no. 859

A SCHUR METHOD FOR SOLVING ALGEBRAIC RICCATI EQUATIONS

Alan J. Laub

Laboratory for Information and Decision Systems
Formerly
Electronic Systems Laboratory
MASSACHUSETTS INSTITUTE OF TECHNOLOGY, CAMBRIDGE, MASSACHUSETTS 02139

A SCHUR METHOD FOR SOLVING ALGEBRAIC RICCATI EQUATIONS*

by

Alan J. Laub**

ABSTRACT

In this paper a new algorithm for solving algebraic Riccati equations (both continuous-time and discrete-time versions) is presented. The method studied is a variant of the classical eigenvector approach and uses instead an appropriate set of schur vectors thereby gaining substantial numerical advantages. Complete proofs of the Schur approach are given as well as considerable discussion of numerical issues. The method is apparently quite numerically stable and performs reliably on systems with dense matrices up to order 100 or so, storage being the main limiting factor.

[^0]
1. Introduction

In this paper a new algorithm for solving algebraic Riccati equations (both continuous-time and discrete-time versions) is presented. These equations play fundamental roles in the analysis, synthesis, and design of linear-quadratic-Gaussian control and estimation systems as well as in many other branches of applied mathematics. It is not the purpose of this paper to survey the extensive literature available for these equations but, rather, we refer the reader to, for example, [1], [2], [3], [4], and [5] for references. Nor is it our intention to investigate any but the unique (under suitable hypotheses) symmetric, nonnegative definite solution of an algebraic Riccati equation even though the algorithm to be presented does also have the potential to produce other solutions. For further reference to the "geometry" of the Riccati equation we refer to [3], [6], and [7].

The method studied here is a variant of the classical eigenvector approach to Riccati equations, the essentials of which date back to at least von Escherich in 1898 [8]. The approach has also found its way into the control literature in papers by, for example, MacFarlane [9], Potter [10], and Vaughn [11]. Its use in that literature is often associated with the name of Potter. However, the use of eigenvectors is often highly unsatisfactory from a numerical point of view and the present method uses the so-called and much more numerically attractive Schur vectors to get a basis for a certain subspace of interest in the problem.

Other authors such as Fath [12] and Willems [3], to name two, have also noted that any basis of the subspace would suffice but the specific

0823956

use of Schur vectors was inhibited by a not-entirely-straightforward problem of ordering triangular canonical forms - a problem which is discussed at length in the sequel. The paper by Fath is very much in the spirit of the work presented here and is one of the very few in the literature which seriously addresses numerical issues.

One of the best summaries of the eigenvector approach to solving algebraic Riccati equations is the work of Martensson [13]. This work extends [10] to the case of "multiple closed-loop eigenvalues". It will be shown in the sequel how the present approach recovers all the theoretical results of [10] and [13] while providing significant numerical advantages.

Most numerical comparisons of Riccati algorithms tend to definitely favor the standard eigenvector approach - its numerical difficulties notwithstanding - over other approaches such as Newton's method [14] or methods based on integrating a Riccati differential equation. Typical of such comparisons are [7], [15], and [16]. It will be demonstrated in this paper that if you previously liked the eigenvector approach, you will like the Schur vector approach at least twice as much. This statement, while somewhat simplistic, is based on the fact that a Schur vector approach provides a substantially more efficient, useful, and reliable technique for numerically solving algebraic Riccati equations. The method is intended primarily for the solution of dense, moderatesized equations (say, order ≤ 100) rather than large, sparse equations. While the algorithm in its present state offers much scope for improvement, it still represents an order-of-magnitude improvement over current methods for solving algebraic Riccati equations.

Briefly, the rest of the paper is organized as follows. This section is concluded with some notation and linear algebra review. In Sections 2 and 3 the continuous-time and discrete-time Riccati equations, respectively, are treated. In Section 4 numerical issues such as algorithm implementation, balancing, scaling, operation counts, timing, storage, stability, and conditioning are considered. In Section 5 we emphasize the advantages of the Schur vector approach and make some further general remarks. Six examples are given in Section 6 and some concluding remarks are made in Section 7.

1.1 Notation

Throughout the paper $A \in \mathbb{F}^{\mathrm{mxn}}$ will denote an mxn matrix with coefficients in a field \mathbb{F}. The field will usually be the real numbers \mathbb{R} or the complex numbers \mathbb{C}. The notations A^{T} and A^{H} will denote transpose and conjugate transpose, respectively, while A^{-T} will denote $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$. The notation A^{+}will denote the Moore-Penrose pseudoinverse of the matrix A. For $A \in \mathbb{R}^{n \times n}$ its spectrum (set of n eigenvalues) will be denoted by $\sigma(A)$. When a matrix $A \in \mathbb{R}^{2 n \times 2 n}$ is partitioned into four nxn blocks as

$$
A=\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right)
$$

we shall frequently refer to the individual blocks $A_{i j}$ without further t discussign.

1.2 Linear Algebra Review

Definition 1: $A \in \mathbb{R}^{n \times n}$ is orthogonal if $A^{T}=A^{-1}$.
Definition 2: $A \in \mathbb{C}^{n \times n}$ is unitary if $A^{H}=A^{-1}$.
Let $J=\left(\begin{array}{cc}0 & I \\ -I & 0\end{array}\right) \in \mathbb{R}^{2 n x 2 n}$ where I denotes the $n-$ th order identity matrix. Note that $J^{T}=J^{-1}=-J$.

Definition 3: $A \in \mathbb{R}^{2 n \times 2 n}$ is Hamiltonian if $J^{-1} A_{J}=-A$.
Definition 4 : $A \in \mathbb{R}^{2 n \times 2 n}$ is symplectic if $J^{-1} A^{T} J=A^{-1}$.

Hamiltonian and symplectic matrices are obviously closely related. For a discussion of this relationship and a review of "symplectic algebra" see [17], [18]. We will use the following two theorems from symplectic algebra. Their proofs (see [18]) are trivial (and hence will be omitted).

Theorem 1: 1. Let $A \in \mathbb{R}^{2 n \times 2 n}$ be Hamiltonian. Then $\lambda \in \sigma(A)$ implies $-\lambda \in \sigma(A)$ with the same multiplicity. 2 . Let $A \in \mathbb{R}^{2 n \times 2 n}$ be symplectic. Then $\lambda \in \sigma(A)$ implies $\frac{1}{\lambda} \in \sigma(A)$ with the same multiplicity.

There is a relationship between the right and left eigenvectors of these symplectically associated eigenvalues. See [18] for details.

Theorem 2: Let $A \in \mathbb{R}^{2 n \times 2 n}$ be Hamiltonian (or symplectic). Let $U \in \mathbb{R}^{2 n \times 2 n}$ be symplectic. Then $U^{-1} A U$ is Hamiltonian (or symplectic).

Finally, we need two theorems from classical similarity theory which form the theoretical cornerstone of modern numerical linear algebra. See [19], for example, for a textbook treatment.

Theorem 3 (Schur canonical form) : Let $A \in \mathbb{R}^{n \times n}$ have eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$. Then there exists a unitary similarity transformation u such that $U^{H} A U$ is upper triangular with diagonal elements $\lambda_{1}, \ldots, \lambda_{n}$ in that order.

In fact, it is possible to work only over \mathbb{R} by reducing to quasi-upper-triangular form with $2 x 2$ blocks on the (block) diagonal corresponding to complex conjugate eigenvalues and $1 x l$ blocks corresponding to the real eigenvalues. We refer to this canonical form as the real Schur form (RSF) or the Murnaghan-Wintner [20] canonical form.

Theorem $4(\operatorname{RSF}):$ Let $A \in \mathbb{R}^{\text {nxn }}$. Then there exists an orthogonal similarity transformation U such that $U^{T} A U$ is quasi-upper-triangular. Moreover, U can be chosen so that the $2 x 2$ and $1 x l$ diagonal blocks appear in any desired order.

If in Theorem 4 we partition $U^{T} A U$ into $\left(\begin{array}{ll}S_{11} & S_{12} \\ 0 & S_{22}\end{array}\right)$ where $S_{11} \in \mathbb{R}^{k x k}$, $0<k \leq n$, we shall refer to the first k vectors of $U \operatorname{as}^{22}$ the Schur vectors corresponding to $\sigma\left(S_{11}\right) \subseteq \sigma(A)$. The Schur vectors corresponding to the eigenvalues of S_{11} span the eigenspace corresponding to those eigenvalues even when some of the eigenvalues are multiple (see [21]). We shall use this property heavily in the sequel.

2. The Continuous-Time Algebraic Riccati Equation

In this section we shall present a method for using a certain set of Schur vectors to solve (for X) the continuous-time algebraic Riccati equation

$$
\begin{equation*}
F^{T} X+X F-X G X+H=0 \tag{I}
\end{equation*}
$$

All matrices are in $\mathbb{R}^{n \times n}$ and $G=G^{T} \geq 0, H=H^{T} \geq 0$.
It is assumed that (F, B) is a stabilizable pair [1] where B is a full-rank factorization (FRF) of $G\left(i . e ., B^{T}=G\right.$ and $\left.\operatorname{rank}(B)=\operatorname{rank}(G)\right)$ and (C, F) is a detectable pair [1] where C is a $F R F$ of H (i.e., $C^{T} C=H$ and $\operatorname{rank}(C)=r a n k(H))$. Under these assumptions, (I) is known to have a unique nonnegative definite solution [1]. There are, of course, many other solutions to (1) but for the algorithm presented here the emphasis will be on computing the nonnegative definite one.

Now consider the Hamiltonian matrix

$$
Z=\left(\begin{array}{cc}
F & -G \tag{2}\\
-H & -F^{T}
\end{array}\right) \quad \in \mathbb{R}^{2 n \times 2 n}
$$

Our assumptions guarantee that Z has no pure imaginary eigenvalues. Thus by Theorem 4 we can find an orthogonal transformation $U \in \mathbb{R}^{2 n \times 2 n}$ which puts Z in RSF:

$$
U^{T} Z U=S=\left(\begin{array}{ll}
\mathrm{S}_{11} & \mathrm{~S}_{12} \tag{3}\\
0 & \mathrm{~S}_{22}
\end{array}\right)
$$

where $s_{i j} \in \mathbb{R}^{n \times n}$. It is possible to arrange, moreover, that the real parts of the spectrum of S_{11} are negative while the real parts of the spectrum of S_{22} are positive. U is conformably partitioned into four nxn blocks:
-8-

$$
\mathrm{U}=\left(\begin{array}{ll}
\mathrm{U}_{11} & \mathrm{U}_{12} \tag{4}\\
\mathrm{U}_{21} & \mathrm{U}_{22}
\end{array}\right)
$$

We then have the following theorem.

Theorem 5: With respect to the notation and assumptions above:

1. U_{11} is invertible and $X=U_{21} U_{11}^{-1}$ solves (1).
2. $\sigma\left(S_{11}\right)=\sigma(F-G X)=$ the "closed-loop" spectrum.
3. $X=X^{T}$.
4. $x \geq 0$.

Proof:

I. We first prove that U_{11} is invertible. To avoid complicating the proof unnecessarily by having to consider 2×2 blocks of S_{11}, we will for simplicity assume that $S \in \mathbb{X}^{2 n \times 2 n}$ is upper triangular and U is unitary. Suppose $U_{11} \in \mathbb{C}^{n x n}$ is singular. Without any loss of generality, we may assume that U_{11} is of the form $\left(0, \hat{U}_{11}\right)$ where $\hat{U}_{11} \in \mathbb{T}^{n x(n-1)}$. Thus, we have

$$
\left(\begin{array}{cc}
F & -G \tag{5}\\
-H & -F^{T}
\end{array}\right)\binom{0}{u}=\binom{0}{u} \cdot(-\lambda)
$$

where $u \in \mathbb{I}^{n x l}$ and $(-\lambda)$ with Re $\lambda>0$ is the upper left element of s. But then for any X we have

$$
\begin{aligned}
(F-G X)^{T} u & =F^{T} u-X^{T} G u \\
& =\lambda u \quad \text { by }(5)
\end{aligned}
$$

However, we also have $F^{T} u=\lambda u$ by (5). Thus we have an eigenvalue λ of F with positive real part which is uncontrollable. This contradicts the assumption of stabilizability so U_{11} must be invertible. We now show that $\mathrm{x}=\mathrm{U}_{21} \mathrm{U}_{11}^{-1}$ solves (1). Simply substitute into (1): $F^{T} X+X F-X G X+H \equiv-(I, X) J Z\binom{I}{X}$
$=\left(U_{21} U_{11}^{-1},-I\right) z\binom{I}{U_{21} U_{11}^{-1}}$
$=\left(U_{21} U_{11}^{-1},-I\right) z\binom{U_{11}}{U_{21}} U_{11}^{-1}$
$=\left(\mathrm{U}_{21} \mathrm{U}_{11}^{-1},-\mathrm{I}\right)\binom{\mathrm{U}_{11}}{\mathrm{U}_{21}} \mathrm{~S}_{11} \mathrm{U}_{11}^{-1} \quad$ from (3)
$=0$.
2. $\operatorname{From}\left(\begin{array}{cc}F & -G \\ -H & -F^{T}\end{array}\right)\binom{U_{11}}{U_{21}}=\binom{U_{11}}{U_{21}} S_{11}$
we have $\mathrm{U}_{11} \mathrm{~S}_{11}=\mathrm{FU}_{11}-\mathrm{GU}_{21}$

$$
=(F-G X) U_{11} .
$$

Thus $U_{11}^{-1}(F-G X) U_{11}=S_{11}$ so $\sigma\left(S_{11}\right)=\sigma(F-G X)$.

$$
\begin{equation*}
\text { 3. Let } \mathrm{Y}=\mathrm{U}_{11}^{\mathrm{T}} \mathrm{U}_{21} \text {. } \tag{6}
\end{equation*}
$$

Then

$$
\begin{equation*}
\mathrm{x}=\mathrm{U}_{11}^{-\mathrm{T}} \mathrm{YU}_{11}^{-1} \tag{7}
\end{equation*}
$$

so to prove that X is symmetric it clearly suffices to show that Y is symmetric, i.e., $\mathrm{U}_{11}^{\mathrm{T}} \mathrm{U}_{21}-\mathrm{U}_{21}^{\mathrm{T}} \mathrm{U}_{11}=0$.

Now consider the skew-symmetric, orthogonal matrix $M=U^{T} J U$. Using the fact that Z is Hamiltonian, it is easy to show that

$$
S^{T} M=-M S
$$

where S was given in (3). Thus $S_{11}^{T} M_{11}+M_{11} S_{11}=0$. But since S_{11} is stable, it follows from classical Lyapunov theory (see, e.g., [22]) that $M_{11}=0 . \quad$ But $M_{11}=U_{11}^{T} U_{21}-U_{21}^{T} U_{11}$ so $U_{11}^{T} U_{21}=U_{21}^{T} U_{11}$.

Remark: It can be shown that the matrix M is of the general form

$$
M=\left(\begin{array}{cc}
0 & M_{12} \\
-\mathrm{M}_{12}^{\mathrm{T}} & 0
\end{array}\right) \text { where } \mathrm{M}_{12} \text { is orthogonal. }
$$

4. From (6) and (7) it clearly suffices to prove that $\mathrm{U}_{11}^{\mathrm{T}} \mathrm{U}_{21} \geq 0$. Define

$$
V(t)=\binom{U_{11}}{U_{21}} e^{t S_{11}}
$$

Note that $V(0)=\binom{U_{11}}{U_{21}}$ while $\lim _{t \rightarrow+\infty} V(t)=\binom{0}{0}$ since S_{11} is stable. Then

$$
\begin{aligned}
\dot{V}(t) & =\binom{U_{11}}{U_{21}} S_{11} e^{t S_{11}} \\
& =z\binom{U_{11}}{U_{21}} e^{t S_{11}} \quad \text { by (3) } \\
& =z V(t)
\end{aligned}
$$

Now let $W(t)=V^{T}(0) L V(0)-V^{T}(t) L V(t)$ where $L=\left(\begin{array}{ll}0 & I \\ 0 & 0\end{array}\right)$. Then

$$
\begin{aligned}
W(t) & =-\int_{0}^{t} \frac{d}{d s}\left[V^{T}(s) L V(s)\right] d s \\
& =-\int_{C}^{t} V^{T}(s)\left[Z^{T} L+L Z\right] V(s) d s \\
& =-\int_{C}^{t} V^{T}(s)\left[\begin{array}{cc}
-H & 0 \\
0 & -G
\end{array}\right] V(s) d s \\
& \geq 0 \text { for all } t \geq 0 .
\end{aligned}
$$

Thus $\lim _{t \rightarrow+\infty} W(t)=V^{T}(0) L V(0)=U_{11}^{T} U_{21} \geq 0$.

This completes the proof of the theorem.

Further discussion of this theorem and computational considerations are deferred until Section 4.

3. The Discrete-Time Algebraic Riccati Equation

In this section we shall present an analogous method using certain Schur vectors to solve the discrete-time algebraic Riccati equation

$$
\begin{equation*}
F^{T} X F-X-F^{T} X G_{1}\left(G_{2}+G_{1}^{T} X G_{1}\right)^{-1} G_{1}^{T} X F+H=0 \tag{8}
\end{equation*}
$$

Here $F, H, X \in \mathbb{R}^{n \times n}, G_{1} \in \mathbb{R}^{n \times m}, G_{2} \in \mathbb{R}^{m x m}$, and $H=H^{T} \geq 0, G_{2}=G_{2}^{T}>0$. Also, $\mathrm{m} \leq \mathrm{n}$. The details of the method for this equation are sufficiently different from the continuous-time case that we shall explicitly present most of them.

It is assumed that $\left(F, G_{1}\right)$ is a stabilizable pair and that (C, F) is a detectable pair where C is a $F R F$ of H (i.e., $C^{T} C=H$ and $\left.\operatorname{rank}(C)=\operatorname{rank}(H)\right)$. We also assume that F is invertible - a common assumption on the openloop dynamics of a discrete-time system [23]. The details for the case when F is singular can be found in Appendix 1.

Under the above assumptions (8) is known to have a unique nonnegative definite solution [23] and the method proposed below will be directed towards finding that solution.

Setting $G=G_{1} G_{2}^{-1} G_{1}^{T}$ we consider this time the symplectic matrix
$Z=\left(\begin{array}{cr}F+G F^{-T} & -G F^{-T} \\ -F^{-T} T_{H} & F^{-T}\end{array}\right)$

Our assumptions guarantee that Z has no eigenvalues on the unit circle. By Theorem 4 we can find an orthogonal transformation $U \in \mathbb{R}^{2 n x 2 n}$ which puts Z in RSF:

[^1]\[

U^{T} Z_{Z U}=S=\left($$
\begin{array}{ll}
S_{11} & S_{12} \tag{10}\\
0 & S_{22}
\end{array}
$$\right)
\]

where $s_{i j} \in \mathbb{R}^{\mathrm{nxn}}$.
It is possible to arrange, moreover, that the spectrum of S_{11} lies inside the unit circle while the spectrum of S_{22} lies outside the unit circle. Again U is partitioned conformably. we then have the following theorem.

Theorem 6: With respect to the notation and assumptions above:

1. U_{11} is invertible and $\mathrm{X}=\mathrm{U}_{21} \mathrm{U}_{11}^{-1}$ solves (8).
2. $\sigma\left(S_{11}\right)=\sigma\left(F-G_{1}\left(G_{2}+G_{1}^{T} X G_{1}\right)^{-1} G_{1}^{T} X F\right)$
$=\sigma\left(F-G F^{-T}(X-H)\right)$
$=\sigma\left(F-G\left(X^{-1}+G\right)^{-1} F\right)$ when X is invertible
= the "closed-loop" spectrum.
3. $x=x^{T}$.
4. $X \geq 0$.

Proof:

1. We proceed as in the proof of Theorem 5. Again we assume that U_{11} is singular and of the form $U_{11}=\left(0, \hat{U}_{11}\right)$ where $\hat{U}_{11} \in \mathbb{c}^{n x(n-1)}$. Then since $U^{T} Z^{-1} U=S^{-1}$ we have

$$
\left(\begin{array}{ll}
\mathrm{F}^{-1} & \mathrm{~F}^{-1} \mathrm{G}_{\mathrm{G}} \tag{11}\\
\mathrm{HF}^{-1} & \mathrm{~F}^{T}+\mathrm{HF}^{-1} \mathrm{G}
\end{array}\right)\binom{0}{u}=\binom{0}{u} \lambda
$$

where $u \in \mathbb{T}^{n x l}$ and $|\lambda|>1$. But then for any x we have

$$
\begin{aligned}
\left(F-G F^{-T}(X-H)\right)^{T} u & =\left(F^{T}+H F^{-1} G\right) u-X^{T} F^{-1} G u \\
& =\lambda u
\end{aligned}
$$

by (11). However, we also have $F^{T} u=\lambda u$ by (11). Thus we have $\lambda \in \sigma(F)$ with $|\lambda|>1$ which is uncontrollable. This contradicts the assumption of stabilizability so U_{11} must be invertible, $T o$ show that $X=U_{21} U_{11}^{-1}$ solves (8) we have:

$$
\begin{aligned}
F^{T} X F & -X-F^{T} X_{1}\left(G_{2}+G_{1}^{T} X G_{1}\right)^{-1} G_{1}^{T} X F+H \\
& \equiv F^{T} X F-X-F^{T} X G F^{-T}(X-H)+H \\
& \equiv-F^{T}(I, X) J Z\binom{I}{X} \\
& =-F^{T}\left(-U_{21} U_{11}^{-1}, I\right) Z\binom{U_{11}}{U_{21}} U_{11}^{-1} \\
& =-F^{T}\left(-U_{21} U_{11}^{-1}, I\right)\left(\begin{array}{l}
U_{11} \\
U_{21} \\
21
\end{array}\right) S_{11} U_{11}^{-1} \quad \text { from (10) } \\
& =0 .
\end{aligned}
$$

$$
\text { 2. } \operatorname{From}\left(\begin{array}{cc}
\mathrm{F}+\mathrm{GF}^{-\mathrm{T}} \mathrm{H} & -\mathrm{GF}^{-\mathrm{T}} \\
-\mathrm{F}^{-\mathrm{T}_{\mathrm{H}}} & \mathrm{~F}^{-\mathrm{T}}
\end{array}\right)\binom{\mathrm{U}_{11}}{\mathrm{U}_{21}}=\binom{\mathrm{U}_{11}}{\mathrm{U}_{21}} \mathrm{~S}_{11}
$$

we have $U_{11} S_{11}=\left(F+G F^{-T}{ }_{H}\right) U_{11}-G F^{-T} U_{21}$

$$
=\left(F-G F^{-T}(X-H)\right) U_{11}
$$

Thus $\sigma\left(S_{I l}\right)=\sigma\left(F-G F^{-T}(X-H)\right)$. The other equalities follow by wellknown matrix identities.
3. Let $Y=U_{11}^{T} U_{21}$. Since $X=U_{11}^{-T} Y U_{11}^{-1}$ it suffices, as in Theorem 5, to prove that Y is symmetric. The proof is essentially the same:
since Z is symplectic we have

$$
S^{T} M=-M S^{-1}
$$

where $M=U^{T} J U$ and S was given in (10). Then $S_{11}^{T} M_{11} S_{11}+M_{11}=0$ whence $M_{11}=0$ by classical Lyapunov theory. But $M_{11}=U_{11}^{T} U_{21}-U_{21}^{T} U_{11}$ so symmetry follows.
4. As in Theorem 5 it suffices to prove that $U_{11}^{T} U_{21} \geq 0$. Define $V(k)=\binom{U_{11}}{U_{21}} S_{11}^{k} . \quad$ Note that $V(0)=\binom{U_{11}}{U_{21}}$ while $\lim _{k \rightarrow+\infty} V(k)=\binom{0}{0}$ since S_{11} is stable. Then

$$
V(k+1)=\binom{U_{11}}{U_{21}} s_{11}^{k+1}
$$

$$
=\mathrm{ZV}(\mathrm{k})
$$

by (10). Now let $W(k)=V^{T}(0) L V(0)-V^{T}(k) L V(k)$ where $L=\left(\begin{array}{ll}0 & I \\ 0 & 0\end{array}\right)$. Then

$$
\begin{aligned}
W(k) & =\sum_{j=0}^{k-1}\left[V^{T}(j) L V(j)-V^{T}(j+1) L V(j+1)\right] \\
& =\sum_{j=0}^{k-1} V^{T}(j)\left[L-Z^{T} L Z\right] V(j) \\
& =\sum_{j=0}^{k-1} V^{T}(j)\left[\begin{array}{lc}
H+H F^{-1} G_{G F}-T & -H F^{-1} G F^{-T} \\
-F^{-1} G F^{-T} H & F^{-1} G F^{-T}
\end{array}\right] V(j)
\end{aligned}
$$

Now, according to a theorem of Albert [24], a matrix

$$
A=\left(\begin{array}{ll}
A_{11} & A_{12}^{T} \\
A_{12} & A_{22}
\end{array}\right)
$$

with $A_{11}=A_{11}^{T} \in \mathbb{R}^{n \times n}, A_{22}=A_{22}^{T} \in \mathbb{R}^{m \times m}$ is nonnegative definite if and only if:
(i) $A_{22} \geq 0$
(ii) $\quad A_{22} A_{22}^{+} A_{12}=A_{12}$
and
(iii) $A_{11}-A_{12}^{T} A_{22}^{+} A_{12} \geq 0$.

For the matrix $A=\left(\begin{array}{cc}H+H E H & -H E \\ -E H & E\end{array}\right)$ where $E=F^{-1} G^{-T}$ we clearly have (i) satisfied. We also have (ii) satisfied since $\mathrm{EE}^{+}(-\mathrm{EH})=-\mathrm{EH}$ by an elementary defining property of the Moore-Penrose pseudoinverse [25]. Finally, to verify (iii) we note that

$$
\mathrm{H}+\mathrm{HEH}-(-\mathrm{HE}) \mathrm{E}^{+}(-\mathrm{EH})=\mathrm{H} \geq 0
$$

Thus $W(k) \geq 0$ for all $k \geq 0$ so

$$
\lim _{k \rightarrow+\infty} W(k)=V^{T}(0) L V(0)=U_{11}^{T} U_{21} \geq 0
$$

This completes the proof of the theorem.

We now turn to some general numerical considerations regarding the Schur vector approach.

4. Numerical Considerations

There are two steps to the Schur vector approach. The first is reduction of a $2 \mathrm{n} \times 2 \mathrm{n}$ matrix to an ordered real Schur form; the second is the solution of an nth order linear matrix equation. We shall discuss these in the context of the continuous-time case noting differences for the discrete-time case where appropriate.

4.1 Algorithm Implementation

It is well-known (see [21], for example) that the double Francis QR algorithm applied to a real general matrix does not guarantee any special order for the eigenvalues on the diagonal of the Schur form. However, it is also known how the real Schur form can be arbitrarily reordered via orthogonal similarities; see [2l] for details. Thus any further orthogonal similarities required to ensure that $\sigma\left(S_{11}\right)$ in (3) lies in the left-half complex plane can be combined with the U initially used to get a RSF to get a final orthogonal matrix which effects the desired ordered RSF.

Stewart has recently published FORTRAN subroutines for calculating and ordering the RSF of a real upper Hessenberg matrix [26]. The $1 x 1$ or 2×2 blocks are ordered so that the eigenvalues appear in descending order of magnitude along the diagonal. Stewart's software (HQR3) may thus be used directly if one is willing to first apply to the \mathbb{Z} of (2) an appropriate bilinear transformation which maps the left-half-plane to the exterior of the unit circle. Since the transformed Z is an analytic function of Z, the U that reduces it to an ordered RSF - with half the eigenvalues outside the unit circle - is the desired U from which the
solution of (1) may be constructed. Alternatively, Stewart's software can be modified to directly reorder a RSF by algebraic sign.

In the discrete-time case, HQR3 can be used directly by working with

$$
Z^{-1}=\left(\begin{array}{ll}
F^{-1} & F^{-1} G \\
H^{-1} & F^{T}+\mathrm{HF}^{-1} G
\end{array}\right)
$$

The U which puts $\sigma\left(S_{11}\right)$ outside the unit circle is thus the same U which puts the upper left $n \times n$ block of the RSF of z inside the unit circle.

In summary then, to use HQR3 we would recommend using the following sequence of subroutines (or their equivalents):

BALANC	to balance a real general matrix
ORTHES	to reduce the balanced matrix to upper Hessenberg form using orthogonal transformations
ORTRAN	to accumulate the transformations from the Hessenberg reduction
HQR3	to determine an ordered RSF from the Hessenberg matrix
BALBAK	to backtransform the orthogonal matrix to a non- singular matrix corresponding to the original matrix.

The subroutines BALANC, ORTHES, ORTRAN, BALBAK are all available in EISPACK [27].

The second step to be implemented is the solution of an nth order linear matrix equation

$$
\mathrm{XU}_{11}=\mathrm{U}_{21}
$$

to find $\mathrm{X}=\mathrm{U}_{21} \mathrm{U}_{11}^{-1}$. For this step we would recommend a good linear equation solver such as DECOMP and SOLVE available in [28] or the appropriate routines available in the forthcoming LINPACK [29]. A routine such
as DECOMP computes the LU-factorization of U_{11} and SOLVE performs the forward and backward substitutions. A good estimate of the condition number of U_{11} with respect to inversion is available with good linear equation software and this estimate should be inspected. A badly conditioned $U_{I 1}$ usually results from a "badly conditioned Riccati equation". This matter will be discussed further in Section 4.4. While we have no analytical proof at this time, we have observed empirically that a condition number estimate on the order of 10^{t} for U_{11} usually results in a loss of about t digits of accuracy in x.

One final note on implementation. Since x is symmetric it is usually more convenient, with standard linear equation software, to solve the equation

$$
U_{11}^{T} \mathrm{X}=\mathrm{U}_{21}^{\mathrm{T}}
$$

to find $\mathrm{x}=\mathrm{U}_{11}^{-\mathrm{T}} \mathrm{U}_{21}^{\mathrm{T}}=\mathrm{U}_{21} \mathrm{U}_{11}^{-1}$.

4.2 Balancing and Scaling

Note that the use of balancing in the above implementation results in a nonsingular (but not necessarily orthogonal) matrix which reduces Z to RSF. More specifically, suppose P is a permutation matrix and D is a diagonal matrix such that PD balances Z, i.e.,

$$
\mathrm{D}^{-1} \mathrm{PZPD}=\mathrm{z}_{\mathrm{b}}
$$

where Z_{b} is the balanced matrix; see [30] for details. We then find an orthogonal matrix U which reduces z_{b} to ordered RSF:

$$
\mathrm{u}^{\mathrm{T}} z_{b} u=s
$$

Then PDU (produced by BAIBAK) is clearly a nonsingular matrix which reduces Z to ordered RSF. The first n columns of PDU span the eigenspace corresponding to eigenvalues of z with negative real parts and that is the only property we require of the transformation. For simplicity in the sequel, we shall speak of the transformation reducing Z to RSF as simply an orthogonal matrix U with the understanding that the more computationally attractive transformation is of the form PDU.

An alternative approach to direct balancing of Z is to attempt
some sort of scaling in the problem which generates the Riccati equation. To illustrate, consider the linear optimal control problem of finding a feedback controller $u(t)=K x(t)$ which minimizes the performance index

$$
J(u)=\int_{0}^{+\infty}\left[x^{T}(t) H x(t)+u^{T}(t) R u(t)\right] d t
$$

with plant constraint dynamics given by

$$
\dot{x}(t)=F x(t)+B u(t) \quad i \quad x(0)=x_{0}
$$

We assume $H=H^{T} \geq 0, R=R^{T}>0$ and (F, B) controllable, (F, C) observable where $C^{T} C=H$ and $\operatorname{rank}(C)=\operatorname{rank}(H)$. Then the optimal solution is wellknown to be

$$
u(t)=-R^{-1} T_{X X}
$$

where X solves the Riccati equation

$$
F^{T} X+X F-X B R^{-1} B^{T} X+H=0
$$

Now suppose we change coordinates via a nonsingular transformation $x(t)=\operatorname{Tw}(t)$. Then in terms of the new state w our problem is to minimize

$$
\int_{c}^{\dot{+}}\left[w^{T}(t)\left(T^{T} H T\right) w(t)+u^{T}(t) R u(t)\right] d t
$$

subject to

$$
\dot{w}(t)=\left(T^{-1} F T\right) w(t)+\left(T^{-1} B\right) u(t)
$$

The Hamiltonian matrix Z for this transformed system is now given by

$$
Z_{W}=\left(\begin{array}{cc}
T^{-1} F T & -T^{-1} B_{B R}-1_{B} T_{T}-T \\
-T_{H T} & -T_{F^{T}} T_{T}^{-T}
\end{array}\right)
$$

and the associated solution X_{w} of the transformed Riccati equation is related to the original X by $X=T^{-T} X_{W} T^{-1}$. One interpretation of T then is as a scaling transformation, a diagonal matrix, for example, in an attempt to "balance" the elements of Z_{w}. Applying such a procedure, even in an ad hoc way, is frequently very useful from a computational point of view.

Another way to look at the above procedure is that Z_{w} is symplectically similar to Z via the transformation $\left(\begin{array}{ll}T & 0 \\ 0 & T^{-T}\end{array}\right)$, i.e.,

$$
Z_{W}=\left(\begin{array}{ll}
T & 0 \\
0 & T^{-T}
\end{array}\right)^{-1} \quad Z \quad\left(\begin{array}{ll}
T & 0 \\
0 & T^{-T}
\end{array}\right)
$$

It is well-known that Z_{w} is again Hamiltonian (or symplectic in the dis-crete-time case) since the similarity transformation is symplectic. One can then pose the problem of transforming z by other, more elaborate symplectic similarities so as to achieve various desirable numerical properties or canonical forms. This topic for further research is presently being investigated.

4.3 Operation Counts, Timing, and Storage

We shall give approximate operation counts for the solution of nth order algebraic Riccati equations of the form (1) or (8). Each operation is assumed to be roughly equivalent to forming $a+(b \times c)$ where a, b, c are floating point numbers. It is almost impossible to give an accurate operation count for the algorithm described above since so many factors are variable such as the ordering of the RSF. We shall indicate only a ballpark $O\left(n^{3}\right)$ figure.

Let us assume then that we already have at hand the $2 \mathrm{n} \times 2 \mathrm{n}$ matrix z of the form (2) or (9). Note, however, that unlike forming z in (2), Z in (9) requires approximately $4 n^{3}$ additional operations to construct, given only F, G, and H. This will turn out to be fairly negligible compared to the counts for the overall process. Furthermore, we shall give only order of n^{3} counts for these rough estimates. The three main steps are:

Operations
(i) reduction of z to upper Hessenberg from $\frac{5}{3}(2 n)^{3}$
(ii) reduction of upper Hessenberg form to RSF $\geq 4 k(2 n)^{3}$
(iii) solution of $\mathrm{XU}_{11}=\mathrm{U}_{21}$
$\frac{4}{3} n^{3}$

The number k represents the average number of $Q R$ steps required per eigenvalue and is usually over-estimated by l.5. We write $\geq 4 \mathrm{k}(2 \mathrm{n})^{3}$ since, in general, the reduction may need more operations if ordering is required. Using $k=1.5$ we see that the total number of operations required is at least $63 \mathrm{n}^{3}$. Should the ordering of the RSF require, say, 25 m more operations than the unordered RSF, we have
a ballpark estimate of about $75 \mathrm{n}^{3}$ for the entire process.

Timing estimates for steps (i) and (ii) may be obtained from [27] for a variety of computing environments. The additional time for balancing and for step (iii) would then add no more than about 5\% to those times while the additional time for ordering the RSF is variable, but typically adds no more than about 15\%. For example, adding 20\% to the published figures [27] for an IBM 370/165 (a typical medium speed machine) under $0 S / 360$ at the University of Toronto using FORTRAN H Extended with Opt. $=2$ and double precision arithmetic, we can construct the following table:

Riccati Equation Order $\mathrm{n}=$	10	20	30	40
CPU Time (Sec.)	0.2	1.3	4.0	9.0

In fact, these times are in fairly close agreement with actual observed times for randomly chosen test examples of these orders. Note the approximately cubic behavior of time versus order.

Extrapolating these figures for a 64th order equation (see Example 5 in Section 6) one might expect a CPU-time in the neighborhood of 38 sec. In fact, for that particular example the time was approximately 34 sec.

It must be re-emphasized here that timing estimates derived as above are very approximate and depend on numerous factors in the actual computing environment as well as the particular input data. However, such estimates can provide very useful and quite reliable information if interpreted as providing essentially order of magnitude figures.

With respect to storage considerations the algorithm requires $8 n^{2}+c n(c=a$ small constant) storage locations. This fairly large figure limits applicability of the algorithm to Riccati equations on the order of about 100 or less in many common computing environments. Of course, CPU time becomes a significant factor for $\mathrm{n}>100$, also.

4.4 Stability and Conditioning

This section will be largely speculative in nature as very few hard results are presently available. A number of areas of continuing research will be described.

With respect to stability, the implementation discussed in Section 4.1 consists of two effectively stable steps. The crucial step is the QR step and the present algorithm is probably essentially as stable as QR. The overall two step process is apparently quite stable numerically but we have no proof of that statement,

Concerning the conditioning of (1) (or (8)) almost no analytical results are known. The study of (1) is obviously more complex than the study of even the Lyapunov equation

$$
\begin{equation*}
F^{T} X+X F+H=0 \tag{12}
\end{equation*}
$$

where $H=H^{T} \geq 0$. And yet very little numerical analysis is known for (12). In case F is normal, a condition number with respect to inversion of the Lyapunov operator $F X=F^{T} X+X F$ is easily shown to be given by

$$
\frac{\max _{i, j}\left|\lambda_{i}(F)+\lambda_{j}(F)\right|}{\min _{i, j}\left|\lambda_{i}(F)+\lambda_{j}(F)\right|}
$$

But in the general case, a condition number in terms of F rather than $F^{T} \otimes I+I \otimes F^{T}(\otimes$ denotes Kronecker product) has not been determined. Some empirical observations on the accuracy of solutions of certain instances of (12) suggest that one factor influencing conditioning of (12) is the proximity of the spectrum of F to the imaginary axis. To be more specific, suppose F has an eigenvalue at $a \pm j b$ with $\left|\frac{b}{a}\right| \gg 1$ (typically $a<0$ is very small). If $\left|\frac{b}{a}\right|=0\left(10^{t}\right)$ we lose approximately t digits of accuracy and we might expect a condition number for the solution of (12) to also be $O\left(10^{t}\right)$ in this situation.

There are some close connections between (12) and (1) (and the respective discrete-time versions) and we shall indicate some preliminary observations here. A perturbation analysis or the notion of a condition number for (1) is intimately related to the condition of an associated Lyapunov equation, namely one whose "F-matrix" approximates the closedloop matrix $\mathrm{F}-\mathrm{GX}$ where X solves (1). To illustrate, suppose $\mathrm{X}=\mathrm{Y}+\mathrm{E}$ where $Y=Y^{T}$ may be interpreted as an approximation of X. Then

$$
\begin{aligned}
0 & =F^{T}(Y+E)+(Y+E) F-(Y+E) G(Y+E)+H \\
& \approx(F-G Y)^{T} E+E(F-G Y)+\left(F^{T} Y+Y F-Y G Y+H\right) \\
& =\hat{F}^{T} E+\hat{E}+\hat{H}
\end{aligned}
$$

where we have neglected the second-order term EGE. Thus conditioning of (1) should be closely related to nearness of the closed-loop spectrum ($\sigma(\mathrm{F}-\mathrm{GX})$) to the imaginary axis. Observations similar to these have been made elsewhere; see, for example, Bucy [31] where the problem is posed as one of structural stability. A condition number might, in some sense, be thought of as a quantitative measure of the degree of structural stability.

Another factor involved in the conditioning of (1) relates to the assumptions of stabilizability of (F, B) and detectability of (C, F). For example, near-unstabilizability of (F, B) in either a parametric sense or in a control energy sense (i.e., near-singular controllability Gramian) definitely causes (1) to become badly conditioned. Our experience has been that the ill-conditioning manifests itself in the algorithm by a badly conditioned U_{11}.

Work related to the conditioning of (1) and (8) is under continuing investigation and will be the subject of another paper. Such analysis is, of course, independent of the particular algorithm used to solve (1) or (8), but is useful to understand how ill-conditioning can be expected to manifest itself in a given algorithm.

5. Advantages of the Schur Vector Approach and Further General Remarks

5.1 Advantages of the Schur Vector Approach

The advantages of this algorithm over others using eigenvectors (such as Potter's approach [10] and its extensions) are obvious. Firstly, the reduction to $R S F$ is an intermediate step in computing eigenvectors anyway (using the double Francis $Q R$ algorithm) so the Schur approach must, by definition, be faster usually by a factor of at least two. Secondly, and more importantly, this algorithm will not suffer as severely from the numerical hazards inherent in computing eigenvectors associated with multiple or near-multiple eigenvalues. The computation of eigenvectors is fraught with difficulties (see, e.g. [21] for a cogent discussion) and the eigenvectors themselves are simply not needed. All that is needed is a basis for the eigenspace spanned by the eigenvalues of Z with negative real parts (with an analogous statement for the discretetime case). As good a basis as is possible (in the presence of rounding error) for this subspace can be found from the Schur vectors comprising the matrix $\binom{U_{11}}{U_{21}}$, independently of individual eigenvalue multiplicities. The reader is strongly urged to consult [32] and [21] (especially pp. 609610) for further numerical details.

The fact that any basis for the stable eigenspace can be used to construct the Riccati equation solution has been noted by many people; see [12] or [3] among others. The main stumbling block with using the Schur vectors was the ordering problem with the RSF but once that is handled satisfactorily the algorithm is easy.

The Schur vector approach derives its desirable numerical properties from the underlying $Q R$-type process. To summarize: if you like the eigenvector approach for solving the algebraic Riccati equation you'll like the Schur vector approach at least twice as much.

Like the eigenvector approach, the Schur vector approach has the advantage of producing the closed-loop eigenvalues (or whatever is appropriate to the particular application from which the Riccati equation arises) essentially for free. And finally, an important advantage of the Schur vector approach, in addition to its general reliability for engineering applications, is its speed in comparison with other methods. We have already mentioned the advantage, by definition, over previous eigenvector approaches but there is also generally an even more significant speed advantage over iterative methods. This advantage is particularly apparent in poorly conditioned problems and in cases in which the iterative method has a bad starting value. Of course, it is impossible to make the comparison between a direct versus iterative method any more precise for general problems but we have found it not at all uncommon for an iterative method, such as straightforward Newton [14], to take ten to thirty times as long - if, indeed, there was convergence at all.

5.2 Miscellaneous General Remarks

Remark 1: There are, in general, as many as $\binom{2 n}{n}$ solutions of an $n \frac{\text { th }}{}$ order Riccati equation corresponding to as many as $\binom{2 n}{n}$ choices of n of the 2 n eigenvalues of z . Any of these solutions may also be generated by the Schur approach, as for the eigenvector approach, by an appropriate reordering of the RSF. For most control and filtering applications we
are interested in the unique nonnegative definite solution and have thus concentrated the exposition on that particular case.

Remark 2: One of the most complete sources for an eigenvector-oriented proof of Theorem 5 for the general case of multiple eigenvalues is Martensson [13]. But even a casual glance at that proof exposes the awkwardness of fussing with eigenvectors and principal vectors. The proof using Schur vectors is extremely clean and easy by comparison and neatly avoids any difficulties with multiple eigenvalues. This observation is but one instance of the more general observation that Schur voctors can probably always replace principal vectors (or generalized eigenvectors) corresponding to multiple eigenvalues throughout linear control/systems theory. Principal vectors are not generally reliably computable in the presence of roundoff error anyway (see [21]) and a basis for an eigenspace - but not the particular one corresponding to the principal vectors is all that is normally needed. Use of Schur vectors will not only frequently provide cleaner proofs but is also numerically much more attractive.

Remark 3: As an alternative to the direct proofs provided in Sections 2 and 3 one could simply appeal to the proofs given for the eigenvector approach and note that the Schur vectors are related to the eigenvectors by a nonsingular transformation. Specifically, with Z, U, and S as before, let $v \in \mathbb{R}_{2 n}^{2 n x 2 n}$ put Z in real Jordan form

$$
V^{-1} z V=\left(\begin{array}{cc}
-\Lambda & 0 \\
0 & \Lambda
\end{array}\right)
$$

$\left(\mathbb{R}_{2 n}^{2 n \times 2 n}\right.$ denotes the set of $2 n \times 2 n$ matrices or rank $2 n$, i.e., invertible)
where $-\Lambda$ is the real Jordan form of the eigenvalues of z with negative real parts (analogous remarks apply as usual, for the discrete-time case). Furthermore, let $T \in \mathbb{R}_{n}^{n x n}$ transform $S_{l l}$ to the real Jordan form - Λ. Then

$$
z\binom{v_{11}}{v_{21}}=\binom{v_{11}}{v_{21}}(-\Lambda)
$$

and

$$
z\binom{U_{11}}{U_{21}}=\binom{U_{11}}{U_{21}} S_{11}
$$

We thus have

$$
\begin{aligned}
\mathrm{Z}\binom{U_{11}}{U_{21}} \mathrm{~T} & =\binom{U_{11}}{U_{21}} \mathrm{TT}^{-1} S_{11} \mathrm{~T} \\
& =\binom{U_{11}}{U_{21}} T(-\Lambda)
\end{aligned}
$$

Since eigenvectors are unique up to nonzero scalar multiple we must have

$$
\binom{U_{11}}{U_{21}} T=\binom{v_{11}}{v_{21}} D
$$

where D is diagonal and invertible. Thus $\binom{U_{11}}{U_{21}}=\binom{v_{11}}{v_{21}} D T^{-1}$ and since
$V_{21} V_{11}^{-1}$ solves (1), $U_{21} U_{11}^{-1}$ must also solve (1) since

$$
\mathrm{U}_{21} \mathrm{U}_{11}^{-1}=\mathrm{V}_{21} \mathrm{DT}^{-1}\left(\mathrm{~V}_{11} \mathrm{DT}^{-1}\right)^{-1}=\mathrm{V}_{21} \mathrm{~V}_{11}^{-1}
$$

However, we have chosen to provide self-contained proofs because of their simplicity and also because the proof in Section 3 is not as widely seen as its continuous-time counterpart.

Remark 4: The same Schur vector approach employed in this paper can also be used instead of the eigenvector approach for the nonsymmetric matrix quadratic equation
$X E X+F X+X G+H=0$
where $E \in \mathbb{R}^{m \times n} ; F \in \mathbb{R}^{n \times n} ; G \in \mathbb{R}^{m \times m} ; H \in \mathbb{R}^{n \times m}$, and $X \in \mathbb{R}^{n \times m}$. In this case we work with the $(m+n) x(m+n)$ matrix

$$
Z=\left(\begin{array}{cc}
-G & -E \\
H & F
\end{array}\right)
$$

and various solutions of (13) are determined by generating appropriate combinations of m eigenvalues of z along the diagonal of the RSF of Z. The corresponding m Schur vectors give the solution $X=U_{21} U_{11}^{-1}$ as before where $U_{11} \in \mathbb{R}^{m x m}, U_{21} \in \mathbb{R}^{n \times m}$. The analogous remarks apply for the corresponding nonsymmetric "discrete-time equation". Proofs are essentially the same in both cases. Further details on the eigenvector approach can be found in [33], [34].

Remark 5: Special cases of the matrix quadratic equations such as (1), (8), or (13) include the Lyapunov equation (12) (or its discretetime counterpart $\mathrm{F}^{\mathrm{T}} \mathrm{XF}-\mathrm{X}+\mathrm{H}=0$) and the Sylvester equation

$$
\begin{equation*}
F X+X G+H=0 \tag{14}
\end{equation*}
$$

```
(or its discrete-time counterpart FXG - X + H = 0).
```

Thus setting an appropriate block of the Z matrix equal to 0 provides a method of solving such "linear equations" and, in fact, this method has even been proposed in the literature [35]. However, the approach probably has little to recommend it from a numerical point of view as compared to applying the Bartels-Stewart algorithm [39] and we mention it only in passing.

6. Examples

In this section we give a few examples both to illustrate various points discussed previously and to provide some numerical results for comparison with other approaches. All computations were done at M.I.T. on an IBM 370/168 using FORTRAN H Extended (Opt. $=2$) and double precision arithmetic.

Example 1: The Schur vector approach is obviously not well-suited to hand computation - which partly explains its desirable numerical properties. However, to pacify a certain segment of the population a "hand example" is provided in complete detail. Consider the equation

$$
\begin{equation*}
A^{T} X+X A-X B R^{-l_{B}}{ }^{T} X+Q=0 \tag{15}
\end{equation*}
$$

which arises in a linear-quadratic optimal control context with

$$
A=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad B=\binom{0}{1}, \quad R=1, \quad Q=\left(\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right) .
$$

Then

$$
\begin{aligned}
& \text { Then } \\
& Z=\left|\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & -1 \\
-1 & 0 & 0 & 0 \\
0 & -2 & -1 & 0
\end{array}\right| \\
& \text { and the matrix }
\end{aligned}
$$

$$
U=\left|\begin{array}{cccc}
\frac{1}{2} & -\frac{\sqrt{5}}{10} & -\frac{3 \sqrt{5}}{10} & \frac{1}{2} \\
-\frac{1}{2} & -\frac{\sqrt{5}}{10} & -\frac{3 \sqrt{5}}{10} & -\frac{1}{2} \\
\frac{1}{2} & -\frac{3 \sqrt{5}}{10} & \frac{\sqrt{5}}{10} & -\frac{1}{2} \\
-\frac{1}{2} & -\frac{3 \sqrt{5}}{10} & \frac{\sqrt{5}}{10} & \frac{1}{2}
\end{array}\right|
$$

is an orthogonal matrix which reduces Z to $R S F$

$$
S=U^{T} Z U=\left|\begin{array}{rrrr}
-1 & 0 & 1 & -\frac{1}{2} \\
0 & -1 & -1 & 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right|
$$

Then the unique positive definite solution of (15) is given by the solution of the linear matrix equation

$$
\mathrm{XU}_{11}=\mathrm{U}_{21}
$$

or

$$
\left(\begin{array}{ll}
x_{11} & x_{12} \\
x_{12} & x_{22}
\end{array}\right)\left(\begin{array}{cc}
\frac{1}{2} & -\frac{\sqrt{5}}{10} \\
-\frac{1}{2} & -\frac{\sqrt{5}}{10}
\end{array}\right)=\left(\begin{array}{cc}
\frac{1}{2} & -\frac{3 \sqrt{5}}{10} \\
-\frac{1}{2} & -\frac{3 \sqrt{5}}{10}
\end{array}\right)
$$

Thus $X=\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)$ and it can quickly be checked that the spectrum of the "closed-loop matrix" $\left(A-B R^{-1} B^{T} X\right)=\left(\begin{array}{cc}0 & 1 \\ -1 & -2\end{array}\right)$ is $\{-1,-1\}$ as was evident from S_{11}.

Example 2: For checking purposes consider the solution of (15) with the following uncontrollable but stabilizable, and unobservable but detectable data:

$$
A=\left(\begin{array}{cc}
4 & 3 \\
-\frac{9}{2} & -\frac{7}{2}
\end{array}\right), \quad B=\binom{1}{-1}, \quad R=1, \quad Q=\left(\begin{array}{ll}
9 & 6 \\
6 & 4
\end{array}\right)
$$

The solution of (15) is $X=\left(\begin{array}{ll}9 c & 6 c \\ 6 c & 4 c\end{array}\right)$ where $c=1+\sqrt{2}$ and the closedloop spectrum is $\left\{-\frac{1}{2},-\sqrt{2}\right\}$. These values were all obtained correctly to at least 14 significant figures as were the values for the corresponding discrete-time problem

$$
\begin{equation*}
A^{T} X A-X-A^{T} X B\left(R+B^{T} X B\right)^{-I_{B}} T_{X A}+Q=0 \tag{16}
\end{equation*}
$$

the solution of which is

$$
x=\left(\begin{array}{ll}
9 d & 6 d \\
6 d & 4 d
\end{array}\right)
$$

where $d=\frac{1+\sqrt{5}}{2}$ and the closed-loop spectrum is $\left\{-\frac{1}{2}, \frac{3-\sqrt{5}}{2}\right\}$.

Example 3: For further comparison purposes consider the discrete-time system of Example 6.15 in [36] where

$$
\begin{aligned}
& A=\left(\begin{array}{cc}
0.9512 & 0 \\
0 & 0.9048
\end{array}\right), \quad B=\left(\begin{array}{cc}
4.877 & 4.877 \\
-1.1895 & 3.569
\end{array}\right), \\
& R=\left(\begin{array}{ll}
\frac{1}{3} & 0 \\
0 & 3
\end{array}\right), \quad Q=\left(\begin{array}{cc}
0.005 & 0 \\
0 & 0.02
\end{array}\right) .
\end{aligned}
$$

The solution of (16) is given by

$$
x=\left(\begin{array}{ll}
0.010459082320970 & 0.003224644477419 \\
0.003224644477419 & 0.050397741135643
\end{array}\right)
$$

and the feedback gain $\bar{F}=\left(R+B^{T} X B\right)^{-1} B{ }^{T} X A$ is given by

$$
\bar{F}=\left(\begin{array}{cc}
0.071251660724426 & -0.070287376494153 \\
0.013569839235296 & 0.045479287667006
\end{array}\right)
$$

Note the typographical error in the $(1,2)$-element of \bar{F} in [36]. The closed-loop eigenvalues are given by

$$
0.508333461684191 \text { and } 0.688069670988913
$$

These are definitely different from [36] but have the same sum. Our numbers do appear to be the correct ones.

Example 4: We now consider somewhat higher order Riccati equations arising from position and velocity control for a string of high-speed vehicles. The matrices are taken from a paper by Athans, Levine, and Levis [37]. For a string of N vehicles it is necessary to solve the Riccati equation

$$
A_{N}^{T} X_{N}+X_{N} A_{N}-X_{N} B_{N} R_{N}^{-1} B_{N}^{T} X_{N}+Q_{N}=0
$$

where all matrices are of order $n=2 N-1$ and are given by

where $A_{k, k}=\left(\begin{array}{cc}-1 & 0 \\ 1 & 0\end{array}\right), \quad A_{k, k+1}=\left(\begin{array}{cc}0 & 0 \\ -1 & 0\end{array}\right)$
and $B_{N} R_{N}^{-1} B_{N}^{T}=\operatorname{diag}\{1,0,1,0, \ldots, 0,1\}$

$$
Q_{\mathrm{N}}=\operatorname{diag}\{0,10,0,10, \ldots, 10,0\}
$$

For the case of 5 vehicles we repeated the calculations presented in [37]. The correct values for X rounded to six significant figures are:

While 4 or 5 decimal places are published in [37], it can be seen that, surprisingly, only the first and sometimes the second were correct. Substitution of our full 16 decimal place solution into the Riccati equation gives a residual of norm on the order of 10^{-14} (consistent with a condition estimate of U_{11} of 26.3) while the residual for the solution in [37] has a large norm on the ordex of 10^{-1}. The closed-loop eigenvalues for the above problem (again rounded to six significant figures) are:

-1.00000	
-1.10779 ± 0.852759	j
-1.45215 ± 1.26836	j
-1.67581 ± 1.51932	j
-1.80486 ± 1.66057	j

We also computed the Riccati solution and closed-loop eigenvalues for the cases of 10 and 20 vehicles. This involved the solutions of 19th and 39th order Riccati equations, respectively, and rather than
reproduce all the numbers here we give only the first five and last five elements of the first row (or column) of X and the fastest and slowest closed-loop modes. Again all values are rounded to just six significant figures; the complete numerical solutions are available from the author.

First row (column) of Riccati Solution		Fastest and Slowest	Closed-Loop Modes	
$\mathrm{N}=10$	$\mathrm{N}=2 \mathrm{O}$	$\mathrm{N}=10$	$\mathrm{N}=20$	
$\mathrm{n}=19$	$\mathrm{n}=39$	$\mathrm{n}=19$	$\mathrm{n}=39$	
1.40826	1.42021	-1.83667	-1.84459	
2.66762	2.68008	$\pm 1.69509 \mathrm{j}$	± 1.70368	j
-0.658219	-0.646127	:	:	
1.04031	1.06539	-0.862954	-0.662288	
-0.242133	-0.229761	$\pm 0.494661 \mathrm{j}$		
:	:			
-0.0515334	-0.0123718			
0.103453	0.0250824			
-0.0472086	-0.0120915			
0.0504036	0.0124632			
-0.0452352	-0.0119545			

The closed-loop eigenvalues for the case of, say, 10 vehicles interlace andinclude, as a subset, those of 5 vehicles. Similarly, those for 20 vehicles interlace and include, as a subset, those of 10 (and hence 5) vehicles. It appears evident that both the elements of the Riccati solution and the closed-loop eigenvalues are converging to values in some finite region.

Example 5: This example involves circulant matrices. We wish to solve (15) with

and $B R^{-1} B^{T}=I, Q=I$. The matrices $A, B R^{-1} B^{T}, Q$ are all circulant so the Riccati solution $X \in \mathbb{R}^{\text {nxn }}$ is known to be circulant of the form

$$
X=\left(\begin{array}{cccccc}
x_{0} & x_{n-1} & x_{n-2} & \cdot & \cdot & x_{1} \\
x_{1} & x_{0} & x_{n-1} & \cdot & \cdot & \cdot \\
x_{2} \\
x_{2} & x_{1} & x_{0} & & & \cdot \\
\cdot & \cdot & & \ddots & & \cdot \\
\cdot & \cdot & & \ddots & & \cdot \\
\cdot & \cdot & & & \ddots & \cdot \\
x_{n-1} & x_{n-2} & \cdots & \cdots & \cdots & \cdots
\end{array}\right) \cdot x_{0} .
$$

In fact, there is a simple transformation which "diagonalizes" the Riccati equation and allows the solution of (15) to be recovered via the solution of n scalar quadratic equations and an inverse discrete Fourier transform. The details of this procedure and related analysis of circulant systems can be found in the work of Wall [38]. For this example, we have $n=64$ and the x_{i} are given by
$x_{i}=\frac{1}{64} \sum_{k=0}^{63}\left\{-2+2 \cos \left(\frac{2 \pi k}{64}\right)+\sqrt{5-4 \cos \left(\frac{2 \pi k}{64}\right)+4 \cos ^{2}\left(\frac{2 \pi k}{64}\right)}\right\} \omega_{64}^{i k}$
where ω_{64} is a 64 -th root of unity. The solution was computed by the Schur vector approach and checked by means of the circulant analysis
of Wall. Our computed Riccati solution had at least 13 significant figures. For reference purposes we list

$$
\begin{aligned}
& \mathrm{x}_{11}=0.37884325313566 \\
& \mathrm{x}_{12}=0.18581947375535 \\
& \cdot \\
& \cdot \\
& \mathbf{x}_{44}=0.37884325313567 \\
& \mathbf{x}_{45}=0.18581947375536 \\
& \cdot \\
& \cdot \\
& \cdot
\end{aligned}
$$

The closed-loop eigenvalues are all real and are arranged as follows: -4.1231056256177
-4.1137632861146
-4.1137632861146
31 eigenvalues of multiplicity 2
-0.99999999999991

This $64 \frac{\text { th }}{}$ order example required approximately 50 sec . of CPU time on the $370 / 168$ at M.I.T. and approximately 34 sec . on the $370 / 165$ at the University of Toronto - both using FORTRAN H Extended (Opt. $=2$), double precision.

Example 6: This example is one which would be expected to cause problems on physical grounds and which appears to give rise to an "ill-conditioned Riccati equation". Consider the solution of (15) with

$$
\begin{aligned}
& A=\left(\left.\begin{array}{cccccc}
0 & 1 & 0 & \cdot & \cdots & 0 \\
\cdot & \cdot & \cdot & \cdot & 0 & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & & \cdot & \cdot & \cdot & \cdot \\
\cdot & 0 & & \cdot & \cdot & 0 \\
\cdot & & & \cdot & 1 \\
0 & \cdots & \cdot & \cdot & \cdot & 1 \\
1
\end{array} \right\rvert\,, \quad B=\left(\begin{array}{l}
0 \\
\vdots \\
0 \\
1
\end{array}\right)\right. \\
& Q=\operatorname{diag}\{q, 0, \ldots, 0\}, \quad R=r .
\end{aligned}
$$

Here we have a system of n integrators connected in series. It is desired to apply a feedback controller to the $n-\frac{t h}{}$ system (which is to be integrated n times) so as to achieve overall asymptotic stability. Only deviations of x_{1} (the $n-$ integral of the constant system) from 0 are penalized. The controllability Gramian

$$
w_{t}=\int_{0}^{t} e^{s A} B B^{T} e^{s A^{T}} d s
$$

while positive definite for all $t>0$, becomes more nearly singular as n increases. The system is "hard to control" in the sense of requiring a large amount of control energy (as measured by $\left|\left|w_{t}^{-1}\right|\right|$). The closed-loop eigenvalues are easily seen to be the roots of

$$
\lambda^{2 n}+(-1)^{n} \frac{q}{r}=0
$$

with negative real parts. These eigenvalues lie in a classic Butterworth pattern. It can also be easily verified that

$$
x_{\ln }=\sqrt{\frac{q}{r}}
$$

$=$ product of the closed-loop eigenvalues .

We attempted the solution of (15) with the above matrices and $q=r=1$. While the closed-loop eigenvalues were determined quite accurately as expected (approximately 14 decimal places using IBM double precision), the Riccati solution was increasingly less accurate as n increased due to the increasingly ill-conditioned nature of U_{11}. For example, for $n=21$ there was already a loss of 10 digits of accuracy (consistent with a condition estimate of $O\left(10^{10}\right.$) for U_{11}) in $x_{l n}(=1)$. Other computed elements of X were as large as $0\left(10^{9}\right)$ in magnitude.

Repeating the calculations with $q=10^{4}, r=1$ there was a loss of approximately 12 digits of accuracy in $x_{1 n}(=100)$ for $n=21$. In this case other elements of x were as large as $0\left(10^{11}\right)$ in magnitude. Again, the closedloop eigenvalues were determined very accurately.

Our attempts to get Newton's method to converge on the above problem were unsuccessful.

Obviously, there is more that can be said analytically about this problem. Our interest here has been only to highlight some of the numerical difficulties.

7. Concluding Remarks

We have discussed in considerable detail a new algorithm for solving algebraic Riccati equations. A number of numerical issues have been addressed and various examples given. The method is apparently quite numerically stable and performs reliably on systems with dense matrices of up to order 100 or so, storage being the main limiting factor.

For some reason, numerical analysts have never really studied algebraic Riccati equations. The algorithm presented here can undoubtedly be refined considerably from a numerical point of view but it nonetheless represents an immense improvement over algorithms heretofore proposed.

Some topics of continuing research in this area will include:
(i) conditioning of Riccati equations,
(ii) use of software to sort blocks of the RSF diagonal into just the two appropriate groups rather than within the two groups as well,
(iii) making numerically viable the use of symplectic transformations such as in [17] to reduce the Hamiltonian or symplectic matrix z to a convenient canonical form.

Each of these topics is of research interest in its own right in addition to the application to Riccati equations.

8. References

[1] Wonham, W.M., On a Matrix Riccati Equation of Stochastic Control, SIAM J. Contr., 6(1968), 681-697.
[2] Reid, W.T., Riccati Differential Equations, Academic Press, New York, 1972.
[3] Willems, J.C., Least Squares Stationary Optimal Control and the Algebraic Riccati Equation, IEEE Trans. Aut. Contr., AC-16(1971), 621-634.
[4] Silverman, L.M., Discrete Riccati Equations: Alternative Algorithms, Asymptotic Properties, and System Theory Interpretations, in Advances in Control Systems, Vol. 12, (Leondes, Ed.), Academic Press, New York, 1976, pp. 313-386.
[5] Lainiotis, D.G., Partitioned Riccati Solutions and Integration-Free Doubling Algorithms, IEEE Trans. Auto. Contr., AC-21 (1976), 677-689.
[6] Rodriguez-Canabal, J., The Geometry of the Riccati Equation, Stochastics, 1(1973), 129-149.
[7] Pachter, M., and T.E. Bullock, Ordering and Stability Properties of the Riccati Equation, Na. Res. Inst. for Math. Sci. Report, WISK 264, Pretoria, June 1977.
[8] Von Escherich, G., Die Zweite Variation der Einfachen Integrale, Wiener Sitzungsberichte, 8(1898), 1191-1250.
[9] MacFarlane, A.G.J., An Eigenvector Solution of the Optimal Linear Regulator Problem, J. Electron. Contr., 14(1963), 643-654.
[10] Potter, J.E., Matrix Quadratic Solutions, SIAM J. Appl. Math., 14(1966), 496-501.
[11] Vaughn, D.R., A Nonrecursive Algebraic Solution for the Discrete Riccati Equation, IEEE Trans. Auto. Contr., AC-15(1970), 597-599.
[12] Fath, A.F., Computational Aspects of the Linear Optimal Regulator Problem, IEEE Trans. Auto. Contr., AC-14(1969), 547-550.
[13] Mártensson, K., New Approaches to the Numerical Solution of Optimal Control Problems, Lund Institute of Technol., Divis. of Auto. Contr., Report No. 7206, Lund, Sweden, Mar. 1972.
[14] Kleinman, D.L., On An Iterative Technique for Riccati Equation Computations, IEEE Trans. Auto. Contr. . AC-13(1968), 114-115.
[15] Farrar, F.A., and R.C. DiPietro, Comparative Evaluation of Numerical Methods for Solving the Algebraic Matrix Riccati Equation, United Technologies Research Center Report No. R76-140268-1, East Hartford, CT, Dec. 1976.
[16] Hewer, G.A., and G. Nazaroff, A Survey of Numerical Methods for the Solution of Algebraic Riccati Equations, Naval Weapons Center Report, China Lake, CA.
[17] Laub, A.J., and K.R. Meyer, Canonical Forms for Hamiltonian and Symplectic Matrices, Celestial Mechanics, 9(1974), 213-238.
[18] Laub, A.J., Canonical Forms for σ-Symplectic Matrices, M.S. Thesis, School of Mathematics, Univ. of Minnesota, Dec. 1972.
[19] Stewart, G.W., Introduction to Matrix Computations, Academic Press, New York, 1973.
[20] Murnaghan, F.D., and A. Wintner, A Canonical Form for Real Matrices Under Orthogonal Transformations, Proc. Na. Acad. Sci., 17(1931), 417-420.
[21] Golub, G.H., and J.H. Wilkinson, Ill-Conditioned Eigensystems and the Computation of the Jordan Canonical Form, SIAM Rev., 18(1976), 578-619.
[22] Gantmacher, F.R., The Theory of Matrices, Chelsea, New York, 1959.
[23] Dorato, P., and A. Levis, Optimal Linear Regulators: The DiscreteTime Case, IEEE Trans. Auto. Contr., AC-16(1971), 613-620.
[24] Albert, A., Conditions for Positive and Nonnegative Definiteness in Terms of Pseudoinverses, SIAM J. Appl. Math., 17 (1969), 434-440.
[25] Penrose, R., A Generalized Inverse for Matrices, Proc. Cambr. Phil. Soc., 51 (1955), 406-413.
[26] Stewart, G.W., HQR3 and EXCHNG: Fortran Subroutines for Calculating and Ordering the Eigenvalues of a Real Upper Hessenberg Matrix, ACM Trans. Math. Software, 2(1976), 275-280.
[27] Smith, B.T., et.al., Matrix Eigensystems Routines -- EISPACK Guide, Second Edition, Lect. Notes in Comp. Sci., Vol. 6, Springer-Verlag, New York, 1976.
[28] Forsythe, G.E., M.A. Malcolm, and C.B. Moler, Computer Methods for Mathematical Computations, Prentice-Hall, Englewood Cliffs, NJ, 1977.
[29] Dongarra, J.J., J.R. Bunch, C.B. Moler, and G.W. Stewart, Preliminary LINPACK User's Guide, LINPACK Working Note \#9, Argonne National Laboratory, Appl. Math. Div., TM-313, Aug. 1977.
[30] Parlett, B.N., and C. Reinsch, Balancing a Matrix for Calculation of Eigenvalues and Eigenvectors, Numer. Math., 13(1969), 296-304.
[31] Bucy, R.S., Structural Stability for the Riccati Equation, SIAM J. Contr., 13(1975), 749-753.
[32] Wilkinson, J.H., The Algebraic Eigenvalue Problem, Oxford University Press, London, 1965.
[33] Coppel, W.A., Matrix Quadratic Equations, Bull. Austral. Math. Soc., 10(1974), 377-401.
[34] Meyer, H.-B., The Matrix Equation AZ+B-ZCZ-ZD $=0$, SIAM J. Appl. Math., 30 (1976), 136-142.
[35] Bar-Ness, Y., and G. Langholz, The Solution of the Matrix Equation $\mathrm{XC}-\mathrm{BX}=\mathrm{D}$ as an Eigenvalue Problem, Int. J. Sys. Sci., 8(1977), 385392.
[36] Kwakernaak, H., and R. Sivan, Linear Optimal Control Systems, Wiley, New York, 1972.
[37] Athans, M., W.S. Levine, and A. Levis, A System for the Optimal and Suboptimal Position and Velocity Control for a String of High-Speed Vehicles, Proc. 5th International Analogue Computation Meetings, Lausanne, Switzerland, Sept. 1967.
[38] Wall, J.E., Control and Estimation for Large-Scale Systems Having Spatial Symmetry, Ph.D. Thesis, M.I.T., Aug. 1978; Electronic Systems Lab. Rept. ESL-TH-842.
[39] Bartels, R.H., and G.W. Stewart, Solution of the Matrix Equation $A X+X B=C$, Comm. $A C M, 15(1972)$, 820-826.

APPENDIX 1

We outline here how to set up the "symplectic approach" when the matrix F in

$$
F^{T} X F-X-F^{T} X G_{I}\left(G_{2}+G_{1}^{T} X G_{1}\right)^{-1} G_{1}^{T} X F+H=0
$$

is singular. All other assumptions and notation of section 3 will be the same.

Letting x_{k} denote the state at time t_{k} and λ_{k} the corresponding adjoint vector, recall the Hamiltonian difference equations arising from the discrete maximum principle:

$$
\left(\begin{array}{cc}
I & G \\
0 & F^{T}
\end{array}\right)\binom{x_{k+1}}{\lambda_{k+1}}=\left(\begin{array}{cc}
F & 0 \\
-H & I
\end{array}\right)\binom{x_{k}}{\lambda_{k}}
$$

Note that if F were invertible we could work with the symplectic matrix

$$
\left(\begin{array}{ll}
I & G \\
0 & F^{T}
\end{array}\right)^{-1}\left(\begin{array}{cc}
F & 0 \\
-H & I
\end{array}\right)=\left(\begin{array}{cc}
F+G F^{-T} & -G F^{-T} \\
-F^{-T} & F^{-T}
\end{array}\right)
$$

which is just (9). Here, instead, we shall be concerned with a "symplectic generalized eigenvalue problem"

$$
\mathrm{Lz}=\lambda \mathrm{Mz}
$$

with

$$
L=\left(\begin{array}{cc}
F & 0 \\
-H & I
\end{array}\right) \quad M=\left(\begin{array}{cc}
I & G \\
0 & F T
\end{array}\right)
$$

and symplectic in the sense that if $\lambda \neq 0$ is a generalized eigenvalue then $\frac{1}{\lambda}$ is a generalized eigenvalue. In fact, L and M are characterized by the property that

$$
\mathrm{LJL}{ }^{\mathrm{T}}=\mathrm{MJM}^{\mathrm{T}} \quad \text { where } \quad J=\left(\begin{array}{cc}
0 & I \\
-I & 0
\end{array}\right)
$$

In our specific situation $L J L^{T}=M J M^{T}=\left(\begin{array}{cc}0 & F \\ & \\ -F^{T} & 0\end{array}\right)$.

There is even more "reciprocal symmetry" in the problem. With F singular there must be least one generalized eigenvalue at 0 and to each such generalized eigenvalue there corresponds its reciprocal at ∞. The generalized eigenvalues can then be arranged in two groups of n as before:

$$
\underbrace{0, \ldots, 0, \lambda_{1}, \ldots, \lambda_{k},}_{\mathrm{I}^{\prime}} \underbrace{\frac{1}{\lambda_{1}}, \ldots, \frac{1}{\lambda_{1}}, \infty, \ldots, \infty}_{\mathrm{n}}
$$

with $0<\left|\lambda_{i}\right|<1$. We then find a basis for the generalized eigenspace corresponding to $0, \ldots, 0, \lambda_{1}, \ldots, \lambda_{k}$ and proceed essentially as before. The details are omitted here as they are the subject of a forthcoming paper with T. Pappas.

APPENDIX 2

In this appendix we provide FORTRAN source listings for one possible implementation of the Schur vector approach described in the paper. Subroutines for solving both the continuous-time algebraic Riccati equation (1) [RICCND] and the discrete-time algebraic Riccati equation (8) [RICDSD] are given. The subroutine names are derived from the following nomenclature convention for a family of subroutines to solve Riccati and various other matrix equations:
subroutine name: XXXYYZ
where

$$
\begin{aligned}
& X X X= \begin{cases}\text { RIC } & \text { Riccati equation } \\
\text { LYP } & \text { Lyapunov equation } \\
\text { SYL } & \text { Sylvester equation }\end{cases} \\
& Y Y= \begin{cases}C N & \text { continuous-time version } \\
D S & \text { discrete-time version }\end{cases} \\
& Z= \begin{cases}S & \text { single (short) precision version } \\
D & \text { double (long) precision version }\end{cases}
\end{aligned}
$$

Subroutine RICCND calls or further requires the following additional subroutines:

BALANC, BALBAK, DDCOMP, DSOLVE, EXCHNG, HQR3, MLINEQ, ORTHES,

ORTRAN, QRSTEP, SPLIT

Subroutine RICDSD requires each of the 11 subroutines above as well as the two additional subroutines MULWOA, MULWOB.

All the additional subroutines required have also been listed here with the exception of BALANC, BALBAK, ORTHES, and ORTRAN which are available in EISPACK [27].

These subroutines are being used in the environment described in Section 6 as part of a package called LQGPACK. This package is a preliminary version of a set of subroutines being developed at M.I.T.'s Laboratory for Information and Decision Systems to solve linear-quadraticGaussian control and estimation problems. The package has also been run in a single precision version on a CDC 6600. However, at this time we make no claims of portability of the code to other machines. The code listed here is solely for illustrative purposes.

Finally, we add two additional technical notes:

NOTE 1: A fairly reliable estimate of the condition number of U_{11} with respect to inversion is returned by RICCND or RICDSD in WORK (1).

NOTE 2: The subroutine HQR3 contains a small error which can occasionally cause RICCND or RICDSD to give erroneous or misleading information. The trouble arises when ORTHES produces an upper Hessenberg form with a zero on the first subdiagonal. HQR3 then correctly orders the resulting RSF both above and below that zero element but not necessarily globally. In practice this almost never happens and it has only ever been observed for certain low-order examples with all coefficient matrices diagonal.

This error in HQR3 can and will be corrected. In the interim, the error can either be ignored (a safe strategy for virtually all "real problems") or temporarily patched by the following scheme.

Let $a_{i+1, i}$ be a zero element of the upper Hessenberg matrix A (the output of ORTHES). Then before $H Q R 3$ is called, $a_{i+1, i}$ should be replaced by $\epsilon \cdot\left(\left|a_{i, i}\right|+\left|a_{i+1, i+1}\right|\right)$ where e is the machine precision (EPS) defined by

```
e=\mp@subsup{\operatorname{min}}{\delta}{}{\delta:fl(1+|\delta|)\not=1}
```

(fl(•) denotes floating point operation).

```
SUBEOUTINE RICCND (NZ,NF,NG,NH,N,NN,Z,W,F,G,H,ER,EI,HORK,
    + SCALE,ITYPE,IPVL,IPVS)
    + SCALE,ITYPE,IPVL,IPVS)
    *****PARAMETERS:
    INTEGER NZ,NF,NG,NiI,N,NN,ITYPE(NN).IPVL(NN),IPVS(N)
    DOUBLE PRECISION Z(NZ,NN),W(NZ,NN),F(NF,N),G(NG,N),H(NH,N).
    EE (NN),EI(NN),WCRK(N),SCALE(NN)
    RIC00010
```

```
#****lUCAL VAGIABLES:
```

\#****lUCAL VAGIABLES:
INTEGEE I,J,LOW,IGH,NLOW,NUP
DUUBLE PRECISION EPS,EPSP1,ZNOEM,T,ALPHA,COND
*****FUNCTICNS:
dUUble precisicn dabs,dSQRT
*****SUBEOUTINES CALLED:
balanc,balbak,hqeb,Mlineq,oethes,ortran

```


```

RIC00200
******PURPOSE:
this subhoutine solves the continuous-time
algebraic mateix kiccati equaticn
F
by laub's variant of the hamiltonian-eigenvectok approach.
*****рAitameteá description:
ON INPUT:
NZ,NF,NG,NH ROW dImENSIONS OF the arrayS CONTAINING
Z (and W),F,G, and h, beSpectively, as
declared in the calling pfogram dimension
STATEMENT;
N Ofder of the matrices f,g,H;
NN = 2*N = ORDER Of the Internally generated
MateICES Z and w;
AN N X N (REAL) MATEIX;
N X N Symmetric, NonNegative definite
(REAL) MatRICES.
on output:
H
ER,EI

```

c
C
c


\begin{tabular}{|c|c|c|}
\hline C & MOKK (1) \(=\) COND & \[
\begin{aligned}
& \text { RICO } 1660 \\
& \text { RIC01670 }
\end{aligned}
\] \\
\hline C & TKANSFOKM BACK to get the closed loop spectium & EICO1680 \\
\hline \multirow[t]{4}{*}{C} & & RIC01690 \\
\hline & DO \(110 \mathrm{I}=1, \mathrm{~N}\) & RIC01700 \\
\hline & IF (ITYPE(I).GE.0) GO TO 90 & RIC01710 \\
\hline & CEITE (6.44400) I & RIC01720 \\
\hline \multirow[t]{2}{*}{44400} & PORMAT (1x, \(14.1 \times, 41 \mathrm{HTH}\) EIGENVALUE NOT SUCCESSFULLY CAlculated) & RIC01730 \\
\hline & RETURN & RIC 01740 \\
\hline \multirow[t]{4}{*}{90} & IF (ITYPE(I).GT.0) GO TO 100 & RIC0 1750 \\
\hline & \(E \mathrm{EF}(\mathrm{I})=\mathrm{ALPHA} *(1.0 \mathrm{DC}-\mathrm{ER}(\mathrm{I})) /(1.0 \mathrm{DO}+\mathrm{ER}(\mathrm{I})\) ) & RIC01760 \\
\hline & \(E I(I)=0.0 \mathrm{DO}\) & RIC01770 \\
\hline & GO TO 110 & RIC01780 \\
\hline \multirow[t]{6}{*}{100} & IF (ITYPE(I).EQ.2) GO TO 110 & RIC01790 \\
\hline & T=ALPHA/ ( \(1.0 \mathrm{O} 0+\mathrm{ER}(\mathrm{I})) * * 2+E I(I) * * 2)\) & RIC01800 \\
\hline & \(E K(I)=(1.0 D O-E R(I) * * 2-E I(I) * * 2) * T\) & RIC01810 \\
\hline & \(E I(I)=-2.0 D O * E I(I) * T\) & RIC01820 \\
\hline & ER ( \(\mathrm{I}+1)=\mathrm{ER}(\mathrm{I})\) & RIC01830 \\
\hline & \(E I(I+1)=-E I(I)\) & RIC01840 \\
\hline \multirow[t]{2}{*}{110} & CONTINUE & RIC01850 \\
\hline & RETUKN & RIC01860 \\
\hline C & & RIC01870 \\
\hline C & LAST LINE OF RICCND & RICO1880 \\
\hline \multirow[t]{2}{*}{C} & & RIC01890 \\
\hline & END & RIC01900 \\
\hline
\end{tabular}
```

```
    SUBEOUTINE IICDSD (NZ,NF,NG,NH,N,NN,Z,W,F,G,H,EF,EI,WOKK. BICOOO10
```

```
    SUBEOUTINE IICDSD (NZ,NF,NG,NH,N,NN,Z,W,F,G,H,EF,EI,WOKK. BICOOO10
+
+
            SCALE,ITYPE,IPVT)
            SCALE,ITYPE,IPVT)
    *****PaRAMETEES:
    *****PaRAMETEES:
    INTEGER NZ,NF,NG,NH,N,NN,ITYPE(NN),IPVT(N)
    INTEGER NZ,NF,NG,NH,N,NN,ITYPE(NN),IPVT(N)
    DOUBLE PHECISION Z (NZ,NN),W(NZ,NN),F(NF,N),G(NG,N),H(NH,N),
    DOUBLE PHECISION Z (NZ,NN),W(NZ,NN),F(NF,N),G(NG,N),H(NH,N),
+
+
                                EF(NN),EI(NN),HORK(N),SCALE(NN)
                                EF(NN),EI(NN),HORK(N),SCALE(NN)
    *****LOCAL VARIABLES:
    *****LOCAL VARIABLES:
    INTEGER I,J,K, LOW,IGH,NLOW,NUP
    INTEGER I,J,K, LOW,IGH,NLOW,NUP
    DOUBLE PEECISION EPS.EPSP1, CCND,CONDP1
    DOUBLE PEECISION EPS.EPSP1, CCND,CONDP1
    *****SJBROUTINES CALLED:
    *****SJBROUTINES CALLED:
    BALANC,BALBAK,DDCOMP,DSOLVE,HQR 3,MLINEQ,MULWOA,MULWOB.
    BALANC,BALBAK,DDCOMP,DSOLVE,HQR 3,MLINEQ,MULWOA,MULWOB.
    ORTHES,ORTRAN
```

 ORTHES,ORTRAN
    ```
```

:::::: :RIC00170

```
:::::: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :RIC00170
RIC00180
RIC00180
    *****PUEPOSE: EIC00190
    *****PUEPOSE: EIC00190
*****PUEPOSE:
*****PUEPOSE:
ALGEBRAIC MATEIX KICCATI EQUATION
ALGEBRAIC MATEIX KICCATI EQUATION
X=F'T*X*F-FT
X=F'T*X*F-FT
BY LAUB'S VAEIANT OF THE HAMILTONIAN-EIGENVECTOR APPROACH.
BY LAUB'S VAEIANT OF THE HAMILTONIAN-EIGENVECTOR APPROACH.
THE MATRIX F IS ASSUMED TO BE NONSINGULAR AND THE MATRICES G1 AND RIC00270
THE MATRIX F IS ASSUMED TO BE NONSINGULAR AND THE MATRICES G1 AND RIC00270
G2 ARE ASSUMED TO BE COMBINED INTO THE SQUAEE ARRAY G AS FOLLOWS: RICOO280
G2 ARE ASSUMED TO BE COMBINED INTO THE SQUAEE ARRAY G AS FOLLOWS: RICOO280
G}=\textrm{G}1*\textrm{G}\mp@subsup{2}{}{-1}*G\mp@subsup{1}{}{T
G}=\textrm{G}1*\textrm{G}\mp@subsup{2}{}{-1}*G\mp@subsup{1}{}{T
*****PARAMETER DESCHIPTICN:
*****PARAMETER DESCHIPTICN:
ON INPUT:
ON INPUT:
    NZ,NF,NG.NH
    NZ,NF,NG.NH
    N
    N
    NN
    NN
    F A NONSINGULAK N X N (REAL) MATRIX;
    F A NONSINGULAK N X N (REAL) MATRIX;
    G.H
    G.H
    ON OUTPUT:
    ON OUTPUT:
    H
    H
    RCW DIMENSIONS OF THE ARRAYS CONTAINING
    RCW DIMENSIONS OF THE ARRAYS CONTAINING
                Z (AND W),F,G, AND H, RESPECTIVELY, AS
                Z (AND W),F,G, AND H, RESPECTIVELY, AS
                                DECLARED IN THE CALLING PROGRAM DIMENSION
                                DECLARED IN THE CALLING PROGRAM DIMENSION
                SIATEMENT;
                SIATEMENT;
                    OEDEE OF TGE MATRICES P,G,H;
                    OEDEE OF TGE MATRICES P,G,H;
                = 2*N = ORDER OF THE INTERNALLY GENERATED
                = 2*N = ORDER OF THE INTERNALLY GENERATED
                MATRICES Z AND H;
                MATRICES Z AND H;
    F A NONSINGULAK N X N (REAL) MATEIX;
    F A NONSINGULAK N X N (REAL) MATEIX;
                    N X N SYMMETKIC, NGNNEGATIVE DEFINITE
                    N X N SYMMETKIC, NGNNEGATIVE DEFINITE
                        (EEAL) MATRICES.
                        (EEAL) MATRICES.
AN N X N AREAY CONTAINING THE UNIQOE POSITIVE
AN N X N AREAY CONTAINING THE UNIQOE POSITIVE
(OE NONNEGATIVE) DEFINITE SOLUTION OF THE
(OE NONNEGATIVE) DEFINITE SOLUTION OF THE
    RICCATI EQUATION:
    RICCATI EQUATION:
RIC00020
RIC00020
RIC00030
RIC00030
RIC00040
RIC00040
RICOOOS50
RICOOOS50
RIC00060
RIC00060
RIC00070
RIC00070
RIC00080
RIC00080
RIC00090
RIC00090
EIC00100
EIC00100
RIC00110
RIC00110
RIC00120
RIC00120
RICOO130
RICOO130
RIC00140
RIC00140
RIC00150
RIC00150
EIC00160
EIC00160
RICOO200
RICOO200
RIC00210
RIC00210
RICOO220
RICOO220
RIC00230
RIC00230
EIC00240
EIC00240
RIC00250
RIC00250
RIC00260
RIC00260
RIC00290
RIC00290
RIC00300
RIC00300
RIC00310
RIC00310
ON INPUT•
ON INPUT•
                    RIC00320
                    RIC00320
RIC00330
RIC00330
RIC00340
RIC00340
RICOO350
RICOO350
RIC00360
RIC00360
RIC00370
RIC00370
RICOO380
RICOO380
RIC00390
RIC00390
RICOO400
RICOO400
RIC00410
RIC00410
EIC00420
EIC00420
RIC00430
RIC00430
RIC00440
RIC00440
RIC00450
RIC00450
RIC00460
RIC00460
RIC00470
RIC00470
RIC00480
RIC00480
RIC00490
RIC00490
BIC00500
BIC00500
RIC00510
RIC00510
RIC00520
RIC00520
RICOO530
RICOO530
RIC00540
RIC00540
BIC00550
```

BIC00550

```
```

 EE.EI
 Z. 7
WOKK, SCALE

```
                REAL SCRATCH VECTORS OF LENGTH 2*N; ON OUTPUT RIC00560 (ER(I), EI (I)), \(I=1, N\) CONTAIN THEREAL AND RIC00570 IMAGINARY PARTS, KESPECTIVELY, OF THE N RIC00580 CLOSED LOOP EIGENVALUES (I.E., THE RIC00590 SPECTRUM OF \(T\) T \(-1 \quad T \quad\) RIC00600 \(F-G 1 *((G 2+G 1 * X * G 1)) * G 1 * X * \operatorname{FRIC} 00610\)
-T
\(=F-G * F \quad *(X-H)) ;\)
RIC00620
RIC00630
RIC00640
2*N X 2*N REAL SCRATCH ARRAYS USED FOR RICO0650 COMPUTATIONS INYOLVING THE SYMPLECTIC RIC00660 MATRIX ASSOCIATED WITH THE EICCATI EQUATION; RIC00670 aIC00680
KEAL SCRATCH VECTORS OF LENGTHS N, 2*N. RIC00690 RESPECTIVELY; ON OUTPUT, HORK(1) CONTAINS A RIC00700 CONDITION NUMBER ESTIMATE FOK THE FINAL NTH RIC00710 ORDER LINEAR MATRIX EQUATION SOLVED; EIC00720 RIC00730
ITYPE, IPVT INTEGER SCRATCH VECTORS OF LENGTHS \(2 * N, N\), RIC00740 BESPECTIVELY.

RIC00750 RIC00760
```

***NOTE: ALL SCRATCH ARRAYS MOST BE DECLARED AND INCLUDED RIC00770

```
IN THE CALL.*** RIC00780
RIC00790
*****ALGORITHM NOTES:
RIC00800
IT IS ASSUMED THAT:
RIC008 10
(1) F IS NONSINGULAR
(2) G AND H ARE NONNEGATIVE DEPINITE RIC00820
(3) (F,G1) IS STABILIZABLE AND (C,F) IS DETECTABLE WHERE RIC00830 T
\(C * C=H\) (C OF FULL RANK \(=\) RANK (H)).
RIC00840 RIC00850 RIC00860 UNDER THESE ASSUMPTIONS THE SOLOTION (RETURNED IN THE ARRAY E) IS RIC00870 UNIQUE AND NONNEGATIVE DEFINITE. RIC00880 RIC00890
*****HISTORY: RIC00900
YRITTEN BY ALAN J. LAUB (ELEC. SYS. LAB. M. I.T.. RM. 35-331, RIC00910 CAMBRIDGE, MA 02139 , PH.: (617) - 253-2125). SEPTEMBER 1977. RIC00920 MOST RECENT VERSION: SEP. 15. 1978. RIC00930 RIC00940
: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : स 1 Cl 00950 BIC00960
EPS IS AN I NTERNALLY GENERATED MACGINE DRPENDENT PARAEETER RIC00970 SPECIFYING THE RELATIVE PRECISION OF FLOATING POINT ARITHMETIC. RIC00980 FOR EXAMPLE, EPS \(=16.0 \mathrm{DO} * *(-13)\) FOR DOUBLE PRECISION ARITHMETIC RIC00990 ON IBM S360/S370.

RIC01000 BICO1010
\(E P S=1.000\) RICO1020
EPS \(=0.5\) DO* \(E P S\)
EPSP1=EPS+1.OD0
IF (EPSP1.GT. 1.0D0) GO TO 5 RIC01030
\(E P S=2.0 D 0 * E P S\) RICO 1040 BIC01050 RIC01060 RIC01070
SET UP SYMPLECTIC MATRIX Z RICO1080 RIC0 1090
DO \(20 \mathrm{~J}=1, \mathrm{~N}\)

> Do \(10 I=1, N\) \(\quad Z(N+I, N+J)=F(J, I)\)

CONTINUE
CONEINUE
CALL DDCOAP (NF,N,F,COND, IPVT, HOKK)
CONDP \(1=C O N D+1.0 D O\)
IF (CONDP1:GT.CCND) GO TO 30
WRITE \((6,44400)\)
44400 FORMAT ( 42 H 1 F MATRIX IS SINGULAR TO WORKING PGECISION)
REIURN
DO \(60 \mathrm{~J}=1, \mathrm{~N}\)
DO \(40 \quad I=1, N\)
WORK(I) \(=0.0 \mathrm{DO}\)
CONTINUE
WChK (J) \(=1.0 \mathrm{DO}\)
CALL DSOLVE (NP,N,F,WORK, IPVT)
DC \(50 \quad I=1, N\) \(Z(I, J)=\) OKK (I)
CONTINUE
CONTINUE
DO \(80 \mathrm{~J}=1 \mathrm{~N}\) DO \(70 \quad I=1, N\)
\(F(I, J)=Z(I, J)\)
CONTINUE
CONTINUE
CALL MULHOA (NH,NF,N,H,F,WORK)
DO \(120 \mathrm{~J}=1 \mathrm{~N}\)
DO \(90 \quad \mathrm{I}=1, \mathrm{~N}\)
\(Z(I, N+J)=0.000\)
\(Z(N+I, J)=H(I, J)\)
CONTINUE
DO \(110 \mathrm{~K}=1\), N
DO \(100 \quad I=1\). \(N\)
\(Z(I, N+J)=Z(I, N+J)+F(I, K) * G(K, J)\)
CONTINUE
Continue
CONTINUE
CALL MULWOB (NH,NG,N,H,G,WORK)
DO \(140 \mathrm{~J}=1\), N
DC \(130 \quad I=1\), \(N\)
\(Z(N+I, N+J)=Z(N+I, N+J)+G(I, J)\)
CONTINUE
CONTINUE
BALANCE Z
CALL BALANC (NZ, NN, Z, LOW, IGH, SCALE)
GEDUCE Z TG FEAL SCHUR FORA WITH EIGENVALOES OUTSIDE THE UNIT DISK IN THE UPPER LEFT N \(X\) N UPPER QDASI-TRIANGULAR BLOCK

NLOW=1
NUP \(=\mathrm{N} N\)
CALL ORTHES (NZ,NN,NLOW,NUP, Z, ER)
CALL ORTRAN (NZ,NN,NLOW,NUP, Z,ER,W)

RIC01110
RIC01120
RICO1130
RICO1140
RICO1150
RIC01160
RIC01170
RICO1180
RIC01190
RIC01200
RIC01210
RICO1220
RIC01230
RIC01240
RIC01250
RIC01260
RICO1270
RIC01280
RICO1290
RIC01300
RICO1310
RICO1320
RIC01330
RICO1340
RICO1350
RICO 1360
EICO1370
RIC01380
RICO1390
RICO1400
RIC01410
RICO 1420
RIC01430
RIC01440
RIC01450
RICO1460
RIC01470
BIC01480
RIC01490
RIC01500
RICO 1510
RIC01520
RI CO 1530
RIC01540
RICO 1550
RIC01560
RIC01570
RICO 1580
RIC01590
RIC01600
RIC01610
RIC01620
RIC01630
RIC 01640
RICO1650

CALL HQK3 (Z, W,NN,NLOW,NUP,EPS,ER,EI, ITYPE,NZ,NZ)
\begin{tabular}{|c|c|}
\hline c &  \\
\hline C & COMPURZ SOLUTION OF THE EICCATI EQUATION FEOM THE ORTHOGONAL \\
\hline C & Matiix non in the arkay w. Store the result in the arkay h. \\
\hline C & \\
\hline & CALL BALBAK (NZ,NN,LOW, IGH,SCALE,NN, W) \\
\hline & DO \(160 \quad \mathrm{~J}=1, \mathrm{~N}\) \\
\hline & DO \(150 \mathrm{I}=1, \mathrm{~N}\) \\
\hline & \(F(\mathrm{I}, \mathrm{J})=\mathrm{W}(\mathrm{J}, \mathrm{I})\) \\
\hline & \(H(I, J)=N(N+J, I)\) \\
\hline 150 & Continue \\
\hline 160 & Continue \\
\hline & CALL MLINEQ (NF, NH, N, N, F, H, COND, IPVT, WOKK) \\
\hline & WOKK (1) =COND \\
\hline C & \\
\hline C & TRANSFORM TO GET THE CLOSED LOOP SPECTRUM \\
\hline C & \\
\hline & Do \(190 \mathrm{I}=1 \mathrm{~N}\) \\
\hline & IF (ITYPE(I).GE.0) GO TO 170 \\
\hline & WRITE (6,44410) I \\
\hline 44410 & FOKMAT (1X, 14, 1X,41HTH EIGENVALUE NOT SUCCESSFULIY CALCULATED) \\
\hline & RETURN \\
\hline 170 & IF (ITYPE(I).GT-0) GO TO 180 \\
\hline & \(E R(I)=1.000 / E R(I)\) \\
\hline & \(E I(I)=0.000\) \\
\hline & GO TO 190 \\
\hline 180 & IF (ITYPE(I).EQ.2) GO TO 190 \\
\hline & \(T=E \mathrm{E}(\mathrm{I}) * * 2+\mathrm{EI}(\mathrm{I}) * * 2\) \\
\hline & \(\operatorname{ER}(\mathrm{I})=\mathrm{ER}(\mathrm{I}) / \mathrm{T}\) \\
\hline & \(\mathrm{EI}(\mathrm{I})=\mathrm{EI}(\mathrm{I}) / T\) \\
\hline & \(E E(I+1)=E R(I)\) \\
\hline & \(E I(I+1)=-E I(I)\) \\
\hline 190 & CONTINUE \\
\hline & RETURN \\
\hline C & \\
\hline C & LAST LINE OF RICDSD \\
\hline C & \\
\hline & END \\
\hline
\end{tabular}

RIC01660
RICO 1670
RIC01680
RIC01690
RIC01700
RIC01710
RICO 1720
RIC01730
RIC0 1740
BIC01750
RIC01760
RIC01770
RIC01780
RIC 01790
RIC01800
RIC01810
RIC01820
RICO1830
RIC01840
RICO1850
RIC01860
RIC01870 EIC01880 RIC01890 BIC01900 RIC0 1910 RIC01920 RIC01930 RIC01940 RIC01950 RICO 1960 RIC01970 RICO 1980 RIC01990 RIC02000 RIC020 10 RIC02020 RICO20 30



CONTINOE
\(\operatorname{IPVT}(K)=M\)
IF (M.NE.K) IPVT(N) =-IPVT(N)
\(T=A(M, K)\)
\(A(M, K)=A(K, K)\)
\(A(K, K)=T\)
SKIP STEY IF PIVOT IS ZERO
IF (T.EQ.O.ODO) GC TO 35
COMPUTE MULTIPLIERS
DO \(20 \mathrm{I}=\mathrm{KP}\) 1, N
\(A(I, K)=-A(I, K) / T\)
CONTINUE
INTERCHANGE AND ELIMINATE BY COLUMNS
DC \(30 \mathrm{~J}=\mathrm{KP1}, \mathrm{~N}\)
\(T=A(M, J)\)
\(A(M, J)=A(K, J)\)
\(A(K, J)=T\)
IF (T.EQ.O.ODO) GO TO 30
DO \(25 \mathrm{I}=\mathrm{KP} 1, \mathrm{~N}\)
\(A(I, J)=A(I, J)+A(I, K) * T\)
CONTINUE
CONTINUE
CONTINJE
COND \(=(1-N O R M\) OF \(A)\) * (AN ESTIMATE OF 1-NORM OF A-INVERSE). ESTIMATE OBTAINED BY ONE STEP OF INVERSE ITERATION FOR THE SMALL SINGULAR VECTOK. THIS INVOLVES SOLVING THO SYSTEMS T
OF EQUATIONS: \(A * Y=E\) AND \(A * Z=Y\) HHERE \(\mathcal{Z}\)
IS A VECTOR OF +1 OR -1 CHOSEN TO CAUSE GROWTH IN \(Y\).
ESTIMATE \(=(1-\) NOKM OF Z \() /(1-N C R M\) OF \(\mathbf{Y})\).
T
SOLVE A*Y=E
DO \(50 K=1, N\)
\(\mathrm{T}=0.0 \mathrm{D} 0\)
IF (K.EQ.1) GO TO 45
\(K M 1=K-1\)
DO \(40 \mathrm{I}=1\), KM1
\(T=T+A(I, K) * W O R K(I)\)
CONTINUE
\(\mathrm{EK}=1.0 \mathrm{DO}\)
IF (T.LT.O.ODO) EK \(=-1.0 D 0\)
IF (A \((K, K) . E Q .0 .0 D 0)\) GO TO 90
WORK \((K)=-(E K+T) / A(K, K)\)
CONTINOE
DO \(60 \mathrm{~KB}=1\). NM 1
\(K=N-K B\)

DDC01110
DDC01120
DDC01130 DDCO 1140 DDC01150 DDC01160 DDC01170 DDC01180 DDC01190 DDC0 1200 DDCO1210 DDC01220 DDCO 1230 DDC01240 DDC0 1250 DDC01260 DDC01270 DDC0 1280 DDC01290 DDCO 1300 DDC01310 DDC01320 DDCO 1330 DDC01340 DDCO 1350 DDC01360 DDCO 1370 DDC01380 DDC01390 DDC01400 DDC01410 DDC01420 DDC 01430 DDCO 1440 DDCO1450 DDC0 1460 DDC01470 DDC01480 DDC01490 DDC 01500 DDCO 1510 DDC01520 DDC01530 DDC0 1540 DDC01550 DDCO 1560 DDC01570 DDC01580 DDC01590 DDC0 1600 DDC01610 DDC0 1620 DDCO 1630 DDC01640 DDC01650
\(T=0.000 \quad\) DDC01660
\(K P 1=K+1\)
DO \(55 \mathrm{I}=\mathrm{KP}\) 1, N
\(T=T+A(I, K) * W O R K(K)\)
Continue
WORK (K) =T
M=IPVT(K).
IF (M.EQ.K) GO TO 60
\(\mathrm{T}=\mathrm{WORK}(\mathrm{M})\)
WORK (M) = WCRK (K)
WORK \((K)=T\)
60 CUNTINUE
C
YNOEM=U.ODO
DO \(65 I=1\), \(N\)
YNORM=YNORM+DABS (WORK (I) )
CONTINUE

SOLVE \(A * Z=Y\)

CALL DSOLVE (NA,N,A,WORK,IPVT)
\(2 \mathrm{NORM}=0.0 \mathrm{DO}\)
DO \(70 \mathrm{I}=1 . \mathrm{N}\)
ZNORM=ZNOHM+DABS (WORK(I))
CONTINUE
c
C ESTIMATE CONDITION
C
COND \(=\) A NORM* ZNOEM/YNORY
IE (COND.LT. 1.ODO) COND=1.ODO
RETURN
\begin{tabular}{ll}
C & \(1-\mathrm{BY}-1\) \\
C & CASE
\end{tabular}
\(80 \quad C O N D=1.0 D 0\)
IF (A (1, 1). NE. O. ODO) RETURN
C
C "EXACT" SINGULAGITY
C

C
C
c

DDC01670
DDC0 1680
DDC 01690
DDC0 1700
DDC01710
DDC01720
DDC01730
DDC 01740
DDC0 1750
DDC01760
DDC 01770
DDC01780
DDC 01790
DDCO 1800
DDC01810
DDC0 1820
DDC01830
DDC 01840
DDC01850
DDC01860
DDCO 1870
DDC0 1880
DDC 01890
DDCO 1900
DDC01910
DDC01920
DDC0 1930
DDC01940
DDCO 1950
DDC01960
DDCO 1970
DDC01980
DDC01990
DDC02000
DDC 02010
DDC020 20
DDC02030
DDCO2040
DDC02050
DDC0 2060
DDC02070
DDC 02080
DDC02090
DDC02 100
DDC02110

\begin{tabular}{|c|c|c|}
\hline & NM1 \(=\mathrm{N}-1\) & DSO00560 \\
\hline & DO \(20 \mathrm{~K}=1, \mathrm{NMI}\) & DS 000570 \\
\hline & \(K P 1=K+1\) & DS000580 \\
\hline & \(\mathrm{M}=\mathrm{IPVI}(\mathrm{K})\) & DSO00590 \\
\hline & \(\mathrm{L}=\mathrm{B}\) ( M\()\) & DS000600 \\
\hline & \(B(M)=B(K)\) & DS000610 \\
\hline & \(B(K)=T\). & DS000620 \\
\hline & DO \(10 \mathrm{I}=\mathrm{KP} 1 . \mathrm{N}\) & DS0006 30 \\
\hline & \(\mathrm{B}(\mathrm{I})=\mathrm{B}(\mathrm{I})+\mathrm{A}(\mathrm{I}, \mathrm{K}) * \mathrm{~T}\) & DSO00640 \\
\hline 10 & CONTINUE & DS000650 \\
\hline 20 & CONTINUE & DSO00660 \\
\hline C & & DS000670 \\
\hline C & BACK SUBSTITUTION & DS000680 \\
\hline C & & DS000690 \\
\hline & DC \(40 \mathrm{~KB}=1\), NM 1 & DS000700 \\
\hline & \(\mathrm{KM1}=\mathrm{N}-\mathrm{KB}\) & DS000710 \\
\hline & \(K=K M 1+1\) & DS000720 \\
\hline & \(B(K)=B(K) / A(K, K)\) & DS000730 \\
\hline & \(\mathrm{T}=-\mathrm{B}(\mathrm{K})\) & DS000740 \\
\hline & DO \(30 \mathrm{I}=1\), KM 1 & DS 000750 \\
\hline & \(B(I)=B(I)+A(I, K) * T\) & DS000760 \\
\hline 30 & CONTINUE & DS000770 \\
\hline 40 & Continue & DS000780 \\
\hline 50 & \(B(1)=B(1) / A(1,1)\) & DSO00790 \\
\hline & RETURN & DS000800 \\
\hline C & & DS000810 \\
\hline C & LAST LINE Of dSOLVE & DSO00820 \\
\hline C & & DS 000830 \\
\hline & END & DSO00840 \\
\hline
\end{tabular}
```

SUBLOUTINE EXCHNG (A,V,N,L,B1,B2,EPS,FAIL,NA,NV)
ExC00010

```

ExC000 20
EXC00030
EXCOOO40
INTEGER \(\operatorname{B} 1,32, L, N A, N V\)
DOUBLE PKECISION A (NA,N), EPS, V (NV,N)
LUGICAL FAIL
EXC00050
EXCOOO60
EXC00070
*****LOCAL VALIABLES:
Inmegeat I, IT, J, L1, M
DOUBLL PRECISION P, Q, K,S,W,X,Y,Z
*****FUNCTIONS:
DOUBLE PHECISION DABS, DSQRT, DMAX 1
*****SURROUTINES CALIED:
QKSTEP
EXC00080
EXC00090
ExC00100
EXC00110
EXCOO120
EXC00130
EXCOO140
ExC00150
EXCOO 160
ExC00170
:: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : EXC00 180
EXC00190
*****PURPOSE:
EXCOO200
GIVEN THE UPYER HESSENBERG MATRIX A WITH CONSECUTIVE B1 X B1 AND EXC00210
B2 X B2 DIAGONAL BLOCKS (B1. B2.LE.2) STARTING AT A(L,L), THIS EXC00220
SUBkOUTINE PFODUCES A UNITARY SIMILARITY TRANSFORMATION THAT EXC00230
EXCHANGES THE BLOCKS ALONG UITH THEIE EIGENVALUES. THE EXC00240
TKANSFOXMATION IS ACCUMULATED IN V. EXCOO250
EXC00260
*****PARAMETER DESCBIPTION:
EXC00270
ON INPUT:
NA, NV ROW DIGENSIONS OP THE AREAYS CONTAINING A AND V. RESPECTIVELY, AS DECLARED IN THE CALLING PROGRAM DIMENSION STATEMENT:

N X N MATRIX HHOSE BLOCKS ARE TO BE INTERCHANGED;

ORDER OF THE MATRIX A;
POSITION OF THE BLOCKS:
AN INTEGEE CONTAINING THE SIZE OF THE FIRST BLOCK;

AN INTEGER CONTAINING THE SIZE OF THE SECOND BLOCK;

A CONVERGENCE CRITERION (CF. HQR3).

A LOGICAL VARIABLE WHICH IS . FALSE. ON A NORMAL RETURN. IF THIRTY ITERATIONS UERE PERFORMED HITHOUT CONVERGENCE, FAIL IS SET TO .TRUE. AND THE ELEMENT A (L+B2,L+B2-1) CANNOT BE ASSUMED ZERO.

EXC00280
EXCOO 290
EXCOO300
E XC00310
EXC00320
EXCOO330
EXC00340
EXC00350
EXCOO 360
ExC00370
EXC00380
EXC00390
EXCOO400
EXCOO4 10
EXCOO420
ExC00430
EXC00440
EXC00450
EXCOO460
EXC00470
EXC00480
EXC00490
EXC00500
EXC00510
EXC00520
EXCOO530
ExC00540
EXC00550
\begin{tabular}{|c|c|c|}
\hline C & ***** HISTOL Y : & ExC00560 \\
\hline C & DOCUMENTED BY J.A.K. CARRIG (ELEC. SYS. LAB.. M.I.T.. RM. 35-307. & EXC00570 \\
\hline C & CAMBEIDGE, MA 02139, PH.: (617) - 253-2165, SEPTEMBER 1978. & EXC00580 \\
\hline C & MOST RECENT VERSION: SEPT. 21.1978. & ExC00590 \\
\hline C & & EXC00600 \\
\hline C & : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : ; : : : : : : : : : : : : : : & : EXC00610 \\
\hline C & & EXC00620 \\
\hline & FAIL=. FALSE. & EXC00630 \\
\hline & IF (B1.EQ.2) GO TO 70 & ExC00640 \\
\hline & IF (32.EQ.2) GO TO 40 & EXC00650 \\
\hline & \(\mathrm{L} 1=\mathrm{L}+1\) & ExC00660 \\
\hline & \(Q=A(L+1, L+1)-A(L, L)\) & ExC00670 \\
\hline & \(\mathrm{p}=\mathrm{A}(\mathrm{L}, \mathrm{L}+1)\) & ExC00680 \\
\hline & \(E=D M A X 1(P, Q)\) & ExC00690 \\
\hline & IF (R.EQ.O.ODO) RETURN & ExC00700 \\
\hline & \(P=P / R\) & ExC00710 \\
\hline & \(Q=0 / R\) & EXC00720 \\
\hline & \(\mathrm{E}=\mathrm{DSQRT}(\mathrm{P} * * 2+Q * * 2)\) & EXC00730 \\
\hline & \(\mathrm{P}=\mathrm{P} / \mathrm{R}\) & EXC00740 \\
\hline & \(Q=Q / R\) & EXC00750 \\
\hline & DO \(10 \mathrm{~J}=\mathrm{L}, \mathrm{N}\) & EXC00760 \\
\hline & \(\mathrm{S}=\mathrm{P} * \mathrm{~A}(\mathrm{~L}, \mathrm{~J})+\mathrm{Q} * \mathrm{~A}(\mathrm{~L}+1, \mathrm{~J})\) & E XC00770 \\
\hline & \(\mathrm{A}(\mathrm{L}+1, \mathrm{~J})=\mathrm{P} * \mathrm{~A}(\mathrm{~L}+1, J)-\mathrm{Q} * \mathrm{~A}(\mathrm{~L}, \mathrm{~J})\) & ExC00780 \\
\hline & \(A(L, J)=5\) & EXC00790 \\
\hline 10 & CONTINUE & ExC00800 \\
\hline & DO \(20 \mathrm{I}=1.11\) & ExC00810 \\
\hline & \(S=P * A(1, L)+Q * A(L, L+1)\) & ExC00820 \\
\hline & \(A(I, L+1)=P * A(I, L+1)-Q * A(I, L)\) & EXC00830 \\
\hline & \(A(1, L)=S\) & EXC00840 \\
\hline 20 & CONTINUE & EXC00850 \\
\hline & DO \(30 \mathrm{I}=1 . \mathrm{N}\) & EXC00860 \\
\hline & \(S=P * V(1, L)+Q * V(1, L+1)\) & ExC00870 \\
\hline & \(V(\mathrm{I}, \mathrm{L}+1)=\mathrm{P} * \mathrm{~V}(\mathrm{I}, \mathrm{L}+1)-\mathrm{Q} * \mathrm{~V}(\mathrm{I}, \mathrm{L})\) & EXC00880 \\
\hline & \(V(1, L)=S\) & ExC00890 \\
\hline 30 & CONTINUE & EXC00900 \\
\hline & \(A(L+1, L)=0.0 D 0\) & ExC00910 \\
\hline & EETURN & ExC00920 \\
\hline 40 & continue & ExC00930 \\
\hline & \(\mathbf{X}=\mathbf{A}(\mathrm{L}, \mathrm{L})\) & ExC00940 \\
\hline & \(\mathrm{P}=1.000\) & EXC00950 \\
\hline & \(Q=1.000\) & ExC00960 \\
\hline & \(\mathrm{R}=1.0 \mathrm{D} 0\) & ExC00970 \\
\hline & CALL QRSTEP (A, V, P, Q, R, L, L + \(2, N, N A, N V)\) & ExC00980 \\
\hline & \(\underline{T}=0\) & ExC00990 \\
\hline 50 & \(\mathrm{IT}=\mathrm{IT}+1\) & EXCO 1000 \\
\hline & IF (IT.LE.30) GO TO 60 & ExC01010 \\
\hline & FAIL=. TRUE. & ExCO 1020 \\
\hline & GETURN & ExC01030 \\
\hline 60 & COMTINUE & EXCO1040 \\
\hline & \(\mathrm{P}=\mathrm{A}(\mathrm{L}, \mathrm{L})-\mathrm{X}\) & EXCO1050 \\
\hline & \(Q=A(L+1, L)\) & ExC01060 \\
\hline & \(\mathrm{R}=0.0 \mathrm{DO}\) & ExC01070 \\
\hline & CALL QRSTEP (A,V, \(\mathrm{P}, \mathrm{Q}, \mathrm{B}, \mathrm{L}, \mathrm{L}+2, \mathrm{~N}, \mathrm{NA}, \mathrm{NV}\) ) & ExC01080 \\
\hline &  & ExCO 1090 \\
\hline & + GO TO 50 & EXC01100 \\
\hline
\end{tabular}
    \(A(L+2, L+1)=0.000\)

ExC01110
EXCO 1120
ExCO1130
EXC01140
ExC01150
ExC01160
EXCO1170
ExC01180
ExC01190
ExC01200
EXCO1210
EXC01220
EXCO1230
ExC01240
ExCO1250
EXCO1260
EXCO1270
EXC01280
ExC01290
EXC01300
EXC01310
ExC01320
ExC01330
ExC01340
EXCO1350
EXC01360
\&xC01370
ExC01380
ExCO1390
EXCO1400
ExC01410
EXCO1420
EXCO1430
EXCO1440
EXCO1450
EXC01460
EXCO1470
SUBBOUTINL HQF3 (A, V,N,NLOW, NUP,EPS, ER,EI,ITYPE,NA,NV) HQR00010
HQROOO20
*****PAKAMETEKS:
INTEGER N,NA,NLOW,NUP,NV,ITYPE(N)
DOUBLE PKECISION A (NA,N), EI(N), EK (N), EPS, V(NV,N)
*****LOCAL VAFIABLES:
LOGICAL FAIL
INTEGER I, IT,L, \(4 U, N L, N U\)
DOUBLE PRECISION E1,E2,P,Q,R,S,T,W,X,Y,Z
*****FUNCTIONS:
DOUBLE PRECISION DABS
*****SUBEOUTINES CALLED:
EXCHNG, QESTEP, SPLIT
HQR00030
HQROOO40

I-TH ENTKY IS \(\quad\) HQR00560
0 If THE I-TH EIGENVALUE IS EEAL. HQR00570
1 IF THE I-TB EIGENVALUE IS COMPLEX WITH HQRO0580 POSITIVE IMAGINARY PART. HQR00590
2 If THE I-TH EIGENVALUE IS COMPLEX WITH HQE00600 NEGATIVE IMAGINARY EART, HQR00610
-1 If the I-fit EIGENVALUE WAS NOT CALCULATED HQR00620 SUCCESSFULIY.

ON OUTPUT:
A
N \(X\) akray Containing the Eeduced, QUASIteIangular matrix:

N X N AERAY CCNTAINING THE REDUCING TKANSPORMATIONS TO BE MULTIPLIED;

REAL SCRATCH VECTORS OF LENGTH N WHICH ON heturn contain the keal and imaginaky pakts. RESPECTIVELY, OF THE EIGENVALUES.

HQR00630
HQROO640
HQR00650
HQROO660
HQR00670
HQROO680
HQROO690
HQR00700
HQROOT10
HQR00720
HQR00730
HQR00740
HQROO 750

HQR00760 HQROO770
DOCUMENTCD BY J.A.K. CARRIG, (ELEC. SYS. LAB., K.I.T., RM. 35-307,HQR00780 CAMBRIDGE, MA 02139, PH.: (617)-253-2165), SEPT 1978. HQR00790
MOST RECENT VERSIUN: SEPT 21. 1978. EQROO800
HQR00810
: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : H Н R 0 0 8
HQROO830
DO \(10 \mathrm{I}=\mathrm{NLOW}, \mathrm{NOP}\)
ITYPE (I) \(=-1\)
HQROO840
HQS00850
CONTINUE
\(T=0.0 \mathrm{DO}\)
NU=NUP
IF (NU.LT.NLOW) GO TO 240
\(\mathrm{IT}=0\)
CONTINUE
\(\mathrm{L}=\mathrm{NU}\)
CONTINUE
IF (L.EQ.NLOW) GO TO 50
\(\operatorname{IF}(\operatorname{DABS}(A(L, L-1)), L T . E P S *(D A B S(A(L-1, L-1))+D A B S(A(L, L))))\)
\(+\quad\) GO TO 50
\(L=L-1\)
GO TO 40
CONTINUE
\(X=A(N U, N J)\)
If (L.EQ.NU) GC TO 160
\(\mathrm{Y}=\mathrm{A}(\mathrm{NU}-1, \mathrm{NU}-1)\)
\(n=A(N U, N U-1) * A(N U-1, N U)\)
IF (L. EQ.NU-1) GO TO 100
IF (IT.EQ.30) GO TO 240
IF (IT.NE. 10 .AND. IT.NE. 20) GO TC 70
\(T=T+X\)
DO \(60 \mathrm{I}=\mathrm{NLOW}, \mathrm{NU}\)
\[
A(I, I)=A(I, I)-X
\]

CONTINUE

HQROO860
HQR00870
HQE00880
HQROO 890
HQR00900
HQROO9 10
HQR 00920
HQR00930
HQR00940
HQR00950
HQROO960
HQR00970
HQROO980
HQR00990
HQR01000
HQR01010
HQRO 1020
HQRO1030
HQRO1040
HQRO1050
HQRO1060
HQRO 1070
HQR 01080
HQRO1090
HQRO1100
```

 S=DABS (A (NU,NU-1)) +DABS(A (NU-1,NU-2))
 X=0.75D0*S
 Y=X
 W=-0.4375D0*S**2
 CONTINUE
 IT=IT+1
 NL=NU-2
 CONTINUE
 Z=A(NL,NL)
 R=X-Z
 S=Y-Z
 P=(E*S-W)/A(NL+1,NL) +A (NL,NL+1)
 Q=A(NL+1.NL+1)-Z-R-S
 B=A(NL+2,NL+1)
 S=DABS (P) +DABS (Q) +DABS (E)
 P=P/S
 Q=Q/S
 B=R/S
 IF (NL.EQ.L) GO TO 90
 IF (DABS (A (NL,NL-1))*(DABS(Q) +DABS(R)).LE.EPS*DABS(P)*
 + (DABS (A (NL-1,NL-1)) +DABS (Z) + DABS (A (NL+1,NL+1)))) G0 T0 90
NL=NL-1
GO TO }8
CONTINUE
CALL QRSTEP (A,V,P,Q,R,NL,NO,N,NA,NV)
GO TO }3
IF (NU.NE.NLOS+1) A(NU-1,NU-2)=0.0DO
A (NU,NU)=A (NU,NU) +T
A (NU-1,NU-1)=A (NU-1,NU-1) +T
ITYPE(NU) =0
ITYPE (NU-1)=0
MO=NU
CONTINUE
NL=MU-1
CALL SPLIT (A,V,N,NL,E1,E2,NA,NV)
IF (A (MU;MU-1).EQ.O.ODO) GO TC }17
IF (MU.EQ.NOP) GO TO 230
IF (MU.EQ.NUP-1) GO TO 130
IF (A (MU+2,MU+1).EQ.0.000) GO TO 130
IF (A (MU-1,MU-1)*A (MU,MU)-A (MU-1,MU)*A (MU,MU-1).GE.A (MU+1,MO+1)*
 + A (MU+2,MU+2)-A(MU+1,MU+2)*A (MU+2,MU+1)) GO TO 230
CALL EXCHNG (A,V,N,NL,2,2,EPS,FAIL,NA,NV)
IF (.NOT.FAIL) GO TO 120
ITYPE(NL)=-1
ITYPE (NL+1) =-1
ITYPE (NL+2) =-1
ITYPE (NL+3)=-1
GO TO 240
CONTINUE
MO=MO+2
GO TO 150
CONTINUE
IF (A (MU-1,MU-1)*A (MU,MU)-A(MU-1,MU)*A (MU,MU-1) .GE.
 + A(MU+1,MU+1)**2) GO TO 230
CALL EXCHNG (A,V,N,NL,2,1,EPS,PAIL,NA,NV)
HQR011110
HQRO1120
HQRO1130
HQRO1140
HQEO1150
HQR01160
HQRO1170
HQR01180
HQEO1190
HQR01200
HQRO1210
HQRO1220
HQR01230
HQRO1240
HQRO1250
HQRO1260
HQR01270
HQRO1280
HQRO1290
HQRO1300
HQEO1310
HQR01320
HQRO1330
HQRO1340
HQRO1350
HQRO1360
HQRO1370
HQRO1380
HQ\&01390
HQRO1400
HQR01440
HQRO1420
HQRO1430
HQRO1440
HQRO1450
HQR01460
HQRO1470
HQRO1480
HQR01490
HQR01500
HQRO1510
HQR01520
HQRO1530
HQRO1540
HQRO1550
HQRO1560
HQR01570
HQRO1580
HQR01590
HQRO1600
HQR01610
HQRO1620
HQR01630
HQR01640
HQRO1650

```
```

 IF (-NOT-FAIL) GO TO 140
 ITYPE(NL)=-1
 ITYPE (NL+1) =-1
 ITYPE(NL+2)=-1
 GO TO 240
 CONTINUS
 MU=MU+1
 CONTINUF
 GO TO 110
 NL=O
 A (NU,NU) =A (NU,NU) +T
 IF (NU.NE.NLOW) A (NU,NU-1)=0.ODO
 ITYPE(NU)=0
 MU=NU
 CONTINUE
 CONTINUE
 IF (MU.EQ.NUP) GC TO 220
 IF (MU.EQ.NUP-1) GO TO 200
 IF (A (MU+2,MU+1).EQ.0.0D0) GO TO 200
 IF (A (MU,MU)**2.GE,A (MU+1,MU+1)*A (MU+2,MU+2)-A(MU+1,MU+2)*
 + A (MU+2.MU+1)) GO TO 230
 CALL EXCHNG (A,V,N,MU,1,2,EPS,FAIL,NA,NV)
 IF (.NOT.FAIL) GO TO 190
 ITYPE (MU) =-1
 ITYPE (MU+1) =-1
 ITYPE (MU+2)=-1
 GO TO 240
 CONTINUE
 MU=MU+2
 GO TO 210
 CONTINOE
 IF (DABS (A (MU,MU)).GE.DABS (A (MU +1,MU+1))) GO TO 220
 CALL EXCHNG (A,V,N,MU,1,1,EPS,FAIL,NA,NV)
 MU=MU+1
 CONTINUE
 GO TO 180
 CONTINUE
 MU=NL
 NLL=O
 IF (MU.NE.O) GO TO 170
 CONTINOE
 NU=L-1
 GO TO 20
 IF (NU.LT.NLOW) GO TO 260
 DO 250 I=1,NU
 A(I, I) =A (I,I) +T
 CONTINUE
 CONTINUE
 NU=NUP
 continue
 IF (ITYPE(NU).NE.-1) GO TO 280
 NU=NU-1
 go to 310
 CONTINUE
 IF (NU.EQ.NLOW) GO TO 290
    ```

HQR01660
HQHO1670
HQE01680
HQRO1690
HQE01700
HQRO1710
HQRO 1720
HQR01730
HQRO 1740
HQRO1750
HQRO1760
HQRO 1770
HQRO1780
HQRO 1790
HQRO1800
HQRO1810
HQRO1820
HQRO1830
HQRO1840
HQR01850
HQRO1860
HQR01870
HQRO1880
HQEO1890
HQRO1900
RQE 0.1910
HQEO 1920
HQRO1930
HQRO1940
HQRO1950
HQRO1960
HQR01970
HQRO1980
HQRO1990
HQR02000
HQRO2010
HQR02020
HQRO2030
HQR 02040
HQRO2050
HQR02060
HQR02070
HQRO2080
HQR 02090
HQRO2100
HQR02110
HQKO2 120
HQRO2130
HQKO2140
HQRO2150
HQRO2160
HQRO2170
HQR02180
HQRO2190
HQR02200
```

 IF (A(NU,NU-1).EQ. O. ODO) GO TC 290
 CALL SPLIT (A,V,N,NU-1,E1,E2,NA,NV)
 IF (A (NU,NU-1).EQ.0.0DO) GO TC 290
 ER(NU)=E1
 EI(NU-1)=E2
ER(NU-1)=ER(NU)
EI(NU)=-EI(NU-1)
ITYPE (NU-1)=1
ITYPE (NU)=2
NU=NU-2
GO TO }30
CONTINUE
ER(NU)=A(NU,NU)
EI(NU)=0.0DO
NU=NU-1
300 CONTINUE
CONTINUE
IF (NU.GE.NLOW) GO TO 270
EETURN
I
C
C LAST LINE OF HQR3
C
END
HQRO2210
HQEO2220
HQRO2230
END
HQR02240
HQR02250
HQEO2260
HQEO2270
HQR02280
HQR02290
HQRO2300
HQRO2310
40802320
HQRO2320
HQR02330
HQR 02340
HQRO2350
HQRO2360
HQRO2370
HQR02380
HQB02390
HQRO2400
HQR02410
HQRO2420
HQK02430
HQRO2440

```
```

SUBFOUTINE MLINEQ (NA,NB,N,M,A,B,COND,IPVT, WOEK)
MLIO0010

```
```

HLIOOO20

```
```

*****PAKAMETEES:
INTEGER NA,NB,N,M,IPVE(N)
DOUBLE PKECISION A (NA,N),B(NE,H),COND,WORK(N)
*****LOCAL VARIAELESS:
INTEGER I,J,KIN,KOUT
DOUBLE PKECISION CONDP1
*****SUB\&OUTINES CALLED:
DDCOMP,DSOLVE

```

```

MLIOO150
***** PURPOSL:
MLIOO160
THIS SUBEOUTINE SOLVES THE MATEIX LINEAR EQDATION
A*X = B
WHEKE A IS AN N X N (INVERTIBLE) MATRIX AND B IS AN N X M
MATKIX. SUGROUTINE EDCOMP IS CALLED ONCE FOR THE LU-DECOMP-
OSITION GF A AND SUBROUTINE DSOLVE IS CALLED M TIMES FOR
GOKWAKD ELIMINATION AND BACK SUBSTITUTION TO PRODUCE THE
M COLUMNS OF THE SOLUTION MATRIX X = (A-INVERSE)*B. AN
ESTIMATL OF THE CONDITION OF A IS RETURNED. SHOULD A BE
SINGULAK TO HOEKING ACCUGACY, A MESSAGE TO THAT EFEECT IS
gRODUCED.
*****PAKAMETER DESCRIPTION:
ON INPUT:

```

NA, NB

N

3
A

B

ON OUTPUT:
B
COND
IPVT

WORK

ROW DIMENSIONS OF THE ARRAYS CONTAINING A AND B, GESPECTIVELY, AS DECLAEED IN THE CALLING program dimension statement;

ORDER OF THE MATRIX A AND NUMBEG OP ROWS OF THE MATRIX B;

NUMBER OF COLUMNS OF THE MATRIX B:
N X N COEFFICIENT MATRIX:
N \(X\) M RIGHT HAND SIDE MATRIX.

SOLUTION MATEIX \(X=(A-I N V E R S E) * B ;\)
AN ESTIMATE OF THE CONDITION OF A:
PIVOT VECTOR CF LENGTH N (SEE DDCONP DUCUMENTATION) ;

A REAL SCBATCH VECTOR OF LENGTH N.

MLIOOO30
MLI 00040
MLI 00050
MLIOOO60
MLIO 0070
KLIOOO80
MLI 100090
MLI00100
MLIOO110
MLIOO120
MLIOO130
MLIOO140
MLIOO150
MLIOO 160
MLI 00170
MLIOO180
MLIOO190
MLIOO 200
MLIOO210
MLI 00220
MLIOO230
MLIOO 240
MLIOO250
MLIOO260
MLIOO270
MLIOO280
MLIOO 290
MLIOO300
MLIOO310
MLIOO320
MLIOO330
MLIOO 340
HLIOO350
MLIOO360
hLIOO370
HLIOO 380
HLIOO390
MLI 00400
MLIOO4 10
MLIOO420
MLI 00430
MLIOO440
MLI 00450
MLI00460
MLIOO470
HLIOO480
MLI 00490
MLI 100500
MLIOO510
MLI 00520
MLIOO530
MLIOO540
MLIOOS50
\begin{tabular}{|c|c|c|}
\hline C & (1) The value of cond should always be checked by the calling & MLI00560 \\
\hline C & PEOGKAM. SHOULD A BE NEAR-SINGULAR (OR SINGULAR TO HORKING & MLIOO570 \\
\hline C & ACCURACY) THE data should be Investigated for possible & MLIO0580 \\
\hline C & ERROKS. If thene are none and the problem is apparenily & MLI00590 \\
\hline C & WELL-POSED AND/OR MEANINGFUL, SINGULAR VALUE ANALYSIS IS & MLI00600 \\
\hline C & THEN A MOFE EELIABLE SOLUTION TECHNIQUE (CF. EISPACK & HLIOO6 10 \\
\hline C & SUBEOUTINES SVD AND MINFIT). & MLI 00620 \\
\hline C & (2) MLINEQ CAN BE USED TO COMPUTE the Inverse of a: Simply Solve & MLI00630 \\
\hline C & \(A * X=I\) WHEFE I IS THE N X X I DENTITY MATRIX. & MLI00640 \\
\hline C & (3) IF THE SOLUTION TO \(X * A=B\) ( \(\quad\) ( \(=B *(A-I N V E R S E)\) ) IS DESIEED, & MLI 00650 \\
\hline C & SIMPLY TRANSPOSE THE SOLUTION CF & MLI00660 \\
\hline C & T T & MLI00670 \\
\hline C & \(A * X=B\) & MLI00680 \\
\hline c & & HLI00690 \\
\hline C & *****ALGORITHM NOTES: & MLI00700 \\
\hline C & the Contents of a are modified by this subrootine. Should the & MLI00710 \\
\hline C & ORIGINAL COEPFICIENTS OF A BE NEEDED SUBSEQUENTLY, THE & MLI 00720 \\
\hline C & CONTENTS OF A SHOULD BE SAVED PRIOR TO THE CALL TO MLINEQ. & MLI00730 \\
\hline C & & HLI00740 \\
\hline C & *****HISTOR Y: & MLI 00750 \\
\hline C & WRITTEN BY ALAN J. LaUB (ELEC. SYS. Lab.. M. I.T., RH. 35-331, & ULI00760 \\
\hline C & CAABRIDGE, MA 02139. PH.: (617)-253-2125). AUGUST 1977. & MLI 00770 \\
\hline C & MOST RECENT VERSION: SEP. 21.1977. & HLIOO780 \\
\hline C & & MLIOO 790 \\
\hline C & : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : & MLI00800 \\
\hline \multirow[t]{6}{*}{C} & & MLI 00810 \\
\hline & COMMON/INOO/KIN, KOUT & MLIOO820 \\
\hline & CALL DDCOMP (NA,N,A,COND, IPVT, WORK) & MLIOO830 \\
\hline & CONDP 1 = COND +1. ODO & MLIOO840 \\
\hline & IF (CONDP1.GT.COND) GO TO 100 & HLI 00850 \\
\hline & WEITE (KOUT, 44400) & HLIOO860 \\
\hline 44400 & PORMAT (40H1MATRIX IS SINGULAR TC NORKING PRECISION) & MLI 00870 \\
\hline & RETURN & MLI00880 \\
\hline \multirow[t]{3}{*}{100} & DO \(400 \mathrm{~J}=1\), M & HLI00890 \\
\hline & DO \(200 \mathrm{I}=1, \mathrm{~N}\) & HLI00900 \\
\hline & MORK ( I ) \(=\mathrm{B}(\mathrm{I}, \mathrm{J})\) & HLI00910 \\
\hline 200 & CONTINUE & MLI00920 \\
\hline C & & HLI00930 \\
\hline c & COMPUTE (J-TH COLUMN OF \(X\) ) \(=\left(\begin{array}{l}\text { ( }\end{array}\right.\) & HLI00940 \\
\hline \multirow[t]{4}{*}{C} & & MLI00950 \\
\hline & CALL DSOLVE (NA, N, A, WORK, IPVT) & MLI 00960 \\
\hline & DO \(300 \mathrm{I}=1, \mathrm{~N}\) & MLI00970 \\
\hline & \(B(I, J)=0 \mathrm{HK}(\mathrm{I})\) & MLI00980 \\
\hline 300 & CONTINUE & - L100990 \\
\hline \multirow[t]{2}{*}{400} & CONTINUE & MLIO1000 \\
\hline & RETURN & MLIO 1010 \\
\hline c & & MLI01020 \\
\hline C & LAST LINE OF MLINEQ & MLIO 1030 \\
\hline \multirow[t]{2}{*}{C} & & MLI01040 \\
\hline & END & MLIO1050 \\
\hline
\end{tabular}
```

```
SUUROUTINi: MULWOA (NA,NE,N,A,B,WOBK)
```

```
SUUROUTINi: MULWOA (NA,NE,N,A,B,WOBK)
NUL00010
NUL00010
MUL00020
MUL00020
*****PAKAMETERS:
*****PAKAMETERS:
INTEGER NA,NB,N
INTEGER NA,NB,N
DOUBLE PRECISION A(NA,N),B(NB,N),WOEK(N)
DOUBLE PRECISION A(NA,N),B(NB,N),WOEK(N)
*****LOCAL VAKIABLES:
*****LOCAL VAKIABLES:
LNTEGEA I,J,K
LNTEGEA I,J,K
*****SUBROUTLNES CALLED:
*****SUBROUTLNES CALLED:
NCNE
```

```
NCNE
```

```


```

```
*****pukPOSE:
```

```
*****pukPOSE:
this subioutine cverwrites the arkay a with the mateix product muloo160
this subioutine cverwrites the arkay a with the mateix product muloo160
    A*B. BOTH A AND B ARE N X N ARhayS AND MUST BE DISTINCT.
    A*B. BOTH A AND B ARE N X N ARhayS AND MUST BE DISTINCT.
*****PARAMETER DESCKIPTION: MULO0190
*****PARAMETER DESCKIPTION: MULO0190
ON INPUT:
ON INPUT:
    NA,NB ROW DIMENSIONS OF THE ARRAYS CONTAINING A AND MULOO220
    NA,NB ROW DIMENSIONS OF THE ARRAYS CONTAINING A AND MULOO220
        B, RESPECTIVELY, AS DECLARED IN THE CALLING MULOO230
        B, RESPECTIVELY, AS DECLARED IN THE CALLING MULOO230
        PhOGRAG LIMENSION STATEMENT; GULO0240
        PhOGRAG LIMENSION STATEMENT; GULO0240
    MULOO250
    MULOO250
    N ORDER OF THE MATRICES A AND B: MULOO260
    N ORDER OF THE MATRICES A AND B: MULOO260
    A AN NX N MATEIX:
    A AN NX N MATEIX:
    B AN NX N MATRIX.
    B AN NX N MATRIX.
ON OUTPUT:
ON OUTPUT:
    A AN N X N ARRAY CONTAINING A*B;
    A AN N X N ARRAY CONTAINING A*B;
    #ORK A REAL SCRATCH VECTOR OF LENGTH N.
    #ORK A REAL SCRATCH VECTOR OF LENGTH N.
*****HISTORY:
*****HISTORY:
WIITTEN BY ALAN J. LAUB (ELEC, SYS. LAB.., M.I.T., RM. 35-331,
WIITTEN BY ALAN J. LAUB (ELEC, SYS. LAB.., M.I.T., RM. 35-331,
CAMBRIDGE, KA 02139, PH.: (617)-253-2125). SEPTEMBER 1977.
CAMBRIDGE, KA 02139, PH.: (617)-253-2125). SEPTEMBER 1977.
MOST [ECENT VERSION: SEP. 21, 1977.
MOST [ECENT VERSION: SEP. 21, 1977.
MUL00410
MUL00410
MOL.00420
MOL.00420
::::::: :: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :M0L00430
::::::: :: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :M0L00430
M0 40, MOL00440
M0 40, MOL00440
DO 40 I=1,N
DO 40 I=1,N
MUL00450
MUL00450
    DO 20 J=1,N
    DO 20 J=1,N
        WORK(J)=0.ODO
        WORK(J)=0.ODO
        DO 10 K=1,N
        DO 10 K=1,N
                WOEK(J)=WORK(J) +A (I,K)*B(K,J)
                WOEK(J)=WORK(J) +A (I,K)*B(K,J)
        CONTINUE
        CONTINUE
    CONTINUE
    CONTINUE
    DO 30 J=1,N
    DO 30 J=1,N
        A(I,J)= #Chk(J)
        A(I,J)= #Chk(J)
    continue
    continue
continue
```

continue

```
```

MUL00030

```
MUL00030
MULOOO40
MULOOO40
MULOOO50
MULOOO50
MUL00060
MUL00060
MUL00070
MUL00070
MUL00080
MUL00080
mul00090
mul00090
MUL00100
MUL00100
MOLOO110
MOLOO110
MUL00120
MUL00120
H0L00140
H0L00140
MULOO150
MULOO150
MULOO170
MULOO170
MUL00180
MUL00180
MuL00270
MuL00270
MUL00280
MUL00280
MOL00290
MOL00290
MUL00300
MUL00300
mul00310
mul00310
MUL00320
MUL00320
M0L00330
M0L00330
MULOO340
MULOO340
MOL00350
MOL00350
MOLO0360
MOLO0360
mul00370
mul00370
MOL00380
MOL00380
M0l00390
M0l00390
MUL00400
MUL00400
Mul00460
Mul00460
MUL00470
MUL00470
MUL00480
MUL00480
nol00490
nol00490
MUL00500
MUL00500
MOL00510
MOL00510
MOL00520
MOL00520
MUL00530
MUL00530
M0L00540
M0L00540
MOLOO550
```

MOLOO550

```
\begin{tabular}{|c|c|c|}
\hline C & HETURN & \[
\begin{aligned}
& \text { MULOOS60 } \\
& \text { MOLOOS70 }
\end{aligned}
\] \\
\hline C & LAST LINE OF MULWOA & MUL00580 \\
\hline C & & MUL00590 \\
\hline & END & MUL00600 \\
\hline
\end{tabular}
```

SUBEOUIINE MULHOB (NA,NB,N,A,B,WORK) MUL00010
SUBEOUCINE MULHOB (NA,NB,N,A,B, MORK)
MUL.000 10
*****PAKAMETERS:
MUL00020
INTEGER NA,NB,N
MU 100030
DOUBLE PRECISION A (NA,N), B(NE,N), WORK(N)
MUL00040
nol 00050
HOL00060
*****LUCAL VARIABLES:
INTEGER I,J,K
*****SUBROUTINES CALLED:
NONE
nul 00070
M0L.00080
MUL00090
MUL00100
MUL 00110
HULOO 120
:: M M L 0 0 130
HUL00 140
*****PUKPOSE:
this subroutine overwrites the array b with the matrix product $A * B$. BOTH A AND B AKE $N X$ AREAYS AND UUST BE DISTINCT.
*****PAKAMETLK DESCEIPTION:
ON INPUT: MULOO 150 MUL00160 MUL00170 NULOO 180 MUL00190 MOL 00200 MULOO210

```

NA, NB
KOW DIMENSIONS OF THE ARRAYS CONTAINING A AND B. RESPECTIVELY, AS DECLARED IN THE CALLING PKOGRAM DIMENSION STATEMENT;

MUL00220
MULOO230
MUL00240
EuL.00250
N ChDER OF THE MATRICESA AND B; MUL00260
MU L00270
MUL.00280
MU1.00290
MUL00300
MUL00310
MO 200320
ON OUTPUT:
B
WOEK
AN A X ARRAY CONTATNING \(A * B\);
A REAL SCEATCH VECTOR OF LENGTH N.

\section*{MOL 00330}

MUL 00340
MUL00350
MUL 00360
MULOO 370
*****HISTORY:
WRITTEN BY ALAN J. LAUB (ELEC. SYS. LAB., M.I.T. AM. 35-331.
HUL00380
H0L. 00390 CAMBRIDGE, MA 02139 . PH.: (617)-253-2125), SEPTEMBER 1977. MUL00400 MOST RECENT VERSION: SEP. 21, 1977. MUL00410

MUL00420
: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 10 L00 4 30
MULOO440
DO \(50 \mathrm{~J}=1, \mathrm{~N}\)
DO \(10 \quad I=1, \mathrm{~N}\)
MORK \((I)=0.000\)
MUL00450
HUEOO460
M0L00470
CONTINUE
DO \(30 \mathrm{~K}=1\), N
DO \(20 \quad I=1 . N\)
MORK \((I)=\) HOFK \((I)+A(I, K) * B(K, J)\)
CONTINUE

\section*{MUL00480}

MOL00490
MUL00500
MULOO510
MUL 00520
CONTINUE
Do \(40 \quad I=1, N\)

\section*{MULOO530}

MULOO540 \(B(I, I)=\operatorname{WORK}(I)\)

H01.00550

CONTINUE
MOL00560 CONTINUE RETURN
c
C LAST LINE OF MULHOB
C

MUL00580
MUL00590
MOL00600
MOL00610
SULOO620

END
```

 SUBHOUTINE QHSTEP (A,V,P,Q,R,NL,NU,N,NA,NV)
 QRSOOO 10
QRS00020
QRSOOO 30
QRS 00040
QRS000 50
QRS 00060
QRS00070
QRS00080
QRS00090
QRS00100
QRS00 110
QRS00120
QES00130
QRS00 140
QRS00150 QRS00 160 QRS00170

```

```

QRS00190
*****PURPOSE:
This subeoutine pefforms one implicit qe step on the upper
QRSOO 200
QRS00210 hessenbefg matrix a. The Shift is determined by the numbers P, Q. QRS00220 and k, and the Step is applied tc rows and columns nl throuth nu. qrSOO230 the transformations are accumolated in the arbay v.
QRSOO240
QRS 00250
*****PARAMETER DESCRIPTION:
QRS00260
on Input:
Na,NV ROW dimensions of the arrays contalning a and V, RESPECTIVELY, aS DECLAEED IN THE CALLING Phogram dimension statement:
2RS00280
QRS00280
QRS00290
QRS00 300
QRS00310
A
P.Q.R
NL
nu
N
ON OUTPUT:
v
*****HISTORY:
n x n upper hessenberg matrix on which the qr Qrs 00320 STEP IS TO BE PERFOKMED;
QRS00330
QRS00340
PARAMETERS WHICH DETERMINE THE SHIFT; QRSOO 350
TAE LOWBE LIMIT OF THE STEP: QRS00370
QRS 00370
QRS00380
THE UPPER LIMIT OF THE STEP; QRS00390
QRS00400
order of the mathix a.
QRS00410
QRS00420
QRS00430
QRS00440
n X n real scratch arbay containing the Qrsoo450 accumulated tandspormations. QRS00460 QRS00470
QRS00480

```

DOCUMENTED BY J.A.K. CARRIG (ELEC. SYS. LAB., A.I.T., RM. 35-307, QRSOO490 CAMbridge, Ma 02139, PH.: (617) - 253-2165). SEPTEMBER 1978. QRS00500
MOST RECENT VERSION: SERT 21, 1978.
QRS00510
QRS 00520

QRS00540
\(\mathrm{NL} 2=\mathrm{NL}+2\)
QRS00550
```

 DO 10 I=NL2,NU ORS00560
 A(I,I-2)=0.0DO ORS00570
 CONTINUE
 IF (NL2.EQ.NU) GC TO 30
 NL 3=NL+3
 DO 20 I=NL3,NU
 A (I,I-3) = 0.0DO
 CONTINUE
 CONTINUE
 NUM1=NU-1
 DO 130 K=NL,NOM1
 LAST=K.EQ.NUM1
 IF (K.EQ.NL) GO TO 40
 P=A (K,K-1)
 Q=A(K+1,K-1)
 R=0.0DO
 IF (.NOT.LAST) F=A(K+2,K-1)
 X=DABS (P) +DABS (Q) +DABS (R)
 IF (X.EQ.O.ODO) GO TO 130
 P=P/X
 Q=Q/X
 R=R/X
 CONTINUE
 S=DSQRT(P**2+Q**2+R**2)
 IF (P.LT.O.ODO) S=-S
 IF (K.EQ.NL) GO TO 50
 A (K,K-1) =-S*X
 GO TO 60
 CONTINUE
 IF (NL.NE, 1) A(K,K-1)=-A(K,K-1)
 CONTINUE
 P=p+S
 X=P/S
 Y=Q/S
 Z=R/S
 Q=Q/P
 E=k/P
 DO }80\textrm{J}=\textrm{K},\textrm{N
 P=A (K,J) +Q*A (K+1,J)
 IF (LAST) GO TO 70
 P=P+R*A(K+2,J)
 A(K+2,J) =A(K*2,J)-P*Z
 CONTINUE
 A(K+1,J)=A(K+1,J)-P*Y
 A(K,J)=A(K,J)-P*X
 CONTINUE
 J=MINO(K+3,NU)
 DO 100 I=1,J
 P=X*A(I,K)+Y*A(I,K+1)
 IF (LAST) GO TO 90
 p=P+Z*A(I,K+2)
 A(I,K+2)=A(I,K+2)-P*R
 9 0

```
\(\mathrm{A}(\mathrm{I}, I-2)=0.0 \mathrm{DO}\)
CONTINUE
IF (NL2.EQ.NU) GC TO 30
NL \(3=\) NL +3
DO \(20 I=N L 3, N U\)
A \((\mathrm{I}, \mathrm{I}-3)=0.0 \mathrm{DO}\)
CONTINUE
CONTINUE
NUM1=NU-1
DO \(130 \mathrm{~K}=\mathrm{NL}\), NOM1
LAST=K.EQ. NUM1
\(2=A(K+1, K-1)\)
.0DO
IF (.NOT.LAST) \(\mathrm{F}=\mathrm{A}(\mathrm{K}+2, \mathrm{~K}-1)\)
\(X=D A B S(P)+D A B S(Q)+D A B S(B)\)
IF (X.EQ.O.ODO) GO TO 130
\(\mathrm{P}=\mathrm{P} / \mathrm{X}\)
\(R=R / X\)
CONTINUE
SHSQRP(P**2+Q**2+R**2)
IF (K.EQ.NL) GO TO 50
A \((K, K-1)=-S * X\)
GO TO 60
CONTINUE
CO (NL.NE, 1) \(A(K, K-1)=-A(K, K-1)\)
\(P=p+S\)
\(X=P / S\)
\(Y=Q / S\)
\(Z=R / S\)
\(\mathrm{Q}=\mathrm{Q} / \mathrm{P}\)
\(\mathrm{E}=\mathrm{R} / \mathrm{P}\)
DO \(80 \mathrm{~J}=\mathrm{K}, \mathrm{N}\)
\(\mathrm{P}=\mathrm{A}(\mathrm{K}, \mathrm{J})+\mathrm{Q} * \mathrm{~A}(\mathrm{~K}+1, \mathrm{~J})\)
IF (LAST) GO TO 70
\(\mathrm{P}=\mathrm{P}+\mathrm{R} * \mathrm{~A}(\mathrm{~K}+2, \mathrm{~J})\)
\(A(K+2, J)=A(K+2, J)-P * 2\)
\(A(K+1, J)=A(K+1, J)-P * Y\)
\(A(K, J)=A(K, J)-P * X\)
CONTINUE
\(\mathrm{J}=\mathrm{MINO}(\mathrm{K}+3\), NU \()\)
DO \(100 \mathrm{I}=1 . \mathrm{J}\)
\(P=X * A(1, K)+Y * A(1, K+1)\)
\(\mathrm{P}=\mathrm{P}+\mathrm{Z} * \mathrm{~A}(\mathrm{I}, \mathrm{K}+2)\)
\(A(I, K+2)=A(I, K+2)-P * R\)
CONTINUE
\(A(I, K+1)=A(I, K+1)-P * Q\)
\(A(I, K)=A(I, K)-P\)

QRSOO560
ORS 00570
QRS00580
QRS 00590
QRS00600
QRS006 10
QRS00620
QRS00630
QRS 00640
QRS00650
QRS 00660
QRS00670
QRS00680
QRS00690
QRS00700
QRS 00710
QRS00720
QRS 00730
QRS00740
QRS 00750
QRS00760
QRS 00770
QRS00780
QRS00790
QRS 00800
QRS00810
QRS 00820
QRS00830
QES 00840
QRS00850
QRS 00860
QRS00870
QRS00880
QRS 00890
QRS00900
QRS 00910
QRS00920
QRS00930
QRS00940
QRS00950
QRS 00960
QRS00970
QRS 00980
QRS 00990
QRS 01000
QRSO1010
QRSO1020
QRSO 1030
QRSO1040
QRSO1050
QRSO 1060
QRS 01070
QRSO 1080
QRS 01090
QRSO1100
```

1 0 0
110
CONTINUE
RETURN
C
C LASI LINE OF QESTEP
C
DO 120 I=1,N
P=X*V(I,K)+Y*V(I,K+1)
IF (LAST) GO TO 110
P=P+Z*V (I,K+2)
V(I,K+2)=V (I,K+2)-P*K
V (I,K+1) =V (I,K+1)-P*Q
V (I,K) =V (I,K)-P
END

```
CONTIHUE QRSO1110
        QRS 01120
        QRSO 1130
    QRS01140
    QRSO1150
    QRSO 01160
    QRSO1170
    QRSO1180
    QRSO1190
QRSO 1200
QRSO1210
QRSO 1220
QRS01230
QRS01240
QRS01250
QRS01260
SUBROUTINE SPLIT (A, V,N,L,E1,E2,NA,NV) SPL 00010
```

 *****PAEAMETERS:
 INTEGER L,N,NA,NY
 DOUBLE PRECISIGN A(NA,N),V(NV,N),E1,E2
 *****LOCAL VARIABLES:
 INTEGER I,J,L1
 DOUBLE PEECISION P,Q,R,T,U,W,X,Y,Z SPL00090
 ******UNCTIONS:
 DOUBLE PRECISION DABS,DSQRT
 ****SUBROUTINES CALLED:
 NONE
 :::::::::: : :: SPL00170
    ```

```

 *****PORPOSE: SPL00190
 GIVEN THE UPPER-HESSENBERG MATRIX A HITH A 2 X 2 BLOCK STARTING ATSPL00200
 A(L,L). THIS PROGRAM DETERMINES IF THE CORRESPONDING EIGENVALUES SPL00210
 ARE REAL OR COMPLEX. IF THEY ARE REAL, A ROTATION IS DETERMINED SPLOO220
 THAT REDUCES THE BLOCK TO OPPER-TRIANGULAR PORM UITH THE SPL00230
 EIGENVALUE OF LAEGEST ABSOLOTE VALUE APPEAEING FIRST. THE SPL00240
 ROTATION IS ACCUMULATED IN THE ARRAY V. SPL00250
 #****PARAMETER DESCRIPTION:
 ON INPUT: SPL00280
NA,NY ROM DIMENSIONS OF THE ARRAYS CONTAINING
A AND V, RESPECTIVELY, AS DECLARED IN THE
CALLING PROGRAM DIMENSION STATEMENT;
A THE UPPER HESSENBERG MATEIX WGOSE 2 X 2 BLOCK
IS TO BE SPLIT;
N ORDER OF THE MATRIX A;
POSITION OF THE 2 X 2 BLOCK.
ON OUTPUT:
V AN N X N ARRAY CONTAINING THE ACCUMULATED
E1,E2
V AN N X N ARRAY CONTAINING THE ACCUMULATEDSPLITTING TRANSFGRMATION:
GEAL SCALARS. If THE EIGENVALUES ARE COMPLEX,
E1 AND E2 CONTAIN TGEIR COMMON REAL PAET AND
pOSITIVE IMAGINARY PART (RESPECTIVELY).
IF THE EIGENVALUES ARE REAL, E1 CONTAINS THE SPL00480
ONE LARGEST IN ABSOLUTE VALUE AND E2 CONTAINS SPL00490
THE OTHER ONE.
*****HISTORY:
DOCUMENTED BY J.A.K. CARRIG (ELEC. SYS. LAB., H.I.T., R. 35-307,
CAMBRIDGE, MA 02139. PH.: (617) - 253-2165). SEPT 1978. SPL00540
MOST BECENT VERSION: SEPT 21, 1978. SPLOO550
SPL00020
S PLOOO 30
SPL00040
SPL00050
SPL00060
SPL00070
SPL00080
SPL00150
SPLOO160
SPL OO 180
ENGENALU OF LARGESTGBSN THE SALUE APPEARLNG PLRSI. IHE SPL00250
SPL00290
SPL00300
SPL00310
SPL00320
SPLO0330
SPL00340
SPL00350
SPL00360
SPL00370
SPL00380
SPL00390
SPL00400
SPL00410
SPLOO420
SPLOO430
SPLOO440
SPL00450
SPL00460
SPLO0470
SPL00480
SPL00500
SPLOO510
SPLOO520
SPL00530

```

C

    \(X=A(L+1, L+1)\)
    \(Y=A(L, L)\)
    \(W=A(L, L+1) * A(L+1, L)\)
    \(\mathrm{P}=(\mathrm{Y}-\mathrm{X}) / 2.0 \mathrm{D} 0\)
    \(Q=p * 2+h\)
    IF (Q.GE.O.ODC) GO TO 10
    \(\mathrm{E} 1=\mathrm{P}+\mathrm{X}\)
    \(\mathrm{B} 2=\mathrm{DSQRT}(-0)\)
    heTUEN
    CONTINUE.
    \(Z=\operatorname{DSQT}(Q)\)
    IF (P.LT.O. ODO) GO TO 20
    \(Z=p+2\)
    GO TO 30
    CONTINUE
    \(z=P-Z\)
    CONTINUE
    IF (Z.EQ.0.000) GO TO 40
    \(\mathrm{R}=-\mathrm{W} / \mathrm{Z}\)
    GO TO 50
    0 CONTINUE
    \(\mathrm{F}=0.0 \mathrm{DO}\)
    CONTINUE
    IF (DABS \((X+Z)-G E \cdot \operatorname{DABS}(X+R)) \quad Z=R\)
    \(Y=Y-X-Z\)
    \(X=-Z\)
    \(T=A(L, L+1)\)
    \(U=A(L+1, L)\)
    IF (DABS (Y) + DABS (U). LE.DABS (T) +DABS (X)) GO TO 60
    \(Q=U\)
    \(\mathrm{P}=\mathrm{Y}\)
    GO TO 70
    Continue
    \(Q=x\)
    \(\mathrm{p}=\mathrm{T}\)
    CONTINUE
    \(E=\operatorname{DQRT}(P * * 2+Q * * 2)\)
    IF (K.GT.O.ODO) GO TO 80
    \(E 1=A(L, L)\)
    \(E 2=A(L+1, L+1)\)
    \(A(L+1, L)=0.0 D 0\)
    RETURN
    continue
    \(\mathrm{P}=\mathrm{P} / \mathrm{R}\)
    \(Q=Q / R\)
    DO \(90 \mathrm{~J}=\mathrm{L}, \mathrm{N}\)
    \(Z=A(L, J)\)
    \(A(L, J)=P * Z+Q^{*} A(L+1, J)\)
    \(A(L+1, J)=P * A(I+1, J)-Q * 2\)
    CONTINUE
    \(\mathrm{L} 1=\mathrm{L}+1\)
    DO \(100 \mathrm{I}=1, \mathrm{~L} 1\)
    SPL 00560
        SPLOO580
    SPL00590
    SPLOO600
    SPLOO6 10
    SPLOO620
    SPL 00630
    SPL00640
    SPLO 0650
SPL 00660
    SPL 00660
    SPL00670
    SPL00680
    SPL. 00690
    SPL 00700
    SPL 00710
    SPL00720
    SPL00730
    SPL00740
    SPLOO750
    SPL00760
    SPL00770
    SPL00780
    SPL 00790
    SPL 00800
    SPL 00810
    SPLO0820
    SPLOO830
    SPL00840
    SPL00850
    SPL00860
    SPL 00870
    SPL 00880
    SPL00890
    SPL00900
    SPLO0910
    SPL00920
    SPL00930
    SPLOO940
    SPLO0950
    SPL00960
    SPL00970
    SPL00980
    SPL00990
    SPL 01000
    SPLO1010
    SP LO1020
    SPLO 1030
    SPLO 1040
    SPLO1050
    SPLO 1060
    SPLO1070
    SPLO1080
    SPL01090
    SPLO1100
\begin{tabular}{|c|c|c|}
\hline & \(Z=A(I, L)\)
\(A(I, L)=P * Z+O * A(I, L+1)\) & \[
\begin{aligned}
& \text { SPLO } 1110 \\
& \text { SPLO1120 }
\end{aligned}
\] \\
\hline & \(A(I, L+1)=P * A(I, L+1)-Q * Z\) & SPLO 1130 \\
\hline 100 & CONTINUE & SPLO1140 \\
\hline & DO \(110 \mathrm{I}=1, \mathrm{~N}\) & SPLO 1150 \\
\hline & \(\mathrm{Z}=\mathrm{V}(\mathrm{I}, \mathrm{L})\) & SPL01160 \\
\hline & \(V(I, L)=P * Z+Q * V(I, L+1)\) & SPLO1170 \\
\hline & \(V(I, L+1)=P * V(I, L+1)-Q * Z\) & SPLO1180 \\
\hline 110 & CONTINUE & SPLO1190 \\
\hline 110 & \(A(L+1, L)=0.0 D 0\) & SPLO1200 \\
\hline & E \(1=A(L, L)\) & SPL01210 \\
\hline & \(E 2=A(L+1, L+1)\) & SPLO1220 \\
\hline & RETURN & SPLO1230 \\
\hline C & & SPL01240 \\
\hline c & LAST LINE OF SPLIT & SPLO1250 \\
\hline c & & SPLO 1260 \\
\hline & END & SPLO1270 \\
\hline
\end{tabular}```


[^0]:    *This research was supported by the U.S. Energy Research and Development Agency under contract ERDA-E (49-18)-2087.
    **Laboratory for Information and Decision Systems, Rm. 35-331, Massachusetts Institute of Technology, Cambridge, MA 02139; ph.: (617)-253-2125.

[^1]:    *Note that an alternate equivalent form of (8) when $x$ is invertible is: $F^{T}\left(X^{-1}+G_{1} G_{2}^{-1} G_{1}^{T}\right)^{-1} F-X+H=0$

