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ABSTRACT 

LIDS-R-859 

In this paper a new algorithm for solving algebraic Riccati equations 
{both continuous-time and discrete-time versions) is presented. The 
method studied is a variant of the classical eigenvector approach and 
uses instead an appropriate set of Schur vectors thereby gaining sub
stantial numerical advantages. Complete proofs of the Schur approach are 
given as well as considerable discussion of numerical issues. The method 
is apparently quite numerically stable and performs reliably on systems 
with dense matrices up to order 100 or so, storage being the main limiting 
factor. 
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1. Introduction 

In this paper a new algorithm for solving algebraic Riccati equations 

(both continuous-time and discrete-time versions) is presented. These 

equations play fundamental roles in the analysis, synthesis, and design 

of linear-quadratic-Gaussian control and estimation systems as well as 

in many other branches of applied mathematics. It is not the purpose of 

this paper to survey the extensive literature available for these equations 

but, rather, we refer the reader to, for example, [1], [2], [3], [4], and 

[5] for references. Nor is it our intention to investigate any but the 

unique (under suitable hypotheses) symmetric, nonnegative definite solu

tion of an algebraic Riccati equation even though the algorithm to be 

presented does also have the potential to produce other solutions. For 

further reference to the "geometry" of the Riccati equation we refer to 

(31, (6), and (7]. 

The method studied here is a variant of the classical eigenvector 

approach to Riccati equations, the essentials of which date back to at 

least von Escherich in 1898 (8]. The approach has also found its way 

into the control literature in papers by, for example, MacFarlane [9], 

Potter [10], and Vaughn (11]. Its use in that literature is often 

associated with the name of Potter. However, the use of eigenvectors 

is often highly unsatisfactory from a numerical point of view and the 

present method uses the so-called and much more numerically attractive 

Schur vectors to get a basis for a certain subspace of interest in the 

problem. 

other authors such as Fath [12] and Willems [3], to name two, have 

also noted that any basis of the subspace would suffice but the specific 

082395G 
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use of Schur vectors was inhibited by a not-entirely-straightforward 

problem of ordering triangular canonical forms - a problem which is 

discussed at length in the sequel. The paper by Fath is very much in 

the spirit of the work presented here and is one of the very few in the 

literature which seriously addresses numerical issues. 

One of the best sununaries of the eigenvector approach to solving 

algebraic Riccati equations is the work of Martensson [13). This work 

extends {lOJ to the case of "multiple closed-loop eigenvalues". It 

will be shown in the sequel how the present approach recovers all the 

theoretical results of {10) and I13] while providing significant numeri

cal advantages. 

Most numerical comparisons of Riccati algorithms tend to definitely 

favor the standard eigenvector approach - its numerical difficulties 

notwithstanding - over other approaches such as Newton's method {14] 

or methods based on integrating a Riccati differential equation. Typical 

of such comparisons are {71, (151, and I16]. It will be demonstrated 

in this paper that if you previously liked the eigenvector approach, 

you will like the Schur vector approach at least twice as much. This 

statement, while somewhat simplistic, is based on the fact that a Schur 

vector approach provides a substantially more efficient, useful, and 

reliable technique for numerically solving algebraic Riccati equations. 

The method is intended primarily for the solution of dense, moderate

sized equations (say, order~ 100) rather than large, sparse equations. 

While the algorithm in its present state offers much scope for improve

ment, it still represents an order-of-magnitude improvement over current 

methods for solving algebraic Riccati equations. 
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Briefly, the rest of the paper is organized as follows. This section 

is concluded with some notation and linear algebra review. In Sections 

2 and 3 the continuous-time and discrete-time Riccati equations, re-

spectively, are treated. In Section 4 numerical issues such as algorithm 

implementation, balancing, scaling, operation counts, timing, storage, 

stability, and conditioning are considered. In Section 5 we emphasize 

the advantages of the Schur vector approach and make some further general 

remarks. Six examples are given in Section 6 and some concluding remarks 

are made in Section 7. 

1.1 Notation 

Throughout the paper A e lE'mxn will denote an mxn matrix with co-

efficients in a field lE'. The field will usually be the real numbers 

lR or the complex numbers c. The notations AT and AH will denote 

transpose and conjugate transpose,respectively, while A-Twill denote 

(AT)-l = (A-l)T. The notation A+ will denote the Moore-Penrose pseudo

inverse of the matrix A. For A€ ]Rnxn its spectrum (set of n eigenvalues) 

will be denoted by cr(A). When a matrix A e lR2nx2n is partitioned into 

four nxn blocks as 

A - (::: :::) 

we shall frequently refer to the individual blocks A .. without further 
l] 

L discussi~. 
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1.2 Linear Algebra Review 

Let 

A e JR.nxn is orthogonal if AT Definition 1: 
-1 

= A 

Definition 2: A e ~nxn is unitary if AH= A-1 . 

J -( O I) e m.2nx2n where I denotes the nth order identity matrix. 
- -I 0 

Note that JT = J-l = -J. 

Definition 3: A e m.2nx2n is Hamiltonian if J-lATJ = -A. 

Definition 4: A e m.2nx2n is symplectic if J-lATJ = A-l 

Hamiltonian and syrnplectic matrices are obviously closely related. For 

a discussion of this relationship and a review of "symplectic algebra" 

see {17], (18). We will use the following two theorems from symplectic 

algebra. Their proofs (see [18]) are trivial (and hence will be omitted). 

Theorem 1: 1 2nx2n . 1 . 
. Let A e :IR be Hami tonian. Then A e O(A) 

2nx2n b implies -A e O(A) with the same multiplicity. 2. Let A e JR. e 

symplectic. Then A e o(A) implies I e O(A) with the same multiplicity. 

There is a relationship between the right and left eigenvectors of 

these symplectically associated eigenvalues. See [18] for details. 

Theorem 2: Let A€ m.2nx2n be Hamiltonian (or syrnplectic). Let 

U e m.2nx2n be symplectic. Then u-1Au is Hamiltonian (or syrnplectic). 

Finally, we need two theorems from classical similarity theory which 

form the theoretical cornerstone of modern numerical linear algebra. 

See [19], for example, for a textbook treatment. 
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h 3 ( . nxn . 1 T eorem Schur canonical form): Let A e JR have eigenva ues 

A1 , ... ,An. Then there exists a unitary similarity transformation U such 

that UHAU is upper triangular with diagonal elements A , ... ,A in that 
· 1 n 

order. 

In fact, it is possible to work only over :IR by reducing to quasi-

upper-triangular form with 2x2 blocks on the (block) diagonal corresponding 

to complex conjugate eigenvalues and lxl blocks corresponding to the real 

eigenvalues. We refer to this canonical form as the real Schur form 

(RSF) or the Murnaghan-Wintner [20] canonical form. 

nxn Theorem 4 (RSF) : Let A € lR • Then there exists an orthogonal 

similarity transformation U such that UTAU is quasi-upper-triangular. 

Moreover, U can be chosen so that the 2x2 and lxl diagonal blocks appear 

in any desired order. 

S12) kxk where s11 e :IR , 

5 22 
as he Schur vectors 

( Soll If in Theorem 4 we partition UTAU into 

O<k<n, we shall refer to the first k vectors of U 

corresponding to a(s11) s; 0(A). The Schur vectors corresponding to the 

eigenvalues of s11 span the eigenspace corresponding to those eigenvalues 

even when some of the eigenvalues are multiple (see [21]). We shall 

use this property heavily in the sequel. 
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2. The Continuous-Time Algebraic Riccati Equation 

In this section we shall present a method for using a certain set of 

Schur vectors to solve (for X) the continuous-time algebraic Riccati 

equation 

FT X + XF - XGX + H = 0 • ( 1) 

All matrices are in IRnxn and G =GT_:: O, H =HT> o. 

It is assumed that (F,B) is a stabilizable pair Ill where Bis a 

full-rank factorization (FRF) of G(i.e., BBT = G and rank(B) = rank(G)) 

and (C,F) is a detectable pair [1] where C is a FRF of H (i.e., CTC = H 

and rank(C) = rank(H)). Under these assumptions, (1) is known to have 

a unique nonnegative definite solution Il]. There are, of course, many 

other solutions to (1) but for the algorithm presented here the emphasis 

will be on computing the nonnegative definite one. 

Now consider the Hamiltonian ma~rix 

z = { F -G \ e IR2nx2n 

~H -F; (2) 

our assumptions guarantee that Z has no pure imaginary eigenvalues. 

Thus by Theorem 4 we can find an orthogonal transformation U € IR2nx2n 

which puts Zin RSF: 

(3) 

nxn wheres .. e IR . It is possible to arrange, moreover, that the real 
l.J 

parts of the spectrum of s 11 are negative while the real parts of the 

spectrum of s22 are positive. U is conformably partitioned into four 

rum blocks: 
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(4) 

We then have the following theorem. 

Theorem 5: With respect to the notation and assumptions above: 

1. 
-1 

u 11 is invertible and X = u 21 ull solves (1) • 

2. cr(s11) = cr(F-GX) = the "closed-loop" spectrum. 

4. X > 0 

Proof: 

1. We first prove that u11 is invertible. To avoid complicating 

the proof unnecessarily by having to consider 2x2 blocks of s11 , we will for 

simplicity 
2nx2n. 

assume that Se IC is upper triangular and U is unitary. 

Suppose u11 € !Cnxn is singular. Without any loss of generality, we 

th t U . f th f (0 A ) h UAll € !Cnx(n-1). may assume a 11 is o e orm , u11 were Thus, 

we have 

(5) 

where u € IC nxl and (-:,\) with ReA > 0 is the upper left element of s. 

But then for any X we have 

= AU by (5). 
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T 
However, we also have Fu= Au by (5). Thus we have an eigenvalue A 

of F with positive real part which is uncontrollable. This contradicts 

the assumption of stabilizability so u11 must be invertible. 

-1 
We now show that X = u21u11 solves (1). Simply substitute into (1): 

FTX + XF - XGX +HS -(I,X)Jz(;.) 

2. Fromf F 

\H 

= (021 U~~ ,-I) .,J I 1\ 

~21°1~ 

= 0 

= (F- GX}Ull 

-1 
Thus u11 (F - GX) u11 = s11 so a cs11) = a (F - GX) • 

3. Let Y 

Then 

from ·c3) 

(6) 

(7) 
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so to prove that Xis synunetric it clearly suffices to show that Y is 

Now consider the skew-synunetric, orthogonal matrix M 

the fact that Z is Hamiltonian, it is easy to show that 

STM == -MS 

T = U JU. Using 

wheres was given in (3). But since s 11 is 

stable, it follows from classical Lyapunov theory (see, e.g., [22]) that 

Remark: It can be shown that the matrix Mis of the general form 

M --(Mo~2 Mo12\ ~ where M12 is orthogonal. 

4. From (6) and (7) it clearly suffices to prove that u~1u21 _.::. O. 

Define 

V(t) =(ull) e tsll 

0 21 

Note that V(O) ==(ull) while lim V(t) 
u t++= 

21 

v<t> ( 11) tS11 = slle 
0 21 

~::) ts11 
by (3) == e 

= ZV{t) 

is stable. Then 
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Now let W(t) = VT(O)LV(O) VT(t)LV(t) where L 

t d T 
W(t) = - .{ ds [V (s)LV(s)]ds 0 

t T 
= - JvT(s) fZ L + LZ]V(s)ds 

C 

= - ~-VT(s)[-H 
0J V(s)ds 

G O -G 

> O for all t > 0 • 

Thus lim W (t) 
t-+ +oo 

= VT (0) LV(O) 

This completes the proof of the theorem. 

-- (00 IO) . Then 

0 

Further discussion of this theorem and computational considerations 

are deferred until Section 4. 
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3. The Discrete-Time Algebraic Riccati Equation 

In this section we shall present an analogous method using certain 

Schur vectors to solve the discrete-time algebraic Riccati equation 

(8) * 

JRrum, man e JRmxm, T O GT > 0 Here F, H, X € Gl € lR , G2 and H = H 2:_ , G2 = 2 • 

Also, m<n. The details of the method for this equation are sufficiently 

different from the continuous-time case that we shall explicitly present 

most of them. 

It is assumed that (F, G1 ) is a stabilizable pair and that (C, F) is 

T a detectable pair where C is a FRF of H (i.e., CC= Hand rank(C) = rank(H)). 

We also assume that Fis invertible - a common assumption on the open-

loop dynamics of a discrete-time system {23]. The details for the case 

when Fis singular can be found in Appendix 1. 

Under the above assumptions (8) is known to have a unique nonnegative 

definite solution [23] and the method proposed below will be directed 

towards finding that solution. 

-1 T 
Setting G = G1G2 G1 we consider this time the symplectic matrix 

= (F+GF-TH 
z -T 

-F H 

-T) -GF 

-T 
F 

(9) 

Our assumptions guarantee that Z has no eigenvalues on the unit circle. 

h 4 f · d th 1 f · 2nx2n h · h By T eorem we can in an or ogona trans ormation U e lR w 1c 

puts Zin &SF: 

*Note that an alternate equivalent form of (8) when Xis invertible is: 
T -1 -1 T -1 

F (X + G1G2 G1) F - X + H = 0 



where s . . e lRnxn. 
l.J 
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(10) 

It is possible to arrange, moreover, that the spectrum of s11 lies 

inside the unit circle while the spectrum of s22 lies outside the unit 

circle. Again U is partitioned conformably. We then have the following 

theorem. 

Theorem 6: With respect to the notation and assumptions above: 

Proof: 

l. u11 is invertible and x 

2. cr(s11) = O(F - G1 (G2+G~XG1 )-lG~XF) 

-T = O' (F - GF (X-H)) 

= cr(F- G(X-l + G)-1F) when x is invertible 

= the "closed-loop" spectrum. 

3. X = XT. 

4. X > 0. 

1. We proceed as in the proof of Theorem 5. Again we assume that· 

~ A nx(n-1) u11 is singular and of the form u11 = (0, u11) where u11 € ~ • 

T -1 -1 
Tllen since U z U = S we have 

(:) = (:) ~ (11} 

But then for any X we have 
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= AU 

by (11). However, we also have FTu = AU by (11). Thus we have A e cr(F) 

with IA.I > 1 which is uncontrollable. This contradicts the assumption 

of stabilizability so u11 must be invertible. 

solves (8) we have: 

T T -T = F XF - X - F XGF (X - H) + H 

-1 
To show that X = u21u11 

from (10) 

= 0 • 

(
F+ GF-TH 

2. From 
-T 

-F H 

-T -T = (F + GF H)Ull - GF u21 

-T 
= (F - GF (X - H)) u11 • 

-T 
Thus cr(s11> = cr(F - GF (X-H)). The other equalities follow by well-

known matrix identities. 
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3. Since X 
-T -1 = u11 Yu11 it suffices, as in Theorem 

5 , to prove that Y is synunetric. The proof is essentially the same: 

since Z is symplectic we have 

-1 = -MS 

where M = UT JU and s was given in (10). Then s~1M11 s11 + M11 == 0 whence M11 = 0 

T T 
by classical Lyapunov theory. But M11 = u 11u 21 - u21u11 so symmetry follows. 

4. As in Theorem 5 it suffices to prove that u~1u 21 ~ O. Define 

/u .. \ . ~/u11)\ ('o)' = (_.LL) s~1 . Note that V(O) = while lim V(k) = since 

\u21 u21 k+ +oo 0 

V(k) 

s11 is stable. Then 

V(k+l) = (u11) 5k+l 
u 11 

21 

= ZV(k) 

by (10). Now let W(k} T T (0 I) = V (O}LV(O} - V (k)LV(k) where L = O O. 

Now, 

k-1 
W(k) = E [VT(j)LV(j) - VT(j+l)LV(j+l)] 

j=O 

k-1 
= L VT(j)[L-ZTLZ]V(j) 

j=O 

according to 

A =ell 
Al2 

[
H + HF-lGF-TH 

-1 -T 
-F GF H 

a theorem of Albert 

A~2) 
A22 

-1 -T] -HF GF 
-1 -T V{j) 

F GF 

[24], a matrix 

Then 
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with All 

only if: 

T nxn T mxm ; A11 e lR , A22 = A22 e lR is nonnegative definite if and 

(i) A22 ~ 0 

(ii) + 
A22A22Al2 = Al2 

and 
T + (iii) All - Al2A22A12 > o. 

A -- (H + HEH 
For the matrix -HEE) where E = F-1GF-T we clearly have (i) 

-EH 
satisfied. + We also have (ii) satisfied since EE (-EH) = -EH by an ele-

mentary defining property of the Moore-Penrose pseudoinverse [25]. Final

ly, to verify (iii) we note that 

+ 
H + HEH - (-HE)E (-EH) = H > 0 

Thus W(k) > 0 for all k > 0 so 

lim W(k) = VT(O)LV(O) 
k++oo 

= UT U > 0 
11 21 -

This completes the proof of the theorem. 
D 

We now turn to some general numerical considerations regarding 

the Schur vector approach. 
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4. Numerical Considerations 

There are two steps to the Schur vector approach. The first is re

duction of a 2n x 2n matrix to an ordered real Schur form; the second is 

h 1 · f th d 1· · · t e so ution o an n-- or er inear matrix equation. We shall discuss 

these in the context of the continuous-time case noting differences for 

the discrete-time case where appropriate. 

4.1 Algorithm Implementation 

It is well-known (see [21], for example) that the double Francis 

QR algorithm applied to a real general matrix does not guarantee any 

special order for the eigenvalues on the diagonal of the Schur form. 

However, it is also known how the real Schur form can be arbitrarily re

ordered via orthogonal similarities; see [21] for details. Thus any 

further orthogonal similarities required to ensure that cr(s11 ) in (3) lies 

in the left-half complex plane can be combined with the U initially 

used to get a RSF to get a final orthogonal matrix which effects the de

sired ordered RSF. 

Stewart has recently published FORTRAN subroutines for calculating 

and ordering the RSF of a real upper Hessenberg matrix [26). The lxl or 

2x2 blocks are ordered so that the eigenvalues appear in descending order 

of magnitude along the diagonal. Stewart's software (HQR3) may thus 

be used directly if one is willing to first apply to the Z of (2) an 

appropriate bilinear transformation which maps the left-half-plane to 

the exterior of the unit circle. Since the transformed Z is an analytic 

function of Z, the U that reduces it to an ordered RSF - with half the 

eigenvalues outside the unit circle - is the desired U from which the 
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solution of (1) may be constructed. Alternatively, Stewart's software 

can be modified to directly reorder a RSF by algebraic sign. 

In the discrete-time case, HQR3 can be used directly by working 

with 

-1 F 
( 

-1 

z = -1 
HF 

-1 ) F G 

T -1 
F + HF G 

The U which puts cr(s11) outside the unit circle is thus the same U which 

puts the upper left nxn block of the RSF of z inside the unit circle. 

In summary then, to use HQR3 we would recommend using the following 

sequence of subroutines (or their equivalents): 

BALANC 

ORTHES 

ORTRAN 

HQR3 

BALBAK 

to balance a real general matrix 

to reduce the balanced matrix to upper Hessenberg 
form using orthogonal transformations 

to accumulate the transformations from the Hessenberg 
reduction 

to determine an ordered RSF from the Hessenberg matrix 

to backtransform the orthogonal matrix to a non
singular matrix corresponding to the original matrix. 

The subroutines BALANC, ORTHES, ORTRAN, BALBAK are all available in 

EISPACK [27). 

. . f th d The second step to be implemented is the solution o an n~ or er 

linear matrix equation 

-1 
to find X = u21u11 • For this step we would recommend a good linear 

equation solver such as DECOMP and SOLVE available in [28) or the appro

priate routines available in the forthcoming LINPACK [29]. A routine such 
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as DECOMP computes the LU-factorization of u11 and SOLVE performs the 

forward and backward substitutions. A good estimate of the condition 

number of u11 with respect to inversion is available with good linear 

equation software and this estimate should be inspected. A badly con

ditioned u11 usually results from a "badly conditioned Riccati equation". 

This matter will be discussed further in Section 4.4. While we have no 

analytical proof at this time, we have observed empirically that a con

dition number estimate on the order of lOt for u11 usually results in 

a loss of about t digits of accuracy in x. 

One final note on implementation. Since Xis symmetric it is usually 

more convenient, with standard linear equation software, to solve the 

equation 

to find X 

4.2 Balancing and Scaling 

Note that the use of balancing in the above implementation results 

in a nonsingular (but not necessarily orthogonal) matrix which reduces 

Z to RSF. More specifically, suppose Pis a permutation matrix and Dis 

a diagonalrnatrix such that PD balances z, i.e., 

D-lPZPD = 

where Zb is the balanced matrix; see [30) for details. We then find 

an orthogonal matrix U which reduces Zb to ordered RSF: 
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Then PDU (produced by BALBAK) is clearly a nonsingular matrix which 

reduces z to ordered RSF. The first n columns of PDU span the eigenspace 

corresponding to eigenvalues of z with negative real parts and that is 

the only property we require of the transformation. For simplicity in 

the sequel, we shall speak of the transformation reducing Z to RSF as 

simply an orthogonal matrix U with the understanding that the more com

putationally attractive transformation is of the form PDU. 

An alternative approach to direct balancing of Z is to attempt 

some sort of scaling in the problem which generates the Riccati equation. 

To illustrate, consider the linear optimal control problem of finding 

a feedback controller u(t) = Kx(t) which minimizes the performance index 

J-H>o T T 
J(u) = O fx (t)Hx(t) + u (t)Ru(t)]dt 

with plant constraint dynamics given by 

x(t) = Fx(t) + Bu(t) x(O) = x0 

We assume H =HT> 0, R =RT> 0 and (F,B) controllable, (F,C) observable 

where CTC =Hand rank(C) = rank(H). Then the optimal solution is well

known to be 

where X solves the Riccati equation 

T -1 T 
F X + XF - XBR BX+ H = 0 

Now suppose we change coordinates via a nonsingular transformation 

x(t) = Tw(t). Then in terms of the new state w our problem is to 

minimize 
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-:-- 00 

T T T 
[ w ( t) ( T HT) w ( t) + u ( t) Ru ( t) ] d t 

subject to 

-1 -1 
w(t) = (T FT)w(t) + (T B)u(t) 

The Hamiltonian matrix Z for this transformed system is now given 

by 

z =
w 

-1 
T FT 

-1 -1 T -'I' 
-T BR B T 

TT -T 
-T FT 

' I 
and the associated solution X of the transformed Riccati equation is 

w 
-T -1 

related to the original X by X = T X T One interpretation of T then 
w 

is as a scaling transformation, a diagonal matrix, for example, in an 

attempt to "balance" the elements of z. Applying such a procedure, even 
w 

in an ad hoc way, is frequently very useful from a computational point 

of view. 

Another way to look at the above procedure is that 

is symplectically similar to Z via the transformation~ 

Z = IT O \ -l Z (T O \ 
w ~ T-~ 0 T-~ 

, i.e., 

It is well-known that z is again Hamiltonian (or symplectic in the dis
w 

crete-time case) since the similarity transformation is symplectic. 

One can then pose the problem of transforming Z by other, more elaborate 

symplectic similarities so as to achieve various desirable numerical 

properties or canonical forms. This topic for further research is 

presently being investigated. 
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4.3 Operation counts, Timing, and Storage 

th 
We shall give approximate operation counts for the solution of n~ 

order algebraic Riccati equations of the form (1) or (8). Each operation 

is assumed to be roughly equivalent to forming a+ (bx c) where a,b,c 

are floating point numbers. It is almost impossible to give an accurate 

operation count for the algorithm described above since so many factors 

are variable such as the ordering of the RSF. We shall indicate only a 

ballpark O(n3 ) figure. 

Let us assume then that we already have at hand the 2n x 2n matrix 

Z of the form (2) or (9). Note, however, that unlike forming Zin 

(2), Zin (9) requires approximately 4 n 3 additional operations to con

struct, given only F, G, and H. This will turn out to be fairly negli

gible compared to the counts for the overall process. Furthermore, we 

3 
shall give only order of n counts for these rough estimates. The 

three main steps are: 

(i) reduction of z to upper Hessenberg from 

(ii) reduction of upper Hessenberg form to RSF 

(iii) solution of xu11 = u21 

Operations 

~(2n) 3 
3 

> 4k(2n) 3 

4 3 
3 n 

The number k represents the average number of QR steps required 

per eigenvalue and is usually over-estimated by 1.5. We write 

~ 4k(2n) 3 since, in general, the reduction may need more operations 

if ordering is required. Using k = 1.5 we see that the total number 

of operations required is at least 63 n 3 . Should the ordering of the 

RSF require, say, 25% more operations than the unordered RSF, we have 
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a ballpark estimate of about 75 n 3 for the entire process. 

Timing estimates for steps (i) and (ii) may be obtained from [27) 

for a variety of computing envirorunents. The additional time for 

balancing and for step (iii) would then add no more than about 5% to 

those times while the additional time for ordering the RSF is variable, 

but typically adds no more than about 15%. For example, adding 20% to 

the published figures [27) for an IBM 370/165 (a typical medium speed 

machine) under OS/360 at the University of Toronto using FORTRAN H 

Extended with Opt. = 2 and double precision arithmetic, we can construct 

the following table: 

Riccati Equation 
Order n = 

CPU Time (Sec.) 

10 

0.2 

20 30 40 

1.3 4.0 9.0 

In fact, these times are in fairly close agreement with actual observed 

times for randomly chosen test examples of these orders. Note the 

approximately cubic behavior of time versus order. 

Extrapolating these figures for a 64th order equation (see Example 

5 in Section 6) one might expect a CPU-time in the neighborhood of 

38 sec. In fact, for that particular example the time was approximately 

34 sec. 

It must be re-emphasized here that timing estimates derived as 

above are very approximate and depend on numerous factors in the actual 

computing envirorunent as well as the particular input data. However, 

such estimates can provide very useful and quite reliable information 

if interpreted as providing essentially order of magnitude figures. 
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With respect to storage considerations the algorithm requires 

8n2 + en (c = a small constant) storage locations. This fairly large 

figure limits applicability of the algorithm to Riccati equations on 

the order of about 100 or less in many common computing environments. 

Of course, CPU time becomes a significant factor for n>lOO, also. 

4.4 Stability and Conditioning 

This section will be largely speculative in nature as very few 

hard results are presently available. A number of areas of continuing 

research will be described. 

With respect testability, the implementation discussed in Section 

4.1 consists of two effectively stable steps. The crucial step is the 

\ 

QR step and the present algorithm is probably essentially as stable as 

QR. The overall two step process is apparently quite stable numerically 

but we have no proof of that statement. 

Concerning the conditioning of (1) (or (8)) almost no analytical 

results are known. The study of (1) is obviously more complex than 

the study of even the Lyapunov equation 

(12) 

where H =HT> O. And yet very little numerical analysis is known for 

(12). In case Fis normal, a condition number with respect to in-

T 
version of the Lyapunov operator Fx = F X + XF is easily shown to 

be given by 

max I A. (F) 
i,j 

J. 

min I A. (F) 
i,j 

J. 

+ A. (F) I 
J 

+ A. (F) I 
J 
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But in the general case, a condition number in terms of F rather than 

FT® I+ I® FT ( & denotes Kronecker product) has not been determined. 

Some empirical observations on the accuracy of solutions of certain 

instances of (12) suggest that one factor influencing conditioning of 

(12) is the proximity of the spectrum of F to the imaginary axis. To be 

more specific, suppose F has an eigenvalue at a+ jb with ,~1 >> 1 (typi

cally a< 0 is very small). If ,~, = 0 (lOt) we lose approximately t digits 

of accuracy and we might expect a condition number for the solution of 

(12) to also be O(lOt) in this situation. 

There are some close connections between (12) and (1) (and the 

respective discrete-time versions) and we shall indicate some preliminary 

observations here. A perturbation analysis or the notion of a condition 

number for (1) is intimately related to the condition of an associated 

Lyapunov equation, namely one whose "F-matrix" approximates the closed-

loop matrix F-GX where X solves (1). To illustrate, suppose X = Y + E 

T 
where Y = Y may be interpreted as an approximation of X. Then 

0 = FT(Y+E) + (Y+E)F - (Y+E)G(Y+E) + H 

~ (F-GY)TE + E(F-GY) + (FTY + YF - YGY + H) 

"T A A 

=FE+ EF + H 

where we have neglected the second-order term EGE. Thus conditioning of 

(1) should be closely related to nearness of the closed-loop spectrtUn 

(0 (F-GX)) to the imaginary axis. Observations similar to these have been 

made elsewhere; see, for example, Bucy {31] where the problem is posed 

as one of structural stability. A condition number might, in some sense, 

be thought of as a quantitative measure of the degree of structural 

stability. 



-26-

Another factor involved in the conditioning of (1) relates to the 

assumptions of stabilizability of (F,B) and detectability of (C,F). 

For example, near-unstabilizability of (F,B) in either a parametric sense 

or in a control energy sense (i.e., near-singular controllability Gramian) 

definitely causes (1) to become badly conditioned. Our experience has 

been that the ill-conditioning manifests itself in the algorithm by a 

badly conditioned u11• 

Work related to the conditioning of (1) and (8) is under continuing 

investigation and will be the subject of another paper. Such analysis 

is, of course, independent of the particular algorithm used to solve 

(1) or (8), but is useful to understand how ill-conditioning can be 

expected to manifest itself in a given algorithm. 
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5. Advantages of the Schur Vector Approach and Further General Remarks 

5.1 Advantages of the Schur Vector Approach 

The advantages of this algorithm over others using eigenvectors (such 

as Potter's approach [10) and its extensions) are obvious. Firstly, the 

reduction to RSF is an intermediate step in computing eigenvectors any

way (using the double Francis QR algorithm) so the Schur approach must, 

by definition, be faster usually by a factor of at least two. Secondly, 

and more importantly, this algorithm will not suffer as severely from 

the numerical hazards inherent in computing eigenvectors associated with 

multiple or near-multiple eigenvalues. The computation of eigenvectors 

is fraught with difficulties (see, e.g. [21) for a cogent discussion) 

and the eigenvectors themselves are simply not needed. All that is 

needed is a basis for the eigenspace spanned by the eigenvalues of Z 

with negative real parts (with an analogous statement for the discrete-

time case). As good a basis as is possible (in the presence of rounding er

ror) for this subspace can be found from the Schur vectors comprising 

the matrix ( 011), independently of individual eigenvalue multiplicities. 
0 21 

The reader is strongly urged to consult [32) and [21) (especially pp. 609-

610) for further numerical details. 

The fact that any basis for the stable eigenspace can be used to 

construct the Riccati equation solution has been noted by many people; 

see I12] or [3] among others. The main stumbling block with using 

the Schur vectors was the ordering problem with the RSF but once that is 

handled satisfactorily the algorithm is easy. 



-28-

The Schur vector approach derive~ its desirable numerical properties 

from the underlying QR-type process. To summarize: if you like the 

eigenvector approach for solving the algebraic Riccati equation you'll 

like the Schur vector approach at least twice as much. 

Like the eigenvector approach, the Schur vector approach has the ad

vantage of producing the closed-loop eigenvalues (or whatever is appropriate 

to the particular application from which the Riccati equation arises) 

essentially for free. And finally, an important advantage of the Schur 

vector approach, in addition to its general reliability for engineering 

applications, is its speed in comparison with other methods. We have 

already mentioned the advantage, by definition, over previous eigenvector 

approaches but there is also generally an even more significant speed 

advantage over iterative methods. This advantage is particularly apparent 

in poorly conditioned problems and in cases in which the iterative 

method has a bad starting value. Of course, it is impossible to make 

the comparison between a direct versus iterative method any more precise 

for general problems but we have found it not at all uncommon for an 

iterative method, such as straightforward Newton [14], to take ten to 

thirty times as long - if, indeed, there was convergence at all. 

5.2 Miscellaneous General Remarks 

Remark 1, There are, in general, as many as(~) sol~tions of an 

nth ~rder Riccati equation corresponding to as many as~n) choices of n 

of the 2n eigenvalues of z. Any of these solutions may also be generated 

by the Schur approach, as for the eigenvector approach, by an appropriate 

reordering of the RSF. For most control and filtering applications we 
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are interested in the unique nonnegative definite solution and have thus 

concentrated the exposition on that particular case. 

Remark 2: One of the most complete sources for an eigenvector-oriented 

proof of Theorem 5 for the general case of multiple eigenvalues is 

Martensson [13]. But even a casual glance at that proof exposes the 

awkwardness of fussing with eigenvectors and principal vectors. The 

proof using Schur vectors is extremely clean and easy by comparison and 

neatly avoids any difficulties with multiple eigenvalues. This observation 

is but one instance of the more general observation that Schur vectors 

can probably always replace principal vectors (or generalized eigenvectors) 

corresponding to multiple eigenvalues throughout linear control/systems 

theory. Principal vectors are not generally reliably computable in the 

presence of roundoff error anyway (see [21]) and a basis for an eigen

space - but not the particular one corresponding to the principal vectors -

is all that is normally needed. Use of Schur vectors will not only 

frequently provide cleaner proofs but is also numerically much more 

attractive. 

Remark 3: As an alternative to the direct proofs provided in Sections 

2 and 3 one could simply appeal to the proofs given for the eigenvector 

approach and note that the Schur vectors are related to the eigenvectors 

by a nonsingular transformation. Specifically, with Z, U, and Sas 

before, let Ve JR2nx2n put z in real Jordan form 
2n 

( JR2nx2n denotes the set of 2n x 2n matrices or rank 2n, i.e., invertible) 
2n 
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where -A is the real Jordan form of the eigenvalues of Z with negative 

real parts (analogous remarks apply as usual, for the discrete-time 

case}. Furthermore, let Te lR~n transform s11 to the real Jordan form 

-A. Then 

and 

We thus have 

(

0
11) = T (-A) 

0 21 

Since eigenvectors are unique up to nonzero scalar multi~!e we must have 

( Ull) T = (V 11) D 

0 21 v21 

where Dis diagonal and invertible. 

-1 
solves (1), u21u11 must also 

Thus (:11 t (V 11) DT-1 2J v21 
solve (1) since 

and since 
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However, we have chosen to provide self-contained proofs because 

of their simplicity and also because the proof in Section 3 is not as 

widely seen as its continuous-time counterpart. 

Remark 4: The same Schur vector approach employed in this paper 

can also be used instead of the eigenvector approach for the nonsymmetric 

matrix quadratic equation 

XEX + FX + XG + H = 0 (13) 

where E € :mmxn, F e lRnxn, G e JR.mxm, H e ]F_nxm, and x e lRnxm. In 

this case we work with the (m+n) x (m+n) matrix 

and various solutions of (13) are determined by generating appropriate 

combinations of m eigenvalues of z along the diagonal of the RSF of 

z. . -1 The corresponding m Schur vectors give the solution X = u21u11 

as before where u11 e JRmxm, u21 e JRnxm. The analogous remarks apply 

for the corresponding nonsymmetric "discrete-time equation". Proofs 

are essentially the same in both cases. Further details on the eigen

vector approach can be found in [33], [34]. 

Remark 5: Special cases of the matrix quadratic equations such 

as (1), (8), or (13) include the Lyapunov equation (12) (or its discrete

T time counterpart F XF - X + H = O) and the Sylvester equation 

FX + XG + H = 0 (14) 

(or its discrete-time counterpart FXG - X + H = 0). 
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Thus setting an appropriate block of the Z matrix equal to 0 

provides a method of solving such "linear equations" and, in fact, 

this method has even been proposed in the literature [35]. However, 

the approach probably has little to recommend it from a numerical 

point of view as compared to applying the Bartels-Stewart algorithm 

[39] and we mention it only in passing. 
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6. Examples 

In this section we give a few examples both to illustrate various 

points discussed previously and to provide some numerical results for 

comparison with other approaches. All computations were done at 

M.I.T. on an IBM 370/168 using FORTRAN H Extended (Opt. = 2) and 

double precision arithmetic. 

Example 1: The Schur vector approach is obviously not well-suited to 

hand computation - which partly explains its desirable numerical 

properties. However, to pacify a certain segment of the population 

a "hand example" is provided in complete detail. Consider the equation 

T -1 T 
A X + XA - XBR B X + Q = 0 (15) 

which arises in a linear-quadratic optimal control context with 

R = 1, 

Then 

0 1 0 0 

0 0 0 -1 

z = -1 0 0 0 

0 -2 -1 0 

and the matrix 

1 - ·i/5 3/5 1 
2 10 10 2 

1 _!_5_ 3/5 1 
2 10 10 2 u ::: 

1 3/5 rs 1 
2 10 10 2 

- 1 - 315 15 1 
2 10 10 2 
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is an orthogonal matrix which reduces Z to RSF 

-1 

0 

0 

0 

0 

-1 

0 

0 

1 

-1 

1 

0 

1 
2 

1 

0 

1 

Then the unique positive definite solution of (15) is given by the 

solution of the linear matrix equation 

or 

_Is) 10 

_rs 
10 

3/s) ---10 -3/s . 
10 

, (2 1) Thus X = 
1 2 and it can quickly be checked that the spectrum of 

-1 T the "closed-loop matrix" (A- BR B X) = is {-1, -1} as was 

evident from s11• 

Example 2: For checking- purposes consider the solution of ( 15) with the 

following uncontrollable but stabilizable, and unobservable but de

tectable data: 

(4 3) (1) A= , B= , 

t -f -l 

R = 1, 
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The solution of (15) is 

loop spectrum is {- t, 
X = ( 9c 

6c) where c = 1 + /2 and the closed-

\6c 4c 
-/2}. These values were all obtained correctly 

to at least 14 significant figures as were the values for the correspond

ing discrete-time problem 

T T T -1 T 
A XA - X - A XB (R + B XB) B XA + Q = 0 (16) 

the solution of which is 

X =(9d 6d) 
\6d 4d 

where d 1 + rs {- 1 = 2 and the closed-loop spectrum is 2, 3 - rs J 
2 • 

Example 3: For further comparison purposes consider the discrete-time 

system of Example 6.15 in (36) where 

(
4.877 

B -
1.1895 

4.877) 

3.569 

R =(! J ' Q = (o.oos o ) 

\ 0 0.02 

The solution of (16) is given by 

X = (0.010459082320970 

0.003224644477419 

0.003224644477419) 

0.050397741135643 

and the feedback gain F = (R + BTXB) -lB ~ is given by 

"i = (o.011251660124426 

0.013569839235296 

-0.070287376494153) 

0.045479287667006 
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Note the typographical error in the (1,2)-element of Fin [36]. The 

closed-loop eigenvalues are given by 

Q.508333461684191 and 0.688069670988913 • 

These are definitely different from [36] but have the same sum. Our 

numbers do appear to be the correct ones. 

Example 4: We now consider somewhat higher order Riccati equations 

arising from position and velocity control for a string of high-speed 

vehicles. The matrices are taken from a paper by Athans, Levine, and 

Levis [37]. For a string of N vehicles it is necessary to solve the 

Riccati equation 

where all matrices are of order n = 2N-l and are given by 

All Al2 0 A22 A23 

AN = 

~-2,N-2 A 

0 
N-2,N-l 

0 
A 
N-1,N-l -1 

0 0 -1 

where ~,k = C :) . "k,k+l =(_: :) 
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and B R-lBT = diag{l,O,l,O, ... ,O,l} 
N N N 

QN = diag{0,10,0,10, ... ,10,0} 

For the case of 5 vehicles we repeated the calculations presented 

in [37]. The correct values for X rounded to six significant figures 

are: 

1.36302 2.61722 -0.705427 0.936860 -0.293666 0.477354 -0.197375 0.211212 -0.166552 

7.59255 -1.68036 1.47522 

1.77478 2.15771 

8.25770 

[SYMMETRIC] 

-0.459506 

-0.609136 

-1. 94650 

1.80560 

0.665147 

0.670717 

1. 75587 

l.94650 

8.25770 

-0.266142 0.280654 -0.211212 

-0.262843 0.266142 -0.197375 

-0.670717 0.665147 -0.477354 

-0.609136 0.459506 -0.293666 

-2.15771 1.47522 -0.936860 

1.77478 1.68036 -0.705427 

7.59255 -2.61722 

1.36302 

While 4 or 5 decimal places are published in [37], it can be seen that, 

surprisingly, only the first and sometimes the second were correct. Sub

stitution of our full 16 decimal place solution into the Riccati equation 
-14 

gives a residual of norm on the order of 10 (consistent with a con-

dition estimate of u11 of 26. 3) while the residual for the solution in 

[37] has a large norm on the order of 10- 1 . The closed-loop 

eigenvalues for the above problem (again rounded to six significant 

figures) are: 

-1.00000 
-1.10779 + 0.852759 j 
-1.45215 + 1. 26836 j 
-1.67581 + 1. 51932 j 
-1. 80486 + 1.66057 j 

We also computed the Riccati solution and closed-loop eigenvalues 

for the cases of 10 and 20 vehicles. This involved the solutions of 

19th and 39th order Riccati equations, respectively, and rather than 
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reproduce all the numbers here we give only the first five and last 

five elements of the first row (or column) of X and the fastest and 

slowest closed-loop modes. Again all values are rounded to just six 

significant figures; the complete numerical solutions are available 

from the author. 

First row (column) of Riccati 
Solution 

N=lO N=20 
n=l9 

1.40826 

2.66762 

-0.658219 

1. 04031 

-0.242133 

-0.0515334 

0.103453 

-0.0472086 

0.0504036 

-0.0452352 

n=39 

1.42021 

2.68008 

-0.646127 

1.06539 

-0.229761 

-0.0123718 

0.0250824 

-0.0120915 

0.0124632 

-0.0119545 

Fastest and Slowest Closed-Loop Modes 

N=lO 
n=l9 

-1. 83667 

+ 1.69509 j 

-0.862954 

+ 0.494661 j 

N=20 
n=39 

-1.84459 

+ 1. 70368 j 

-0.662288 

The closed-loop eigenvalues for the case of, say, 10 vehicles interlace 

andinclude, as a subset, those of 5 vehicles. Similarly, those for 20 

vehicles interlace and include, as a subset, those of 10 (and hence 5) 

vehicles. It appears evident that both the elements of the Riccati 

solution and the closed-loop eigenvalues are converging to values in 

some finite region. 

Example 5: This example involves circulant matrices. We wish to 

solve (15) with 
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-2 1 0 0 1 . . . . 
J. 

. . . 
0 . . . 0 . . . . . . . . . . 

0 . . . . . . . . . . . . . . . . . 
A = . . . . . . . . . . . . . . . . . . 0 . . . 

0 . . . . 
0 

. . . ·1 . . . . . . . . 
1 0 . . • 0 ·1 :.2 

-1 T -1 T 
and BR B = I, Q = I. The matrices A, BR B , Qare all circulant so 

the Riccati solution X € JRnxn is known to be circulant of the form 

XO X 
n-1 

X 
n-2 xl 

xl XO X 
n-1 x2 

X = x2 xl XO . . . . . . . . . . . . . . 
xn-1 X 

n-2 
• • • • • • • • • • • • • XO 

In fact, there is a simple transformation which "diagonalizes" the 

Riccati equation and allows the solution of (15) to be recovered via 

the solution of n scalar quadratic equations and an inverse discrete 

Fourier transform. The details of this procedure and related analysis 

of circulant systems can be found in the work of Wall [38). For this 

example, we haven= 64 and the x. are given by 
1. 

X, 
1 

/-2+2cos(2t4k) + 
27fk 2 

5-4cos ~ + 4cos 

where w64 is a 64-th root of unity. The solution was computed by the 

Schur vector approach and checked by means of the circulant analysis 
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of Wall. Our computed Riccati solution had at least 13 significant 

figures. For reference purposes we list 

= 0.37884325313566 

= 0.18581947375535 

= 0.37884325313567 

= 0.18581947375536 

The closed-loop eigenvalues are all real and are arranged as follows: 

-4.1231056256177 

-4.1137632861146 

-4.1137632861146 
31 eigenvalues of multiplicity 2 

-0.99999999999991 

th This 64--- order example required approximately 50 sec. of CPU time on 

the 370/168 at M.I.T. and approximately 34 sec. on the 370/165 at the 

University of Toronto - both using FORTRAN H Extended (Opt. =2), double 

precision. 

Example 6: This example is one which would be expected to cause problems 

on physical grounds and which appears to give rise to an "ill-conditioned 

Riccati equation". Consider the solution of (15) with 
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0 1 0 0 

(D 0 
A 

0 
B = 

0 
1 

0 0 

Q = diag{q,O, ... ,O}, R=r . 

Here we have a system of n integrators connected in series. It i~ desired 

th 
to apply a feedback controller to then~ system (which is to be integrated 

n times) so as to achieve overall asymptotic stability. Only deviations of 

th 
x1 (then~ integral of the constant system) from Oare penalized. The 

controllability Gramian 

0 

t sA T sAT 
f e BB e ds 

while positive definite for all t>O, becomes more nearly singular as n 

increases. The system is•hard to control• in the sense of requiring a 

large amount of control energy (as measured by I jw:1 1 j). 

The closed-loop eigenvalues are easily seen to be the roots of 

with negative real parts. These eigenvalues lie in a classic Butterworth 

pattern. It can also be easily verified that 

=If 
= product of the closed-loop eigenvalues. 
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We attempted the solution of (15) with the above matrices and q = r = 1. 

While the closed-loop eigenvalues were determined quite accurately as ex

pected (approximately 14 decimal places using IBM double precision) , the 

Riccati solution was increasingly less accurate as n increased due to the 

increasingly ill-conditioned nature of u11 . For example, for n = 21 there 

was already a loss of 10 digits of accuracy (consistent with a condition 

estimate of 0(1010) for u11) in x1n (=1). Other computed elements of X were 

9 
as large as 0(10) in magnitude. 

Repeating the calculations with q = 104 , r = 1 there was a loss of 

approximately 12 digits of accuracy in x 1n (=100) for n = 21. In this case 

other elements of X were as large as 0(1011 ) in magnitude. Again, the closed

loop eigenvalues were determined very accurately. 

Our attempts to get Newton's method to converge on the above problem 

were unsuccessful. 

Obviously, there is more that can be said analytically about this 

problem. Our interest here has been only to highlight some of the numerical 

difficulties. 
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7. Concluding Remarks 

We have discussed in considerable detail a new algorithm for solving 

algebraic Riccati equations. A number of numerical issues have been 

addressed and various examples given. The method is apparently quite 

numerically stable and performs reliably on systems with dense matrices 

of up to order 100 or so, storage being the main limiting factor. 

For some reason, numerical analysts have never really studied al

gebraic Riccati equations. The algorithm presented here can undoubtedly 

be refined considerably from a numerical point of view bu~ it nonetheless 

represents an immense improvement over algorithms heretofore proposed. 

Some topics of continuing research in this area will include: 

(i) conditioning of Riccati equations, 

(ii) use of software to sort blocks of the RSF diagonal into 

just the two appropriate groups rather than within the 

two groups as well, 

(iii) making numerically viable the use of symplectic trans

formations such as in (17) to reduce the Hamiltonian or 

symplectic matrix z to a convenient canonical form. 

Each of these topics is of research interest in its own right in addition 

to the application to Riccati equations. 
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APPENDIX 1 

We outline here how to set up the "symplectic approach" when the 

matrix Fin 

is singular. All other assumptions and notation of Section 3 will 

be the same. 

Letting xk denote the state at time tk and Ak the corresponding 

adjoint vector, recall the Hamiltonian difference equations arising 

from the discrete maximum principle: 

Note that if F were invertible we could work with the symplectic 

matrix 

-GF-T) 
-T 

F 

which is just (9). Here, instead, we shall be concerned with a "symplectic 

generalized eigenvalue problem" 

LZ = AMZ 

with 
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and symplectic in the sense that if A f O is a generalized eigenvalue 

then I is a generalized eigenvalue. In fact, Land Mare characterized 

by the property that 

LJL T = MJMT where J =( O 
1

) 

In our specific situation LJL ~I= ~~ =( O F) 
-FT 0 

There is even more "reciprocal syrmnetry" in the problem. With F 

singular there must be least one generalized eigenvalue at O and to each 

such generalized eigenvalue there corresponds its reciprocal at 00 • The 

generalized eigenvalues can then be arranged in two groups of n as before: 

1 1 
0, •.. ,0,Al, ... ,Ak, I, ... , I' 00, ••• ,00 

......_ _,, 1 k 
nv - ... ______ -v" 

n 
We then find a basis for the generalized eigenspace cor-with O< I A . I <l. 

l. 

responding to O, .•• ,o,A1 , .•. ,Ak and proceed essentially as before. The 

details are omitted here as they are the subject of a forthcoming 

paper with T. Pappas. 
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APPENDIX 2 

In this appendix we provide FORTRAN source listings for one possible 

implementation of the Schur vector approach described in the paper. Sub

routines for solving both the continuous-time algebraic Riccati equation 

(1) IRICCND] and the discrete-time algebraic Riccati equation (8) {RICDSD] 

are given. The subroutine names are derived from the following nomenclature 

convention for a family of subroutines to solve Riccati and various other 

matrix equations: 

subroutine name: XXXYYZ 

where 

XXX = (::: 

lsYL 

yy = {CN 
DS 

z: {: 

Riccati equation 

Lyapunov equation 

Sylvester equation 

continuous-time version 

discrete-time version 

single (short) precision version 

double (long) precision version 

Subroutine RICCND calls or further requires the following additional 

subroutines: 

BALANC, BALBAK, DDCOMP, DSOLVE, EXCHNG, HQR3, MLINEQ, ORTHES, 

ORTRAN, QRSTEP, SPLIT 

Subroutine RICDSD requires each of the 11 subroutines above as well as 

the two additional subroutines MULWOA, MULWOB. 
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All the additional subroutines required have also been listed here 

with the exception of BALANC, BALBAK, ORTHES, and ORTRAN which are 

available in EISPACK [27). 

These subroutines are being used in the environment described in 

Section 6 as part of a package called LQGPACK. This package is a 

preliminary version of a set of subroutines being developed at M.I.T.'s 

Laboratory for Information and Decision Systems to solve linear-quadratic

Gaussian control and estimation problems. The package has also been run 

in a single precision version on a CDC 6600. However, at this time we 

make no claims of portability of the code to other machines. The 

code listed here is solely for illustrative purposes. 

Finally, we add two additional technical notes: 

NOTE 1: A fairly reliable estimate of the condition number of u11 with 

respect to inversion is returned by RICCND or RICDSD in WORK (1). 

NOTE 2: The subroutine HQR3 contains a small error which can occasionally 

cause RICCND or RICDSD to give erroneous or misleading information. The 

trouble arises when ORTHES produces an upper Hessenberg form with a zero 

on the first subdiagonal. HQR3 then correctly orders the resulting RSF 

both above and below that zero element but not necessarily globally. 

In practice this almost never happens and it has only ever been observed 

for certain low-order examples with a11 coefficient matrices diagonal. 

This error in HQR3 can and will be corrected. In the interim, the 

error can either be ignored (a safe strategy for virtually all "real 

problems") or temporarily patched by the following scheme. 
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Let a. 1 . be a zero element of the upper Hessenberg matrix A 
1+ ,1 

(the output of ORTHES). Then before HQR3 is called, a. 1 . should be 
1+ ,1 

replaced bye· (jai,ij + !ai+l,i+il)where e is the machine precision 

(EPS) defined by 

e = min {o: ft(l+lol) t 1} 
0 

(ft(·) denotes floating point operation). 

The source listings now follow. 
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SU BROU TINE 8 lCC trn (NZ, NF, NG, NH, N, NN, Z, W, F ,G, H, EE!, EI, WORK, 
+ SCALE,ITYPE,IPVL,IPVS) 

*****PARA l'IE TER S: 
lNTEG'::R NZ, NF ,Nli,NH,N,NN,ITYPE (NN) ,IPVL (NN) ,IPVS (N) 
DOUllLE PRECISION Z(NZ,NN) ,W(NZ,NN),F{NF,N),G(NG,N) ,H(NH,N), 

+ . .E R ( N N ) , EI ( N N) , W C HK ( N ) , 5 CAL .E ( N N) 

*****LOCAL VAhIABtES: 
INTEGER I,J,LOW,IGH,NLOW,NUP 
DuUBLi::; PRECIS.lON EPS, lIPSPl,ZNORl'l.,T,ALPHA,COND 

*****FUNCTICNS: 
DOUBLE PR~CISION UABS,DSURT 

*****3UunOUTINiS CALL3D: 
BALANC,BALBAK,HQHl,MLINEQ,ORTHBS,ORTRAN 

RIC00010 
RIC00020 
RIC00030 
RICOOOIJO 
RICOOOSO 
RI C00060 
RIC00070 
RIC00080 
RIC00090 
RIC00100 
RI COO 110 
RIC00120 
RI COO 130 
RICOOl!JO 
RI COO 150 
RIC00160 
RI COO 170 
RIC00180 

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::RIC00190 

*****PURPOSE: 
THIS SUBROUTINE SOLVES THE CONTINUOUS-TIME 
ALGEBRAIC MATRIX RICCATI EQUATION 

T 
F *X + X*P - X*G*X + H = 0 

b Y LAUB' S VARIANT OF 1'HE HAMILTONIAN-EIGENVECTOR APPROACH. 

*****PA&AM£TE& DESCRI~TION: 
ON INPUT: 

NZ,NF,NG,NH 

N 

NN 

G,H 

ON OUTPUT: 

H 

&R,EI 

ROW DI"ENSIONS OF THE ARRAYS CONTAINING 
Z (AND W},F,G, AND H, RESPECTIVELY, AS 
DECLARED IN THE CALLING PROGRA" DIMENSION 
STATEMENT: 

ORDER OF THE MATRICES F,G,H; 

= 2*N = ORDER OF THE INTERNALLY GENERATED 
MATRICES ZAND W; 

AN N X N (REAL) IUThIX; 

N X N SYMMETRIC, NONNEGATIVE DEFINITE 
(REAL) "ATRICES. 

ANN X N ARRAY CONTAINING THE UNIQUE POSITIVE 
(OR NONNEGATIVE) DEFINITE SOLUTION OF THE 
8ICCATI EQUA!ION; 

RhAL SCRATCH VECTORS OF LENGTH 2*N; ON OUTPUT 
(ER (I) ,EI (I)), 1=1,N CONTAIN THE REAL AND 
IMAGINARY PARTS, RESPECTIVELY, OF THEN 

RIC00200 
RIC00210 
RIC00220 
RIC00230 
RIC00240 
RIC00250 
RIC00260 
8IC00270 
RIC00280 
RIC00290 
RIC00300 
RIC00310 
RIC00320 
RICOOJJO 
RIC00340 
RIC00350 
RIC00360 
RIC00370 
RIC00380 
RIC00390 
RIC00400 
RIC00410 
RIC00420 
RIC00430 
RIC00440 
RIC00450 
RIC00460 
RIC00470 
RIC00480 
BIC00490 
RIC00500 
RIC00510 
RIC00520 
IUC00530 
RICOO SIJO 
8IC00550 



C 
C 
C 
C 
C 
C 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 
C 
C 
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CLOSED LOOP EIGENVALUES (I.E., THE 
SPECTRUM OFF - G*X); 

RICCND 2 

z, il 2*N l 2*N REAL SCRATCH ARRAYS USED FOR 
COMPUTATIONS INVOLVING THE HAMILTONIAN 
MATRIX ASSOCIATED WITH THE RICCAT.I EQUATION i 

8IC00560 
RIC00570 
RIC00580 
RIC00590 
RIC00600 
RIC00610 
RIC00620 
RIC00630 
RIC00640 
B1C00650 
RIC00660 

WORK,SCAL£ REAL SCRATCH VECTOBS OF LENGTHS N, 2*N, 
RESPECTIVELY; ON OUTPUT, WORK(1) CONTAINS A 
CONDITION NUMBER ESTIMATE FOR THE FINAL NTH 
ORDER LINEAR ~ATRIX EQUATION SOLVED; 

ITYPF.,IPVL, IPVS INTEGER SCRATCH VECTORS OF LENGTHS 2*N, 2*N, 
N, HESPECTIVELY. 

RIC00670 
RIC00680 
RIC00690 
RIC00700 
BIC00710 
RIC00720 
RIC007 30 
RIC00740 

***NOTE: ALL SCRATCH ARRAYS MUST BE DECLARED AND INCLUDED 
IN THE CALL.*** 

*****ALGORITHM NOTES: 
IT IS ASSUMED THAT G AND H.ARE NONNEGATIVE DEFINITE AND THAT 

T 
IS STABILIZABLE AND (C,F) IS DETECTABLE WHERE B*B = G 

T 
(B OF FULL RANK= RANK(G)) AND c•c = H (C OF FULL 
RANK= &ABK (H)) IN WHICH CASE THE SOLUTION (RETURNED IN THE 
ARRAY H) IS UNIQUE AND NONNEGATIVE DEFINITE. 

*****HISTORY: 
WRITTEN BY ALAN J. LAUB (ELEC. SYS. LAB., M.I.T., RM. 35-331, 
CAMBRIDGE, MA 02139, PH.: (617) - 253-2125), SEPTEMBER 1977. 
MOST R~CENT VERSION: SEP. 15, 1978. 

(F ,B) RIC00750 
lHC00760 
RIC00770 
RIC00780 
RIC00790 
RIC00800 
RIC00810 
8IC00820 
BIC00830 
RIC00840 
RIC00850 
RIC00860 
RIC00870 

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::RIC00880 

EPS IS AN INTERNALLY GEN.ERATED MACHINE DEPENDENT PAR AMETEB 
SPl:.'CI FY ING THE RELATIVE PRECISION OP FLOATING PO INT ARIT HKETIC. 
FOR EXAMPLE, EPS = 16.0D0**(-13) FOR DOUBLE PRECISION ABITHKETIC 
ON IBM S360/S370. 

EPS=1.0DO 
EPS=O. 5DO*EPS 
EPSP.1=EPS+1. ODO 
IF ( EPSP1 .GT. 1. ODO) GO TO 5 
EPS=2.0DO*EPS 

SET UP HAMILTONIAN ftATRIX 

DO 20 J=1,N 
DO 10 I= 1, N 

Z (I ,J) =F (I,J) 
Z (N+I,J) =-li (I,J) 
Z (I, N+J) =-G (I ,J) 
Z (N +I, N+J) =-F (J,I) 

CONTINUE 
CONTI.NUB 

RIC00890 
RIC00900 
RIC00910 
RIC00920 
RIC00930 
RIC00940 
.RIC00950 
RIC00960 
BIC00970 
8IC00980 
RIC00990 
RIC01000 
RIC01010 
RIC01020 
RICO 1030 
RIC01 o•rn 
RICO 10 50 
RIC01060 
RIC01070 
RIC01080 
RIC01090 
RIC01100 
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C 
C UALANCI:: Z 
C 

CALL BALANC (NZ,NN,:Z.,LOW,IGH,SCALE) 
C 
C COMPUT8 1-NOHM OF Z 
C 

Z NORM= 0. ODO 
DO 40 J=l,NN 

T=O.ODO 
DO JO I=1,NN 

T=T+DABS(Z(I,J)) 
30 CONTINUE 

IF {T.GT.ZNORM) ZNORM=T 
40 CONTINUE 

ALPHA=JSQRT(ZNOBM)+1.0D0 
C 
C -1 
C COMPUTE W = (ALPHA*!+ Z) *(ALPHA*I - Z), AH ANALYTIC FUNCTION 
C OF Z MAPPING TrlE LEFT HALF.PLANE TO THE EXTERIOR OP THE UNIT 
C DISK. TUIS PERMITS DI~ECT APPLICATION OF HQR3. THIS STEP MAY 
C BE REMOVED IF HQR3 IS MODIFIED APPROPRIATELY. 
C 

DO 60 J=1,NN 
1>0 50 I= 1, N N 

ii (I,J) =-Z (I,J) 
50 CONTINUE 

W(J,J)=ALPHA+W(J,J) 
Z(J,J)=ALPHA+Z(J,J) 

6 0 CONTINUE 
CALL MLINEQ (NZ,NZ,NN,NN,Z,W,COND,IPVL,ER) 

C 
C BEDUCE W TO REAL SCHUB FORM WITH EIGENVALUES OUTSIDE TUE UNIT 
C DISK IN THE UPPER LEFT N X N UPPER QUASI-TRIANGULAR BLOCK 
C 

NLOW=1 
NUP=NN 
CALL ORTH.ES (NZ,NN,NLOW,NUP,W,ER) 
CALL ORTBAN (NZ,NN,NLOW,NUP,W,ER,Z) 
0015!=2,NN 

IF (W (I,I-1). EQ. O. ODO) W (I ,I- 1) =1. OD-14 
15 CONTINUE 

CALL HQRJ (W,Z,NN,NLOW,NUP,EPS,EB,EI,ITYPE,RZ,NZ) 
C 
C COMPUTE SOLUTION OF THE RICCATI EQUATION FRO! THE ORTHOGONAL 
C MATRIX NOW IN TH.E AlHiAI Z. STORE THE RESULT IN THE AiBAY H. 
C 

CALL BALBAK (NZ,NN,LOW,IGH,SCALE,NN,Z) 
DO 80 J=1,N 

DO 70 I=1,N 
F (I ,J) =Z (J,I) 
H (I ,J) =Z (N+J ,I) 

70 CONTINUE 
80 CONTINUE 

CALL MLlNEU (NF,NH,N,N,F,H,COND,IPYS,WOR~ 

BIC01110 
RICO 1120 
RIC01130 
BIC011110 
RIC01150 
RIC01160 
RIC01170 
RIC01180 
RICO 1190 
8IC012 00 
RICO 1210 
RIC01220 
RIC01230 
RIC01240 
RIC01250 
RIC01260 
RIC01270 
RIC01280 
BIC01290 
RIC01l00 
RIC01310 
RIC01 320 
RIC01330 
RIE::01340 
BIC01350 
BIC01360 
RIC01370 
RIC01380 
RICO 1390 
RIC01400 
RIC01410 
RIC01420 
RIC01430 
RIC01440 
RIC01450 
RIC01460 
RIC011170 
RIC01480 
RIC01490 
RIC01500 
BIC01510 
RIC01520 
RIC015JO 
RIC01540 
R.IC01550 
RIC01560 
R.IC01570 
RIC01580 
RIC01590 
BIC01600 
RIC01610 
RIC01620 
RIC01630 
RIC01640 
.BIC01650 
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WORK(1)=COND 
C 
C ThANSFO~M BACK TO GiT THE CLOSED LOOP SPECTRUM 
C 

DO 110 I=1,N 
IF (ITYPE(l).GE.J) GO TO 90 
iRITE ~,~4400) I 

44400 FORMAT ( lX,14, 1X,41H'i'H I:iIGENVALUE NOT SUCCESSFULLY CALCULATED) 
RETURN 

90 IF (ITYPE(I) .GT.0) GO TO 100 
ER(I)=ALPHA*(1.0D0-ER(I))/(1.0D0+ER(l)) 
EI(I} =O.ODO 
GO TO 110 

100 IF' (.ITYPE(I) .EQ.2) GO TO 110 
T=ALPHA/ ( ( 1. 0DO+ER (I}) **2+El (I) **2) 
ERU)=(1.0D0-ER(I)**2-EI(I)*~2)*! 
EI{l);-2.0DO*EI{I)*T 
ER (1+1) =ER (I) 
EI(I+1)=-EI(I) 

110 CONTINUE 
RETURN 

C 
C LAST LINE OF RICCHD 
C 

END 

RIC01660 
RIC01670 
RIC01680 
RIC01690 
RICO 1700 
RIC01710 
RIC01720 
RICO 17 30 
RIC 017 40 
RICO 1750 
RIC01760 
RICO 1770 
RIC017$0 
RIC01790 
RIC01800 
RIC01810 
RIC01820 
RIC01830 
RIC01840 
RIC01850 
RIC01860 
RIC01870 
.RIC01880 
RIC01890 
RIC01900 
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C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
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SUl3iiOUT IN E hICDSD (NZ, NF, NG, NH, N, NN,Z,W, F,G, H, Er, EI, WO.hK, 
+ SCALE,ITYPh,IPVT) 

* * * * * P ,\ 1l A ;'1 t:T L ii S: 
lNTEGZH NZ, NF, NG,Nli,N,NN,l'I'YP.E(NN) ,IPVT(N) 
DO U BL E P R EC .IS I O N Z ( .NZ , N N) , W ( NZ , N N) , F ( NF , N) , G ( N G , N ) , H (NH , N) , 

+ . 1:.ft (NN) ,EI {NN), WORK {N), SCALE (NN) 

*****LOCAL VARIABLES: 
lNTEGER l,J,K,LOW,IGH,NLOW,NUP 
DOUBLE PRLCISION EPS,EPSP1,CCND,CONDP1 

*****SUBROUTINES CALLED: 
BALANC,BALBAK,DDCOMP,DSOLVE,HQRJ,MLINEQ,MULWOA,MULWOB, 
ORTH.ES,ORTRAN 

RIC00010 
RIC00020 
RICOOOJO 
RIC00040 
RICOOO 50 
RIC00060 
RIC00070 
RIC00080 
RIC00090 
BIC00100 
RICOO 110 
RIC00120 
RIC001JO 
RIC00140 
RIC00150 
BIC00160 

: : : : : : : : : : : : : : : : : : : ·: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : RIC 00170 

*****PIJf<POSE: 
THIS DOUBLE PRECISION SUB~OUTINE SOLVES THE DISCRETE-TIME 
ALGEBRAIC MATRIX &ICCATI EQUATION 

T T T -1 T 
X = F *X*F - .1'' *X*G 1* ( (G2 + G1 *X*G1) ) *G1 *X*F + H 

UY LAUB•S VARIANT OF THE HAMILTONIAN-EIGENVECTOR APPROACH. 
THE MATRIX FIS ASSUMED TO BE NONSINGULAR AND THE MATRICES G1 AND 
G2 ARE ASSUMED TO BE COMBINED INTO THE SQUARE ARRAY GAS FOLLOWS: 

-1 T 
G = G1*G2 *G1 

*****PARA~BTER DtSCHIPTION: 
ON INPUT: 

NZ, NF, NG, NH 

N 

NN 

F 

G,H 

ON OUTPUT: 

H 

ROW DIMENSIONS OF THE ARRAYS CONTAINING 
Z (AND W) ,F,G, AND H, RESPECTIVELY, AS 
DECLARED IN THE CALLING PROGRAM DIMENSION 
S'.l'ATEMENT i 

ORDER OF THE ~ATRICES F,G,H; 

= · 2*N = ORDER OF THE INTEBNALLY GENEBATED 
MATRICES ZAND W; 

A NONSINGULAR N X N (REAL) .l'lATBIX; 

N X N SY~METRIC, N0NNEGATIVE DEFINITE 
(hEAL) MATRICES. 

ANN X N ARRAY CONTAINING THE UNIQUE POSITIVE 
{OR NONNEGATIVE) DEFINITE SOLUTION OF THE 
RICCATI EQUATION; 

RIC00180 
RIC00190 
RIC00200 
RIC00210 
RIC00220 
RIC00230 
RIC00240 
RIC00250 
RIC00260 
RIC00270 
RIC00280 
RIC00290 
RICOOJOO 
RICOOJ 10 
RIC00320 
RIC003JO 
RIC00340 
RIC00350 
RIC00360 
RIC00370 
RIC00380 
RIC00390 
RIC00400 
RIC00410 
RIC00420 
RIC00430 
RIC00440 
RIC00450 
RIC00460 
RIC00470 
RIC00480 
RIC00490 
RICOOSOO 
RICOOS 10 
RIC00520 
RIC00530 
BIC00540 
RICOOSSO 



C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 
C 
C 

5 
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REAL SCRATCH VECTORS OF LENGTH 2*N; ON OUTPUT RIC00560 
(ER(I),EI(I)), 1=1,N CONTAIN THE REAL AND RIC00570 
IMAGINARY PARTS, kESPECTIVELY, OF THEN RIC00580 
CLOSED LOOP EIGENVALUES (I.E., THE RIC00590 
SPECTRUM OP T -1 T RIC00600 

F - G1*((G2 + G1 *X*G1) )*G1 *X*FR.IC00610 
-T RIC00620 

= F - G*F *(X - H)); RIC00630 

z,w 

WORK,SCALE 

ITYPE,.IPVT 

2*N X 2*N REAL SCRATCH ARRAYS USED FOk 
COMPUTATIONS INVOLVING THE SYMPLECTIC 
MATRIX ASSOCIATED WITH THE BICCATI BQUATIONi 

REAL SCRATCH VECTORS OF LENGTHS N, 2*N, 
BESPECTIVELY; ON OUTPUT, WORK(1) CONTAINS A 
CONDITION BOMBER ESTIMATE FOR THE FINAL NTH 
ORDER LIJEAB MATRIX EQUATION SOLVED; 

INTEGER SCRATCH VECTORS OP LENGTHS 2*N, N, 
RESPECTIVELY. 

***:NOTE: ALL SCRATCij ARRAYS MUST BB DECLARED AND INCLUDED 
IN THE CALL.*** 

*****ALGORITHM NOTES: 
IT IS ASSUMED THAT: 

(1) FIS NONSINGULAB 
(2) G AND HARE NONNEGATIVE DEFINITE 
(3) (P ,G1) IS STABILIZABLE AND (C ,F) IS DETECTABLE WHERE 

T 
C *C = H (COP FULL BANK= RANK(H)). 

RIC0061JO 
RIC00650 
RIC00660 
RIC00670 
RIC00680 
RIC00690 
RIC00700 
RIC00710 
RIC00720 
RIC00730 
RIC007QO 
RIC00750 
RIC00760 
RIC00770 
RIC00780 
RIC00790· 
RIC00800 
RIC00810 
RIC00820 
R.IC00830 
RIC00840 
RIC00850 
RIC00860 

UNDER THESE ASSUMPTIONS THE SOLUTION (RETURNED IN THE ARRAY H) 
UNIQUE AND HONN.EGATIV'E DEFINITE. 

*****HISTORY: 
WRITTEN HY ALAN J. LAUB (ELEC. SYS. LAB., M.I.T., RM. 35-331, 
CAf'IBBIDGE, ftA 02139, PH.: (617) - 253-2125), SEPTEMBER 1977. 
MOST RECENT VERSION: SEP. 15, 1978. 

IS RIC00870 
R.IC00880 
R.IC00890 
RIC00900 
RIC00910 
RIC00920 
RIC00930 
RIC00940 

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::BIC00950 

EPS IS AN INTERNALLY GENERATED MACHINE DEPENDENT PARAftETEB 
SPECIFYING THE RELATI V.E PBEC.lSION OF FLOATING POINT ARITHftETIC. 
FOE EXAMPLE, EPS = 16.0DO** (-13) FOB DOUBLE PRECISION ARITHIIETIC 
ON IBM S360/S370. 

EPS=1.0D0 
EPS==0.5DO*BPS 
EPS P 1=EPS+ 1. ODO 
IF (EPSP1.GT.1.0D0) GO TO 5 
EPS=2. ODO*.EPS 

SET UP SYMPLECTIC MATRIX Z 

DO 20 J=1,N 

RIC00960 
RIC00970 
RIC00980 
RIC00990 
BIC01000 
BIC01010 
RIC01020 
RIC01030 
RIC01040 
RIC01050 
RIC01060 
BIC01070 
RIC01080 
RIC01090 
RIC01100 



DO 10 I= 1, N 
Z(N+I,N+J)=F(J,I) 

10 CGN~INUE 
20 CON'rINUt; 
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CALL DDCOMP (NF,N,F,COND,IFV!,WO&K) 
CONDP1=COND+1.0D0 
IF (CONDl:'1 . ."GT.COND) GO TO 30 
WHITE (6, 44400) 

44400 FOR~AT (42H1F MATRIX IS SINGULAR TO WORKING PBECISION) 
RETURN 

30 DO 60 J=1,N 
DO 40 I= 1, N 

WORK (I) =O. ODO 
40 CONTINUE 

WCHK(J)=1.0D0 
CALL DSOLVE (~F,N,F,WORK,IP.l/T) 
DO 50 I=1,N 

Z (I ,J) =WOBK (I) 
50 CONTINUE 
6 0 CONTINUE 

DO 80 J= 1, N 
DO 70 I=1,N 

P (I ,J) =Z (I,J) 
70 CONTINUE 
80 CONTINUE 

CALL MULWOA (NH,NF,N,H,F,WORK) 
DO 120 J=l, N 

DO 90 I= 1,N 
Z (.I, N+J) =O. ODO 
Z (N +I,J) =H (I, J) 

90 CONTINUE 
DO 110 K=1,N 

DO 100 I=1,N 
Z (I, N +J) =Z (I, N+J) +F (1,K) *G (K,J) 

100 CONTINUE 
110 CONTINUE 
120 CONTINUE 

CALL MULWOB (NH,NG,N,H,G,WO.RK) 
DO 140 J= 1, N 

DO 130 I=1,N 
Z(N+I,N+J)=Z(N+l,N+J)+G(I,J) 

130 'CONTINUE 
140 CONTI NOE 
C 
C BALANCE Z 
C 

CALL BALA NC (N~ • NN ,z, LOW, IGH, SCALE) 
C 

RICDSD 3 

C Rf.DUCE Z TO REAL SCHUR FORM WITH EIG.ENVALIJES OUTSIDE THE DNIT 
C DISK IN THE UPPER LEFT NIN UPPER QOASi-TRIAHGULAR BLOCK 
C 

NLOW=1 
NUi>=NN 
CAL.L ORTHES (NZ.,NN,NLOW,NUP,Z,EB) 
C~LL ORTRAN (NZ,NN,NLOW,NOP,Z,ER,i) 

RIC01110 
RIC01120 
RIC01130 
RIC01140 
RIC01150 
RICO 1160 
RIC01170 
RICO 1180 
RIC01190 
RIC01200 
RIC01210 
R.IC01220 
RIC01230 
RIC01240 
RIC01250 
RIC01260 
RICO 1270 
RIC01280 
RIC01290 
RIC01300 
RIC01l10 
RIC01320 
llIC01330 
RIC01340 
RIC01350 
BIC01360 
BIC01370 
RIC01380 
RIC01390 
IHC01400 
RIC01410 
RIC01420 
RIC01430 
RIC01q40 
RIC01450 
RIC01460 
RIC01470 
8IC01480 
RIC01490 
RIC01500 
RIC01510 
RIC01520 
RIC01530 
RIC01540 
RIC01550 
RIC01560 
RIC01570 
RIC01580 
8IC01590 
RICO 1600 
RIC01610 
RIC01620 
RIC01630 
RIC01640 
BIC01650 
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CALL HQld (Z,W,NN,NLOW,NUP,EPS,EB,J:!I,ITYPE,NZ,NZ) 
C 
C CO.MPU'.n SOLU'fION OF TH.E lilCCATI EQUATION FiiOM THE ORTHOGONAL 
C .'.1ATfUX !WW IN THE ARRAY W. STORE THE RESULT IN THE ARRAY H. 
C 

CALL BA~BAK (NZ,NN,LOW,IGH,SCALE,NN,W) 
DO 160 J= 1,"N 

DO 150 1=1,N 
F(I,J)=W(J,I) 
H (I,J) =11 (N+J,I) 

150 CONTINUE 
160 CONTINUE 

C 

CALL MLINEQ (NF,NH,N,N,F,H,COND,IPVT,WOBK) 
WORK (1)=COND 

C TRANSFORM TO GET THE CLOSED LOOP SPECTRU8 
C 

DO 190 I-=1,N 
IF (IT!PE(I).GE.O) GO TO 170 
WRITE (6,44410) I . 

44410 FORMAT (1X,I4,1X,41HTH EIGENVALUE ROT SUCCESSFULLY CALCULATED) 
RETURN 

170 IF (ITYPE (I) .GT.0). GO TO 180 
ER(I)=1.0D0/ER(I) 
EI(I)=O.ooo· 
GO TO 190 

180 IF {ITYP E (I). EQ. 2) GO 'lO 190 
T=ER (I} **2+1I (I) **2 
ER (I) =ER (I) /'l 
EI (I) =EI (I) /T 
ER(I+1)::ER(I) 
EI (I+1) =-EI (I) 

.190 CONTINUE 
RETURN 

C 
C LAST LINE OF RICDSD 
C 

END 

BIC01660 
RIC01670 
B IC01680 
RIC01690 
RIC01700 
RIC01710 
RIC01720 
RIC01730 
RIC01740 
RIC01750 
RIC01760 
RIC01770 
8IC01780 
RIC01790 
RIC01800 
RIC01810 
RIC01820 
RIC01830 
RIC018'10 
RIC01850 
RIC01860 
BIC01870 
BIC01880 
RIC01890 
BIC01900 
8IC01910 
RIC01920 
RIC019JO 
RIC01940 
RIC01950 
BIC01960 
RIC01970 
RIC01980 
RIC01990 
RIC02000 
RIC02010 
RIC02020 
RIC020 30 



C 
C 

C 
C 

C 
C 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

-60-

SUBhOUTINJ:: DDC0l'1P (NA,N,A,CONt,IPV'f,WORK) 

*****PAhA METERS: 
INTEGER NA, N,Il?VT (N) 
DOUBLE PhECISION A (NA,N) ,COND,WORK(R) 

*****LOCAL VARIABLES: 
INTEGtR NM1,I,J,K,KP1,KB,KM1,M 
DOUBLE PRECISION ~K,T,ANOiM,lNOBM,ZNOHM 

*****FUNCTIONS: 
DOUBLE PRECISION DABS 

DDCOMP l 

DDC00010 
DDC00020 
DDCOOOJO 
DDC00040 
DDC00050 
DDC00060 
0DC00070 
DDC00080 
DDC00090 
DDC00100 
DDC00110 
DDC00120 
D0C00130 

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : DDC 00140 
DDCOO 150 

*****?uRPOS.E: 
THIS SUBROUTINE COMPU'l'ES AN LU-DECOftPOSITIO.N OF THE REAL N X N 
MATRIX A BY GAUSSIAN ELIMINATION WITH PARTIAL PIVOTING. 

DDC00160 
0DC00170 
0DC00180 
DDC00190 
DDC00200 
DDC00210 
0DC00220 
D0C002JO 
DDC002ZIO 
0DC00250 
DDC00260 
0DC00270 
DDC00280 
DDC00290 
DDC00300 
DDC00310 

A CONDITION NU~BER OF A IS ES~IMATED. 

*****PARAM~ThP DESCRIPTION: 
ON INPUT: 

NA 

N 

A 

ON OUTPUT: 

A 

COND 

!PVT 

WORK 

ROW DIMENSION OP THE ARRAY CONTAINING A AS 
Di;CLABED .IN THE CALL.ING PROGRAM DIM ENS ION 
STATEMENT; 

ORDER OF THE MATRIX; 

N X N MATRIX TO B.E TBIANGULARIZED. 

N X N ABBAY COHTAIHING AN UPPER 
MATRIX U AND A PERMUTED VERSION 
TRIANGULAR MATRIX I-L SO THAT 
(PERl'!UTAT.lON MATRIX) *A : L*U. 

TRIANGULAR 
OF A LOWER 

DDCOOJ20 
DDCOOJJO 
DDC00340 
DDC00350 
D0C00360 
DDC00370 
0DC00380 

AN ESTIMATE OF THE CONDITION OF A FOR THE 0DC00390 
LINEAR SYSTEM 0DC00400 

A*X = B. DDC00410 
CHANGES IN A AND B MAY CAUSE CHANGES COND 0DC00420 
TIMES AS LARGE IN X. IP COND + 1.0DO = C0ND,D0C00430 
A IS SINGULAR TO WORKING PBECISION. COND IS DDC00440 
SET TO 1. 00+32 IF "EXACTtt SINGULARITY IS DDC00450 
DETECTED. DDC00460 

PIVOT VECTOR OP LENGTH N. 
IPVT(K) = THE INDEX OF THE K-TH PIVOT BOW. 
IPVT(N) = (-1)**(NUKBER OF INTERCHANGES). 

REAL SCRATCH VECTOR OP LENGTH N. 
ITS INPUT CONtENTS ARE IGNORED. ITS OUTPUT 
CONTENTS ARE USUALLI UNIKPORTANT. 

0DC00470 
0DC00480 
DDC00490 
DDCOOSOO 
DDC00510 
DDC00520 
DDC00530 
DDC00540 
DDC00550 



C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 
C 
C 

5 

10 
C 
C 
C 

C 
C 
C 
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*****APPLICATIONS AND USAGE RESTHICTIONS: DDC00560 
S0LUTIONSDDC00570 DDCO~P CAN BE USED IN CONJDNC'IION WITH DSOLVE TO COMPOTE 

TO SYSTEMS OF LINEAR EQUATIONS. IF NEAR-SINGULARITY IS 
DETECTED SOLUTIONS ARE MORE REL! ABLY COMPUTED VIA SINGULAR 
VALUE DECOMPOSITION OF A. 
DDC0f1"P CAN ALSO B.E USED TO COIIP UTE THE D.ETERKINANT OF A. 
ON OUTPUT SIMPLY COMPUTE: 

D.t:T(A) = IPVT(N)*A(1,1)*A(2,2)* ••• *A(N,N). 

*****ALGORITHM NOTES: 
DOC Oft I? IS A DOUBLE PRECISION ADAPTATION OP THE SUB BOD TI HE DECOMP 
(SEE REFERENCE ( 1) FOR DETAILS). THIS ALGORITHM IMPLEftEHTS 

GAUSSIAN ELIMINATION IN A MODERATELY UNCONVENTIONAL MANNER 
TO PBOVIl>E POTENTIAL EFFICIENCY ADVANTAGES UNDEB CERTAIN 
OP.ERATIHG SYSTEMS (SEE REFERENCE (2) FOB DETAILS). 

*****REFERENCES: 
(1) FORSYTliE,G.E • ., MALCOLK,M.A., AND MOLEa,c.B., CO!IPUTER 

(2) 
METHODS FOR MATHEMATICAL CO!IPUTATIONS., PRENTICE-HALL, 1977. 
KOLER,C. B., KATBIX COMPUTATIONS MITH FORTRAN AND PAGING, 
COl'tM. ACM, 15 (1972)., 268-270. 

*****HISTORY: 
ADAPTATION AND DOCUMENTATION WRITTEN BY ALAN J. LAUB 
(EL&C. SYS. LAB., M~I.T., BM. 35-331, CAMBRIDGE, Ml 02139, 
PH.: (617)-253-2125), AUGUST 1977. 
MOST RECENT VERSION: SEP. 21, 1977. 

DDC00580 
DDC00590 
DDC00600 
DDC00610 
DDC00620 
DDC00630 
DDC00640 
DDC00650 
DDC00660 
DDC00670 
DDC00680 
DDC00690 
DDC00700 
DDC00710 
DDC00720 
DDC007JO 
DDC00740 
DDC00750 
DDC00760 
DDC00770 
DDC00780 
DDC00790 
DDC00800 
DDC00810 
DDC00820 
DDCOOBJO 

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::DDC00840 

IPVT (N) = 1 
IP (N.EJ.1) GO TO 80 
Hll1=N-1 

COMPUTE 1-NOBM OF A 

A NOB K=O. ODO 
DO 10 J= 1,N 

T=O.ODO 
DO 5 I=1,N 

T=T +DABS (A (J:,J)) 
CONTI HUE 
IF (T.GT.ANORK) ANORK=T 

COHTINIJE 

GAUSSIAN ELIMINATION WITH PARTIAL PIVOTING 

DO 35 K=1,NM1 
KP1=K+ 1 

FIND 2IVOT 

M=K 
DO 1 5 I= KP 1, N 

IF (DABS(A(I,K)).GT.DABS(A(K,IC))) ft=I 

DDC00850 
DDC00860 
DDC00870 
DDC00880 
DDC00890 
0DC00900 
DDC00910 
DDC00920 
DDC009JO 
DDC00940 
DDC009SO 
DDC00960 
DDC00970 
DDC00980 
DDC00990 
DDC01000 
DOC01010 
DDC01020 
DDC01030 
DDC01040 
DDC01050 
DDC01060 
DDC01070 
DDC01080 
DDC01090 
DDC01100 



15 

C 
C 
C 

C 
C 
C 

20 
C 
C 
C 

25 
30 
35 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

40 
45 

50 

CONrI NUE 
IPVT(K)=M 
IF (11.NE.K) IPVT(N)=-IPVT(N) 
T=A(M,K) 
A(i'l,K)=A(K,K) 
A(K,K)=T 

SKIP ST1¥ IF PIVOT IS ZtRO 

IF (T.EQ.0.0DO) GO TO 35 

COMPUTE MULTIPLIERS 

DO 20 I=KP 1,N 
A(I,K)=-A(I,K)/T 

CONTINUE 
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INTERCHANGE AND ELIMINATE BY COLUMNS 

DC 30 J=KPl ,N 
T=A (M, J) 
A (M,J) =A (K,J) 
A (K,J) ::::T 
IF (T. EQ. 0. ODO) GO TO 30 
DO 25 I=KP1, N 

A (1,J) =A (I,J) +A (I, K) *T 
CON'IlN UE 

CONTINUE 
CONTI NIJ E 

COND = (1-NORM OF A)*{AN ESTIMATE OF 1-NOBM OF A-INVERSE). 
ESTIMATE OBTAINED BY ONE STEP OF INVERSl ITERATION FOR THE 
SMALL SINGULAR VECTOR. THIS INVOLVES SOLVING TWO SYSTEMS 

T 
OF EUUATIONS: A *Y = H AND A*Z = Y WHERE~ 
IS A VECTOR OF +1 OR -1 CHOSEN TO CAUSE GROWTH IN I. 
E;;,TIMATE = (1-NORM OF Z}/ (1-NCRM OF Y). 

T 
SOLV.E A *Y = E. 

DO 50 K=1,N 
T=O.ODO 
IF (K.J::Q.1) GO TO 45 
Kl'l.1=K-1 
DO 40 I= 1, KM1 

T=T+A (I,K} *1WBK(I) 
CONTINUE 
EK=1.IJD0 
If' (T • .LT. O. ODC) EK=-1. ODO 
IF {A(K,K).EQ.O.ODO) GOTO 90 
WOHK {K) =-(.EK+T) /A (K,K) 

CONTINUE 
DO 60 KB=1,Nt11 

K=N-K!3 

DDCOMP 3 

DDC01110 
DDC01120 
DDC01130 
DDC01140 
0DC01150 
DDCO 1160 
DDC01170 
DDCO 1180 
DDC01190 
0DC01200 
DDC01210 
DDC01220 
DDCO 1230 
DDC01240 
DDC01250 
DDC01260 
DDC01270 
DDC01280 
DDC01290 
D0C01300 
DDC01310 
DDC01320 
DDC01JJO 
DDC01340 
DDCO 1350 
DDC01360 
DDC01370 
DDC01380 
0DC01J90 
DDC01400 
DDC01410 
0DC01420 
DDCOl 430 
DDCO 1440 
D0C01450 
0DC01460 
DDC01470 
DDC01480 
DDC01490 
0DC01500 
DDC01510 
DDC01520 
DDC01530 
DDC01540 
DDC01550 
DDC01560 
DDC01570 
0DC01580 
DDC01590 
DDC01600 
DDC01610 
DOCO 1620 
DDC01630 
DDC01640 
DDC0-1650 



55 

60 
C 

65 
C 

C 
C 

C 

70 
C 
C 
C 

C 
C 
C 
80 

C 
C 
C 
90 

C 
C 
C 

T=O.OuO 
KP1=K+1 
DO 55 I=KP1,N 

T=T+A (I,K) *WORK(K) 
CONTINUE 
WORK (K) =T 
M= IPVT { K) · 
IF (M.RQ.K) GO TO 60 
T=WORK (M) 
WORK (M) = WORK (K) 
WORK (K) =T 

CONTINUE 

YNORM=u.ODO 
DO 65 !=1,N 

YNOHM=YNORM+DABS(WORK(I)) 
CONTINUE 

SOLVE A*Z = Y 

CALL DSOLVE (NA,N,A,WORK,IPVT) 

ZNORM=O.ODO 
DO 70 I=l,N 

ZNORM=ZNORM+DABS(WOBK(I)) 
CONT.INU.E 

ESTIMATE CONDITION 

COND=ANORM*ZNOBM/YNORM 
IF (COND. LT. 1. ODO) COND=l. ODO 
RETURN 

1-BY-1 CASE 

COND=1.0D0 
IF (A (1, 1). NE. 0. ODO) RETURN 

"EXACT" SINGULARITY 

COND=1.0D+32 
RETURN 

LAST LINE OF DDCOMP 

END 
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DDC01660 
DDC01670 
DDC01680 
DDC01690 
DDCO 1700 
DDC01710 
DDC01720 
DDC01730 
DDC 01740 
DDCO 17 50 
0DC01760 
DDC 01770 
DDC01780 
DDC01790 
DDC01800 
DDC01810 
DDCO 1820 
DDC01830 
DDC01840 
0DC01850 
DDC01860 
DDC01870 
DDC01880 
DDC01890 
DDC01900 
0DC01910 
DDC01920 
DDC01930 
0DC01940 
DDCO 19 50 
DDC01960 
0DC01970 
DDC01980 
0DC01990 
DDC02000 
DDC02010 
DDC02020 
DDC02030 
DDC02040 
DDC02050 
DDC02060 
DDC02070 
DDC02080 
DDC02090 
DDC02100 
DDC02110 
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C 

C 
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C 
C 
C 
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C 
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C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
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SUoROUTINJ:: DSOLVt. (NA,N,A,E,IPVT) 

***** PAH AiiE 'IEH S: 
lNT~GEh NA,N,IPVT(N) 
DOUBL~ P&ECISION A(NA,N),B(N) 

*****LOCAL ~ARIAbLES: 
1NTEG~R K3,KM1,Nct1,KP1,I,K,M 
DOUHLJ:: PRECISION T 

DSOLVE l 

DS000010 
DS000020 
osoooo 30 
DSOOOOIIO 
DSOOOO SO 
DS000060 
DS000070 
DS000080 
DS000090 
05000100 

:::::: ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::DS000110 

*****PURPOSE: 
THLS SJBROUTINE SOLVES TUE LINEAR SYSTEH A*I = B 
liY FCNWARD ELIMINATION AND BACK SUBSTITUTION USING THE 
TRIAN~ULA~ FACTOkS OF A PROVIDED BY DDCOftP. 

*****PARAMETER DESCRIPTION: 
ON IN!?UT: 

NA 

A 

BO~ DIMENSION OF THE ARRAY CONTAINING A 
AS DECLARED IN THE CALLING PROGRAM DiftENSION 
STATEMENT; 

ORDER OF THE ftATRIX A; 

TRIANGULABIZID MATRIX OBTAINED FRO~ DDCOftP; 

DS000120 
D50001l0 
OS000140 
05000150 
05000160 
osooo 170 
DS000180 
D5000190 
05000200 
DS000210 
DS000220 
05000230 
0S000240 
DS000.250 
DS000260 
DS000270 
DS000280 
DS000290 
DS000300 

B 

!PVT 

RIGHT HAND SIDE VECTOR OF LEBGTH N; 

PIVOT VECTOR OF LENGTH N OBTAINED FROM DDCOMP.D5000J10 

ON OU'.fPUT: 

B SOLUTION VECTOli, X, OF .LENGTH N. 

*****APPLICATIONS AND OSAGE REST&ICTIONS: 
DSOLV~ SHOULD NOT BE USED IN CASE DDCOKP HAS DETECTED BEAR
SINGULARITY. SINGULAR VALUE ANALYSIS IS THEN KORE RELIABLE. 

*****~LGORITHM NOTtS: 
DSOLVE IS A DOUBLE PR~CISION ADAPTATION OF THE SUBBOUTINR SOLVE 
(SEE REFERENCE (1) IN TH.E DDCOMP DOCUMENTATION FOR DETAILS). 

*****HISTORY: 
ADAPTATION AND DOCUMENTATION WRITTEN BY ALAN J. LAUB 
(ELEC. SYS. LAB., l1.l.T., BM. 35-331, CAMBRIDGE, ftl 02139, 
PH.: (617)-253-2125), AUGUST 1977. 
MOST REC~N~ VERSION: SEP. 21, 1977. 

. DS000320 
DS0003JO 
DS000340 
DS000350 
DS000360 
05000370 
D5000380 
DS000390 
05000400 
DS000410 
DS000420 
0S000430 
DS000440 
05000450 
DS000460 
DS000470 
D5000480 
DS000490 
DS000500 

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::DS000510 

FORWARD HLIKINATION 

IF ( N. EQ. 1) GO TC 5 0 

DS000520 
DS000530 
D5000540 
DS000550 · 



10 
20 
C 
C 
C 

30 
40 
50 

C 
C 
C 

N!11=N-1 
DO 2 0 K= 1 , N M 1 

KP1=K+1 
M.=IPVT (K) 
T=B (M) 
B(Pl)=B(K) 
B (K) =T . 
DO 10 I=KP1,N 

B (I)=B (l)+A (l,K) *T 
CONTINUE 

CONTINUE 

BACK SUBSTITUTION 

DC 40 KB= 1, Nft 1 
KM1=N-KB 
K=Kft1+1 
B (K) =B (K)/A (K,K) 
T=-B (K) 
DO 30 I=1,Kft1 

B(I)=B(I)+A(I,K)*T 
CONTINUE 

CONTINUE 
B ( 1) =B ( 1) /A ( 1, 1) 
RETURN 

LAST LINE OF DSOLVE 

END 
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DS000560 
DS000570 
DS000580 
D5000590 
D5000600 
D5000610 
D5000620 
D50006l0 
DS000640 
DS000650 
D5000660 
DS000670 
DS000680 
D5000690 
DS000700 
DS000710 
05000720 
D5000730 
05000740 
D5000750 
D5000760 
05000770 
DS000780 
DS000790 
·osoooaoo 
05000810 
DS000820 
DS000830 
DS000840 
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SlJBIWUTINE EXCHNG (A,V,N,L,B1,B2,EPS,FAIL,NA,NV) 

*****PARAMETJ:;RS 
I NT EG Eu b 1, B 2, L, NA, NV 
DOUBLE PHtCISION A(NA,N),EPS,V(NV,N) 
LOGICAL FAIL 

*****LOCAL VAfilABLtS: 
INTEGER I,IT,J,L1,M 
DOUBLt PRECISION P,Q,R,S,W,X,Y,Z 

*****FUN CT IONS: 
DOUBLE PRECISION DABS,DSQRT,DMAX1 

*****SUBROUTINES CALLED: 
QRSTEP 

EXCHNG 1 

EXC00010 
EXCOOO 20 
EXCOOOJO 
.EXC00040 
EXCOOOSO 
EXC00060 
EIC00070 
EXC00080 
EX:C00090 
EXC00100 
BX COO 110 
~XC00120 
EXC00130 
EXC00140 
EXC00150 
EXCOO 160 
EXC:00170 

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::~EXC00180 

*****PURPOSE: 
GIVEN TH£ UP~ER liESSENBERG MATRIX A WITH CONSECUTIVE B1 X B1 AND 
B2 l 82 DIAGONAL BLOCKS (81, 82.LE.2) STARTING AT A(L,L), THIS 
SUBhOUTIN~ PRODUCES A UNITARY SIMILARITY TRANSFORMATION THAT 
EXCHANGES THE BLOCKS ALONG WITH THEIR EIGENVALUES. THE 
TRANSFOhMATION IS ACCUMULATED INV. 

*****PARAMETER D~SCRIPTION: 
ON INPUT: 

NA, NV 

A 

N 

L 

B1 

B2 

EPS 

ON OUTPUT: 

FAIL 

ROW DI!ENSIONS OP THE ARRAYS CONTAINING A 
AND V, RESPECTIVELY, AS DECLARED IN THE 
CALLING PROGRAM DIMENSION STATEMENT; 

N X N MATRIX iHOSE BLOCKS ARE TO BE 
INTERCHANG.t.D; 

ORDER OP THE MATRIX A; 

POSITION OF !HE BLOCKS; 

AN INTEGER CONTAINING THE SIZ.E OF THE FIRST 
BLOCK; 

AN INTEGER CONTAINING THE SIZE OF THE SECOND 
BLOCK; 

A CONVERGENCE CRITERION (CF. HQB3). 

A LOGICAL VAR !ABLE WHICH IS • FALSE. ON A 
NORMAL RETURN. IF THIRTY ITBaATIONS WERE 
PERFORrtED WI'IHOUT CONVERGEKCE• FAIL IS S.ET TO 
.TRUE. AND THE EL.BMEMT A{L+B2.L+B2-1) CANROr 
Bl:; ASSUMED ZERO. 

EXC00190 
EXC00200 
EXC00210 
EXC00220 
EXC00230 
EXC00240 
EXC00250 
EXC00260 
EXC00270 
EIC00280 
EIC00290 
EICOOJOO 
.BXCOOJ 10 
EXC00320 
!XCOOJlO 
BXC00340 
EXC00350 
EXC00360 
.BXC00370 
EXC00380 
EXC0()390 
EICOOIIOO 
EXC00410 
EXC00420 
EXC00430 
EIC00440 
£IC00450 
EXC00460 
EXC00470 
EXC00480 
EIC00490 
EXCOOSOO 
EXC00510 
EIC00520 
EXC00530 
EXC00540 
EXC00550 
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*****HISTORY: 
DOCU~ENTED BY J.A.K. C.:ARRIG (ELEC. SYS. LAB., ft.I.T-., RM. 35-307, 
CAflBRIOG~, MA 02139, PH.: (617) - 253-216~ SEPTEMBER 1978. 
l'IOST RECENT VERSION: SEPT. 21, 1978. 

EIC00560 
EXC00570 
EXC00580 
EIC00590 
EXC00600 

:::::::::::;::::::::::::::::::::::::::::::::::::::::::::::::::::::EIC00610 
EXC00620 

FAIL=.PALSE. 
IF (B1.EQ. 2) GO 'IO 70 
IF (B2.EQ.2) GO TO qQ 
L1=L+1 
Q=A(L+1,L+1)-A(L,L) 
P=A (L, L+ 1) 
R=D!1AX1 (P ,Q) 
IF (R.I::OJ.,0. ODO) RETURN 
P=P/R 
Q=(J/R 
R=0SQRT(P**2+Q**2) 
P=P/R 
Q=Q/R 
DO 10 J=L,N 

S=P*A (L,J) +Q*A (L+1,J) 
A{L+1,J)=P*A(L+1,J)-Q*A(L,J) 
A(L,J)=S . 

COHTINU.E 
DO 20 I=1,L 1 

S=P*A(l,L)+Q*A(I.L+1) 
A(I,L+1)=P*AU,L+1)-Q*A(I,~ 
A {I.L) =S 

CONTINUE 
00 30 !=1,N 

S=P*V(I,L)+Q*V(I,L+1) 
V(I,L+1)=P*V(I,L+1)-Q*V(I,L) 
V (I.L) =S 

CONT.INUE 
A (L+ 1,L) -=O. ODO 
RETU RH 
CONTINUE 
X=A(L,L) 
P=1. ODO 
Q= 1 .• ODO 
R=1.0DO 
CALL QRSTEP (A,V,P,Q,B,L,L+2,N,NA,NV) 
IT=O 
IT=IT+1 
IF (IT.LE.30) GO TO 60 
FAIL=. TRUE. 
RETURN 
CONTINO B 
P=A (L,L)-X 
Q=A (L+1 ,L) 
R=O. ODO 
CALL QBSTEP (A,V,P,Q,R,L,L+2,N,NA,NV) 
IF ( DABS (A (L+2, L+ 1)) .GT. EPS* (DABS (A (L+1,L+1)) +DABS (A (L+2,L •2)))) 

+ GO TO 50 

BIC00630 
EXC00640 
EXC00650 
BXC00660 
EIC00670 
EXC00680 
BXC00690 
EXC00700 
BIC00710 
EXC00720 
EXC00730 
EIC00740 
EIC00750 
EXC00760 
EIC00770 
EIC00780 
EIC00790 
EXC00800 
EIC00810 
EIC00820 
EIC00830 
EXC00840 
BIC00850 
EIC00860 
EIC00870 
EXC00880 
EIC00890 
EIC00900 
EIC00910 
BIC00920 
EXC009l0 
EXC00940 
EIC00950 
EIC00960 
BIC00970 
EXC00980 
EXC00990 
EIC01000 
EIC01010 
EIC01020 
EIC01030 
EXC01040 
EIC01050 
BXC01060 
EXC01070 
BXC01080 
EIC01090 
EXC01100 



70 

80 

90 

C 
C 
C 

A (L+2,L+1)=0.0DO 
Ri:TUE.N 
CONTINUE 
l'l=L+ 2 
Ii'' (D2.EQ.2) 11;1'!+1 
X=A (L+1, L+1) 
Y=A(L,L) . 
w;A(L+1,L)*A(L,L+1) 
P=1.0DO 
Q=1.0D0 
R= 1. ODO 
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CALL ,JRSTEI:' (A,V,P,.J,H,L,M,N,NA,NV) 
IT=O 
IT=IT+1 
IP (IT.LB.JO) GO TO 90 
FAIL=. TR UJ::. 
RETURN 
CONTINUE 
Z=A(L,L) 
R=X-Z 
S=Y-Z 
P= (iZ*S-W) /A (L+1,L) +A (L,L+1) 
Q=A(L+1,L+1}-Z-R-S 
R=A (L+2 ,L+1) 
S=DABS (P) +DABS (Q) +DABS (h) 
P=P/S 
Q=Q/S 
R=R/S 
CALL QRSTEP (A,V,P,Q,R,L,M,N,NA,NV) 

EXCHNG 3 

If (DADS (A (M-1,.11-2)) .G'r. EPS* (DABS (A (M-1,PI-1)) +OABS(A (M-2,M-2)))) 
+ Go ·ro a o 

A (ti-1,M-2) =O. ODO 
B ETUR N 

LAST LINE OF EXCHNG 

END 

EXC01110 
EXC01120 
&XC011JO 
EXCO 1140 
EXC01150 
EXC01160 
EXC01170 
EXC01180 
EXC01190 
EXC012 00 
EXC01210 
EXC01220 
EIC01230 
EXC01240 
EXC01250 
EXC012~0 
EXC01270 
EXC01280 
EXC 01290 
EXC01JOO 
EXC01310 
EXCO 1320 
t:XC01330 
EXC01340 
EXC01J50 
.EXC01360 
.il:XCO 1370 
EIC01380 
EXC01390 
EXC01'600 
EXC011110 
BXC01'620 
EXC 01430 
EXC0111110 
EX:C011150 
::xco 1460 
EXC01470 
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SU Bh OU rIN.t. H<;JB3 (A, V, N, NLOW, NOP, .EPS,ER, EI, ITYPE,N .\,NV) 

*****PARAMETERS: 
INTEGER N,NA,NLOW,NUP,NV,ITYPE(N) 
DOUHL~ PRECISION A(NA,N),EI(N),ER(N),EPS,V(NV,N) 

*****LOCAL VAfilABLES: 
LOGICAL FAIL 
INTEGZR I,IT,L,MU,NL,NO 
DOUBLE PRECISION E1,E2,P,Q,R,S,T,W,X,Y,Z 

*****FUNCTIONS: 
DOUBLE PRECISION DABS 

*****SUBROUTINES CALLED: 
EXCHNG,URSTEP,SPLIT 

HQR3 l 

HQR00010 
HQROOO 20 
HQROOOJO 
HQR00040 
HQROOOSO 
HQR00060 
HQR00070 
HQB00080 
HQl\00090 
HQR00100 
HQB00110 
HQR00120 
HQB00130 
HQB00140 
HQ.800150 
HQR00160 
HQR00170 

::::::::::::::::::::::::::::::::::::::::::::::::::::i:::::::::::::HQR00180 
HQR00190 

*****PURPOSE: 
THIS SUBROUTINE ~EDUCES THE UPPER HESSENBERG MATRIX A TO QUASI
TRIANGULAR FORM BY UHITABY SI!ILARITY TRANSFORMATIONS. THE 
EIGENVALUES OF A, WHICH ARE CCHTAINED IN THE 1 X .1 AND 2 X 2 
DIAGONAL BLOCKS OF THE REDUCED MATRIX, ARE ORDERED IN DESCENDING 
ORDER OF MAGNITUDE ALONG THE DIAGONAL. THE TRANSFORMATIONS ARE 
ACCUM.ULAT.i::D IN THE AfiRAY V. 

HQR00200 
HQB00210 
HQR00220-
HQB00230 
HQB00240 
HQB00250 
HQB00260 
HQR00270 
HQR00280 
HQB00290 
HQR00300 
HQB00310 
HQB00320 
HQR00330 
HQB00340 
HQB00350 
HQ.R00360 
IIQB00370 
HQB00380 
ffQB00390 
HQB00400 
HQ.800410 
HQB00420 
HQR00430 
HQB00440 

*****PABAMETER DESCRIPTION: 
ON INPUT: 

NA,NV 

A 

N 

NLOW,NUP 

EPS 

!TYPE 

BOW DIMENSIONS OF THE ARRAYS CONTAINING A AND 
V, RESPECT! V.ELY, AS D.ECLARED ·rN THE CAL.LING 
PROGRAM DIMENSION STATEMENT; 

N X N ABBAY CONTAINING THE OPPER HESSEHBEBG 
MATRIX TO BE REDUCED; 

ORD.ER OF TH.E MATRICES A AND V; 

A (NLOW,NLOW-1) AND A (NUP, 1+NUP) ARE ASSUMED 
TO BE ZERO, AND ONLY ROWS NLOW THROUGH NOP 
AND COLUMNS NLOW THROUGH NOP ABE TBANSFOBNED, 
RESULTING IN THE CALCULATION OF EIGENVALUES 
NLOW THROUGH NOP; 

A CONVERGBBCE CRITERION USED TO DETERfUNE WHERHQB00450 
A SUBDIAGONAL ELEMENT OP A IS NEGLIGIBLE. HQB00460 
SPECIFICALLY, A(I+1,I) IS REGARDED AS HQB00470 
NEGLIGIBLE IF DABS(A{I+1),I)).LE.~PS* HQR00480 
(DABS(A(I+1,I+1))). THIS MEANS THAT THE FINAL HQB00490 

ftATRIX BE~UBNED BY THE PROGRAM WILL BE EXACTLYHQ£00500 
SIMILAR TO A+ E WHERE EIS OF ORDER HQR00510 
EPS*NORM(A), FOB ANY REASONABLY BALANCED NORM HQR00520 
SUCH AS THE ROW-SOM NORM; HQR00530 

AH INTEGER VECTOR O.F LENGTH N WHOSE 
HQR00540 
HQB00550 
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ON OU'rPUT: 

A 

V 

ER,EI 

*****HISTORY: 
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I-TH ENTRY IS 
0 IF THE 1-'IH EIGENVALUE IS REAL, 
1 IF THE I-TH EIGENVALUE IS COMPLEX WITH 

POSITIVE IMAGINARY PART, 
2 IF THE I-TH EIGENVALUE IS COMPLEX WITH 

NEGATIVE IMAGINARY PART, 
-1 IF THE I-TH EIGENVALUE WAS NOT CALCULATED 

SUCCESSFULLY. 

N X N ARRAY CCNTAINING THE REDUCED, QUASI
T&IANGULAF. MATRIX; 

N X N ARRAY CCNTAIN!NG THE REDUCING 
'IR ANS FOR KAT IONS TO BE KULTIPLI ED; 

RhAL SCRATCH VECTORS OF LENGTH N WHICH ON 
iil~TURN CONTAIN THE REAL AND lftAGINAliY PARTS, 
RESPECTIVELY, OF THE EIGENVALUES. 

HQR00560 
HQR00570 
HQR00580 
HQR00590 
HQR00600 
HQB00610 
HQli00620 
HQB00630 
HQB0061JO 
HQB00650 
HQB00660 
HQR00670 
HQB00680 
HQB00690 
HQR00700 
HQR00710 
HQR00720 
HQB007 30 
HQB007LJO 
HQR00750 
HQB00760 
HQB00770 

DOCUMENT~D BY J.A.K. 
CAMBRIDGE, MA 02139, 
MOST RECENT VER~ION: 

CARRIG, {ELEC. SYS. LAB., M.I.T., RM. 
PH.: (617)- 253-2165), SEPT 1978. 
SEPT 21. 1978. 

35-307.HQB00780 
HQR00790 
HQR00800 
HQB00810 

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::HQB00820 

DO 10 I=NLOW,NUP 
ITYPII: (I) =-1 

CONTINUE 
T=O.ODO 
NU=NUi? 
IF (NU.LT.NLOW) GO TO 240 
IT=O 
CONTINUE 
L=NU 
CONTINUE 
IF (L.EQ.NLOW) GO TO 50 
IF (DABS(A(L,L-1)) .LT.l::PS*(DABS(A(L-1,L-1))+DABS(A(L,L)))) 

+ GO TO 50 
L=i.-1 
GO TO 40 
CONTINUE 
X=A(NU, NU) 
IF (L.EQ.NU) GO TO 160 
Y=A (NU-1,NU-1) 
W=A{NU,NU-1)*A(NU-1,NU) 
IF (.L.EQ.NU-1) GO TO 100 
IF (IT.~Q.30) GO TO 240 
IF (IT.NE.10 .AND. IT.NE.20) GO TC 70 
T=T+X 
DO 60 I=NLOW,NU 

A (I ,I) =A (I ,I) -X 
CONTINUE 

HQB00830 
HQR00840 
HQB00850 
HQR00860 
HQ800870 
HQB00880 
HQB00890 
HQR00900 
HQR00910' 
HQB00920 
HQB00930 
HQR00940 
HQB00950 
HQB00960 
HQB00970 
HQR00980 
HQB00990 
HQB01000 
HQB01010 
HQB.01020 
HQB01030 
HQR01040 
HQR01050 
HQR01060 
HQR01070 
HQB01080 
HQB01090 
HQB01100 
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S=DABS(A(NU,NU-1))+DABS{A(NU-1,NU-2)) 
X=0.75DO•S 
Y=X 
W=-O.ijJ75DO*S**2 

70 CONTINUE 
IT=IT+1 
NL=NU-2 

80 CONTINUE 
Z=A (NL, NL) 
R=X-Z 
S=Y-Z 
P= (R•s-w) /A (NL+ 1, NL) +A (NL,NL+1) 
Q=A(NL+1,NL+1)-Z-B-S 
R=A{NL+2,. NL+1) 
S=DABS(P)+OABS(Q)+DABS(E) 
P=P/S 
Q=Q/S 
8=.R/S 
IF (NL. EQ • L) GO TO 9 0 . 
IF (DABS(A(NL,NL-1))*(DABS(Q)+DABS(R)).LE.EPS*DABS(P)* 

HQR3 3 

+ (DABS(A(NL-1,NL-1))+DABS(Z)+DABS(A(NL+1,NL+1)))) GO TO 90 
NL=NL-1 
GO TO 80 

90 COHTIHUE 
CALL QRSTEP (A ,V ,P,QiR,HL,NU,11,lU,HV) 
GO TO 30 

100 IP (HU.NE.NLOW+1) A(NU~1,IU-2)=0.0D0 
A(NU,NU)=A(NU,NU)+T 
A(N0-1,NU-1)=A(NU-1,NU-1)+T 
ITI PE (NU) =0 
ITYPE (NU-1) =O 
M£J=NU 

110 CONTINUE 
NL=MU-1 
CALL SP.LIT (A,Y,N,NL,E1,E2,NA,NV) 
IF (A(MU;MU-1).EQ.0.0DO) GO TC 170 
IF (MU.EQ.NOP) GO TO 230 
IF (MU.EQ.NUP-1) GO TO 130 
IF (A(KU+2,MU+1) .EQ.0.0DO) GO TO 130 
IF (A (M0-1, MU- 1) *A (MU ,MU )-A (flO- 1, MU) *A (MU ,M 0-1) • GE. A (MU+1,l!O+ 1) * 

+ . A (MU+2, l!U+2) -A (MU+1,ftU+2) *A (MU+2,ftU+1)) GO TO 230 
CALL EICH.NG (A,V,N,NL,2,2,EPS,FlIL,NA,NV) 
If (.NOT.FAIL) GO TO 120 
ITYP E (NL} =-1 
ITIPE (NL+1) =-1 
I TYPE (NL+ 2) =-1 
ITIPE (NL+3) =-1 
GO TO 240 

120 CONTINUE 
MO=ft0+2 
GO TO 150 

130 CONTINUE 
IF (A(MU-1,KO-l)*A(KU,ftU)-A(ftU-1,ftO)*A(ftU,KU-1).GE. 

+ A(MU+1,MU+1)**2) GO TO 230 
CALL EXCHNG (A,V,N,NL,2,1,EPS,FAIL,HA,NY) 

HQR01110 
HQR01120 
HQB01130 
HQB01140 
HQB01150 
HQB01160 
HQB01170 
HQB01180 
HQB01190 
HQB01200 
HQB01210 
HQB01220 
HQB01230 
HQB01240 
HQB01250 
HQR01260 
HQB01270 
HQR01280 
HQR01290 
HQB01300 
HQB01310 
RQB01320 
HQB01330 
HQB01340 
BQB01350 
BQR01360 
HQB01370 
BQB01380 
HQB01390 
HQB01400 
HQB01410 
HQR01420 
HQB01430 
HQB01440 
HQR01450 
BQB01ti60 
BQR011&70 
HQB01480 
HQB011190 
RQB01500 
HQB01510 
HQ.1101520 
HQB01530 
HQB015110 
BQR01550 
RQB01560 
HQB01570 
HQB01580 
HQB01590 
HQR01600 
BQB01610 
HQB01620 
HQB016JO 
HQB01640 
HQR01650 



lF (.tWT.F'AIL) GO TO 140 
ITYPE(NL)=-1 
IT 'iP E (NL f- 1) =- 1 
ITYPE (NL+2) =-1 
GO TO 240 

140 CONTINUJ:: 
MU=MU+l 

150 CONTINUJ:-'. 
GO TO 110 

160 tn~o 
A(NU,NU)=A(NU,NU)f-T 
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IF (NU.NJ::.NLOW) A{NU,NU-1)=0.000 
ITYf>E (NU) =O 
liU= NU 

170 CO NT IN U.i:; 
180 CONTINUE 

IF (MU. EQ. N UP) GO TO 220 
IF (MU.EQ.NUP-1) GO TO 200 
IF (A(MU+2,MU+1).EQ.0.0D0) GO TO 200 

HQR3 4 

IF (A(MU,MU)**2.GE.A(MU+1,MU+1)*A{MU+2,MU+2)-A(M.U+1,M0+2)* 
+ A (MU+2, MU+ 1)) GO TO 230 

CALL EXCHNG (A,Y ,N,MU, 1,2,EPS,FAIL,NA,NV) 
IP (. NOT.FAIL) GO TO 190 
!TYPE (MU) =-1 
I TYPE (MU+ 1) =-1 
I'l'YPE (MU+l) =-1 
GO TO 240 

190 CONTINUE 
l'IU=MU+2 
GO TO 210 

200 CONTINUE 
IF {DABS(A(l"lU.,1'1U)).GE.DABS(A(MU+1,?'JU+1))) GO TO 220 
CALL iXCHNG (A,V,N,MU,1,1,EPS,FAIL,NA,NV) 
MU=MU+1 

21 0 CO NT I NU E 
GO TO 180 

220 CONTINUE 
MU=NL 
NL=O 
IP (M.U.N~.O) GO TO 170 

230 CONTINUg 
NU;;L-1 
GO TO 20 

240 IF (NU.LT.NLOW) GO TO 260 
DO 250 I=1, NU 

A (1,1) =A (.l,I) +T 
250 CONTINOE 
260 CONTINUE 

NU=NUP 
270 CONTINUE 

IF (I'rYPE (NU) .. NE.-1) GO TO 280 
NU=NU- 1 
GO TO 310 

280 CONTINUE 
IF (NU.EQ.NLOW) GO TO 290 

HQR01660 
HQh01670 
HQliO 1680 
HQB01690 
HQH01700 
HQR01710 
HQ.RO 17 20 
HQR01730 
HQR01740 
HQB01750 
HQR01760 
UQ.RO 1770 
HQBO 1780 
HQR01790 
HQB01800 
HQR01810 
HQR01820 
HQR01830 
HQRO 18 40 
HQR01850 
HQR01860 
HQR01870 
HQR01880 
HQB01890 
HQB01900 
HQB01910 
HQR01920 
HQR01930 
HQR01940 
HQR01950 
HQR01960 
HQR01970 
HQR01980 
HQRO 1990 
HQR02000 
HQR02010 
HQR02020 
HQR020 30 
HQB02040 
HQR02050 
HQB.02060 
HQR02070 
HQB02080 
HQB02090 
HQR02100 
HQR02110 
HQB.02120 
BQR02130 
HQit02140 
HQR02150 
HQR02160 
HQR02170 
HQR02180 
HQB02190 
HQR02200 
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IF (A(NU,MtJ-1) .EQ.O.ODO) GO TC 2YO 
CALL SPL.lT (A,V,N,NU-1,E1,E2,NA,NV) 
If (A(NU,NU-1).EQ.0.000) GO TC 290 
ER ( NU) =E 1 
EI (NU-1) =E2 
ER (NU-1) =ER (NU) 
£1 (NU)=-r:I(NU-1) 
ITYPE (NU-1) =1 
!TYPE (NU).;;2 
NU=tHJ-2 
GO TO 300 

290 CONTINUE 
ER (NU) =A (NU, NU) 
EI (NU)=O.ODO 
NU=NU-1 

JOO CONTINUE 
310 CONTINUE 

I 
C 

IF (NU.GE.NLOW) GO TO 270 
RETURN 

C LAS.T LINE OF HQBJ 
C 

EHD 

Hi}l3 5 

HQR02210 
HQR02220 
HQB02230 
HQB02240 
HQR02250 
HQli.02260 
HQR02270 
HQB02280 
HQB02290 
HQB02300 
HQB02310 
HQB02320 
HQB02330 
HQ.802340 
HQB02350 
HQl02360 
HQB02370 
HQR02380 
HQ.102390 
BQB02ll00 
HQB02410 
HQB02420 
HQB02430 
HQB02440 



C 
C 

C 
C 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
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SUBP.OUTlNE MLINEQ (NA,NB,N,M,A,D,COND,IPVT,WORK) 

**** *P AltA~.i::TERS: 
I N'l' EG.ER NA, NB, N, K, Il?V: (N) 
DOUBLE eRECISION A{NA,N),B(NB,M),CONO,WORK(H) 

*****LOCAL 'VARlA!jLi::S: 
INTEGER I,J,KIN,KOUT 
DOUBLE l?kECISION CONDP1 

*****SUBhOUTIN~S CA1L£D: 
DDCO~P,DSOLVE 

MLINEQ l 

lUI00010 
!LI00020 
MLI00030 
!ILIOOOiiO 
MLI00050 
MLI00060 
KLI00070 
KLI00080 
ttL.100090 
KLI00100 
MLI00110 
MLI00120 
!tLI001JO 

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::MLI001ij0 

*****PURPOSh: 
THIS SUBBOUTINE SOLVES THE MATRIX LINEAR EQUATION 

A*X = B 
WHEh.E A IS AN N X N (INVERTIBLE) MATRIX ANO B IS AN N X: K 
~ATHIX. SUliROUTINE tDCOMP IS CALLED ONCE FOR THE LU-DECOMP
OSlTION 0F A AND SUBROUTINE DSOLVE IS CALLED M TIMES FOR 
FOHWAKD ELIMlNATION AND BACK SUBSTITUTION TO PRODUCE THE 
M COLUMNS OF THE SOLUTION MATRIX X = (A-INVERSE)*B. AN 
ESTIMAT~ OF THE CONDITION OF A IS RETURNED. SHOULD A BE 
SINGULAk TO WORKING ACCURACY* A MESSAGE TO THAT EFFECT IS 
PRODUCED. 

*****PARAMETEli DESCRIPTION: 
ON INPUT: 

NA, Nil 

N 

M 

A 

B 

ON OUTPUT: 

8 

COND 

IPVT 

ROW DIMENSIONS OF THE ARRAYS CONTAINlNG A AHD 
B, RESPECTIVELY, AS DECLARED IN THE CALLING 
PROGRAM DIMENSION STATEMENT; 

OBDER OF THE MATRIX A AND NUftBEB OF BOWS OF 
THE. MATRIX B; 

NU~BER OF COLUMNS OF THE MATRIX B; 

N X N COEFFICIENT MATRIX; 

N X M RIGHT HAND SI DE !UTRIX. 

SOLUTION MATRIX X = (A-INVEBSE)*B; 

AN ESTIMATE OP THE CONDITION OF A; 

.PIVOT VECTOR CF LENGTH II (SEE DDCOMP 
DUCU.l!ENTATION); 

WORK A REAL SCBATCH VECTOR OF LENGTH N. 

*****APPLICA'l'lONS AND USAG.t RESTRICTIONS: 

MLI00150 
lUI00160 
t'ILI00170 
MLIOO 180 
f!LI00190 
MLI00200 
MLI00210 
MLI00220 
MLI00230 
ftLI00240 
!UI00250 
KL.100260 
l'tL.100270 
MLI00280 
MLI00290 
ML.100300 
flLI00310 
MLI00320 
f!LI00330 
MLI00340 
MLI00350 
MLI00360 
KLI00370 
flLI00380 
MLI00390 
MLI00400 
ftLI00410 
ML.100'120 
IIILI00430 
MLI004110 
KLI00450 
MLI00460 
KLI00470 
!LI00fl80 
llL.100490 
flL.IOOSOO 
MLI00510 
ftL.I00520 
flLI00530 
ll.LI00540 
flLI00550 



C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

44400 

100 

200 
C 
C 
C 

300 
400 

C 
C 
C 
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(1)THE VALUE OF COND SHOULD ALWAYS BE CHECKED BY THE CALLING 
PROGHAM. SHOULD A BE NEAR-SINGULAR (OR SINGULAR TO WORKING 
ACCURACY) THE DATA SHOULD BE INVESTIGATED FOB POSSIBLE 
ERROHS. IF THERE ARE NONE AND THE PROBLB!t IS APPARENTLY 
WELL-POSED AND/OR H.EA NI NGfUL., SINGULAR VALUE ANAL ISIS IS 
THEN A MORE RELIABLE SOLUTION TECHNIQUE (CF. EISPACK 
SUBROUTINES SVD AND MINFIT). 

(2) IHINEi,,i CAN BE USED TO COMPUTE 'IHE INV.ERSE OF A: SIMPLY SO.LYE 
A*X = I WHERE I lS THi N X N IDENTITY MATRIX. 

(3)IF TH~ SOLUTION Tu X*A ~ B (X = B*(A-INVERSE)) IS DESIRED, 
siMPLY TRANSPOSE TUE SOLUTION OF 

T T 
A *X = a • 

*****ALGORITH~ NOTES: 
THE CONTENTS OF A ARE MODIFIED_BY ~HIS SUBROUTINE. SHOULD THE 
ORIGINAL COEFFICIENTS OF A BE NEEDED SUBSEQUENTLY, THE 
CONTENTS OF A SHOULD BE SAYED PlUOR TO THE CALL TO !'lLIN EQ. 

*****HIS£0R Y: 
WRITTEN BY ALAN J. LAUB (ELEC. SIS. LAB., M.I.T., Rft. 35-331, 
CAMBRIDGE, MA 02139., PH.: (617)-253-2125), AUGUST 1977. 
MOST RECENT VERSION: SEP. 21, 1977. 

llLI00560 
MLI00570 
MLI00580 
11LI00590 
ltLI00600 
MLI00610 
KLI00620 
!'1LI00630 
MLI00640 
11LI00650 
MLl.00660 
rtLI00670 
MLI00680 
ftLI00690 
MLI00700 
rtLI00710 
MLI00720 
l!LI00730 
ftLI00740 
MLI00750 
llLI00760 
MLI00770 
!'lLI00780 
KLI00790 

: : : : : : : : : : : : : : : : : : :·: :-: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : ft.LI00800 

COKMON/INOU/KIN,KOUT 
CALL DDCOftP (NA, N.,A ,CO.ND, I PVT, WORK) 
CONDP1=COND+1.0D0 
IF (CONDP1.GT.COND) GO TO 100 
WRITE (KOUT,44400) 
FORMAT (40H1MATR1X IS SINGULAR TC WORKING PBHCISION) 
RETURN 
DO 400 J=1,M 

DO 200 I='1,N 
if ORK {I) =B (I .,J) 

CONTI NCJE 

COMPOT~ (J-TH COLUMN OF X) = (A-INVERSE)*(J-TH COLUftN OF B) 

CALL DSOLYE (N.A,N,A,WORK,IPVT) 
·oo 300 I==1,N 

B (I,J) =WORK (I) 
CONTINUE 

CONTINUE 
RETURN 

LAST LIN~ OF MLINEU 

END 

MLI00810 
MLI00820 
KLI00830 
!LI00840 
KLI00850 
MLI00860 
!llLI00870 
MLI00880 
MLI00890 
l1LI00900 
!!LI00910 
MLI00920 
f1LI009JO 
flLI00940 
r!LI00950 
flLI00960 
MLI00970 
KLI00980 
l!Ll00990 
!ILI01000 
MLI01010 
ltLI01020 
KLI01030 
MLI01040 
MLI01050 



C 
C 

C 
C 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

10 
20 

30 
40 
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SUi.lLOUTIN,i MULWOA (NA,NE,N,A,B,WCBK) 

*****f>AHAMETEI.\S: 
IN! EGL i;; NA, N l3, N 
OOUBLE PRECISION A(NA,N),B(ND,N},WOaK(N) 

*****LOCAL VA&IABL~S: 
HnEGEd I,~J, K 

*****SUBROUTINES CALLbD: 
NC Nl 

MULWOA 1· 

l'IUL00010 
MULOOO 20 
l1ULOOOJO 
KUL00040 
MUL00050 
rrnL0006o 
!'IUL00070 
KUL00080 
MUL00090 
KUL00100 
MU LOO 110 
KUL00120 

::::::::::::::::=:::::::::::::::::::::::::: :::::::::::::::::::::::MUL00130 

*****PUhPOS E: 
TUIS SUBROUTINE CVL8WR1TES THE ~RRAt A WITH THE MATRIX PRODUCT 

A*l3. BOTH A AND B ARE N X N ARhAYS .AND 11UST BE DISTINCT. 

*****?ARA~ETER DESChIPTION: 
ON INPUT: 

NA,NB 

N 

A 

B 

ON OUTPUT: 

A 

wORK 

*****HISTORY: 

ROW DHIBNSIONS OP THE ARRAYS CONTAINING A AND 
B, RESPECTIVELY, AS DECLARED IN THE CALLING 
PROGRA!'I DIMENSION STATEftENT; 

ORUER OF TH~ MATRICES A AND B; 

AN N X N l'IATRIX; 

AN N lC N MATRIX. 

ANN X N ARRAY CONTAINING A*B; 

A REAL SCRATCH VECTOR OF LENGTH N. 

wiiITTEN ~y ALAN J. LAUB (ELEC. SYS. LAB., M.I.T., Rft. 35-331, 
CAMBRIDGE, MA 02139, PH.: (617)-253-2125), SEPTEMBER 1977. 
MOST DSCENT VERSION: SEP. 21, 1977. 

ltUL00140 
MU LOO 150 
ltUL00160 
MUL00170 
MUL00180 
MUL00190 
MUI.00200 
11UL00210 
KU L00220 
ltUL00230 
MUL00240 
MUL00250 
l'1UL00260 
KUL00270 
Z'IUL00280 
ftUL00290 
!'!ULOO 300 
MUL00310 
MUL00320 

.MOL00330 
MOL00340 
MUL00350 
KUL00360 
MUL00370 
11UL00380 
rrnt00390 
KUL00400 
!tCJL00410 
MUL00420 

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : ; : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : MUI.00430 

DO ijQ 1=1,N 
DO 20 J=1,N 

vlOli K (J) =O. ODO 
DO 10 K= 1, N 

WORK (J) =WORK (J) +.A (I, K) *B (K, J) 
CONTINUE 

CONTINUE 
DO 30 J=1,N 

A (I ,J) =WGhK (J) 
CONTINUE 

CONTINUE 

MOL00440 
KCJL00450 
llUL00460 
KUL00470 
ltUL00480 
ltUL00490 
KULOOSOO 
KUL00510 
rHJL00520 
MUL00530 
IHJLOOSqO 
fl[J L00550 



C 
C 
C 

HETU RN. 

LAST LIN~ OF MULWOA 

END 
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ltOL00560 
!D.L00570 
I! UL00580 
PlOL00590 
ltUL00600 



C 
C 

C 
C 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
<.: 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

10 

20 
30 
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SUBROUTlNh MULWOB (NA.NE,N,A,B,WORK) 

*****P.\.hA11ETEHS: 
INTEGE:R NA,.NB.N 
DOUBLE PRECISION A (NA,N) ,B (NB,N) ,WORK (N) 

*****Luc AL VARI A BL ES: 
IN'l'eGER I.,J,K 

*****SUBROUTINES CALLED: 
NONE 

MULWOB l 

MUL00010 
KUL00020 
PIUJ.000 30 
!iUL00040 
!IOL00050 
aOL00060 
PIUL00070 
KOL00080 
!UJL00090 
flUL00100 
l1UL00110 
IIUL00120 

::::::::::::::::::::::::::::::::::::::::::!:::::::::::::::::::::::!UL00130 

*****PURPOSE: 
THIS .SUBROUTINE OVERWRITES THE .. ARRAY B WITH THE rtATRI X PRODUCT 

A*il. BOTH A AND D AliE N X N ARRAYS !NC MUST BE DISTINCT. 

*****PAhAMEThii DESCRIPTION: 
ON INPUT: 

N 

i3 

ON OUTeUT: 

B 

WORK 

***"'*HISTOBY: 

ROW OiftENSlONS OF THE ARRAYS CONTllNING A AND 
B, RESPECTIVELY, AS DECLARED IN THE CALLING 
Pi.WGRUI DIMENSION STATEPIEMT; 

OliDER OF THE MATRICES A AND B; 

AN N X N MATRIX; 

AN N X N KATRII. 

ANN X N ARRAY CONTAINING A•B; 

A REAL SCRATCH VECTOR OF LENGTH N. 

WRITTEN BY ALAN J. LAUB (ELEC. sis. LAB., fl.I.T •• RK. 35-331, 
CAMBRIDGE, MA 02139• PH.: (617)-253-2125), SEPTEKBBR 1977. 
MOST RECENT VERSION: SEP. 21, 1977. 

!OLOO 140 
l'1IJL00150 
ftUL00160 
ftUL00170 
l"IUL001SO 
l'IULOO 190 
KOL00200 
KULOO 210 
MUL00220 
MOL00230 
KUL00240 
!UL00250 
ftUL00260 
ft0L00270 
1'1UL00280 
ftOL00290 
llULQOJOO 
r10LOOJ10 
!lOL00320 
IIOLOOlJO 
ftOl.00340 
IIUL00350 
KOL00l60 
ft0L00370 
IIUL00380 
KOL00390 
!!UI.001100 
flOL00410 
IIUL00420 

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : !10 .LOO 4 30 

DO 50 J:1,N 
DO 10 I-=1,N 

WORK(I):O.ODO 
CONTINUE 
DO 30 K=1~N 

DO 20 I-=1, N 
\IORK (I) :WORK (1.) + A (I, K) *B (K,J) 

CONTINUE 
CONTINUE 
DO 40 I=1,N 

B (.I ,J) =WORK (I) 

IUJLOOltllO 
flUI.00450 
1101.00460 
!IOL00470 
!IUL00480 
1'10L00490 
ftULOOSOO 
ftUL00510 
!IOL00520 
ft0L005.30 
IIULOOS'JO 
!IOLOOSSO 



40 
50 

C 
C 
C 

CONTINUE 
CONTINUE 
RETURN 

LAST LINE OF KULWOB 

END 
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KUL00560 
KUL00570 
llUL00580 
KUL00590 
lltJL00600 
llOL00610 
llUL00620 



C 
C 

C 
C 

C 
C 

C 
<.: 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
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SUJhOUTlNE Ql:iSTEi' (A,V,P,Q,R,NL,NU,N,NA,NV) 

***** PARA MET Eh S: 
INT1GSR N,NA,NL,NU,NV 
DOUBL~ P~ECISICN A(NA,N),P,Q,R,V(NV,N) 

*****LOCAL 'VAHIABLtS: 
LOGICAL LAST 
INTEGER 1,J,K,NL2,NL3,NUM1 
UOUULi PhECISION S,X,Y,Z 

*****r' UNCTIONS: 
D0U3LE PhECISION DABS,DSQRT 

*****SUBHUUTINES CALLED: 
NON.t: 

QRS00010. 
QRS00020 
QRS00030 
QBS00040 
QRSOOO 50 
QRS00060 
QRS00070 
QRS00080 
QRS00090 
QRS00100 
QRS00110 
QRS00120 
QRS001JO 
QBS001110 
QRS00150 
QBSOO 160 
QRS00170 

: : : : : : : : : : : : : : : : : : : : : : : .: : : : : : : : : : ! : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : QR SO O 180 
QBS00190 

*****PURPOSE: 
THIS SUBROUTINE PEBFOHMS ONE IMPLICIT QB STEP ON THE UPPER 
HESSENBE.&G MATRIX A. THE SHIFT IS DETERKINED BY THE NUMBERS P,Q, 
AND~' AND THE STEP IS APPLIED TC ROWS AND COLUMNS NL THROUTH NU. 
THE TRANSFORMATIONS ARE ACCUMULATED IN !HE ARRAY V. 

QRS00200 
QRS00210 
QRS00220 
QRS00230 
QRS00240 

*****PARAMETER DlSCRIPTION: 
QBS00250 
QRS00260 
QBS00270 
QRS00280 
QRS00290 
QRS00300 
QRS00310 

ON INPUT: 
NA,NV 

P,Q,R 

NL 

NU 

N 

ON OUTPUT: 

V 

*****HISTORY: 
DOCUMENTED BY J.A.K. 
CAMBRIDGE, MA 02139, 
MOST RECENT VERSION: 

ROW DIMENSIONS OF THE ARRAYS CONTAINING A 
AND V, RESPECTIVELY, AS DECLARED IN THE 
CALLING PnOGRAft DIMENSION STATEMENT; 

N X N UPPEH HESSENBEBG MATRIX ON WHICH THE QR QRS00320 
STEP IS TO B.E PE.RFORKED; QRS00330 

PARAMETERS WHICH DETER!HNE THE SHIFT; 

THE LOW.BR LIMIT OF THE STEP; 

THE UPPER LIMIT OF THE STEP; 

ORDER OF THE MATRIX A. 

N X N REAL SCRATCH ARRAY CONTAINING THE 
ACCUMULATED TBANSFOlHHTIONS. 

QBS00J40 
QRS00350 

- QRS00360 
QRS00370 
QRS00380 
QRS00390 
QRS00400 
QRS00410 
QRS00420 
QRS00430 
QRS00440 
QBS00450 
QBS00460 
QRS00470 

CARRIG (ELEC. SYS. LAB •• M.I.T., na. 35-307. 
PH.: (617) - 253-2165), SEPTEMBER 1978. 

QRS00480 
QRS00490 
QBS00500 

SEPT 21, 1978. QRS00510 
QBS00520 

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::QRSOOSJO 

NL2=NL+2 
QBS00540 
QBS00550 



10 

20 
30 

40 

50 

60 

70 

80 

90 

DO 10 I=NL2,NU 
A(I,I-2)=0.0DO 

CONTINUE 
IF (NL2 • .1::Q. NU) GC TO JO 
NL3=NL+J 
DO 20 I=NL3,NU 

A (I,1-JJ :0.0DO 
CONTINUE 
CONTINUE 
NU!11=NU-1 
DO 130 K-=NL ,,NUH1 

LAST=K. EQ. NUM 1 
IF (K.EQ. NL) GO TO 40 
P=A(K,,K-1) 
Q= A (K + 1, K-1) 
R=O.ODO 
IF (.NOT.LAST) fl=A(K+2,,K-1) 
X=DABS(P)+DABS(Q)+DlBS(B) 
IF (X.EQ.O. ODO) GO TO 130 
P=P/X 
Q=Q/X 
R=R/X 
CONTINUE 
S=DSURT(P**2+Q**2+R**2). 
IF (P.LT.0.0DO) S=-S 
IF (K.EQ.NL) GO TO 50 
A ( K, K-1) =- S *X 
GO TO 60 
CONTINUE 
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IF (NL.NE.1) A(K,K-1)=-A(K,K-1) 
CONTINUE 
P=P+S 
X=P/S 
Y=Q/S 
Z=R/S 
Q=Q/P· 
R=H/P 
DO 80 J=K,N 

P=A {K,J) +Q*A (K+1,J) 
IF (LAST) GO TO 70 
P=P+R*A (K+2,J) 
A(K+2,J)=A{K+2,J)-P*Z 
CONTINUE 
A (K+1,J)=A(K+1,J)-P*Y 
A (K,J)=A (K,J)-P*X 

CONTINUE 
J=HINO (K+ 3, NU) 
DO 100 I=1,J 

P=X*A(I,K)+Y*A(I,K+1) 
IF (LAST) GO TO 90 
P=P+Z*A (I, K+2) 
A(l,K+2)=A(I,K+2)-P*B 
CONTINUE 
A (l,K+ 1) =A (I,K+ 1)-P*Q 
A {I ,K) =A (I,K) -P 

QRSTEP 2 

QRS00560 
QBS00570 
QRS00580 
QBS00590 
QBS00600 
QRS00610 
QBS00620 
QR S00630 
QRS00640 
QRS00650 
QRS00660 
QR S00670 
QRS00680 
QRS00690 
QRS007 00 
QRS00710 
QRS00720 
QRS00730 
QBS00740 
QBS00750 
QRS00760 
QRS00770 
QRS00780 
QRS00790 
QRS00800 
QRS00810 
QRS00820 
QBS00830 
QRS00840 
QRS00850 
QRS00860 
QRS00870 
QRS00880 
QRS00890 
QRS00900 
QBS00910 
QRS00920 
QRS00930 
QRS00940 
QRS00950 
QBS00960 
QRS00970 
QBS00980 
QRS00990 
QBS01000 
QRS01010 
QR S01020 
QRS01030 
QRS01040 
QRS01050 
QRSO 1060 
QRS01070 
QRS01080 
QRS01090 
QRSO 1100 



100 CONTINUE 
DO 120 I=1,N 

P=.X:*V{I,K) +Y*V (I,K+1) 
IF (LAST) GO TO 110 
l:l=P+Z*V (I, K+2) 
V(I,K+2)=V(I,K+2)-P*R 

110 COMTINUE 
V(I,K+1)=V(I,K+1)-P*Q 
V (I,K)=V (I,K) -P 

120 CONTINUE 
130 CO NT I NUi. 

RETURN 
C 
C LAS~ LINE OF QRS1£P 
C 

END 
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QRS01110 
QRS01120 
QB501130 
QB501140 
QBS01150 
QRS01160 
QRS01170 
QRS01180 
QRS01190 
QRS01200 
QRS01210 
Q8SO 1220 
QRS012JO 
QRS01240 
QRS0.1250 
QBS01260 



C 
C 

C 
C 

C 
C 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
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SUBROUTINE SPLIT (A,V,N,L,E1,E2,NA,NV) 

*****PABAKETERS: 
INTEGER L,N,NA,NV 
DOUBLE PRECISION A(NA,N),V(NV,N),E1,E2 

*****LOCAL VARIABLES: 
INTEGER I,J,L1 
DOUBLE PBECISION P,Q,R,T,U,W,:X:,Y,Z 

*****FUNCTIONS: 
DOUBLE PRECISION DABS,DSQRT 

****SDBROUTINES CALLED: 
NON.E 

SPLIT 1 

SPL00010 
SPL00020 
SPLOOOJO 
SPL00040 
SPLOOOSO 
SPL00060 
SPL00070 
SPL00080 
SPL00090 
SPL00100 
SPL00110 
SPL00120 
SP.L00130 
SPL00140 
SPL00150 
SPL00160 

::::::::::::::::::::::::::::::i:::::::::::::::::::::::::::::::::::SPL00170 
SPL00180 

*****PURPOSE: SPL00190 
GIVEN Tli.E UPPER-HESSENBERG MATRIX A WITH A 2 X 2 BLOCK STABTI NG ATSPL00200 
A(L,L), THIS PBOGRA" DETER!INES IF THE CORRESPONDING EIGENVALUES 
ARE REAL OR COMPLEX. IP THEY ABE BEAL, A ROTATION IS DETER"INED 
THAT REDUCES THE BLOCK TO UPPER-TRiiNGULAR FORM WITH THE 
EIGENVALUE OF LARGEST ABSOLUTE VALUE APPEARING PIRST. THE 
ROTATION IS ACCUMULATED IN THE ARRAY V. 

*****PARAMETER DESCRIPTION: 
ON INPUT: 

NA,NV ROW DIMENSIONS OF THE ARRAYS CONTAINING 

A 

N 

L 

ON OUTPUT: 

V 

E1,E2 

*****HISTORY: 

A lND V, RESPECTIVELY, AS DECLARED IN THE 
CALLING PROGRAII DIMENSION STATEftENT • 

THE UPPER HESSENBERG MATRIX WHOSE 2 .X: 2 BLOCK 
IS TO BE SPLIT; 

ORDER OF THE MATRIX A; 

POSITION OP THE 2 X 2 BLOCK. 

AN N :X .N ARRAY CONTAINING THE ACCO.MU.LATED 
SPLITTING TRANSFORMATION; 

REAL SCALARS. IP THE EIGENVALUES ARE COMPLEX, 
E1 AND E2 CONTAIN THEIR COMMON REAL PART AND 
POSITIVE IMAGINARY PART (RESPECTIVELY). 
IF THE EIGENVALUES ARE REAL, E1 CONTAINS THE 
ONE LARGEST IN ABSOLUTE VALUE AND E2 CONTAINS 
THB OTHEB ONE. 

DOCUMENTED BY J.A.K. CABRIG (ELEC. SYS. LAB., !.I.T., B. 35-307, 
C.UIBRIDGE, MA 0213Y, PH.: (617) - 253-2165), SEPT 1978. 
MOST RECENT VERSION: SEPT 21, 1978. 

SPL00210 
SPL00220 
SPL00230 
SP.L00240 
SPL00250 
SPL00260 
SPL00270 
SPL00280 
SPL00290 
SPLOOJOO 
SPL00l10 
SPL00320 
SPLOOJJO 
SPL00l40 
SPL00350 
SPL00360 
SPL00370 
SPLOOJBO 
SPL00390 
SPL00400 
SPL00410 
SPL00420 
SPL004JO 
SPL00440 
SPL00450 
SPL00460 
SPL00470 
SPL00480 
SPL00490 
SPLOOSOO 
SPL00510 
SPL00520 
SP.L00530 
SPL00540 
SPLOOSSO 



C 
C 
C 

10 

20 

30 

110 

50 

60 

70 

80 

90 
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X= A ( L+ 1, L+ 1) 
Ys::A (L, 1) 
W=A(L,L+1)*A(L+1,L) 
P= ( Y-X) /2. O"DO 
Q=P**2+W 
IF (Q.G~.0.0D0) GO TO 10 
E1=P+X: 
E2=DSQR1' (-Q) 
RJ::'rU~N 
CONTINUE 
~=DS(JHT (Q) 
IF (P.LT.O.ODO) GO TO 20 
Z=P+Z 
GU TO 30 
CONTINUE 
Z=P-Z 
CONTINUr! 
IF (Z.EQ.O.ODO) GO TO 40 
R=-ii/Z 
GO TO 50 
CONTINUE 
B=O.ODO 
CONTINUE 
IF (DABS (X+Z). GE. DABS (X+ll)) Z==R 
Y=I-X-Z 
X=-Z 
T=A (L,L+l) 
U=A(L+ 1,L) 
IF (DABS(Y)+DABS(U) .LE.OABS(T)+DABS(X)) GO TO 60 
Q=U 
P=I 
GO TO 70 
CONTINUE · 
Q=X 
P=T 
CONTitmB 
B=DSQRT(P**2+Q**2) 
IF (R.GT.O.ODO) GO TO 80 
E 1=A (L, L) 
E2=A (L+1,L+ 1) 
A (L+ 1, L) =O. 0.DO 
RETURN 
CONTINUE 
P=P/R 
Q=Q/R 
DO 90 J=L, N 

Z=A (L,J) 
A (L,J) =P*Z+Q*A (L+1,J) 
A(L+1,J)=P*A(l+1,J)-O*Z 

CONTINUE 
L1=L+1 
DO 100 I=1,L1 

SPL00580 
SPL00590 
SPL00600 
SPL00610 
SPL00620 
SPL00630 
SPL00640 
SPL00650 
SPL00660 
SPL00670 
SPL00680 
SPL00690 
SPL00700 
SPL00710 
SPL00720 
SPL00730 
SPL00740 
SPL00750 
SPL00760 
SPL00770 
SPL00780 
SPL00790 
SPL00800 
SPL00810 
SPL00820 
SPL00830 
SPL00840 
SPL00850 
SPL00860 
SPL00870 
SPL00880 
SPL00890 
SPL00900 
SPL00910 
SPL00920 
SPL00930 
SPL00940 
SPL00950 
SPL00960 
SPL00970 
SPL00980 
SPL00990 
SPL01000 
SPL01010 
SPL01020 
SPL010l0 
SPL01040 
SPL01050 
SPLO 1060 
SPL01070 
SPL01080 
SPL01090 
SPL01100, 



10 J 

110 

C 
C 
C 

Z=A(I,L) 
A (I,L)=P*Z+Q*A(I,L+1) 
A(I,L+1)=P*A{I,L+1)-Q*Z 

CONTINUE; 
DO 110 I=1,N 

Z=V (I ,L) 
V(I,L)=P*Z+Q*V(I,L+1) 
V{I,L+l)=P*V{I,1+1)-Q*Z 

CONTINUE 
A (L+ 1,L) =O. ODO 
El=! (L,L) 
E2=A (L+ 1, L+ 1) 
RETURN 

LAST LINE OF SPLIT 

END 

... 
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SPLO 1170 
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SPL01210 
SPL01220 
SPL01230 
SPL01240 
SPL01250 
SPL01260 
SPL01270 
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