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Contextual centrality: going 
beyond network structure
Yan Leng1 ✉, Yehonatan Sella2, Rodrigo Ruiz1 & Alex Pentland1

Centrality is a fundamental network property that ranks nodes by their structural importance. 
However, the network structure alone may not predict successful diffusion in many applications, 
such as viral marketing and political campaigns. We propose contextual centrality, which integrates 
structural positions, the diffusion process, and, most importantly, relevant node characteristics. It 
nicely generalizes and relates to standard centrality measures. We test the effectiveness of contextual 
centrality in predicting the eventual outcomes in the adoption of microfinance and weather insurance. 
Our empirical analysis shows that the contextual centrality of first-informed individuals has higher 
predictive power than that of other standard centrality measures. Further simulations show that 
when the diffusion occurs locally, contextual centrality can identify nodes whose local neighborhoods 
contribute positively. When the diffusion occurs globally, contextual centrality signals whether diffusion 
may generate negative consequences. Contextual centrality captures more complicated dynamics 
on networks than traditional centrality measures and has significant implications for network-based 
interventions.

Individuals, institutions, and industries are increasingly connected in networks where the behavior of one indi-
vidual entity may generate a global e!ect1–3. Centrality is a fundamental network property that captures an enti-
ty’s ability to impact macro processes, such as information di!usion on social networks1, cascading failures in 
"nancial institutions3, and the spreading of market ine#ciencies across industries2. Many interesting studies 
have found that the structural positions of individual nodes in a network explain a wide range of behaviors and 
consequences. Degree centrality predicts who is the "rst to be infected in a contagion4. Eigenvector centrality cor-
responds to the incentives to maximize social welfare5. Katz centrality is proportional to one’s power in strategic 
interactions in network games6. Di!usion centrality depicts an individual’s capability of spreading in information 
di!usion7. $ese centrality measures operate similarly, aiming to reach a large crowd via di!usion, and are solely 
dependent on the network structure.

However, several pieces of empirical evidence show that reaching a large crowd may decrease the evaluations 
of the qualities of the products. For example, sales on Groupon8 and public announcements of popular items on 
Goodreads9 are e!ective strategies in reaching a larger number of customers. However, both studies show that the 
evaluations of online reviews are negatively a!ected as a consequence. $is phenomenon can be explained by the 
fact that the increasing popularity will reach individuals who hold negative opinions, and hence, translate into less 
favorable evaluations of quality. Let us further consider two motivating examples to demonstrate the importance 
of accounting for the evaluations of the nodes, and more broadly, nodal characteristics.

Example 1. Viral marketing. During a viral marketing campaign, the marketing department aims to attract 
more individuals to adopt the focal product. If we have ex-ante information about the customers’ evaluation of the 
product or the likelihood of adoption, we can utilize this information to better target individuals who have higher 
chances of adoption and avoid wasting resources on others.

Example 2. Political campaign. Typical Get-Out-$e-Vote (GOTV) campaigns include direct mail, phone calls, 
and social-network advertisement10,11. However, rather than simply encouraging every voter to get out the vote, a 
GOTV strategy should target voters who are more likely to vote for the campaigner’s candidate.

In this paper, we introduce contextual centrality, which builds upon di!usion centrality proposed in Banerjee 
et al. and captures relevant node characteristics in the objective of the di!usion7,12. Di!usion centrality focuses 
on the di!usion process and maximizes the number of individuals who receive the information. In other words, 
nodes are homogeneous. Contextual centrality is able to integrate the heterogeneity of nodes and aggregate the 
characteristics over one’s neighborhood; hence it can be used in applications in which reaching di!erent nodes 
contributes di!erently to the policy-makers and campaigners. In other words, it generalizes and nests degree, 
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eigenvector, Katz, and di!usion centrality. When the spreadability (the product between the di!usion rate p and 
the largest eigenvalue λ1 of the adjacency matrix) and the di!usion period T are large, contextual centrality line-
arly scales with eigenvector, Katz, and di!usion centrality. $e sign of the scale factor is determined by the joint 
distribution of nodes’ contributions to the objective of the di!usion and their corresponding structural positions.

We perform an empirical analysis of the di!usion of micro"nance and weather insurance showing that the 
contextual centrality of the "rst-informed individuals better predicts the adoption decisions than that of the other 
centrality measures mentioned above. Moreover, simulations on the synthetic data show how network proper-
ties and node characteristics collectively in%uence the performance of di!erent centrality measures. Further, we 
illustrate the e!ectiveness of contextual centrality over a wide range of di!usion rates with simulations on the 
real-world networks and relevant node characteristics in viral marketing and political campaigns.

Contextual centrality
Given a set of N individuals, the adjacency matrix of the network is A, an N-by-N symmetric matrix. $e entry Aij 
equals 1 if there exists a link between node i and node j, and 0 otherwise. Let D = diag(d), where = ∑ =d Ai j

N
ij1  

denotes the degree of node i. With Singular Value Decomposition, we have A = UΛUT, where Λ = diag{Λ} = {λ1, 
λ2, …, λn} in a descending order and the corresponding eigenvectors are {U1, U2, …, Un} with U1 being the lead-
ing eigenvector. We let ◦ denote the Hadamard product (i.e., element-wise multiplication). We use bold lowercase 
variables for vectors and bold upper case variables for matrices.

$e di!usion process in this paper follows the independent cascade model13. It starts with an initial active 
seed. When node u becomes active, it has a single chance to activate each currently inactive neighbor v with prob-
ability Puv, where �∈ ×P N N . We follow the terminology by Koschutzki to categorize degree, eigenvector, and 
Katz centrality as reachability-based centrality measures14. Reachability-based centrality measures aim to score a 
certain node v by the expected number of individuals activated if v is activated initially, s(v, A, P), and hence tend 
to rank higher the nodes that can reach more nodes in the network. In particular,

s v r vA P A P( , , ) ( , , ),
(1)i

N

i∑=

where ri(v, A, P) denotes the probability that i is activated if v is initially activated13,15,16. In practice, s(v, A, P) is 
hard to estimate. Di!erent reachability-based centrality measures estimate it in di!erent ways. Di!usion central-
ity extends and generalizes these standard centrality measures12. It operates on the assumption that the activation 
probability of an individual i is correlated with the number of times i “hears” the information originating from 
the individual to be scored. Di!usion centrality measures how extensively the information spreads as a function 
of the initial node12. In other words, di!usion centrality scores node v by the expected number of times some 
piece of information originating from v is heard by others within a "nite number of time periods T, s’(v, A, P, T),

∑′ = ′s v T r v TA P A P( , , , ) ( , , , ),
(2)i

N

i

where r v TA P( , , , )i
′  is the expected number of times individual i receives the information if v is seeded. Equation 

(2) has at least two advantages over Eq. (1). First, r v TA P( , , , )i
′  is computationally more e#cient than tedious 

simulations to get ri(v, A, P). Second, it nests degree, eigenvector, and Katz centrality7 . It is worth noting that Eqs. 
(1) and (2) di!er in a couple of ways. First, since ′r v TA P( , , , )i  is the expected number of times i hears a piece of 
information, it may exceed 1. Meanwhile, since r v A P( , , )i  is the probability that i receives the information, it is 
bounded by 1. Second, in independent cascade model, each activated individual has a single chance to activate the 
non-activated neighbors. However, with the random walks of information transmission in contextual centrality, 
each activated individual has multiple chances with decaying probability to activate their neighbors.

Both Eqs. (1) and (2) assume that individuals are homogeneous and contribute equally to the objectives if 
they have been activated. However, in many real-world scenarios, such as the two examples mentioned above, 
the payo! for the campaigner does not grow with the size of the cascade. Instead, di!erent nodes contribute dif-
ferently. Formally, let yi be the contribution of individual i to the cascade payo! upon being activated. Note that 
yi is context-dependent and is measured di!erently in di!erent scenarios. For example, in a market campaign, yi 
can be i’s likelihood of adoption. In a political campaign, yi can be the likelihood that i votes for the campaigner’s 
political party. With the independent cascade model, an individual v should be scored according to the cascade 
payo! if v is "rst-activated, sc(v, A, p). With this, we present the following equation as a generalization and exten-
sion to Eq. (1) with heterogeneous y,

s v r v yA P A Pcascade payoff: ( , , ) ( , , )
(3)c

i

N

i i∑= .

Similar to di!usion centrality, we score nodes with the following approximated cascade payo!, ′s v TA p( , , , )c , 
with heterogeneous y,

∑= .′ ′s v T r v T yA P A Papproximated cascade payoff: ( , , , ) ( , , , )
(4)c

i

N

i i
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This formulation generalizes diffusion centrality and inherits its nice properties in nesting existing 
reachability-based centrality measures. Moreover, it is easier to compute than Eq. (3), with this scoring function, 
we now formally propose contextual centrality.

$e computational complexity of the algorithm to score according to Eq. (3) is O(NMT), where M is the aver-
age degree, and T is the lengths of the paths that have been inspected. Note that the computational complexity of 
the formulation (5) is O(NMT). We repeat the operation of multiplying a vector of length N with a sparse matrix, 
which has an average of M entries per row for T times. $is signi"cantly reduces the run time.

De!nition 1 Contextual centrality (CC) approximates the cascade payo! within a given number of time periods T 
as a function of the initial node accounting for individuals’ contribution to the cascade payo!.

D∑=
=

TA P y P A yCC( , , , ): ( ) ,
(5)t

T
t

0

Heterogeneous di!usion rates across individuals are di#cult to collect and estimate in real-world applications. 
$erefore, in the following analysis, we assume a homogeneous di!usion rate (p) across all edges. Hence, P ◦ A in 
Eq. (5) is reduced to pA. Similar to di!usion centrality, contextual centrality is a random-walk-based centrality, 
where (pA)t measures the expected number of walks of length t between each pair of nodes and T is the maximum 
walk-length considered. Since T is the longest communication period, a larger T indicates a longer period for dif-
fusion (e.g., a movie that stays in the market for a long period). In contrast, smaller T indicates a shorter di!usion 
period (e.g., a coupon that expires soon). On the one hand, when pλ1 is larger than 1, CC approaches in"nity as T 
grows. On the other hand, when pλ1 < 1, CC is "nite for T = ∞, which corresponds to a lack of virality, expressed 
in a "zzling out of the di!usion process with time. We can use the speci"c value of pλ1 to bound the maximum 
possible CC, given the norm of the score vector y. As presented in proposition 1 in the Supporting Information, 
the upper bound for CC grows with pλ1 and the norm of the score vector.

Let us further illustrate the relationship between CC and di!usion centrality, DC for short. In Banerjee et al.12, 
= ∑ = pADC ( )t

T t
1 . To derive the following relationship between CC and DC, we add the score of reaching the "rst 

seeded individual into computing di!usion centrality. Hence, = ∑ = pADC ( )t
T t

0 . Adding the "rst seeded individual 
into the scoring function produces the same ranking as the one used in Banerjee et al. We can represent y as, 

σ= × + ×y y z y( ) 1, where σ(y) and z are the standard deviation and the z-score normalization of y. Using the 
linearity of CC with respect to y, we can write

σ= ⋅ + ⋅ ! "###### $######p T p T p TA y y A z y ACC( , , , ) ( ) CC( , , , ) CC( , , , 1)
(6)DC

Equation (6) shows the trade-o! between the standard deviation σ(y) and the mean y of the contribution vector 
in CC. When y dominates over σ(y), network topology is more important in CC and it produces similar or opposite 
rankings to DC, depending on the sign of y. If the graph is Erdos-Renyi and T is small enough, then, on expectation, 
the term ⋅y DC dominates as the size of the network approaches infinity, as presented in Theorem 1 in the 
Supporting Information. However, when σ(y) dominates over y, CC and DC generate very di!erent rankings.

$e relevant node characteristics (y) provides the ex-ante estimation about one’s contribution. Whether to 
incorporate y is the main di!erence between our centrality and existing centrality measures. In the real-world 
data, the observation or estimation on y can be noisy, biased, or stochastic. $erefore, we discuss the robustness 
of contextual centrality in responses to perturbations in y in the Supporting Information.

We de"ne the following terms, which we use throughout the paper:

t� Spreadability (pλ1) captures the capability of the campaign to di!use on the network depending on the dif-
fusion probability (p) via a certain communication channel, and the largest eigenvalue (λ1) of the network.

t� Standardized average contribution 
σ( )y

y( )
 is computed as the average of the contributions normalized by the 

standard deviation of the contributions. $e sign of 
σ

y
y( )

 indicates whether the average contribution is positive 
or not. Moreover, the larger the magnitude of 

σ
y
y( )

, the more homogeneous the contributions are.
t� Primary contribution U y( )

T
1  measures the joint distribution of the structural importance and nodal contribu-

tions. It captures whether people who dominate important positions have positive contributions or not.

Properties of contextual centrality when pλ1 > 1 and T is large
Let us "rst provide the approximation of contextual centrality in this condition, which reveals one of the promi-
nent advantages of contextual centrality. By the Perron-Frobenius Theorem, we have λ λ≤j 1 for every j. 
Moreover, if we assume that the graph is non-periodic, then in fact λ λ<j 1 for all j ≠ 1. Note that the typical 
random graph is not periodic, so this assumption is reasonable. $us, when pλ1 > 1, the term (pλ1)t grows expo-
nentially faster than (pλj)t for j ≠ 1 so that the j = 1 term dominates for su#ciently large values of T, and we obtain 
the approximation for contextual centrality (CCapprox):

∑ ∑ ∑λ λ= ≈ =










.
= = =

( )p pU U y U y UCC CC ( )
(7)j

n

t

T

j
t

j j
T

t

T
t T

1 0
approx

0
1 1 1
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$is approximation reveals some desirable properties of contextual centrality. Crucially, CCapprox is simply a 
scalar multiple of the leading eigenvector when pλ1 > 1 and T is large. $erefore, the sign of U yT

1  determines the 
direction of the relationship between CCapprox and eigenvector centrality. By Perron-Frobenius $eorem, all ele-
ments in this leading eigenvector are nonnegative. $us, the approximated cascade payo!, Eq. (4), for seeding any 
individual is nonpositive if <U y 0T

1 , pλ1 > 1 and T is large. $is shows that in this condition, the approximated 
cascade payo! is nonpositive for seeding any individual, so the campaigner should select a di!usion channel with 
a lower di!usion rate to take advantage of the local neighborhood with positive contributions. Equation (7) nat-
urally suggests the following relationships between CCapprox and eigenvector centrality.

t� If >U y 0T
1 , CCapprox and eigenvector centrality produce the same rankings.

t� If <U y 0T
1 , CCapprox and eigenvector centrality produce the opposite rankings.

$e approximation does not hold when =U y 0T
1 , which is also unlikely to happen in practice. Hence, we dis-

regard this case. Similarly, we relate contextual centrality to di!usion centrality (CDi!usion) and Katz centrality 
(CKatz),

p p
p

p

U U U
U y

U U U
U y

C ( ) ( 1) ( ) ( 1)
( )

CC ,

C ( ) ( 1) ( ) ( 1)
( )

CC ,
(8)

t

t T t
t T

t
T t T

t

t T t
t T

t
T t T

Diffusion
1

1 1 1
1 1 1

0 1 1
approx

Katz
0

1 1 1
0 1 1

0 1 1
approx

∑

∑

λ
λ
λ

αλ
αλ

λ

∝ = ∑
∑

∝ = =∑
∑

=

∞
=

∞

=

=

∞
=

∞

=

where α is the decay factor in Katz centrality. Similar to Eq. (7), all terms on the right-hand-side of Eq. (8) are 
positive except for U yT

1 , which similarly determines the direction of the relationship.

Results
Predictive power of contextual centrality. We study two real-world empirical settings, adopting micro-
"nance in 43 Indian villages12 and adopting weather insurance in 47 Chinese villages17. In each setting, there is a 
set of "rst-informed households in each village who went on to spread the information. We compare contextual 
centrality with di!usion centrality and other widely-adopted reachability-based centrality measures – degree, 
eigenvector, and Katz centrality. We compute degree centrality by taking the degree of each node, normalized by 
N − 1. We compute eigenvector centrality by taking the leading eigenvector U1 with unit length and nonnegative 
entries. We compute Katz centrality as α∑ =

∞ A( ) 1t
t

0 , setting α, which should be strictly less than λ −
1

1, to λ. ⋅ −0 9 1
1. 

We compute di!usion centrality as ∑ = pA( ) 1t
T t

1 . For both di!usion and contextual centrality, we set T = 16, except 
for the micro"nance in Indian villages setting, where we set T the same as Banerjee et al.12. We evaluate the adop-
tion outcome of all other households in the village, which are not "rst-informed. We use the adoption likelihood 
for the contribution vector y in computing contextual centrality, which is predicted using a model based on the 
adoption decisions of the "rst-informed households. In the empirical analysis of both settings, we build models 
to predict the adoption likelihood for each individual to use as y in computing contextual centrality. For each 
setting, we use the data provided in Banerjee et al.12 and Cai et al.17, respectively, as inputs to a feed-forward neu-
ral network trained to predict the adoption likelihood based on the adoption decisions of "rst-informed individ-
uals. Hyperparameters, including hidden layers, activation function, and regularization, were tuned using grid 
search with 10-fold cross-validation. For the micro"nance in Indian villages, the covariates include village size, 
quality of access to electricity, quality of latrines, number of beds, number of rooms, the number of beds per cap-
ita, and the number of rooms per capita. For the weather insurance in Chinese villages setting, 39 of the provided 
characteristics are selected as inputs by choosing those for which all households had data a(er removing house-
holds with many missing characteristics. Similar to Banerjee et al.12, we evaluate the R2 of a linear regression 
model for both settings. $e independent variables include the average centrality of "rst-informed households 
and the village size, a control variable. $e dependent variable is the fraction of non-"rst-informed households in 
a village which adopted.

In Fig. 1, we show how the R2 for various measures of centrality varies with pλ1, in which the choice of p 
in%uences the two centrality measures that account for the di!usion process - di!usion centrality and contextual 
centrality. We see that the contextual centrality outperforms all other standard centrality measures, which indi-
cates that marketing campaigners or social planners will bene"t from using contextual centrality as the seeding 
strategy to maximize participation. $is result also highlights that utilizing ex-ante information about customers’ 
likelihood of adoption helps to design better targeting strategies. Similar results without control variables and 
with more control variables are presented in the Supporting Information as a robustness check.

Performance of contextual centrality relative to other centrality measures on random networks.  
To better understand CC’s performance with respect to di!erent parameters (pλ1, σ

y
y( )

), we next perform simula-
tions on randomly generated synthetic networks and contribution vectors (y). For the synthetic setting, we gen-
erate a new random graph for each simulation, according to Barabasi-Albert, Erdos-Renyi, and Watts-Strogatz 
models. $e size of n of each graph varies between 30 and 300. For Barabasi-Albert, m varied between 1 and n. 
For Erdos-Renyi, p varies between 0 and 1. For Watts-Strogatz, k varies between ln n and n, and p varies between 
0 and 1. Individual contributions y are sampled from a normal distribution with unit standard deviation. Note 
that the scale of y does not change the rankings of contextual centrality. Simulations of the di!usion process in 
each setting follow the independent cascade model13. For each centrality, the highest-ranked node is set to be the 
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initial seed. We compute cascade payo! by summing up the individual contributions of all the nodes reached in 
the cascade. For each parameter tested in di!erent settings, we run 100 simulations. To compare the performance 
of contextual centrality against the other centrality measures, we use “relative change” (calculated as −a b

a bmax( , )
, 

where a is a given centrality’s average payo! and b is the maximum average payo! of the other centrality meas-
ures). We chose “relative change” for comparison since it gives a sense of when the payo!s are di!erent from the 
optimal centrality while keeping the magnitudes of the payo!s in perspective. $is measure has some desirable 
properties. First, its value is necessarily between −2 and 2, so our scale for comparison is consistent across scenar-
ios. Second, its magnitude does not exceed one unless a and b di!er in sign, so we can tell if a centrality gets a 
positive average payo! while the rest do not.

Figure 2 displays the relative change between CC’s average payo! and the maximum average payo! of the 
other centrality measures aggregated over 100 runs of simulations for varying values of 

σ
y
y( )

 and pλ1 on three 
di!erent types of simulated graphs. We can see that CC performs well when <y 0, pλ1 < 1, and 

σ
y
y( )

 is small in 
magnitude. We will now discuss each of these cases in more detail.

When <y 0, maximizing the reach of the cascade is not ideal because that will result in a cascade payo!, 
which more closely re%ects y. CC di!ers from the other centrality measures in that it does not try to maximize the 
reach of the cascade. Note the dark blue diagonal band present in all plots in Fig. 2. Since the magnitude of the 
relative change exceeds one only when the values being compared have opposite signs, this region shows that 
there are many settings where the standardized average contribution is negative, nevertheless CC achieves a pos-
itive average payo! while the other centrality measures do not.

When pλ1 is small, it is essential to seed an individual whose local neighborhood has higher individual contri-
butions since there is not much risk of di!using to individuals with lower individual contributions As an extreme 
case, consider pλ1 = 0. In this case, the di!usion rate is 0, so seeding an individual with a high individual pay-
o! makes much more sense than seeding an individual with high topological importance. $is highlights CC’s 
advantage in discriminating the local neighborhoods with positive payo!s from those with negative payo!s while 
the other centrality measures cannot.

When 
σ

y
y( )

 is small in magnitude, CC takes advantage of the greater relative variations between contributions. 
As → +∞

σ
y
y( )

, Eq. (6) tells us that CC will seed similar to DC, which explains why CC loses some of its advan-
tage. However, as → −∞

σ
y
y( )

, Eq. (6) tells us that CC will seed opposite to DC, which explains why CC maintains 
an advantage.

We now discuss the regions where CC does not seem to o!er an advantage. Note that parameters for which 
CC’s average payo! is lower than that of some other centrality o(en neighbor similar parameters for which CC’s 
average payo! is the same, or sometimes higher, than those of the other centrality measures. $is suggests that 
CC is performing comparably, which is what we expect as pλ1 increases since the initial seed matters less as the 
di!usion process reaches more individuals. In Figs. 3 and 4, we show the average payo!s of di!erent seeding 
methods with 95% con"dence interval when the standardized average contribution is 0 and 1, respectively, on 
(a) Barabasi-Albert, (b) Erdos-Renyi, and (c) Watts-Strogatz models. Note that when pλ1 is small, CC dominates 
the other seeding methods. As pλ1 increases, CC’s performance is on par with other centrality measures, as can 
be seen from the highly overlapping con"dence intervals. $is pattern holds for other values of the standardized 

Figure 1. Predictive power of contextual centrality. We show how the average centrality of "rst-informed 
individuals predicts the eventual adoption rate of non-"rst-informed individuals in (a) micro"nance and (b) 
weather insurance. $e y-axis shows the 95% con"dence interval of R2 computed from 1000 bootstrap samples 
from ordinary least squares regressions controlling for village size. $e x-axis shows varying values for pλ1, 
which in%uences only di!usion centrality and contextual centrality.
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average contribution. Similar "gures to Figs. 3 and 4 for other values of the standardized average contribution can 
be found in the Supporting Information.

Performance of contextual centrality relative to other centrality measures on real-world networks.  
Next, we analyze the performance of contextual centrality in achieving the cascade payo!, as de"ned in Eq. (3), 
using simulations on three real-world settings, namely adoption of micro"nance, adoption of the weather insur-
ance, and political voting campaign, as shown in Fig. 5. For the political campaign experiment in Turkey, we use 
individual home and work locations to build a network and regional voting data on sampling voting outcomes to 

Figure 2. Performance of contextual centrality relative to other centrality measures on random networks. Each 
plot shows the relative change, computed as −a b

a bmax( , )
 where a is CC’s average payo! and b is the maximum 

average payo! of the other centrality measures, for varying values of 
σ

y
y( )

 and pλ1. $e plots correspond to the 
results on random networks generated according to the (a) Barabasi-Albert, (b) Erdos-Renyi, and (c) Watts-
Strogatz models.

Figure 3. Average payo!s when standardized average contribution is 0. Here we show the average payo! with 
95% con"dence interval when seeding with di!erent methods on (a) Barabasi-Albert, (b) Erdos-Renyi, and (c) 
Watts-Strogatz models.

Figure 4. Average payo!s when standardized average contribution is 1. Here we show the average payo! with 
95% con"dence interval when seeding with di!erent methods on (a) Barabasi-Albert, (b) Erdos-Renyi, and (c) 
Watts-Strogatz models.
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use as y. Individuals belonging to the same home neighborhood are connected according to the Watts-Strogatz 
model with a maximum of 10 neighbors. Same for the work neighborhoods. $ese two networks are superim-
posed to form the "nal network. Since we do not know the political voting preferences on an individual level, 
individual voting outcomes are sampled to match voting data on a regional level. Speci"cally, we let the actual 
fraction of the population that voted for the AK Party in an individual’s home neighborhood be the probability 
that individual votes for the AK Party. We let yi = +1 represent a vote for AK party and yi = −1 represent a vote for 
any other party. We sample a new set of voting outcomes from the regional voting distributions for each di!usion 
simulation.

To compare the performance of contextual centrality against the maximum of centrality measures for each 
condition, we use “relative change” as before. We observe the network structure (A) and adoption decisions in 
the campaign for micro"nance and weather insurance. In the campaign for political votes, we generate the net-
work structure and the contribution vector from the empirical distributions. We vary the di!usion rate of p in 
the independent cascade model to examine how it in%uences the performances of di!erent centrality measures. 
We see that in (a) campaign for micro"nance and (b) campaign for weather insurance, CC outperforms the other 
centrality measures when pλ1 is small. While in (c) campaign for political votes, CC outperforms the other cen-
trality measures for all pλ1. $e standardized average contributions of (a), (b), and (c) are 2.29, 5.27, and −2.22, 
respectively. $is result is consistent with the results presented in Fig. 2. It shows that contextual centrality can 
greatly outperform other centrality measures when the standardized average contribution is negative for a wide 
range of pλ1. When standardized average contribution is positive, contextual centrality outperforms other cen-
trality measures when the spreadability is small and achieves comparable results with other centrality measures 
as the spreadability further increases.

Approximation of contextual centrality and the importance of primary contribution. A negative 
contextual centrality score indicates that seeding with the particular node will generate a negative payo!. $erefore, we 
design a seeding strategy in which we seed only if the maximum of contextual centrality is nonnegative. As shown by 
the blue dashed and solid lines in Fig. 6, the new seeding strategy, “Nonnegative”, performs better than always seeding 
the top-ranked individual. Building upon Eq. (7), we introduce a variation of eigenvector centrality, “Eigenvector 
adjusted”, as the product of eigenvector centrality and the primary contribution (U yT

1 ). $is variation of eigenvector 
centrality performs on par with contextual centrality as pλ1 grows large as expected according to Eq. (7). “Eigenvector 
adjusted” greatly outperforms eigenvector centrality. Another variation of eigenvector centrality is to adjust eigenvector 
centrality by y. Note that the sign of U yT

1  does not always equal y. When the signs di!er, seeding only when U yT
1  is pos-

itive produces a higher cascade payo! when pλ1 is not too large. However, as pλ1 further increases and the di!usion 
saturates most of the network, the sign of y predicts that of the cascade payo!. However, larger pλ1 is not as interesting 
as smaller ones, which happens more frequently in real life. We present average cascade payo! comparing the two 
strategies when <y U y( ) 0T

1  in the Supplementary Information.
Comparing the strategies in Fig. 6, the new strategy of accounting for the sign of the centrality measures 

improves the average payo!s by an order of magnitude. $is pattern also highlights the importance of the pri-
mary contribution to campaign strategies. We present "gures for the analogous variations of the other centrality 
measures in the Supporting Information.

Homophily and the maximum of contextual centrality. Homophily is a long-standing phenomenon 
in social networks that describes the tendency of individuals with similar characteristics to associate with one 
another18. The strength of homophily is measured by the difference in the contributions of the neighbors, 
∑ −( )A y yi j

N
ij i j,

2
. We analyze the relationship between the strength of homophily and the approximated cascade 

payo! by seeding the highest-ranked node in contextual centrality in Fig. 7. A(er controlling for 
σ

y
y( )

 and pλ1, we 

Figure 5. Performance of contextual centrality relative to other centrality measures on real-world networks, 
including (a) micro"nance, (b) weather insurance, and (c) political campaign. Each plot shows the relative 
change for varying values of pλ1. We compare contextual centrality with degree centrality, di!usion centrality, 
eigenvector centrality, Katz centrality, and random seeding.
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regress the maximum of the contextual centrality on the strength of homophily of the network separately for three 
conditions of 

σ
y
y( )

. When the spreadability of contextual centrality is small, stronger homophily tends to correlate 
with a large approximated cascade payo! across all graph types. $is result shows that stronger homophily of the 
network predicts higher approximated cascade payoff with small spreadability. When the network is 
Barabasi-Albert and >

σ
0y

y( )
, the relationship is the strongest. As the spreadability further increases, the correla-

tion between contextual centrality and homophily drops dramatically, and thereby we exclude the scenarios when 
pλ1 > 1.

Discussion
Contextual centrality sheds light on the understanding of node importance in networks by emphasizing node 
characteristics relevant to the objective of the di!usion other than the structural topology, which is vital for a wide 
range of applications, such as marketing or political campaigns on social networks. Notably, nodal contributions 
to the objective, the di!usion probability, and network topology jointly produce an e!ective campaign strategy. 
It should now be clear with the thorough simulations and empirical analysis in this study that exposing a large 
portion of the population in the di!usion is not always desirable.

t� When the spreadability is small, contextual centrality e!ectively ranks the nodes whose local neighborhoods 
generate larger cascade payo!s the highest.

t� When the spreadability is large, the primary contribution tends to predict the sign of the approximated cas-
cade payo!.

Meanwhile, for a given contribution vector (y), the policy-maker can in%uence the di!usion rate to take 
advantage of local di!usion and locate nodes whose local neighborhood generates large cascade payo!. In prac-
tice, the policy-maker can "rst estimate the contribution vector (y), and then calculate the maximum of contex-
tual centrality for a range of pλ1, which approximates the cascade payo!. Finally, the policy-maker can compute 
the optimal corresponding p given the leading eigenvector (λ1).

When the primary contribution is negative, the campaigner might need to reduce the spreadability of the 
campaign to take advantage of the individuals whose local neighborhoods generate positive approximated cas-
cade payo! in aggregation. To reduce the spreadability of the campaign, the campaigner can resort to campaign 
channels with lower di!usion probability and less viral features, such as direct mail.

As the standardized average contribution increases, the contribution vector becomes comparatively more 
homogeneous and comparatively less important than the network structure. $erefore, when the average contri-
bution is positive, seeding with contextual centrality becomes similar to seeding with di!usion centrality.

Moreover, contextual centrality emphasizes the importance of incorporating node characteristics that are 
exogenous to the network structure and the dynamic process. More broadly, contextual centrality provides a 

Figure 6. Average cascade payo! for variations of contextual centrality and eigenvector centrality. $e x-axis is 
pλ1, and the y-axis is the average payo!, with the shaded region as the 95% con"dence intervals. For 
“eigenvector adjusted” centrality, we multiply eigenvector centrality with the primary contribution U yT

1 . For 
“Nonnegative”, we only seed if the maximum of the centrality measure is nonnegative, otherwise it is named 
“Always”.
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generic framework for future studies to analyze the joint e!ect of network structure, nodal characteristics, and the 
dynamic process. Other than applications on social networks, contextual centrality can be applied to analyzing a 
wide range of networks, such as the biology networks (e.g., rank the importance of genes by using the size of their 
evolutionary family as the contribution vector19), the "nancial networks (e.g., rank the role of institutions in risk 
propagation in "nancial crisis with their likelihoods of failure as the contribution vector3), and the transportation 
networks (e.g., rank the importance of airports with the passengers %own per year as the contribution vector20).

Methods
In this study, we compare contextual centrality with diffusion centrality and other widely adopted 
reachability-based centrality measures - degree, eigenvector, and Katz centrality. We compute degree centrality by 
taking the degree of each node, normalized by N − 1. We compute eigenvector centrality by taking the leading 
eigenvector U1 with unit length and nonnegative entries. We compute Katz centrality as α∑ =

∞ A( ) 1t
t

0 , setting α, 
which should be strictly less than λ −

1
1, to λ. ⋅ −0 9 1

1. We compute di!usion centrality as ∑ = pA( ) 1t
T t

1 . For both 
di!usion and contextual centrality, we set T = 16, except for the micro"nance in Indian villages setting, where we 
set T as done by Banerjee et al.12.

Simulations of the di!usion process in each setting follow the independent cascade model13. For each central-
ity, the highest-ranked node is set to be the initial seed. We compute cascade payo! by summing up the individual 
contributions of all the nodes reached in the cascade. For each parameter tested in di!erent settings, we run 100 
simulations.

In the empirical analysis of micro"nance in Indian villages and weather insurance in Chinese villages, we 
build models to predict the adoption likelihood to use as y in computing contextual centrality. For each setting, 
we use the data provided in Banerjee et al.12 and Cai et al.17, respectively, as inputs to a feed-forward neural net-
work trained to predict the adoption likelihood based on the adoption decisions of "rst-informed individuals. 
For the micro"nance in Indian villages, the covariates include village size, quality of access to electricity, quality of 
latrines, number of beds, number of rooms, the number of beds per capita, and the number of rooms per capita. 
For the weather insurance in Chinese villages setting, 39 of the provided characteristics are selected as inputs by 
choosing those for which all households had data a(er removing households with many missing characteristics.

For the political campaign experiment in Turkey, we use individual home and work locations to build a net-
work and regional voting data on sampling voting outcomes to use as y. Individuals belonging to the same home 
neighborhood are connected according to the Watts-Strogatz model with a maximum of 10 neighbors. Same for 
the work neighborhoods. $ese two networks are superimposed to form the "nal network. Since we do not know 
the political voting preferences on an individual level, individual voting outcomes are sampled to match voting 
data on a regional level. Speci"cally, we let the actual fraction of the population that voted for the AK Party in an 
individual’s home neighborhood be the probability that an individual votes for the AK Party. We let yi = +1 repre-
sent a vote for AK party and yi = −1 represent a vote for any other party. We sample a new set of voting outcomes 
from the regional voting distributions for each di!usion simulation.

Figure 7. Homophily and maximum of contextual centrality when pλ1 < 1. We regress the maximum of 
contextual centrality on homophily a(er controlling for 

σ
y
y( )

 and pλ1. $e y-axis is the OLS coe#cients of 
homophily (with the vertical line as the 95% con"dence interval) and the x-axis corresponds to three types of 
networks. We perform the analysis separately for 

σ
y
y( )

 being larger than, smaller than and equals to zero.
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For the synthetic setting, we generate a new random graph for each simulation, according to Barabasi-Albert, 
Erdos-Renyi, and Watts-Strogatz models. $e size n of each graph varies between 30 and 300. For Barabasi-Albert, 
m varied between 1 and n. For Erdos-Renyi, p varies between 0 and 1. For Watts-Strogatz, k varies between ln n 
and n, and p varies between 0 and 1. Individual contributions y are sampled from a normal distribution with unit 
standard deviation. Note that the scale of y does not change the rankings of contextual centrality.
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