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Abstract

Modern availability of rich geospatial datasets and analysis tools can provide insight germane to the design of
!eld experiments. Design of !eld experiments, and in particular the choice of sampling strategy, requires careful
consideration of its consequences on the external representativity and interference (SUTVA violations) of the
experimental sample. This paper presents a methodology for a) modeling the geospatial and social interaction
factors that drive interference in rural !eld experiments; and b) eliciting a set of nondominated sample options
that approximate the Pareto-optimal tradeoff between interference and external representativity, as functions of
sample choice. The study develops and tests the methodology in the context of a large-scale health experiment
in rural Mexico, involving more than 3,000 pregnant women and 600 health clinics across 5 states. Relevant
for the practitioner, the methodology is computationally tractable and can be implemented leveraging open
sourced geo-spatial data and software tools.
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1. A Large-Scale Digital Health Experiment in Rural Mexico

Mexico’s social assistance program Prospera is one of the largest conditional cash programs in the world,
providing health care to nearly 30 million bene!ciaries (Oportunidades 2011). The physical remoteness
of Prospera’s rural bene!ciaries drives key challenges in provisioning its services. Moreover, information
in Prospera "ows through traditional means such as "iers, radio announcements, and door-to-door com-
munication.

National authorities have endeavored to introduce digital means of communication with, and among,
Prospera bene!ciaries.1 In this context, this study participated in designing a large-scale randomized con-
trol trial (RCT) to assess the effect of such potential interventions on health outcomes. The experiment
focuses on maternal and child health; involves more than 600 health clinics and 3,000 pregnant women
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across 5 states; and tests 3 treatment arms, consisting of top-down, peer-to-peer, and down-to-top feed-
back communication.

2. External Representativity and Interference in Sample Choice

This paper focuses on extrapolation in the common setting where random sampling is not viable in prac-
tice, such as in the Prospera experiment. As pointed out by Muller (2015), sampling at random is com-
monly “not practically feasible, or researchers have the more ambitious aim of generalizing beyond a
single, prespeci!ed population.”

Following (Imai, King, and Stuart 2008) decomposition of the population average treatment effect
(PATE), nonrandom sampling fails to ensure that that E[!SU] = 0, where !SU denotes the sampling esti-
mation error due to unobservables. Extrapolation is, however, possible leveraging the set of observed
covariates X, particularly in rich covariate settings.2 In the case of Prospera, rich census and insti-
tutional data are available, providing more than 200 covariates at the clinic, village, household, and
individual levels; including education, indigenism, newborn weight and measures, birth defect rates,
clinics’ equipment, and so on.

On the one hand, today’s age of data fosters the ability to extrapolate by means of rich covariate sets.
On the other, a natural strategy for coping with interference is to choose an experimental sample where
units, or clusters, are most apart from each other interference-wise. However, interference-minimizing cri-
teria for sample selection may compromise representativity to the population of interest; and, conversely,
common sampling approaches amenable to extrapolation, such as sampling for heterogeneity (Muller
2015) and proportional sampling (Chen, Tse, and Yu 2001), are likely to misalign against interference-
minimizing sample selection.

Section 4 introduces a methodology for eliciting the potential tradeoff among these two objectives, and
providing the researcher with a set of Pareto nondominated sample options to decide from.

3. Modeling Interference Networks Using Geospatial Data and GIS Tools

Interference Gravity Model
This study proposes and implements a simple class of model where interference between two social
clusters—such as villages, schools, or health clinics—is driven positively by the density of experimen-
tal subjects relative to population, and negatively by the distance between them. Gravity models of this
type have a long-standing history in economics and the social sciences in capturing spatially mediated
social interactions.3 Let dyadic interference between i and j be modeled as

Ii j =
f (mi,mj )
g(di j )

=
amimj

dbi j
(1)

where di j denotes distance between clusters i and j, and mi denotes i’s population density mass, de!ned
as the ratio of the number of experimental subjects in cluster i to its total population. Traditional formu-
lations of gravity models instantiate f = amimj and g = di jb, with a, b ∈ R+. Functions f and g allow for

2 See Bareinboim and Pearl (2015); Hartman et al. (2015) for formal frameworks and use cases of extrapolation leveraging
covariates.

3 From trade (Bergstrand 1985; Deardorff 1998) and migration "ows (Ravenstein 1989; Karemera, Oguledo, and Davis
2000), to transportation "ows (Erlander and Stewart 1990) and epidemics (Xia, Bjørnstad, and Grenfell 2004).
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Figure 1. Panel (a): Paths of Pregnant Women (purple lines) from Their Home Village (green circles) to Their Assigned Health
Clinic (blue diamond). Panel (b): InterClinic Interference Network (graded orange lines) for all Prospera Clinics over the States of
Guanajuato, Hidalgo and Mexico State.

generalizations of the model (Anderson 2010), which can be informed by substantive knowledge or prior
studies in the !eld.4

Walk-and-Road Distances
In the context of the Prospera experiment, this study moved from unrealistic straight-line geographic dis-
tances to a more meaningful metric of walk-and-road route distance: de!ned as the shortest routing dis-
tance connecting two points, accounting for the possibility of walking route segments outside of the road

4 In the case of the Prospera experiment, threshold functions were used in f and g so that interference was meaningless for
distances above and densities below thresholds set with the assistance of !eld experts. Extensions are also available for
gravity analysis where the explicit location of individual units within clusters is deemed relevant.
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Figure 2. Pareto Front of the Prospera Experiment, Approximated by a Greedy Bi-Objective Search

network. The analysis was implemented using public geospatial and demographic data, and open-sourced
GIS tools (see Noriega and Pentland 2016 for details). Figure 1 shows the resulting interference network.

4. The Interference vs. Representativity Tradeoff

This study is interested in understanding how different choices of experimental sample affect interference
and representativity, and ultimately the effect of these on the experiment’s power to identify its inferential
targets. In the Prospera experiment, this study is interested in selecting a sample of 600 health clinics, out
of an eligible pool of 1,700 clinics. However, even for small networks it is unfeasible to conduct power
simulations exhaustively over the sample space, which grows exponentially on sample size ns. Moreover,
random samples perform poorly, as shown in !g. 2.

This study implemented a simple bi-objective greedy search heuristic, which searches for sample op-
tions that minimize both interference and representativity gap, with the goal of eliciting a set of Pareto
nondominated options, that is, sample options that constitute the tradeoff between objectives.5 Details
on the greedy algorithm can be found in Noriega and Pentland (2016).

The greedy heuristic is parameterized on k, which controls the importance given to interference versus
representativity in the optimization process. Results associated to a set of different k values provide a
set of options that trade off between objectives. Figure 2 shows the set of Pareto nondominated samples
elicited for the Prospera experiment, where mean interference values range in the [.05, .25] interval, and
representativity gap ranges in the [.05, .12] interval.

This small set of nondominated sample options is amenable for researchers to perform appropriate
power calculations and sensitivity analysis, and to choose the sample that best !ts research objectives and
context of the study.

5 Representativity gap is measured by the Kolmogorov-Smirnoff (KS) distance between the sample and target covariate
distributions, analogous to measures of covariate balance in the context of matching (see Diamond and Sekhon 2013).
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5. Conclusion

The Prospera experiment implementation commenced in January 2016, and will remain active for
12 months. Near-future work will study observed spillovers in the experiment, and the extent to which
the geospatial interference model and its different possible parameterization explain them. As pointed out
by Gerber and Green (2012), the study of the existence and nature of spillover effects is of paramount
importance, as it provides relevant insights for conducting subsequent research studies, as well as for the
design of policy itself.
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