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ABSTRACT

In this paper a new algorithm for solving algebraic Riccati equations
(both continuous-time and discrete-time versions) is presented. The
method studied is a variant of the classical eigenvector approach and
uses instead an appropriate set of Schur vectors thereby gaining sub-
stantial numerical advantages. Complete proofs of the Schur approach are
given as well as considerable discussion of numerical issues. The method
is apparently gquite numerically stable and performs reliably on systems
with dense matrices up to order 100 or so, storage being the main limiting
factor.
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1. Introduction

In this paper a new algorithm féi solving algebraic Riccati equations
(both continuous-time and discrete-time versions) is presented. These
equations play fundamental roles in the analysis, synthesis, and design
of linear~quadratic-Gaussian control and estimation systems as well as
in many other branches of applied mathematics. It is not the purpose of
this paper to survey the extensive literature available for these equations
but, rather, we refer the reader to, for example, [1], [2]1, [3], [4], and
[5] for references. Nor is it our intention to investigate any but the
unique (under suitable hypotheses) symmetric, nonnegative definite solu-
tion of an algebraic Riccati equation even though the algorithm to be
presented does also have the potential to produce other solutions. For
further reference to the "geometry" of the Riccati equation we refer to
[3], {61, and [7].

The method studied here is a variant of the classical eigenvector
approach to Riccati equations, the essentials of which date back to at
least von Escherich in 1898 [8]. The approach has also found its way
into the control literature in papers by, for example, MacFarlane [9],
Potter [10], and Vaughn [11]. 1Its use in that literature is often
associated with the name of Potter. However, the use of eigenvectors
is often highly unsatisfactory from a numerical point of view and the
present method uses the so-called and much more numerically attractive
Schur vectors to get a basis for a certain subspace of interest in the
problem.

Other authors such as~Fath [12] and Willems [3], to name two, have

also noted that any basis of the subspace would suffice but the specific
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use of Schur vectors was inhibited by a not-entirely-straightforward
problem of ordering triangular canonical forms - a problem which is
discussed at length in the sequel. The paper by Fath is very much in
the spirit of the work presented here and is one of the very few in the
literature which seriously addresses numerical issues.

One of the best summaries of the eigenvector approach to solving
algebraic Riccati equations is the work of Martensson [13]. This work
extends [10] to the case of "multiple closed-loop eigenvalues”. It
will be shown in the sequel how the present approach reccovers all the
theoretical results of [10] and [13] while providing significant numeri-
cal advantages.

Most numerical comparisons of Riccati algorithms tend to definitely
favor the standard eigenvector approach - its numerical difficulties
notwithstanding - over other approaches such as Newton's method [14]
or methods based on integrating a Riccati differential equation. Typical
of such comparisons are [7], [15], and [16]. It will be demonstrated
in this paper that if you previously liked the eigenvector approach,
you will like the Schur vector approach at least twice as much. This
statement, while somewhat simplistic, is based on the fact that a Schur
vector approach provides a substantially more efficient, useful, and
reliable technique for numerically solving algebraic Riccati equations.
The method is intended primarily for the solution of dense, moderate-
sized equations (say, order < 100) rather than large, sparse equations.
While the algorithm in its present state offers much scope for improve-
ment, it still represents an order-of-magnitude improvement over current

. . . . . #’“ f
methods for solving algebraic Riccati eguations. Mﬁm,n\, )
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Briefly, the rest of the paper is organized as follows, This section
is concluded with some notation and linear algebra review. In Sections
2 and 3 the continuous-time and discrete-time Riccati equations, re-
spectively, are treated. 1In Section 4 numerical issues such as algorithm
implementation, balancing, scaling, operation counts, timing, storage,
stability, and conditioning are considered. 1In Section 5 we emphasize
the advantages of the Schur vector approach and make some further general
remarks. Six examples are given in Section 6 and some concluding remarks

are made in Section 7.

1.1 Notation

i mxn . , .

Throughout the paper A € ¥ will denote an mxn matrix with co-
efficients in a field . The field will usually be the real numbers

. H .
IR or the complex numbers €. The notations AT and A will denote
transpose and conjugate transpose, respectively, while A_T will denote
T, -1 -1.7T . + .
(A7) = (A ") . The notation A will denote the Moore-Penrose pseudo-
inverse of the matrix A. For A € R its spectrum (set of n eigenvalues)
2nx2n

will be denoted by G(A). When a matrix A € R is partitioned into

four nxn blocks as

we shall frequently refer to the individual blocks Aij without further

- discussign.



1.2 Linear Algebra Review

Definition 1l: A € :mpxn is orthogonal if AT = A-l.
. s nxn . . . H -1
Definition 2: A € T =~ is unitary if 3~ = A 7.
0 I
2 .
Let J = € :R?nx n where I denotes the nEh-order identity matrix.
-1 0
Note that JT = J_1 = =J.
e e 2 . . . . -
Definitijon 3: A € 1R nx2n is Hamiltonian if J lATJ = -~A.
2 . - -1
Definition 4: A € 1R nx2n is symplectic if J lATJ = A .

Hamiltonian and symplectic matrices are obviously closely related. For
a discussion of this relationship and a review of "symplectic algebra”
see [17], [18]}. We will use the following two theorems from symplectic

algebra. Their proofs (see [18]) are trivial (and hence will be omitted).

Theorem 1: 1. Let A € 3R2nx2n be Hamiltonian. Then A € O(A)

i . 2
implies -A € O(A) with the same multiplicity. 2. Let A € :m.nx2n be

symplectic. Then A € O0(A) implies %~e O0(A) with the same multiplicity.

There is a relationship between the right and left eigenvectors of

these symplectically associated eigenvalues. See [18] for details.

2nx2n

Theorem 2: Let A € 1R be Hamiltonian (or symplectic). Let
2nx2n . -1 L , . .
U€e R be symplectic. Then U "AU is Hamiltonian (or symplectic).

Finally, we need two theorems from classical similarity theory which
form the theoretical cornerstone of modern numerical linear algebra.

See [19], for example, for a textbook treatment.
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. nxn .
Theorem 3 (Schur canonical form): ITet A € R have eigenvalues

1,...,An. Then there exists a unitary similarity transformation U such

H . . . . ;
that U AU is upper triangular with diagonal elements kl,...,ln in that

A

order.

In fact, it is possible to work only over IR by reducing to quasi-
upper-triangular form with 2x2 blocks on the (block) diagonal corresponding
to complex conjugate eigenvalues and 1xl blocks corresponding to the real
eigenvalues. We refer to this canonical form as the real Schur form

(RSF) or the Murnaghan-Wintner [20] canonical form.

Theorem 4 (RSF): Let A € TR -". Then there exists an orthogonal
similarity transformation U such that UTAU is quasi-upper-triangular.
Moreover, U can be chosen so that the 2x2 and 1xl diagonal blocks appear

in any desired order.

11 s

0 S
0<k<n, we shall refer to the first k vectors of U aszzthe Schur vectors

12 where S e IRka,

If in Theorem 4 we partition UTAU into 11

corresponding to O(Sll) C 0(A). The Schur vectors corresponding to the

eigenvalues of § span the eigenspace corresponding to those eigenvalues

11

even when some of the eigenvalues are multiple (see [21]). We shall

use this property heavily in the sequel.
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2. The Continuous-Time Algebraic Riccati Equation

In this section we shall present a method for using a certain set of
Schur vectors to solve (for X) the continuous-time algebraic Riccati

equation

FIX + XF - XGX + H =0 . (1)

All matrices are in ROT and G = GT >0, H= HT > 0.

It is assumed that (F,B) is a stabilizable pair [l] where B is a
full-rank factorization (FRF) of G(i.e., BBT = G and rank(B) = rank(G))
and (C,F) is a detectable pair [1] where C is a FRF of H (i.e., CTC = H
and rank(C) = rank(H)). Under these assumptions, (1) is known to have
a unique nonnegative definite solution [l]. There are, of course, many
other solutions to (1) but for the algorithm presented here the emphasis
will be on computing the nonnegative definite one.

Now consider the Hamiltonian matrix

7 = e IR2nx2n (2)

Our assumptions guarantee that Z has no pure imaginary eigenvalues.

. 2nx2
Thus by Thecrem 4 we can find an orthogonal transformation U € 1R n

which puts Z in RSF:

T
U220 =8 = (3)

where Sij € :mpxn. It is possible to arrange, moreover, that the real

parts of the spectrum of S are negative while the real parts of the

11

spectrum of S are positive. U is conformably partitioned into four

22

nxn blocks:



U = - (4)

We then have the following theorem.

Theorem 5: With respect to the notation and assumptions above:

1. U© is invertible and X=1U U_l solves (1) .

11 21711
2. G(Sll) = 0(F - GX) = the "closed-loop" spectrum.
3. x=x".
4. X>0
Proof:
1. We first prove that Ull is invertible. To avoid complicating
the proof unnecessarily by having to consider 2x2 blocks of Sll' we will for
, .. . 2nx2n . \ \ .
simplicity =~ assume that S € T is upper triangular and U is unitary.
Suppose Ull e ¢ is singular. Without any loss of generality, we
. ~ ~ nx (n-1)
may assume that U is of the form (0, U..) where U et . Thus,
11 11 11
we have
F -G 0 0
= . (=0 (5)
~H —FT u u

1 . :
where u € € "~ and (-A) with ReA>0 is the upper left element of S.

But then for any X we have

T
Fu - XTGu

T
(F-GX) u

il

Au by (5).



T .
However, we also have F'u = Au by (5). Thus we have an eigenvalue )\
of F with positive real part which is uncontrollable. This contradicts

the assumption of stabilizability so U must be invertible.

11
We now show that X = UZlU;i solves (1l). Simply substitute into (1):
T I
F'X + XF - XGX + H = ~(I,X)J2{
_ I
= (UypUypr7T) 2 -
2171
4\
_ -1 11 -1
= (U21Ull' I) 2 . Ull"
21
U
_ -1 11 -1 .
= (U21U11' 1) " SllU11 from (3)
21
=0 .
F -G U u
2. From 11 = 11 S
T -H P u U 11
21 21
we have Ullsll = FUll_-GUZI
= F- .
( Gx)Ull
-1
- = = F~-GX).
Thus Ull(F GX)U11 Sll so O(Sll) of X)
3. Let ¥ = UT u... (6)
- 11721
Then
X = u_Tyu ! (7)
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50 to prove that X is symmetric it clearly suffices to show that Y is

. T T
t . = 0.
symmetric, i.e., UllU21 U21Ull 0

. . . T .
Now consider the skew-symmetric, orthogonal matrix M = U JU. Uslng

the fact that Z is Hamiltonian, it is easy to show that

i i . + = 0. B i i
where S was given in (3) Thus SllMll Mllsll ut since S11 is

stable, it follows from classical Lyapunov theory (see, e.g., [22]) that

T T T
= . = U - _
My, = 0. But My, =0 Uy = 0,05 5° 0330 U:21‘111

Remark: It can be shown that the matrix M is of the general form

0 M12
M= where M is orthogonal.

12
-M 0

4. From (6) and (7) it clearly suffices to prove that UT u,., > 0.

11721
Define
v(t) =
U 0
Note that V(0) = while 11m v(t) = since Sll is stable. Then
0
V(t) =

(

zZv(t) .

Il
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0 I
Now let W(t) = VI(0)LV(0) - V' (t)LV(t) where L = . Then
0 0
g o
w(t) = - — [V (s)Lv(s)lds
Of ds

t
fvT(s) [Z'L + LZ]V(s)ds
c

t m -H O
j’v (s) V(s)ds
G 0 -G

> 0 for all t__>_0 .

Thus lim W(t) = V (0)LV(0) = 0.

T
Uur.u, . >
£ 400 11721

This completes the proof of the theorem.

O

Further discussion of this theorem and computational considerations

" are deferred until Section 4.
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3. The Discrete-Time Algebraic Riccati Equation

In this section we shall present an analogous method using certain

Schur vectors to solve the discrete-time algebraic Riccati equation

T T T . . -1T
- - + = *
FXF - X - FXG, (G, + G/XG,) "GIXF + H=0 . (8)
nxm mxm T T
Here F, H, X€ ® , G € R, G, € R, and H=H >0, G, =G, > 0.

Also, m<n. The details of the method for this equation are sufficiently
different from the continuous-time case that we shall explicitly present
most of them.

It is assumed that (F, Gl) is a stabilizable pair and that (C, F) is
a detectable pair where C is a FRF of H (i.e., CTC = H and rank(C) = rank(H)).
We also assume that F is invertible - a common assumption on the open-
loop dynamics of a discrete-time system [23]. The details for the case
when F is singular can be found in Appendix 1.

Under the above assumptions (8) is known to have a unigque nonnegative
definite solution [23] and the method proposed below will be directed
towards finding that solution.

Setting G = GlG;le we consider this time the symplectic matrix
~T

F+GF H -GF

Z = (9)

-T -T
-F H F

Our assumptions guarantee that Z has no eigenvalues on the unit circle.

By Theorem 4 we can find an orthogonal transformation U € :mgnx2n which

puts Z in RSF:

*Note that an alternate equivalent form of (8) when X is invertible is:

T -1 -1 7T -1
F (X +G1G2Gl) F-X+H=0
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U 20 =85 = (10)

where S,. € :mpxn.
1]

It is possible to arrange, moreover, that the spectrum of Sll lies

inside the unit circle while the spectrum of 822 lies outside the unit

circle. Again U is partitioned conformably. We then have the following

theorem.

Theorem 6: With respect to the notation and assumptions above:

. . -1
1. Ull is invertible and X = U21U11 solves (8).

o(F - G (G +arxc.) "teTxr)

) 2 1771 1

2. O(S11

O(F - GF_T(X-H) )

O(F-G(X-l4-G)_1F) when X is invertible

the "closed-loop" spectrum.

1t

S
>
fv
e

Proof:

1. We proceed as in the proof of Theorem 5. Again we assume that

. . _ ~ ~ nx (n-1)
U11 is singular and of the form Ull = (0, Ull) where Ull ecx .
Then since UTZ-lU = S'-l we have
Pl rlg 0 0
= A (11)
HF 1 FT+ HF 1G u u

1

where u € € ' and IX] > 1. But then for any X we have
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- -1
(FL+HF T6)u - X°F TGu

(F - GF T (x-H)) ‘u

Au
by (11). However, we also have FTu = Au by (11). Thus we have A € O(F)

with IX‘ > 1 which is uncontrollable. This contradicts the assumption

-1
must be invertible, To show that X = U_.U

of stabilizability so U 21%11

11

solves (8) we have:

T

T T -1 7T
-X-F + +
FXF XG1(G2 GlXGl) GlXF H

R T -T
ZFXF-X-F XGF (X-H) + H

1
= _F(1,X)J%
X
gy
T -1 11\ -1
= ~F (0,070 5 11
21
T -1 _[%11 -1
= -F (-Ulellgl) ! SllUll from (10)
21
=0
F+cF TH -Gr T U U
11 11
2. From S
-F Ty Fr U “lu 11
21 21

we have U__S

_.T -7
+ -
11511 (F + GF H)Ul GF U

1 21

Il

-T
(F - GF (X-—H))Ull .

Thus O(Sll) = G(F-GF_T(X—H)). The other equalities follow by well-

known matrix identities.



3. Let Y = U§1U21' Since it suffices, as

5 to prove that Y is symmetric.

14

since Z is symplectic we have

T -
S M= -MS 1
where M = UTJU and S was given in (10). Then ST M _S..+ M
1111711 11
. T T
by classical Lyapunov theory. But Mll = U11U21 U21U11

4. As in Theorem 5 it suffices to prove that UIlel_z
/U,,\ s /bli\ /
vik) ={ tt\1s*.. wote that v(0) = while 1lim V(k) =
U 11 U k> 400
21 21
Sll is stable. Then
U
+
vikel) = )k
u 11
21
= ZV (k)
T T 0
by (10). ©Now let W(k) = V (0O)LV(0) - V (k)LV(k) where L =
0
k=1 o T
Wik) = 3, IV (JILV(F) - V (F+1)LV(5+1)]
3=0
k-1 o
= 3, V (3)[L-2Z LZ]1V(3)
j=0
EE% T H+HF lGF 'H e
= V7 (3) _ v(3)
j=0 -F lGF Ty rlgr T

Now, according to a theorem of Albert [24], a matrix

T
A1 By

A:
Ao By

in Theorem

The proof is essentially the same:

= 0 whence M__ =0

11

so symmetry follows.

C. Define
o\
) since
0
I
. Then
0
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with All = All € R ,A,,=A_€ R is nonnegative definite if and

only if:

(i) A >0

22 —
(i) A_A A . =2
* 22722712~ “12
and
T _+
iii - A . > 0.
(1i1) Ay = RAppPorPyp 20
H+HEH  -HE R :
For the matrix A = where E = F "GF ~ we clearly have (i)
-EH E
satisfied. We also have (ii) satisfied since EE (-EH) = -EH by an ele-

mentary defining property of the Moore-Penrose pseudoinverse [25]. Final-

ly, to wverify (iii) we note that
+
H+ HEH - (-HE)E (-EH) = HZO .
Thus W(k) > 0 for all k > 0 so

T >0

. _ T _
lim W(k) =V (0)LV(0) = U U, . >

k> 4o

This completes the proof of the theorem.

O

We now turn to some general numerical considerations regarding

the Schur vector approach.
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4. Numerical Considerations

There are two steps to the Schur vector approach. The first is re-
duction of a 2nx 2n matrix to an ordered real Schur form; the second is
. th . . . .
the solution of an n— order linear matrix equation. We shall discuss
these in the context of the continuous-time case noting differences for

the discrete-time case where appropriate.

4.1 Algorithm Implementation

It is well-known (see [21], for example) that the double Francis
OR algorithm applied to a real general matrix does not guarantee any
special order for the eigenvalues on the diagonal of the Schur form.
However, it is also known how the real Schur form can be arbitrarily re-
ordered via orthogonal similarities; see [21] for details. Thus any
further orthogonal similarities required to ensure that G(Sll) in (3) lies
in the left-half complex plane can be combined with the U initially
used to get a RSF to get a final orthogonal matrix which effects the de-
sired ordered RSF.

Stewart has recently published FORTRAN subroutines for calculating
and ordering the RSF of a real upper Hessenberg matrix [26]. The 1x1 or
2x 2 blocks are ordered so that the eigenvalues appear in descending order
of magnitude along the diagonal. Stewart's software (HQR3) may thus
be used directly if one is willing to first apply to the Z of (2) an
appropriate bilinear transformation which maps the left-half-plane to
the exterior of the unit circle. Since the transformed Z is an analytic
function of Z, the U that reduces it to an ordered RSF - with half the

eigenvalues outside the unit circle - is the desired U from which the
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solution of (1) may be constructed. Alternatively, Stewart's software
can be modified to directly reorder a RSF by algebraic sign.

In the discrete-time case, HQR3 can be used directly by working
with
F F G
i FL+HF TG
The U which puts O(Sll) outside the unit circle is thus the same U which
puts the upper left nxn block of the RSF of Z inside the unit circle.

In summary then, to use HQR3 we would recommend using the following

sequence of subroutines (or their equivalents):

BALANC to balance a real general matrix

ORTHES to reduce the balanced matrix to upper Hessenberg
form using orthogonal transformations

ORTRAN to accumulate the transformations from the Hessenberg
reduction

HQOR3 to determine an ordered RSF from the Hessenberg matrix

BALBAK to backtransform the orthogonal matrix to a non-

singular matrix corresponding to the original matrix.

The subroutines BALANC, ORTHES, ORTRAN, BALBAK are all available in
EISPACK [27].
. . , th
The second step to be implemented is the solution of an n— order

linear matrix equation

XU1; = Uy

to find X For this step we would recommend a good linear

-1
U21U11'
equation solver such as DECOMP and SOLVE available in [28] or the appro-

priate routines available in the forthcoming LINPACK [29]. A routine such
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as DECOMP computes the LU-factorization of Ull and SOLVE performs the

forward and backward substitutions. A good estimate of the condition
number of U11 with respect to inversion is available with good linear
equation software and this estimate should be inspected. A badly con-
ditioned Ull usually results from a "badly conditioned Riccati equation”.
This matter will be discussed further in Section 4.4. While we have no
analytical proof at this time, we have observed empirically that a con-
dition number estimate on the order of lOt for Ull usually results in

a loss of about t digits of accuracy in X.

One final note on implementation. Since X is symmetric it is usually

more convenient, with standard linear equation software, to solve the

equation
T T
U2 = Uy
to find X = U. UL, = u__U.L

11 21 21117

4.2 Balancing and Scaling

Note that the use of balancing in the above implementation results
in a nonsingular (but not necessarily orthogonal) matrix which reduces
Z to RSF. More specifically, suppose P is a permutation matrix and D is

a diagonal matrix such that PD balances Z, i.e.,

-1
D PZPD = Z
b

where Zb is the balanced matrix; see [30] for details. We then find

an orthogonal matrix U which reduces Zb to ordered RSF:

T =
Uz U =5 .
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Then PDU (produced by BALBAK) is clearly a nonsingular matrix which
reduces Z to ordered RSF. The first n columns of PDU span the eigenspace
corresponding to eigenvalues of Z with negative real parts and that is
the only property we require of the transformation. For simplicity in
the sequel, we shall speak of the transformation reducing Z to RSF as
simply an orthogonal matrix U with the understanding that the more com-
putationally attractive transformation is of the form PDU.

An alternative approach to direct balancing of Z is to attempt
some sort of scaling in the problem which generates the Riccati equation.
To illustrate, consider the linear optimal control problem of finding

a feedback controller u(t) = Kx{(t) which minimizes the performance index
~ T T
J(u) = f [x (t)Hx(t) + u (t)Ru(t)]at
0

with plant constraint dynamics given by

I

Fx{(t) + Bu(t) : x{0) = x .

x(t) 0

We assume H =H > 0, R = RT > 0 and (F,B) controllable, (F,C) observable
where CTC = H and rank(C) = rank(H). Then the optimal sclution is well~

known to be

ul(t) = -R 1BTxx

where X solves the Riccati equation

T -
F X+ XF - XBR lBTX + H=0 .

Now suppose we change coordinates via a nonsingular transformation
x(t) = Tw(t). Then in terms of the new state w our problem is to

minimize
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[ [wo () (TTHT)w(£) + u® (t)Ru(t)]dt
’

subject to

. -1 -1

w(t) = (T "Fw(t) + (T "Blu(t)

The Hamiltonian matrix Z for this transformed system is now given
by

-1 -1__-1_T -T
T FT -T BR BTT T

N
1}

T T -
-T HT -TTF T T

\ /
and the associated solution Xw of the transformed Riccati equation is

related to the original X by X = T_TXWT_l. One interpretation of T then
is as a scaling transformation, a diagonal matrix, for example, in an
attempt to "balance" the elements of Zw. Applying such a procedure, even
in an ad hoc way, is frequently very useful from a computational point

of view.

Another way to look at the above procedure is that Zy

0
is symplectically similar to 7 via the transformation Y i.e.,
0 T
T oo \7?! T 0
Zz = Z .
v \o 7 o T°

It is well-known that Zw is again Hamiltonian (or symplectic in the dis-
crete-time case) since the similarity transformation is symplectic.

One can then pose the problem of transforming Z by other, more elaborate
symplectic similarities so as to achieve various desirable numerical
properties or canonical forms. This topic for further research is

presently being investigated.
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4.3 Operation counts, Timing, and Storage

. . . . th
We shall give approximate operation counts for the solution of n—

order algebraic Riccati equations of the form (1) or (8). Each operation
is assumed to be roughly equivalent to forming a + (b x c) where a,b,c
are floating point numbers. It is almost impossible to give an accurate
operation count for the algorithm described above since so many factors
are variable such as the ordering of the RSF. We shall indicate only a
ballpark 0(n3) figure.

Let us assume then that we already have at hand the 2n x 2n matrik
Z of the form (2) or (9). Note, however, that unlike forming Z in
(2), 2 in (9) requires approximately 4 n3 additional operations to con-
struct, given only F, G, and H. This will turn out to be fairly negli-
gible compared to the counts for the overall process. Furthermore, we
shall give only order of n3 counts for these rough estimates. The

three main steps are:
Operations

(1) reduction of Z to upper Hessenberg from g%Zn)3
(ii) reduction of upper Hessenberg form to RSF > 4k(2n)3
L. . _ 4 3

(iii) solution of XUll = U21 3 0

The number k represents the average number of QR steps required
per eigenvalue and is usually over-estimated by l.5.> We write
> 4k(2n)3 since, in general, the reduction may need more operations
if ordering is required. Using kK = 1.5 we see that the total number
of operations required is at least 63 n3. Should *the ordering of the

RSF require, say, 25% more operations than the unordered RSF, we have
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a ballpark estimate of about 75 n3 for the entire process.

Timing estimates for steps (i) and (ii) may be obtained from [27]
for a variety of computing environments. The additional time for
balancing and for step (iii) would then add no more than about 5% to
those times while the additional time for ordering the RSF is variable,
but typically adds no more than about 15%. For example, adding 20% to
the published figures [27] for an IBM 370/165 (a typical medium speed

machine) under 0S/360 at the University of Toronto using FORTRAN H

t

Extended with Opt. = 2 and double precision arithmetic, we can construc

the following table:

Riccati Equation
Order n = 10 20 30 40

CPU Time (Sec.) 0.2 1.3 4.0 9.0

In fact, these times are in fairly close agreement with actual observed
times for randomly chosen test examples of these orders. Note the
approximately cubic behavior of time versus order.

Extrapolating these figures for a 64th order equation (see Example
5 in Section 6) one might expect a CPU-time in the neighborhood of
38 sec. In fact, for that particular example the time was approximately
34 sec.

It must be re-emphasized here that timing estimates derived as
above are very approximate and depend on numerous factors in the actual
computing environment as well as the particular input data. However,
such estimates can provide very useful and quite reliable information

if interpreted as providing essentially order of magnitude figures.
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With respect to storage considerations the algorithm requires
8n2 + ¢cn (c = a small constant) storage locations. This fairly large
figure limits applicability of the algorithm to Riccati equations on
the order of about 100 or less in many common computing environments.

Of course, CPU time becomes a significant factor for n>100, also.

4.4 Stability and Conditioning

This section will be largely speculative in nature as very few
hard results are presently available. A number of areas of continuing
research will be described.

With respect to stability, the implementation discussed in Section
4.1 consists of two effectively stable steps. The crucial step is the
OR step and the present algorithm is probably essentially as stable as
QR. The overall two step process is apparently quite stable numerically
bu£ we have no proof of that statement.

Concerning the conditioning of (1) (or (8)) almost no analytical
results are known. The study of (1) is obviously more complex than

the study of even the Lyapunov equation
T
PX+XF+H=0 (12)

where H = HT > 0. And yet very little numerical analysis is known for

(12). In case F is normal, a condition number with respect to in-
. T . .
version of the Lyapunov operator FX = F' X + XF is easily shown to

be given by

max |X, (F) + A, (F)]
. i j
min [A (F) + Aj(F)] ’

i,3
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But in the general case, a condition number in terms of F rather than

FT43:[+-I (] FT

({ @ denotes Kronecker product) has not been determined.
Some empirical observations on the accuracy of solutions of certain
instances of (12) suggest that one factor influencing conditioning of
(12) is the proximity of the spectrum of F to the imaginary axis. To be

more specific, suppose F has an eigenvalue at a + jb with >> 1 (typi-

. t . -
cally a < 0 is very small). If = 0 (10) we lose approximately t digits

of accuracy and we might expect a condition number for the solution of
(12) to also be O(lOt) in this situation.

There are some close connections between (12) and (1) (and the
respective discrete~time versions) and we shall indicate some preliminary
observations here. A perturbation analysis or the notion of a condition
number for (1) is intimately related to the condition of an associated
Lyapunov equation, namely one whose "F-matrix" approximates the closed-
loop matrix F~GX where X solves (l). To illustrate, suppose X =Y + E

T . . .
where Y = ¥ may be interpreted as an approximation of X. Then

FT(Y+E) + (Y+E)F - (Y+E)G(Y+E) + H

(@]
I

(F—GY)TE + E(F-GY) + (FTY + YF - YGY + H)

Q

" A

oT
FE+ EF + H

where we have neglected the second-order term EGE. Thus conditioning of
(1) should be closely related to nearness of the closed-loop spectrum
(0(F-GX)) to the imaginary axis. Observations similar to these have been
made elsewhere; see, for example, Bucy [31] where the problem is posed
as one of structural stability. A condition number might, in some sense,
be thought of as a quantitative measure of the degree of structural

stability.



-26—

Another factor involved in the conditioning of (1) relates to the
assumptions of stabilizability of (F,B) and detgctability of (C,F).
For example, near-unstabilizability of (F,B) in either a parametric sense
or in a control energy sense (i.e.,, near-singular controllability Gramian)
definitely causes (1) to become badly conditioned. Our experience has
been that the ill-conditioning manifests itself in the algorithm by a
badly conditioned Ull'

Work related to the conditioning of (1) and (8) is under continuing
investigation and will be the subject of another paper. Such analysis
is, of course, independent of the particular algorithm used to solve

(1) or (8), but is useful to understand how ill-conditioning can be

expected to manifest itself in a given algorithm.
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5. Advantages of the Schur Vector Approach and Further General Remarks

5.1 Advantages of the Schur Vector Approach

The advantages of this algorithm over others using eigenvectors (such
as Potter's approach [10] and its extensions) are obvious. Firstly, the
reduction to RSF is an intermediate step in computing eigenvectors any-
way (using the double Francis QR algorithm) so the Schur approach must,
by definition, be faster usually by a factor of at least two. Secondly,
and more importantly, this algorithm will not suffer as severely from
the numerical hazards inherent in computing eigenvectors associated with
multiple or near-multiple eigenvalues. The computation of eigenvectors
is fraught with difficulties (see, e.g. [21] for a cogent discussion)
and the eigenvectors themselves are simply not needed. All that is
needed is a basis for the eigenspace spanned by the eigenvalues of Z
with negative real parts (with an analogous statement for the discrete-
time case). As good a basis as is possible (in the presence of rounding er-

ror) for this subspace can be found from the Schur vectors comprising

U
the matrix 11 , independently of individual eigenvalue multiplicities.

Y21
The reader is strongly urged to consult [32] and [21] (especially pp. 609-
610) for further numerical details.
The fact that any basis for the stable eigenspace can be used to
construct the Riccati equation solution has been noted by many people;
see [12] or [3] among others. The main stumbling block with using

the Schur vectors was theordering problem with the RSF but once that is

handled satisfactorily the algorithm is easy.
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The Schur vector approach derives its desirable numerical properties
from the underlying QR-type process. To summarize: if you like the
eigenvector approach for solving the algebraic Riccati equation you'll
like the Schur vector approach at least twice as much.

Like the eigenvector approach, the Schur vector approach has the ad-
vantage of producing the closed-loop eigenvalues (or whatever is appropriate
to the particular application from which the Riccati equation arises)
essentially for free. And finally, an important advantage of the Schur
vector approach, in addition to its general reliability for engineering
applications, is its speed in comparison with other methods. We have
already mentioned the advantage, by definition, over previous eigenvector
approaches but there is also generally an even more significant speed
advantage over iterative methods. This advantage is particularly apparent
in poorly conditioned problems and in cases in which the iterative
method has a bad starting value. Of course, it is impossible to make
the comparison between a direct versus iterative method any more precise
for general problems but we have found it not at all uncommon for an
iterative method, such as straightforward Newton [14], to take ten to

thirty times as long - if, indeed, there was convergence at all.

5.2 Miscellaneous General Remarks

2n
Remark l: There are, in general, as many as solutions of an
th n 2n
n— order Riccati equation corresponding to as many as choices of n

n
of the 2n eigenvalues of Z. BAny of these solutions may also be generated

by the Schur approach, as for the eigenvector approach, by an appropriate

reordering of the RSF. For most control and filtering applications we
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are interested in the unique nonnegative definite solution and have thus

concentrated the exposition on that particular case.

Remark 2: One of the most complete sources for an eigenvector-oriented
proof of Theorem 5 for the general case of multiple eigenvalues is
Martensson [13]. But even a casual glance at that proof exposes the
awkwardness of fussing with eigenvectors and principal wvectors. The
proof using Schur vectors is extremely clean and easy by comparison and
neatly avoids any difficulties with multiple eigenvalues. This observation

is but one instance of the more general observaticon that Schur vectors

can probably always replace principal vectors {or generalized eigenvectors)

corresponding to multiple eigenvalues throughout linear control/systems

theory. Principal vectors are not generally reliably computable in the
presence of roundoff error anyway (see [21]) and a basis for an eigen-
space - but not the particular one corresponding to the principal vectors -
is all that is normally needed. Use of Schur vectors will not only
frequently provide cleaner proofs but is also numerically much more

attractive.

Remark 3: As an alternative to the direct proofs provided in Sections
2 and 3 one could simply appeal to the proofs given for the eigenvector
approach and note that the Schur vectors are related to the eigenvectors

by a nonsingular transformation. Specifically, with Z, U, and S as

before, let V € :R§2x2n put Z in real Jordan form
-A 0
A% lZV =
o A
2nx2n

(R denotes the set of 2n x 2n matrices or rank 2n, i.e., invertible)

2n
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where -\ is the real Jordan form of the eigenvalues of Z with negative
real parts (analogous remarks apply as usual, for the discrete-time

nx
case). Furthermore, let T € th n transform S to the real Jordan form

11
-A. Then
v v
z{ 1) = ) n
v21 V21
and
Ull _ U11
Z = S .
U U 11
21 21

We thus have

U U
Z 11 T = 11 T lsllT
Jo1 Yot
U1
= T(=-A)
Uy

11 11
T = D
U21 V21
Ull vll -1
where D is diagonal and invertible. Thus = DT and since
U v
V..V, 1 (1), U..U.- must al 1ve \(1Y si 21
51Vy1 Solves ¢ U500y must also solve since

-1 -1 -1.-1 -1
UppUpp = VppPT (VBT ) 7 = Vo Ve -
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However, we have chosen to provide self-contained proofs because
of their simplicity and also because the proof in Section 3 is not as

widely seen as its continuocus-time counterpart.

Remark 4: The same Schur vector approach employved in this paper
can also be used instead of the eigenvector approach for the nonsymmetric

matrix gquadratic equation

XEX + FX + XG + H=0 (13)

mxXn
where E€ R, Fre R, ce B, e ™, and x ¢ ™, 1n

AT i A &L ElaY -

7 1

this case we work with the (m+n) x (m+n) matrix

and various solutions of (13) are determined by generating appropriate
combinations of m eigenvalues of Z along the diagonal of the RSF of
-1

Z. The corresponding m Schur vectors give the solution X = U21U11

as before where Ull € IR ’ U21 e :mpxm' The analogous remarks apply
for the corresponding nonsymmetric "discrete-time equation”. Proofs

are essentially the same in both cases. Further details on the eigen-

vector approach can be found in [33], [34].

Remark 5: Special cases of the matrix quadratic equations such
as (1), (8), or (13) include the Lyapunov equation (12) (or its discrete-~

. T .
time counterpart F XF - X + H = 0) and the Sylvester equation
FX +XG + H=20 (14)

{(or its discrete-time counterpart FXG - X + H = 0).
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Thus setting an appropriate block of the Z matrix equal to O
provides a method of solving such "linear equations" and, in fact,
this method has even been proposed in the literature [35]. However,
the approach probably has little to recommend it from a numerical

point of view as compared to applying the Bartels-Stewart algorithm

[39] and we mention it only in passing.
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6. Examples

In this section we give a few examples both to illustrate various
points discussed previously and to provide some numerical results for
comparison with other approaches. All computations were done at
M.I.T. on an IBM 370/168 using FORTRAN H Extended (Opt. = 2) and

double precision arithmetic.

Example 1: The Schur vector approach is obviously not well-suited to
hand computation - which partly explains its desirable numerical
properties. However, to pacify a certaln segment of the population

a "hand example" is provided in complete detail. Consider the equation
ATX + XA - XBR B'X + Q = 0 (15)

which arises in a linear-quadratic optimal control context with

(@]
o
[ur}
]
3

Then

and the matrix

| 2 -5 35 1
2 10 10 2
I T
2 10 Y 2
U = 10 2
1 _3W5 1
2 10 10 2
\—i _3W5 A5 ]
2 10 10 2
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is an orthogonal matrix which reduces Z to RSF

1
-1 0 1 -3
0 -1 -1 1
S =020 = .
0 0 1 0]
0 0 0 1

Then the unique positive definite solution of (15) is given by the

solution of the linear matrix equation

XU =U

11 21
or
e x 1 5 135
11 12 2 10 2 10
< N L5 L 36
12 22 2 10 2 10
2 1
Thus X = and it can quickly be checked that the spectrum of
1 2 e 0 1
the "closed-loop matrix" (A-BR B X) = is {-1, -1} as was
-1 =2

evident from S_._.
11

Example 2: For checking purposes consider the solution of (15) with the
following uncontrollable but stabilizable, and unobservable but de-

tectable data:

=S
w
=
O
o)}
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9¢c 6¢c
The solution of (15) is X = where ¢ = 1 + /2 and the closed-
1 6¢C 4c
loop spectrum is {- =, -v/2}. These values were all obtained correctly

to at least 14 significant figures as were the values for the correspond-

ing discrete-time problem

T T -1
A"XA - X - ATXB(R+B XB) BTXA + Q=20 (16)

the solution of which is

9d 6d
6d 44

3-/5
2

}.

1+ v5 N 1
where 4 = — and the closed-loop spectrum is {- 3

Example 3: For further comparison purposes consider the discrete-time

system of Example 6.15 in [36] where

0.9512 0 4.877  4.877
A = ’ B = 4
0 0.9048 1.1895 3.569
1
> 0 0.005 0
R = ’ Q= -
o 3 0 0.02

The solution of (16) is given by

0.010459082320970 0.003224644477419
0.003224644477419 0.050397741135643

and the feedback gain F = (R4~BTXB)-1BTkA is given by

0.071251660724426 ~0.070287376494153

F =
0.013569839235296 0.045479287667006
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Note the typographical error in the (1,2)-element of F in [36]. The

closed-loop eigenvalues are given by

0.508333461684191 and 0.688069670988913 .

These are definitely different from [36] but have the same sum. Our

numbers do appear to be the correct ones.

Example 4: We now consider somewhat higher order Riccati equations
arising from position and velocity control for a string of high-speed
vehicles. The matrices are taken from a paper by Athans, Levine, and
Levis [37]. For a string of N vehicles it is necessary to solve the

Riccati equation

T -1 T
AX + XA - XBR + =
N N N N N NN BNXN QN 0

where all matrices are of order n = 2N-1 and are given by

(An B2
A22 A23
A = . .
N
A
N-2,N-2 Ay, g
0]
N~-1,N-1 -1
0 0 -1
-1 0 0 0
where = ;, A =
'k +
% 1 o0 AL P TR
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and BNRﬁlBg - diag{1,0,1,0,...,0,1}
oy = diag{0,10,0,10,...,10,0} .

For the case of 5 vehicles we repeated the calculations presented
in [37}. The correct values for X rounded to six significant figures

are:

1.36302 2.61722 -0.705427 0.936860 -0.293666 0.477354 -0.197375 0.211212 -0.166552
7.59255 -1.68036 1.47522 ~0.459506 0.665147 —-0.266142 0.280654 -0.211212
1.77478 2.15771 -0.609136 0.670717 —0.262843 0.266142 -0.197375
8.25770 -1.94650 1.75587 =-0.670717 0.665147 -0.477354
1.80560 1.94650 =-0.609136 0.459506 -0.293666
8.25770 -2.15771 1.47522 =-0.936860
1.77478 1.68036 -0.705427
[SYMMETRIC] 7.59255 -2.61722
1.36302

While 4 or 5 decimal places are published in [37], it can be seen that,
surprisingly, only the first and sometimes the second were correct. Sub-
stitution of our full 16 decimal place solution into the Riccati equation
gives a residual of norm on the order of 16—14(consistent with a con-

dition estimate of U of 26.3) while the residual for the solution in

11

[37] has a largenorm on the order of 10_1. The closed-loop
eigenvalues for the above problem (again rounded to six significant

figures) are:

-1.00000
-1.10779 + 0.852759
-1.45215 + 1.26836 3
-1.67581 * 1.51932 3
-1.80486 + 1.66057 3

We also computed the Riccati solution and closed-loop eigenvalues
for the cases of 10 and 20 vehicles. This involved the solutions of

19th and 39th order Riccati equations, respectively, and rather than

|
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reproduce all the numbers here we give only the first five and last
five elements of the first row (or cclumn) of X and the fastest and
slowest closed-loop modes. Again all values are rounded to Jjust six
significant figures; the complete numerical solutions are available

from the author.

First row (column) of Riccati Fastest and Slowest Closed-Loop Modes
Solution
N=10 N=20 N=10 N=20
n=19 - n=39 n=19 n=39
1.40826 1.42021 -1.83667 -1.84459
2.66762 2.68008 + 1.69509 3 + 1.70368 j
-0.658219 ~0.646127 . .
1.04031 1.06539 —0.865954 —0.6é2288
-0.242133 -0.229761 + 0.494661 j
—0.0515334 -0.0123718
- 0.103453 0.0250824
-0.0472086 -0.0120915
0.0504036 0.0124632
-0.0452352 -0.0119545

The closed-loop eigenvalues for the case of, say, 10 vehicles interlace
and include, as a subset, those of 5 vehicles. Similarly, those for 20
vehicles interlace and include, as a subset, those of 10 (and hence 5)
vehicles. It appears evident that both the elements of the Riccati
solution and the closed~loop eigenvalues are converging to values in

some finite region.

Example 5: This example involves circulant matrices. We wish to

solve (15) with
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A . -1.T .
and BR "B =1I, Q= I. The matrices A, BR lB , Q are all circulant so

. . . nxn .
the Riccati solution X € 1R X is known to be circulant of the form

¥ *p-1 Fn-2 0 0 0 %1
Xl XO Xn_l e o o X2

X = x2 Xl XO. . .
Xn_l Xn_2 ............. XO/

In fact, there is a simple transformation which "diagonalizes" the
Riccati equation and allows the solution of (15) to be recovered via
the solution of n scalar quadratic equations and an inverse discrete
Fourier transform. The details of this procedure and related analysis
of circulant systems can be found in the work of Wall [38]. For this

example, we have n = 64 and the X, are given by

63

_ 1 21k 21k 2{27k
Xi 64 2z 2+2cos(?;r) +‘J5 4C°s(—52)+ 4cos (E;f)

where w64 is a 64-th root of unity. The solution was computed by the

l .
Lo

Schur vector approach and checked by means of the circulant analysis
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of Wall. Our computed Riccati solution had at least 13 significant

figures. For reference purposes we list

X9 = 0.37884325313566
X1y = 0.18581947375535
Xpy = 0.37884325313567
X5 = 0.18581947375536

The closed-loop eigenvalues are all real and are arranged as follows:
-4.1231056256177
-4.1137632861146

-4.11376328 A
i1 61146 31 eigenvalues of multiplicity 2

-
-

—0.99999999999991

This 64EE-order example required approximately 50 sec. of CPU time on

the 370/168 at M.I.T. and approximately 34 sec. on the 370/165 at the
University of Toronto - both using FORTRAN H Extended (Opt. =2), double
precision.

Example 6: This example is one which would be expected to cause problems
on physical grounds and which appears to give rise to an "ill-conditioned

Riccati equation". Consider the solution of (15) with



-]

oo
Il
O ¢ o o
O+ O
0]
il

-t O e

|

diag{q,o,...,o}, R=r ,

0
Il

Here we have a system of n integrators connected in series. It 1s desired
to apply a feedback controller to the nE§~system (which is to be integrated
n times) so as to achieve overall asymptotic stability. Only deviations of
xl (the nzh-integral of the constant system) from 0 are penalized. The

controllability Gramian

t T
sA__T sA
wt=0fe BB'e ds ,

while positive definite for all t>0, becomes more nearly singular as n
increases. The system is™hard to control” in the sense of requiring a

Y.

large amount of control energy (as measured by IIWE

The closed-loop eigenvalues are easily seen to be the roots of

32n + (_l)n a._5
r

with negative real parts. These eigenvalues lie in a classic Butterworth

pattern. It can also be easily verified that

= /9
xln r

= product of the closed-loop eigenvalues .
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We attempted the solution of (lS)_with the above matrices and g=r=1.
While the closed-loop eigenvalues were determined quite accurately as ex-
pected (approximately 14 decimal places using IBM double precision), the
Riccati solution was increasingly less accurate as n increased due to the
increasingly ill-conditioned nature of Ull' For example, for n = 21 there
was already a loss of 10 digits of accuracy {(consistent with a condition
estimate of 0(1010) for Ull) in xln (=1). Other computed elements of X were
as large as 0(109) in magnitude.

Repeating the calculations with g = 104, r = 1 there was a loss of

approximately 12 digits of accuracy in x n(=100) for n=21. In this case

1
other elements of X were as large as 0(1011) in magnitude. Again, the closed-
loop eigenvalues were determined very accurately.

Our attempts to get Newton's method to converge on the above problem
were unsuccessful.

Obviously, there is more that can be said analytically about this

problem. Our interest here has been only to highlight some of the numerical

difficulties.
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7. Concluding Remarks

We have discussed in considerable detail a new algorithm for solving
algebraic Riccati equations. A number of numerical issues have been
addressed and various examples given. The method is apparently quite
numerically stable and performs reliably on systems with dense matrices
of up to order 100 or so, storage being the main limiting factor.

For some reason, numerical analysts have never really studied al-
gebraic Riccati equations. The algorithm presented here can undoubtedly

be refined considerably from a numer

. . . .
cal point of view but it nonetheless

represents an immense improvement over algorithms heretofore proposed.

Some topics of continuing research in this area will include:

(i) conditioning of Riccati equations,

(ii) use of software to sort blocks of the RSF diagonal into
just the two appropriate groups rather than within the

two groups as well,

(iii) making numerically wviable the use of symplectic trans-
formations such as in [17] to reduce the Hamiltonian or

symplectic matrix Z to a convenient canonical form.
Each of these topics is of research interest in its own right in addition

to the application to Riccati equations.
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APPENDIX 1
We outline here how to set up the "symplectic approach" when the
matrix F in

XG )"lGIXF +H=0

xE‘ - X - +

Ll

is singular. All other assumptions and notation of Section 3 will
be the same.

Letting x_ denote the state at time t and Ak the corresponding

k k
adjoint vector, recall the Hamiltonian difference equations arising

from the discrete maximum principle:

I G xk+l F 0 xk

0 F Ak+l -H I Ak

Note that if F were invertible we could work with the symplectic

matrix
..l — -—
T G F 0 F+GF 'H —GF T
0 Fr -H I -F Ty FT

which is just (9). Here, instead, we shall be concerned with a "symplectic

"

generalized eigenvalue problem

Lz = AMz

with
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and symplectic in the sense that if A ¥ 0 is a generalized eigenvalue

then l~;'Ls a generalized eigenvalue. In fact, L and M are characterized

A
by the property that

T T 0O I
LJL™ = MJIM where J = .
I 0 0 F
s e . . T T
In our specific situation IJL = MIM = .
-FT 0

There is even more "reciprocal symmetry" in the problem. With F
singular there must be least one generalized eigenvalue at 0 and to each
such generalized eigenvalue there corresponds its reciprocal at =. The

generalized eigenvalues can then be arranged in two groups of n as before:

1 1
O,---,O,Al,-oo,}\k' A'...'—X'w,...'m
e} NG ~

n
with O<|Ail<l. We then find a basis for the generalized eigenspace cor-

responding to O,...,O,Al,...,k and proceed essentially as before. The

k

details are omitted here as they are the subject of a forthcoming

paper with T. Pappas.
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APPENDIX 2

In this appendix we provide FORTRAN source listings for one possible
implementation of the Schur Vecﬁor approach described in the paper. Sub-
routines for solving both the continuous-time algebraic Riccati equation
(1) [RICCND] and the discrete~time algebraic Riccati equation (8) [RICDSD]
are given. The subroutine names are derived from the following nomenclature
convention for a family of subroutines to solve Riccati and various other

matrix equations:

subroutine name: XXXYYZ
where RIC Riccati equation

XXX

LYP Lyapunov equation

SYL Sylvester equation

CN continuous-time version
YY

DS discrete-time wversion

S single (short) precision version

N
It

D double (long) precision version
Subroutine RICCND calls or further requires the following additional

subroutines:

BALANC, BALBAK, DDCOMP, DSOLVE, EXCHNG, HQR3, MLINEQ, ORTHES,

ORTRAN, QRSTEP, SPLIT

Subroutine RICDSD requires each of the 11l subroutines above as well as

the two additional subroutines MULWOA, MULWOB.
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All the additional subroutines required have also been listed here
with the exception of BALANC, BALBAX, ORTHES, and ORTRAN which are
available in EISPACK [27].

These subroutines are being used in the environment described in
Section 6 as part of a package called LQGPACK. This package is a
preliminary version of a set of subroutines being developed at M.I.T.'s
Laboratory for Information and Decision Systems to solve linear-quadratic-
Gaussian control and estimation problems. The package has also been run
in a single precision version on a CDC 6600. However, at this time we
make no claims of portability of the code to other machines. The

code listed here is solely for illustrative purposes.

Finally, we add two additional technical notes:

NOTE 1: A fairly reliable estimate of the condition number of Ull with

respect to inversion is returned by RICCND or RICDSD in WORK (1).

NOTE 2: The subroutine HQR3 contains a small error which can occasionally

cause RICCND or RICDSD to give erroneous or misleading information. The

trouble arises when ORTHES produces an upper Hessenberg form with a zero

on the first subdiagonal. HQR3 then correctly orders the resulting RSF

both above and below that zero element but not necessarily globally.

In practice this almost never happens and it has only ever been observed

for certain low-order examples with all coefficient matrices diagonal.
This error in HQR3 can and will be corrected. 1In the interim, the

error can either be ignored (a safe strategy for virtually all "real

problems") or temporarily patched by the following scheme.
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Let asi1.i be a zero element of the upper Hessenberg matrix A
14

(the output of ORTHES). Then before HQR3 is called, ai+l i should be
14

I)where € is the machine precision

replaced by € - (Iai:ii + iai+l,i+l

(EPS) defined by
€ = min {§: £2(1+|§]) # 1}
8

(£2 () denotes floating point operation).

The source listings now follow.
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SUBFOUTINE RICCNL (NZ,NF, NG, NH, N, NN,2,W,F,G,H,ER, EL, woax, RIC00010
+ SCALE, ITYPE, IPVL,IPVS) RIC00020
RIC00030

¥k xk*kPARAMETERS: RIC00040
INTEGER NZ, NF,NG,Ni,N,NN,ITYPE (NN),IPVL (NN) ,IPVS (N) RIC00050
DOUBLE PaﬁCIS’ON Z(Nu,Nh),W(NL NN),F (NF,N),G(NG,N),H(NH,N), RICD0060
+ EE (NN) ,EL (NN} ,WCBK (N) ,SCALE (NN) RIC00070
RIC00080

%% %%% LOCAL VARIABLES: RIC00090
ISTEGEF I,J,LOW,IGH,NLOW, NUP RIC00100
DUUBLE PRECISION EPS, EPSP1,ZNOKM,T,ALPHA,CCND RIC00110
RIC00120

#x £k & FUNCTICNS : RIC00130
DOUBLE PRECISICN DABS,DSURT RIC00140
RIC00150

*€**¥%3UBROUTINES CALLED: RIC00160
BALANC,BALBAK, HOK3,MLINEQ,CKTHES,ORTRAN RICO00G 170
RIC00180
22:2::::::::::::Z::::::::2:2!:::::2::::::2:::2:::2::::::!::3::::ZZRICOO190
RIC00200

** %%k *kPJRPOSE: RIC00210
THIS SUBKOUTINEL SOLVES THE CONTINUOUS-TIME RIC00220
ALGEBRAIC MATRIX KICCATI EQUATICN RIC00230
T RIC00240

F %X + X*F — X*G*X + H = 0 RIC00250

RIC00260

BY LAUB'S VARIANT GF THE HAMILTONIAN-EIGENVECTOR APPROACH. RIC00270
RIC0028¢

*xk*%kD ARAMETER DESCRIPTION: RIC00290
ON INPUT: RIC00300
RIC00310

NZ, NP, NG ,NH ROW DIMENSIUGNS OF THE ARRAYS CONTAINING RIC00320

Z (AND W),F,G, AND H, RESPECTIVELY, AS RIC00330

DECLARED IN THE CALLING PEOGRAM DIMENSION RIC00340

STATEMENT; RIC00350

: RIC00360

N ORDER OF THE MATRICES F,G,H; RIC00370
RIC00380

NN = 2%N = ORDER OF THE INTERNALLY GENERATED RIC00390
MATRICES Z AND W; RIC00400

RICO0410

F AN N X N (REAL) MATRIX; RIC00420
RICOO430

G,H N X N SYMMETRIC, NONNEGATIVE DEFINITE RICO0440
(REAL) MATRICES. RICO0450

RICO0460

ON OUTPUT: RICO0470
RICO0u480

H AN N X N ARRAY CONTAINING THE UNIQUE POSITIVE RIC00490
{(OR NONNEGATLVE) DEFINITE SOLUTION OF THE RIC00500

RICCATI EQUATICN; RIC00510

RIC00520

ER,EL RLAL SCRATCH VECTORS OF LENGTH 2*N; ON OUTPOUT RIC00530
(ER(I) ,EI(I)), I=1,8 CONTAIN THE REAL AND RICO0540

IMAGINARY PARTS, RESPECTIVELY, OF THE N RICO0550



el NeRsEoRe NoNeNeKeRe K NeNeEs e Ko Ko o Xe KN e Xe N Re Re Xe Ro R o e Re Re R o e e Re e R Ne)

w

aoan

10
20

-53-

’

CLOSED LCOP EIGENVALUES (I.E., THE
SPECTRUM OF F - G*X);

YAPR | 2%#N X 2%N REAL SCRATCH ARRAYS USED FOR
COMPUTATIONS INVOLVING THE HAMILTONIAN
MATRIX ASSOCIATED WITH THE RICCATI EQUATION;
WORK,SCALE REAL SCKATCH VECTOBS OF LENGTHS N, 2%*N,
RESPECTIVELY; ON OUTPUT, WORK(1) CONTAINS A
CONDITION NUMBER ESTIMATE FOR THE FINAL NTH
ORDER LINEAR MATRIX EQUATION SOLVED;
ITYPE,IPVL,IPVS INTEGER SCRATCH VECTIORS OF LENGTHS 2%*N, 2%*N,
N, RESPECTIVELY.
#***NOTE: ALL SCRATCH ARRAYS MUST BE DECLARED AND INCLUDED
IN THE CALL,*¥*

***x**¥ALGORITHM NOTES:

RICCND 2

RIC00560
RIC00570
RIC00580
RIC00590
RIC00600
RIC00610
RIC00620
RIC00630
RICO0O640
RIC00650
RIC00660
RIC00670
RICO0680
RIC00690
RIC00700
RIC00710
RIC00720
RIC00730
RIC00740

IT IS ASSUMED THAT G AND H ARE NONNEGATIVE DEFINITE AND THAT (F,B) RIC00750

T
1S STABILIZABLE AND (C,F) IS DETECTABLE WHERE B*B = G
T
(B OF PULL RANK = RANK(G)) AND C*C = H (C OF FULL
RANK = RANK (H)) IN WHICH CASE THE SOLUTION (RETURNED IN THE
ARRAY H) IS UNIQUE AND NONNEGATIVE DEFINITE.

*xXk*HISTORY 2

WRITTEN BY ALAN J. LAUB (ELEC. SYS. LAB., #.I.T., RM. 35-331,
CAMBRIDGE, MA 02139, PH.: (617) - 253-2125), SEPTEMBER 1977.
MOST RLCENT VERSION: SEP. 15, 1978.

LR I R R R N R R B N N N N N R N R ] IR REEREE R
$ 0 @ B E B SRS S T OSSN AN SN NS S LB E LN L BDEN SR OT NS L NES VeSS

EPS IS AN INTERNALLY GENERATED MACHINE DEPENDENT PARAMETER
SPECIFYING THE RELATIVE PRECISION OF FLOATING POINT ARITHMETIC,

RIC00760
RIC00770
RIC00780
RIC00790
RIC00800
RIC00810
RIC00820
RIC00830
RIC00840
RIC00850
RIC00860
RIC00870

:RICO0880

RIC00890
RIC00900
RIC00910

FOR EXAMPLE, EPS = 16.0D0%**({-13) FOR DOUBLE PRECISION ABITHMETIC RIC00920

ON IBM S360/S370.

EPS=1.0D0

EPS5=0,5D0O*EPS
EPSP1=EPS5+1.0D0

IF (EPSPY.GT.1.0D0) GO TO 5
EPS=2.0D0*EPS

SET UP HAMILTONIAN MATRIX

DO 20 J=1,N
DO 10 I=1,N
Z{I,J)=F (1,J)
2 (N+1,d)=-H(I,J)
Z (I ,N+J)==G (I,J)
Z(N+I,N+d)=-F (J,I)
CONTINUE
CONTINUE

RIC00930
RICO00940
RIC00950
RIC00960
RIC00970
RIC00980
RIC00990
RICO01000
RICO1010
RIC01020
RIC01030
RICO1040
RICO 1050
RIC01060
RIC01070
RIC01080
RIC01090
RIC01100
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BALANCE Z
CALL BALANC (NZ,NN,2,LOW,IGH,SCALE)
COMPUTE 1-NORM CF 2

ZNORM=0.0D0
DO 40 J=1,HN
T=0.0D0
DO 30 I=1,NN
T=T+DABS (2 (I ,J))
CONTINUE
IF (T.GT.ZNORM) ZNORM=T
CONTINUE
ALPHA=DSORT (ZNORM) +1.0DO

-1
COMPUTE W = (ALPHAX*I + Z) *(ALPHA*I - Z),
GF Z MAPPING THE LEFT HALF PLANE TO THE EXTERIOR OF THE UNIT
DISK. THIS PLRMITS DIKECT APPLICATION OF HQR3.
BE REMOVED IF HQR3 IS MGDIFIED APPEOPRIATELY.

DO 60 J=1,NN
DO 50 I=1,NN
W(I,J)=-2(1,J)
CONTINUE
W (J,J) =ALPHA+W (J,J)
% (J,J) =ALPHA+Z {J, J)
CONTINUE
CALL MLINEQ (NZ,NZ,NN,NN,Z,W,COND,IPVL,ER)
REAL SCHUR FORM WITH EIGENVALUES OUTSIDE THE UNIT
UPPER LEFT N X N UPPER QUASI-TRIANGULAR BLOCK

REDUCE W TO
DISK IN THE

NLOW=1

NUP=NN

CALL ORTHES

CALL ORTRAN

DO 15 I=2, NN
IF (W(1,I-1).EQ.0.0D0) W(I,I-1)=1.0D-14

CONTINUE

CALL HQK3 (W,Z,NN,NLOW,NUP,EPS,ER,EI,ITYPE, NZ,NZ)

(NZ, NN, NLOW,NUP,¥,ER)
(NZ, NN, NLOW, NUP, W, ER,Z)

COMPUTE SOLUTION OF THE RICCATI EQUATION FROM THE ORTHOGONAL
MATRIX NOW IN THE ARKAY Z, STORE THE RESULT IN THE AERRAY H.

CALL BALBAK
DO 80 J=1,N
DO 70 I=1,N
F(I,J) =2 (J,I)
H(I,J)=%(N+J,I)
CONTINUE
CONTINUE
CALL MLINEyY (NF,NH,N,N,F,H,CCND,IPVS,WORK)

(NZ,NN,LOW,IGH, SCALE, NN, Z)

AN ANALYTIC PUNCTION

THIS STEP HMAY

RICCND 3

RICO1110
RIC01120
RIC01130
RICO1140
RICO1150
RIC01160
RICO1170
RICO01180
RICO01190
RIC01200
RIC01210
RIC01220
RIC01230
RIC01240
RICO1250
RIC01260
RICO01270
RICO 1280
RIC01290
RIC01300
RICO1310
RICO01320
RIC01330
RICO01340
RICO135C
RIC01360
RICO01370
RIC01380
RIC0 1390
RICO1400
RICO1410
RICO1420
RICO 1430
RICO1440
RICO1450
RICO1460
RICO1470
RICO1480
RICO1490
RIC01500
RICO1510
RIC01520
RIC01530
RICO1540
RIC01550
RICO01560
RICO01570
RIC01580
RIC01590
RIC01600
RICO1610
RICO1620
RIC01630
RICO1640
RIC01650
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WORK (1) =COND RIC01660

c RIC01670
C TKANSFORKM BACK TO GET THE CLOSED LOOP SPECTRUM RIC01680
c RIC01690
DO 110 I=1,N RIC01700

IP (ITYPE(I).GE.Q) GO TO 90 RICO1710

WERITE (6,44400) I RIC01720

44400 FPORMAT (1X,14,1X,41HYH BEIGENVALUE NOT SUCCESSFULLY CALCULATED) RIC01730
RETURN RICO01740

90 IF (ITYPE(I).GT.0) GO TG 100 RIC01750
ER (I) =ALPHA* (1.0DC~ER(I))/ (1. ODO+ER(I)) RIC01760
EI(I)=0.0D0 RIC01770

GO TO 110 RIC01780

100 IF (ITYPE(I).EQ.2) GO TO 110 RIC01790
T=ALPHA/ ((1.0DO+ER (1)) **2+EL (I) **2) RICO01800
ER(I)=(1.0D0~ER(I) *#*2-EI (1) **2)*T RIC01810

ETI (I)=—-2.0DO*EI (I)*T » . RIC01820

ER (I+1) =ER (I) RIC01830
EI(I+1)=-EI(I) RIC01840

110  CONTINUE ‘ RIC01850
RETURN RIC01860

c . , RIC01870
C LAST LINE OF RICCND RIC01880
C - RIC01890

END - RIC01900
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SUBKCUTINE KRICDSD (NZ,NF,NG,NH,N,NN,Z,W,F,G,H,EF,EI, WOkK, RIC00010
+ SCALE, ITYPL,IPVT) RIC00020
RIC00030

kEEKXDARAMETLERS : RICO0040
LNTEGER NZ,NF,NG,NH,N,NN,ITYPE(NN),IPVT(N) RIC00050
DOUBLE PRECISION 4 (NZ,NN),W(N2,NN),F(NF,N),G(NG,N),H(NH,N), RIC00060
+ ‘ ER(NN) ,EI (NN),WCRK(N),SCALE(NN) RIC00070
RIC00080

®x¥k* LJOCAL VARIABLES: RIC00090
INTEGER I,J,K,LOW,IGH,NLOW,NUP RIC00100
DOUBLE PRECISION EPS,EPSP1,CCND,CONDP1 RIC00110
RIC00120

*%¥%x%SIBROUTINES CALLED: RICO00130
BALANC, BALBAK,DDCGOMP ,DSOLVE,HQR3, MLINEQ, MULWOA, MULWOB, RICO0140
ORTHES,ORTRAN RIC00150
. ' RICO0160

IR RS EU SR EEEES SN SRS EES S I PSR S RS A RS S-EE S RS ES S NS R E NS S S XS N EES S (ol TR iy
RIC00180

*kx% % DJKPOSE: RICO00 190
THLIS DOUBLE PRECISION SUBKOUTINE SOLVES THE DISCRETE-TIME RIC00200
ALGEBRAIC MATRIX KICCATI EQUATION RIC00210
RIC00220

T T T -1 T RIC00230

X = F *X*%F - F *X#G1%((G2 + G1 *X*G1) ) *G1 *X*F + H RIC0O0240
RIC00250

BY LAUB'S VAEIANT OF THE HAMILTONIAN-EIGENVECTOR APPROACH. RIC00260

THE MATRIX F IS ASSUMED TO BE NONSINGULAR AND THE MATRICES G1 AND RICO00270
G2 ARE ASSUMED TC BE COMBINED INTO THE SQUARE ARRAY G AS FOLLOWS: RIC00280

-1 T RIC00290

G = G1*G2 *G1 RIC00300

RIC00310

*k &% *PARAMETER DESCRIPTICN: RIC00320
ON INPUT: RIC00330
RIC00340

NZ , NF, NG, NH RCW DIMENSIONS OF THE ARBAYS CONTAINING RIC00350

%2 (AND W),F,G, AND H, BESPECTIVELY, AS RIC00360

DECLARED IN THE CALLING PROGRAM DIMENSION RICO00370

STATEMENT; RIC00380

RICO00390

N ORDER OF THE MATRICES F,G,H; RICO0400
RICO00410

‘NN =. 2%N = ORDER OF THE INTEENALLY GENERATED RIC00420
MATRICES Z AND W; RICO0430

RICO0440

F 4 NONSINGULARK N X N (REAL) MATEIX; RICO0450

. RICO0460

G,H N X N SYMMETKIC, NGNNEGATIVE DEFINITE RICQ0470
(KEAL) MATRICES. RIC00480

RICO0490

ON CUTPUT: RIC00500
RIC00510

H AN N X N ARKAY CONTAINING THE UNIQUE POSITIVE RIC00520
{OR NONNEGATIVE) DEFINITE SOLUTION OF THE RIC00530

RICCATI EQUATION; RIC00540

RIC00550
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EEK,:I REAL SCRATCH VECTORS OF LENGTH 2*N; ON OUTPUT RIC00560
(ER(I) ,EI(L)), 1I=1,N CONTAIN THE REAL AND RIC00570

IMAGINARY PARTS, RESPECTIVELY, OF THE N RIC00580

CLOSED LOGP EIGENVALUES (I.E., THE RIC00590

SPECTRUM OF T -1 T RIC00600

F - G1%*((G2 + G1 *X*#G1) ) *G1 *X*FRIC00610

-T RIC00620

= F - G¥F *(X - H)); RIC00630

RICO0640

Z W 2%N X 2*N REAL SCRATCH ARRAYS USED FOK RIC00650
COMPUTATIONS INVOLVING THE SYMPLECTIC RIC00660

MATRIX ASSOCIATED WITH THE RICCATI EQUATION; RIC00670

RIC00680

WOKK, SCALE KEAL SCRATCH VECTORS OF LENGTHS N, 2*N, RIC00690

RESPECTIVELY; ON OUTPUT, WORK(1) CONTAINS A RIC00700
CONDITION NUMBER ESTIMATE FOR THE FINAL NTH RICO07 10

CEDER LINEAR MATRIX EQUATION SOLVED; RIC00720

RIC00730

ITYPL ,1PVT INTEGER SCRATCH VECTORS CGF LENGTHS Z2*%N, N, RIC00740
RESPECTIVELY, RIC00750

RIC00760

*%*NOTE: ALL SCRATCH ARRAYS MUST BE DECLARED AND INCLUDED RIC00770
1IN THE CALL,¥*x RIC00780

RICO00790

*kkx¥ ALGORI THM NOTES: RIC00800
IT IS ASSUMED THAT: RIC00810
(n F I5 NONSINGULAR R1C00820

{2) G AND H ARE NONNEGATIVE DEFINITE RICC0830

3) (F,G1) IS STABILIZABLE AND (C,F) IS DETECTABLE WHERE RICO0B40

T RIC00850

C ®*C = H (C OF FULL EANK = RANK(H)) . RIC00860

UNDER THESE ASSUNPTIONS THE SOLUTION (RETURNED IN THE ARRAY H) IS RICO0870
UNIQUE AND NONNEGATIVE DEFINITE. ) RIC00880
RIC00890

*kx¥kHISTORY: RIC00900
WRITTEN BY ALAN J. LAUB (ELEC. SYS. LAB., M,.I.T., RM. 35-331, RICO0910
CAMBRIDGE, MA 02139, PH.: ({617) - 253-2125), SEPTEMBER 1977. RIC00920
MGST RECENT VERSION: SEP, 15, 1978, RIC00930
RICO0940

S A N R N I M R R R R R R R R R R R R R R R st iR T
RICO0960

EPS IS AN INTERNALLY GENERATED MACHINE DEPESNDENT PARANETER RIC00970

SPECIFYING THE RELATIVE PRECISION OF FLOATING POINT ARITHMETIC. RIC00980
FOR EXAMPLE, EPS = 16.0D0**(-13) FOR DOUBLE PRECISION ARITHMETIC RIC00990

ON IBM S360/5370. RICO1000

RICO1010
EPS=1.0D0 RIC01020
EPS=0.5DO*EPS RIC01030
EPSP1=EPS+1,.0D0 RIC01040
IF (EPSP1.GT. 1.0D0) GO T0 5 RIC01050
EPS=2.0D0*EPS RIC01060

RICO1070
SET UP SYMPLECTIC MATRIX Z RICO1080

RIC01090

DO 20 J=1,N RICO1100
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DO 10 I=1,N
Z (N+L,N+J)=F (J,I)
CONTINUE
CONTINUE
CALL DDCOUP (NF,N,F,COND,IBVI,WOKK)
CONDP 1=COND+1. DO
IF (CONDPT.GT.CCND)
WRITE (6, 44400)
FORMAT (42d81F MATRIX IS SINGULAR TO WORKING PEECISICN)
RETURN
DO 60 J=1,N
DO 40 I=1,N
WORK (I)=0.0D0
CONTINUE
WGKK (J)=1.0D0
CALL DSOLVE (NF,N,F,WORK,IPVT)
DG 50 I=1,N
Z (I,Jd) =WOEK (I)
CONTINUE
CONTINUE
DU 80 J=1,N
DO 70 I=1,N
F(I,J)=2(1,J)
CONTINUE
CONTINUE
CALL MULWOA (NH,NF,N,H,F,WORK)
DO 120 J=1,N
DO 90 I=1,N
Z(I,N+J)=0.0D0
Z(N+I,J)=H(I,J)
CONTINUE
DO 110 K=1,N
DO 100 I=1,N
Z (I, N+J) =% (1,N+J) +F (I,K)*G (K,J)
CONTINUE
CONTINUE
CONTINUE
CALL MULWOB (NH,NG,N,H,G, WORK)
DO 140 J=1,N
DG 130 I=1,N
Z (N+I,N+J) =2 (N+I,N+J)+G (I,J)
"CONTINUE
CONTINUE

GO TO 30

BALANCE 7

CALL BALANC (NZ,NN,Z,LOW,I1GH,SCALE)
K&DUCE % TG REAL SCHUR FORM WITH EIGENVALUES OUTSIDE THE ONIT
D1ISK IN THE UPPER LEFT N X N UPPER QUASI-TRIANGULAR BLOCK

NLOW=1
NUP=NN
CALL ORTHES
CALL ORTEAN

(NZ, NN, NLOW, NUP,Z, ER)
(NZ,NN,NLOW,NUP,Z,ER, W)

RICDSD 3

RIC01110
RIC01120
RICO1130
RICO1140
RICO1150
RICO1160
RICO01170
RIC0 1180
RICO1190
RIC01200
RICO01210
RIC01220
RICO01230
RICO1240
RIC01250
RIC01260
RIC01270
RIC01280
RIC01290
RICO01300
RIC01310
RIC01320
RIC01330
RICO1340
RIC01350
RIC01360
RIC01370
RIC01380
RIC01330
RICO1400
RICO01410
RICO 1420
RICO1430
RICO1440
RICO1450
RICO1460
RICO1470
RICO1480
RIC01490
RICO01500
RICO1510
RICQ1520
RICO01530
RICO1540
RICO1550
RICO1560
RICO1570
RICO 1580
RICO01590
RIC01600
RICO1610
RIC01620
RIC01630
RIC01640
RIC01650
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150
160
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44410

170

180

190

(e RN e

CALL HQKk3 (Z,4 ,NN,NLOW,NUP,EPS,ER,BI,ITYPE,NZ,NZ)

-59-

RICDSD 4

COMPUTs SOLUTION OF THE EICCATI EQUATION FROM THE GRTHOGONAL

MATKIX NOW IN THE AREAY W,

CALL BALBAK (NZ,NN,LOW,IGH,SCALE,NN,W)

bo

COR

160 J=1,N

DG 150 I=1,X
F(I,Jd)=¥W(J, 1)
H{I,J) =W (N¢+J,I)

CONTINUE
TINUE

CALL MALINEQ

KOR

K{1)=COND

(NF,NH,N,N,F,H,COND,IPVT,WORK)

TRANSFORM TO GET THE CLOSED LOQP SPECTRUM

DO

190 I=1,N
I1¢ (ITYIPE

(1) .GE.0) GG TO 170

WRITE (6,44410) I

FORMAT (1X,I4,1X,471HTH EXGENVALUE NOT SUCCESSFULLY CALCULATED)

RETURN

IF (ITYPE(I).G6T.0) GG TO 180
ER(I)=1.0D0/ER(I) :
EI(I)=0.0D0 '

GO TO 19¢C
IF (ITYPE

(I)<EQ.2) GO TO 190

T=ER (I) **%2+EL (I) **2
ER {I) =ER (I) /T

EI (I) =EI(I) /T
ER(I+1)=ER(I)

EI {I+1)=-EI (I)
CONTINUE
RETURN

LAST LINE OF RICDSD

END

STORE THE RESULT IN THE ARRAY H.

RIC01660
RICO1670

RIC01680
RIC01690
RIC01700
RIC01710
RIC01720
RIC01730
RICO 1740
RIC01750
RIC01760
RIC01770
RICO01780
RIC01790
RIC01800
RIC01810
RIC01820
RIC01830
RIC01840
RIC01850
RIC01860
RIC01870
RIC01880
RIC01890
RIC01900
RIC01910
RIC01920
RIC01930
RICO1940
RIC01950
RICO 1960
RIC01970
RIC0 1980
RIC01990
RIC02000
RIC02010
RIC02020
RIC020 30



(¢ N @!

eReN e NN o No e NN s ReNoN e No NN o Ro Ko No N o N o Na Ne R e e N e Ns Na Re o Rt Ro Rt Ro R oo Re Rt No Rt ReRo o N e

-60- DDCOMP 1

SUBRCUTINZ DDCOMP (NA,N,A,CONL,IPVT,HWORK) DDC000 10
DDC00020

*xxk*PAHAMETERS: DDCO00 30
INTEGEE HA, N,IPVT(N) DDCO0040
DOUBLE PLECISION A(NA,N),CONL,WORK(N) : DDC00050
DDCO0060

*«*%%LOCAL VARIABLES: DDCO0070
INTEGER N#1,I,J,K,KP1,KB,KM1,H DDCO008O
DOUBLE PRECISION EK,T,ANGEM,YNORM,ZNORM DDC00090
. pDC00100

*k %% *FUNCTIONS : DDCO0110
DOUBLZ PKICISION DABS DDC0O0120
DDCO013C
:::::2::2:::2::3:::::::::::::::::::::::::::::::3::::::::2::::2::::DDC00140
DDCOO0 150

*EkXXPYRPOSE? , DDCO0160
THIS SUBKCUTINE COMPUTES AN LU-DECOMPOSITION OF THE REAL N X N DDC00170
MATRIX A BY GAUSSIAN ELIMINATION WITH PARTIAL PIVOTING. DDCO0180
A CONDITION NUMBER OF A IS ESTIMATED. DDCO0 190
' DDCO020C

*+ ¥« ¥PARAMETLEF DESCRIPTION: DDC00210
ON INPUT: DDC00220
DDCO0230

NA 'ROW DIMENSION OF THE ARRAY CONTAINING A AS DDCO0240
DECLARED IN THE CALLING PROGRAM DIMENSION DDC00250

STATEMENT; DDC00260

DDCO0270

N ORDER OF THE MATRIX; pDC00280
DDC00 290

A N X N HATRIX TO BE TRIANGULARIZED. DDCO00300
DDCO0O310

ON OUTPUT: DDC00320
DDCO0330

A N X N ARRAY CONTAINING AN UPPER TRIANGULAR DDCO0340
MATRIX U AND A PERMUTED VERSION OF A LOWER DDC00350

TKIANGULAR MATRIX I-L SO THAT DDC00360

(PERMUTATION MATKIX)*A = L*U. DDCO0370

DDC00380

COND " AN ESTIMATE OF THE CONDITION OF A FOR THE DDC00390
LINEAR SYSTEMN DDCOO400

A*X = B. DDCO0410

CHANGES IN A AND B MAY CAUSE CHANGES COND DDCO0420

TIMES AS LARGE IN X. IP COND + 1.0D0 = COND,DDCO0430
A IS SINGULAR TO WORKING PRECISION., COND IS DDCOO440

SET TO 1.0D+32 IF "EXACT" SINGULARITY IS DDCOO0450

DETECTED. DDCOO460

DDCOO470

ipvT PIVOT VECTOR CF LENGTH N. DDCO0480
IPYT(K) = THE INDEX OF THE K-TH PIVOT ROW. DDCOO490

IPVT (R) = (~1)** (NUMBER OF INTERCHANGES). DDCO0500

DDCOO0S10

WORK REAL SCRATICH VECTOER OF LENGTH N. . DDcD0520
ITS INPUT CONTENTS ARE IGNORED. ITS GUTPUT DDC00530

CONTENTS ARE USUALLY UNIMPORTANT. DDCOOS540

’ DDCO0550
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-61- DDCOMP 2

*%x**APPLICATIONS AND USAGE RESTKICTIONS: DDC 00560
DDCOMP CAN BE USED IN CONJUNCTION WITH DSOLVE TO COMPUTE SOLUTIONSDDC00570
TO SYSTEMS OF LINEAR EQUATIONS. IF NEAR-SINGULARITY IS DDC00580
DETECTED SOLUTIONS AKE MORE RELIABLY COMPUTED VIA SINGULAR DDCO0590
VALUE DECOMPOSITION OF A. DDCO0600
DDCOMP CAN ALSO BE USED TO COMPUTE THE DETERMINANT OF A, DDCO06 10
ON OUTPUT SIMPLY COMPUTE: DDC0O06 20
DET (A) = IPVT(N)*A(1,1)*A{2,2)* . . . *A(N,N). DDC006 30
DDC00640

*%x¥x*¥ALGORITHM NOTES: DDC 00650
DDCOMP IS A DOUBLE PRECISION ADAPTATION OF THE SUBROUTINE DECOMP DDC00660
(SEE REFERENCE (1) FOR DETAILS). THIS ALGORITHM IMPLEMENTS DDC00670
GAUSSIAN ELIMINATION IN A MODERATELY UNCONVENTIONAL MANNER DDCO0680
TO PROVIDE POTENTIAL EFFICIENCY ADVANTAGES UNDER CERTAIN DDC00690
OPERATING SYSTEMS (SEE REFERENCE (2) FOR DETAILS). DDC00700
. ‘ pDCO07 10

***%x*REFERENCES: DDCO0720
(1)  FORSYTHE,G.E., MALCOLM,M.A., AND MOLER,C.B., COMPUTER DDC00730

METHODS FOR MATHEMATICAL COMPUTATIONS, PRENTICE-HALL, 1977. DDCOOQ740
(2) MOLER,C.B., MATBRIX COMPUTATIONS WITH FORTRAN AND PAGING, DDCO0750

COMM. ACHM, 15(1972), 208-270. DDCoo760
DDCO0770

kXx***xHISTORY : DDCO00780
ADAPTATION AND DOCUMENTATION WRITTEN BY ALAN J. LAUB DDCO0790
(ELEC. SYS. LAB., M.I.T., RM. 35-331, CAMBRIDGE, MA 02139, DDPCO0800
PH.: (617)-253-2125), AUGUST 1977, bpCo0810
MOST RECENT VERSION: SEP. 21, 1977. DDC00820
DDC00830

e A S N N R R R R R R R R R R R R R R R R R R It L )
DDCO0850

IPVT (N)=1 DDCO0B60
IF (N.EQ.1) GO TC 80 DDCO0870
NY1=N-1 pDC00880
pDCO0890

COMPUTE 1-NCRM OF A DDC00900
) bDC00910
ANOR¥=0.0D0 DDC00920
DO 10 J=1,N DDCOO930
T=0.0D0 DDCO0940

DO 5 I=1,N DDCO0950
T=T+DABS (A (1,d)) pDpCO0960
CONTINUE DDC00970

IF (T.GT.ANORM) ANORM=T DDC00980
CONTINUE DDC00990
DDCO1000

GAUSSIAN ELIMINATION WITH PARTIAL PIVOTING DDCO1010
DDCO 1020

DO 35 R=1,NM1 pDCOY030
KP1=K+1 DDCO 1040
DDCO1050

FIND BIVOT DDCO1060
. DDCO1070

M=K ppCco1080

DC 15 I=KP1,N DDCO 1090

1F (DABS(A(I,K)).GT.DABS(A(M,K))) HM=I DDCO1100
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15 CONTINUE
IPVT (K) =M
IF (M.NE.K) IPVT(N)=-IPVT (N)
T=A (M, K)
A (1, K) =A (K, K)
A(K,K)=T

SKIp STRY IF PIVOT IS ZiERO

a0n

IF (T.EQ.0.0D0) GC TO 35

CONPUTE MULTIPLIERS

oM eNe!

DO 20 I=KP1,N
A(I,K)=-A(I,K)/T
0 CONTINUE

INTERCHANGE AND ELIMINATE BY COLUMNS

annaNn

DC 30 J=KP1,W

T=A (¥, J)

A(4,J)=A(K,J)

A(K,J) =T

IF (T.EQ.0.0D0) GO TG 30

DO 25 I=KP1,N

A(I,J)=A(I,J)+A(I,K)*T

25 CONTINUE
30 CONTINUE
35 CONTINUE

COND = (1-NOK¥® OF A)*(AN ESTIMATE OF 1-NORM OF A-INVERSE).

ESTIMATE OBTAINEL BY ONE STEP OF INVERSE ITERATION FOR THE

SMALL SINGULAR VECTOK. THIS INVOLVES SOLVING TWO SYSTENMS
T

OF EQUATIONS: A *Y = @I AND A%*Z =Y WHERE b

IS A VECIOR OF +1 OGR -1 CHOSEN TO CAUSE GROWTH IN Y.

ESTIMATE = (1-NOKM OF Z)/{(1-NCRM OF Y).

‘ T
SOLVE A ¥Y = E

sNeNeNoNeNe s Ne e KeNeKe]

DO 50 K=1,N
T=0.0D0
IF (K.EQ.1) GO TO 45
KM1=K-1
DO 40 I=1,KM1
T=T+A (I,K)*WORK (L)
40 CONTINUE
45 EK=1.0D0
1F (T.LT.0.0DC) EK=-1.0D0
IF (A{K,K).EQ.0.0D0) GO TG 90
WORK (K) == (EK+T) /A (K ,K)
50 CONTINDE
DO 60 KB=1,NM1
K=N-KB

DDCOMP 3

DDCO1110
DDC0O1120
DDCO1130
DDCO1140
DDC01150
DDCO1160
DDCO1170
DDCO1180
DDCO1190
DDCO1200
DDC0O1210
DDCO01220
DDC0 1230
DDCO1240
DDCO 1250
DDC01260
pbDC01270
DDC0O 1280
DDC01290
DDCO1300
DDCO1310
pDCO1320
DDCO1330
DDCO1340
DDCO 1350
DDCO1360
DDCO1370
DDC01380
DDCO1390
DDCO1400
DDCO1410
DDCO 1420
DDCO1430
bDCO1440
DDCO1450
DDCO1460
DDCO1470
DDCO 1480
DDCO1490
DDCO1500
DDCO1510
pDDC01520
DDCO01530
DDCO1540
DbDC01550
pDCO 1560
DDCO1570
DDCO 1580
DDCO1590
DDPCO 1600
DDCO1610
DDCO 1620
pDCO1630
DDCO01640
pDCO01650
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T=0.000
KP1=K+1
DO 55 I=KPi,N
T=T+A (I,K) *WGRK (K)
CONTINUE
WOKK (K)=T
M=IPVT (K)-
IF (M.EQ.K) GO TO b0
T=WOKK (M)
WORK (M) = WORK (K)
WORK (K) =T
CUNTINUE

YNOEM=0.0D0
DO 65 I=1,N
YNOKR M=YNOKM+DABS (WORK (I))
CONTINUE
SOLVE A*2 = Y
CALL DSOLVE (NA,N,A,WORK,IPVT)
ZNORM=0. 0DO
po 70 I=1,N
ZNORM=ZNOKM+DABS (HORK (I))
CONTINUE
ESTIMATE CONDITION
COND=A NORM* ZNORM /Y NORY
IF (COND.LT.1.0D0) COND=1.0D0
RETURN
1-BY-1 CASE

COND=1.0D0
IP {(A{1,1).NE.0.0D0) RETURN

WEXACTY SINGULAKRITY

CGND=1,0D+32
RETURN

LAST LINE OF DDCONMP

END

-63-

DDCOMP 4

DDCO1660
DDCO1670

pDCO01680
DDCO1690
DDCO 1700
DDCO1710
DDC01720
DDCO1730
DDCO1740
DDC01750
DDCO1760
DDCO1770
DDC01780
DDCO1790
DDCO1800
pDCO1810
DDCO 1820
DDCO1830
DDC01840
DDCO1850
pDDPCO1860
DDCO1870
DDC01880
DDC0O1890
DDCO 1900
DDCO1910
DDC01920
DDC01930
DDCO1940
DDCO 1950
DDCO1960
DDCO1970
DDCO1980
pDCO1990
DDC02000
DDC02010
DDC02020
DDC02030
DDCO2040
DDC02050
DDCO2060
DDC02070
DDC02080
DDC02090
DDC02100
pDpCO2110



00

noataonNta0nna0000n00nO0nNN0 AN ONNa0AaNON0A0A0N

-64- DSOLVE 1

SUBKOUTINE DSOLVE (NA,N,A,B,IPVT) DSGO0010
, DS000020

*¢xk*« DAKAMETERS: DS0000 30
INTEGER NA,N,IPVT(N) DS000040
DOUBLE PKECISION A(NA,N),B(N) DS0000350
DSC00060

#xxk*LOCAL VARIABLES: DS000070
INTEGSE K3,KM1,Nd41,KP1,I,K,HN DS000080
DOUBLE PRECISION T DS000090
DS000100
3IsIiIIIrrosIsrrIissrIIssreriosiozirissIiIszzIsIcscirirsssssiissaiDSO001YD
DS000120

kx*¥kkPIJRPOSE: D5000130
THLS 5IJ8BKCUTINF SOLVES THE LINEAR SYSTER A¥X = B D5000140
BY FCRWARD ELIMINATION AND BACK SUBSTITUTION USING THE DSC00150
TEIANGULALX FACTOKS OF A PROVIDED BY DDCONP. D5000160
DS000170

*&*¥EPD ARAMETER DESCRIPTION: DS000180
ON INPUT: . - D5000190
DPS000200

NA FOW DIMENSION OF THE ARRAY CONTAINING A DS000210

AS DECLARED INX THE CALLING PROGRAM DIMENSION DS000220

STATEMENT; DS000230

' DS0C00240

N ORDER OF THE MATRIX A; DS000250
DS000260

A TRIANGULARIZED MATRIX OBTAINED FROM DDCOMP; DS000270
D5000280

B KIGHT HAND SIDE VECTOR OF LENGTH N; DS000290
DS000300C

IPVT PIVCT VECTOK OF LENGTH N O3TAINED FROM DDCOMP.DS000310

" D5000320

ON OUTPUT: DS000330
D5000340

B SOLUTION VECTOLK, X, OF LENGTH N. PS000350

: DS000360
***k*APPLICATIONS AND USAGE RESTHEICTIONS: DS000370
DSCOLVE SHCGULD NOT BE USED IN CASE DDCOMP HAS DETECTED NEAR~- DSC00 380
SINGULAKITY. SINGULAR VALUE ANALYSIS IS THEN MORE RELIABLE. DS000390
DS000400

*% %% ALGORITHM NOTLS: DS000410
DSOLVE IS A DOUBLE PRrCISION ADAPTATION OF THE SUBROUTINE SOLVE DSC00420
(SCE REFERENCE (1) IN THE DDCOMP DOCUMENTATION FOR DETAILS). DS000430
DS000u840

*%xk%k¥HISTORY : DS000450
ADAPTATION AND DCCUMENTATION WRITTEN BY ALAN J. LAUB DSO00u60
(ELEC. SYS. LAB., M.1.T., RM., 35-331, CAMBRIDGE, MA 02139, DS0C00470
PHe.: (617)-253-2125), AUGUST 1977. DS000480
MOST RECENT VERSION: SEP. 21, 1977. DSO00490
DS000500

1T iaiirIIIsIIiiesiIsIcizIsrissizstrossarossazsiziaszsaesszsi:DSO00S10
DS000520

FORAARD ELIMINATION : DS0D0530
DS000540

IF (N.EQ.1) GO TC 50 DS000550



10
20

NMI=N-1
DO 20 K=1,NM1
KP1=K+1
M=IPVT (K)
T=8 (M)
B (M) =B(K)
B(K)=T
DO 10 I=KP1,N
B(I)=B (1)+A (I,K)*T
CONTINUE
CONTINUE

BACK SUBSTITUTION

DC 40 KB=1, N1
KM1=N-KB
K=KM1+1
B (K) =B (K)/A (K,K)
T=-B (K)

DO 30 I=1,Ka1
B(I)=B(I)+A(I,K)*T
CONTINUE

CONTINUE

B()=B(1), A (1, )

RETURN

LAST LINE OF DSOLVE

END

65—~

DSOLVE 2

D5000560
DS000570
D5000580
DS000590
ps000600
DS000610
DS000620
DS000630
DS000640
D5C00650
DSC00660
DS000670
Ds000680
D5000690
DS000700
DSC00710
DS000720
DsS000730
DS000740
DS0006750
D5S000760
DS000770
ps000780
DS000790

'DS000800

DS000310
DS000820
DS000830
DSO00840
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-66- EXCHNG 1

SUBKOUTINE EXCHNG (A,V,N,L,B1,B2,EPS,FAIL,NA,NV) EXC00010
. EXC000 20

*kk%XPARAMETERS EXC0003¢0
INTEGER 51,84,L,NA NV EXC00040
DOUBLYE PRECISION A(NA,N),EPS,V(NVY,N) EXC00050
LOSICAL FAIL EXC00060
) EXC00070

*x%xxk LOCAL VALIABLES: EXC00080
INTEGEd I,IT,d,L1,M EXC00090
DOUBLL PRECISION P,Q,Lk,5,W,X,Y,2Z EXC00100
EXC0011¢C

k%% FJNCTIONS ¢ EXC00120
DOUBLE PHECISION DABS,DSQRT,DMAX EXC00130
EXCO00 140

¥k %¥SUBROUTINES CALLED: EXC00150
QRSTEP ) EXC00 160
EXC00170
TrrIriIIIIIIsieIisIoiirirrisriiIIirsiorosrrzisiescressssizziiisiziiEXCOO180
EXC00190

*%xkkPYURPOSE: ) EXC00200
GLVEN THr UPPER HESSENBERG MATRIX A WITH CONSECUTIVE Bt X B1 AND EXC00210
B2 X B2 DIAGONAL BLOCKS (B1, B2.LE.2) STARTING AT A{(L,L), THIS EXC00220
SUBKOUTINE PKODUCES A UNITARY SIMILARITY TRANSFORMATION THAT EXC00230
EXCHANGES THE BLOCKS ALONG WITH THEIERE EIGENVALUES. THE EXC00240
TKANSFOKMATION IS ACCUMULATED IN V. BXC00250
EXC00260

*kkkkP ARAMETER DESCRIPTION: EXC00270
ON INPUT: ) EXC00280
NA, NV ROW DIMENSIONS OF THE ARKAYS CONTAINING A EXC00290
AND V, RESPECTIVELY, AS LDECLARED IN THE EXC00300

CALLING PROGRAM DIMENSION STATEMENT; EXC00310

EXC00320

A N X N MATKIX WHOSE BLOCKS ARE TO BE EXC001330
INTERCHANGED; EXC00340

‘ EXC00350

N ORDER OF THE MATRIX A; EXC00360
BXC00370

L POSITICN OF THE BLOCKS; EXC00380
EXC00390

B1 AN INTEGER CONTAINING THE SIZE OF THE FIRST EXC00400
BLOCK; EXCO041C

EXC00420

B2 AN INTEGER CONTAINING THE SIZE OF THE SECOND EXC00430
BLOCK ; EXCO0440

EXC00450

EPS A CONVERGENCE CRITERION (CF. HQR3). EXCO0460
EXCO0470

ON OUTPUT: EXC00480
EXC00490

FAIL A LOGICAL VARIABLE WHICH IS .FALSE., ON A EXC00500
NORMAL RETURN. IF THIRTY ITERATIONS WERE EXC00510

PERFORMED WITHOUT CONVERGENCE, FAIL IS SET TO EXC00520
.TRUE. AND THE ELEMENT A(L+B2,L+B2-1) CANNOT EXC00530

BE ASSUMED ZERO. EXC00540
EXC00550



DO OOn

10

20

30

40

50

60
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*%kx*xHISTORY: EXC00560
DOCUMENTED BY J.A.K. CARRIG (ELEC. SYS. LAB., M.I.T., RM. 35-307, EXC00570
CASBRIDGZ, MA 02139, PH.: (617) - 253-2165, SEPTEMBER 1978. EXC00580
MCST RECENT VERSION: SEPT. 21, 1978, EXC00590
EXC00600
::::::::::::::::::::::::::::::::::::'::::::::::.:::::::::::.::::::BXC00610
EXC00620

FAIL=.FALSE. EXC00630
IF (B1.EQ.2) GO TO 70 EXC00640
IF (B2.EQ.2) GO TO 40 EXC00650
L1=L+1 EXC00660
O0=A{L+1,L+1)-A(L,L) £XC00670
P=A(L,L+1) EXC00680
E=DMAX1 (P,Q) EXC00690
IF (R.EQ.0.0DO) RETURN EXC00700
P=P/R . EXC00710
0=Q/R : » EXC00720
BR=DSQRT (P**2+Q%%2) EXC00730
P=P/R 4 EXC00740
Q=0/R EXC00750
DO 10 J=L,N EXC00760
S=P*A (L, J) +Q*A ({L+1,J) EXC00770
A{L+1,J) =P*A (L+1,J)-Q%A (L,J) EXC00780
A{L,J)=5 _ EXC00790
CONTINUE EXC00800
DO 20 I=1,L1 EXC00810
S=p*A (1,L) +Q*A(I,L+1) : EXC00820
A(I,L+1)=P*A(I,L+1)-Q%A(I,L) EXC00830
A(I,L)=S EXC00840
CONT INUE EXC00850
po 30 I=1,N EXC00860
S=P*V (I, L) +Q*V (I,L+1) EXC00870
V(I,L+1) =P*V (1,L+1)-Q*V(I,L) EXC00880
V(I,L)=S ‘ EXC00890
CONTINUE EXC00900
A(L+1,L) =0.0D0 EXC00910
KETURN EXC 00920
CONTINUE EXC009 30
X=aA{L,L) EXC00940
P=1.0D0 EXC00950
0=1.0D0 EXC00960
B=1.0L0 EXC00970
CALL QRSTEP (A,V,P,Q,R,L,L+2,N,NA,NV) EXC00980
IT=0 EXC00990
IT=IT+1 EXC0 1000
IF (IT.LE.30) GO TO 60 EXC01010
FAIL=. TRUE. EXCO 10 20
RETURN EXC01030
CONTINUE EXC01040
P=A(L,L)-X EXC01050
Q=A (L+1,L) EXC01060
R=0.0D0 EXC01070
CALL QRSTEP (A,V,P,Q,R,L,L+2,N,NA,NV) EXC01080

IF (DABS(A(L+2,L+1)).GT.EPS* (DABS (A (L+1,L+1))+DABS(A{L+2,L+2)))) EXC01090
GO TO 50 EXC01100
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A(L+2,L+1)=0.0D0

KETUKN

CONT INUE

M=L+2

IF (B2.05Q.2) ¥=M+1
X=A(L+1,L+1)

Y=a {L,L) )

W=A (L+1,L)*A (L,L+1)

P=1.0D0

0=1.0D0

R=1.0D00

CALL QRSTEP (A,V,P,Qs,HReL,H,N,NA,NV)
IT=0

IT=1T+1

IF (IT.LE.30) 60 TC 90
FAIL=.TRUE.

RETURN

CONTINUE

Z2=A (L, L)

R=X-2Z

S=Y-2Z
P=(L*5-W) /A {L+1,L) +A (L,L+1)
Q=A(L+1,L+1)~-2-R-S

R=A (L+2,L+1)

S=DABS (P) +DABS (Q) +DABS (k)
P=P/S

Q=Q/5

R=R/S

CALL QRSTEP (A,V,P,Q,K,L,M,N,NA,NV)

EXCHNG 3

1¥ {(DABS (A (M-1,8~2)) .GT.EPS* (CABS (A (M-1,M-1)) +DABS({A (N-2,4-2))))

GO TO 890
A(M-1,4-2)=0.0D0
RETURN

LAST LINE OF EXCHNG

END

EXC01110
EXC01120
EXCO01130
EXCO1140
EXC01150
EXCO1160
EXCO01170
EXC01180
EXC01190
EXC01200
EXC01210
EXC01220
EXC01230
EXC01240
EXC01250
EXC01260
EXC01270
EXC01280
EXC01290
EXC01300
EXC01310
EXC01320
EXC01330
EXC01340
EXC01350
EXCO01360
£xc01370
EXC01380
EXC01390
EXCO1400
EXCO1810
EXC01420
EXC01430
EXC01440
EXC01450
EXC01460
EXCO1470
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SUBKOUTINL HyRK3 (A,v,N,NLOW, NUP,EPS,ER,EI,ITYPE,NA,NV) HQR00010
HQR00020

*xx¥xxXDARKAMETELRS: HQR00030
INTEGER N, NA,NLOW,NUP,NV,ITYPE(N) HQROO0040
DOUBLE PRECISION A (NA,N),EI{N),ER(N),EPS,V(NV,N) HQE00050
HQROQ060

*¥k¥%¥LOCAL VAE IABLES: HQE00070
LOGICAL FAIL HQRO0080
INTEGER 1,IT7,L,8U0,NL,NU HQK000S0
DOUBLE PRECISION EV1,E2,P,Q,R,S,T,W,X,Y,2 HQRO00100
‘ HQRO0 110

*xxkx¥FUNCTIONS HQR00120
DOUBLZ PRECISION DABS HQRO0130
HQROO 140

***%¥SUBROUTINES CALLED: HQRO0 150
EXCHNG,QESTEP, SPLIT . HQRO00 160
HQROO170

R N I S S N L N L S E S A S S R A RS R DR NS S (s]:{eJeR 1)
‘ HQRO00190

*kXxk®¥DJRPOSE: HQR00200
THIS SUBROUTINE KEDUCES THE UPPER HESSENBEKG MATRIX A TO QUASI- HQRO0210
TRIANGULAR FORM BY UNITARY SIMILARITY TEKANSFORMATIONS. THE HQROO0220
EIGENVALUES OF A, WHICH ARE CCNTAINED IN THE 1 X 1 AND 2 X 2 HQRQ0230
DIAGONAL BLOCKS OF THE REDUCED MATRIX, ARE ORDERED IN DESCENDING HQRO0240
ORDEK OF MAGNITUDE ALONG THE DIAGONAL. THE TRANSFORMATIONS ARE HQRO0250
ACCUMULATEZD 1IN THE AERAY V. HQR00260
HQROQ270

***%*XDARAMETER DESCRIPTION: HQROQ 280
ON INPUT: HQRO00290
NA,NV ROW DIMENSIONS OF THE ARRAYS CONTAINING A AND HQR00300

Vs RESPECTIVELY, AS DECLARED IN THE CALLING HQRQO0310

PROGRAM DIMENSIGN STATEMENT; HQR00320

HQRO0330

A N X N ARRAY CONTAINING THE UPPER HESSENBEEG HQRO0340
MATRIX TO BE REDUCED; HQER00350

HQROD360

N ORDER OF THE MATRICES A AND V; HQRO0370
HQR0038¢0

NLOW,NUP A (NLOW,NLOW-1) AND A (NUP,1+NUP) ARE ASSUMED HQRO0 390

TO BE ZERC, AND CNLY ROWS NLOW THROUGH NUP HQROOU QO

AND COLUMNS NLOW THROUGH NUP ARE TRANSFORMED, HQRO0410
RESULTING IN THE CALCULATION OF EIGENVALUES HGROOU420

NLOW THERCUGH NUP; HQROO430

HQHOO44YO

EPS A CONVERGENCE CRITERION USED TO DETERMINE WHENHQROO450
A SUBDIAGONAL ELEMENT OF A IS NEGLIGIBLE., HQBROO U460

SPECIFICALLY, A (I+1,I) IS REGARDED AS HQROO470

NEGLIGIBLE IF DABS(A{I+1),I)).LE.EPS* HQROO480

(DABS (A (I+1,I+1))). THIS MEANS THAT THE FINAL HQE00490
MATRIX RETURNED BY THE PRCGRAM WILL BE EXACTLYHQK00500

SIMILAR TC A + E WHERE E IS OF ORDER HQR0O0510
EPS*NORM(A) , FOR ANY REASONABLY BALANCED NORM HQR00520
SUCH AS THE ROW-S5UM NORM; HQRO0530

HQROOS540

ITYPE AN INTEGER VECTOR OF LENGTH N WHOSE HQROOS550
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I-TH ENTKY IS HQR 00560

¢ IF THE 1-TH EIGENVALUE IS KEAL, HQKO0570

1 IF THE I-TH BIGENVALUE IS COMPLEX WITH HQRO 0580

POSITIVE IMAGINARY PART, HQROD590

2 IF THE I-TH EIGENVALUE IS COMPLEX WITH HQKO0600

NEGATIVE IMAGINARY PART, HQROD610

-1 IF THE I-TH EIGENVALUE WAS NOT CALCULATED HQK00620

SUCCESSFULLY. HQR00630

HORO00640

ON OUTPUT: HQRO00650
HQRO00660

A N X N AKRAY CCNTAINING THE REDUCED, QUASI- HQRO0670
TkIANGULAE MATRIX; : HQOROO0680

HQRO0690

v N X N ARKRAY CCNTAINING THE REDUCING HQROO700
TRANSPORMATICONS TO BE MULTIPLIED; HQRO00710

HQRO00720

EK, ETI REAL SCRATCH VECTORS OF LENGTH N WHICH ON HQRO07 30
EETURN CONTAIN THE REAL AND IMAGINAKY PAERTS, HQROO740

RESPECTIVELY, OF THE EIGENVALUES. HQRO0 750

HQEQ0760

**xkkHISTORY: HQRO0770
DOCUMENTZD BY J.A.K. CARRIG, (BLEC. SYS. LAB., M.I.T., ERM. 35-307,HQR00780
CAMBRIDGE, MA 02139, PH.: (617)~- 253-2165), SEPT 1978, HQROO0790
MOST RECENT VERSION: SEPT 21, 1978. HQR00800
HQRO0810

R R N N R R F R S R R R R R R R R R R R R R A v vy
HQR0OO0830

DO 10 I=NLOW,NOP HQROO0840
ITYPE (I)=~1 HQE00850
CONTINUE HQROO0860
T=0,0D0 HQRO0870
NU=NUP HQE00880
IFP (NU,LT.NLGW) GO TO 249 HQR00890
IT=0 HQRO0900
CONTINOE HQRO0910"
L=NU HQR00920
CONTINUE HQR00930
IF (L.EQ.NLOW) GO IO 50 HQROOG940
IP (DABS(A(L,L-1)) .LT.EPS*(DABS{A(L-1,L-1))+DABS{A(L,L)))) HQRO00950
GO TO 50 HQR00960
L=L-1 HQRO00970
GC TO 40 HQR00980
CONTINUE HQRQ0990
X=A(NU, NU) HQRO1000
I¥ (L.EQ.NU) GG TO 160 HQRO1010
Y=A (NU~-1,NU-1) HQRO 1020
W=A{NU,NDU—-1) *A (NU-1,NU) HQRO 1030
IF (L.EQ.NU=-1) GO TO 100 HQRO1040
IF (IT.8Q.30) GC TO 240 HQRO 1050
IF (IT.NE.10 .AND. IT.NE.20) GO TC 70 HQRO01060
T=T+X . HQRO1070
DO 60 I=NLOW,NU HQRO1080
A(L,I)=A(1,I)-X HQRO 1090
CONTINUE HQRO01100



70

890

90

100

110

120

130

-71- HOR3 3

S=DABS (A (NU,NU~1)) +DABS (A (NU=-1, NU-2))
X=0, 75D0%S

Y=X

W=-0.4375D0%S**2

CONTINUE

IT=IT+1

NL=NU-2

CONTINUE

Z=A (NL,NL)

R=X-2

S=Y~2

P= (K*S-W) /A (NL+1,NL) +A (NL,NL+1)

O=A (NL+1,NL+1) -Z~&~5

R=A (NL+2, NL+1)

S=DABS (P) +DABS (Q) +DABS (E)

P=P/S

Q=Q/5

R=R/S

IF (NL.EQ.L) GO TO 90 ,

IF (DABS (A (NL,NL-1)) * (DABS (Q) +DABS(R) ) - LE.EPS*DABS (P) *
+ (DABS {A (NL-1,NL-1)) +DABS (Z) +DABS (A (NL+1,NL+1)))) GO TO 90
NL=NL-1

GO TO 80

CONTINUE

CALL QRSTEP (A,V,P,Q,R,NL,NO,N,NA,NV)
GO TO 30

IF (NU.NE.NLOW+1) A(NU-=1,NU-2)=0.0DD
A(NU,NU)=A (NU, NU) +T

A (NU=-1,NU-1)=A (NU=-1,NU-1) +T

ITYPE (NU) =0

ITYPE (NU-1) =0

MU=NU

CONTINUE

NL=MU-1

CALL SPLIT (A,V,N,NL,E1,E2,NA,NV)

IF (A(MU,MU-1).EQ.0.0D0) G0 TC 170
IF (MU.EQ.NOP) GO TO 230

IF (MU.EQ.NUP-1) GO TO 130

IF (A(MU+2, MU+1) ,EQ.0.0D0) GO TO 130

IF {A(MU-1,MU-1) %A (MU,MU)=A (MU- 1,MU) *A (MU,M0U~-1) .GE. A (MU+1,40+1) *

+  A{MU+2,MU+2) -A (MU+1,MU+2) %A (MU+2,MU+1)) GO TO 230
CALL EXCHNG f(A,V,N,NL,2,2,EPS,FAIL,NA,NV)

IF (.NOT.FAIL) GO TO 120

ITYPE (NL)=-1

ITYPE (NL+1) =-1

ITYPE (NL+2)=-1

ITYPE (NL+3) =—1

GO TO 240

CONTINUE

MO=MU+2

GO TO 150

CONTINUE

IF (A (MU-1,MU-1) *A (MU, MU)—-A (MU-1, MU) *A (MU, MU-1) .GE.
+ A (MU+1,MU+1)%%2) GO TO 230

CALL EXCHNG {A,V,N,NL,2,%,EPS,PAIL,NA,NV)

HQRO1110
HQRO1120
HQRO1130
HQRO1140
HQEO1150
HQRO1160
HQR01170
HQEO1180
HQRO 1190
HQRO1200
HQRO1210
HQRO 1220
HQRO1230
HQRO 1240
HQRO1250
HQKO0 1260
HQE01270
HQE0 1280
HQRO 1290
HQRQ1300
HQE01310
AQRO1320
HQR01330
HQRO1340
HQRO 1350
HQRO0 1360
HQR01370
HQRO 1380
HQE01390
HQRO 1400
HQRO1410
HQRO 1420
HQRO1430
HQRO 1440
HQRO 1450
HQRO1460
HQRO 1470
HQRO1480
HQRO1490
HQRO1500
HQRO1510
HQRO1520
HQB0O 1530
HQRO 1540
HQERDO 1550
HQRO1560
HQRO1570
HQRO 1580
HQRO1590
HQRO1600
HQRO01610
HQRO 1620
HQRO1630
BORO1640
HORO 1650



140
150
160

170
180

190

200

210

220

230

240

250

260
270

280

-72- HQR3 4

IP (.NOT.FAIL) GU TO 140
ITYPE(NL)=-1

ITYPE (NL+ 1) =-1

ITYPL (NL+2) =-1

GO TO 240

CONTINUE

MU=MU+1

CONTINUE

GO0 TO 119

NL=0

A (NU,NU)=A (NU,NU) +T

IF (NU.NL.NLOW) A{(NU,NU-1)=0.0DO
ITYPE (NU)=0

MU=NU

CONTINUE

CONTINUE

IF (MU.EQ.NUP) GG TO 220

IF (MU,EQ.NUP-1) GO TO 200

IF (A(NU+2,M0+1).EQ.0.0D0) GG TO 200
IF (A (MU,MU) #*2,GE.A (MU+1, MU+1) *A (MU+2,MU+2) -A(MU+1, MU+ 2)*
+ A(MU+2,M0+1)) GO TO 230

CALL EXCHNG (A,V,N,MU,1,2,EPS,FAIL,NA,NV)
IF (.NOT.FAIL) GO TO 190

ITYPE (MU) =—1

ITYPE (MU+1) =-1

ITYPE (MU+2)=—1

GO TO 240

CONTINUE

MU=MU+2

GO TO 210

CONTINUE

IF (DABS (A(MU,MU)) .GE.DABS (A (MU#1,M0+1))) GO TO 220
CALL EXCHNG (A,V,N,MD,1,1,EPS,FAIL,NA,NV)
MU=MU+1

CONTINUE

GO TO 180

CONTINUE

MU=NL

NL=0

IF (MU.NE.O) GO TO 170

CONTINUE

NU=L-1

GO TO 20

IF (NU.LT.NLGW) GO TO 260

DO 250 I=1,NU

A{(I,1)=A{I,1I)+T

CONTINUE

CONTINUE

NU=NUP

CONTINUE

IF (ITYPE (NU).NE.-1) GO TO 240
NU=NOU-1

Go TO 310

CONTINUE

IF (NU.EQ.NLOW) GO TO 290

HQR01660
HQKO01670
HQEQ 1680
HQRO 1690
HQKO01700
HQRO01710
HQRO 1720
HQRO01730
HQRO 1740
HQRO1750
HQRO1760
HQRO 1770
HQRO1780
HQRO 1790
HQRO1800
HQRO01810
HQRO01820
HQR01830
HQRO 1840
HQR01850
HQRO1860
HQR01870
HQRO 1880
HQE01890
HQRO 1900
HQRO01910
HQEO01920
HQR01930
HQRO 1940
HQRO 1950
HQRO1960
HQRO1S70
HQR0 1930
HQRO 1990
HQRO02000
HOR02010
HQR02020
HQE02030
HQRO2040
HQR02050
HQR02060
HQR02070
HQER02080
HQR02090
HQRO02100
HQR02110
HQR02120
HQR02130
HQK02140
HQRO02150
HQRO2160
HQRO2170
HQR02180
HQRO2190
HQR02200
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IF (A(NU,NU-1) .EQ.0.0D0) GO TC 290
CALL SPLIT (A,V,N,NU-1,E1,E2,NA,NV)
IF (A (NU,NU~1).EQ.0.0D0) GO TC 290
ER(NU) =E1

EI{NU=-1)=E2

EK (NU~-1) =ER (NU)

EI (NU)==2I (NU=-1)

ITYPE (NU-1) =1

ITYPE (NU)=2

NU=NU-2

GO TO 300

CONTINUE

ER(NU) =A (NU, NU)

EI(NU)=0.0DO

NU=NU-1

CONTINUE

CONTINUE

IF (NU.GE.NLOW) GO TO 270

RETURN

LAST LINE OF HQR3

END

HQR3 5

HQR02210
HQE02220
HQR02230
HQR02240
HQR02250
HQE02260
HQE02270
HQR02280
HQR02290
HQRO02300
HQR02310
HQR02320
HQR02330
HQR02340
HQR02350
HQR02360
HQR02370
HQR02380
HQR02390
HQR02400
HQEO02410
HQR02420
HQE 02430
HQRO2440
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SUBROUTINE MLINEQ (NA,NB,N,M,A,B,COND,IPVT, WOEKK)

¥k %xDARANLTERS:
INTEGER NA,NB,N,M,IPVI(N)
DOUBLE PEECISION A (NA,N),B{NE,M),COND,WORK(N)

**¥%#% [OCAL VARIABLES:
INTEGER I,J,KIN,KOUT
DOUBLE PxECISION CONDP1

*kx®kSUBROUTINES CALLED:
DBCCHP,DSOLVE

® 8 8 2 s e e sSSP e e e P I N R A R N R O N N N N R R ]
A B B S e e 2 0 se B s P I A I I e R I R I e

*kERFPYURPUSE: .
THIS SUSBROUTINE SCLVES THE MATKIX LINEAR EQUATION

AxX = B
WHExKE A IS AN N X N (INVERTIBLE) MATRIX AND B IS AN N X H#
MATKIX, SUBRCUTINE LDCOMP IS CALLED ONCE FOR THE LU-DECOMP-
OSL1TION CF A AND SUBROUTINE DSOLVE IS CALLED # TIMES FOR
FORWAKD ELIMINATION AND BACK SUBSTITUTION TO PHODUCE THE
M COGLUMNS OF THE SOLUTION MATRIX X = (A~-INVERSE)*B. AN
ESTIMATE OF THE CONDITIGN OF A IS RETURNED. SHOULD A BE
SINGULAKk TO WORKING ACCURACY, A MESSAGE TO THAT EFFECT IS
PROCUCED., :

**xx**pPARAMETER DESCRIPTION:

ON INPUT:

NA ,NB ROW DIMENSIONS OF THE ARRAYS CONTAINING A AND
B, RESPECTIVELY, AS DECLARED IN THE CALLING
PRCGRAM DIMENSION STATEMENT;

N CKDER OF THE MATRIX A AND NUMBEE OF ROWS OF
THE MATR1X B;

] NUMBER OF COLUMNS CF THE MATRIX B;

A N X N COEFFICIENT MATRIX;

B N X ¥ BRIGHT HAND SIDE MATRIX.

ON GUTPUT:

B SOLUTION MATKIX X = (A—-INVEESE)*B;

COND AN ESTIMATE CF THE CONDITION OF A;

Ipvr PIVOT VECTOR CF LENGTH N (SEE DDCONMP
DOCUMENTATION) ;

WORK A REAL SCRATCH VECTOR OF LENGTH N.

*¥%x%% APPLICATIONS AND USAGE RESTRICTIONS:

MLIO0O0010
MLI00020
MLIQ0030
MLIDO0040
MLI00050
MLIO0060
MLIGO0070
MLIO0O0080
MLI100090
MLIO00100
MLI00110
MLIO0O0120
MLI00130
MLI0O 140
MLIO0O150
MLIO00160
MLIO00170
MLI00180
MLIO0190
MLI00200
MLI00210
MLIO00220
MLI00230
MLIOO 240
MLI00250
MLI00260
MLI00270
MLI00280
MLI00290
MLI00300
MLI00310
MLIO00320
MLI00330
MLIO00340
MLI00350
MLIO00360
MLIQ0370
MLI00380
MLIO00390
MLIOOu400
MLIO0O04 10
MLI00420
MLIOO430
MLIOOU40
MLIO0O0450
MLIOOU460
MLIO0470
MLIO00480
MLIOO0490
MLI00500
MLIO0510
MLI00520
MLI00530
MLIOOS540
MLIOO0S550
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(V)THE VALUE OF COND SHOULD ALWAYS BE CHECKED BY THE CALLING
PROSRAM. SHOULD A BE NEAR-SINGULAR (OR SINGULAR TO WORKING

ACCURACY) THE DATA SHOULD BE INVESTIGATED FOR POSSIBLE
ERRORS. IF THERE ARE NONE AND THE PROBLEM IS APPARENTLY
WELL-POSED AND/OR MEANINGFUL, SINGULAR VALUE ANALYSIS IS
THEN A MOKE KELIABLE SOLUTION TECHNIQUE (CF. EISPACK
SUBKOUTINES SVD AND MINFIT).
(2)MLINEQ CAN BE USED TC COMPUTE THE INVERSE OF A:
A*X = 1 WHERE I 1S THE N X N IDENTITY MATRIX.
(3) IF THE SOLUTICN TO X*A = B (X = B¥*(A-INVERSE))
SIMPLY TRANSPOSE THE SOLUTION CF
T T
A *X = B .

SIMPLY SOLVE

IS DESIEED,

**%x** ALGORITHM NCTES:

THE CONTENTS OF A ARE MODIFIED BY THIS SUBROUTINE.
ORIGINAL COEFFICIENTS OF A BE NEEDED SUBSEQUENTLY,
CONTENTS OF A SHOULD BE SAVED PRIOR TO THE CALL TO

SHOULD THE
THE
MLINEQ.

*k¥xkkHISTORY:

WRITTEN BY ALAN J. LAUB (ELEC. SYS. LAB., M.I.T., RM. 35-331,
CAMBRIDGE, MA 02139, PH.: (617)-253-2125), AUGUST 1977.

MOST RECENT VEKSION: SEP. 2%, 1977.

.
(1)
L 1)
(2]
e
(X}
(1]
1)

COMMON/INOU/KIN,KOUT
CALL DDCOMP (NA,N,A,COND,IPVT,WORK)
CONDP 1=COND+ 1. 0DO
IF (CONDP1.GT.COND)
WEITE (KOUT,U44400)
FORMAT (40H1MATRIX IS SINGULAR TC WORKING PRECISION)
RETURN :
DO 400 J=1,H
DO 200 I=1,N

WORK (I)=B (I,J)

CONTINUE

GO TO 100

COMPUTLZ (J-TH COLUMN OF ¥) = (A-INVERSE)#*(J-TH COLUMN OF B)
CALL DSOLVE (NA,N,A,WORK,IPVT)
‘DO 300 I=1,N
B(I,J) =WOKK (I)
CONTINUE
CONTINUE

RETURN
LAST LINE OF MLINEQ

END

MLIODS60
MLI00570

MLIO0580
MLI00590
MLI00600
HMLIDO0610
MLI00620
MLIO00630
MLIO0640
MLI00650
MLIO0660
MLIO00670
MLI00680
BLI00690
MLIO00700
MLIO00710
MLIO00720
MLIO00730
MLIOOT740
MLI00750
MLI00760
MLI00770
MLYO0780
MLI00790
MLI00800
MLIO00810
MLI00820
MLI00830
MLIO0840
MLI00850
MLI00860
MLI00870
MLIO0880
MLIO00890
MLI00900
MLI00910
MLI00920
MLI00930
NLI0O0940
MLI00950
MLID0960
MLIO00970
MLI00980
MLI00990
MLIO1000
MLIO01010
MLI01020
MLI01030
MLIO1040
MLIO1050
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SUBLOUTING MULWOA (NA,NE,N,A,B,WCEK) MULO0010
MULOQO20

¥R¥¥RPARAMETERS MULO0030
INTEGLL NA,NB,N MULO00040
DOUBLEZ PRECISION A (NA,N),B(NB,N),WORK(N) MULOQO0S50
MULO0060O

**kk%XLOCAL VAxRIABLLS: MULOO070
INTEGERK I,J,K MULO0080
MUL00090

*xx¥*SUBROUTINES CALLED: MUL00100
NCNE MOLOO 110
MULO0120

I N R R R R R S N S S S S R N R S S R R R SRS IR R 1 R K]
MUL00140

*xx%x¥pPJKPOSE: MULOO 150
TiHIS SUBXKOUTINE CVLRWR1ITES THE ARRAY A WITH THE MATRIX PRODUCT MULOO160
AXxg, BOTH A AND B AKE N X N ARKAYS AND MUST BE DISTINCT. MULOC170
MULO0180

*kk¥kDARAMETER DESCKIPTION: MULO0190
ON INPUT: ' M831.00200
MUL00210

NA_NB ROW DIMENSICNS OF THE ARRAYS CCNTAINING A AND MULO0220

B, RESPECTIVELY, AS DECLARLED IN THE CALLING MUL00230

PKOGRAM LCIMENSION STATEMENT; MULQQO24C

. MUL00250

N ORDER OF THE MATRICES A AND B3 MUL00260

. MULO0Q270

A AN N X N MATEIX; MULOO0 280
MUL00290

B AN N X N MATRIX. MUL00300
MUL00310

ON OUTPUT: MUL00320
MOL00330

A AN N X N ARRAY CONTAINING A*B; MULO0340
MULO00O350

¥ORK 2 KEAL SCRATCH VECTCR OCF LENGTH N. HUL00360
MULO0370

¥k kk*HISTORY: MUL00380
W ITTEN BY ALAN J. LAUB (ELEC. SYS., LAB., ¥M.I.T., RM. 35-331%, MUL00390
CAMBRIDGE, ¥A 02139, PH.: (617)-253-2125), SEPTEMBER 1977. MULOO400
MOST LICENT VEKSION: SEP. 21, 1977, MULO00410
‘ MULOO4 20
sIIIrsissrasIsIasirrzsisTiToIsrIIIOoSSTIOILSLIIGTAGTIIGTISTOIGITSISGSTISSsas:atMULOO430
. MOLOO440
DO 40 I=1,N M0L00450
DO 20 J=1,N MULOO460
KORK(J)=0.0D0 MULOO470

DG 10 K=1,N MULOO4S8O

WOREK (J)=WORK (J) +A (I,K)*B (K,J) MULO0490

CONTINUE MULOO0500
CONTINUE MOL00S510

DO 30 J=1,8 ' MUOL00520
A{(I,J) =%kGhK {J) MUL0O0530
CONTINUE MOL00540
CONTINUE MOLO0OS550



RETURN.
LAST LINK OF MULWCGA

END

-77-
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MUL00560
40L00570

MULO0580
MUL00590
MUL00600
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SUBROUTINE MULWOB (NA,NB,N,A,B, WORK) MUL0OO00 10
v MGL0O0020

* &k ¥ xPAKAMETERS: MULOOO 30
INTEGER NA,NB,N MULOOO4O
DOUBLE PRECISION A (NA,N),B(NB,N),WORK(N) MUL0G050
MUL00060

*+#%*LOCAL VARIABLES: MULOOO70
INTEGER I,Jd,K MULOQ080
MUL00090

*x¥%¥3UBROUTINES CALLED: MULO0 100
NONE MULOOY10
MUL00120

NSRS S S S S N A R A R S S R S S S S R R N RS S S NS E N R R RN i A 1 R T4
MGLOO 140

*% %% *kpPJKPOSE: MULO0 150
THIS SUBKUUTINE OVERWRITES THE ARRAY B WITH THE MATRIX PRODUCT MUL00160
A*B. BOTH A AND B AKE N X N AREAYS AND MUST BE DISTINCT. MBL0O0170
MULOO180

*kkk kD ARAMETER DESCRIPTION: MULO00 190
ON INPUT: ‘ MOL00200
MUL0O0210

NA,NB ROW DIMENSIONS OF THEZ ARRAYS CONTAINING A AND MUL00220

B, RESPECTIVELY, AS DECLARED IN THE CALLING MUL00230

PROGRAM DIMENSION STATEMENT; MUL0O0240

MULOO250

N CHDER OF THE MATRICES A AND B; MULO0260

MU LO0270

A AN N X N MATKIX; MUL00280
MuL00290

B AN N X N MATRIX. MULQ0300
MULO0310

ON CUTPUT: MOLO0320
) MULO0O330

B AN N X N ARRAY CONTAINING A*B; MOL0O0340
MUL00350

WOKK A REAL SCERATCH VECTOR OF LENGTH N, MUL00360
MULOO0370

*kk¥kHISTOKY: MULO0380
WRITTEN BY ALAN J. LAUB (ELEC. S5YS., LAB., M.I.T., RM. 35-331%1, MUL00390
CAMBRIDGE, MA 02139, PH.: (617)-253-2125), SEPTEMBER 1977. MUL00400
MOST RECENT VERSION: SEP. 21, 1977. MULOOU 10
' MULOO0420
RS SR E RS S LSS RS S E S S S E S S RSN S S S R R S S S RSN SRS RSN RS S S S RS ENEE iR e 1 K 11
MULOO440

DO 50 J=1,N _ MULOOU4S0
Do 10 I=1,K MULOOU4GD
WORK (1)=0.0D0 MOLO0470
CONTINUE MOLOO480

DO 30 K=1,N\ MOLOOL90

DO 20 I=1,8 MULOOS00

dGRK (1) =WORK (1) +A(I,K)*B(K,J) MUL0O0510

CONTINUE MOL00520
CONTINUE MOL00530

DO 40 I=1,N MULO0SH0

B (I ,J) =WORK {I) MOL00550



50

aon

CONTINUE
CONTINUE
RETURN

LAST LINE OF MULWOB

END
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MULWOB 2

MULO00560
HUL0O0570
AULO0580
MULOOS590
MULO0600
MULQO0610
MUL00620
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-80- ORSTEP 1

SUBKOUTINE QRSTEY (A,V,P,Q,R,NL,NU,N,NA,NV) QRS00010.
’ . QRS00020

*E k€% PDARAMETEKS: QRS00030
INTEGER N,NA,NL,NO, NV QRS 00040
DOUBLS PRECISICN A(NA,N),P,Q,EK, V(NV,N) QRS00050
QRS00060

xxkkkkLOCAL "VARIABLES: QRS00070
LOGICAL LAST QRS00080
INTEGER 1,J,K,NL2,NL3,NUM QRS00090
pOoUuLe PHECISION 5,X,Y,2 QRS00100
QRS00110

*¥Ekk¥x P JNCTIONS s QRS00120
DOUBLE PKECISION DABS,DSQRT QRS00130
QRS00140

**% ¥k %SJBROUTINES CALLED: QRS00150
NONZ i QRS00 160
QRS00170

S SN S S P R R D RS RS S A F SRS R S S R S N S L P R E R R S RS R R R B R0 Y LT 1R Ko 1)
, QRS00190

*k%xk%xPJRPOSE: ’ QRS00200
TH1S SUBROUTINE PEERFORMS ONE IMPLICIT QK STEP ON THE UPPER QRS00210

HESSENBEKG MATRIX A. THE SHIFT IS DETERMINED BY THE NUMBERS P,Q, QRS00220
AND kK, AND THE STEP IS APPLIED TC ROWS AND COLUMNS NL THRCUTH NU. QBRS00230

THE TRANSFORMATIONS ARE ACCUMULATED IN THE ARRAY V., QRS00240
QBS00250

*xkx*¥PARAMETER DESCRIPTION: QRS00260
ON INPUT: QRS00270
NA,NV ROW DIMENSIONS OF THE ARRAYS CONTALNING A QRS00280
AND V, RESPECTIVELY, AS DECLAKRED IN THE QRS00290

"CALLING PROGRAM DIMENSION STATEMENT; QRS00300

QRS00310

A N X N UPPER HESSENBERG MATRIX ON WHICH THE QR QRS00320
STEP IS TO BE PERFOKRMED; QRS00330

QRS00340

P,Q,R PARAMETERS WHICH DETERMINE THE SHIFT; QRS00350

~ ~ QRS00360

NL THE LOWERER LIMIT OF THE STEP; QRS00370
QRS00380

NU THE UPPER LIMIT OF THE STEP; QRS00390
QRS00400

N ORDER OF THE MATKIX A. QRS00410

: QRS00420
ON OUTPUT: QRS00430
QRSO0440

v N X N REAL SCRATCH ARRAY CONTAINING THE QRS00450
ACCUMULATED TRANSFORMATIONS. QRS00460

QRS00470

*xEEXHISTORY : QRS00480
DOCUMENTED BY J.A.K. CARRIG (ELEC. SYS. LAB., M.I.T., RM. 35-307, QBRS00490
CAMBRIDGE, ¥A 02139, PH.: (617) - 253-2165), SEPTEMBER 1978. QRS 00500
MOST ERECINT VERSION: SEPT 21, 1978, QRS00510
~ QBRS00520
::2:::2:::::::::2:::1::2::::::::::::::::::::::;:3::2:::2:::::::::IQR500530
QRS00540

NLZ2=NL+2 QBS00550
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DO 10 I=NL2,NU

A(L,I-2)=0.0D0

CONTINUE

IF (NL2.EQ.NU) GC TO 30
NL3=NL+3

DO 20 I=NL3,NU

a(r,1-3)=0.0D0

CONTINUE
CONTINUE
NUAI1=NU-1
DO 130 X=NL,NUM1

LAST=K.EQ. NUM1

IF {K.EQ.NL) GO TO 40
P=A (K,K-1)
2=A(K+1,K-1)

R=0.0D0

IF (.NOT.LAST) E=A{K+2,K-1)

X=DABS (P) +DABS (Q) +DABS (R)
IF (X.EQ.0.0DV) GO TO 130
P=P/X '
0=Q/X

R=R/X

CONTINUE

S=DSQRT (P*%2+Q¥*2+4R*%2)
IF (P.LT.0.0D0) S=-S

IF (K.EQ.NL) GO TO 50

A (K,K-1) =-5*X

GO TO 60

CONTINUE

-81-

IF (NL.NE.1) A(K,K-1)=-A(K,K-1)

CONTINUE

P=p+S

X=P/S

Y=0/5

Z=R/S

Q=Q/P

R=R/P

DO 80 J=K,N
P=A (K,d) +Q*A (K+1,J)
IF (LAST) GO TO 70
P=P+R*A (K+2,J)
A(K+2,Jd)=A (K+2,J) ~P*Z
CONTINUE
A (K+1,J)=A (K+1,J) -P*Y
A (K,Jd)=A (K,J)-P*X

CONTINUE

J=MINO (K+ 3, NU)

DO 100 I=1,J
P=X*¥A(I,K)+Y*A (I,K+1)
IF (LAST) GO TO 90
P=P+Z%*A (I,K+2)
A (I,K+2)=A(I,K+2)~-P*R
CONTINUE
A (I,K+1)=A(I,K+1)-P*Q
A(I,K)=A(L,K)-P

QRSTEP 2

QRS00560
QRS00570

QRS00580
QRS00590
QES00600
QRS006 10
QRS00620
QRS00630
QRS00640
QRS00650
QRS00660
QRS00670
QRS00680
QRS00690
QRS00700
QRS00710
QRS00720
QRS 00730
QRS00740
QBRS00750
QRS00760
QRS00770
QRS00780
QRS00790
QRS00800
QRS00810
QRS 00820
QRS00830
QRS00840
QRS00850
QRS00860
QRS00870
QR500880
QRS 00890
QRS00900
QRS00910
QRS00920
QRS00930
QRS00940
QRS00950
QES 00960
QRS00970
QRS 00980
QRS00990
QRS01000
QRS01010
QRS01020
QRS01030
QRS01040
QRS01050
QRS0 1060
QR501070
QRS01080
QRS501090
QRS01100



100

120
130

CONTINUE
DO 120 I=1,N
P=X*V (I,K) +Y*V (I,K+1)
IF (LAST) GO TG 110
p=pP+L%*V (I,K+2)
V(I,K+2)=V(I,K+2)-P*K
CONTINUE
V(I,K+1)=V (L,K+1)-P*Q
V (L,K)=V(I,K)-P
CONTINUE
CONTINUE
RETURN

LAST LINE OF UESTEP

IND
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ORSTEP 3

QRS01110
QRS01120
QES01130
QRS01140
QRsS01150
QRS01160
QRSO0Y170
QRS01180
QRS01190
QRS01200
QRS012190
QRS01220
QRS01230
QRS01240
QRS01250
QRS01260
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-83~ SPLIT 1

SUBROUTINE SPLIT (A,V,N,L,E1,E2,NA,NV) SPL0O00 10
) SPL00020

*%kk¥PARAMETERS: SPLOCO30
INTEGER L,N,NA,NV SPLOOO4O
DOUBLE PRECISIGN A (NA,N),V(NV,N),E1,E2 SPL00050
SPLO0O6O

*%x %%, OCAL VARIABLES: SPLOOG070
INTEGER I,J,L1 SPL0QO8C
DOUBLEZ PRECISION P,Q,R,T,U,¥,X,Y,2 SPL00090
SPLOO100

*kkkXPUNCTIONS: SPLO0Y10
DOUBLE PRECISION DABS,DSQRT SPLO0120
SPLO0130

*¥xx* SUBROUTINES CALLED: SPLOO 140
NONE SPLOO150
i ' SPLO0 160

2T ITItIIIrsas Tt Tyttt sSPLOOYTO
SPLO0O180

****¥*kPJRPOSE: SPLOO190

GIVEN Tiik UPPER-HESSENBERG MATRIX A WITH A 2 X 2 BLOCK STARTING ATSPL00200
A(L,L), THIS PROGRAM DETERMINES IF THE CORRESPONDING EIGENVALUES SPL00210
ARE REAL OR COMPLEX, IP THEY ARE REAL, A ROTATION IS DETERMINED SPL00220

THAT REDUCES THE BLOCK TO UPPER-TRIANGULAR FORM WITH THE SPL00230
EIGENVALUE OF LABGEST ABSOLUTE VALUE APPEARING FIRST. THE SPLOO240
ROTATION IS ACCUMULATED IN THE ARRAY V. SPL00250
5PL00260

*xx*kPDARAMETER DESCRIPTION: SPL00270
ON INPUT: ' SPL00280
NA, NV ROW DIMENSIONS OF THE ARRAYS CONTAINING SPL00290

A AND V, RESPECTIVELY, AS DECLARED IN THE SPL0O0300

CALLING PROGRAM DIMENSION STATEMENT; SPL00310

SPL0OCG320

A THE UPPER HESSENBERG MATRIX WHOSE 2 X 2 BLOCK SPL0O0330

IS T0 BE SPLIT; SPLOO340

SPL00350

N ) ORDER OF THE MATRIX A; SPLD0360
SPL0O0370

L POSITION OF THE 2 X 2 BLOCK. SPL00380
SPL0O0390

ON OUTPUT: S5PLO0O40O0
SPLOO410

v AN N X N ARRAY CONTAINING THE ACCUMULATED SPLOQ420
SPLITTING TRANSFCRMATION; SPLOO430

SPLOO440

E1,82 KEAL SCALARS. IF THE EIGENVALUES ARE COMPLEX, SPLOO450

E1 AND EZ CONTAIN THEIR COMMON REAL PART AND SPLO0O460

POSITIVE IMAGINARY PART (RESPECTIVELY) . SPL0O0470

IF THE EIGENVALUES ARt REAL, EY CONTAINS THE SPLO0480
ONE LARGEST IN ABSCLUTE VALUE AND E2 CONTAINS SPLOO490

THE OTHER ONE. SPLOOS00

SPLOO510

*x*x%kkHJISTORY: . SPL00520
DOCUMENTED BY J.A.K. CARRIG (ELEC. SYS. LAB., M4.I.T., K. 35-307, SPL00530
CAMBRIDGE, MA 02139, PH.: (617) - 253-2165), SEPT 1978. SPLO0O540

MOST RBRECENT VERSION: SEPT 21, 1978. SPL0O0O550
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X=A(L+1,L+1)

Y=A4 (L, L)
W=A(L,L+1)*A{L+1,L)
P={(Y-X)/2.0D0

Q=DP*%2+¥

IF (Q.GL.0.0DC) GO TO 10
El=P+X

BE2=DSQKT (-Q)

RETURN

CONTINUE

4=DSORT (Q)

IF (P.LT.0,C0D0) GO TOC 20
4L=P+12

GU TOC 30

CONTINUE

4Z=P-2

CONTINUX

IF (Z.EQ.0.0D0) GO TO 40
=-H/2

GO TO 50

CONTINUE

£=0.0D0

CONTINUE

IF (DABS (X+Z).GE.DABS(X+R)) Z=R

I=Y-X-Z
X=-Z

T=A (L,L+1)
U=A(L+1,L)

IF (DABS (Y) +DABS(U) .LE.DABS(T)+DABS(X)) GO TO 60

Q=U

p=Y

GO TO 70

CONTINUE -

o=X

p=T

CONTINUE

E=DSQRT (P*% 2+ *%2)

IF (R.¢T.0.0D0) GG TG 80

E1=A(L,L)

E2=A (L+1,L+1)

A(L+1,L)=0.0D0

RETURN

CUNTINUE

P=P/R

Q=Q/R

DO 90 J=L,N
2=A {L,J)
A(L,J)=P*Z+0%¥A{L+1,J)
A(L+1,J)=P*A (L+1,J)-Q*%2

CONTINUE

Li=L+1

DO 100 I=1,L1

...............

SPLQ0560

SPL0O0580
SPLO0590
SPL0O0C6O0
SPLO0610
SPL0O6K20
SPLO0630
SPLOO640
SPL0O0650
SPLO0660
SPLO0670
5PL00680
SPLO0690
SPL0O07G0
SPL0O0710
SPL00720
SPLO0O730
SPLO0O740
SPL00750
SPLO0T760
SPLO077C
SPLO0780
SPL0O0790
SPLOD8OO
SPLO008 10
SPLOO0B20
SPLO0830
S5PL0O840
SPLD0850
SPLO0860
SPL00870
SPL00880
SPL00890
SPL0O0900
SPL00910
SPLO0920
SPL00930
SPLOOS40
SPLO0950
SPL00960
SPLO0970
SPLO0980
SPL00990
SPL0O1000
SPLO1010
SPLO1020
SPL01030
SPLO 1040
SPLO1050
SPLO1060
SPLO1070
SPLD1080
SPL0O1090
SPLO1100



100

110

leNeXe

Z=A(I,L)
A{I,L)=P*L+Q*A(I,L+1)
A(I,L+1)=pP*A(I,L+1)-Q%2

CONTINUE

DO 110 I=1,N
Z=V{1,L)
V(L,L)=P%Z+Q*V(1,L+1)
V{(I,L+1)=P*V{I,L+1)=-Q%*Z

CONTINUE

A(L+1,L)=0.0D0

E1=A {L,L)

E2=A(L+1,L+1)

RETURN

LAST LINE OF SPLIT

END
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SPLIT 3

SPLO1110
SPLO1120

SPL0 1130
SPLO1140
SPLOT1150
SPLO1160
SPLO1170
SPLO1180
SPLO1190
SPL01200
SPLO1210
SPLO 1220
SPL01230
SPL0O1240
SPL01250
SPLO1260
SPLO1270
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