart i t ioner : : computeElementWeight ( Elem & elem )
{

Real e lem_surface_area = 0 ;

f o r ( auto s : elem . side_index_range ( ) )
e lem_surface_area += elem . bui ld_s ide ( s )−>volume ( ) ;

re turn 1 0 0 * ( e lem_surface_area / _min_elem_surface_area ) ;
}

dof_id_type
SurfaceAreaWeightedPart i t ioner : : computeSideWeight ( Elem & elem , unsigned i n t s ide )
{

auto side_elem = elem . bui ld_s ide ( s ide ) ;

re turn 1 0 0 * ( side_elem−>volume ( ) / _min_side_area ) ;
} �

Listing 8.2. Implementation of SurfaceAreaWeightedPartitioner within MOCkingbird
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(a) Unequally sized C5G7 mesh (b) Bottom right core detail

Figure 8.19. C5G7 geometry and mesh detail used for testing weighted partitioning.

Partitioner. The _do_partition() function is called first and is responsible for find-
ing the global minimum of both the element and side weights. The virtual function
overrides, responsible for returning the weights, are readily readable within Listing
8.2.

To test the utility of weighted partitioning, a mesh with very unequally sized ele-
ments representing the C5G7 benchmark problem [85] domain (which is further dis-
cussed in §9.2) was generated as shown in Figure 8.19. The moderator section of the
mesh utilizes large elements, while tiny elements can be found within the core. The
mesh contains only 62,258 elements; therefore, scalability is fairly limited. In addition,
this problem utilizes cross sections from C5G7, giving only 7 energy groups. However,
TY quadrature with three polar angles generates a total of 21 integrations that need
to be performed on every segment. That leads to 10x less work per segment than the
previous 2D tests. All of these factors combine for a very challenging test of scalability
for both the partitioners and SMART.

A strong scaling study was completed using this mesh; the results can be seen in
Figure 8.20. Both partitioners (ParMETIS and hierarchical) were tested in four config-
urations: non-weighted, element weighted, side weighted, and weighing on "both"
elements and sides. In total this gave seven configurations which are represented on
each of the three graphs (the ParMETIS element weighting was omitted to help with
graph clarity).

The graph in Figure 8.20a instantly displays how important weighted partitioning
is to the scalability of MOCkingbird. Only the schemes that include element weighting
are able to scale appropriately, staying close to the ideal line through several hundred



8.3 scalability 153

(a) ns/integration. (b) Parallel efficiency.

(c) Off-node communication

Figure 8.20. Results of a strong scaling study conducted using the mesh in Figure 8.19. Par-
METIS and the hierarchical partitioner were tested both with and without element
and side weights.
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MPI processes and still showing speedup out to 2048 MPI processes. It’s important
to note that at 2048 processes, there are only 30 elements per MPI processes, and, as
pointed out earlier, not much work to do for each intersection.

Looking at Figure 8.20b supports the same findings, with element weighting being
critical to efficiency. At 2048 MPI processes, element weighted hierarchical partitioning
is still able to achieve 28% efficiency with just 30 elements per process. It should be
noted that several of the schemes failed to run with 2048 MPI ranks due to some
ranks getting assigned zero elements. Therefore, 2048 processes is a difficult test, and
the code is still able to gain some execution speed.

In contrast, all of the schemes without element weighting fared poorly. By 196 MPI
ranks, they were already at 50% efficiency and going down fast. The workload imbal-
ance cannot be overcome.

Figure 8.20c, displaying the total amount of off-node communication surface area,
contains many interesting pieces of information. Firstly, all four of the schemes em-
ploying hierarchical partitioning are able to keep off-node communication under con-
trol, even with the slim number of elements per process. The hierarchical method
employing only side weighting is the best at controlling the network communication
surface size. This is to be expected since that scheme is employing multilevel parti-
tioning to group nearby partitions together and simultaneously preferentially seeking
to minimize the communication instead of work balance. However, even though com-
munication is at a minimum, this scheme is still unable to perform well due to load
imbalance. SMART plays a role here: the overlapping of communication and computa-
tion means that communication is less of a bottleneck than it would be with a tradi-
tional communication algorithm. Therefore, while hierarchical partitioning with side
weighting can limit off-node communication effectively, it has little impact on overall
run time.

Also in 8.20c it can be seen that ParMETIS is not helped much at reducing off-node
communication by adding side weighting. Reduction of off-node communication is
not the goal of ParMETIS. In addition, it’s striking how much more off-node communi-
cation there is when ParMETIS utilizes both element and side weighting. By optimizing
for better work-balance, instead of communication, off-node communication is signifi-
cantly increased. However, in spite of this increased communication, the other graphs
show that element weighting and weighting with both elements and sides leads to
better run times. This, once again, shows that SMART is fairly insensitive to the total
amount of communication, yet work-balance is very important.

Finally, Figure 8.21 visually displays the differences between unweighted hierarchi-
cal partitioning (left column) and weighted hierarchical partitioning (right column),
of the mesh in Figure 8.19. The partitionings themselves are shown in Figures 8.21a
8.21b. Contrasting these two partitionings, the effect of weighting is clear. In Figure
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(a) Hierarch. Rank partitioning. (b) Weighted hierarch. Rank partitioning.

(c) Hierarch. # of intersections. (d) Weighted hierarch. # of intersections

(e) Hierarch. comm. surface area. (f) Weighted. comm. surface area.

Figure 8.21. Comparison of hierarch. partitioning without (left) and with (right) weighting.
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8.21a the partitions are holding equal numbers of elements while in Figure 8.21b the
partitions hold an equal amount of surface area.

These two partitionings were used in a MOCkingbird simulation, giving the number
of intersections in each partition as shown in Figures 8.21c 8.21d. The effect of weight-
ing is, once again clear. The unweighted result in Figure 8.21c has nearly an order of
magnitude of difference in the amount of work between partitions. Meanwhile, the
weighted result, in Figure 8.21d, only has 6.0% maximum difference in workload. As
shown in Figure 8.20, without load balancing, scalability cannot be achieved.

In the final set of images in Figure 8.21, the off-node communication surface area
is on display. In this case, the maximum communication surface area was cut in half
when weights were applied. In massively parallel use-cases this could make a tremen-
dous difference.

In summary, neither ParMETIS nor the hierarchical partitioner can achieve good
scalability without weighting. While side weighting can reduce communication, only
element weighting (based on the surface area of the element) is effective at providing
parallel efficiency. Weighted partitioning is a critical capability for unstructured mesh
MOC. Load imbalance was seen as one of the more significant issues in the literature
[71], and it has been overcome through the use of surface area-weighted partitioning.

8.3.4 Comparison To Other Algorithms

In the previous sections, SMART proved to be fast and scalable when performing trans-
port sweeps for MOCkingbird. However, alternative communication algorithms exist.
This section tests two of them: Bulk Synchronous (BS) and the Hybrid Adaptive Ray-
Moment Method or HARM2[105].

The BS algorithm is the most straightforward way to do communication of angular
fluxes between partitions in a MOC solver. Many MOC codes have been developed
using it [3, 5, 101] (although [5] used a few advanced MPI capabilities the algorithm
was still bulk synchronous). The basic BS algorithm can be found in Algorithm 19.
It can be seen as a series of single-hop communications. Those communications can
either be blocking (as they often are [106]) or non-blocking [5], but they are still single-
hop due to the global synchronization between each successive communication.

While BS can be a viable scheme in CSG-based MOC codes employing SDD and
MRT, it will most likely struggle with unstructured mesh MOC. The reason for this is
readily apparent in Figure 8.22: jagged partition edges, which occur due to unstruc-
tured mesh partitioning algorithms, cause large numbers of iterations to be required
to move information completely across the domain. This problem is one of the reasons
cited [107] for why MOCFE ultimately chose to use a Krylov solver to solve the MOC
system of equations.
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Algorithm 19: Basic BS Algorithm

1 while Not finished do
2 Trace all tracks on local partition
3 Send all outgoing angular fluxes
4 Receive all incoming angular fluxes
5 Wait for all communication to end globally
6 Check if finished
7 end

Figure 8.22. The number of global synchronizations the BS algorithm will incur as it tries to
trace a ray across a jagged domain boundary.
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A more modern, multi-hop communication algorithm was recently developed for
use in radiation hydrodynamics simulations, primarily targeting astrophysics [105].
The Hybrid Adaptive Ray-Moment Method (HARM2) shares many similarities with
SMART. In particular, it makes use of non-blocking sends and an asynchronous stopping
criteria to allow rays to continue to trace without global synchronization. The HARM2

scheme can be found in Algorithm 20

Algorithm 20: HARM2 Algorithm, slightly simplified for the use-case of this thesis.
From [105].

1 compute max_rays
2 all_done = False
3 while not all_done do
4 while work remains do
5 advance all rays, return number destroyed and add to destroyed count
6 end
7 MPI_Isend rays to other MPI ranks
8 while MPI_Iprobe for rays returns true do
9 Non-blocking MPI MPI_Iprobe other MPI ranks for rays

10 if MPI MPI_Iprobe returns true then
11 Blocking MPI_Receive rays
12 end
13 end
14 Non-blocking MPI_Testsome rays MPI_Isend requests
15 Non-blocking MPI_Testsome destroyed counts MPI_Isend requests
16 while MPI_Iprobe for destroyed counts returns true do
17 MPI_Iprobe other MPI ranks for destroyed counts
18 if MPI_Iprobe returns true then
19 Blocking MPI_Receive MPI ranks destroyed counts
20 end
21 if destroyed count > previous destroyed count then
22 MPI_Isend destroyed count to all MPI ranks
23 end
24 if no work remains and Ray Send Requests == 0 and destroyed count send

Requests == 0 and sum of destroyed count == max_rays then
25 all_done = True
26 end
27 end
28 end

Examining Algorithm 20 some immediate differences between HARM2 and SMART

can be seen. Firstly, blocking MPI_Receive operations are used to receive data, which
limits the overlap of communication and computation. Secondly, it traces all rays that
are currently available, before doing any communication, again limiting communi-
cation overlap. In addition, tracing all rays delays interior ranks from receiving any
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work until it propagates inward. Thirdly, while the finishing criteria is asynchronous,
it is not efficient. If any rank detects that some rays have finished, it broadcasts, using
MPI_Isend, the new count of destroyed rays to all other MPI ranks. This is a scalability
problem once the number of ranks reaches a certain level.

Both the BS and HARM2 algorithms were implemented within the RayTracingStudy

of SMART. To simplify development, the BS algorithm was allowed to use the asyn-
chronous stopping criteria from SMART. The HARM2 algorithm, however, is faithfully
recreated. Having all three algorithms available within the same code simplifies their
testing. The object-oriented design of SMART and MOCkingbird allowed these algorithms
to be introduced without having to change MOCkingbird and with only minimal addi-
tions to SMART.

Two problems are run to test these algorithms. First, the weak scaling problem
from §8.3.1 is tried. That problem has perfect partitioning, so this is a chance to see
these algorithms in the best-case scenario. Next, the strong scaling study from §8.3.3
is tested.

8.3.4.1 Weak Scaling

The weak scaling problem from §8.3.1 is tested with the three algorithms. Only a
couple of changes were made: the number of azimuthal angles was set to 64, and
the azimuthal spacing was set to 0.01 cm. This was done because it is anticipated
that both BS and HARM2 have poor enough performance that a large number of rays
would take too long to test. Secondly, using fewer rays makes this a harder test, as
there is less parallel work to do.

The results of this test can be viewed in Figure 8.23. It’s immediately obvious from
Figure 8.23b that neither BS nor HARM2 perform well. Both algorithms start at a major
disadvantage to SMART, and neither of them catches up. While SMART is still above 80%
efficiency at 4096 MPI ranks HARM2 and BS are below 40% and 20% respectively.

8.3.4.2 Strong Scaling

The next test is the strong scaling test from §8.3.3. Similarly to the weak scaling test,
the number of azimuthal angles was lowered to 64, and the azimuthal spacing was set
to 0.01 cm. This represents a significant challenge to both BS and HARM2.

Figure 8.24 shows that there is an even wider gulf between the algorithms on this
test. Compared to SMART, HARM2 begins at 55% and ends at 35% parallel efficiency. BS
has an even tougher time, ending at 20% parallel efficiency when compared to SMART.
Looking at Figure 8.24c, BS is nearly four times slower than SMART when using 4096

MPI ranks. SMART fares well in this test, finishing with 85% parallel efficiency at 4096

MPI ranks.
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(a) ns/integration. (b) Parallel efficiency.

(c) LNSI

Figure 8.23. Comparison of 2D weak scaling performance with three communication algo-
rithms.
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(a) ns/integration. (b) Parallel efficiency.

(c) LNSI

Figure 8.24. Comparison of 2D strong scaling performance with three communication algo-
rithms.
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8.3.4.3 Conclusion

SMART was tested against two other algorithms: Bulk Synchronous (BS) and HARM2.
Two different tests were performed: weak and strong scaling in 2D. Both tests were
conclusive: neither algorithm was competitive with SMART. Both algorithms were sig-
nificantly slower at the low end of the scaling test and only fell further behind as more
MPI ranks were used.



9 B E N C H M A R K P R O B L E M S

9.1 introduction

The objective of this thesis is to develop a scalable, unstructured mesh, method of
characteristics neutron transport code: MOCkingbird. The previous chapters have de-
scribed the algorithms MOCkingbird utilizes and their parallel performance. This chap-
ter explores their efficacy for solving steady-state, k-eigenvalue, neutron transport
benchmarks. Four benchmarks will be analyzed: 2D C5G7 [85], 3D C5G7 Rodded-B
[108], 2D BEAVRS [87] and 3D BEAVRS. While solution accuracy is important, these
benchmarks are also used to probe the performance characteristics of MOCkingbird on
realistic problems. By the end of this chapter, it is demonstrated that MOCkingbird is
capable of full-core, 3D, neutron transport simulation via MOC.

9.2 2d c5g7

(a) C5G7 Materials (b) Mesh Detail

Figure 9.1. Quarter-core C5G7 geometry and mesh detail for the bottom right corner of the
core. Colors represent sets of fuel mixtures and the moderator.

The C5G7 benchmark [85] has often been used in the literature as a verification step
for deterministic transport codes [2, 10, 109, 110]. As shown in Figure 9.1, the quarter-
core 2D benchmark includes four assemblies with 17x17 fuel pins and a water reflector.

163
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Table 9.1. MOCkingbird converged eigenvalues for increasing azimuthal angles with an az-
imuthal spacing of 0.01cm.

# Angles # Sweeps ke f f ∆ρ (pcm) AVG MRE RMS

4 648 1.18552 -102 1.95 1.78 2.42

8 656 1.18484 -169 0.43 0.38 0.53

16 656 1.18512 -139 0.27 0.20 0.38

32 655 1.18638 -14 0.28 0.22 0.40

64 654 1.18664 11 0.29 0.24 0.42

128 654 1.18676 23 0.30 0.24 0.43

One of the defining features of C5G7 is the heterogeneous representation of the pin
cell with the exception of the clad and gap homogenization.

As noted in §5, the first step in producing solutions using MOCkingbird is to dis-
cretize the domain using a finite-element spatial mesh. The graph-based mesh gen-
eration system detailed in §5.2 together with the pin-cell creation capability in 5.1
can be utilized to generate the mesh needed for C5G7. Working with Leora Chapuis,
the script in Listing 12.1 was developed for generating the mesh. These 150 lines of
MOOSE input file syntax read in each of the pin-cells, create assemblies, stitch the
assemblies together, generate mesh for the moderator, stitch everything together, and
finally fix up boundary names. The mesh generation process takes 1.475s to build on a
2.7GHz Intel Xeon E5 processor. The process generates 112,132 elements for the mesh
shown in Figure 9.1. The number of elements and their location are in with the spatial
fidelity used in [2].

This mesh is used in an angular refinement study to explore the accuracy of MOC-
kingbird. Track spacing will be held constant at 0.01cm while the number of number
of azimuthal angles is swept from 4 to 128. In the polar direction, TY [9] quadrature
with three angles is used. The ∆ρ is computed against the MCNP benchmark reference
ke f f of 1.18655. Convergence was judged using a fission source RMS change between
successive fission source iterations of 1e-5.
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(a) Group 1 (b) Group 7

Figure 9.2. Group flux results using 128 azimuthal angles.

Figure 9.3. Relative error in normalized pin powers. Left: 128 azimuthal angles, Right: 4 az-
imuthal angles.

The results of this study can be found in Table 9.1. MOCkingbird converges as the
number of azimuthal angles increases. These numerical results and the qualitative
fluxes found in Figure 9.2 agree well with other published results [2]. In addition, the
normalized relative pin power error, shown in Figure 9.3, is in line with the results
found in [10], showing larger error in the fuel pins near the reflector. Finally, within
Table 9.1 AVG, MRE and RMS are measures of the fission source error and are defined
as:

AVG =
∑
n
|en|

N
, (9.1)
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MRE =
∑
n
|en| · pn

N · pavg
, (9.2)

RMS =

√
∑
n

e2
n

N
, (9.3)

where n is iterating over fuel pins, N is the total number of fuel pins, p is power and
en is the percent error as compared to the benchmark. The values in 9.1 can also be
graphically viewed in 9.4.
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Figure 9.4. Convergence in eigenvalue and pin-power for 2D C5G7.

Table 9.2. Performance characteristics for each run in the angular refinement study.

# Angles Solve Time(s) Iterations Intersections LNSI

4 66.646 648 12014062 41

8 77.244 656 22442732 31

16 115.04 656 44105097 25

32 194.8 655 88073264 24

64 362.2 654 175991664 24

128 770.7 654 351892634 24

All of these simulations utilized 160 MPI ranks spread across 4 nodes of the Lemhi
cluster. Using 160 MPI ranks is stretching the scalability of this problem with an av-
erage of only 700 elements per rank. That is nearly ten times more MPI ranks than
would be recommended for running a finite-element simulation using this mesh. Table
9.2 details the performance of each run for the angular refinement study. The "Solve
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Time" is the total time to convergence in seconds spent doing source iterations. The
number of iterations and intersections per iteration are also shown in Table 9.2. Look-
ing at the LNSI, as the amount of work per MPI rank increased, the LNSI decreased,
plateauing near 24 ns/integration.

9.3 3d c5g7

The C5G7 benchmark has been extended to a full suite of 3D benchmarks [108]. There
are three primary configurations in the 3D benchmark: Unrodded, Rodded A and Rodded
B. The focus of the current study is the Rodded B case due to it offering the largest
challenge by having multiple banks of control rods partially inserted.

The mesh for Rodded B was generated similarly to the 2D mesh using the graph-
based mesh generation system and using the same pin-cells as the 2D mesh. In this
way, the radial fidelity was set by the 2D mesh; however, the axial fidelity is left to
be determined. The number of axially extruded elements needed to achieve a high-
fidelity result is the focus of this verification effort.

Figure 9.5. Thermal flux for the 3D mesh with 50 axial layers.

Four meshes were created with 50, 100, 200 and 400 axial layers. Correspondingly,
the meshes contained 5.6M, 11.2M, 22.4M, and 44.8M elements, respectively. After
examining the results in Table 9.1, the number of azimuthal angles for track generation
was chosen to be 32. An azimuthal spacing of 0.1cm was selected to balance accuracy
and problem size. In 3D, the number of polar angles and axial ray spacing must
also be determined. The current study used 6 polar angles with 0.3cm axial spacing.
Ultimately, these settings generated 53.9M tracks within the 3D domain.

The meshes were used in runs of MOCkingbird that utilized 400 cores on the Lemhi
supercomputer. The convergence criteria was 1e − 5 relative change in the fission
source. The results of these runs can be found in Table 9.3.
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Table 9.3. Eigenvalues and fission source errors for each mesh used for the 3D C5G7 Rodded B
configuration. The reference ke f f is 1.07777.

Axial Elev. (cm) ke f f ∆ρ (pcm) AVG RMS

50 1.073129 -464 8.92E-01 1.16334

100 1.076307 -146 5.71E-01 8.25E-01

200 1.077239 -53 4.92E-01 7.39E-01

400 1.077498 -27 4.70E-01 7.13E-01

The results show that MOCkingbird can achieve a ke f f within 27pcm of the bench-
mark solution (1.07777) on the finest grid. It is clear that axial fidelity plays a large roll
in accuracy, as the coarsest mesh has an eigenvalue that is 464 pcm too low. The con-
vergence of MOCkingbird toward the true eigenvalue and fission source as the mesh
is refined is a good indicator that the 3D parallel unstructured mesh MOC solution
algorithm is working correctly.

Table 9.4. "Polar angle study for 3D C5G7."

# Angles # Sweeps ke f f δρ(pcm) AVG MRE RMS

2 708.0 1.082 465 1.519 1.250 2.259

4 706.0 1.078 29 0.602 0.482 0.960

6 709.0 1.077 -27 0.470 0.386 0.713

8 710.0 1.077 -43 0.428 0.358 0.629

10 711.0 1.077 -49 0.408 0.344 0.587

12 711.0 1.078 -50 0.396 0.336 0.563

A polar angle study was also completed. The 400 axial layer mesh was used, with
the same 32 azimuthal angles, 0.1 cm azimuthal spacing, 0.3 polar spacing settings as
the previous test. The detailed results can be viewed in Table 9.4. While the error is
already low by 6 polar angles a stationary point is not met until 10 angles.

Table 9.5. Performance characteristics for solving 3D C5G7 Rodded B.

Axial Elev. Solve Time(s) Iter. LNSI Intersect. / It. Cache Miss / Intersect.

50 15488.434 700 99 12386466041 7.84

100 18575.211 707 110 13380319921 9.33

200 24561.552 709 126 15370859231 11.7

400 33659.308 709 138 19351886010 14.11
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Table 9.5 details the performance of MOCkingbird for the solution of C5G7 Rodded
B. One interesting trend in Table 9.5 is that the LNSI increases as the amount of axial
layers increases. All solves were performed using 400 MPI ranks; therefore, increasing
the mesh density should, in theory, increase the amount of local work to be done and
decrease LNSI. However, that is not the outcome.
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Figure 9.6. Visualizations of the performance of MOCkingbird for solving 3D C5G7.

After a detailed analysis, the increase in LNSI is due to an increase in cache misses.
Traversing the unstructured mesh involves moving through memory in an unstruc-
tured pattern. With more mesh, it becomes less likely that the next element being
traced is already in the processor’s cache hierarchy. The Linux performance monitor-
ing capability [111] was used to count the number of cache misses (memory accesses
by the CPU which end up accessing main memory) during a transport sweep. That
number, divided by the number of intersections, is reported in Table 9.5.

Figure 9.6 displays several performance metrics. Firstly, Figure 9.6a compares the
increase in LNSI and cache misses as the number of axial layers is increased. Both
show a similar trend, offering evidence that the increase in LNSI is due to cache
misses.

Also, the Google Perf Tools (gperftools) [112] were used to examine the performance
of this problem. Aggregate results across all MPI ranks from gperftools can be seen
in 9.6b. The percentage of time, during a source iteration, spent in each of five dif-
ferent code segments is detailed. "Ray-Tracing" is the time spent in element traversal
(Algorithm 7), "Segment Integration" is angular flux integration time, the send and
receive buffer times are for communication and "SourceIteration" is everything else in-
cluding source update and convergence checking. While the percentage of time spent
in communication and "SourceIteration" stay relatively steady as the mesh density is
increased, the time for tracing and, to a lesser extent, segment integration is growing.
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This is in line with the idea that cache misses, due to moving through more unstruc-
tured geometry, are playing a roll in decreasing performance.

9.4 2d beavrs

The BEAVRS benchmark [87] was developed at MIT as a realistic benchmark with
real-world measurements for comparison. It is a full-core benchmark containing 193

fuel assemblies, each with an array of 17x17 fuel rods, guide tubes, and burnable poi-
sons. Two fuel cycles are contained within the benchmark; however, the current study
focuses on the core configuration from cycle 1. This section solves a two-dimensional
configuration of the BEAVRS benchmark while §9.5 explores a fully three-dimensional
solution.

Figure 9.7. BEAVRS benchmark assembly layout for cycle 1. From [87]

The layout of the assemblies for cycle 1 can be seen in Figure 9.7. There are three
different levels of enrichment: 3.1%, 2.4%, 1.6%, and multiple layouts of burnable
poisons (6, 12, 16). Each pin-cell is fully specified by the benchmark, without any
homogenization. This provides a challenging test for MOCkingbird due to needing to
mesh each of the intricate features of the pin-cells, including gap, clad, and spacer
grids.
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9.4.1 Meshing

The 2D mesh is built using pin-cells generated from Cubit, as shown in Figure 9.8
which are then utilized in the MeshGenerator system to create assemblies and ulti-
mately the core. In addition to the fuel assemblies, meshing the baffle and bypass
water is accomplished by generating "water assemblies" in Cubit which are then ro-
tated to fit around the core and added to the core pattern. Figure 9.9 shows the baffle
and water meshes. A view of the full geometry can be found in Figure 9.10. Ultimately,
the mesh used for this study contained 10,553,408 elements.

(a) Fuel pin-cell. (b) BP pin-cell.

(c) GT pin-cell. (d) Inter-assembly gap.

Figure 9.8. Pin-cell meshes and inter-assembly gap mesh.



9.4 2d beavrs 172

Baffle Gap

Baffle

Water

Figure 9.9. Example of the baffle and water mesh surrounding the core.

Figure 9.10. As-meshed geometry for the 2D BEAVRS core.
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9.4.2 Cross Sections and Reference Values

As mentioned in §4.2, MOCkingbird relies on cross sections being provided as an input.
The BEAVRS benchmark does not include a set of cross sections; rather, it specifies
the materials in the reactor analysts need to generate the appropriate multi-group
or continuous energy cross section to analyze the physical reactor. However, a de-
tailed OpenMC model exists [113] which can be utilized to generate such cross sections
for the Hot Zero Power, isothermal case at 975 ppm boron and 560K. For this study,
Guillaume Giudicelli worked with Zhaoyuan Liu at MIT, using OpenMC and the Cu-
mulative Migration Method (CMM) [16] to build transport-corrected 70 energy group
cross sections. The group structure is detailed in Appendix 13. The cross sections were
developed using material tallies (over all regions in the reactor model that contain the
material) for these materials:

• Air

• SS304

• Helium Gap

• Zircaloy

• 1.6 w/o U235 Fuel Pellet

• 2.4 w/o U235 Fuel Pellet

• 3.1 w/o U235 Fuel Pellet

• Borosilicate Glass

• Coolant

• Support Plate Water

• Support Plate Stainless Steel

• Water Outside of Baffle

These 70-group cross sections represent the spatial averaging of reaction rates over
distributed material regions, and they do not reflect small local effects - such as the
Dancoff effects that arise from resonance self-shielding of strong absorbers. For a more
thorough discussion of such effects, see Giudicelli [114] or Gibson [115].
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0.726 0.819 0.821 0.986 0.882 0.970 0.937 0.988
0.785 0.955 0.881 1.016 0.904 1.126 1.046

0.880 1.035 0.921 1.012 0.937 0.922
0.961 1.100 1.024 1.174 0.767

1.435 1.187 1.250
1.233 0.921

Figure 9.11. Normalized assembly powers for the BEAVRS benchmark as computed by OpenMC.
OpenMC computed eigenvalues: 2D ke f f = 1.00491, 3D ke f f = 1.00024

Giudicelli used OpenMC to compute a normalized set of assembly powers. Those
normalized powers collapsed to one of the symmetric octants of a core can be found in
Figure 9.11, and is used as reference values for comparison with the calculations done
with MOCkingbird. Also, using this set of cross sections with OpenMOC, he conducted
a detailed 2D calculation, without axial leakage, which produced a ke f f of 1.00188 in
2D. That result utilized a flat source model with pin-cell moderator discretized with
8 rings and 8 sectors and 4 rings and 4 sectors in the fuel. The OpenMOC calculation
utilized 64 azimuthal angles with a 0.05cm spacing and TY polar quadrature with 3

angles. The 300 pcm difference between OpenMOC and OpenMC is due to equivalence
methods, which is the focus of Giudicelli’s research [114].

9.4.3 Results

Utilizing this problem setup, MOCkingbird was run on the Lemhi cluster at the Idaho
National Laboratory to solve the 2D full-core eigenvalue problem. The problem set-
tings and computational requirements can be found in Table 9.6. With these settings,
a ke f f of 1.00231 was computed, 43 pcm above the OpenMOC solution of Giudicelli. In
addition, as shown in Figure 9.12, the normalized assembly power differences are all
within 1%.
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Table 9.6. Problem settings and computational requirements for 2D BEAVRS.

Number Of Elements 10,558,033

Fission Source Convergence 1e-5

Azimuthal Angles 64

Azimuthal Spacing 0.05 cm

TY Polar Quadrature Angles 3

MPI Processes 4000

Solve Time 4801.7 s

LNSI 19

Intersections 2,035,381,032

Number of Transport Sweeps 2200

Figure 9.12. Normalized assembly power differences for the 2D BEAVRS solution computed
by MOCkingbird compared to the OpenMC Monte Carlo result.

9.13.
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Figure 9.13. Thermal flux (0 ev to 9.87 eV) for the 2D BEAVRS benchmark.

9.4.4 Scalability

The 2D BEAVRS benchmark problem represents an ideal case to test scalability with re-
alistic geometry and angular/spatial quadratures. A scalability study was performed
with a mesh that did not represent the inter-assembly gap and therefore had 10,343,424

total elements. The weighted ParMETIS partitioner was used for partitioning.
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(a) Nanoseconds per integration. (b) Parallel efficiency.

(c) Aggregate time usage.

Figure 9.14. Strong scaling results for 2D BEAVRS.

The results of the strong scaling study can be viewed in Figure 9.14. The nanosec-
onds per intersection shown in Figure 9.14a are close to ideal out to 1024 MPI pro-
cesses, with performance gradually tapering off after that point. This behavior is
shown in Figure 9.14b, where parallel efficiency goes from over 80% at 1024 MPI pro-
cesses down to 40% using 18423 MPI processes. At 18432 processes, each MPI rank is
only responsible for 550 elements. This broad range in scalability makes MOCkingbird
a flexible tool for full-core analysis.

Finally, Figure 9.14c displays the percentage of time used by different parts of the
code as the strong scaling is performed. From that figure, it is clear that up until 1k
MPI ranks, the algorithm is working well to hide the extra communication. After that
point, the time spent waiting for new messages starts to increase. This is indicative
of work starvation beginning; there is not enough work to keep all of the cores busy
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all of the time. There is a smooth degradation as more MPI ranks are added, which
echoes the smooth drop-off in efficiency in 9.14b.

9.5 3d beavrs

Three-dimensional simulation of the BEAVRS core is challenging due to the size of
the domain and the intricate axial detail which must be modeled. That axial detail
is shown in Figure 9.15. In all, 34 separate axial zones must be accounted for. In
addition, as shown in [3, 101] and in §9.3, a fine axial discretization is needed for
accuracy: optimally < 2.0cm mesh layers. With the core being 460cm in height that is
more than 230 layers in the axial mesh. Due to constraints imposed by the geometrical
axial elevations, 241 axial layers were required. If the full-core mesh from the previous
section is used as a template and extruded on 241 elevations, that is more than 2.5
billion elements.

Section 2. Benchmark Specifications rev. 2.0.2

2.3.6 Aggregate

By defining the full extent of the axial geometry in the pincells, several features remain to be
described or examined in the final combination of each element of the model. In aggregate it is
useful to see an exhaustive list of all axial planes used in the model, as presented in Figure 38.
Control rod insertions are treated separately, as discussed in Section 2.3.5.

0.00000 Lowest Extent
20.0000 Bottom of Support Plate
35.0000 Bottom of Fuel Rod
36.7480 Bottom of Active Fuel
37.1621 Grid 1 Bottom
38.6600 Bot. of BPRA Rod
39.9580 Control Rod Step 0
40.5200 Grid 1 Top
40.5580 Bottom of Active Absorber
41.8280 Bottom of Lower Absorber (AIC)
98.0250 Grid 2 Bottom
103.740 Grid 2 Top
150.222 Grid 3 Bottom
155.937 Grid 3 Top
202.419 Grid 4 Bottom
208.134 Grid 4 Top
254.616 Grid 5 Bottom
260.331 Grid 5 Top
306.813 Grid 6 Bottom
312.528 Grid 6 Top
359.010 Grid 7 Bottom
364.725 Grid 7 Top
400.638 Control Rod Step 228
401.238 Top of Active Absorber
402.508 Top of Active Fuel
403.778 Bottom of Control Rod Plenum
411.806 Grid 8 Bottom
415.164 Grid 8 Top
415.558 Top of Control Rod Plenum
417.164 Top of Fuel Rod Plenum
419.704 Top of Fuel Rod
421.532 Top of BPRA Rod Plenum
423.049 Bottom of Upper Nozzle
431.876 Top of Upper Nozzle
460.000 Highest Extent

Elevation (cm) Description

Figure 38: Left: Scale view of row 8 axial cross section, with highlighted grid spacers and partial
insertion of control rod bank D to the bite position. Right: exhaustive list of all axial planes
used in the model, excluding partial control rod insertion planes.

2.3.6.1 Grid Spacers

Nearly all axial features of the model are captured in the axial pincell specifications. However,
the stainless steel grid sleeve described in Section 2.2.2.2 for each of the 8 grid spacers needs to
be defined on the assembly level, as it is not contained within any of the pincell elements. The
axial planes used for the grid sleeves are the same as those used for the grids in the pincells, as
listed in Figure 38.

40

Figure 9.15. BEAVRS axial elevation specification from [87].
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Figure 9.16. Slices showing the detail in the top and midplane of the, as meshed, full-core
geometry.

9.5.1 Geometry and Meshing

Before running the 3D problem, the 3D mesh needs to be generated. This is done
through an "extrusion" process as previously detailed. However, due to the size and
complexity of the 3D mesh for BEAVRS, this is an intricate process involving several
steps. The target number of cores used for solving the 3D BEAVRS problem was cho-
sen to be 12,000 due to scheduling constraints on the Lemhi supercomputer. Therefore,
the mesh generation process ultimately needs to create a mesh suitable for running
with that number of MPI ranks.
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Original Elevations Original Materials
460 Highest Extent

431.876 Top of Upper Nozzle
423.049 Bottom of Upper Nozzle
421.532 Top of BPRA Rod Plenum Modified Elevations Modified Materials
419.704 Top of Fuel Rod 460 Highest Extent
417.164 Top of Fuel Rod Plenum 431.876 Top of Upper Nozzle
415.558 Top of Control Rod Plenum 423.049 Bottom of Upper Nozzle
415.164 Grid 8 Top 421.532 Top of BPRA Rod Plenum
411.806 Grid 8 Bottom 419.704 Top of Fuel Rod
403.778 Top of Active Fuel 417.164 Top of Fuel Rod Plenum
402.508 Top of Active Absorber 415.164 Grid 8 Top
401.238 Control Rod Step 228 411.806 Grid 8 Bottom
400.638 Grid 7 Top 402.508 Top of Active Absorber and Fuel
364.725 Grid 7 Bottom 401.238 Grid 7 Top

359.01 Grid 6 Top 364.725 Grid 7 Bottom
312.528 Grid 6 Bottom 359.01 Grid 6 Top
306.813 Grid 5 Top 312.528 Grid 6 Bottom
260.331 Grid 5 Bottom 306.813 Grid 5 Top
254.616 Grid 4 Top 260.331 Grid 5 Bottom
208.134 Grid 4 Bottom 254.616 Grid 4 Top
202.419 Grid 3 Top 208.134 Grid 4 Bottom
155.937 Grid 3 Bottom 202.419 Grid 3 Top
150.222 Grid 2 Top 155.937 Grid 3 Bottom

103.74 Grid 2 Bottom 150.222 Grid 2 Top
98.025 Bottom of Lower Absorber (AIC) 103.74 Grid 2 Bottom
41.828 Bottom of Active Absorber 98.025 Bottom of Lower Absorber (AIC)

40.52 Grid 1 Top 40.558 Grid 1 Top - Bottom of BA
39.958 Control Rod Step 0 37.1621 Bottom of Active Fuel

38.66 Bot. of BPRA Rod 35 Bottom of Fuel Rod
37.1621 Grid 1 Bottom 20 Bottom of Support Plate

36.748 Bottom of Active Fuel 0 Lowest Extent
35 Bottom of Fuel Rod
20 Bottom of Support Plate

0 Lowest Extent

Figure 9.17. The original BEAVRS elevations in cm (left) and the condensed elevations used
here (right).

The first issue is that cyclical track laydown needs to be fine enough to go through
every element. This means the smallest element in the mesh dictates how fine the spa-
tial quadrature is. In 3D, a fine spatial and angular quadrature leads to an explosion
in the number of tracks needed, making the problem intractable. To combat this, some
modeling decisions were made to keep the problem at a reasonable size.

Within the axial elevations enumerated in Figure 9.15, there are some short layers.
Several are below 1cm with the smallest being 0.394cm. If a mesh similar to the one
from the previous section is extruded using those elevations, then tiny material re-
gions, like the helium gap in a fuel pin-cell, end up as tiny 3D volumes requiring a
fine track laydown. To combat this, several of the small axial layers in Figure 9.15 were
merged.

To properly merge elevations like this, the material density in those areas would
need to be modified when the cross sections are created. However, that was not done.
Instead, the merging of these elevations creates a small modeling error. One helpful
feature is that these tiny sections occur at the very top or very bottom of the reactor
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where they have less impact on the solution. Also, their tiny size means that the error
made in merging them is small. Figure 9.17 shows both the original elevations and
the "condensed" elevations used to generate the 3D meshes for this study. In total, 8

elevations are removed, leaving 26 to be modeled.
Similarly, small features in the 2D radial mesh may be too small to hit with a rea-

sonable track lay down in 3D. Because of this, the inter-assembly gap was left out of
the 2D radial pattern used for generating the 3D mesh. That gap is only 0.00384cm
wide, creating a tiny volume in 3D. Leaving out the inter-assembly gap causes the
eigenvalue to be lower (less moderation) and could have a noticeable, but small, effect
on assembly power distribution.

Generating the 3D mesh for BEAVRS used these steps:

1. Generate the 2D mesh.

2. Partition/split the 2D mesh for the number of MPI ranks to be used when run-
ning the 3D problem.

3. Using the number of MPI ranks the 3D problem will be run with, read in the
split 2D mesh.

4. In parallel, extrude the mesh, changing the material definitions for each eleva-
tion.

5. Re-partition the 3D mesh using the weighted hierarchical partitioner.

6. Write out the individual partitions to separate files.

Step 2 is critical because there is not enough memory for every MPI rank to read
the entire 2D mesh at the same time. Therefore, each MPI process reads a small piece
of it. A new parallel extrusion capability was created for Step 4. Even for the 250

layers needed to create the 3D mesh, the parallel extrusion is nearly instantaneous
(just seconds) due to using 12,000 MPI ranks. Without Step 5, the mesh partitioning
would simply be a huge number of columns (corresponding to the partitioning of the
2D mesh). The weighted, hierarchical partitioner is used to find a partitioning with
lower communication costs. Once those steps are complete, individual files, one for
each MPI rank are created which contain a portion of the 3D mesh. When MOCkingbird

is ultimately run to solve the k-eigenvalue problem, each MPI rank reads its particular
part of the 3D mesh.

When this process is carried out for the quarter-core 3D mesh with 241 axial layers
, it generates 12,000 files containing a total of 652,854,540 elements. Those files are
162GB in total size. To control the size of the full-core problem, and make it tractable
to run within the available compute time, 128 axial layers were used. This brought the
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12,000 mesh files to 320GB and 1,386,977,280 elements. That number of elements is, by
far, the largest mesh ever used by a MOOSE-based application.

9.5.2 3D Quarter-Core

Figure 9.18. 3D quarter-core assembly layout. Reflective boundary conditions will be applied
on the north and west sides of the domain, with vacuum on the south and east.

Before solving the full-core, symmetry is used to simplify the 3D BEAVRS problem
to one-quarter of the domain. The quarter-core layout is shown in Figure 9.18, reflec-
tive boundary conditions are placed on the planes of symmetry. As mentioned in the
previous section, the mesh for the 3D quarter-core contains 653M elements. The simu-
lation was run using 12,000 cores on the Lemhi supercomputer. Problem settings and
computational requirements for this run are in Table 9.7.
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Table 9.7. Problem settings and computational requirements for the quarter-core 3D BEAVRS
solution.

Number Of Elements 652,854,540

Axial Layers 241

Average Element Height 1.9 cm

Number of tracks 342,325,264

Fission Source Convergence 3.6e-4

ke f f Convergence 5.1e-6

Azimuthal Angles 32

Azimuthal Spacing 0.1cm

Polar Angles 8

Polar Spacing 1cm

MPI Processes 12,000

Solve Time 17.4h (12.26h)

LNSI 44 (31)

Intersections 489,712,983,737

Number of Transport Sweeps 500

ke f f 0.99381

As shown in Table 9.7 the problem didn’t reach full convergence for the fission
source (1e− 5). The job ran out of time and quit. After the job completed, it was found
that two nodes in-use by this job were running slower than they should. This was
found by noticing aberrations in a scaling study and bisecting the node list until the
slow nodes were isolated. After removing those nodes from service and restarting this
job, it ran significantly faster. The solve time and LNSI in Table 9.7 reflect this. While
the job was running, it was working with an LNSI of 44. After restarting the job with-
out those nodes, the code achieved an LNSI of 31. Therefore, the solve time and LNSI
in Table 9.7 both have a number in parentheses, which represents the performance
without the two slow nodes.
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(a) Thermal flux. (b) Assembly power error.

Figure 9.19. Slices through the 3D quarter-core solution showing the thermal flux. Also, the
assembly power error.

The thermal flux for the 3D quarter-core can be viewed in Figure 9.19a. It is visu-
alized using two slices through the domain. The effect of the spacer grids is clearly
seen as depressions in the thermal flux. As shown in Figure 9.19b without reaching
convergence for the fission source, the axially integrated assembly power errors for
this run are within +/- 4% when compared to the OpenMC computed assembly powers
shown in Figure 9.11.

The eigenvalue achieved during this solve was 0.99381. This compares favorably to
the result in [3] of 0.99677. It is 300 pcm low; however, both the spatial and angular
discretization are coarser here, which would lead to a lower eigenvalue. In addition,
this solution is not yet fully converged, and without acceleration, ke f f converges very
slowly.
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This large, three-dimensional problem is an ideal test-case for the track generation
and claiming algorithms from §8.1. In addition to splitting the mesh for 12,000 MPI
ranks, splits were also created for 6,000, 3,000 and 1,500. The problem was then started
with each of these numbers of MPI processes, and timing was taken for the track
generation and claiming algorithms.

Table 9.8. Timing for track generation and claiming.
MPI Gen. 2D Tracks Create Rays Local BB. Exchng. and Search Claim Incoming Side Exchng. Start Info.

11920 35.072 0.102 0.178 31.256 0.161 0.704 0.3

6000 35.234 0.135 0.759 100.053 0.248 1.316 0.528

3000 35.159 0.266 0.76 311.039 0.57 2.153 0.921

1500 35.137 0.505 1.109 1056.766 0.696 3.356 1.541
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Figure 9.20. Time for track claiming algorithms for different numbers of MPI processes. The
two algorithms taking the most time are shown in Figure 9.20a while the rest are
in Figure 9.20b

The results of the track generation and claiming scaling study can be found in Table
9.8 with visualizations of the data in Figure 9.20. Examining Figure 9.20, it’s clear that
all of the algorithms scale well, with the exception of 2D track generation. In §8.1 it
is explained that all 2D tracks are generated on all MPI ranks. However, tracks are
split among the MPI ranks, so the rest of the algorithms are scalable. In particular,
in Figure 9.20a, the asynchronous exchange of rays combined with searching for the
starting element scales well. Since it involves a geometrical search when the number
of MPI ranks is doubled, the time is cut to one-third. The "claim" time is the time to
execute the one-sided, single-hop data push for uniquely claiming rays. It scales well,
showing the efficacy of the MNBX sparse data exchange algorithm.
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Table 9.9. Percentage of source iteration time in different code segments.

MPI Ranks Segment Intg. Ray-Tracing Receive/Waiting SendBuffer SourceIteration

3000 41.9 22.6 15.6 11.2 1.3

6000 45.8 27.2 11.4 8.7 1.6
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Figure 9.21. Strong scaling and iteration time percent for the 3D quarter-core BEAVRS problem.
A constant LNSI equates to 100% parallel efficiency.

In addition, the scalability of the source iteration was also captured for the quarter-
core problem. Figure 9.21 shows the results of this strong scaling study. MOCkingbird
performs well, with the levelized ns/integration staying essentially constant over a
large range of MPI processes. At 12000 MPI ranks, there are, on average, over 50,000

elements per MPI rank. This suggests, based on previous scaling studies, that this
problem could still scale well to around 100,000 MPI ranks. MOCkingbird having such
a large range of parallel efficiency makes it a flexible tool. If only 1500 cores on a
cluster are available, MOCkingbird can run, but if 12000 are available, then MOCking-

bird solves the same problem 8 times faster. This solve took (re-normalized) 12h. If
100,000 cores were used, there would still be 5,000 elements per MPI rank, which has
been shown to have a high parallel efficiency for MOCkingbird. Assuming even 50%
parallel efficiency, it would finish in under 3h. 100k cores is an important number
because the next cluster at Idaho National Laboratory is likely to be in that range.

The percentage of source iteration time taken in each part of the code is shown in
both Table 9.9 and Figure 9.21b. Data was only collected for the 3000 and 6000 MPI
cases. The values stay relatively constant; however, the percentages for ray-tracing and
segment integration slightly rise, as the number of core is doubled. This is showing
that SMART is continuing to be effective at overlapping communication and computa-
tion.



9.5 3d beavrs 187

9.5.3 3D Full-Core

The full-core, 3D BEAVRS problem represents an enormous challenge for any neutron
transport tool. Many groups have simulated it [116, 117, 118, 119, 120, 121, 122], some
using homogenization [122] many others using Monte Carlo based codes [118, 119,
120, 121]. However, to date, only one code [3, 104] has utilized MOC for full-core 3D
analysis of BEAVRS. However, [3] also, smartly, made use of the extruded nature of
BEAVRS to gain efficiency and reduce memory use. Also, another effort [101] solved
a full-core problem similar to BEAVRS using TRRM, which is a related method to
MOC. There has yet to be a direct MOC calculation of full-core, 3D BEAVRS by a fully
general, unstructured mesh, MOC code without any geometrical assumptions made
within the solver.

Table 9.10. Problem settings and computational requirements for the full-core 3D BEAVRS
solution.

Number Of Elements 1,386,977,280

Axial Layers 128

Average Element Height 3.6 cm

Number of Tracks 302,341,016

Fission Source Convergence 2e-4

ke f f Convergence 2.1e-06

Azimuthal Angles 32

Azimuthal Spacing 0.1 cm

Polar Angles 6

Polar Spacing 2 cm

MPI Processes 12,000

Solve Time 33.1 h

LNSI 33

Intersections 722,139,821,713

Number of Transport Sweeps 800

ke f f 0.99402

The full-core problem represents a significant increase in computational needs. If
the quarter-core mesh from the previous section were simply replicated four times,
the full-core mesh would include nearly 2.5 billion elements. To make the problem
solvable by MOCkingbird with available computational resources, the axial mesh for
the full-core simulation uses 128 layers. This brings the full-core mesh to 1,386,977,280
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elements. In addition, as shown in Table 9.10 the polar quadrature is reduced to 6

polar angles with a polar spacing of 2cm. The overall effect of coarsening both spatially
and angularly is that the number of tracks stays almost constant, and the number of
intersections per iteration grows by less than two-times. However, solution accuracy
could suffer [3].

(a) Thermal flux. (b) Assembly power error.

Figure 9.22. Thermal flux for the full-core shown on two slices through the core.

The thermal flux solution for the full-core problem is visible in Figure 9.22a. Just as
in the quarter core result, the spacer grids are plain to see as thermal flux depressions.
The assembly power error in Figure 9.22b shows a similar trend and magnitude to
that in the quarter core. The ke f f is low at 0.99402, but that is to be expected with the
coarse angular discretization and coarse axial layers.
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(a) Partitions. (b) Partitions
1000,
1001.

(c) Intersections per rank.

Figure 9.23. A view of the partitioning and the amount of work (intersections) per partition.
Figure 9.23b shows a three-dimensional view of the partitions for ranks 1000 and
1001.

Figure 9.23 shows a view of the partitions in Figure 9.23a and the resulting amount
of work (intersections) per partition in Figure 9.23c. While the partitions may look long
and columnar, they are shorter and more block-like as can be seen in the image of the
work balance in Figure 9.23c. The work is well balanced with the partition with the
highest number of intersections being 6.5e7, while the least intersections were 5.6e7 a
difference of about 14%. Figure 9.23b shows two of the partitions in three-dimensions.
It is obvious that the partitioning is not optimal; the long, columnar nature of the
partitions has more surface area than is necessary. With this partitioning, MOCkingbird
achieves 31 ns/integration. This time can be reduced with better partitioning.

This solution, though not perfect, represents a large step forward for unstructured
mesh MOC. The result, and the performance of 33 levelized ns/integration show that
unstructured mesh MOC is a viable capability for full-core reactor simulation. How-
ever, it is obvious from the hundreds/thousands of iterations required to converge
that some form of acceleration should be investigated quickly.



10 C O N C L U S I O N

The objective of this thesis is to overcome the obstacles surrounding the method of
characteristics (MOC) on unstructured mesh, to create a scalable, massively parallel,
domain decomposed, unstructured mesh, 3D, full-core MOC neutron transport tool:
MOCkingbird. Previous attempts have been severely limited by poor meshing strategies,
excessive memory usage, load imbalances, and poor parallelization that this work
overcame. Many unique capabilities were developed and cohesively bonded together
to ultimately allow for solution of the full-core heterogeneous 3D BEAVRS benchmark.
The primary developments that led to this new capability were:

• Reactor Mesh Generation: A capability was developed for generation of volume-
preserving pin-cell finite-element meshes. In addition, a directed-acyclic-graph-
based mesh generation system was added to MOOSE, allowing for efficient cre-
ation of heterogeneous 3D full-core reactor meshes.

• Sparse Communication Algorithm: A new scalable, MPI-based, sparse commu-
nication algorithm was developed: Modified Non-blocking Exchange. This algo-
rithm is used by MOCkingbird to accelerate the communication of cyclic tracks
and track linking metadata during the setup phase.

• Scalable Track Generation and Spatial Claiming: A scalable algorithm for effi-
ciently generating tracks in parallel and having MPI ranks uniquely claim start-
ing positions was developed. While track claiming is somewhat specific to MOC
codes, the algorithm developed as part of this work provides a general claiming
approach that can be applied to many other applications.

• Scalable Ray Tracing: The Scalable Massively Asynchronous Ray Tracing (SMA-
RT) algorithm was developed to trace MOC tracks across domain decomposed
unstructured meshes efficiently. Element traversal algorithms were developed,
allowing for ray-tracing through unstructured with extensive handling of cor-
ner cases. These were used within a completely asynchronous communication
scheme to allow for overlap of communication and computation to achieve excel-
lent scalability. The SMART system provides a pluggable, object-oriented system
which allows for many different physics to be solved using this new capability.

• Weighted Partitioning: Load balance is critical for parallel scalability and was
achieved using a new weighted partitioning scheme. The scheme uses the sur-
face area of elements to guide a parallel mesh partitioning package to create de-

190
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compositions that more evenly distribute work, favor on-node communication,
and minimize global communication.

• MOCkingbird To bring these capabilities together, a new reactor physics tool was
created. MOCkingbird enables parallel neutron transport in both 2D and 3D using
MOC. This tool was shown to be highly scalable, with testing from 32 to over
18k cores.

• Full-Core BEAVRS: A heterogeneous full-core solution to the BEAVRS bench-
mark was computed using 12k cores and nearly 400k core-hours. This computa-
tion was coarse in both space and angle, yet it demonstrated that MOCkingbird
is capable of 3D full-core simulations.

10.1 summary of work

Many technical obstacles were overcome during the development of MOCkingbird to
achieve 3D full-core computations, leading to several new capabilities and algorithms.
This new tool is capable of integration into high-fidelity multiphysics solutions, lead-
ing to higher-fidelity modeling and simulation for both existing and next-generation
reactors.

The development of MOCkingbird was possible by building on existing software
frameworks and capabilities. These include PETSc, libMesh, MOOSE, OpenMOC, and MPI.
The parallel vector storage needed for scalar flux values, neutron sources, and cross
section data was provided by PETSc. libMesh supplied the foundational unstructured
mesh capability, including the ability to read and write mesh files and perform geomet-
ric searches within them. The MOOSE multiphysics framework formed the backbone of
MOCkingbird, providing the pluggable, object-oriented architecture and many utilities
needed for creation of the new code. MOCkingbird also relies on the track generation
capability of OpenMOC track generation capability. All parallelism within MOCkingbird

is handled using the message passing interface (MPI) with all of the work for this
thesis depending on the MVAPICH open-source implementation. These are all open-
source libraries, developed by other scientists and engineers which played a critical
role in the creation of MOCkingbird. In turn, many of the new capabilities developed
by this thesis are now available, with the hope of enabling further contributions.

A neutron transport tool requires a geometrical description of the reactor. For MOC-

kingbird, the geometrical descriptions are based on unstructured mesh which has
seen much broader use in other communities and can facilitate coupling with other
physics packages. Therefore, the first technical achievements were advancements in
unstructured mesh generation, specifically for nuclear reactor geometries. A scheme
was developed, using the Cubit meshing tool, which created volume-preserving sym-
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metric pin-cell meshes. In addition, a new capability for graph-based mesh generation
was added to MOOSE. Ultimately, a 1.4 billion element mesh was generated and utilized
in the solution of the BEAVRS benchmark, by far, the largest mesh ever used with the
MOOSE framework.

A new sparse parallel communication method was developed to allow for the ef-
ficient transmission of quantities needed during the startup and setup phases of the
solve. The MNBX algorithm proved to be reliable and efficient, allowing MOCkingbird

to have scalable track generation capabilities for 3D full-core simulation.
Cyclic tracking had not been used with unstructured mesh MOC before, due to

limitations in identifying starting positions of each of the tracks within the partitioned
mesh. MOCkingbird utilizes the 2D and 3D cyclic track generation capability developed
as part of OpenMOC, and a new parallel algorithm was developed to identify the unique
MPI rank claiming the starting position of each track. This new algorithm was shown
to be scalable by testing with a 3D quarter-core model of the BEAVRS benchmark
using as many as 12k cores.

One of the primary new contributions from this thesis is a new capability for mas-
sively parallel ray-tracing: the Scalable Massively-Asynchronous Ray-Tracing (SMART)
algorithm. SMART utilizes non-blocking MPI methods, together with a unique, dis-
tributed, asynchronous stopping criteria, to allow for efficient parallel ray-tracing
through domain decomposed mesh. By starting asynchronous communication for
both sending and receiving in-between tracing chunks of rays, SMART can achieve a
substantial overlap in communication and computation, leading to greater parallel
efficiency. Scalability tests were performed, showing excellent scalability to over 18k
cores.

A new weighted partitioning capability was developed, providing scalability for
problems with disparately sized elements. Identifying that the workload of an indi-
vidual element within the mesh is proportional to the surface area of the element
allowed for better load balance to be achieved. This scheme was tested, and shown to
provide MOCkingbird with scalability for problems with widely varying element sizes.

Two other algorithms were tested for their relative performance to SMART: a Bulk
Synchronous (BS) algorithm and the Hybrid Adaptive Ray-Moment Method (HARM2).
Results showed that the SMART algorithm is up to 7x faster than BS and 3x faster than
HARM2 and it is well suited to the task of domain-decomposed, unstructured mesh
ray tracing.

All of these new capabilities were developed to overcome the many challenges iden-
tified in the literature as impediments to unstructured mesh-based MOC solvers. Ulti-
mately, the combination of these capabilities culminated in the creation of a scalable,
massively parallel, unstructured mesh, 3D full-core MOC solver: MOCkingbird. Testing
showed that, for problems with many energy groups, MOCkingbird could achieve se-
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rial speeds of 10 ns/integration in 2D and 20 ns/integration in 3D. These numbers are
in line with results others have published [3, 101, 104]. A series of scalability tests were
performed, which showed that the solver could scale from tens of cores to over 18k
on supercomputers. This is a critical feature that enables the solution of 3D, full-core
neutron transport.

Finally, a first-of-a-kind, unstructured mesh, 3D MOC simulation was performed
of the 3D BEAVRS benchmark. The benchmark represents a formidable challenge for
high-fidelity 3D neutron transport. A mesh containing 1.4 billion elements was used
for over 33 hours on 12k cores to perform 800 iterations, converging the fission source
to 2e− 4.

The case solved here is more coarse than the optimal parameters identified in [3]. To
meet those parameters the number of axial layers would need to be tripled, azimuthal
angles doubled, azimuthal spacing halved, polar angles doubled and polar spacing
halved. However, the gains to be made in adding acceleration and other optimizations
detailed in the future work section below should is expected to enable a fully-resolved
calculation to use approximately 230k core hours on Lemhi. This would make a fully-
resolved-calculation possible in 24 hours using 10k cores.

Solving such a massive problem with MOCkingbird was only possible through the
developments in this thesis: mesh generation, sparse communication, massively par-
allel ray-tracing, scalable cyclic track generation and claiming, surface-area-weighted
load balancing and ultimately the development of MOCkingbird itself. These devel-
opments have overcome all of the known issues from the literature to show that a
massively parallel, unstructured mesh, 3D full-core reactor simulation tool based on
MOC is not only possible but practical, on modern supercomputers.

10.2 future work

As shown in this thesis, MOCkingbird is already a useful tool and has demonstrated
of unstructured mesh MOC is viable. However, there are still many improvements
needed in order to become a useful reactor simulator tool.

10.2.1 Acceleration

Currently, the largest limitation of MOCkingbird is the lack of acceleration methods.
Properly implemented acceleration schemes have the ability to bring the number of
transport sweeps down from thousands to a few tens of iterations. This is typically
accomplished by solving a lower-order system, such as neutron diffusion, on a coarser
mesh, that is fed information from the transport sweep. Adding acceleration is critical
before MOCkingbird can be useful for any production capability.
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If an acceleration scheme were added, the 3D, full-core BEAVRS problem could go
from needing 800 iterations to only 20 (or less). As mentioned previously, this, plus a
few other optimizations, should allow a fully-resolved, 3D full-core calculation to use
an estimated 230k core hours.

Many different types of acceleration have been used with MOC including: CMFD
[65], DSA [123, 124] and NDA [125]. Research is needed to find which acceleration
method fits best within the computational framework and mesh partitioning of MOC-
kingbird. One important facet of acceleration with MOCkingbird is that the full, par-
allel non-linear partial differential equation solver of MOOSE is readily available. There-
fore, it might be wise to find an acceleration method that can be easily solved using
MOOSE.

10.2.2 Saving Segments

Currently, MOCkingbird does all ray-tracing "on-the-fly." This means nothing is saved
between iterations and the full set of ray-tracing routines must be rerun each time.
However, it is technically possible to save the results of the ray-tracing during the first
iteration and then, simply playback the sequence of segments for each subsequent
iteration. Drawbacks to this approach are that it uses more memory and any benefit
may be negated in multiphysics simulations with thermal expansion (which would
require new ray-tracing).

Figure 10.1. Average memory usage per-core for MOCkingbird, compared against the theoreti-
cal limit for SMART, a pure MPI block-Jacobi implementation and a hybrid parallel
block-Jacobi implementation.
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However, in spite of these drawbacks, it is worth pursuing. As shown in Figure 10.1,
MOCkingbird does not use much memory and is very memory scalable. Therefore,
if the memory is available, it might make sense to use it to speed up the transport
sweeps. This is only possible due to the parallel efficiency of SMART. When the project
began, it was assumed that saving segments would use too much memory. However,
because problems can be extremely decomposed and still maintain performance, it
frees up memory for other uses such as saving segments.

Figure 10.1 shows that as, even this large benchmark problem, is decomposed, the
memory usage per process quickly drops under 1GB and continues down to under
100MB by the time it reaches 10k cores. Each core on the Lemhi cluster has access
to 4GB of memory; therefore, a lot is available for storage of segments. In addition,
the amount of geometry on each MPI rank is also going down, meaning that the
number of segments that would need to be stored would also be decreasing. Figure
9.14c showed that 10% of solve time was used by ray-tracing in 2D with Figure 9.21b
showing that increasing to 25% for 3D. Therefore, the time reduction from saving
segments would be within a few tens of percent. All of these things combine to make
saving segments possible and ripe for future research.

10.2.3 Vectorization

Modern processors include what are known as SIMD units: Single Instruction Multiple
Data, also often referred to as "vector" units. These parts of the processor have the abil-
ity to perform the same computation on many entries in a vector simultaneously. Intel
and AMD have been consistently increasing the amount of vector instruction capabil-
ity within their CPUs. These instructions have gone through many iterations: MMX,
SSE, SSE2, AVX, AVX2, and now AVX-512. The newest, AVX-512, allows for operat-
ing on 8 double-precision floating-point number or 16 single-precision floating-point
numbers with one instruction in one clock cycle. This thesis did not use vectorization.
This was due to some early trials using vectorization that showed only small improve-
ments. However, recently published results for adding vectorization to a MOC code
[104], show speedups between 2-5x. Therefore, this topic should be revisited.

10.2.4 Hybrid Parallel

All of the results and analysis in this thesis were performed purely using MPI. How-
ever, MOCkingbird already contains the ability to use a hybrid parallel model of thread-
ing + MPI. This allows for on-node parallelism using threading and MPI only for off-
node communication. This could, theoretically, provide speedup. However, to date,
the threading capability within MOCkingbird has always been shown to be slower than
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running with pure MPI. The reasons for this are varied, but one of them is that MPI
also uses shared memory semantics when communicating with MPI ranks on the
same node. Therefore, some of the gains sought by using threading (to reduce mes-
sage passing overhead) don’t really exist, due to MPI already being extremely efficient
at on-node communication. Other complications such as non-uniform memory access
(NUMA), false sharing, and synchronized memory allocation can all play a roll in
slowing down threading. More research needs to be done to either speed up thread-
ing within MOCkingbird or understand why pure MPI is faster for this application.

10.2.5 Linear Source

As described in §2, MOCkingbird currently utilizes a flat source representation. This
means that the source, is constant over an element. This impacts accuracy and requires
the use of small elements to capture the continuously varying source accurately. A
linear source [10] formulation allows for the source to vary linearly within an element,
raising accuracy and allowing for larger elements to be used. This has been shown to
be particularly useful at reducing the number of axial layers needed for accurate LWR
simulation [3]. Linear source requires more work per segment and therefore larger
ns/integration, but this can be offset by using coarser spatial mesh.

10.2.6 TRRM

A new MOC-like algorithm has been developed called the Tramm Random Ray Method
(TRRM) [8]. Instead of fixed tracks like those used in this thesis, TRRM utilizes new
random tracks for each iteration and builds the solution out of an average of many iter-
ations. This has been shown to provide a large speedup over MOC for some problems
[101]. MOCkingbird already contains the ability to use TRRM; however, more work
needs to be done to assess accuracy and scalability before this method can be more
widely used.

10.2.7 Multiphysics

MOCkingbird represents the first 3D full-core, MOC tool capable of directly handling
thermal expansion or general deformation of fuel. On-the-fly ray-tracing, coupled with
unstructured mesh, allows thermal expansion to be naturally incorporated. MOCking-
bird being built using MOOSE provides simplified coupling to other physics. Several
studies need to be performed using MOCkingbird with other MOOSE-based physics
solvers to assess the viability of this pairing for predictive simulation of reactors.
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11 MOCKINGBIRD I N P U T F I L E F O R M AT

Listing 11.1. MOCkingbird input file for a fully-
reflective pin-cell calculation

[ Mesh ]
type = FileMesh
f i l e = pin _ c e l l _ f i n e . e
dim = 2

[ ]

[ UserObjects ]
[ t r a c k _ reader ]

type = TrackGenerator 2D
execute _on = i n i t i a l
num_azim = 32

azim_ spacing = 0 . 0 1

[ ]
[ study ]

type = TrackListStudy
send_ b u f f e r _ s i z e = 100

t r a c k _ reader = t r a c k _ reader
[ ]

[ ]

[ RayKernels ]
[ f l a t _ f l u x ]

type = Fla tSource
[ ]

[ ]

[ RayBCs ]
[ bottom ]

boundary = 3

type = MOCReflectAndBankBC
normal = ’0 −1 0 ’

[ ]
[ r i g h t ]

boundary = 4

type = MOCReflectAndBankBC
normal = ’1 0 0 ’

[ ]
[ top ]

boundary = 5

type = MOCReflectAndBankBC
normal = ’0 1 0 ’

[ ]
[ l e f t ]

boundary = 6

type = MOCReflectAndBankBC
normal = ’−1 0 0 ’

[ ]
[ ]

[ RayMaterials ]
[ f u e l ]

type = Fuel
block = f u e l

[ ]
[ moderator ]

type = Moderator
block = moderator

[ ]
[ ]

[ Problem ]
type = MOCProblem
d e t e r m i n i s t i c _ study = study
solve = f a l s e
num_groups = 8

num_ polar = 3

power_ i t e r a t i o n s = 2000

f i s s i o n _ source _ t o l e r a n c e = 1e−4

k_ t o l e r a n c e = 1e−5

use_ tracked _volume = true
[ ]

[ Execut ioner ]
type = Steady

[ ]

[ Outputs ]
exodus = true

[ ] �
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12 C 5 G 7 I N P U T

Listing 12.1. MOOSE input file syntax utilizing the graph-based mesh-generation system to
create the mesh for the 2D C5G7 benchmark.

[MeshGenerators]

#inactive = ’top_part change_block_id3 translate stitch3’

[./uo2]

type = FileMeshGenerator

file = ../pin_cells/uo2_coarse.e

[]

[./43_mox]

type = FileMeshGenerator

file = ../pin_cells/43_mox_coarse.e

[]

[./70_mox]

type = FileMeshGenerator

file = ../pin_cells/70_mox_coarse.e

[]

[./87_mox]

type = FileMeshGenerator

file = ../pin_cells/87_mox_coarse.e

[]

[./gt]

type = FileMeshGenerator

file = ../pin_cells/gt_coarse.e

[]

[./fc]

type = FileMeshGenerator

file = ../pin_cells/fc_coarse.e

[]

[./mod]

type = FileMeshGenerator

file = ../pin_cells/mod.e

[]

#-------------------------------------------------------

[./mox_assembly]

type = PatternedMeshGenerator

inputs = ’uo2 43_mox 70_mox 87_mox gt fc mod’

pattern = ’1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ;

1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 ;
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1 2 2 2 2 4 2 2 4 2 2 4 2 2 2 2 1 ;

1 2 2 4 2 3 3 3 3 3 3 3 2 4 2 2 1 ;

1 2 2 2 3 3 3 3 3 3 3 3 3 2 2 2 1 ;

1 2 4 3 3 4 3 3 4 3 3 4 3 3 4 2 1 ;

1 2 2 3 3 3 3 3 3 3 3 3 3 3 2 2 1 ;

1 2 2 3 3 3 3 3 3 3 3 3 3 3 2 2 1 ;

1 2 4 3 3 4 3 3 5 3 3 4 3 3 4 2 1 ;

1 2 2 3 3 3 3 3 3 3 3 3 3 3 2 2 1 ;

1 2 2 3 3 3 3 3 3 3 3 3 3 3 2 2 1 ;

1 2 4 3 3 4 3 3 4 3 3 4 3 3 4 2 1 ;

1 2 2 2 3 3 3 3 3 3 3 3 3 2 2 2 1 ;

1 2 2 4 2 3 3 3 3 3 3 3 2 4 2 2 1 ;

1 2 2 2 2 4 2 2 4 2 2 4 2 2 2 2 1 ;

1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 ;

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1’

y_width = 1.26

x_width = 1.26

bottom_boundary_id = 1

right_boundary_id = 2

top_boundary_id = 3

left_boundary_id = 4

[]

#--------------------------------------------------------------

[./uo2_assembly]

type = PatternedMeshGenerator

inputs = ’uo2 43_mox 70_mox 87_mox gt fc mod’

pattern = ’0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ;

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ;

0 0 0 0 0 4 0 0 4 0 0 4 0 0 0 0 0 ;

0 0 0 4 0 0 0 0 0 0 0 0 0 4 0 0 0 ;

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ;

0 0 4 0 0 4 0 0 4 0 0 4 0 0 4 0 0 ;

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ;

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ;

0 0 4 0 0 4 0 0 5 0 0 4 0 0 4 0 0 ;

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ;

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ;

0 0 4 0 0 4 0 0 4 0 0 4 0 0 4 0 0 ;

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ;

0 0 0 4 0 0 0 0 0 0 0 0 0 4 0 0 0 ;

0 0 0 0 0 4 0 0 4 0 0 4 0 0 0 0 0 ;

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ;

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0’

y_width = 1.26
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x_width = 1.26

bottom_boundary_id = 1

right_boundary_id = 2

top_boundary_id = 3

left_boundary_id = 4

[]

#-------------------------------------------------------------

[./assembly]

type = PatternedMeshGenerator

inputs = ’uo2_assembly mox_assembly’

pattern = ’0 1;

1 0’

y_width = 21.42

x_width = 21.42

bottom_boundary_id = 1

right_boundary_id = 2

top_boundary_id = 3

left_boundary_id = 4

[]

[./new_ids]

type = RenameBoundaryGenerator

input = assembly

old_boundary_id = ’1 2 3 4’

new_boundary_id = ’0 1 2 3’

[]

#------------------------------------------------------------

[./bottom]

type = GeneratedMeshGenerator

dim = 2

nx = 204

xmin = -0.63

xmax = 42.21

ny = 102

ymin = -63.63

ymax = -42.21

elem_type = QUAD4

[]

[./change_block_id]

type = SubdomainIDGenerator

input = bottom

subdomain_id = 7

[]

#----------------------------------------------------------

[./right_part]
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type = GeneratedMeshGenerator

dim = 2

nx = 102

xmin = 42.21

xmax = 63.63

ny = 306

ymin = -63.63

ymax = 0.63

elem_type = QUAD4

[]

[./change_block_id2]

type = SubdomainIDGenerator

input = right_part

subdomain_id = 7

[]

#----------------------------------------------------------

[./stitch2]

type = StitchedMeshGenerator

inputs = ’new_ids change_block_id change_block_id2’

stitch_boundaries_pairs = ’0 2;

1 3’

[]

[./boundary_names]

type = RenameBoundaryGenerator

input = stitch2

old_boundary_id = ’0 1 2 3’

new_boundary_name = ’bottom right top left’

[]

[] �



13 E N E R G Y G R O U P S T R U C T U R E F O R B E AV R S C R O S S
S E C T I O N S

This 70 group energy structure comes from CASMO-4 [6] and was utilized for the
BEAVRS benchmark.

Group No. Lower Bound [MeV] Upper Bound [MeV]

70 0.0000E+00 5.0000E-09

69 5.0000E-09 1.0000E-08

68 1.0000E-08 1.5000E-08

67 1.5000E-08 2.0000E-08

66 2.0000E-08 2.5000E-08

65 2.5000E-08 3.0000E-08

64 3.0000E-08 3.5000E-08

63 3.5000E-08 4.2000E-08

62 4.2000E-08 5.0000E-08

61 5.0000E-08 5.8000E-08

60 5.8000E-08 6.7000E-08

59 6.7000E-08 8.0000E-08

58 8.0000E-08 1.0000E-07

57 1.0000E-07 1.4000E-07

56 1.4000E-07 1.8000E-07

55 1.8000E-07 2.2000E-07

54 2.2000E-07 2.5000E-07

53 2.5000E-07 2.8000E-07

52 2.8000E-07 3.0000E-07

51 3.0000E-07 3.2000E-07

50 3.2000E-07 3.5000E-07

49 3.5000E-07 4.0000E-07

48 4.0000E-07 5.0000E-07

47 5.0000E-07 6.2500E-07

46 6.2500E-07 7.8000E-07

45 7.8000E-07 8.5000E-07
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44 8.5000E-07 9.1000E-07

43 9.1000E-07 9.5000E-07

42 9.5000E-07 9.7200E-07

41 9.7200E-07 9.9600E-07

40 9.9600E-07 1.0200E-06

39 1.0200E-06 1.0450E-06

38 1.0450E-06 1.0710E-06

37 1.0710E-06 1.0970E-06

36 1.0970E-06 1.1230E-06

35 1.1230E-06 1.1500E-06

34 1.1500E-06 1.3000E-06

33 1.3000E-06 1.5000E-06

32 1.5000E-06 1.8550E-06

31 1.8550E-06 2.1000E-06

30 2.1000E-06 2.6000E-06

29 2.6000E-06 3.3000E-06

28 3.3000E-06 4.0000E-06

27 4.0000E-06 9.8770E-06

26 9.8770E-06 1.5968E-05

25 1.5968E-05 2.7700E-05

24 2.7700E-05 4.8052E-05

23 4.8052E-05 7.5501E-05

22 7.5501E-05 1.4873E-04

21 1.4873E-04 3.6726E-04

20 3.6726E-04 9.0690E-04

19 9.0690E-04 1.4251E-03

18 1.4251E-03 2.2395E-03

17 2.2395E-03 3.5191E-03

16 3.5191E-03 5.5300E-03

15 5.5300E-03 9.1180E-03

14 9.1180E-03 1.5030E-02

13 1.5030E-02 2.4780E-02

12 2.4780E-02 4.0850E-02



energy group structure for beavrs cross sections 205

11 4.0850E-02 6.7340E-02

10 6.7340E-02 1.1100E-01

9 1.1100E-01 1.8300E-01

8 1.8300E-01 3.0250E-01

7 3.0250E-01 5.0000E-01

6 5.0000E-01 8.2100E-01

5 8.2100E-01 1.3530E+00

4 1.3530E+00 2.2310E+00

3 2.2310E+00 3.6790E+00

2 3.6790E+00 6.0655E+00

1 6.0655E+00 2.0000E+01



14 G E O M E T R I C A L I N T E R S E C T I O N A L G O R I T H M S

At the heart of the ray-traversal Algorithm 7 is the ability to find intersections between
the rays and the unstructured mesh geometry. This part of the algorithm is the only
part specialized for particular element types: quadrilaterals for 2D and hexahedrals in
3D. The rest of 7 is completely dimension agnostic with the code working the same
way regardless of element type or dimension.

~r0

~s1 ~r1

~s0
(a) Ray passing through quadrilateral

~r0 ~s0

~r0 + t~r ~s0 + u~s

(b) Parameterization as in Algorithm 21

Figure 14.1. Visual representation of Algorithm 21

To find intersections of faces (edges) in 2D the code employs Algorithm 21. As
shown in Figure 14.1 the intersection point is found as the distance along the side
starting from one node. Within MOCkingbird each side of the current element will be
checked with the longest distance found being chosen as the correct intersection.

In three-dimensions, intersections with the quadrilateral sides of hexahedral ele-
ments must be performed. Several algorithms were tried for this work with the best
(most efficient and most accurate) being to split the quadrilateral face into two trian-
gles and use a back-face culling algorithm from [70] to test each one in turn (with a
quick return if the first triangle yields an intersection).
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Algorithm 21: Line-line intersection algorithm utilized for finding side intersec-
tions within a two-dimensional domain. Based on the algorithm found at [126]
input : Beginning and ending of ray (r0, r1)
input : Beginning and ending of side to test (s0, s1)
output : Whether or not the lines intersect (true, f alse)
output : Intersection point (r0 + tr)

1 Using a× b as axby − aybx

2 r ← r1 − r0
3 s← s1 − s0

4 w← r× s
5 h = s0 − r0

6 if |w| ≈ 0 then
7 return f alse
8 end

9 t = h× s/w
10 u = h× r/w

11 if 0 . t . 1 and 0 . u . 1 then
12 return true and r0 + (tr)
13 end

14 return f alse
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(a) Element and ray.

0

1

2

3

(b) First triangle tested.

0

1

2

3

(c) Second triangle tested.

Figure 14.2. Ray tracing across a hexahedral element from the front face to the back face. The
back face will be made into two triangles that are each tested for intersections
using Algorithm 23. The vertex numbering is also shown.

Figure 14.2 pictorializes Algorithm 23. In Figure 14.2a the ray is shown as coming
through the front face of the element, crossing the element and striking the back face.
Figure 14.2b breaks out the back face, showing the vertex numbering and the first
triangle that will be tested. The vertex numbering is such that using the right-hand-
rule the normal vector of the face is facing outward from the element (in the same
direction of the ray). Because of this, care must be taken to feed the vertices into the
routines in Algorithm 23 to ensure that, with respect to the ray, the algorithm believes
that the normal of the face is towards the ray. To create each of the triangles seen in
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Figures 14.2b, 14.2c two sets of vertices are passed into the rayIntersectsTriangle()

routine found in Algorithm 23.

Algorithm 22: Intersection algorithm used for quadrilateral faces of hexahedral
elements.
input : Beginning of and unit normal direction (r0, r)
input : Three vertices of the triangle (v0, v1, v2)
output : Whether or not the ray intersects the triangle (true, f alse)
output : Intersection point (r0 + tr)

1 EPSILON← 1e-10

2 e1 ← v1 - v0

3 e2 ← v2 - v0

4 p ← r× e2

5 det← e1 · p
6 if det < -EPSILON then
7 return f alse
8 end
9 t ← r0 − v0

10 u = t · p
11 if u < -EPSILON || u > det + EPSILON then
12 return f alse
13 end
14 q ← t× e1

15 v← r · q
16 if v < -EPSILON || u + v > det + EPSILON then
17 return f alse
18 end
19 t l ← e2 · q
20 inv_det← 1.

det

21 t ∗ = inv_det
22 u ∗ = inv_det
23 v ∗ = inv_det
24 if t <= 0 then
25 return f alse
26 end
27 return true
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Algorithm 23: Intersection algorithm used for quadrilateral faces of hexahedral
elements.
input : Beginning of and unit normal direction (r0, r)
input : Three vertices of the quadrilateral (v0, v1, v2, v3)
output : Whether or not the ray intersects the triangle (true, f alse)
output : Intersection point (r0 + tr)

1 if Call Algorithm 22 with (r0, r, v0, v1, v2, u, v, t) then
2 return true
3 end
4 if Call Algorithm 22 with (r0, r, v3, v0, v2, u, v, t) then
5 return true
6 end
7 return f alse



15 O B J E C T P O O L

An object pool is used by SMART to reduce the amount of memory allocation and
deallocation during execution. The object pool code is shown in Listing 15.1. The
acquire() method is called to retrieve an object from the pool. It returns a smart
pointer, which, when the object is no longer needed, automatically returns the object to
the pool. If the pool is empty when acquire is called, then a new object is constructed.

Listing 15.1. Object pool utilized by SMART

# i f n d e f OBJECTPOOL_H
# def ine OBJECTPOOL_H

// System Includes

# include <stack >
# include <memory>

template < c l a s s T , typename . . . Args>
auto
r e s e t ( in t , T & obj , Args . . . args ) −> decl type ( ob j . r e s e t ( args . . . ) , void ( ) )
{

ob j . r e s e t ( s td : : forward <Args >( args ) . . . ) ;
}

template < c l a s s T , typename . . . Args>
void
r e s e t ( double , T & /*obj*/ , Args . . . /*args*/ )
{
}

/**

*

* Originally From https://stackoverflow.com/a/27837534/2042320

*

* with added variadic templated perfect forwarding to acquire()

*

* For an object to be resetable it needs to define a reset() function

* that takes the same arguments as its constructor.

*/

template < c l a s s T>
c l a s s ObjectPool
{
p r i v a t e :

s t r u c t E x t e r n a l D e l e t e r
{

e x p l i c i t E x t e r n a l D e l e t e r ( s td : : weak_ptr<ObjectPool <T> *> pool ) : _pool ( pool ) { }

void operator ( ) ( T * ptr )
{

i f ( auto _poolptr = _pool . lock ( ) )
{

t r y
{

( * _poolptr . get ( ) )−>add ( std : : unique_ptr <T>{ ptr } ) ;
re turn ;

}
ca tch ( . . . ) { }

}
s td : : d e f a u l t _ d e l e t e <T > { } ( pt r ) ;

}

p r i v a t e :
s td : : weak_ptr<ObjectPool <T> *> _pool ;

} ;
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publ ic :
using ptr_type = std : : unique_ptr <T , Externa lDele ter > ;

ObjectPool ( ) : _ t h i s _ p t r (new ObjectPool <T> * ( t h i s ) ) { }
v i r t u a l ~ObjectPool ( ) { }

void add ( std : : unique_ptr <T> t ) { _pool . push ( std : : move( t ) ) ; }

template <typename . . . Args>
ptr_type acquire ( Args &&. . . args )
{

// if the pool is empty - create one

i f ( _pool . empty ( ) )
{

_num_created ++;
re turn std : : move( ptr_type (new T ( std : : forward <Args >( args ) . . . ) ,

E x t e r n a l D e l e t e r { s td : : weak_ptr<ObjectPool <T> * >{ _ t h i s _ p t r } } ) ) ;
}
e l s e
{

ptr_type tmp ( _pool . top ( ) . r e l e a s e ( ) ,
E x t e r n a l D e l e t e r { s td : : weak_ptr<ObjectPool <T> * >{ _ t h i s _ p t r } } ) ;

_pool . pop ( ) ;

r e s e t ( 1 , * tmp , std : : forward <Args >( args ) . . . ) ;

re turn std : : move( tmp ) ;
}

}

bool empty ( ) const { re turn _pool . empty ( ) ; }
s i z e _ t s i z e ( ) const { re turn _pool . s i z e ( ) ; }
s i z e _ t num_created ( ) const { re turn _num_created ; }

p r i v a t e :
s td : : shared_ptr <ObjectPool <T> *> _ t h i s _ p t r ;
s td : : s tack <std : : unique_ptr <T>> _pool ;

s i z e _ t _num_created = 0 ;
} ;
# endi f �
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