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Similarity-Based Likelihood Judgment

by
Joshua J. Stern

ABSTRACT

People readily quantify a wide variety of opinions about uncertain contingencies by
making likelihood judgments. In this work the psychological nature of likelihood
judgments based on information contained in similarity is examined. Specifically,
similarity based likelihood judgment is interpreted as a judgment strategy that a person
may use to produce an attribution of likelihood to the proposition that an individual, i,
has some property, P, in situations in which 1) P is known to be a property of a certain
type, 2) some other related individuals are known to have the property, 3) some other
related individuals are known not to have the property, and 4) the person has beliefs
about the similarity of i to the other related individuals. If no other information
relevant to the likelihood that individual i has property P is available, then similarity-
based strategies attribute likelihood in such a way that the likelihood that i has P is an
increasing function of the similarity (in a P related way) of i to the related individuals
that are known to have P and a decreasing function of the similarity of i to the related
individuals that are known not to have P.

Similarity-based likelihood judgment is described here as a particular example of a
default likelihood judgment strategy. The abstract question of what constitutes an
adequate description for a default likelihood judgment strategy is considered at length
in this work. It is proposed that, in general, successful default likelihood judgment
strategies represent evaluations of particular kinds of conditional probabilities. These
evaluations are typically based on some limited quantity of evidence, the form and
type of which may vary from one strategy to another. It is argued that a complete
description of similarity-based likelihood judgment as a specific strategy must have at
least two parts. The first of these parts is a description of which conditional probability
is evaluated by similarity-based likelihood judgment; the second part is a precise
description of how this conditional probability is quantified.

The principal empirical finding reported in this work relates to the role of probability
measures in the second part of the description of similarity based likelihood judgments.



In general, Psychological research supports the claim that the collection of all likelihood
judgments produced by most individuals are not well described by a single coherent
subjective probability measure. It is proposed however, that, under certain conditions,
the similarity based likelihood judgments that a person makes are well described as
judgments of conditional probability that are coherent with respect to a certain local
probability distribution, and that the information content of this distribution is a
function of the person’s beliefs about the similarities of the related individuals
involved.

The proposed theory of similarity based likelihood judgment is empirically evaluated
according to its ability to predict quantitative attributions of probability produced by
human subjects in an appropriate judgment context.
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I Introduction

1.1 Intro to the Psychology of Likelihood

Human beings are capable of producing opinions concerning the likelihood
of an enormous variety and kind of possible events, and they do so within a
wide range of informational contexts. Examples of some possible judgments
- that the probability of a global oil shortage before 2010 is 0.1, that the odds of
getting 13 or more heads in 20 tosses of a fair coin is near 1 in 3, and that the
chances that it will rain on any given day in in Boston during April are about
50/50 - readily bear out this claim. Modern research on the psychology of
likelihood judgment supports the view that the thought processes
responsible for producing this range and variety of opinion are heterogenous
in character - see Kahneman et al. '82 for an overview of modern
psychological research on likelihood judgment. A partial list of reasoning
patterns that are often thought to describe semi-distinct varieties of human
likelihood judgment includes the following items.

1a) Relative frequency- if n individuals of type C are known and m of them
are determined to have property P then it is common to judge the likelihood
that some new individual of type C has the property P to be m/n. People's
use of this reasoning strategy does not, in general, depend on whether the
sample of C's and the new individual were "randomly" chosen. See Estes'76
for a review of related psychological findings and Pollock'90 for a normative
theory and references.

1b) Availability - if m out of the first n individuals of type C that one can

bring to mind have property P then it is common to judge the likelihood

that a random new individual of type C has the property P to be m/n. See
Tversky et al. '73 for a more extensive description and review of relevant

psychological findings.

1c) Statistical adjustment - one may have learned as declarative knowledge
that, for example, that the statistical incidence of heart attack among pre-
menopausal women in the U.S. population is 1 in 17. Such knowledge may
be used as a starting point for other judgments, such as the likelihood of



heart disease for a pre-menopausal woman in the U.S. who is 20-30 1bs.
overweight.

2) Insufficient Reason - it is psychologically natural to attribute a probability
of 1/n to each of n possible outcomes of an uncertain event in situations
where the n outcomes are disjoint, exhaustive, and stand in identical
evidential relationships to the unknown event. For instance, the probability
that the next major earthquake (over 7 on the Richter scale) will occur on a
Monday (E.S.T.) may be judged as 1/7, reasoning that the earthquake must
occur on one of the seven days of the week and there is no available reason
for thinking that its occurrence on any particular day of the week is more or
less likely than any other day. This is an example of the application of
insufficient reason, originally formulated by Laplace. For justification and
extension of this doctrine see Jaynes '79.

3a) Causal Schemas - a person's judgments about the probability of an event
of type A occurring given that an event of type B occurred can
unquestionably be influenced by that individuals personal record of
experience with regard to the statistical association of these types of events.
There is also evidence that such judgments are influenced by a person's
ability to perceive/intuit a mechanistic or other type of causal chain leading
from events of type A to events of type B, although these chains apparently
do not need to be very well elaborated. For example, one might believe that
taking large dosages of Vitamin C somehow causes a decrease in the
likelihood of contracting a viral infection, or that drinking a particular brand
of beer causes an increase in the likelihood that a randomly chosen person
will desire to engage one in conversation. It has been experimentally
demonstrated that the presence of perceived causal connections between two
events, A and B can have a distinct, extra-statistical effect on judgments of
the likelihood of A given B. See Tversky et al. '82 and the volume edited by
Hilton for experimental results. See also Pearl '88, the volume edited by
Hilton and Salmon '84 for discussion of the role played by intuitions of
causality in reasoning and Pearl '88 for a treatise on the computational
efficiency of representing probabilistic information in terms of causal
relationships.




3b) Explanation/attribution based schemas - in some situations it may not be
intuitively acceptable to attribute a likelihood to a proposition without also
providing an "explanation” of that attribution. Such an explanation might
be a predictive rule that could be used to assign likelihood to other
unconsidered cases as well. This type of reasoning seems to commonly occur
in classification sorting tasks (see Medin et al. '87) and tasks related to the
attribution of social properties (see Hilton & Slugoski). The volume edited
by Hilton contains a group of papers focusing on different aspects of this type
of strategy and its domain.

4a) Representativeness - the likelihood that an individual, ¢, is a member of
a class, D, may often be judged according to the perceived similarity between
¢ and a representative description of D. See Kahneman et al. '72 and the
group of papers edited by Kahneman et al. '82.

4b) Similarity - the likelihood that an individual ¢ has some property P may
be judged according to the known presence or absence of property P among
other individuals that are considered to be similar to c. The precise form of
such judgment, at least for certain special cases, is the central focus of this
paper - references in the next paragraph.

It would be misleading to speak as if there is a precise catalog of likelihood
judgment algorithms that human beings, in general, possess. Many
likelihood judgments are undoubtably the result of thought processes which
are highly malleable and can be consciously and voluntarily manipulated -
formally learned probability calculations are one clear-cut example (see e.g.
Nisbett et al. '83 for details). Nevertheless, numerous experimental evidence
suggests that similarity-like factors play an important role in a wide range of
human inductive reasoning including stimulus generalization (Shephard,
'57 Nofosky '84) and categorization (Brooks '78, Medin & Schaffer '78) in
addition to likelihood judgment (Rips '75, Osherson et. al '91). Experiments
reported in the latter two sources specifically establish that the strength of
relevant similarity relations can be a statistically dominant factor influencing
human probability attribution in certain informational contexts. This
evidence gives reason to believe that an appropriate theory of the
contribution of similarity to likelihood judgment may describe an important



fragment of human reasoning, albeit a fragment of somewhat unknown size
and character.

Similarity based likelihood judgment is a variety of provisional or default
reasoning - as indeed, are all of the other judgment schemas listed above.
The present work will focus in detail on the form and nature of similarity
based likelihood judgment as a default reasoning strategy. In the next section
I describe what is meant by "default reasoning", summarize the recent
intellectual history of the topic, and describe some important research issues
related to the study and description of default reasoning strategies for
likelihood judgment. |

1.2 Theories of default reasoning and judgment - general remarks

The reasoning patterns 1a) - 4b) may be referred to as "default strategies”
because the role that they play in reasoning is to assert that some kind of
evidence, E, provides a default or provisional reason for attributing a
likelihood value, V, to some event or proposition, A. This attribution is
provisional because it can be, and often is, entirely overridden by the
introduction of additional evidence. A classic example: the knowledge that
the individual "Tweety" is a bird is evidence for attributing a high likelihood
to the proposition 'Tweety flies', but the knowledge that Tweety is a bird
taken together with the further knowledge that Tweety is a penguin is
evidence for assigning a very low likelihood to 'Tweety flies’. The
provisional nature of default reasoning stands in contrast to the truth-
preserving property (validity) of deductive reasbning. The rules of deductive
reasoning are such that a conclusion which is deductively inferred from true
premises must be true. If all men are mortal and Socrates is a man then the
truth of the proposition ‘Socrates is mortal' is assured. If it were somehow
ascertained that Socrates is immortal, then it could be confidently assumed
that either not all men are mortal, or Socrates is not a man. In the Tweety
example, the thesis that Tweety probably flies is (inductively) inferred from
the premise that Tweety is a bird. The contrast with deductive inference is
highlighted by noting that additional information casting doubt on the
likelihood of Tweety flying does not in any way cast doubt on Tweety's status




as a bird. The activity of inductively leaping to default conclusions is also
commonly referred to as non-monotonic reasoning because of the way in
which default conclusions can later be altered or retracted, in contrast to the
"monotonic” way in which deductively inferred conclusions are cumulative.

1.2.1 The nature and status of recent normative views

In recent history, the terms default reasoning and non-monotonic
logic/reasoning have been used most commonly in the field of Artficial
Intelligence. Until fairly recently however, researchers in AI have mostly
been adamant in claiming that default reasoning has little to do with
probabilities. In an influential paper, John McCarthy and Patrick Hayes '69
rejected the use of probabilities for non-monotonic inference in favor of
some form of (as yet to be discovered ) non-monotonic logic. Two of their
complaints with probabilities were that "It is not clear how to attach
probabilities to statements containing quantifiers in a way that corresponds
to the amount of conviction people have," and that "The information
necessary to assign numerical probabilities is not ordinarily available,” and
therefore probabilities are "epistemologically inadequate," as a representation
of provisional belief. In the wake of this paper, researchers in Al have often
gone out of their way to banish probability from their land. It has been
traditionally argued that, for example, the conclusion that 'Tweety flys' is
non-monotonically inferred from "Tweety is a bird' on the basis of what is
"typical” as opposed to what is "probable" and that the former proposition is
provisionally "accepted" rather than assigned high probability - see Reiter '80
and Pearl '88 for conflicting viewpoints related to these distinctions. This
reluctance to identify provisional conclusions with conditionalized
probabilities is somewhat suprising given the neat fit between what I have
just described as the defining characteristics of default reasoning and the
semantics of conditional probability statements. The beliefs that the
probability that Tweety flies given that tweety is a bird is high and that the
probability that tweety flies given that tweety is a penguin is low can easily be
accommodated within a single probability measure. In fact, if P stands for a
proposition to be assigned a probability based on evidence E, then the



statement that 'the conditional probability of P given E is v,' in general, says
almost nothing about the conditional probability of P given E and E'.

Recently, a number of researchers in AI have argued that probability theory
is an essential tool in the study of reasoning - See Cheeseman 88', Pearl 88',
Bacchus 90', Halpern 87', etc. Perhaps not coincidentally, this new acceptance
of probability into Al has been accompanied by three kinds of theoretical
innovations which address many of the traditional criticisms surrounding
the application of probability to default reasoning. The first of these
innovations has been the introduction of effective systems for combining
deductive reasoning involving quantified statements in a first order
language with probabilistic/statistical evidence (Halpern '87, Bacchus '90,
Geffner & Pearl '90), the second, a recognition that the essential evidential
structure of probabilistic relationships is not necessarily dependent on the
use of a representation for gradations of likelihood that has the cardinality of
the real line (Aleliunas 90')., and the third, has been the introduction of
techniques for manipulating and drawing conclusions from incompletely
specified probability measures (Jaynes '79, Cheeseman '83, Levi '80, Dempster
'67, Shafer '76, Pear] '88). Each of these innovations, which generalize
classical theories and applications of probability, have lent support to the idea
that traditional probability theory and its descendants may play an important
role in the description of a wide range of reasoning patterns. To this date
however, it is an understatement to remark that there is still no consensus
on this issue within Al as a whole. |

Views on the nature of default judgment and reasoning in the recent history
of Cognitive Psychology (since the late 1960s) have been radically different
from those in AI. Psychologists have generally assumed, sometimes
implicitly and sometimes explicitly, that any theoretical object which fit the
description "a normatively justifiable strategy for default belief assignment”
must be some straightforward translation of the basic principles of
mathematical probability theory into a reasoning algorithm. For example,
Daniel Kahneman and Amos Tversky write, "Although no systematic theory
about the psychology of uncertainty has emerged...Perhaps the most general
conclusion, obtained from numerous investigations, is that people do not
follow the principles of probability theory in judging the likelihood of
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uncertain events...Apparently, people replace the laws of chance by
heuristics, which sometimes yield reasonable estimates and quite often do
not," [p.32 Kahneman and Tversky. ‘82, my italics added]. This statement
seems to indicate that these authors are thinking of "the laws of chance" as
something which could be used to "yield reasonable estimates," - i.e. a
procedural rule or reasoning algorithm, and not merely probability theory
per se. It's not at all clear though, as the controversey surrounding the use of
probabilities in Al indicates, what this estimating procedure or algorithm
which is a straightforward application of the laws of chance to reasoning
looks like, or if it exists.

The algorithm which comes closest to being a straightforward translation of
mathematical probability theory into a reasoning strategy is the following
well known one:

A reasoner begins "life" with a prior probability . This is a
representation pairing conjunctions of every hypothesis the
reasoner might ever desire to evaluate and every experience that
might evidentially bear on any hypothesis with a representation of
quantities in such a manner that the set of quantities is isomorphic
to a probability measure. Upon the arrival of new evidence, which
by assumption the reasoner has anticipated the possibility of, the
current probability measure of the reasoner, old(), is updated by
conditionalization and replaced with the new probability measure,
new(), according to the following procedure.

For every event ej such that there are no events which are proper
subsets of ej (or which imply ej)

new(ej) = old(ej & evidence) /old(evidence).

When the reasoner wants to evaluate the likelihood of some event
(which by assumption the reasoner has anticipated the possibility
of) this evaluation proceeds by computing the sum of the
probabilities assigned to any disjoint set of events {ej} whose union
is equal to the event to be evaluated.

This algorithm, which I will refer to as the Orthodox Bayesian algorithm,
does not really seem to be a serious possibility for employment by any
human or mechanical reasoner that deals with a moderate number of
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different hypothesis and evidence statements. One reason for this is the
practical impossibility of anticipating all possible forms of evidence that
could be received, all hypothesis that could be entertained, and what the '
precise effect of each combination of evidence on the various hypothesis
should be. Another reason for is that for every set of n hypothesis and
evidence statements which are statistically relevant to one another, the
reasoner must represent on the order of 2" numbers in his/her/its
implementation of such a scheme. For even moderate n this number is
impossibly large (and doubles in size for n+1).

I don't think that anyone studying the Psychology of Reasoning really wants
to claim that the Orthodox Bayesian algorithm is the only rational way to
produce likelihood judgments. It is important though for the Psychology of
Reasoning to fully examine the consequences of the intractability of this
algorithm. The reason for this is not primarily because it will change our
perceptions that people commonly commit errors in their attributions of
probability, but because there is still a lot at stake in where we place the
blame for the errors that they do commit - because the nature of this blame
has an important effect on how we study the algorithms which people use.
Gilbert Harman [Harman '86, p.7] offers a convenient catalog of distinctions
between different kinds of errors which could be committed while reasoning:

i. One might start with false beliefs and by reasoning be led into
further errors.

ii. One might reach a conclusion that is perfectly "reasonable,”
even though it happens to be mistaken.

iii. One can be careless or inattentive or make mistakes in
calculation; one can forget about a relevant consideration or fail
to give it sufficient weight; one can fail to remember some fact,
etc.

iv. One can arrive at one's view in accordance with an incorrect
rule of reasoning, thereby violating the correct rules.

Several of the default judgment strategies I have listed as 1a) - 4b) seem to be
thought of in the literature on the Psychology of Reasoning as involved in
the production of errors of type iv. To the extent that Psychologists believe
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that type iv. errors are intrinsic to the nature of the algorithms that human
beings primarily use to produce likelihood judgments, one of the
consequences alluded to above is that we will forgo attempts to understand
these algorithms as rational strategies to be analyzed according to
computational principles. As the above catalog of errors should make clear,
knowing that an error in judgment occurred and that a certain reasoning
procedure was employed in producing that judgment is not, by itself,
sufficient information to view the error as one of type iv. If a reasoning
strategy can "sometimes yield reasonable estimates,” as has been claimed for
most all of the strategies 1a) - 4b), it would seem necessary, in order to
generally classify applications of such a strategy as type iv. errors, for one to
presuppose the theoretical existence of some other strategy which produces
reasonable estimates with far greater regularity. If these strategies (1a - 4b) are
also thought of as sub-optimal in some meaningful sense, then this preferred
strategy should be tractably realizable. It's not at all clear that the Orthodox
Bayesian algorithm would necessarily be the preferred strategy if it were
tractable [see e.g. Bacchus et al. ‘90 and Kyburg ‘83), but it is clear that it is not
tractable for human beings or current artificial technologies that seek to
move beyond the confines of small specialized domains.

‘Perhaps, what is, or should be, claimed is not that the "heuristic" strategies
are uniformly incorrect as rules of reasoning but that they are incorrectly
applied in some circumstances. At this point though, the (I think useful)
distinctions between type iv. errors and type ii. and type iii. errors begins to
blur. Are we saying that these heuristic rules are incorrectly applied on
occaison in virtue of the fact that they happened to yield erroneous
conclusions on those occasions? Or are we saying that they were incorrectly
applied because important considerations were mistakenly overlooked that
should have blocked or modified their application? This latter description
seems to apply to many of the cases in the literature. For example, it has been
pointed out that people commonly judge the proportion of words in English
ending in "ing" to be greater than the proportion of words in English ending
in "g", presumably because it is easier to explicitly think of words ending in
"g" by concentrating on the retrieval of words ending in "ing" than by
another technique that would be adopted if the prevalence of words ending in
“ing” was not actively under consideration. As a consequence of this,

13



judgments of the probability that a word randomly selected from English text
ends in "g" are often erroneously low because the fact that words ending in

"ing" are common examples of words ending in "g" is frequently and
deleteriously not taken into consideration.

It might be argued that such a failure is really a type iv. error after all, because
any reasoning algorithm which systematically fails to take important relevant
facts into consideration must be a sub-optimal rule of reasoning. And so, to
continue this line of thought, it could be argued that the strategy of
evaluating frequencies by sampling the cases that one can think of (strategy
1b) must be sub-optimal, because it will chronically suffer from failures to
consider some facts of this type - i.e. those that are not readily thought of.
Once again though, such a claim seems to presuppose the existence of
tractable reasoning algorithms which do not systematically overlook some
important and relevant facts.

Since the Orthodox Bayesian algorithm is not tractable, it is natural to inquire
concerning what other strategies might count as reasoning according to "the
laws of chance”. One natural place to look for such strategies is in how people
reason when they apply formally learned statistical principles - when they, for
example, solve a problem appearing in a textbook on probability or
mathematical statistics. Clearly people of moderate intelligence can readily
acquire the ability to reliably solve such problems. Such problems are
different however, in crucial respects, from the situation that a reasoner
confronts when required to produce a judgment of likelihood in the real
world. These textbook problems are essentially exercises in computing the
immediate consequences of certain probabilistic/statistical assumptions. They
take forms like "Given probability measure Pr, how likely is the compound
event E?", "Given the compound event E occurred, how much more likely is
probability measure Prl than probability measure Pr2 to have produced it?",
and "Given that Prl is true, how likely is an observation of the compound
random variable R to taken on a value that a priori was more than 20 times
more likely given Prl than given Pr2?" Sometimes these type of problems
are expressed as "word problems”, which generally means that they are
described in a dialect of English for which there are established conventions
of translation (at least for "the initiated") allowing the unique recovery , from
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the English description, of a well defined type of statistical question like the
foregoing examples. The ability to solve these type of problems is not directly
related to most of the skills that a person would/should employ in evaluating
the likelihood of some real world proposition. For example, answering a
question like "How likely do you think it is that the train will be less than 5
minutes late this (Friday) morning (given all of the beliefs and experiences
that you either innately possessed or have acquired in your lifetime)?"
Formally learned statistical skills are directly relevant to the solution of the
superficially similar word problem "Given that the distribution of the
lateness of this train (in minutes) recorded over a long run of days was well
described by a Poisson distribution with parameter 6.72, and that there is
nothing special about today, what is the likelihood that the train will be less
than 5 minutes late?" Even if a person had direct experience with the
statistical information referred to in the latter question, in order to translate
the former question into the latter one, a person would need to have
anticipated the question in order to form a precise belief about the
distribution of the arrival times of that specific train, or have stored all of the
data in their head and be able to retrieve it, and they would also need to
believe that there was nothing special about today's train - i.e. the person
would need to decide that among all of their beliefs, that particular belief
about the general distribution of the train's arrival is the relevant one on
which to base their judgment, rather than, say, the distribution of that train's
arrival on Friday mornings. To summarize, the existence of algorithms for
consistently reasoning to correct answers on textbook probability problems
does not imply the existence of tractable related algorithms for reasoning
"correctly” or straightforwardly applying the "laws of chance" to produce
estimates in a complex environment.

Although researchers in neither Artificial Intelligence nor Cognitive
Psychology have any concrete general models for describing how default
likelihood judgments should be made, many people in each field have been
drawn to the idea that probabilistic and statistical principles could play a role
in such a theory. Such principles certainly do play an important (though, at
present, not precisely describable) role in the work of the Applied Statistician
who, after all, is a notable example of someone who can use their intellect

7

and intuition, extended by various artifactual tools, including statistical
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theorems, to produce objectively successful likelihood judgments and
predictions about a range of complex empirical phenomena (though not, of
course, in "real time"). What can we precisely say about the ways in which
the Applied Statistician makes likelihood judgments? For what it's worth, I
conjecture that the following stepwise description partially and significantly
describes most, if not all cases (although the order of steps is mostly
unimportant and may well vary from case to case).

First, some target proposition, T, such as 'the wheat harvest next
year will be in excess of two billion bushels' is recognized as
something to be assigned a likelihood. Second, T is represented
as the conjunction of a "frame predicate" and a "specialization
predicate”. In this example, T might be represented as the
conjunction of the frame predicate 'x is a (generic) wheat harvest
from our country that is in excess of two billion bushels' and the
specialization predicate 'x is next year's wheat harvest'. Third, a
"reference predicate" is selected, with the property that every
example of the frame predicate is also an example of the
reference predicate. In this case, the reference predicate might be
'x is a wheat harvest from our country.' Fourth, a body of
evidence is selected/obtained which can be used to evaluate the
conditional probability of a "random" example satisfying the
frame predicate given that it satisfies the reference predicate. In
this case, this might be a record of the number 6f bushels of
wheat produced by harvests from the past 15 years. Fifth, an
actual number is assigned to this conditional probability, on the
basis of the available evidence, using some type of estimation
technique that is deemed appropriate. Maybe, in this case, a
Gaussian distribution for number of bushels of wheat harvested
in a given year is first estimated on the basis of the evidence, and
then the probability mass that this distribution assigns to
numbers greater than two billion is computed. Sixth, the
number obtained in the fifth step is accepted as the probability of
T.
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Steps-one through six are clearly, at best, an incomplete description of what
the Applied Statistician does, because even if this description were generally
correct, as far as it goes, we still don't have any precise criteria or basis for the
different choices that are made for frame predicate, reference predicate,
evidence, and estimation technique. Clearly intuition, past experience,
theory, learning, pragmatic convenience, and a host of other factors play a
role in these choices. Nevertheless the description above, vague as it is, may
provide a useful starting point for both normative and descriptive
investigations. One reason is that by focusing on the activity of likelihood
judgment in this way, we may come to greater understanding of these other
choices. Another reason is that the very fact that a variety of people are able
to enjoy some measure of objective success working as Applied Statisticians
suggests that there may, in general, be a relatively wide latitude in the ways
that these choices can be made and still produce "reasonable" judgments. In
section IL3 I relate the descriptive framework above to theories of "Direct
Inference” that have been proposed in the Philosophical literature, provide a
slightly more precise description of the steps described above, and make use of
this description in the formal specification of a theory of similarity based
likelihood judgment.

1.2.2 The nature of descriptive theories of default judgment

One approach to the complete specification of a default reasoning strategy for
likelihood judgment is to decompose the descriptive task into three separate
parts. The first part of the specification is a description of how the strategy
works when it is concretely instantiated on particular occasions and applied to
produce an attribution of likelihood. Such a description states which type of
proposition the strategy can be used to attribute likelihood to, which type of
beliefs/knowledge the strategy makes use of as evidence for this type of
attribution, and, algorithmically, how particular tokens of this type of
evidence are made use of to produce attributions of likelihood to particular
propositions.

It is true but useless to say of such a strategy that the likelihood it attributes to
a proposition is an evaluation of THE conditional probability of that
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proposition given all of the current evidence. The use of the definite article
could only be justified under conditions in which a probability distribution
accomodating the proposition had already been established, in which case we
wouldn'’t really need a reasoning strategy to evaluate it. What I will call Part I
of the description of a default reasoning strategy provides some additional |
information - a specification of which type of conditional probabilities a given
strategy evaluates and how this evaluation proceeds. Most of the theories
that have been proposed as descriptions of human reasoning strategies 1a) -
4b) primarily address this part of the specification problem. At least to the
extent that these proposals make any precise claims, they seem to make
empirical claims of the following type.

Type of Claim: There is an algorithm, A, operating on evidence of type E,

which people employ to produce (or affect other independently produced)
attributions of probability to target propositions of type P according to
reasoning pattern R in internally represented judgment contexts of type C. It
is important to note that C is not a complete description of a person’s
epistemic state. It is rather a partial description which provides necessary but
not sufficient (descriptive) conditions for the algorithm to be applied.

The capitalized letters above represent variables that would be concretely
defined in a precise version of such a theoretical claim. The present work
will propose a precise theory of this form for similarity based likelihood
judgment. My description of what I take to be the remaining parts of a
complete specification of a default reasoning strategy will hopefully make
clear what other desirable knowledge about a default reasoning strategy is left
out of such a description.

The second part of a complete specification is a description of the
circumstances in which a default strategy will actually be instantiated
(internally represented) in a particular way and used to produce a likelihood
judgment. An example may help to clarify the contrast between the two parts
of the description of a reasoning strategy for likelihood judgment that I am
referring to. Consider the following reasoning scenario and "strategy " (the
"reasoner” in this example is a life insurance company but the issues I am
calling attention to are not affected by this).
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Scenario:
Sam is a 49 year old man who has a history of heart disease in his family
(his father had a heart attack). He himself has never had any heart
problems and his serum cholesterol level is normal. However he was
diagnosed as mildly diabetic in his early thirties, and had been a chronic
smoker up until that time. What is the likelihood that he will live past
the age of 75?

Strategy:
Life insurance companies routinely evaluate questions like this using
some variety of a relative frequency strategy (1a). The likelihood that Sam
will live past 75 would be evaluated by consulting an actuarial table. Cells
in these tables are indexed by factors that are considered particularly
relevant to life expectancy. Typically, Sam would be identified as
belonging to some cell of such a table based on a yes/no listing of some
particular set of his characteristics: history of heart disease in family - yes,

history of heart disease personally - no, diabetic - yes, etc. Each cell contains
a histogram recording the actual lifespan of the known cases which fit the
criteria of membership for belonging to that cell - i.e. 5% of those cases
lived less than 20 years, 25% lived between 20 and 30 years, etc.. The
estimate that such a table provides for the likelihood of Sam living past 75
is equal to the relative frequency of people living past 75 (or the nearest
approximation to that in the relevant histogram) among the tabulated
cases with Sam's distinguished set of relevant characteristics (taking into
account, of course, the fact that he has already lived to be 49).

According to 1a) above, a likelihood judgment strategy is a "relative
frequency"” strategy if the likelihood that a given individual who belongs to
a class, C, has a given property is estimated as the fraction of the known set
of individuals in C which have that property. The property in question in
the "Sam" exarhple is 'x will live past 75 years of age' and the class is
determined by the description of the cell that Sam is assigned to. Itis
obvious that an actuarial table containing a given set of case descriptions can
be built in an enormous variety of ways - choice of cells and choice of
histograms can both vary. It is also clear that, in general, different tables
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would provide different relative frequency estimates for Sam's longevity. In
order to specify how a life insurance company will actually judge the
likelihood that Sam will live past 75 years of age it is obviously not sufficient
to specify that it uses a relative frequency strategy based on this particular set
of cases. The descriptive label “relative frequency strategy” tells us, in this
case, that the estimated likelihood that is produced by such a strategy
ultimately results from evaluating the ratio m/n in some cell of some table.
But which table? We do not know since many could have been built from
the given set of cases. In order to specify a real reasoning strategy that would -
tell us how all of the information that went into making the table figured or
did not figure in the given estimate, we need some more information. I am
calling this other information a description of how the relative frequency
strategy was instantiated to evaluate the target proposition on the basis of

the known cases.

There is actually more that we would like to know even beyond the
description of how a reasoning strategy is to be instantiated in some
situation and how the instantiation will be used to produce an evaulation of
likelihood. To see this note that if E stands for all currently available
evidence, P stands for a proposition to be evaluated, and A stands for some
new piece of evidence, then the constraints that probability theory by itself
imposes on the relationship between Prob(P | E) and Prob(P | E&A) are very
weak. Specifically, if Prob(P | E) is neither 0 nor 1, then Prob(P|E&A) can, in
general, be any probability at all. The additional information that we would
like, the third part of a complete specification, is a description of how a given
judgment would affected by the introduction of new evidence. This third
part, which is sometimes referred to as a description of epistemic
commitment, may or may not be different from the second part in the case
of different "reasoners". If the effect of new evidence is to cause a new
judgment to be produced on the basis of the old evidence plus the new
evidence considered equally, then the description of this third part is
subsumed by the description of the first and second parts. However, there
are often practical reasons why this latter strategy is too costly. Taken
literally it might require one to save all of the old evidence and recompute
all of one's inductively inferred beliefs after the receipt of new evidence [see
Harman and Gaerdenfors for extensive discussion of this and related issues].
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There is a substantial body of experimental data on topics such as biases of
confirmation which indicates that the judgment strategies which human
beings actually make use of often exhibit significant intransitivity relative to
the order in which evidence is received [see Ross and Anderson '82 for an
overview]. Such intransitivity implies that old evidence and new evidence
are not treated identically in some cases. Sam and the life insurance
company again provide a convenient example to illustrate some of the
issues.

Consider three different types of evidence that might cause different types of
adjustment to the estimate of Sam's longevity. The least significant effect
would be produced by the introduction of a new case, fitting the same cell
description as Sam, into the database of cases. If the individual described by
the new case had lived past 75 years of age then the estimate for the
likelihood that Sam will would be changed from m/n to (m+1)/(n+1).
When n is large this is an insignificant adjustment, but is nevertheless an
adjustment that depends on m and n together, and is not merely a function
of the previously attributed probability m/n. To restate this point slightly
differently, the significance of an assertion that 'the probability of Sam living
past 75 years of age is p (= m/n)' is different than the significance of the
assertion that 'the probability of Sam living past 75 years of age is p (= cm/cn
for some large constant c)' even though the assertions appear identical. The
ambiguity is only resolved upon the introduction of further modifying
evidence. A more radical effect on the insurance company's estimate of
Sam's longevity would be achieved by the discovery of relevant information
about Sam that was not included in his case description, such as the fact that
he has a tumor in his liver or that he works in a coal mine. In such a case
Sam would be assigned to a different cell the company's actuarial table and
the given estimate would be revised (as would be the cost of the policy they
are willing issue). Relative to this type of information, description of the
“epistemic commitment" of the insurance company. to the estimate of Sam's
longevity must include a list of factors that are relevant to the actuarial table
and could potentially be discovered of Sam. Finally, there are undoubtably
bodies of new evidence which would cause the insurance company to
modify the actual cell structure of the table. Such information might be, for
example, the new scientific discovery that some chemical used in a particular
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kind of manufacturing process causes cancer. Whether or not someone has
worked at that type of manufacturing plant now becomes an important factor
in their case description. If the complete descriptions of all the cases that
were used to build the old table are available then a new table with the
additional factor cross tabulated with the old factors could be built from
scratch. In such a case the resulting likelihood judgments produced by the
reconstituted table would presumably be transitive relative to the ordering of
the old and the new data. Otherwise, if all that is available are the old
histograms, then some other technique for introducing the new factor must
be adopted and the result will be intransitive relative to the ordering of the
old and the new data.

A final general comment on descriptive theories of default reasoning is that
these theories need not propose or endorse a "theory of probability”. What I
mean by a "theory of probability" is an attempt to directly specify precisely
what it is that a person holds to be true of the world when they say "the
probability of event A is p." Historically, a great deal of thought and
argumentation has been devoted to such questions [see Fine 73, Gigerenzer
‘89 for reviews]. Despite these efforts, no consensus view of even a semi-
formal referential semantics of probability attribution has emerged. The
theoretical objects of study for theories of default likelihood judgment are
relationships between probability attributions and other held beliefs; in this
work, I focus on how judgments of likelihood are related to judgments of
similarity, which are related in turn to featural and categorical knowledge.
The study of these relationships is exemplary of a non-definitional approach
to understanding the meaning of likelihood judgments. One non-
definitional route to such understanding is through specification of the
causal factors determining such judgments and the role such judgments play
in reasoning and decision making. This priority of focus is common to most
all psychological research on reasoning strategies 1a)-4b) cited above.

1.3 Similarity based likelihood judgment: plan of study

The strategy of similarity based likelihood judgment that is explored here is a
default inference that is, roughly, instantiated and applied as follows.
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Suppose that 'individual i has property P' ' is an uncertain proposition of
interest, that P is a property of type P, and that individuals iy,...,i, are each
saliently known to have property P, and that im+1,...,in are each saliently
known not to have P. Then in the absence of other information, the
probability that some new individual in4+1 has P is assumed to be some
function of the similarity(P) of in41 to iy,...,in - where the notation
similarity(P) is intended to express the idea that there are different kinds of
similarity relations and that the appropriate similarity relations in this
context are those appropriate to inferences related to P. This function of the
appropriate similarity relationships is shown to vary positively with the
appropriate similarity of in41 to ij,...im and to vary inversely with the
appropriate similarity of in+1 to im+1,---/in.

The greater part of the thesis will be devoted to advancing and
experimentally evaluating a precise specification for the instantiated form
and product of this reasoning pattern. A theoretical model for the nature of
similarity relationships is also proposed. The proposed theory identifies
similarities with subjective conditional probabilities and relates similarity
based likelihood judgment to a variety of statistical estimation. Less precise
relationships between similarities, features, and categories are also proposed
and examined.

The point was made in section 1.2 that this type of specification only speaks to
one part of what we would ideally like to know about similarity based
likelihood judgment as a default reasoning strategy. The examples provided
there also helped to make clear why these other, missing parts of a complete
description are elusive: in a situation in which the reasoner has even a
moderate amount of background knowledge to potentially make use of as
evidence for influencing a judgment of likelihood there will be a
combinatorial explosion in the number of syntactically permissible
instantiations for most reasoning strategies. In the relative frequency
example above, an instantiation was determined by the combination of the
set of known cases, a description of Sam, a choice of factors used to pick out a
cell of the actuarial table - more generally referred to as a reference class (see
section I1.4), and the choice of histogram within a cell. It turns out that there
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are also a number of different choices to be made in the instantiation of a
similarity based strategy. The possibility that different reasoning strategies
(1a-4b etc.) could be potentially be instantiated on the basis of a single
moderately sized body of evidence only makes the situation more
complicated, as does the consideration of how judgment would be affected by
the introduction of further, unanticipated evidence into the knowledge base.
Confronted with this complexity, it is self evident that any set principles
which might provide a theoretical basis for predicting which specific
judgment strategy and instantiation will be utilized in particular instances
merits serious consideration. One possibility which would make things
simpler would be if the actual choices among competing strategies which
people commonly make in their reasoning are compatible or nearly
compatible with the choices that are suggested by normative principles. We
know or course that people sometimes commit elementary errors, but it may
turn out to be the case that these errors can be isolated and set apart from
normatively comprehensible principles of reasoning. But what are such
principles? A natural place to look is at theories concerned with statistical
model choice - i.e. the competitive selection of an optimal or near optimal
statistical model from a set of alternative models types offering different and
frequently incompatible descriptions of a given random environment.
Unfortunately, this research topic has only been gradually taken up in any
generality by the statistical community starting in the early 1970's, and so the
theory that has so far been developed, while possessed of enormous
potential, is still at a relatively early stage of development. What research
there has been in this area has been pioneered by, and is most closely
associated with, the related work of Akaike ‘74, Schwarz ‘78, and Rissanen
‘86, ‘87. The interested reader is referred to Sakamoto et al. ‘86 and Rissanen
‘90 as readable references and starting points for this literature.

II Description of similarity based likelihood judgment

The description of similarity based likelihood judgment as a statistical
strategy will proceed as follows. Section IL.1 will describe, in statistically
meaningful terms, the nature of the evidence that is required to instantiate
this pattern of judgment. Section II.2 will provide a qualitative theory of this

24




reasoning pattern. This qualitative theory will be useful for both
understanding the theory and its experimental confirmation (to follow in
Chapter III) as well as to help formulate rival descriptions to be competitively
evaluated. I will often refer to any judgment pattern that satisfies these
qualitative criteria as a model for similarity based likelihood judgment,
though a unique quantitative model will ultimately be defended. Section
I1.3 will present a theory of the nature of similarity relations themselves.
Section I1.4 will introduce a formalism in which the instantiation of an
instance of similarity based likelihood judgment, as well as the default
assumptions of that instantiation, may be described syntactically. The
formalism introduced there is closely related to (and capable of describing)
theories of "direct inference” that have been proposed in the philosophical
literature - primarily to describe normative theories of default strategies 1a
and 1c. It is hoped this formalism will ultimately prove useful in providi‘ng
a uniform descriptive language for talking about 1a - 4b and other default
reasoning strategies. Section IL.5 will complete the description of similarity
based likelihood judgment by providing a quantitative specification of the
reasoning algorithm that is used to produce numerical likelihood judgments
from the (statistical) information contained in an instantiation of the
strategy.

II.1 A Scenario for Inference

Before presenting an abstract definition for the type of reasoning scenario to
which similarity based likelihood judgment applies, it will be helpful to
consider a concrete example which has the same "informational skeleton" as
the abstract version. |

Bill "from Indiana" is dining at a Roman trattoria. Before he left
Indianapolis for his Mediterranean vacation, he told his "foodie"
friends that he was looking forward to increasing his familiarity
with Italian cuisine, and asked them for their menu
recommendations. Each of them gave him a long list, but all that
he can remember at the moment is that Sam recommended he try
pasta e fagioli and Sally recommended he try pasta puttanesca.

Bill is ignorant concerning the contents of both dishes and they
are the same price on the menu. He decides to order the pasta
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puttanesca because he feels that Sally's taste in pasta dishes tends
to be more similar to his own than Sam's does.

The informational skeleton of the above scenario is intended to fit the
following abstract description.

X needs to know if some individual, ip, has some particular property, P. Not
being able to test the matter directly, and lacking any certain knowledge, X is
required to take his/her/its best guess - or alternatively, the situation
requires X to choose to either engage in some activity involving ig or in the
same activity with some other individual i, and so X must consider relative
likelihoods for the truth of P(ig) and P(i1) - here I use the symbolic
terminology P(i) to abbreviate the statement 'i has property P' and -P(i) to
abbreviate the statement 'i does not have property P. Assume that the
relevant knowledge and beliefs available to X are described by the following
four given assumptions:

1) that P is known to be a property from the class P,

2) that ig ang i1 are members of a finite set {ix,0<k<m] of related
individuals*,

3) that X has beliefs about what proportion of the time each
distinct pair of individuals in the set {ix,0<k<m]}, say ij and i], had
matching and non-matching values for properties in the class P -
i.e. X has beliefs about the relative likelihoods of P(ij)&P(i}) vs.
-P(ij)&P(il) vs. P(ii)&-'P(il) VS. -P(i]-)&—-P(il) for random P in P, and
4) thatip...in in {ik,0sk<n} are known by X to have P and in+1. . .
im in (ix,n+1<k<m} are known by X not to have P.

* This stipulation is intended to insure that it makes sense to talk
about the similarities of each pair drawn from {ix,0sk<m]} in the
same sense of “similarity”- this idea will be formalized and
elaborated in section I1.3.

The type of information given by 1) -4), hereafter to be referred to
individually as GI-1...GI-4 and collectively as the GIs, is available in many
judgment situations. In the food example given above we could give the
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label ig to Bill, ip to Sam, and i3 to Sally. There were two properties: P1 was
"x likes pasta e fagioli" and P2 was "x likes pasta puttanesca". The class P,
containing P1 and P2, was something like the class of positive preferences
for particular pasta dishes. The inference made was that Bill judged P2(Bill)
to be somewhat more likely than P1(Bill). The basis for this judgment
seemed to be primarily a function of his knowledge that P1(Sam) and
P2(Sally), and his belief about the frequency with which his tastes relative to
P match that of Sam and Sally respectively. In section I1.2.2 I propose a
theoretical account of similarity according to which it is proper to refer to
such beliefs as estimated similarities.

I1.2 Qualitative Description of Similarity Based Judgment

The following qualitative properties characterize a class of strategies for
computing an estimate of likelihood in the reasoning scenario described in
IL1. Some of these characteristics can be tested independently of particular
quantitative formuli for producing estimates. All of them are useful for
thinking about the nature of similarity based likelihood judgment.

i. the probability of P(ip) will vary positively with the similarity of
the pairs consisting of igp and each of the individuals known to
have P and negatively with the similarity of the pairs consisting of
ip and each of the individuals known not to have P.

Principle i. implies the weaker principle i’.

i'. the probability of P(ip) will vary non-negatively with the
similarity of the pairs consisting of iy and each of the individuals
known to have P and non-positively with the similarity of the
pairs consisting of ip and each of the individuals known not to
have P.

Although I will test Postulate i. directly, Iinclude the definition of i." here
because at a later point in the thesis i.” will provide a natural point of

commonality for a variety of different models for similarity based likelihood
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judgment that I shall experimentally evaluate. What principle, i, (and its
slightly different alternative version, i) says is that if ig is more similar to i
than to i then no matter what other individuals are known to have P and
not to have P, if we compare the estimate that is produced for the likelihood
of P(ip) on the basis of the known set of cases plus the information that ij has
P to the estimate for the likelihood of P(ig) formed on the basis of the known
set of cases plus the information that ip has P then the former likelihood
estimate will be found to be greater (not less) than the latter. The reverse
would be true if we had instead formed the two estimates on the basis of the
added information that i; does not have P in the former case and the
information that i, does not have P in the latter. Note that this is simply a
claim about similarity based likelihood judgment, not a universal property
of human reasoning. Relative to the “Bill” example, principle i. makes
predictions like the following: if Bill believes his taste in pasta dishes to be
more like that of Fred than that of Sam, then Bill would think it more likely
that he would like some unknown pasta dish when (the relevant
information he has available is that) he knows Fred had liked it and Sally did
not than he would be if the information had had was that Sam had liked it
and Sally had not. Principle i' is slightly more conservative, saying only" that
Bill would not think it less likely that he would like some unknown pasta
dish when (the relevant information he has available is that) he knows Fred
had liked it and Sally did not than he would be if the information had had
was that Sam had liked it and Sally had not. The truth of principle i implies
the truth of principle i'. Here is a second principle.

ii. in the absence of information other than the Gls given above,
and if the unconditional probabilities of the individuals in the set
(i, 0sk<m] are identical, the probability of P(ip) will be a function

" of only the structural information in GI-4 and the set of values’

given by the similarity function applied to each pair of individuals
in the set {ix,0<k<m]}, holding the class P containing P constant.

Principle ii says that if all of the individuals about whom we surely know
whether they have the property P or not are in the set {ix,1<k<m}, and ab

initio, we don't have any reason to think any of the individuals in the set
{ix,0<k<m) are more likely than any others from the set to possess a
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randomly chosen property from the class P, then the estimate for the
likelihood that ip has P can be computed from the information contained in
the combination of 1) an (m+1) x (m+1) matrix in which the jk th entry is
the value of the similarity of ij-1 to ix-1 relative to P and 2) a length m vector
where the lth entry is a 1 if i is known to have P and a 0 if i} is known not to
have P. Principle ii. says that we should be able to predict Bill’s judgment of
the likelihood he will like the pasta dish using the information about who
he knows liked the dish and how similar he believes their tastes to be to his
own. Actually, principle ii. hedges this assertion by adding the proviso that
Bill has no other relevant information. It would be nice to have a general
theory that would allow us to say what other information is relevant, but
none appears to be immediately forthcoming. In many cases, intuition
allows us to declare specific facts as relevant or irrelevant. For the “Bill”
example, the fact that pasta puttanesca is made with anchovies seems
relevant. The fact that Frank Sinatra likes marinara sauce does not. It seems
reasonable to assume that we derive these intuitions by simulating our own
reasoning processes faced with such a situation and taking note of whether
the information in question would alter that reasoning process. Clearly
these intuitively derived conclusions are themselves provisional. The fact
that Frank Sinatra likes marinara sauce could be deemed relevant if we were
informed that Bill was a raving Frankophile.

~ Principles i. and ii., hereafter to be referred to as the Similarity Reasoning
Postulates, are satisfied in the inductive models of Shephard ‘57, Nofosky ‘84
Medin & Schaffer ‘78, the similarity components in the models of Rips ‘75
and Osherson et al. ‘90, ‘91, and in many of the proposals in the area of
artificial intelligence that has come to be called Case Based Reasoning. These
relationships will be discussed further in section Ill.4. Postulates i. and ii. do
conflict with some coherent ways in which reasoxiing might proceed. For
instance, in general they will not be satisfied by abductive or explanation
based inferences (strategy 3b) that seek to pin down the available pattern of
data to some particular property or cause that may well deviate from the
(statistically) general pattern described by similarity . The theoretical
perspective I endorse does not deny that this type of leaping to specific
conclusions is a common feature of human reasoning. I propose however,

’
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that it is supported by some sort of information other than that contained in
the GIs.

I1.3 Similarity Itself

Most people feel that they can sensibly answer questions like "Which of the
following is more similar to a raccoon: an opossum or a grizzly bear?" and
"On a scale from 1 to 10 how similar are a raccoon and a grizzly bear?"
Within Cognitive Psychology, what is generally meant by a "theory of
similarity" is an account of how a person's answers to questions like these
can be predicted on the basis of their other knowledge and beliefs. I refer to
this type of an account as a theory of how similarity is estimated. The use of
the term "estimated"” is justified by the fact that it is possible to change a
person's opinion about the relative similarities of two distinct pairs of
individuals by providing that person with additional information about the
individuals being considered. For example, someone who thought raccoons
more biologically similar to opossums than to grizzly bears might revise this
opinion if informed that evolutionary biologists believe raccoons to be
members of the bear family (in the same sub-family as giant pandas) while
opossums, which are marsupials, are evolutionarily distant from living
mammals. That person might then revise their belief about the overall
biological similarity of raccoons and opossums while continuing to believe
that raccoons and opossums are the more perceptually similar than raccoons
and grizzly bears.

A question logically distinct from the issue of how similarities are estimated
is the question of what other beliefs are entailed by (estimated) similarities.
The list of such beliefs should undoubtably include more than just similarity
judgments and their logical consequences. Since the theory of similarity
proposed here is expected to fulfil the role assigned by Similarity Reasoning
Postulates i and ii, this second issue is the more central concern in the
current context. Consequently, the "theory of similarity” proposed here is
primarily a theory about the meaning and consequences of similarity as a
belief.
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I assume that what we commonly refer to as "similarity” is a mentally
represented /computed function from ordered pairs of individuals and a
domain to some partially ordered set of values. With this assumption in
mind (but otherwise pre-theoretically), let Sim(i,j,D) stand for the amount of
likeness of individual i to individual j with regard to their D-ness.
Considerations of both similarity entailment and similarity estimation
suggest that part of the notion of a domain, or way in which two individuals
exhibit similarity, includes the specification of a specific class of properties
among which those two individuals are to be compared. The belief that two
things are similar in their D-ness entails some sort of expectation that they
generally share D related properties. This view is completely consistent with
the generally held idea that learning of some new D-related property that i
and j share is cause to re-evaluate the estimate of Sim(j,j,D) upwards, at least
by some tiny amount (depending, perhaps, on how much one already knows
about i and j with respect to D) (see e.g. Tversky 77,78). Let us assume that a
domain is a fixed (though perhaps uncountably infinite) set of properties,
and that it is sensible to speak of a subjective probability distribution on the
likelihood of encountering particular types of properties from a domain.
Given these assumptions, the following definitions describe the belief
entailments of similarity.

Let D be some fixed domain, i and j an ordered pair of individuals, P a
property that is randomly chosen from D, and let the similarity of i to j with
respect to D be abbreviated by Sim(i,j,D). For the present I equate a domain
with an intuitively identifiable, but otherwise arbitrary, class of properties.
In other words, a person knows a D-type property "when he or she sees one."
A full explication of the notion of a natural domain would presumably
provide explicit coherence restrictions on such property classes. The general
view of similarity I shall propose is vaguely summarized by the statement
that

a) 5im(i,j,D) = the subjective likelihood of the equivalence or substitutability
of i for j relative to a randomly chosen P from D. In other words, given that
some D related property holds of j, how likely is it that it would be just as
“acceptable” to regard i as having that property. If we regard the notion of
having a property as classical rather than potentially "fuzzy", then this
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description can be slightly cleaned up as follows. Sim(i,j,D) = the subjective
likelihood that P(i) has the same truth value as P(j) for a randomly chosen
property in D, given that that truth value is "of interest". The rational for
this last proviso will be made clear below.

One potentially confusing issue for shared-property approaches to similarity
is that often one deals with the similarity of things that are not individuals
in a logical sense, such as the similarity of soccer balls and basketballs. The
main issue is the treatment of properties which hold of some basketballs and
not others (e.g. "made of leather"). I will treat this issue by syntactically
representing the "individuals” in the first two positions of the Sim function
as sets, even when these sets contain only one member. I also assume that
each set has a well defined subjective probability distribution over the
selection of its members. The second version of line a) can now be re-
expressed as

b) Sim(A,B,D) = the subjective likelihood for P randomly chosen from D, i
randomly chosen from A, and j randomly chosen from B, that P(i) has the
same truth value as P(j).

The reader should carefully take note of what has been smuggled in here
during the course of the last two paragraphs. The function described by b)
has an inherent ambiguity about it. Let us say that A is homogenous with
respect to D if A and D are such that for every P in D and every i and jin A,
either P(i) and P(j) or —P(i) and -P(j). Then if A and B are both homogenous
with respect to D , Sim(A,B,D) will be something akin to the conditional
probability of P(A) given P(B) for random P in D, where what is meant by
P(A) is P(i) for all i in A. If B is homogenous with respect to D but A is not
then Sim(A,B,D) may represent something like the expected proportion of
A’s with P given P(j) for j in B and random P in D. If both A and B are not
homogenous with respect to D then Sim(A,B,D) is something like a
covariance of A and B with respect to their D-ness. If one were designing an
artificial language then it would be time to backtrack at this point and retrace
one’s steps because it is clear that this invitation to ambiguity can potentially
get one in trouble when reasoning. In fact, a variety of observed “fallacies”
in the literature on human reasoning with probabilities seem to arise as a
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result of ignoring such ambiguities. Shafir et al. ‘90, Osherson et al. ‘90 and
Osherson et al. ‘91 document a type of error which they term an “inclusion
fallacy”, and which is particularly relevant to similarity based likelihood
judgment. An example of the inclusion fallacy which has been
experimentally observed is the following: given the information that “all
mice have sesamoid bones”, human subjects will often assign a higher
probability rating to the proposition that ‘all mammals have sesamoid bones’
than to the proposition that ‘all hippopotamuses have sesamoid bones’. This
pattern of reasoning is not a reflection of any confusion concerning whether
hippopotamuses are mammals. These type of errors which are apparently
quite common in reasoning about a variety of situations (see Shafir et al. ‘90),
seemn to reflect an undiscriminating application of similarity based likelihood
judgment. A reasonable interpretation of why the proposition ‘all
mammals have sesamoid bones’ is judged more likely than the proposition
‘all hippopotamuses have sesamoid bones’ because the similarity of
mammals and mice as defined by b) above is greater than the similarity of
hippopotamuses and mice. Harking back to the discussion of different types
of reasoning errors that appeared in section 1.2.1, it may be noted that if these
judgments do indeed arise as a result of a similarity based judgment scheme,
this does not mean that similarity based judgments are not reasonable in
slightly different situations. For example, given that all mice have property
P, it is not necessarily an error to produce a higher estimate of the
proportion of all mammals which have property P than of the proportion of
all hippopotamuses which have P. Nor is it an error to think that the
average mouse shares more properties with the average mammal than with
the average hippopotamus. In general, similarity based likelihood judgment
will avoid inclusion errors when the property which appears in a target
proposition and the properties used in the estimation of similarities are
homogenous. If P is a property that is taken from a class of properties known
to be homogenous with respect to mammals then we would not expect the
above pattern of reasoning to be compelling for subjects. So for instance, the
likelihood that all mammals contain “Wilson neutrino particles” (whatever
these may be) given that all mice do would presumably be judged equal to
the likelihood that all hippopotamuses contain Wilson neutrino particles
given that all mice do. In the remainder of this section I will continue to
discuss Sim(A,B,D) in terms of subjective probability, and A and B are to be
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understood as homogenous with respect to D unless something else is
indicated. The theory of similarity based likelihood judgment that will be
proposed will have a statistical interpretation when these conditions hold.
The reader is advised of the potential for ambiguity contained in this
defintion of similarity (line b)), and the related definitions which follow.

The following four subjective probabilities provide the building blocks for a
set of similarity formuli which are appropriate formal interpretations for b)
under slightly different conditions.

p11(A,B,D) = probability of P(i) and P(j) foriin A, jin B, and P in D.
p10(A,BD) = probability of P(i) and not P(j) foriin A, jin B, and P in D.
po1(A,B,D) = probability of not P(i) and P(j) foriin A, jin B, and P in D.
poo(A,B,D) = probability of not P(i) and not P(j) foriin A, jin B,and Pin D

1-(p11 + P10 + Po1)

In the text below I omit the explicit notation of the dependence of these
quantities on A,B, and D. One straightforward interpretation of b) is the
conditional probability of P(i) given P(j). Algebraically, this quantity is
expressed by line ).

¢) Sim(A,B,D) = p11/ (p11 + pov-

In general, the formula ¢) is asymmetric. Notice that since pgo and p1g do not
appear in formula c), properties which entities in B never possess do not play
a role in this similarity computation. Formula c) is the natural
interpretation of formula b) under the stipulation that properties which
entities in B do not possess are not "of interest". One reason why such
properties would not be of interest is that we have some role for B already
"staked out", and what formula c) expresses is the likelihood that an A could
serve just as well.

Another reasonable interpretation of b) is simple agreement in truth value
relative to properties in D (here, every property is "of interest"):
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d) Sim(A,B,D) = (p11+poo)/ (P11 + Po1+ P10 + Poo) = P11+ P00

This formula may be read as "the probability that either both i and j will
have property P or both i and j will not have property P, for randomly
chosen i from A, randomly chosen j from B, and randomly chosen P from
D." In some situations, it is just the properties or features that neither
member of a pair of individuals possess that are not of interest. For example,
the property of having a smooth glossy surface, which is a feature of billiard
balls, would typically have no role to play in evaluating the similarity of
footballs and baseballs (presumably because neither type of ball is ever
glossy), even though it is a property of some balls featured in games and
sporting events. On the other hand, if a property represents a value along a
dimension, like ‘bigness’ with respect to ‘size’, then the joint absence of
‘bigness’ may well be of interest and contribute to similarity. For example,
the fact that neither killer whales nor walruses have legs may be a
contributing factor to their perceived similarity as species of mammals. Of
course, facts of this type could be coded ‘positively’. Each mammal can be
considered to possess the property no_leg(), where no_leg(x) is true just in
case x has no legs. What these examples essentially show is that there are
many degrees of freedom in the proposed similarity framework - which form
of function is used, which type of properties are “of interest”, which type of
properties are represented, etc. Yet another degree of freedom is related to
the known observation that the "contrast set", or the set of all individuals
whose similarity of D-like properties is implicitly of current interest, plays a
role in the "weighting” or the probability assigned to different types of
properties. For example, if billiard balls were contained in the implicit
constrast set involved in the aforementioned judgment of the similarity of
footballs and baseballs, then not having a glossy surface could well play a role
in judgment. Until most of these degrees of freedom are removed, questions
like which similarity function is “the right one” will be indeterminate.

Relative to the probabilistic representational scheme introduced above, the
removal of all properties not possessed by either individual of a pair from
the domain under consideration, which may correspond psychologically to
the choice of just that pair of individuals as the implicit contrast class, results
in the equality pgp = 0.0. In this case formula d) reduces to
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e) Sim(A,B,D) = p11/ (p11 +po1+ P10)

In each of the formuli b) - e), the similarity of individuals has been described
as a function of the subjective beliefs called p11, Po1, P10, and poo (with the
latter value being arithmetically redundant). If similarity is indeed a
function of the values p11, po1, and p1o, then the values of the similarity pairs
mentioned in Similarity Reasoning Postulates i. and ii. above are functions
of the information contained in GI-3 of section IL1. For clarity, I separately
name this principle, which is intended to be paired with principles i. and ii.
from above, Similarity Reasoning Postulate iii.:

iii. holding the domain D constant, the similarity functions
defined on pairs of individuals are themselves functions of the
type of information contained in GI-3.

It is instructive to compare the framework introduced above with the
familiar “Features of Similarity” model of A. Tversky. [Tversky 77] The
latter theory applies to situations in which each individual is considered to
possess a finite set of distinguished features. In such cases it is possible to
define, relative to an ordered pair of individuals i and j, the following sets:

A = the set of features that both i and j possess,
B = the set of features that i has and j does not, and
C = the set of features that j has but i does not.

Tversky proposes that there are non-negative constants c1, 2, and c3, with
values dependent on context, such that the judged similarity of i and j is
representable by the formula

f) SimT(,j) = c1f(A) - c2f(B) - c1£(C),
where f is some function of the overall salience of the features in a given set.

In his ‘77 paper, Tversky also notes the possibility of an alternative
functional form,
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g) Sim't(i,j) = f(A) / (f(A) + cof(B) + c1f(C)),

that would adequately capture his data (and theoretical perspective) in
situations where similarities were normalized to assume values lying
between 1.0 and 0.0. Formula f) is clearly quite similar to formula e) above.
Both formuli can be described as a the ratio of the ‘weight’ of the matching
features to the sum of the ‘weight’ of the matching features plus the ‘weight’
assigned to the features possessed by i and not j plus the ‘weight’ assigned to
the features possessed by j and not i.

Their are two main differences between the theory proposed above and the
“Features of Similarity” theory. The first of these is that the theory given
above assigns a probabilistic interpretation to the "weights" of the different
feature sets, and these interpretations make predictions about how
similarities participate in inference and likelihood judgment, which is the
central topic of this work and which will be described in what follows. The
other major difference between the two frameworks is that the “Features”
theory, at least formally, assumes that each individual really has some
feature set which is determinate and is consulted when making similarity
judgments. This feature set will be a function of the type of similarity being
judged, but is otherwise fixed for an individual. As I understand the
“Features” theory, if a contextually relevant feature of an object is, in general,
saliently known to a person and yet does not play a role in a judgment made
by that person concerning the similarity of that object and some other, that
omission would be classified as a performance error.

The theory which I propose is agnostic concerning the existence of a finite
distinguished feature set. However there are, 1 believe, convincing
arguments suggesting skepticism about theories viewing similarity as solely
a function of such feature sets. For example, assuming that you believe a
Chihuahua is more similar as an animal to a German Shepherd than to a
Siamese Cat, it is suprisingly difficult to identify features which the
Chihuahua and the German Shepherd have in common that the Chihuahua
and the Siamese Cat do not. It may be easier to think of features shared by a
Chihuahua and a Siamese that are not shared by a German Shepherd. The
most important factor responsible for the perceived similarity of German
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Shepherd and Chihuahua seems to be simply the knowledge that
Chihuahuas and German Shepherds are both Canines. A follow up paper by
Tversky and Gati partly acknowledge and document this phenomena
[Tversky ‘78] . Tversky and Gati studied the effect that experimental
manipulations inducing the salience of categories had on estimated
similarities. They concluded that categories or “clusters” have an important
effect on perceived similarities in that they “highlight those features on
which the clusters are based.” This analysis applies most directly to
situations where it is clear that membership in a category is based on a
particular set of features. Of course, it is always possible to claim that an
animal known to be a Canine has a feature canine() which is strongly
weighted when comparing that animal to other animals with the feature
canine(). Something akin to this seems to be the view taken by Tversky and
Gati who state that “A feature may acquire diagnostic value (and hence
become more salient) in a particular context if it serves as a basis for
classification in that particular context.” So if the Chihuahua and German
Shepherd are classified together because we know that they are Canines, then
the feature canine() has strong diagnostic significance.

It is possible to construct scenarios in which this story becomes strained
beyond the point of tenability. Suppose for example, that a zoologist told
you that deer and rhinoceros have digestive tracts strongly resembling one
another, but you know nothing else about the digestive system of either
mammal. This information might well influence your judgment about the
similarity of the two mammals. It does not however, seem representable as a
particular feature that both mammals have. If the information is
represented as a new feature which deer and rhinoceros share, does that
mean it is also a feature distinguishing deer from horse? It seems more
plausible to interpret the psychological effect of the information as simply
causing one to believe that the digestive systems of the two mammals are
more similar, and hence that the two mammals are more similar overall,
independently of particular known features.- In the language of the theory
presented above, relative to the individuals deer and rhinoceros and the
domain ‘properties of digestion’, p11 increases, while pg; and p1p decrease.
These quantities would change relative to the domain ‘biological properties’
also, though the change would be smaller. One might plausibly infer
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changes in perceived similarities of other mammals on the basis of this
information - surely without bestowing new features upon them. Of course
factual knowledge about particular properties can also have these effects as
well. While agreeing with Tversky that judged similarity is partly a function
of factual knowledge about common and unique features, I suggest that
perceived similarities are functions of more than such knowledge alone,
even when accounting for the effects that alternative judgment contexts may
have on the weighting of features.

As stated above, the theory proposed here is not intended to be a theory of
precisely how similarities are estimated. The “features of similarity” theory
may be regarded as the best current model for such a theory. If estimated
similarities are the type of beliefs described above however, it makes sense
that the factors contributing to perceived similarities should primarily be
factors that have a (rational) role to play in the formation of beliefs about the
related probabilities. One prediction made by such a construal is that the
“weight” assigned to categorical features like canine() in the computation of
the similarity of two individuals with respect to a domain should be
proportional to the probability that a property chosen from that domain will
be one that is homogenous among all members of the category. I will discuss
this idea in greater detail in section IIL6, and point out how it can be used to
make sense of a number of different results in the field. Assuming
momentarily, for the sake of argument, that this point of view is correct, it is
admittedly possible to describe such a phenomena by stating that the salience
of categorical information will be increased as a function of the judgment
context. But this seems to be only a way of redescribing the fact that some
judgment contexts make categorical information more important than
others, and a salience based account does not really offer a reason for why
this should be so.

I1.4 A formalism for describing a default judgment strategy
In this section I consider a particular framework for describing default

likelihood judgment strategies. Part of this framework will be a
formalization of what I proposed as a partial description of what an Applied
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Statistician does at the conclusion of section 1.2.1. I am immediately intent
on using this framework to describe the instantiation of similarity based
likelihood judgment but the framework is also intended to be general
enough so that descriptions of other default strategies could easily be added
to the basic structure.

An important part of the description I will introduce is closely related to a
class of normative proposals for likelihood judgment that are known as
theories of "direct inference." These theories may be loosely thought of as
theories about how to set up “the right” statistical model to use in estimating
the likelihood that some particular proposition is true. The main hurdle
such theories face is referred to as “the problem of choosing the right
reference class.” The "Bill example" of section IL.1 is already complicated
enough to illustrate the main issues. In that example, the protagonist
reasoned to the belief that he would probably like pasta puttanesca. I wrote
the story in such a way as to suggest that this belief was the result of some
process of deliberation and, in some sense, based on his belief "that Sally's
taste in pasta dishes tends to be more like his own than does Sam's.” The
intuition driving theories of direct inference is that, on an abstract level, two
major steps in Bill's reasoning process can be distinguished:

Step 1: Bill estimates the indefinite probability that he will enjoy some
random pasta dish given that he knows that Sally did (and doesn't know
whether Sam did or did not); |

Step 2: Bill accepts the likelihood value given by the estimator of Step 1 as an
estimate for the probability that he will actually enjoy the pasta puttanesca
dish, should he order it.

Regardless of one's opinion about the descriptive plausibility of such a story
(not to mention the legitimacy of calling it similarity based reasoning), a
question which immediately invites rational scrutiny is why Bill should
reason in this way and not some other. Why shouldn't he base his
reasoning, for example, on an estimate of the indefinite probability that he
will enjoy an Italian dish that Sally liked? Or an Italian dish served in Italy?
One strategy for answering such questions is to seek a definition of what
exactly constitutes a way of reasoning to such a conclusion about likelihood,
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and adequate criteria for preferring one way of reasoning to another. These
are essentially the motivations for the theories of direct inference which
have been advanced historically by Hans Reichenbach, and more recently by
Kyburg ‘83, Levi ‘80, Pollock ‘90, and Bacchus ‘90. It can be clearly seen that
the first question, "what exactly constitutes a way of reasoning?" is the
question that I (somewhat vaguely) addressed in section 1.2. I do not believe
that any of the theories of direct inference that have been proposed so far
provide definitive criteria for preferences among different strategies for
likelihood judgment. In section 1.3 I mentioned what I take to be the most
promising current candidates for such criteria, though in many respects these
theories are also not yet up to the task. I do think though that the proposed
theories of direct inference provide an excellent perspective from which to
view similarity based likelihood judgment, and suggest an appropriate
framework for describing the epistemic context from which these judgments
originate.

In an often quoted paragraph that proved seminal for research in this area,
Reichenbach stated that "If we are asked to find the weight (probability
assignment) holding for an individual future event, we must first
incorporate the case in a suitable reference class. An individual thing or
event may be incorporated in many reference classes... We then proceed by
considering the narrowest reference class for which suitable statistics can be
compiled.” [quoted in Pollock, p.110, my parenthetical synonyms inserted]
This idea, which is related to the insurance company example of section 1.2.2,
can be seen to apply to the questions about Bill's inference that were posed
above. If Bill had adequate information from which to form a reliable
opinion about how probable it was that he would like an Italian pasta dish,
served in Italy, that Sally had enjoyed in America, then this opinion should
take precedence in influencing his actions over an opinion formed solely on
the basis of the likelihood that he would enjoy any pasta dish that Sally had.
The "narrower" reference class here is Italian pasta dishes served in Italy that
Sally enjoyed. The wider superset is all the pasta dishes that Sally enjoyed.
Pollock ‘90 offers an appealing description of the epistemic commitments
involved in direct inference which I now paraphrase: being warranted in
believing that ¢, an individual, belongs to a class X provides a prima facie or
presumptive reason for thinking that the probability of F(x) for x in X is a
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good estimate to accept as the likelihood of F(c) (where "the probability of
F(x) for x in X" should be given the de dicto reading - i.e. the probability
value picked out in that way, whatever that value may be); however if Y is a
subset of X, then knowledge that prob(F(y) | yisaY) is not equal to prob(F(x)
| x is an X) "defeats" the reason for believing that the prob(F(x) | x is an X)
provides an appropriate estimate of conditional probability to accept as the
probability of F(c). Pollock also includes the requirement that the predicate F
be "projectible” with respect to the class X in order for prob(F(x) | x is an X) to
serve as an appropriate estimate. For a discussion of projectible predicates
see Goodman ‘55.

If interpreted as a psychological theory, Pollock's view would suggest that the
likelihood judgment made in Step 2 above is properly viewed as an estimate
which Bill has a prima facie reason for accepting, but which he may
withdraw for various reasons. Theories of direct inference usefully
distinguish at least three distinct classes of beliefs supporting the assignment
of a probability to a singular proposition (a proposition that need not involve
quantifiers when represented in first order logic), and therefore three
corresponding classes of reasons for modifying such an assignment. In the
terminology of the preceding paragraph, reasons for modifying the estimate
of F(c) made on the basis of prob(F(x) | x is an X) are: there may be reason to
modify the estimate of prob(F(x) | x is an X) itself, there may be reason to
doubt that c is really an X, and there may be reason to believe that

prob(F(y) | y is a Y) (again, de dicto) is a more appropriate estimate to accept
for prob(F(c)) than prob(F(x) | x is an X). One reason for thinking that
prob(E(y) | y is a Y) is a more appropriate estimate than prob(F(x) | x is an X)
for F(c) would be if Y is a narrower reference class than X and the estimate
prob(E(y) | y is an Y) is at least as reliable as the estimate prob(F(x) | x is an X).
If both of these conditions hold then we may view the former estimate as
dominating the latter and it is to be preferred. Obviously more general
criteria are needed for choosing between estimators in the general case.

The definition of an inductive argument that is given below is designed to
provide a formal descriptive framework for explicitly representing those
aspects of provisional reasoning about likelihoods that are relevant to direct
inference in particular and default likelihood judgments in general. The
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framework is to be capable of formally describing instantiations of similarity
based likelihood judgment as well as instantiations of other default strategies
-e.g. 1a, 1c. At a general level, the proposed framework incorporates the
following type of principles, objects, and actions which play a role in many
descriptions of reasoning.

a) There is a language of sentences which represent statements about the
world. Some of these statements may have a statistical character, such as
'between 95% and 97% of American households own televisions.'

b) Some of these statements (described in ‘a)’ ) are accepted as true, some are
only regarded as being likely to a certain degree. The framework will
represent the acceptance of a statement as true by the assignment of a
likelihood to that sentence that is over some threshold.

c) Beliefs about statements, represented by the assignment of likelihood to
these statements, may play a role in the assignment of likelihood to other
statements.

d) Different reasoning patterns by which statements are assigned likelihoods,
as well as the evidence that these reasoning patterns draw on, may
sometimes be distinguished and noted within the inductive argument.

e) If the reasoning process by which and/or evidence according to which a
statement was assigned a likelihood is not to be distinguished within the
boundaries of the argument then this statement is to be specially noted as a
"premise” of the argument.

f) A "justification”, consisting of the specification of a reasoning process and
a body of evidence for that reasoning process, must be given to every
statement assigned likelihood which is not to taken as a premise. This
feature of a reasoning process has proposed for Al systems by Doyle ‘79. This
feature has a descriptive utility in the current context. It's main
computational utility is discussed in g).
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g) A statement, S', once assigned a likelihood, may be re-assigned some
different likelihood at a later point in time/in an argument. As noted in
section 1.2, this is a common feature of probabilistic and other types of non-
monotonic reasoning. A question which naturally arises is "What of other
assignments of likelihood to other statements for which the earlier
assignment of likelihood to S' participated as a justification? Are these now
to be retracted or recomputed?" In the case of an all-powerful reasoner the
answer would appear to be "yes". However, it is easy to see that once
initiated, such a process could start an explosive chain reaction in which not
only beliefs that were immediately justified on the basis of the revised
premise but also beliefs that were justified on the basis of those beliefs and so
on would all have to be retracted and or recomputed. Another problem is
that to recompute all of these beliefs one would like to have access to most
all of the evidence that was used in computing them in the first place, and
storing this evidence indefinitely would also be prohibitively costly. Related
to this issue is empirical evidence that in some situations, such as
experimental debriefing, people do not revise beliefs which appear to have
been justified on the basis of evidence that was later retracted. See Ross &
Anderson '82 for a review. For further discussion of these issues and some
proposals for strategies of belief revision that might be adopted which fall
short of the retraction of all unjustified beliefs, the reader is advised to
consult Harman and Gaerdenfors.

By design, the inductive argument parallels, as closely as possible, the more
familiar deductive argument or proof.

Definition:

Let L be a language containing, among other things, a set R of relational
terms admitting universal quantification and statistical quantification. By
this I mean that L should be able to express propositions like ‘all f's are g's’
and ‘between 50% and 70% of the f’s that one might happen to examine are
g's’. Alsolet V be a totally ordered set of likelihood values (typically the real
interval [0,1]). Ordered pairs (1,v), representing the assignment of a
likelihood value v to a sentence | are to be be called evaluations. An
inductive argument is a sequence of ordered pairs (1, v1y, j1)---(m, Vi), jm).
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where the first component of each pair is an evaluation, (l;, vj), and the
second, j;, is a prima facie reason or justification for this evaluation. A
justification will often be a depend upon previously established evaluations
which will be called assumptions. This is analogous to common
specifications of deductive proofs. One feature of an inductive argument
that is clearly distinct from deductive proofs is non-monotonicity - a
sentence may appear in more than one evaluation with different likelihood
values attached to it. An evaluation (l;, vj) will be called current for an
argument if it appears somewhere in the argument and there is no
evaluation (I, vk) such that ] = Ix and k >i. A set of evaluations will be
called current if all of its members are current. A justification will be called
current if its assumptions are current - but see g) immediately above. Three
types of justifications are particularly relevant to present purposes. As with
deductive arguments, two sorts of justifications that should naturally be
allowed are premises - special evaluations that are assumed without further
justification - and deductive inferences based on earlier evaluations. It will
be convenient to suppose that there is a single value a in V that plays the
role of an acceptance threshold for sentences in L. Specifically, current
evaluations (1,v) in which v is greater than or equal to a are candidates to
serve as antecedents for deductive justification. If g is a set of evaluations
and 1 is a sentence then the terminology "l is deductively inferable from g"
will have the special meaning that there is a current subset of g, {(l1, v1),...,(lj-
1, vi-1)} such that vy,... vj.1 are all greater than or equal to a and 1 is logically
implied by (11&...&l;.1). If 1 is deductively inferable from g, this is a
justification for the evaluation (l,a). It is desirable that the logic that is to be
used for deductive inference be somewhat more general than ordinary first
order logic so that it may make inferences which follow deductively from
statistical statements as well as propositional ones. So for exainple, from 'the
percentage of birds that fly is greater than 80%' one should be able to
inductively infer things like 'the percentage of birds that fly is greater than
75%.'" Halpern '87 and Bacchus '90 have developed proof theoretic logics that
could serve this purpose - see also Geffner and Pearl '90 and Pearl '88 for a
suprising extension of a proof-theoretic logic to a type of non-deductive
(non-monotonic) probabilistic inference.
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The formal syntactic specification of a justification is an ordered pair (*j’),
where * is a member a special class of symbols denoting types of justification,
and j’ has whatever further syntax is appropriate to *. For deductive
justifications, j’ is a list of assumptions from which the sentence in the
current evaluation was deductively infered. The symbol prem will denote a
premise type justification and the symbol ded will denote a deductive
justification. Note that an inductive argument is only intended to represent
a particular sequence of reasoning steps with a beginning and an end. For
this reason, the appearance of an evaluation as a premise within a particular
argument does not note a distinction between cases in which this premise
arose from innate knowledge, as a result of some primitive perceptual
experience, or was actually the conclusion (final evaluation) of some other
involved inductive chain (if the latter two are indeed different).

What has been called an inductive argument up to this point is so general
that it doesn't really say anything. One could tack on almost any set of
reasoning principles that one wanted. For example, a purely Bayesian system
defined on a finite field of propositions could be specified by allowing
assignments of likelihood (priors) to all semantically distinct conjunctions of
propositions as initial premises, evidence statements which are "accepted” as
further premises, and the law of conditionalization as an additional
justification for asserting new assignments of likelihood. Since the law of
conditionalization is a theorem which follows from any standard
axiomatization of probability, this updating rule could even be subsumed as
part of ded. The proposed framework acquires content through the
specification of which justifications are allowable and what priority is to be
given to each of them.

The following definitions specify a genuinely inductive variety of
justification intended to represent the type of default reasoning embodied in
direct inference and the production of likelihood estimates by an Applied
Statistician (and Step 1 and Step 2 above). I use the type symbol dir to denote
this type of justification.

Let g stand for a set of evaluations, and let r and s be members of R with
identical arity, n (i.e. relations which each take n arguments). Let
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proposition that for every xj...xp, r(xi...xpn) implies s(xj...xp) (i.e. all r
combinations are also s combinations) be deductively inferable from g. A
direct estimate is a function e from triples (r, s, g) to V. Semantically, the
expression er(r,s,g) = v (in V) indicates that ey estimates, as a function of the
evidence given by g, that the likelihood of a random s-combination also
being an r-combination is v. In what follows, let f also be a member of R
with arity n (the arity of r and s), and let g; and g5 be sets of evaluations.

Given the type definitions above, (dir, (f, r, s, g1,82,e1)) is a justification for (l;,
vi) iff conditions (i) - (iv) jointly hold:

(i) for every n-tuple x1...xp, the conjunction (f(x1 Xn) & r(xj...xp)) is
semantically equivalent to 1;;

(ii) it is deductively inferable from g; that for every x1...xp, r(X1...Xn) implies
S(X1...Xp);

(iii) g1 and gy are subsets of {(11, vy),...,(lj-1, vi-1)}; and

(iv) erL(f,s,82) = vj.

The justification (dir, (£, r, s, g1,82,e1)) is considered current if gjand gy are
current. Here is the idea. One would like to assign a likelihood from v to l;,
and, since neither ]; nor its negation are deductively inferable from what has
gone before, the likelihood to be assigned must be estimated. This is done by
relating l; to some more general class of events, through the device of first
representing lj as the conjunction of a "frame predicate”, f, and a
"specialization predicate”, r, and then relaxing the restriction imposed by r in
order to make use of knowledge/cases from the more general reference class,
s (it is accepted, according to g; that all r's are also s's). Based on the
knowledge/cases contained in g, an estimate of 'the likelihood of an n-tuple
being an f given that it is an s' is produced, and this estimate is accepted as
'the likelihood of an n-tuple being an f when it is an r (and so an s as well)',
which is equivalent to satisfying the proposition ;. In general, the
acceptability of this estimate will depend upon the extent to which patterns
which hold true in general (statlstlcally) for s's hold true for the subclass r as
well.
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In the discussion of section 1.2 of the thesis I described an instantiation of a
default reasoning strategy for likelihood judgment as a decision to
provisionally accept a certain judgment of a conditional probability as an
estimate for the likelihood, or unconditional probability of a certain
proposition to be evaluated. Given the framework outlined above, it is
possible to be more specific. Let's take up the "Bill" example again.

Letting f(x) = Bill likes x, r(x) = x is pasta puttanesca, and s(x) = x is a pasta dish
that Sally likes, the reasoning process of Step 1 and Step 2 above can be
described in the framework of the inductive argument as follows.

1) ((Bill likes p % of the pasta dishes that Sally does, a), (prem))
2) ((pasta puttanesca is a pasta dish, a), (prem))

3) ((Sally likes pasta puttanesca, a), (prem))

4) ((Bill likes pasta puttanesca, (p/100)), (ir, (£, r, s, {2,3},{1},eD))

What I am calling the "instantiation” of the direct inference strategy in this
example is the determination that the conditional probability to be evaluated
is the conditional probability of f(x) given s(x), and the determination that
this probability is to be evaluated on the basis of the evidence in the set {1}.
This conditional probability is to be accepted as the likelihood of "Bill likes
pasta puttanesca’. What I am calling the inference strategy itself is
determined by er. The estimator of choice is obvious for this simple case. A
more complex estimator will be necessary in the case described by the GIs.
Such an estimator will be described in section I1.4. Using the framework
provided above it is possible to give a formal description of the pattern of
reasoning = (estimator + instantiation) that I am calling similarity based
likelihood judgment. This description is complete except for the
specification of the estimator (see 11.4) - I reproduce the Gls here for
convenience.

GI-1) that P is known to be a property from the class P,
GI-2) that og ang 01 are members of a finite set {ik,0...k..m} of related

individuals,
GI-3) that X has beliefs about what proportion of the time each distinct pair
of individuals in the set {oj}, say ij and ik, had matching and non-
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matching values for properties in the class P - i.e. X has beliefs about
the relative likelihoods of P(ij)&P(ik) VS. -P(ij)&P(ik) Vvs. P(ij)&ﬂP(ik)
Vs. —-P(ij)&—-P(ik) for random P in P, and

GI-4) thati)...in in{ik,0...k..m} are known by X to have P and in+1. . . im in

The default reasoning strategy known here as similarity based likelihood
judgment can be formally expressed as the inductive argument appearing
immediately below. There are actually two mildly different versions of
basically the same estimator that I would like to consider. Suppose that the
individuals. In one of the two cases q will be equal to 0, in which case the
former set will not be a proper subset of the latter. In the other case q > 0.

) The cardinality of the set [ik,O...k..m+q} will be a variable in the following
argument.

1) ((Sim(i1,i2, P) = p1, a), (prem))

k) ((Sim(im+q-l,im+q, P) = pk, a), (prem))
k+1) ((i2 has P, a), (prem))

k+n) ((in has P, a), (prem))

k+n+1) ((in+1 doesn't have P, a), (prem))
k+m) ((im doesn't have P, a), (prem))
k+m+1) (P is in P, a), (prem))

Conclusion:

k+m+1) ((i1 has P), v), (dir, j))

where j' =
( 'i1 has x',
'x is P,

'xisin P & ip has x & ...& iy, has x & in4+7 does not have x & ...
& i does not have x/,
{(k+m+1)},
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{1, ..., k+m)},
eL )
and for f = 'i; has x'
and s ='xisin P & i has x & ...& in has x & in+1 does not have x &

& im does not have x'
v =eL(fs,(1, .., k+m)).

This argument reaches a conclusion about the likelihood of P(01), using the
GI's in an essential way. Recall that by Similarity Reasoning Postulate iii, the
appropriate similarities are functions of GI-3. So evaluations entered as
premises on lines 1) through k) are information given by GI-3 (with the
“OK” of GI-2). Lines k+1) through k+n) are information given by GI-4. Line
k+m-+1) is the proposition given by GI-1.

The first of the two different versions of the estimator corresponds to the
scenario in which the only similarities which play a role in the estimate are
the similarities between members of the set involving the unknown case of
interest and the set of known cases. In the other version, similarities
between members of a set involving the unknown case of interest, the set of
known cases, and some other unknown cases will play a role in the estimate.
It is not psychologically plausible to think that too many other unknown
cases will play a role in this reasoning strategy. But it is not implausible that
a few might and it is convenient to allow this freedom for two reasons. The
first of these reasons is that this freedom is necessary to establish a
connection between the estimator described in the next section and existing
computational strategies for associative memory and perceptual inference in
neural networks that I will discuss in section IV. The other reason is that is
will be experimentally more convenient to test this alternative version of
the estimator.

Notes:

The argument above idealistically treats similarities as estimates of arbitrary
precision (assuming V is [0,1]). A more realistic treatment would replace
statements like ((Sim(iy,ip, P) = pP1.,a) with statements like ((Sim(iy,ip, P) is
between c1 and c2,a). The inductive argument given above, supplemented
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with the details of an estimating procedure that are provided in the next
section (II.4) and perhaps modified as indicated, is intended to be a precise
description of the form of default reasoning that I have called similarity
based likelihood judgment. It is not intended to be a description of a non-
monotonic logic or a system of reasoning. The main obstacle to turning this
description into a suitable non-monotonic logic is, as indicated above, the
lack of an adequate theory for which direct inference step should be
performed when more than one is possible. The description of direct
inference is close to the different ones given by Kyburg '83, Pollock '90, and
Bacchus '90. Bacchus actually does situate a rule of direct inference within a
more general non-monotonic logic. He handles the problem of choosing
among those reference classes which stand in a subset/superset relationship
by having a rule in his logic stating that it is permissible to non-
monotonically suppose that the conditional expectation of the frame
predicate with respect to a narrow reference class is equal to the conditional
expectation with respect to a wider reference class unless there is evidence to
the contrary, in which case the inference is blocked. While this assumption
at first appears liberal, it is conservative enough to make the logic inadequate
to sanction obvious judgments in some situations. For example, suppose I
know that the Canadian Football league has 20 teams and one of them is the
Toronto Argonauts. I also know that exactly one team wins the
championship each year and that this is almost always a team with a good
offense and/or a good defense. I do not know whether the Toronto
Argonauts currently have (or have ever had) either. If I also do not know
anything about any of the other teams in the league then it seems reasonable
to attribute a probability of 1 in 20 to the proposition that the Argonauts will
win the championship next year. However, I could not use Bacchus’ non-
monotonic assumption to license such an inference because the reference
class of teams in the league with a good offense or a good defense is narrower
than the reference class of all teams in the league and I have evidence to the
effect that the conditional expectation of x winning the championship given
that x is a team in the league with a good offense or a good defense is not
equal to the conditional expectation of x winning given that x is a team in
the league. To summarize, I am blocked from inferring that each of the
twenty teams has an equal chance of winning relative to my knowledge base
because I know that my knowledge base is incomplete. This seems
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undesirable. Of course one could argue that it would be foolish of me to give
out 20:1 odds on the Argonauts to all takers but that is a different issue.

In an important sense the lack of criteria for choosing between estimates also
makes the framework above incomplete as a general descriptive theory
because it does not say which inference will be performed when available
knowledge allows several (once again the issues of what is relevant and
which instantiation to pick rear their ugly heads). Even though it is partial
however, the description can be sensibly confirmed experimentally by
creating a judgment scenario in which the information contained in a single
set of GIs adequately summarizes a typical subject’s relevant knowledge -
where “adequate” is given the operational criteria that we can lay our hands
on a tangible instantiation of that typical subject’s GIs which can then be used
to predict that subject’s likelihood judgments accurately. Experiments
designed along these lines are described in section III.

I1.5 Maximum Entropy Estimates Based on Similarity

The estimator e appearing in the argument above is an estimator of the
probability that i1 has the property P given that P is drawn from the class D, i;
through ip have P, in41 trough im do not have P, and we have

statistics /beliefs concerning the percentage of the time each pair (ijix) "agree”
for P in D - these beliefs are summarized by the estimated similarities of
these pairs for the domain D. The statement that the two different versions
of the estimator referred to at the end of the preceding section are only minor
variations of one another will be supported by the fact that it will only be
necessary to provide a single description of an estimator in this section. The
reader may bear in mind the two interpretations though. One in which k
ranges between 1 and m+q with q=0 and the other in which k ranges between
1 and m+q with q > 0. In section II1.2.2, different models for the probabilistic
implications of similarity were discussed, each having a slightly different
interpretation for "agree". In this section I shall assume model d), restated
below.

d) Sim(A,B,D) = (p11 + p()())/ (p“ +Ppo1+ p1o + poo) = P11 + P00 wheré
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p11(A,B,D) = probability of P(i) and P(j) foriin A, jin B, and P in D.

p10o(A,B,D) = probability of P(i) and not P(j) foriin A, jin B, and P in D.

po1(A,B,D) = probability of not P(i) and P(j) foriin A, jin B, and P in D.

poo(A,B,D) = probability of not P(i) and not P(j) foriin A, jin B, and P in D
= 1-(p11 +p1o+ por) |

Model d) differs from the other similarity models that were considered in
section II.2 principally in its inclusion of pgg in the formula. This inclusion
is appropriate in the judgment context described by the GIs because were are
explicitly concerned in some cases with the evidential impact of the
knowledge that one individual does not have a property on the likelihood
that another individual does not have that property. The use of similarity
model d) will also make the specification of the maximum entropy estimator
simpler, although it could be done with other models as well. One should
keep in mind also that the idea of maximum entropy estimation has
considerable generality in the type of probabilistic information it can make
use of and its computational rational, and so could be potentially used to
combine information from similarity with other types of probabilistic belief.

I will assume thmoughout this section that the likelihood values entailed by
the estimated similarities and the likelihood values to be returned by the
estimator really are standard probability values on the conventional [0,1]
scale. The relationship between this arbitrary scale and other arbitrary scales
which subjects might make use of when expressing judgments of likelihood
and similarity will be discussed in section II1.4.4.5..

The idea of the estimating procedure is to use the pairwise similarities to
estimate a probability probability distribution, pr, representing the
likelihoods of various patterns of the individuals iy...im having and not
having a random property in D, and then the estimate for the likelihood of
i1 having this random property will follow from conditionalizing (using pr)

on the event that i through i, have this random property and in+1 through
im do not.
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To be precise about the estimation of pr, it is necessary to first identify its
domain (in the sense of functions, not similarities) - a set of mutually
exclusive and exhaustive basic events to be assigned probabilities by pr. A
basic event is a pattern of the m individuals having and not having a
random property. Such a pattern is representable by a length m vector of 0's
and 1's, where a 0 in the ith position stands for the condition that o; does not
have the property of interest and a 1 in the ith position stands for the
condition that o; does have the property. There are 2m+q possible length m
vectors of 0's and 1's, and hence a list of 2m+q such basic events is exhaustive.
From their definition it is obvious that they are also mutually exclusive. A
distribution on this space of events may be thought to represent subjective
beliefs about relative likelihoods of different patterns of the individuals
under consideration having and not having a property randomly chosen
from D. A standard probability distribution on this space assigns a number
in the interval [0,1] to each basic event and the numbers sum to 1. The
probability of a set that is a union of basic events is equal to the sum of the
probabilities of the distinct basic events in the set. Since the estimated
distribution, pr, is required to be consistent with the beliefs entailed by the
similarities, the similarity values act as constraints on this distribution. To
see the nature of these constraints, note that if Sim(ii,ik,D) = .9 then pr is
required to be such that a total probability mass of .9 will be distributed to the
set of basic events containing exactly those in which the ith and jth positions
are either both 1 or both 0, and only a probability mass of .1 is left for the
remaining basic events to share. If Sim(ij,ik,D) was between .85 and .95, this
would place an analogous type of constraint on pr.

Given the definitions above, it can be stated without any ambiguity that the
chosen probability distribution pr is consistent with the constraints given by
the similarity values of the (m+q)(m+g-1)/2 pairs (i;,ix) on the space of 2m+q
basic events, and that among the set of consistent distributions (assuming
that this set is non-empty) it is the one that uniquely maximizes Shannon
entropy. This is stated more formally below (with the aid of definitions of
course).

basic event #k (k between 1 and 2m+9)
the value of the ith position of the kth basic event

.be.k
val(ik)
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fij(.be.w) = 1.0, if val(i,k) = val(j,k) and 0.0, otherwise
The acceptable probability measures on the space of basic events are
constrained to satisfy the (m+q)(m+qg-1)/2 equations (or the (m+q)(m+g-1)
inequalities)
E(fij) = Zkfijf(.bew)pr(bey) = Sim(i,j D)
(E(fy) 2 Zxfji(.be.)pr(.be.x) = lower bound of Sim(i,j,D),
E(fii) < ):,kfij(.be.k)pr(.be.k) = upper bound of Sim(i,j,D)).
The entropy of a probability measure on a discrete space is defined to be
Entropy(pr) = - Zxpr(.be.))log(pr(.be.y)).
It is a well known fact that if the constraint equations (inequalities) are
satisfiable by any probability measure then there is a unique measure, pr,
which has greater entropy than any other probability measure satisfying the
equations (inequalities), and the following descriptions will be true of pr [e.g.
Jaynes ‘79, Kullback ‘59, Bishop et al. ‘75]:
There exist (m+q)(m+q-1)/2 constants cjjand a special constant cp such that
a) pr(-be.x) =co «EXP[ Zijj jj» fij(.be.k)] and
b)  1/cp= 2k EXP[ Zjj jj « fij(.be.w)]
o)  Upper bound of Sim(i,j,D) > E(fj) = Zk fijj(.be.k) «pr(-be.y)

= (d/dcj;) (Xx EXP[ 2 cjj » fij(-be.w)])

Lower bound of Sim(i,j,D) < E(f;) = Xk fjj(-be.x) +pr(-be.y)

= (d/dcjj) (Zk EXP[ Zjj cjj « fij(-be.)])
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The definitions specify pr uniquely. Given a probability measure pr, an
estimate for the probability of 01 having a random property called P' from D
given that i through in have P’ and in4+1 through im do not have P is given
by the conditionalization formula:

d) pr(P'y | P'(ip) & ... & P'(in) & -P'in+1) & ... & -P'(im)) =

pr(P'(i1) & P'(ip) & ... & P'(in) & ~P'lins+1) & ... & ~P'(im)) /
pr(P'(ip) & ... & P'(in) & ~P'(in+1) & ... & ~P'(im))

The wisdom of using this procedure to yield an estimate for the likelihood of
P(i) (where we have some specific P in mind) and possibilities for realizing
such an estimate algorithmically and implementationally will be addressed
in the discussion concluding the experimental evaluation of this estimator
in section I11.4.5.5 and in section IV of the thesis. The data analysis in section
I1.4.5.5 will, in effect, provide an example of how to handle the case in which
the similarity constraints are not consistent. This case will also be discussed
in section IV. The logic of using maximum entropy estimates calibrated on
the similarity values will be discussed. For the time being, the proposed
theory may come to seem less abstract if one takes note of the fact that this
theory is simply one estimator which realizes, in detail, the general approach
described by Similarity Reasoning Postulates i, ii, and iii. Postulates ii and iii
taken together simply say that the likelihood estimate will be a function of
the GIs alone. They are clearly satisfied by the proposed estimate. It is less
immediately obvious that Postulate i is satisfied. This postulate stated that
the probability of P(i1) will vary positively with the similarity of the pairs
consisting of i1 and each of the individuals known to have P (iy, ... ,in) and
negatively with the similarity of the pairs consisting of 0; and each of the
individuals known not to have P (in+1, --im). An argument to the effect that
the proposed estimating procedure satisfies this condition is given below.

Lemma: The procedure above satisfies Similarity Postulate i.
Proof: ~

Let A be the set of .be.x such that
val(2,k) =1, ..., val(n,k)=1, val(n+1,k)=0, ..., val(m,k)=0
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(i.e. A contains the events in which known cases given by GI-4 are correctly
instantiated)

Let B be the set of .be.x such that .be.i isin A and val(1,k) =1
(B contains the events in which the known cases are correctly instantiated
and the conclusion is a 1 or "true")

Let C be the set of .be.x such that .be.x isin A and val(1,k) =0
(C contains the events in which the known cases are correctly instantiated
and the conclusion is a 0 or "false")

From d) above, the estimating procedure described returns

d) pr(P'(iy) | P'(iz) & ... & P'(in) & -P'(in+1) & ... & =P'(im)) =
pr(P'(iy) & P'(ip) & ... & P'(in) & —~P'(in+1) & ... & =P'(im)) /
pr(P'(i2) & ... & P'(in) & —P'(in+1) & ... & =P'(im))

which is equal to (pr(B) / pr(A)) = (pr(B) / (pr(B) + pr(C)).

From c), Sim(1,j,D) is increasing (decreasing) if and only if the expected
value of the the corresponding statistic, E(fyj), is increasing (decreasing). For a
given j, let us call R(j) the set of basic events x such that f1j(x) = 1.0 and S(j)
the complement of R(j). If E(fjj) is increasing then some probability mass
assigned to basic events in S(j) must be reassigned to basic events in R(j). For
j in the set {2, ..., n} this will cause an increase in the likelihood estimate d)
because the basic events in B can only increase in probability and those in C
can only decrease. To see this, it is sufficient to note that for jin {2, ..., n} the
intersection of C and R(j) is the empty set. A symmetrical argument
indicates that for j in {n+1, ..., m} an increase in Sim(1,j,D) will cause a
decrease in the estimate d).
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III Experimental Evaluation of Similarity Based Likelihood

I11.1 Experimental Questions

A series of experiments were conducted to test the theory described above.
These experiments focused on the following broad questions:

EQ1) Within an informational context that is well described by the GIs, is
human likelihood judgment well described by Similarity Postulate i.?

EQ2) Within the same informational context as 1), is human likelihood
judgment well described by Similarity Postulate ii.? How well?

EQ3) Is the relationship between similarities and likelihoods (in the same
informational context as 1) and 2) ) best described by the mathematical
relationships given in sections 11.2 and I1.4?

EQ4) Are the factors which contribute to the estimation of similarities
rationally commensurate with the beliefs about likelihood which the theory
holds similarities to entail? This question evidentially bears on the related
question of how descriptively accurate Similarity Postulate iii. is.

11.2.1 Likelihood Judgment Task - General Remarks

Common to a group of -expériments examining questions EQ1) - EQ3) was a
likelihood rating task designed to observe patterns of human judgment in an
appropriate informational context. To be appropriate, an informational
context is required to be structurally well described by the reasoning scenario
formalized in section I.1. To some extent, this requirement must be balance
against a second desideratum: that the judgment context is natural enough
for the judgment schemas utilized to remain undistorted and the similarity
representations that are engaged to be of a type easily computed or
represented in long term memory rather than artifacts of the task at hand.
For most subjects, both of the foregoing considerations are satisfactorily met
by an experimental paradigm in which the following question is typical: .
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a) "P is a biological property of mammals having to do with bone structure.
What is the probability that horses have P assuming that giraffes do but polar
bears do not?"

It is helpful to observe that the type of information required by the GIs is
available to someone evaluating question a). The likelihood to be judged is
the likelihood of P(horses). The information of type GI-1 is that P is a
member of the class P of biological properties having to do with bone
structure of mammals. It is also implicit in the presuppositions of the
question that P is a type of property that is homogeneous within mammal
species - i.e. for every species, either all normal members of that species have
the property P or all normal members of the species do not have the property
P. So GI-2 is simply the recognition that horses, giraffes, and polar bears are
each particular species of mammals. Assuming that the similarity relation of
interest here is symmetric in its first two arguments, then by Similarity
Postulate iii., the information required by GI-3 is accounted for by a subject’s
opinions about the three quantities Sim(horse,giraffe,P), Sim(horse,polar
bear, P), Sim(giraffe,polar bear, P). GI-4 is accounted for by the information |
that giraffe has property P and polar bear does not have property P.
Intuitively, it seems that most subjects will have little other information that
is relevant to the likelihood judgment requested above. This intuition is
confirmed experimentally by results presented below showing that a typical
subject’s likelihood judgments can be well predicted by functions mapping
GI-3 and GI-4 to real numbers (on the same scale as the judgments). The
estimator described in section I1.3 is such a function. The quality of the accord
between subject’s judgments and the predictions of this estimator and others
is examined below in detail. The experimental paradigm built around
questions like a) is a minor variant of one that was used by Osherson ‘91.
That study established the general feasibility of statistically predicting human
likelihood judgments using information of the kind GI-3 and GI-4. The
estimator that was advanced in that study will be re-evaluated here along
with other candidates.

Four experiments were conducted in which subjects were asked to respond to

questions similar to a) above. Typically, answers to EQ1)-EQ3) were obtained
by combining information from more than one of these experiments. In
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each of the experiments involving likelihood judgment, subjects participated
in two experimental sessions occurring on different days. On at least one of
these days, a subject recorded his or her responses to a set of questions like a)
presented in an individualized booklet. The booklets were randomly
generated by a computer program using a process that will be described below.
Because the nature and form of the likelihood judgment task and the
booklets were similar among each of these experiments, I will describe the
prototypical version of the task first, and indicate small modifications in the
separate individual descriptions of each experiment to follow.

111.2.2 Likelihood Judgment Task - Subject Instructions

The instructions for this task were as follows:

This experiment concerns your judgments about the probabilities
that particular mammals possess particular biological properties.
Before making a probability judgment, you will be told only that
the

property in question is related to some given aspect of
mammalian biology and that some other mammals either do or
do not possess that property. The aspects of mammalian biology
that are dealt with in this experiment include the following:
bone structure, digestion, dentition, thermal regulation, and fluid
regulation.

Examples of particular properties related to each of these aspects
are given below. All of the properties to be considered in this
experiment are possessed by some but not all kinds mammals.
You will be asked to judge the probability that one kind of
mammal has a property given examples of its occurrence and
non-occurrence among other mammals. As you recall,
probabilities are numbers between 0 and 1, though for
convenience you should express these as percentages ranging
from 0 to 100. Use numbers close to 100 to assign high
probabilities, and numbers close to 0 to assign low probabilities.

Subjects were then shown the following list of exemplary properties, which

they were told were unfamiliar, but chosen merely to convey of rough idea of
the property aspect classes (which are named in the bold face type).
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Properties involving the bone structure of mammals:

have skull orbit that is broadly continuous with the temporal fossa
have an extended humerus that is over twice the length of the clavicle
have about twice as many caudal as thoracic vertebrate

Properties involving the dentition of mammals:
have deeply hypsodent molars
have premaxillary gums
have transversally ridged pre-molars
Properties involving the digestion of mammals:
have their omasum and abdomasum seperately articulated
process their food caecotrophically
produce the enzyme ptyalin in their salivary glands
Properties involving the thermal regulation of mammals:
have their thermal neutrality point at about 20 C.
fail to initiate vasoconstriction via the smooth muscle of the
peripheral arteries at temperatures below 5 C.
Properties involving the fluid regulation of mammals:
have a maximum urinary osmolality of about 2000 mOsm.

must consume a minimum of 5% of body weight in fluids daily
to be at homeostasis. .

All of the properties listed above are, in fact, properties related to the given
aspects of mammalian biology, and they are all possessed by some but not all

mammals. Subjects are told that these properties were chosen to be
unfamiliar, that they are similar to, but not identical with, the actual
properties to be considered in the rating task, and that the intended purpose
of listing them was to be illustrate the nature of the different biological
aspects referred to in the experiment.

Before beginning work on a particular booklet, subjects were required to
assure the experimenter that they had some familiarity with the physical
form, diet, habitat, body covering, and behavior of each of the seven
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mammals appearing in that booklet. If they responded negatively, then they
were presented with a second booklet and the question was repeated. This
substitution process could be iterated until a satisfactory booklet was found.
Only one potential subject required more than two booklet substitutions, and
that candidate did not participate in the experiment.

I11.2.3 Contents of the Likelihood Rating Booklets

Each subject receives a unique booklet containing 60 probability rating
questions like the following:

P7 is a property related to mammals' digestion.

Given that:
lions have P7,
otters DO NOT have P7

What is the likelihood (0-100%) that tigers have P7?

Each question of this type will be referred to as an argument. Statements
which appear in the argument above the solid line are referred to as
premises. Premises which assert that a mamimal species has a given property
are referred to as positive premises. Premises which assert that a mammal
species does not have a given property are referred to as negative premises.
For example, the argument above has one positive premise, 'lions have P7',
and one negative premise, 'otters DO NOT have P7'. The propositional form
of the interrogative appearing below the solid line is refered to as the
conclusion of the argument. The conclusion of the argument above is 'tigers
have P7'. Only one property is mentioned in the premises and the
conclusion of a given argument. Every argument had at least one positive
premise and one negative premise. The mammal species mentioned in the
conclusion is never mentioned in any of the premises. As a consequence, the
truth of the conclusion or its negation is never deductively inferable from
the premises. No mammal species is ever mentioned in more than one
premise of a given argument. Sometimes the collection of the mammals
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mentioned throughout the positive premises of a particular argument will be
referred to as the positive mammals (of that argument). The negative
mammals and the conclusion mammal are analogously defined.

All of the arguments in a particular booklet are formed using a set of seven
mammals, randomly chosen for that booklet from a larger set of 47 familiar
mammals. These are shown below in table I.

blue whale gorilla rhinoceros
bobcat grizzly bear seal

bison hippopotamus sheep
camel horse siamese cat
chihuahua killer whale skunk
chimpanzee leopard spider monkey
collie lion squirrel
deer mole tiger

desert rat moose walrus
dolphin otter weasel
elephant ox wolf

field mouse persian cat zebra

fox pig

table I. List of mammals available for experiment I, II, and III.

The limitation to seven different mammal species per booklet was motivated
by the desire to permit the possibility of a within subject design in which each
subject could comfortably give a set of similarity judgments for all the distinct
pairs of mammals involved in the probability rating task - a similarity rating
task was performed in the second experimental session of experiments II and
III, and is described in a later section of the paper. Since at most seven
mammal types are available to appear in a given argument, and exactly one
mammal type appears in the conclusion of each argument and therefore not
in any premise, every argument has at most six premises. The exact number
of premises per argument ranges between two and six. Subjects were told
that the particular property mentioned in each argument is unique, and they
were instructed not to carry over information from one argument to the
next. No two arguments appearing in a given booklet were identical.
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If a pair of arguments can be made identical by taking one member of the pair
and making all positive premises of that argument negative and all negative
premises of that argument positive, then call that pair a mirror pair. The
arguments P7 and P7' below exemplify a mirror pair.

P7 is a property related to mammals' digestion.

Given that:
lions have P7,
otters DO NOT have P7

What is the likelihood (0-100%) that tigers have P7?
P7' is a property related to mammals' digestion.
Given that:

otters have P7'
lions DO NOT have P7',

What is the likelihood (0-100%) that tigers have P7'?

No mirror pairs are allowed to appear together in a single booklet of
arguments. A significant feature of the pseudo-random computer process
that generates the argument booklets is that a priori, each member of any
given mirror pair has an equal likelihood of appearing in a given argument
booklet (though of course once one member of a mirror pair has been
selected, the other cannot be). A consequence of this feature is that if the
properties P1...P60 are to be interpreted as randomly chosen members from a
class P of properties, then the a priori probability of any given mammal
possessing a randomly chosen property from P is 1/2. This follows from the
combination of the fact that any given mammal has an equal likelihood of
appearing in either a postive or a negative premise, and the
assumption/interpretation that the properties are randomly chosen. Neither
this fact about the booklet generating process nor the possible sampling
interpretation of the properties were discussed with any subject. The reader
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is directed however, to observe the formal relevance of this feature to
Similarity Postulate ii, restated below.

ii. in the absence of information other than the GIs given above -if the
unconditional probability of the (o} are identical, the probability of
P(og) will be a function of only the structural information in GI-4 and
the set of values given by the similarity function applied to each pair of
{oj}, holding the class P containing P constant.

The experimental booklets given to each subject balance the conflicting
demands that the arguments be random and varied on the one hand, and
that they be reflective of natural experience on the other. The concern for the
naturalness of the arguments reflected the belief that some arguments are
actually unnatural in some sense. To see this, examine the following three
arguments:

1.
Given that:
lions have P,
otters DO NOT have P,

What is the likelihood (0-100%) that tigers have P?

2.
Given that:
lions have P,
otters DO NOT have P,

What is the likelihood (0-100%) that sheep have P?
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3.
Given that:
lions have P,
blue whales have P,
Siamese cats DO NOT have P,
humpback whales DO NOT have P,

What is the likelihood (0-100%) that grizzly bears have P?

Let us say that a belief is opinionated to the extent that it departs from a
position of neutrality - a neutral belief often giving rise to a probability
attribution near 50% on the (0-100) scale. For most people argument 1. glves
rise to a fairly opinionated belief in its conclusion, and might typically result
in a rating of, say, 75%. If the polarity of both the positive and negative
premises were reversed the polarity of the belief would reverse as well, but it
would still be opinionated. Argument 2. yields a relatively unopinionated
belief in its conclusion, which might give rise to a rating of near 50%.
Argument 3. seems confusing! It is hard to imagine any natural biological
property that could fit this pattern. A reasonable strategy for a subject to adopt
if faced with an argument like 3. would be to attribute a default rating of 50%.
This story suggests that arguments 2. and 3. would be likely to yield relatively
similar ratings (as compared with 1. and 2.) in spite of the differing
psychological mechanisms that would be invoked by a typical subject
considering them. To guard against such occurrences, precautions were taken
in the otherwise random generation of the arguments. These precautions are
described in Appendix A. A detailed description of the algorithms for the
random but constrained choice of the sets of mammals and the sets of
arguments is also given in Appendix A.

I11.3 Experiment I - Stability of Likelihood Judgment
I11.3.1 Motivation and procedure

Experiment I investigated the stability of subjects' judgments on the
likelihood rating task being investigated here. This study was motivated by




the need to establish an absolute standard of performance by which models
which predict subjects' judgments of likelihood could be evaluated. The plan
for this experiment has subjects providing likelihood ratings for a booklet of
60 arguments during an initial experimental session, and then returning on
another day and unknowingly performing essentially the same task. Twenty
M.LT. undergraduates participated in this experiment. They each attended
two experimental sessions with the time interval between the sessions
varying from a minimum of 1 day to a maximum of 2 weeks. Each session
lasted about 40 minutes on average and 60 minutes maximum. The
instructions and the likelihood booklet which a subject received in his/her
initial session was exactly as described in section III.2. The instructions
delivered in the second experimental session were the same as well. The
likelihood booklet which a subject received in the second session differed
from the specific booklet that he/she received in the first session in exactly
three ways: the order of the arguments within the set of 60 was randomly
permuted , the order of the positive premises (noticeably so if a given
argument had more than one) was randomly permuted, and the order of the
negative premises were randomly permuted as well. In all other ways, the
booklet of arguments which a given subject evaluated in the second session
was identical to the one which they evaluated in the first session. If a subject
inquired of the relationship between the two booklets they were told that the
booklets were "different".

I11.3.2 Results: Part I

In this work, the primary standard used for assessing the quality of the
correspondence between a set of likelihood judgments and a set of predictions
for those judgments is the Pearson correlation, which was chosen primarily
for its familiarity and scale-independent significance. In experiment I, the
likelihood judgments given in the first session can be viewed as predictions
for the judgments about the corresponding arguments given in the second
session (or visa versa - equivalently). An argument in the second session is
"corresponding” to one from the first if and only if it has the same premise
set and conclusion. I will refer to corresponding arguments from session 1
and session two as related pairs. Session 1 and session 2 together provide 60
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pairs of judgments about 60 related pairs. The median Pearson correlation for
the 60 related pairs of judgments among the 20 subjects was 0.78, with a
maximum correlation of 0.93 and a minimum of 0.50. The mean level of all
the judgments was generally around 50 on the 0-100 scale for most subjects
(mean across subjects: 48.8 s.d. 4.9). The mean value of a subject's judgments
from the first session did not differ significantly from that of the second
session for 19 of the 20 subjects (t-test, identical variances, 0.05 significance
level), and the overall means, averaged across the 20 subjects, were 48.8
identically for both sessions. A histogram of the empirically observed pattern
of “errors” corresponding to the difference between the rated likelihoods of
session 1 and session 2, pooled together from the 20 subjects, is shown in
figure 1. This distribution is, for practical purposes, symmetric around 0.
Therefore attempts to model this distribution, with the ultimate goal of
estimating the attainable level of performance of the optimal model, assume
distributional forms that are symmetric around 0.

I11.3.3 Analysis

Once the assumption of symmetry around 0 for the error distribution has
been made, error distributions, both for the empirically observed data and
proposed models, can be described by a one-sided profile distribution that
assigns likelihood to deviations of absolute value between the judgments
about related pairs in different sessions. A histogrammed version of the
empirically observed error pattern, represented in this one-sided absolute
value form, is shown in figure 2 (again, for the 20 subjects pooled together).
Inspection of the likelihood ratings assigned by individual subjects in
experiment I reveals that most subjects do not make full use of the 101
gradations of likelihood available on the 0-100 scale. Most subjects made
judgments using mainly even multiples of 5 (0,5,10,15, etc.) or, even more
commonly, using mainly even multiples of 10 (0,10,20, etc.) to convey their
evaluations of likelihood. To accurately capture this phenomena, the
observed error distribution for each subject may be histogrammed so that
instead of being defined on the 201 integers between -100 and 100, the
empirically observed error distribution is now defined on the 19 integers
between -9 and 9, with an absolute value profile ranging between 0 and 9.
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300 - Experiment I: Session 1 - Session 2
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Figure 1. Histogram of observed difference between related pairs of
judgments combined from the 20 subjects of experiment I

The sum of these newly defined error distributions is exactly what is shown
in figure 2. Models for describing the distributional form of this error
distribution were evaluated for individual subjects according to their ability
to accurately describe this profile histogram of 10 values for each of the twenty

subjects considered individually, after their appropriate parameters have been
calibrated.
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Figure 2. Observed absolute discrepancies between judgments of related pairs
combined from the 20 subjects of experiment L

The data from experiment I can be used to estimate how well an optimal
descriptive model (actually optimal among the class of models that are
insensitive to argument and premise order) can be expected to perform in
predicting subjects' likelihood judgments for this task - the chosen standard
of performance being Pearson correlation. The familiar formula for this
correlation is given on line 1) ( here J; and P; are random variables
representing judgment and prediction for related pairs of arguments and J
and P are random variables reflecting arbitrary judgments and predictions)

1) E[ (i - E[iD(P; - E[Pi)) 1 / (VAR())- VAR(P))1/2
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If we assume that optimal predictions are unbiased (E[J;] = E[P;j]), then line 1)
reduces to line 2).

2)  (E[(;P)]-E[)2) / (VAR(Q)-VAR(P))!/2
= (E[J;2] - E[J12) / (VAR())-VAR(P))1/2

One natural model for describing the "noise" in judgments for this task is to
suppose that each judgment reflects the "true" or mean value rating for an
argument plus some additive zero mean noise. Under such a model line 2) is
equivalent to line 3) - where the variable N, independent of J and P,
represents the additive noise.

3)  (VAR() - VAR(N)) / (VAR()«(VAR()) - VAR(N)))1/2
= ((VAR()) - VAR(N)) / VAR()))1/2

The formula on the line immediately above represents the justification for
the common rule of thumb that the square of the Pearson correlation is equal
to the percent of the variance that is "explained" by a predictor. If the zero
mean additive noise model were correct, then the variance of the additive
noise would be equal to one half the expected square difference of two
independent judgments of the same argument (by the same subject of course).
This implication follows from the simple statistical facts, of line 4).

4) If N7 and N are independent and identically distributed r.v.s then
E((N1-N2)2) = (E(N12) - 2E[N1N3] + E(N2)2)
= 2( E(N12) - E(N1)2) = 2( E(N22) - E(N2)2)
= 2Var(Nq) = 2Var(Nj)

From this relationship it follows that for the zero mean additive noise model
that VAR(N) is equal to E[(JUDG-PRED)? ] which is equal to
(E[JUDGI1-JUDG?2)2])/2. All of the above implies that under the assumption
of zero mean additive noise, the best Pearson correlation that could be
achieved between a typical set of judgments by a given subject (for that
subjects particular set of arguments) and a deterministic model (not taking
argument or premise order in to account) for making predictions about those
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judgments is estimated by the formula of line 5) (where corr(J1,]2) is the
correlation of the judgments of related pairs in session 1 and session 2).

5 [ (VAR() - VAR(N)) / VAR()) ]1/2
= [ 1- VAR(N)/VAR() 11/2
= [1-(1 - (corr(J1,J2))2)/2) 11/2

So under this model, the median estimate of optimal model performance for
this task is the result of applying this formula to the median performance
estimate for the correlation between related pairs, 0.78:

[1-(1-(0.78)2)/2)]1/2 =0.90.

This would be our estimate of median optimal model performance if the
assumption of zero mean additive noise held up. One way of testing this
assumption in this context is described by the following procedure :

i. a particular (parametric) distributional form is chosen for the noise.

ii. the parameters of the chosen distribution are estimated independently for
each subject according to the predictions that they make about that subject's
judgment data; the distributions are constrained to predict the observed
mean squared difference for related pairs from session 1 and session 2; ‘subject
to this constraint, they then attempt to accurately predict a histogram
representation of the observed error distribution characteristics ;

iii. for each subject, the expected distribution of the difference between related
pairs under the hypothesis of the fitted distribution is computed;

iv. for each subject, the fit between this expected distribution and the
empirically observed distribution is tested (using a chi-sq test on histograms).
I give details of this procedure in appendix B.

Using this procedure, the null hypothesis that the noise is well described by a
zero mean gaussian was rejected for 10 of the 20 subjects. Two alternatives
that can be used singly or in combination were examined. One of these
alternatives was a distribution that I refer to as “double-sided Poisson” that is
defined on the integers and described by formula 6). Those readers familiar
with the ordinary Poisson distribution will recognize the double sided
Poisson as derived from an ordinary poisson distribution reflected around 0
(and re-normalized). Unlike the Gaussian distribution, the shape of the
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Poisson distribution is not independent of the units used to describe the
domain that it is defined on. The domain that this distribution will be
defined on here is the integers between -9 and 9, corresponding to the indices
of the histograms referred to above. This distributions has one free
parameter, a positive real number which I will call L. Its density function is
given by the formula on line 6).

6) f(k) = (eLo(M)'kl) / o1k, k#0;
(e’L), k=0;

An advantage of this distributional form (in terms of theoretical and
computational simplicity) is that the distribution of its absolute value profile
is Poisson. This distribution (6) is symmetric around 0 (hence 0 mean) and
has a literal variance equal to (L2 + L). The interpretation of the variance
relative to the 100-point scale is 100s(L2 + L). The fit provided by this
distributional form to the observed data proved adequate for 11 of the 20
subjects.

The second distributional innovation that was examined reflected the idea
that while the noise in judgment is generally zero mean additive, there also
may be some small percentage of time when, perhaps due to attentional
lapses, the judgment given by a subject is entirely uncorrelated with the
expected value of that subject's judgments for the particular argument being
rated. Intuitively, such judgments may be thought of as corresponding to
trials that would be thrown out for being too slow or inaccurate in a reaction
time study. The noise distribution on these infrequent occasions will not be
Zero mean additive because while the judgment that will be produced is
uncorrelated with the mean or mode of judgment for the given argument,
the expected distance between that mean or mode and the judgment
produced is not independent of the mean or mode. The expected value of
this distance will depend on how "opinionated" judgments for that argument
generally are. If they are generally far from the mean of judgments for other
arguments, then the expected value of the distance on these occasions will be
large. The mixture idea can be applied in tandem with either the gaussian or
double sided poisson distributions. An additional parameter, 9, is introduced
into each model, representing the percentage of trials on which lapses occur. I
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will call the gaussian, so augmented, the "gaussian mixture”, and the
augmented double sided poisson the "poisson mixture". To calibrate these
mixture models so that their predictions about the observed error patterns
may be evaluated it is necessary to calibrate two parameters in each case. As
in the case without the mixture parameter however, one degree of freedom
in the calibration is immediately eliminated by forcing the calibrated
distribution to precisely "predict" the observed variance of the errors. The
remaining degree of freedom then represents a ratio of how much of this
variance is do to additive noise component, a quantity that is theoretically
equal to (1-0)2 times twice the variance of the inferred additive noise
component, and how much is do to the contribution of the mixing
component which is theoretically equal to (1 - (1-9)2) times the variance of the
judgments themselves. It is the ratio of these contributions which has an
impact on the estimated correlation of the optimal determinsitic model. The
details of the fitting procedure itself are described in Appendix B.

The gaussian mixture was found to adequately describe the error distribution
of 15 out of 20 subjects. The poisson mixture adequately described the error
distribution of all 20 subjects. Of the four models considered, the poisson
mixture provided the best description of the error distribution for all of the 20
subjects. The poisson mixture was therefore accepted as an appropriate
description of the error data.

The assumptions that were used to derive the formulas given on lines 3) and
5) are no longer valid for the mixture models (when the mixture parameter is
greater than 0.0). However, it can be shown that an augmented version of
formula 3) provides a correct alternative for noise models that are mixtures of
zero mean additive noise and uncorrelated random variables with the same
variance as the judgments themselves. This formula is given on line 6)
below, and a derivation is provided in Appendix C. Let N be here, as before, a
random variable representing zero mean additive noise that is independent
of judment, and let d represent the probability of producing an uncorrelated
judgment. Then the estimated correlation of a set of judgments and a set of
optimal predictions is as follows.

7) Corr(J,P) = (1 - 9)[ (VAR()) - VAR(N)) / VAR()) ]1/2




Since the variance of the double sided poisson distribution with parameter L
is equal to 100+(L2 + L), the estimate of line 6) relative to an inferred poisson
mixture error distribution with parameters L and 9 is given by 8).

8) Corr(J,P) = (1 - 9)[ (VAR()) - 100.(L2 + L)) / VAR(J) }1/2

I11.3.4 Results: Part II

To summarize the preceding section, the predictability of each of the 20
subjects is captured by a formula involving three numbers, (L,0,VAR(])). The
estimation of these numbers is described in the previous section and in
Appendix B. As mentioned above, the variance of the mixture model is
constrained by the fitting procedure to exactly predict the observed variance of
"error” between session 1 and 2. A formula for using the three numbers
above to infer the expected correlation of judgments with the optimal model
(relative to the particular set of arguments) is given by 7). The median
estimated correlation of the optimal model, so inferred, was 0.88 with a
maximum of 0.97 and a minimum of 0.67. The theoretically available
advantage in predictive capability that a deterministic model has over these
subjects’ own stochastic performance can be perceived by comparing the
above figures with the observed correlations of the related pairs from the two
sessions - median 0.78, maximum 0.93, minimum 0.50. The median
estimated mixing parameter was 7% with a minimum of 0% and a maximum
of 20%. Figure 3 shows the observed profile distribution and the error
distribution that was fitted to it using the double-sided Poisson model. Figure
4 compares the projected error distribution of the difference between a typical
set of likelihood judgments made by each member of this population of 20
subjects and the expected values of each of those judgments with the
observed discrepancies between judgments of related pairs of arguments
made by those 20 subjects. The former distribution is to be interpreted as the
projected error distribution of the theoretically optimal set of deterministic
predictions for these arguments.
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Figure 3. Comparison of observed discrepancies between judgments of related
pairs for the 20 subjects of experiment I pooled together and the poisson
mixture model fitted to each of these subjects individually and then pooled
together.
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Figure 4. Comparison of the observed discrepancies and the predicted
discrepancies between a set of likelihood ratings for 60 argument forms and
the expected values of ratings for those argument forms.

Discussion

The decision to use the poisson mixture distribution as a model of the noise
on this task should not be viewed as the advancement of a general claim
about human likelihood judgments. As stated above, the primary purpose of
this analysis was to acquire the ability to gauge how well a predictive model of
judgment for this task (that does not take premise order into account) is
performing on an absolute rather than a relative scale. When this standard of
performance is measured by Pearson correlation, then the significant
component of the fitted model above is the mixing parameter and not the
form of the additive noise. The claim that judgment on this task does
produce a percentage of judgments that are basically uncorrelated with the
expected value of a given argument is a psychological claim, albeit a task
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dependent one. However this hypothesis is not directly verifiable in the
absence of a complete specification of a "noise” model. It will turn out
however, that the evaluation of a predictive model in section II1.4.5 will
provide additional confirmation for the noise model presented above,
because the distribution of the prediction errors of the model evaluated there
will be qualitatively comparable to the form of the estimated distribution of
the prediction errors of the optimal model that was estimated above.

I11.4 Experiment II - Predicting Judgments Using Similarity Based Models
I11.4.1 Motivation and general procedure

Experiment II provides the primary data for testing the ability to predict
likelihood judgments on the task described in section III.2 using similarity
based models. This data will be important to the evaluation of EQ1)-EQ3).
The plan for this experiment involved two experimental sessions per subject.
Subjects provide likelihood ratings for a booklet of 60 arguments during an
initial experimental session, and then return on another day and provide a
set of similarity ratings for each of the pairs of mammals which appearéd in
arguments evaluated during the first session. During the second session
subjects also provided judgments about the informational relevance of
knowledge of certain aspects to judgments concerning other aspects. In
particular, subjects judged the relevance of the familiar aspects of
mammalian biology which provided domains for similarity judgments to the
unfamiliar aspects of mammalian biology that were typified by the list of
properties read by subjects prior to the likelihood rating task. Twenty M.LT.
undergraduates participated in this experiment. They each attended two
experimental sessions with the time interval between the sessions varying
from a minimum of 1 day to a maximum of 2 weeks. Each session lasted
about 40 minutes on average and 60 minutes maximum. The instructions
and the likelihood booklet which a subject received in his/her initial session
was exactly as described in section II1.2.

I11.4.2 Similarity and relevance rating - procedure
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In the second session each subject was first asked to make judgments about
similarity. A subject assigned a rating to all of the distinct pairs of the
particular seven mammals that subject had dealt with in the probability
rating task for each different type of similarity. When the order of a similarity
pair is considered to be irrelevant there are 21 distinct pairs of seven
mammals. Similarity pairs will be considered to be order independent
throughout the experiment. An abbreviated version of the actual
instructions given to subjects prior to similarity rating were as follows.

This experiment concerns your judgments about the
similarity of mammals. You will be asked to rate the relative
similarity of all the distinct pairs of seven mammals with
respect to a number of aspects of their biology. The aspects
you will be rating include:

overall biological similarity
physical form

body covering

diet

habitat

behavior

ancestral lineage

In the booklet that you will be given there is a seperate table
corresponding to each of the above aspects. In this table please
record your ratings for the relative similarity of all mammal
pairs for that aspect. The ratings should be given on a scale
from 0 to 100, similar pairs receiving values close to 100 and
dissimilar pairs receiving values close to 0.

Each subject provided a total of 147 (21 by 7) similarity judgments in all.
Following the similarity rating, each subject rated the relative degree of
relevance of each type of similarity, excepting overall biological similarity, to
each of the unfamiliar aspects of mammalian biology dealt with in the
probability rating task: bone structure, digestion, dentition, thermal
regulation, fluid regulation. The instructions for this task read as follows.

This experiment concerns your judgments about the degree to
which information about some familiar aspects of mammalian

79



biology are relevant to making predictions about less familiar
aspects of mammalian biology. The familiar aspects include:

physical form
body covering
diet

habitat
behavior
ancestral lineage

Examples of the unfamiliar aspects are given on the next page.
In the attached booklet there is a separate table for entering
judgments about each unfamiliar aspect. The rows of each
table are labeled by the familiar aspects above. Please record in
the appropriate rows your judgments about the degree to
which complete knowledge about the familiar aspect of a
mammal's biology would allow you to make predictions about
the properties of that mammal that are related to the
unfamiliar aspect. The ratings should be given on a scale from
0 to 100, with a rating of 100 standing for the judgment that
knowledge of the familiar aspect allows perfect prediction, and
a value of 0 standing for the judgment that information about
a mammal's properties related to the familiar aspect is totally
irrelevant to guessing about the properties of that mammal on
the unfamiliar aspect.

A total of 30 (5 by 6) relevance judgments were required of each subject. The
combination of the 147 judgments of similarity and the 30 judgments of
relevance provided by each subject in the second session comprised a database
to be used in modelling the probability judgments given by that subject in the
first session.

I11.4.3 Models for the domains of unfamiliar properties (instantiation
strategies)

In section 1.3 I first remarked upon the fact that, like relative frequency
strategies for likelihood judgment, similarity based strategies would generally
allow the possibility of being instantiated in more than one way in a given
judgment context. Even though the likelihood task used in this experiment
is only a semi-natural judgment context, it is already complex enough to




permit a multiplicity of potential instantiations of a similarity based strategy.

One of the choices to be made by a particular instantiation is in the choice of a
domain for each of the unfamiliar properties. Recall that the arguments that
subjects evaluate appear as follows (italicization added).

P7 is a property related to mammals’ digestion.

Given that:
lions have P7,
otters DO NOT have P7

What is the likelihood (0-100%) that tigers have P7?

The noun phrase that I have italicized specifies that P7 belongs to the domain
of properties of mammals having to do with digestion. Of course P7 also
belongs to the domain of all biological properties. The choice of similarity
values will be functionally related to a subject’s estimate of the likelihood
that tigers have P7 in the argument above will depend on whether the
domain of the similarity relations is taken to be the class of properties of
mammals having to do with digestion or the class of all biological properties
of mammals - or something else. The discussion in section II.3 about
choosing a reference class is pertinent here. If the class of properties of
mammals having to do with digestion is chosen as the similarity domain
then the reference class used for inference will be the class of properties of
mammals having to with digestion that lions have and otters do not have.
Otherwise, if the class of all biological properties of mammals is chosen as the
similarity domain then the reference class will be biological properties of
mammals that lions have and otters do not. Clearly the former is the
narrower reference class. If the estimates of conditional probability that can be
produced relative to each reference class are of approximately the same order
of accuracy, then it would be normatively preferable to use the narrower
reference class. However, the subject performing this task has been
pragmatically led to believe that he or she does not know very much about
properties having to do with digestion. He or she has, in effect, been told that
P7 is like the items on the following list of generally unfamiliar propertiés:
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Properties involving the digestion of mammals:

have their omasum and abdomasum seperately articulated
process their food caecotrophlcally
produce the enzyme ptyalin in their salivary glands

From the point of view of descriptively modelling subject performance on
this likelihood judgment task, a relevant question to be addressed is "How
does a typical subject come to have subjective beliefs about the (conditional)
likelihoods of mammals possessing and not possessing properties chosen
from a domain about which they know, in detail, essentially nothing?"

Two different possibilities suggest themselves. One of these is that subjects
simply fall back on a domain about which they do know something. In this
case, this strategy would probably be realized by the choice of the class of all
biological properties of mammals as the domain. If this were so, then we
expect that the similarity values which a given subject would make use of
when reasoning about the argument above would be approximately
commensurate with that subject's judgments about the overall biological
similarity of the pairs of mammals that are involved. One way of describing
this first strategy is to say that subjects provisionally assume that "things" in
the unfamiliar domain will stand more or less as "things” do in more
familiar domains - i.e. "if lion and tiger are alike in most biological ways that I
know of, it's a good bet that they will be alike in their digestion.”

A second possibility is that subjects would attempt a more refined
extrapolation of the knowledge that they do have to the unfamiliar domain.
A subject might reason as follows, "I don't know much about digestion, but
how a mammal digests seems like it would be related to what it eats, or at |
least more related to what it eats than to what kind of hair it has," for
example. A description of this second strategy, comparable to the earlier
description of the first, is that subjects provisionally assume that "things" in
the unfamiliar domain will stand as "things" in the relevant familiar
domains do. I attempted to capture this pattern of belief by positing that
beliefs about probabilities, and hence similarities, in the unfamiliar domain
could be modeled as a weighted mixture of beliefs about the relevant familiar
domains. One way of thinking about this idea is as follows. Itis a
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mathematical fact that if one has k probability measures pry, ... prx that are
defined on the same algebra of sets, and a set of k real numbers vy, ... vy that
sum to 1 (i.e. Zj vj = 1.0, 1<i<k), then the "mixture" defined by ¥; vjepr;, 1<i<k
is also a probability measure on this same algebra of sets. The algebra of sets
that we are interested in here, as in section I1.4, is the algebra which has basic
events that are patterns of of some given set of individuals, in this case
species of mammals, having and not having a property. Given such an
algebra and a probability distribution on the algebra, the similarity functions
that were introduced in section I1.2 are well defined. So if we define a
probability measure on the unfamiliar domain, then these similarity
functions will all be defined relative to that domain. The probability
measures pri, ... prk to be used are based on the subjective beliefs that subjects
do have about the familiar domains of physical form, body covering, diet,
habitat, behavior, and ancestral lineage. What this work proposes is that
people do not generally represent beliefs about these probability measures that
are are sufficient to totally specify them - or similarity based reasoning as it is
being defined in this work would be irrelevant. What this work does propose
is that people represent beliefs about conditional probabilities defined relative
to these probability measures - similarities, and that these beliefs place
constraints on the incompletely defined measures. Here is how those beliefs
that are sufficient to define similarities can be constituted on the unfamiliar
domain.

Let REL(FAy,UF)) stand for a given subject's judgment about the relevance of
information about mammalian properties for familiar domain k to
knowledge of mammalian properties for unfamiliar domain 1, where FA}
ranges over {physical form, body covering, diet, habitat, behavior, ancestral
lineage} and UF) ranges over {bone structure, digestion, dentition, thermal
regulation, fluid regulation}. The real numbers vy, ... v to be used in
defining a mixture are given by REL(FAy,UF))) / ( 2 REL(FA;UF)). The
theory of similarity presented in section I.2 held that the following
primitives were the basis for constructing similarities:

P11(A,B,D) = probability of P(i) and P(j) foriin A, jin B, and P in D.
P10(A,B,D) = probability of P(i) and not P(j) foriin A, j in B, and P in D.
Po1(A,B,D) = probability of not P(i) and P(j) for i in A, jin B, and P in D.
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poo(A,B,D) = probability of not P(i) and not P() foriin A,jin B,and Pin D
= 1-(p11+ P10+ Po1)

If the the probability measure on the unfamiliar domain that these quantities
reference is constructed, as suggested above, from a mixture of the probability
measures on the familiar domains, then these probabilities will themselves
be equal in value to a mixture of the same proportions of their counterparts
defined on the familiar domains.

In principle, the required quantities, p11, p1o, and poo for each pair of
individuals relative to the unknown domain can be constructed by mixing,
and the corresponding similarities on the unknown domain will be well
defined. Our ability to determine the values of these new similarities, so
defined, is more problematic because the data collected in the experiment do
not give us direct access to the various pi1, p1o, and poo, but only to the ratios
of these quantities, and it is not true in general that the mixture of the ratios
will be the ratio of the mixtures. This will be true however for similarity
function d) because the function simplifies to a non-ratio form:

d) Sim(A,B,D) = (p11+poo)/ (P11 +Po1 + P10 +Poo) = P11+ Poo.

Recall that this function, which represents subjective beliefs about the
likelihood of "matching”, is pragmatically justified in informational contexts
where the joint absence of a property in two individuals is of equal interest to
the joint possession of a property. There are two reasons for thinking that
this is an appropriate form of similarity for use in the judgment context of the
likelihood judgment experiment. The first of these is that it is known that
the similarities of the conclusion mammal to both positive and negative
mammals play a role in judgment. This is confirmed by both the analysis
below and by the related experiments in Osherson ‘91. If this role is in accord
with Similarity Postulate i. it follows that an increase in this similarity
implies an increase in the probability of the two mammals both failing to
possess a parﬁculér property. This thesis is, in part, an argument to the effect
that this belief should be interpreted as arising out of a more general belief in
the probability of the two individuals failing to possess a generic kind of
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property (generic relative to some domain, at least). Under the given
interpretation of similarity as a belief about this probability, this implication
and its converse are both true since they are judgments about the same thing.
The second reason for thinking that d) is an appropriate form of similarity is
that it is symmetric in both the order of its arguments and the polarity of
properties. It was pointed out above in section II1.2.3 that the random
construction of the likelihood booklets by computer was done in such a way
as to make the empirical distribution of mammals, as they appear in the
positive and negative premises of the arguments, statistically consistent with
these symmetries.

The ideas just expressed argue for why it would be appropriate to use
similarity function d) in the likelihood judgment task. They do not argue
that a subject's similarity judgments about pairs of mammals, delivered on a
later day, should correspond to formula d), rather than c) or e) for instance.
Nevertheless, I shall make use of the following model for describing the
second similarity instantiation strategy.

Let SIM(],j,UF) stand for that subject's estimate of the similarity of mammal
type i to mammal type j relative to unfamiliar domain UF; and SIM(i,j,FAk)
stand for that subject's estimate of the similarity of mammal type i to
mammal type j relative to the familiar domain FAk. Assume that the range
of each of the boldface variables is normalized to lie between 0.0 and 1.0. A
formula for expressing similarity under the weighted mixture scheme and
the assumption of similarity model d) is the following:

SIM(i,j,UF) = (£xSIM(i,j,FAK)+REL(FA,UF) / ( x REL(FAy, UF))
In the future these will be referred to as mixture similarities.

Remarks on choices of similarity:

In the immediately preceding paragraphs I have described the motivation for
the two models which each attempt to describe the values of subjects'
estimated similarities for the unfamiliar domains. One of these models uses
the values of overall biological similarity. The other uses mixture
similarities. Other formulas for computing similarities that attempted to
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capture the logic of the second domain instantiation strategy were tried, but
none were generally as useful in the describtion of observed subject
performance as mixture similarities, and so I will not bore the reader with
their description and more tenuous motivation for their precise algebraic
form. As things turned out, the actual amount of contrast among the two
similarity functions that were used was disappointing. This was due to the
fact that there were generally strong correlations among the judgments of
relevance for the different unfamiliar domains as well as strong correlations
in values of the similarities of two individual mammals rated across the
different familiar domains. As a consequence of this, differences in the
descriptive performance of the two choices of similarity strategy were never
large. Some statistically significant patterns of interest did emerge though
which will be described below.

I11.4.4 Results Part I: Evaluation of EQ1 (and a domain)

EQ 1) is concerned the descriptive validity of Similarity Postulate i. Similarity
Postulate i., or its minor variant Similarity Postulate i.’, seem to be common
to almost all similarity based strategies for inductive reasoning. The
disconfirmation of i. as an accurate description of human performance on the
likelihood rating task would show that these reasoning strategies, as a group,
are on the wrong track. What this postulate predicts, applied to this context, is
that the perceived likelihood of the conclusion statement of a given
argument will be an increasing function of the each of the positive
similarities and a decreasing function of each of the negative similarities. So
for example, if we assume that the similarity of lions to tigers (for the
relevant domain) is greater than the similarity of siamese cats to tigers (for
this domain) then the judged likelihood of argument 1) below should be
greater than the judged likelihood of argument 2).

1)
Given that:
lions have P~,
otters DO NOT have P*,

What is the likelihood (0-100%) that tigers have P*?
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2)

Given that:
siamese cats have P*,
otters DO NOT have P*,

What is the likelihood (0-100%) that tigers have P*?

Although we might expect that the judged likelihood of 1) would also be
greater than the judged likelihood of 3), we need more information to
determine whether Similarity Postulate i. makes a prediction about this.

3)

Given that:
siamese cats have P*,
raccoons DO NOT have P*,

What is the likelihood (0-100%) that tigers have P*?

Similarity Postulate i only makes direct predictions about pairs of arguments
where one member of the pair "dominates” the other. To be precise,
argument; is said to dominate argument; relative to a domain, or kind of
similarity, if and only if:

i. both arguments have the same number of postive and negative premises;
ii. if we rank ordered the positive similarities (for the relevant domain) for
each argument from largest to smallest, the similarity of the kth postive
similarity of argument; is greater than or equal to the kth positive similarity
of argument; for every k between 1 and the number of postive premises;

ii. if we rank ordered the negative similarities (for the relevant domain) for
each argument from largest to smallest, the similarity of the kth negative
similarity of argument; is smaller than or equal to the kth negative
similarity of argument; for every k between 1 and the number of negative
premises.
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We can say that argument; strictly dominates argument; if argument;
dominates argument; and at least one of the comparisons of similarity
mentioned in ii. and iii. above is a strict inequality. Relative to a fixed
domain, D, it will also be convenient to refer to the set of values S =
{Sim(m,c,D) | m is a postive (negative) mammal and c is the conclusion
mammal) as the set of positive (negative) similarities.

The data collected for experiment II allow the evaluation of Similarity
Postulate i. relative to a set of similarity functions. An evaluation of
Postulate i relative to overall biological similarities and mixture similarities
was conducted as follows: for each of the two sets of similarities in turn, each
subject's argument booklet was searched (by computer) for pairs arguments
such that one argument strictly dominated the other, according to that
similarity set; all pairs of arguments so identified were then labeled as
confirming or disconfirming Postulate i, relative to the chosen similarity,
according to whether the member of the pair which strictly dominates was
accorded a higher likelihood rating; finally, the percentage of confirming
pairs among all pairs satisfying the strictly dominating relation relative to the
domain was computed.

Since twenty subjects each evaluated 60 randomly generated arguments for
this experiment, there were 20«("60 choose 2") = 35,400 distinct pairs of
arguments involved in the experiment. Contingent on the judgments of
overall biological similarity given by the individual subjects, 1,808 of these
pairs turned out to satisfy the strictly dominating relation relative to this
function. Of these, 1,415 (= 78.3%) were confirming instances for Similarity
Postulate i. Contingent on the judgments of aspectual similarity and
relevance given by the subjects that were converted into mixture similarities,
254 pairs turned out to satisfy the strictly dominating relation. Of these, 181 (=
71.3%) were confirming instances for Similarity Postulate i. Both ratios
(1415/1808 and 181/254) are highly significant in their departure from chance
(p < .0001). The difference between these percentages was also significant by a
chi-square analysis (p < .02).

Clearly both of the above results indicate that Similarity Postulate i. is correct
most of the time. Since subjects' judgments on the likelihood task are noisy,
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it is not immediately clear what kind of results we should interpret as
supporting the view that Similarity Postulate i is correct in general. In fact,

- we must define what it would mean for it to be correct in general. The most
natural definition would seem to be that Similarity Postulate i. is correct in
general, relative to a similarity model, if the percentage of confirming
instances for the postulate, determined by the same algorithm as above,
would be 100% when the likelihood ratings for each argument were replaced
by the expected value of those ratings, and the same for similarities.

In an effort to partially gauge the effect of “noise” on the confirmation of
SImilarity Postulate i., I attempted to evaluate the expected frequency with
which the likelihood ratings given to a pair of arguments will be reversed in
magnitude from the mean values of the likelihoods accorded to those
arguments. Since there is noise in the judgments, sometimes the conclusion
of one argument will be judged more likely than the conclusion of another
argument even though, on average, the conclusion of the second is judged
more likely than the first. This percentage of reversals was estimated using
the data from experiment I as follows.

Recall that in the terminology of experiment I, a pair of arguments, one from
session I and one from session II, were called related if they only differed in
the order of their premises. Now I will call a pair of arguments from session I
of experiment I together with a pair of arguments from session II of
experiment I corresponding just in case the pair consisting of the first
members of each of these new pairs are a related pair and the pair consisting
of the second members of each of these new pairs are a related pair. Also let
Ajequal the set of distinct pairs of arguments from experiment I, session I of
subject i for which the likelihood rating given to the first member of the pair
is greater than the likelihood rating given to the second member of the pair.
Now let B; equal the set of distinct pairs of arguments from session II of
subject i such that the corresponding pair of arguments from session I were
members of A;j and the likelihood ratings given to the arguments in session
II are oppositely ordered in magnitude from the order of the corresponding
pairs in session . Let the variable p stand for the ratio of the sum of the
cardinality of the sets Bj, where i ranges over the 20 subjects participating in
experiment I, divided by the sum of the cardinality of the sets A;. In other
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words, p is the percentage of corresponding pairs which reversed their order
from the first to the second session. The value of p for experiment I was 16%,
and so (1-p) = 84% of the corresponding pairs retained their ordering.

In the analysis of experiment I it was pointed out that the comparison of
judgments from session I and session II essentially measures the results of
two independent occasions on which corrupting noise was added: the first
time judgments were given and the second time judgments were given.
Looked upon from this point of view, we expect that the figure of 84%
measures the percentage of pairs which "refused" two chances to switch plus
the percentage of pairs which (ala Cosi Fan Tutti) switched twice. We can
solve for the percentage of pairs which switch each time, call this p*,
according to the equation

1) (1-pH2+(p*? =.84

This equation has two possible solutions, p* = .913, and p* = (1-.913) = .087.
From context however it is clear that the former estimate is the desired one.
The figure of 91.3% is the estimated percentage of time that the rank order of
a subject's ratings of a pair of arguments reflect the rank order of the expected
value of those ratings.

Returning to the consideration of the statistical correctness of Similarity
Postulate i, the expected number of confirming instances that would be
observed is equal to the percentage of time that the postulate is really correct,
call this pc, times the percentage of time that a given subject's judgments
relative to the potentially confirming pair of arguments did not "switch",
plus the percentage of time that the postulate was really incorrect, (1-pc),
times the percentage of time that the subject's judgments did switch. The
percentage pc can therefore be solved for by the following equation.

2) (1-p*)(pc) + p*(1-pc) = the observed percentage of confirming pairs.
Substituting in the estimate of .913 for p* and .783 (the percentage of

confirming pairs for overall similarity) for the observed percentage of
confirming pairs, we arrive at an estimate of 84.3% for the percentage of time

90




that Similarity Postulate i is correct. This figure is based on the assumptions
that overall biological similarity is the correct choice of similarity function to
pick out the dominating pairs and that the subject's judgments about overall
biological similarity are "noiseless" in the sense of picking out the
dominating pairs with perfect accuracy. So the figure of 84.3% correctness is a
conservative estimate for the true performance of Similarity Postulate i,
although from the currently available data we are unable to estimate how
conservative this estimate is.

I11.4.5 Results Part II: Evaluation of EQ2 and EQ3

EQ2 and EQ3 essentially ask how well the subjects’ likelihood judgments for
these arguments can be predicted using only information describing the form
of the arguments and the similarity values of the mammals involved, and
whether the form of the model generating the best predictions is that
described in section IL.4. and I1.5. The reader will forgive me for ruining the
suspense if I announce at this juncture that the model described in section I1.4
and IL.5 does admirably describe subject performance both in the comparative
and the absolute senses. The order I will take things in will be to work
towards describing the data analysis which establishes the predictive capability
of the model in I1.4 by first describing the evaluation of a class of simple
models. The relative predictive capabilities of these simple models are
interesting in their own right, in part because they are so simple, and in part
because they touch base with a number of previous models proposed in the
field.

I11.4.5.1 Simple Models

I will now consider a variety of simple models for predicting the probabilities

assigned by individual subjects. It will be helpful in proceeding to define a set
of data structures that models may make use of. Recall that probability ratings
are assigned to the conclusion statements of particular arguments.
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An argument form is a data structure capable of summarizing all of the
information about any individual argument pertinent to the class of models
to be considered here - other than the actual rating given to the argument.
An argument form consists of the following information:

a property aspect - one of bone structure, digestion, dentition, thermal
regulation, fluid regulation;

a conclusion mammal - the mammal mentioned in the conclusion;

a set of positive mammals - those mammals known to possess the property;
and a set of negative mammals - those mammals known not to possess the

property.

A similarity table set is a set of five tables, one for each property aspect,
specifying what a particular model takes to be the similarity of a particular
pair of mammals relative to a particular property aspect. For instance, a
similarity table set might have a value of '90' for the similarity of lion and
bobcat with respect to dentition and a similarity of '50" for that pair of
mammals in the respect of their thermal regulation. Note that these values
cannot be literally identical with the ratings given by a subject, but are in
some sense inferred by a model, though the extent of the inference may be
something trivial like merely equating the value of similarity of digestion
with the value of overall biological similarity - which was rated. I will use
notation of the form sim(otter,grizzly,digestion) to represent the similarity of
otter and grizzly for digestion.

A calibrated model for this task is a function from an argument form and a
similarity table set to real numbers between 0.0 and 1.0. The probability
ratings themselves are normalized, after dividing them by 100.0, to lie
between 0.0 and 1.0 as well. Models are evaluated by their success in
predicting the probability ratings. An important feature of the probability
rating task is that subjects are essentially judging the relative likelihoods of
exactly two mutually exclusive alternatives: the conclusion mammal either
has the property or it does not. The resulting likelihood judgments may be
viewed as the result of weighing the balance of evidence supporting each of
the two alternatives. A natural class of simple similarity models is obtained
by adding to this notion the idea that support in favor of the conclusion
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mammal having the unknown property comes from the set of similarities of
the conclusion mammal to the positive premise mammals, and support in
opposition to having the property comes from the set of similarities of the
conclusion mammal to the negative premise mammals. This idea forms a
common thread running through a long history of psychological models
describing choice and categorization. See Nofosky 1990 for a review and
analysis of many aspects of this line of research. The following definitions
will also be useful in specifying models inspired by this idea:

Call POS(arg) the set of pairwise similarities generated from a particular
argument form, arg, and a similarity table set by taking all available instances
of sim(conclusion,mam;,property) where property is the property aspect of
arg, conclusion is the conclusion mammal of arg, and mam; ranges over the
positive mammals of arg .

Let NEG(arg) be the set of pairwise similarities generated symmetrically from
a particular argument form by the considering the set of negative premises.

I will abbreviate these sets by POS and NEG where unambiguous context-
allows. The following abbreviations will stand for familiar functions
applying to sets of real numbers:

CARDO) - the function that returns the cardinality of a finite set of numbers;
SUMA() - the function that returns the sum of a finite set of numbers;
MAX() - the function that returns the maximum value in a finite set;
MINQ) - the function that returns the minimum value in a finite set;
AVG() - the function that returns the arithmetic mean of a finite set.

Here are some illustrative examples of calibrated similarity models.
Model examplel is an obtuse model that considers only the number of

positive and negative premises, ignoring similarity values - this might be
called an "urn model".
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model 1: CARD(POS) / (CARD(POS) + CARD(NEG))

Example 2 is more complicated. This model forms a linear sum from the
positive and negative similarities, and then passes this sum through a
sigmoidal function of the type commonly used in neural networks and other
applications. Note that as the linear sum in brackets that is being
exponentiated grows more negative, the whole expression approaches 1.0,
and as the linear sum grows more positive, the whole expression approaches
0.0. Here EXP([X] stands for eX.

model 2: 1.0 / ( 1.0 + EXP[ -0.05 + -0.5¢SUM(POS) + 0.6*SUMNNEG) ] )

The expression given as model 2 is well defined, but the choice of the
underlined numbers, (-0.05, -0.5, 0.6), is not demonstrably motivated. It is
clear that these numbers may need to vary in magnitude in order to
accurately describe the patterns of judgmentA which reflect quantitative
relations between judgments of similarity and of probability that are given on
arbitrary scales (why should a similarity value range between 0 and 100 for
example?). This problem is treated in the modelling procedure by letting
these numbers start out as free parameters to be calibrated by some
computational procedure in accord with a well defined mathematical
specification.

111.4.5.2 Calibration and Assessment of Models

For a statistically valid evaluation of models containing calibrated parameters
it is necessary that such models be evaluated with respect to the quality of
their predictions rather than the quality of the accord between the data and
the parameterized fits that are obtainable. In keeping with this principle,
models were evaluated using a statistical technique known as jacknifing or
cross-validation. See Efron ‘82 for theoretical details of these type of analysis.
The procedure for assessing model performance was as follows.
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One argument is selected from the 60 rated by a given subject. Call this
chosen argument the "target”. The model under consideration is then
calibrated by a computational procedure that has access to the similarity and
relevance judgments given by that subject as well as the other 59 arguments
and the ratings assigned by the subject to those arguments. Once calibrated,
the model is used to make a prediction for the likelihood rating given to the
conclusion of the target argument. This prediction is then stored for later use
and a different target is selected. Repeating this procedure 60 times, cycling
through the complete set of rated arguments, eventually results in the
generation of a complete vector of 60 predictions - one for each argument.
The model is then assessed a score for that subject as a function of the match
between this vector of 60 predictions and the actual ratings given by the
subject. A few different functions were considered for scoring this match
including the sum of the absolute differences between the predictions and
actual judgments, the sum of the squared differences between the predictions
and the actual judgments, and the Pearson correlation coefficient between the
prediction vector and the judgment vector. It was found that these measures
only rarely disagreed concerning which of two models provided a better fit for
a given subject, and then only when both discrepancies were tiny. For
reasons of familiarity the correlation coefficient was finally adopted as the
measure of -choice.

Successful models are those that achieve relatively high correlations for most
subjects. Specifically, the median correlation across the group of twenty
subjects was taken to be an overall summary of a model's performance. One
model is judged to be significantly better than another is it achieves higher
correlations for 15 or more of the twenty subjects. This corresponds to
significance at the .05 level for a sign test with N = 20.

There are two important components to the procedure that fixes the free
parameters in a model so that the model can be used to make a prediction.
These components are the fitting criteria and the computational procedure
used to find the "pseudo-optimal” values of the free parameters best
satisfying the criteria. The term pseudo-optimal acknowledges the reality that
for models in which the predicted values generated by the model depend on
the parameters being fitted in a non-linear way, such as in model 2 above,
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there is no sure-fire procedure for finding values which provide globally
optimal fits for any reasonable fitting criteria. The computational procedure
must therefore be thought of as a technique for approximating a given fitting
criteria. The fitting criteria used in the modelling discussed in this section
was the minimization of the sum of the absolute values of the differences
between the 59 available subject ratings and current model predictions.
Given the correctness of the noise model established in experiment I,
minimizing the sum of the absolute values is a more efficient form of
parameter estimation than the more familiar procedure of minimizing the
sum squared discrepancy. The computational procedure used was the non-
linear simplex minimization procedure found contained in Press et al. 88",

I11.4.5.3 Taxonomy of Simple Models

The models dealt with in this section vary in three different ways, the choice
of a similarity function used to generate the similarity table set, the choice of a
support function used to generate positive and negative evidence from the
positive and negative exemplars, and the choice of scaling function that
transforms the positive and negative evidence into a "probability” value.
The range of choices that were used to construct simple models will be
described below.

Similarity Function

The two choices of similarity function used were essentially those described
in the evaluation of Similarity Postulate i:

1) a given subiject's ratings of overall biological similarity; the abbreviation
OVER(m;,m3) will stand for a given subject's rating of the overall biological
similarity of m; and my;

2) the "mixture"” similarities described above*; MIX(mj,mj,uf;) will stand for
a given subject's "mixture" similarity for mj, mp and unfamiliar aspect i.
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* The only additional modification to these similarity functions was that the
"mixture” similarities were modified so that the mean and standard
deviations of each set of 21 similarities (21 = 7 "choose" 2, the number of
distinct pairs of mammals) corresponding to the similarities for unfamiliar
property i (i.e. bone structure, digestion, etc.) were identical.

Support Function

These functions are applied separately to POS and NEG to generate weights of
positive and negative evidence, abbreviated as EVPOS and EVNEG. The
functions considered here, abbreviated as above, are MAX, MIN, AVG,
SUM, and CARD.

EVPOS = MAX(POS), or
MIN(POS), or
AVG(POS), or
SUM(PQOS), or
CARD(POS).

EVNEG = MAXNEQG), or
MIN(NEG), or
AVG(NEG), or
SUM(NEG), or
CARD(NEG),

Scaling Function

These functions combine the two numbers, EVPOS, and EVNEG, into a
probability between 0.0 and 1.0. The following functions are considered:

linear threshold - if (c1 + c2*EVPOS - c3*EVNEG) > 1.0, return 1.0
else if (c1 + c2¢EVPOS - c3*EVNEG) < 0.0, return 0.0
else return (c1 + c2¢EVPOS - c3*°EVNEG)
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sigmoidal - 1.0 / (1.0 + EXP[(c1 - c2¢EVPOS + c3*EVNEG)))
quotient - (c1 + EVPOS) / (c2 + EVPOS + c3*EVNEG)
c1,c2, and c3 are always positive constants.

Any combination of support function and scaling function gives a model that
obeys Similarity Postulate i'. To see this, first note that for every choice of
support function, an increase in the similarity of a mammal mentioned in a
positive premise and the conclusion mammal can sometimes increase and
never decrease EVPOS, and an increase in the similarity of a mammal
mentioned in a negative premise to the conclusion can sometimes increase
and never decrease EVNEG. Second, note that every scaling function is
increasing in EVPOS and decreasing in EVNEG. Agreement with Similarity
Postulate i' follows from these facts.

One reason these simple models are of interest is because they describe or
generalize a number of well known models of categorization, choice and
judgment. For example the models described by the use of the SUM support
function and the Ratio scaling function (for some similarity function) are a
generalization of Medin & Schaffer's Context Model [Medin78]. Nofosky90
contains an extensive discussion of the relationship between this model,
models of choice proposed by Luce, and models for stimulus generalization
and categorization studied classically by Shephard and more recently by
Nofosky. The model described by the MAX support function and the Linear
scaling function was proposed and tested on a closely related experimental
task in Osherson91. Models employing the MIN support function and the
MIX similarity function are related to explanation based and causal
attribution models in the following sense. The MIX similarity function
focuses the weight of similarity on the known aspects that are considered
"relevant"” to the unknown property class. So for example, if the unknown
property is known to deal with thermal regulation then the familiar aspect
body covering might be judged to be particularly relevant. Explanation based
strategies, if they apply to this task at all, make predictions about the
likelihood of a mammal having the unknown property according to the
"explanation" of the observed pattern of mammals having and not having a

98




property. A common idea about what constitutes an explanation is a factor
that is true of all of the positive cases and false of all of the negative cases. If
such an explanation must focus on a single property, then the questions asked
of the subject in the current task would seem to permit too many possibilities
for this to be a tenable strategy. However, if the factor sought by an
explanation could be something like "alike in body covering" then we would
expect MIN MIX to be able to capture this because for the explanation to
predict that the conclusion of the argument is likely it would be required that
the conclusion mammal share this factor, which in this case would be the
relevant similarity, with all of the positive premises and none of the negative
premises. If this were true then the MIN MIX model would make EVPOS
large and EVNEG small, and the prediction would follow. The procedure by
which the arguments in the likelihood booklets were generated, as described
in Appendix A, was designed to produce a significant number of arguments
in which such an "explaining" factor could be found. As noted in section II.2,
the main desideratum in the generation of the likelihood booklets was to
avoid "unnatural” arguments. In essence, the procedure that was adopted
was motivated by the idea that the availability of an "explaining" factor in a
given argument (according to my intuitions about similarities and unfamiliar
property domains) was a sufficient condition for guarding against the
unwanted arguments.

I11.4.5.4 Results: Simple Model Performance

The specification of a primitive similarity function, a support function, and a
scaling function taken together (along with a calibration procedure) define a
simple model. The table below summarizes the empirically observed
predictive capabilities of the simple models. The table also includes for
comparison a restatement of the observed median correlation of the two
sessions from experiment I and the predicted optimal model performance,
determined as described in section I13.1. Significant differences between
models listed in the table are indicated by a gap of a line.

Those models that used similarity in some intrinsic way (either OVER or
MIX) did significantly better than those that did not. Those models are
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represented by the choice of "CARD" as support function, and of course the
constant function which achieves 0.0 correlation. Models using "MIX" for the
primitive similarity function did slightly better than those using "OVER",
although this difference was rarely significant. As noted above, comparison
of the similarity table sets generated by using OVER and MIX confirmed that
these functions were highly correlated. The support functions MAX, SUM,
and AVG all did well, but no one function stood out above the others. Both
sigmoid and linear threshold scaling functions did well. Again neither stood
out. All models using ratio scaling were significantly worse than the most
successful strata of models.

Support Similarity Scaling Median Correlation
Estimate of the optimal model .88
Observed correlation of Experiment I .78
?
MAX MIX Linear .76
MAX MIX Sigmoid .76
MAX OVER Linear .75
SUM/AVG MIX Linear 75
AVG OVER Linear .74
MAX OVER Sigmoid 73
SUM OVER Linear 72
MAX OVER Ratio .69
SUM OVER Ratio 67
MIN OVER Linear .65
MIN MIX Linear 34
Card e Linear 24
Card -—-- Ratio 17
Constant  --—--- --mmme .00
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Table II. Descriptive Performance of Simple Models

I11.4.5.5 Evaluating the Maximum Entropy Estimator

In this section I describe the evaluation of the maximum entropy estimator
proposed in section II.4 for estimating likelihoods on the basis of information
contained in similarities. First I will describe how the estimator that was
described in generality, so necessarily abstractly, in section II.4 is applied as a
model for predicting judgments on the likelihood rating task of experiment I
and II

The estimator of section I1.4 is a function from an instantiation of a similarity
based likelihood scenario to a judgment of probability. A precise syntactic
description of the instantiation process was given in section I1.4 and was
exemplified using the story of "Bill” and the pasta. An example using one of
the likelihood rating task arguments will help to clarify how the choices to be
made in the instantiation process apply in the current context. Consider the
following argument.

P7 is a property related to mammals' digestion.

Given that:
lions have P7
grizzly bears have P7
otters DO NOT have P7

What is the likelihood (0-100%) that tigers have P7?

The proposition that a subject is asked to assign a likelihood to is the
proposition 'tigers have P7. The description of similarity based likelihood
offered in section I1.3 holds that this is to be accomplished by the process of 1)
choosing an appropriate conditional conditional probability to evaluate and
then 2) evaluating this conditional probability on the basis of the available
evidence. The choice of a conditional probability in step 1) is called an
instantiation. For a similarity based strategy, the choice of this conditional
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probability is equivalent to the choice of particular facts with which to bind
the variables used in the description of the GIs. I will now describe possible
choices for the GIs with reference to the argument given above.

GI-1: P is known to be a property from the class P - in this case P refers to P7.
Possible choices of property domains that P7 is known to belong to include
the class of properties having to do with the digestion of mammals (which
some mammals possess and some do not) and the class of properties having
to do with the biology of mammals (which some mammals possess and some
do not).

GI-2: ip (the conclusion mammal) is a member of a finite set {ix,0<k<m)} of
related individuals (other mammals)- this fact relates to the choice of contrast
class of similarity. In this case the contrast class could be considered to be
either the seven mammals involved in the likelihood arguments for a given
subject or all the mammals that the reasoner (the subject) is familiar with.

GI-3: the reasoner has beliefs about what proportion of the time each distinct
pair of individuals in the set {ix,0<k<m)}, say ij and i], had matching and non-
matching values for properties in the class P - i.e. the reasoner has beliefs
about the relative likelihoods of P(ii)&P(il) Vs. -P(ij)&P(il) VS. P(ij)&-P(il) vs.
=P(ij)&-P(i}) for random P in P - in section II.2 a theory of similarity was
presented which identified estimates of similarity with beliefs of this type.

GI-4: ip...in in {ix,0<k<n} are known by the reasoner to have P and in41. - - im
in {ix n+1<k<m} are known by the reasoner not to have P - which individuals
are chosen to make up the set {ix,0<ksn} of "positive" cases and the set
(ix,0<k<n} of "negative" cases is obviously constrained by the reasoner's
knowledge. Beyond this however, the choice to be made is part of the
instantiation strategy. For the properties appearing in the likelihood rating
arguments, the only individuals known to the subject to be positive cases are
those mammals appearing in the positive premises. However logically, there
are countless individuals that could be chosen to appear as negative premises:
basketballs, lasagna recipes, etc. - none of these individuals possess any
biological property having to do with mammalian digestion. Clearly, in some
sense, they are not chosen because they are not informationally relevant.
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Ideally, we would like to have a precise syntactic definition of how
"informationally relevant” is determined. One of the nice properties of the
maximum entropy estimator however, is that even if such a totally irrelevant
premise was chosen as a negative case, in theory it would only cause a waste
of computational resources, rather than a distorted judgment. The reason for
this will be described shortly.

The two principal choices to be made regarding the instantiation of the
argument above are the property domain and the set of positive and negative
cases. The maximum entropy estimator was tested in its ability to predict
likelihood judgments for these arguments using an instantiation strategy in
which the choice of property domain was the class of properties having to do
with the biology of mammals (which some mammals possess and some do
not) and the choice of positive and negative cases were exactly the positive
and negative premises of each argument. These choices of instantiation can
be partly justified on independent grounds and were partly required by
pragmatic necessities related to issues of parameter fitting. The justification
for the choice of the class of properties having to do with the biology of
mammals as the property domain was the success which this choice enjoyed
relative to confirming Similarity Postulate i. and in the evaluation of the
simple models above. The justification for using some of the positive and
negative cases contained in the premises of the argument is that this is
obviously the most relevant information the subject has available, and in the
case of the positive cases, the only information the subject has available of the
required type. One justification for using all of these cases is that they are
obviously salient in the subject's mind.

Once the choice of an instantiation of the GIs has been made, the "job" of the
estimator is determined. For the sample argument above, that job is to
provide an estimate for the conditional probability that tigers have a
randomly chosen biological property given that lions have this property,
grizzly bears have this property, and otters do not have this property. The
estimator, in accord with Similarity Postulate ii., is to produce this estimate
using the information described by GI-3 and GI-4, which in this case amounts
to using the pairwise overall biological similarities and the description of the
argument form. Because of pragmatic consideration, which I shall describe
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momentarily, the version of the estimator that will be tested here is the
second, alternative version, in which some other similarities are used. The
form of the maximum entropy estimator applied here produces an estimate
of this conditional probability based on the description of the argument form
and the pairwise similarities of all seven mammals contained in a given
subject's likelihood booklet, whether or not all seven mammals appear in the
particular argument being evaluated. This variation, while motivated by

~ expediency, is also of considerable interest in its own right. The variation is a
natural one in the sense that it is reasonable to suppose that the set of seven
mammals which the subject has been told of and which appear repeatedly
throughout the different arguments are at the forefront of the subject's mind.
One of the attractive properties of the maximum entropy estimator is that it
can make use of any information that constrains the probability distribution
being estimated. The actual numerical differences between the two ways of
producing estimates (use of just the similarities mentioned in each argument
vs. use of similarities between all 7 mammals) would usually be slight in any
case.

It is convenient to describe the maximum entropy estimator as an algorithm
which proceeds in the following two steps: o

a) A probability measure is estimated which assigns a likelihood to each of the
27 basic events corresponding to all the possible conjunctions of the seven
mammals in the argument set having and not having a randomly chosen
biological property. This probability measure is to be the maximum entropy
distribution compatible with the estimated overall biological similarities of 21
distinct pairs of the seven mammals - but see below.

b) A likelihood judgment for each argument is produced by interpreting the
argument as a request for the value of the conditional probability that
mammal mentioned in the conclusion has a randomly chosen biological
property given the pattern of mammals having and not having this property
that is described in the premises of the argument.

These steps should not be taken as a description of a processing algorithm
which people use. A discussion of plausible processing algorithms is given in
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section IV of the thesis. Using steps a) and b) to generate a prediction of
likelihood for each argument would be straightforward were it not for the fact
that the similarity values that are immediately available, the judgments of
overall biological similarity given by the subjects in session II of experiment
II, are at least three steps away from the similarity values that are required by
the model. These "three steps" reflect the following considerations.

i) Both the judgments of likelihood and the judgments of similarity given by
the subjects are placed on arbitrary scales of magnitude. At best these scales
are related to the conventional [0,1] probability scale by a constant
multiplicative factor. It is a reasonable possibility however that they may be
translated in non-linear ways. There is actually a precedent for such
translations: in D. Kahneman and A. Tversky’s Prospect Theory model of
choice in lotteries Kahneman et al. ‘79. In this model, verbally
communicated probabilities are scaled by a non-linear transformation in
order to be commensurate with the role assigned to them by a theory of
utility.

ii) The estimates of similarity may themselves be "noisy" - i.e. a given
judgment may be different from the expected value of an independent
sequence of productions of that judgment.

iii) In section I1.2, a number of slightly different models for relating
similarities to probabilities were proposed. It was argued that the exact form
of this relationship could be determined by pragmatic factors. In the
discussion of similarity instantiations in section II1.4.3, some reasons for
thinking that similarity model d) would be pragmatically appropriate to the
likelihood judgment task were discussed. It was also pointed out that there
would be no particular reason to think that subject's would be pragmatically
motivated to use similarity model d) when producing judgments of
similarity on a different day, in experiment II session 2. Fortunately, model
d), the symmetric form of model c), and model e) are monotonically related
to one another, so problem 3) is, in some sense, subsumed by problem i) from
the point of view of data analysis. '
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The computational strategy that was adopted for surmounting these problems
was as follows. The model for generating likelihood predictions was allowed
to have 25 "free" parameters and one meta-parameter. As in the evaluation
of the simple models, before making a prediction about the likelihood rating
of a given argument, the free parameters were to be fixed by calibrating them
according to which combination of parameters best fit the remaining data not
ihcluding the rating for the argument to be predicted. This was done in turn
for each of the 60 arguments. It is heuristically well known that one cannot
generally calibrate 25 truly "free” parameters using only 59 data points and
still generate a successful prediction about a 60th data point. In this case
however, the way in which most of the "free” parameters were used
prevented them from being really free in the conventional sense. In order to
describe these parameters and their use it will be necessary to recall the
specification of the maximum entropy estimator from section I1.4. The
estimator is specified by the following definitional equations:

There are 27 basic events to the space that the probability measure pr assigns
probability. These are the possible conjunctive patterns of the seven
mammals having and not having a given property. Let be.x stand for the kth
basic event (k between 1 and 27) and let the function val(i,k) be equal to 1 if
the ith mammal has the property in the kth basic event and 0 if it does not.
Twenty one special functions f;; that map the space of basic events in the set
{0,1} are defined as follows:

1) fij(.be.k) = 1.0, if val(i,k) = val(j,k) and 0.0, otherwise.

There is an intrinsic relationship between these functions and the similarity
formula d) shown immediately below in abbreviated form.

d) Sim@i,j) = (p11 +poo)/ (P11 +Po1 + P10 +Poo) = P11+ Poo where

p11G,) = probability of (the event that) P(i) and P()).

130 88) = probability of (the event that) P(i) and not P(j).
po1(i,j) = probability of (the event that) not P(i) and P(j).
poo(i,j) = probabilify of (the event that) not P(i) and not P(j)

1-(p11 + P10 + Po1)
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Specifically, the relationship is that fjj(.be.x) = 1.0 just in case the event .be.x
is a subset of either the event that P(i) and P(j) or the event that not P(i) and
not P(j) - i.e. fij(.be.x) = 1.0 if .be is an event in which mammal i and
mammal j "match” in terms of having or not having the property. The sum
of the probability assigned (by pr) to the events .be.i is such that fij.be.x) =1.0
is equal to p11(i,j) + poo(i,j) which is in turn equal to Sim(,j).

There exist 21 constants cjjand a special constant cg such that
2)  pr(beiw) =cp+EXP[ Zjj cjj » fij(.be.)] and
3)  1/cp=2xEXP[ Zjj gjj « fij(-be.w)]

The constants cjj correspond to 21 of the 25 "free" parameters. The constant
cp is actually determined by these parameters as is shown by equation 3).
There are 21 similarity functions corresponding to the distinct pairs of the 7
mammals that are also determined by these parameters as shown by
equation 4) - the parameters determine pr, which in turn determines the
similarity functions.

4 Sim(ij) = E(fi) = Sk fi(bex) «pri-bes)

These similarity functions can be thought of as the "true" similarities. For
the model, they are to be related to the subjects' judgments of overall
biological similarity by the following equation.

5)  a«Sim(i,j) + b = SIM(j,j,OVER) + "noisel”

What this equation expresses is that there are two more free parameters, a
and b, defining a linear transformation from the current "true" similarities
of the model to the subject's judgments about overall biological similarity.
Any left over discrepancy contributes to the current estimate of the fitting
error of the model. Given the probability measure pr, the conditional
likelihood that the conclusion mammal, i , has P, given that the mammals
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i ... inp have P and the mammals in41... im do not have P, is given by the
familiar conditionalization formula expressed on line 6).

6) pr(P'(i)) | P'(ip) & ... & P'(in) & ~P'(in+1) & .. & -P'(im)) =

pr(P'(i1) & P'(ip) & ... & P'(in) & “P'lins1) & ... & -P'(im)) /
pr(P'(ip) & ... & P'(in) & ~P'(in+1) & ... & =P'(im))

Finally, these conditional probabilities are related to the subject’s judgments
of likelihood by another two parameter linear transformation.

7) copr(P'(i1) | P'(i2) & ... & P'(in) & —P'(in+1) & ... & ~P'(im)) +d =

rating for argument 1 + "noise2" |
where argument 1 has conclusion mammal, i1, positive mammals iy ... in ,
and negative mammals in41..- im-

To summarize, Of the total of 25 free parameters, 21 were used to
parameterize the unknown probability distribution, 2 were used to
parameterize a linear transformation relating the unknown probability
distribution to the likelihood ratings, and 2 were used to parameterize a
linear transformation between the expected values of the probability
distribution that correspond to the similarities of model d) and the subject’s
ratings of overall biological similarity. There are two sources of bad model fit
that the free parameters are adjusted to minimize during the calibration
procedure. These are represented above by "noisel”, the discrepancy in the fit
of the similarities of the model, after they are linearly translated, to the
judged similarities, and "noise2", the discrepancy in the fit of the conditional
probabilities of the model, after being linearly translated, to the subject's
probability ratings. During the calibration process, the fit of the model to the
data is described by the following equations.

8) Error of similarity fit = Zj; D((a+Sim(i,j) + b) - SIM(i,jOVER) )
where D is an error norm, such as squaring, or taking absolute value, a
and b are two of the free parameters, Sim(i,j) is the “true” similarities
which are a function of the current state of the model, and
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SIM(i,j,OVER) is the current subject’s rating of the overall biological
similarity of mammal pair (i,)).

In other words, the contribution to the error of the fit from the similarities is
equal to the sum of the contributions of the error of fit to each of the 21
similarity judgments, and each of these errors is some function of the
discrepancy between the model and the given judgment.

9) Error of likelihood fit = X D((ceCondit(argy) +d) - Rating(argy))
where D is as above, ¢ and d are two of the free parameters, and
Condit(argy) is the condtional probability for argument k derived from
the current model’s version of pr.

Here the variable k ranges over all of the 60 arguments except the one that is
currently left to one side and is to be predicted. The total error of the current
model fit is described by 9).

10) Error of total fit = swe"Error of similarity it" + "Error of likelihood fit".
where sw is the meta-parameter mentioned above.

Before making each prediction of the likelihood rating assigned to an
argument, the parameters of the model are adjusted in an attempt to
minimize the error of total fit. Note that if the meta-parameter sw is large,
then the adjustment process will tend to ignore the error of the fit to the
argument ratings, focusing instead on minimizing the error of the fit to the
similarities, as the large value of sw will cause the error of similarity fit to be
the source of most of the current fitting error as measured by 9). As the meta-
parameter sw goes to infinity then there are actually no free parameters in the
model that are being adjusted to fit the likelihood ratings since the values of
the parameters are determined by those which allow the model form to best
fit the similarity judgments. If sw is very large though, the model cannot
adjust to compensate for problems i)-iii). If sw is very small we would not
expect the calibrated model to be particularly successful in predicting because
too much freedom would then be given to the parameters to fit the 59
calibrating likelihood judgments. The poor predictions such a procedure
would make are analogous to what would happen if we had fit a noisy curve
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by simply drawing connecting lines between adjacent points and were then
expecting the direction of the tangent to the last line segment drawn to predict
the next data point. An intermediate value of sw is optimal then. Instead of
arbitrarily picking such a value, it was searched for by a computer algorithm.

The entire process of evaluating the maximum entropy estimator is described
by the following hierarchical algorithm.

I For each subject, a one dimensional search is performed for value of sw that
causes the function described by level II to return the optimal value of the
correlation between model pi‘edictions and the likelihood ratings of that
subject. The value of the optimal correlation returned by II is taken to be the
performance of the maximum entropy estimator for the current subject.

11 Each of the 60 arguments rated by a given subject is selected in
turn and held aside. The other 59 arguments, the ratings for those
arguments, the 21 judgments of overall biological similarity, and
the current value of the parameter sw passed along by I, are passed
to the function described by level III. This function returns
calibrated values for the 25 "free" parameters and these are then
used to make a prediction for the likelihood rating given by the
subject to the argument form of the argument that was held aside.
Note that fixing these values in effect fixes a single probability
distribution such that each of the 60 arguments is interpreted as a
specific conditional probability relative to this distribution. When
this process is repeated 60 times, there is a vector of 60 predictions.
The correlation between this vector and the actual likelihood
ratings given by the subject is returned to 1.

III The 25 parameters are adjusted to provide the best fit of the
specified form to the 59 rated arguments and the 21 similarity
judgments. The value of the fit for a given set of parameters is
described by equation 9) above. The parameter sw used in this
equation is the parameter passed on by II. The values of the
fitted parameters are returned to II. Details of the fitting
procedure are described in Appendix D.

110




Results and Discussion:

The median correlation of the predictions generated in the manner described
above and the likelihood ratings of the 20 subjects of experiment IT was .84,
with a minimum of .72 and a maximum of .95. This performance compares
favorably with the estimated performance achievable by the optimal model
for the 20 subjects of experiment I: .88. A notable achievement of the
maximum entropy estimator and the calibration process described above was
an improvement in performance over the observed median intersession
correlation of the 20 subjects from experiment I: .78. These figures, together
with the performance statistics of some of the better simple models are shown
in the table below.

The maximum entropy estimate clearly performed “well” in an absolute
sense. The estimate of optimal model performance was taken from a
different group of subjects and it is possible that those subjects participating in
experiment I were more “noisy” than the subjects participating in experiment
II. However the maximum entropy estimator, besides being handicapped by
problems i), ii) and iii) mentioned above, was also handicapped by the

Support Similarity : Scaling Median Correlation
Estimate of the optimal model performance .88
Performance of the maximum entropy estimate .84
Observed correlation of Experiment I .78
MAX MIX Linear .76
MAX MIX Sigmoid .76
MAX OVER Linear .75
SUM/AVG MIX Linear .75
AVG OVER Linear .74
MAX OVER Sigmoid .73

SUM OVER Linear .72
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Table III. Relative Performance of Maximum Entropy Estimator

relatively small number of data points on which to do calibration. Figure 5
shows a histogram of the absolute values of the “errors” between the

predictions of the estimator and the actual subject ratings, pooled together
from the 20 subjects of experiment II along with the histogram representing
the estimated optimal attainable performance for the 20 subjects of
experiment 1. Figure 6 shows the two histograms of figure 5. along with the
observed discrepancies between ratings of related pairs from experiment L.
Comparison of these histograms reveals that the performance of the
maximum entropy estimator is indeed “closer” to the estimated optimal
attainable performance standard than to the observed errors.

Comparison of estimated | J - E[J] | and observed | J1 - J2 |
800

B |J - E[J] | (estimated)

600 | J1-J2| observed

0-9 10-19 20-29 30-39 40-49 50-59 60-69 70-79 80-8990-100

Figure 5. Comparison of the inferred optimal performance of a deterministic
model for the subjects of experiment I with the performance of the maximum

entropy estimator in predicting the judgments of the subjects from
experiment II.
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entropy estimator in predicting the judgments of the subjects from
experiment II.

The comparison of the performance of the maximum entropy estimate with
the performance of the various simple models is not a direct one, even
though the test data was the same. The calibration procedure that was used
with the maximum entropy estimate was significantly more complex. It
seems likely that the performance of some of the simple models could be
improved using the more sophisticated calibration procedure which, in effect,
allowed “errors” in the similarity values to be inferred and adjusted. There
are however, some non-statistical reasons for thinking that the maximum
entropy estimator is more "natural" than any of the simple models that were
examined proposed. I examine some of these below.

| J - E[J] | - experiment | estimated vs.
| J - Pred | - experiment Il observed vs.

800 | J1 - J2 | - experiment | observed

400

200

, B |J-E[J] |- experiment | estimated
600 B | J-Pred | - experiment Il observed

B |J1-J2)- experiment | observed

0-9 10-19 20-29 30-39 40-49 50-59 60-69 70-79 80-8990-100

Figure 6. Comparison of the items from figure 5. with the addition of the observed discrepancies
between ratings of related pairs from experiment I.
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a) Continuity in the handling of deductive cases - All of the arguments that
were presented to subjects in experiment I and II called for inductive
judgments to be made - in the sense that a subject could not know for sure
whether or not the conclusion mammal had the vaguely specified property.
If the arguments were modified so that, while they retained their basic form,
the conclusion mammal of a given argument was allowed to appear in the
premises of that argument, then the arguments in which the conclusion
mammal did appear in the premises would no longer be inductive. For
example, given that bobcats have P12 and otters do not have P12 it is 100%
likely that bobcats have P12, whatever P12 is. What I mean by “continuity in
the handling of deductive cases” for a particular model is that the definition
of the model does not have to be changed or elaborated to make it necessarily
true that the model would assign a probability of 1.0 to the foregoing
argument. This is true of the maximum entropy estimator for two reasons,
one trivial and one substantive. The trivial reason is that the maximum
entropy estimator proceeds by first computing a probability measure Pr, and
then evaluating the argument as a conditional probability governed by that
measure. No matter what probability measure is computed the probability of
the event that bobcats have P12 given that bobcats have P12 and otters have
P12 will always be 1.0 because the event being conditionalized on is a subset of
the event being evaluated and conditionalization essentially means setting
the probability of the event conditionalized on to 1.0, and any superset of a set
having a probability of 1.0 must have probability 1.0 as well. The more
substantive reason for the continuity of deductive cases is that the probability
which the maximum entropy estimator assigns to a conclusion is a
continuously differentiable function of the similarity of the conclusion to
each of its premises, and for any positive premise individual, whether that
individual is actually identical to the conclusion individual or not, the limit
of the probability assigned to the conclusion as the similarity of the premise
individual and the conclusion individual approach 1.0 (for any of the
similarity models) will be 1.0. The reader can verify this property
straightforwardly for similarity model d) through consideration of the proof
given in the conclusion of section IL5 to show that the maximum entropy
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estimator defined there agrees with Similarity Postulate i. Continuity in the
handling of deductive cases will not generally hold for any of the simple
models.

b) The maximum entropy estimator, which essentially uses the similarity
values as a type of covariance statistic, is a form of computation that has been
independently proposed several times in the connectionist and neural
network literature. I shall explore some of these proposals in section IV. The
application of a connectionist or any other simple model to the description of
a "higher level" (i.e. involving conscious choice and strategies) judgment
process is, of course, not intended to be an isomorphic description of
processing. Nevertheless, the fact that this type of computation falls so
naturally out of this paradigm is intriguing.

c¢) The maximum entropy estimator has an independent computational
motivation for its form. In certain circumstances it is a type of maximum
likelihood estimate for an unknown probability distribution. The following
fact conveys a strong flavor of the idea. Suppose that the estimated
similarities were actually based on empirical statistics recorded from a given
set of data. The data set might be generated by first choosing n actual
properties of mammals that are homogenous within a given species of
mammal, and then recording for each of those chosen properties whether or
not a given species of mammal has the property for each species of mammal
under consideration - take for example the seven mammals from some
argument booklet. Call a record recording for each of n properties, whether
each of m mammals has the property or not a "data matrix". The four
building blocks of the similarities, p11(i,j), p10,j), po1(i,j), and pgo(i,j) can be
determined for each pair i,j by counting up the number of the n properties
that fall into the associated set and then dividing by n. Once these the values
of these building blocks are fixed, the values of the similarities are fixed as
well. Now given a certain set of similarity values derived in this way, it will
generally be the case that more than one possible data matrix of n X m 0's and
I's could have given rise to exactly this set of values. If all we know about the
data matrix that was actually recorded is the set of similarity values that were
derived from it, then it makes sense to say that every data matrix which
would give rise to exactly this set of values is equally likely. Suppose then
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that we define a probability distribution on the possible patterns of the m
mammals having and not having a property by counting the number of times
that this pattern occurred among all of the possible data matrices that are
compatible with the observed similarities. Call this distribution pr’, and call
the maximum entropy distribution compatible with the similarities pr. For
finite size n, pr and pr' will not be exactly equal but they will be very close to
one another, and the distance between them shrinks "exponentially” fast as n
grows large (given any of a number of reasonable definitions of "distance”
between probability measures). So pr is a good approximation to pr' for any n,
and becomes essentially equal to pr' as n grows large. So one way of thinking
about the maximum entropy distribution compatible with the observed
similarities is that it is a very close approximation to the average or expected
value of all the ways in which the similarities could actually have been
generated. It will also be a close approximation to the mode of this
distribution of "ways of generating the similarities." For a more formal
discussion of these theoretical facts see Jaynes '79.

d) The maximum entropy estimator provides an independent interpretation
for the notion of “unnatural” arguments that were discussed in III.2. This
independent interpretation is essentially that the probability which the
estimator assigns to the event which corresponds to the probability of the
premises is so low in these cases that it falls below some threshold, indicating
that the computations to be performed in estimating the ratio of the
probability of this event to the probability of the conjunction of this event and
the conclusion event would be unreliable or meaningless.

11.4.5.6 Discussion of EQ2 and EQ3

Recall that EQ2 was essentially the question of whether the likelihood
judgments on this task could be predicted as functions of argument form and
similarity. EQ3 asked whether the the maximum entropy estimator was the
correct form for such a model. Evaluation of EQ2 and EQ3 on the basis of the
data analysis from experiment I and experiment II is not a clear cut, yes or no.
The following conclusions seem immediately defensible.
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1) A variety of simple models perform well in predicting likelihood
judgments as a function of rated similarities and argument form. The
performance of the better versions of these simple models is only marginally
inferior to the predictions of the same type of judgments generated by the
having the same subject rate arguments that are identical except for the order
of their premises on a different day. These simple models do not however
capture all of the statistical regularity that is present in the judgments.

2) The maximum entropy model was able to capture most of the statistical
regularity in the judgments as a function of, depending on how one looks at
it, i. rated similarities, other rated arguments, and argument form, or

ii. "true" similarities and argument form.

Although both the simple models and the maximum entropy estimator
calibrated parameters using other rated judgments, the simple models
produced from this calibration process a function from rated similarities and
argument form to likelihood judgments. The maximum entropy model used
the calibration process to change the value of the similarities themselves.
There are two possible ways of looking at this. One way, viewpoint ii. above,
is to see the model as inferring true similarities from similarity judgments
that are noisy and perhaps reflect a different similarity or choice of judgments
about what type of properties are of interest. The other viewpoint is to see the
form of the model as a useful one for estimating an unknown probability
distribution, assisted by the similarity judgments, but perhaps being only
approximate in its interpretation of similarities. Under either interpretation,
an interesting consequence of the way in which the maximum entropy
estimator was evaluated is that it implies that the statistical regularity in a set
of likelihood judgments of the type appearing in the likelihood booklets of
experiment I and II are well described as a set of conditional probability
judgments from a single coherent probability distribution. This finding is
particularly interesting in light of claims in the Psychological literature which
argue for a disassociation between human likelihood judgment and
probability. In section I1.3 I briefly discussed some relationships between the
ambiguity of an estimated similarity as a statistic and the “inclusion fallacy”. I
suggested there that errors like “inclusion fallacy” would be avoided if
similarities were not being used inappropriately and that one form of
appropriate usage which would avoid these errors would be if the individuals
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A and B appearing in the expression Sim(A,B,D) were homogenous with
respect to D, which is to say that for every i,j in A and k,1 in B and for every P
in D, P(i) if and only if P(j) and P(k) if and only if P(I). Experiments Iand I
pragmatically presupposed the homogeneity of the different mammal species
with respect to the type of properties being reasoned about. The fact that
probabilistic coherence was locally obtained in a typical subject’s reasoning
about a set of arguments may be interpreted as strong support for this view of
the rational utility of similarity based likelihood judgment.

I11.5 Experiment III: Does the property éspect matter to this task?
111.5.1 Motivation and Procedure

One of the recurrent nagging issues from experiment I and experiment I was
whether the particular choice of unfamiliar aspect which was featured in a
given argument really had any effect on judgment. In experiment I it was
found that Similarity Postulate i. held up better when a similarity function
which did not vary with the different unfamiliar property aspects was used.
In experiment II, some of the models which did vary the similarity table that
they used as a function of the unfamiliar property aspect seemed to gain a
slight edge in performance, although a statistically insignificant one. The
following experiment, which is a slight variation on experiment I, was
conducted in an attempt to resolve the issue. Ten subjects participated in two
experimental sessions which had an elapsed time of from one to seven days
between them. In the first session, subjects rated an argument booklet exactly
as in the first session of experiments I and II. In the second session, as in
experiment I, subjects rated another booklet of 60 arguments that for each
subject was a variation on the booklet that he or she received in session I. Of
the 60 arguments in the booklet which the subjects received in the second
session of experiment III, 30 formed a related pair with a corresponding
argument from the first booklet in exactly the same way as in experiment I.
The property aspect, the set of positive premises, the set of negative premises,
and the conclusion were all identical. For the other 30 arguments in this
second booklet, the set of positive premises, the set of negative premises, and
the conclusion were all identical in in content to a corresponding afgument
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from session I. However, what distinguished this second set of thirty
arguments was that the unfamiliar aspect of the property involved was
randomly reassigned. So no matter what the property aspect of the
corresponding argument had been in the first booklet, in the second booklet it
had an even chance (one in five) of being either bone structure, digestion,
dentition, thermal regulation, or fluid regulation. The thirty related pairs of
arguments which corresponded in aspect between the first session and the
second session were randomly interleaved throughout the booklet of 60
arguments in each session with the thirty related pairs of arguments that did
not necessarily correspond in aspect.

II1.5.2 Results

The analysis of experiment III proceeded by computing separately, for each
subject, the correlation between the first booklet and second booklet ratings of
the 30 arguments in the set with unchanged property aspects, and then
comparing this to the similar correlation between the 30 pairs of arguments
with randomly reassigned property aspects. The median among the 10
subjects for the unchanged set was .62, the median for the randomly
reassigned set was .59. The small discrepancy between these numbers was
interpreted as providing evidence for small differences in most subjects
perception of the different unfamiliar aspects, at least as they effect this type of
judgment. I do not have a strong story to tell about the discrepancy between
the .62 for the unchanged set here and the median of .78 for the nearly
identical statistic in experiment I - the fact that the 10 subjects in this
experiment were run near the end of an M.LT. semestéer may have been the
important factor. Experiment III was interpreted as providing further
confirmation of the fact that differences in unfamiliar property aspect did not
have a strong effect on judgment, though they did probably have some small
effect. ‘

II1.6 Experiment IV - The factors influencing similarity

IT11.6.1 Motivation and procedure
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Experiment IV investigates the factors which influence judgments of
estimated similarity. It was pointed out in section II.2 that the question of
which factors influence the estimation of similarities is logically distinct from
the question of the meaning and consequences of similarities as beliefs.
Nevertheless, if similarity based likelihood judgment is to have a utility as a
reasoning strategy we would expect the factors which contribute to estimated
similarities to be commensurate with that which is believed as their
consequence. From the results of Tversky '77 and '78 we expect that
knowledge of domain related features and categories will play an important
role in the estimation of similarities, although Tversky does not provide any
concrete model for integrating featural and categorical information - unless
the model he provides is summarized by the statement that a category is a
feature with high diagnosticity.

In addition to expecting a relationship between featural and categorical
knowledge and estimated similarities, we also expect judgments of similarity
to be reliable indicators of estimated similarities. The reasons why these two
identities may not be necessarily identical include the following: '

a) A particular judgment of similarity may be the result of a computation
which, relative to the variables measurable by the Cognitive Psychologist, is a
stochastic process.

b) Judgments of estimated similarity involve translating mentally derived
quantities to numerical values on some essentially arbitrary scale and
reporting them as such. The number of gradations in the scale to be used for
reporting may be far different from the number of effective value gradations
of the internally represented quantity and decisions about the translation
between the two may be somewhat ephemeral and based on factors not
available to the Cognitive Psychologist.

The model of similarity that was used in the maximum entropy modelling in
the analysis of the data from experiment II was
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We are, of course, uncertain about which featural and categorical knowledge
might play a role in the estimation of any particular similarity for any
particular subject. However, in spite of these uncertainties, as well as the
uncertainties in the relationship between estimated similarities and any
particular set of similarity judgments, it seems like a worthwhile project to
see whether a computation which uses the featural and categorical knowledge
that we might expect to be available to a subject, and which uses this
knowledge in a manner commensurate with the interpretation of similarity
given above, can successfully predict judgments of similarity. This was the
goal of experiment IV.

A body of featural and categorical knowledge/beliefs about mammals that was
collected in the course of the experiments described in Osherson et al. '91 was
conveniently available. I will now describe how this data was collected and
how it is used to construct a model of the beliefs that a typical subject has
about the probabilities of pairs of mammals having and not having
"biological” properties. The data I will now discuss was obtained in two
different experiments with two different groups of subjects. The first of these
experiments I will refer to as the "feature rating task" and the second as the
"categorization task".

Feature Rating Task

Subjects first reviewed a list of 48 mammals and 85 features. Some 42 of the
48 mammals appear on the list of 47 mammals that figure in experiments’I, II,
and IMl. Data pertaining to mammals which either appear on the list of 48
mammals used in the feature rating task but not on the list of 47 mammals
used in experiments I, II, and III, or which appear in experiments I,lI,and III
but not on the list of 48 mammals used in the feature rating task did not
figure in the final data analysis of this experiment - though the former figure
as a small percentage of the contrast class for the feature rating and
categorization tasks and the latter as a small percentage of the contrast class for
similarity rating. Subjects also reviewed a list of 85 familiar features of
mammals. Abbreviations for this list of properties are listed in table IV, and
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some sample properties are given in unabbreviated form in table V. Subjects
always worked with unabbreviated properties; the abbreviations are for
expositional ease. With the exception of animal noises (bleeting, roaring, etc.,
essentially unique to each animal), no other feature was listed by more than a
single subject from a group of 10 M.LT. students asked to supply features of
mammals. Moreover, none of the 85 properties was judged to be
inappropriate by more than one student in the same group. These pilot
studies suggest that the 85 properties capture much of the common
knowledge about familiar mammals.




black white blue brown gray

orange red yellow patches spots
stripes furry hairless  toughskin big

small bulbous lean flippers  hands
hooves pads paws longleg longneck
tail chewteeth meatteeth buckteeth strainteeth
horns claws tusks smelly flys

hops swims tunnels walks fast

slow strong weak muscle biped
quadraped active inactive  nocturnal hibernate
agility eats fish eats meat plankton eats vegetation
insects forager grazer hunter scavenger
skimmer stalker newworld oldworld arctic
coastal desert bush plains forest
fields jungle mountains ocean ground
water tree cave fierce timid
smart _group solitary nestspot domestic

Table IV: Abbreviations for properties figuring in the study

bulbous: having a roundish or bulky body shape

longleg: - having long legs

chewteeth: having molars that are good for chewing

agility: having a high degree of physical coordination
ocean: living in the ocean

bipedal: having the ability to walk erect on their hind legs

coastal: living near the edge of an ocean or sea

Table V: Sample unabbreviated properties

Prior to the performance of the feature rating, it was explained to subjects that
a non-negative number was to be assigned to each mammal-feature pair, and
that the number assigned should reflect "the relative strength of association
between the property and the mammal". No upper bound was imposed on
these ratings. Subjects were also told to expect that many of the properties
would be negligibly associated with many of the mammals. A rating of 0 was
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to be used for these cases. Each subject worked for one hour, evaluating 10 to
15 randomly chosen mammals on all 85 properties (faster subjects evaluated
more mammals). Subjects worked individually, at a computer terminal, and
had the opportunity to revise their prior ratings at any time. Random
sampling of the mammals was constrained so that each mammal was
evaluated by 12 to 13 subjects* (* this number is somewhat in excess of the
figure reported in Osherson et al. '91 as more ratings were conducted
subsequent to the submission of that paper).

Construction of mammal-feature database

Every subject's ratings were individually normalized by a linear
transformation to range from a lowest score of 0 to a highest score of 1.
Following this operation, the median value of the 12 to 13 ratings of each
mammal-feature pair was computed and stored in databasel. The numbers
ranging from 0 to 1 in database 1 were then chosen for conversion to a value
of either 0, 1, or * according to the following procedure. - where * signifies that
they were removed from the database. A rating from databasel for mammal;
and featurey was converted to a 1 in database? if its value was greater than or
equal to the median of all the 85 feature ratings for mammal; in databasel and
it had a value of .1 or greater. A rating was converted to a 0 in database2
otherwise. If the ratings for a feature were such that it wound up with at most
a single non-zero entry among all the 48 mammals in database2 then it was
removed as a column from the database. There were 72 remaining features
after the removal process was concluded. The general motivation for this
conversion procedure was to assign a 1 to all mammal feature pairs such that
"the amount of association that the typical subject has with this mammal
possessing this feature is non-negligible, it is significant that the mammal
possesses this feature relative to the contrast class of other mammals, and the
feature is a basis for comparison among mammals". The specific choice of the
threshold value .1 was arbitrary. The database of the converted numbers will
hereafter be referred to as the mammal-feature database.
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Categorization Task

An independent group of 30 subjects parﬁcipated in a categorization task. The
subjects performing this task first read the following instructions.

This part of the experiment concerns your judgment about
how to distribute mammals into natural categories. Your task
will be to create biologically meaningful groups, and then for
each group to indicate which of the 48 mammals belongs to it.
It is permitted to leave a mammal uncategorized if there are no
other mammals in the list with which it forms a biologically
natural group. Groups can be of any size, and it is permissible
to have overlap of members.

Categorization was carried out on a computer terminal. Subjects devised
category names and indicated which mammals among the 48 were included
in it. Review and revision of previous choices of category name and
membership was possible at any time. The superordinate "mammal” was not
allowed. The categorization procedure lasted roughly 30 minutes.

Mammal X Mammal Featural Categorization and Featural Similarity
Databases

One 48 X 48 database, indexed by pairs of mammals, was constructed by
recording in the (i,j) position a decimal number indicating the fraction of the
30 subjects in the categorization task which had formed some category that
contained both the ith and the jth mammals. This database will be referred to
as the categorization database, and abbreviated as CP.

A second 48 X 48 database, indexed by pairs of mammals, was constructed by
computing for each pair (i,j) of mammals the fraction of the 72 features in the
mammal-feature database for which either both mammal i and mammal j
had a value of 1 or both mammal i and mammal j had a value of 0. This
database will be referred to as the featural similarity database, and abbreviated
as FS
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The formula for estimating similarity that I will examine is given by the
following equation.

1) Sim(i,j,{overall}) = 9+CP[i][jl + (1-9)+FS[illjl,

where {overall) stands for the set of properties related to overall biological
similarity which some kinds of mammals have and some do not, and dis a
positive constant between 0.0 and 1.0. This model reflects the following set of
ideas. Assume for sake of argument that the mammal-feature database
represents the knowledge of some typical subject about occurrence of familiar
properties among familiar mammals, and also assume that we fix a given set
of intuitive sub-categories of mammals -e.g. canines, felines, bears, whales,
etc. which are real biological categories for this proto-typical subject. Then of
the features figuring in the mammal-feature database, there is some subset of
these features, which I will call H, such that for every sub-category and for
every feature f in H, either all members of the category have f (i.e. have a 1 in
the f position) or all members of the category do not have f (i.e. have a 0 in
the f position). Then pl = card(H)/72 is the fraction of the familiar properties
of mammals which are homogenous among sub-categories of mammals.
Now suppose we want to estimate the likelihood that some mammal i
matches some mammal j relative to some new feature f. One possible
estimate would be to simply use the proportion of matches among the, in this
case 72, properties of the "observed" feature set (or some approximation of
that quantity). This would seem to be our best guess if we believe that f' is
"drawn" from a set of features that is more or less equivalent to the observed
feature set. However, if f' is conceivably drawn from a set of unfamiliar
features/properties of the type which figured in experiments I and II, then we
might desire to modify our estimate for this unfamiliar domain. Specifically,
if we believe that the proportion of properties in this unfamiliar domain
which are homogenous with respect to sub-categories of mammals - call this
p2 - is greater than p1 then we would want to modify our estimate
accordingly. One way to do this is to pick a o' between 0 and 1 to use in the
following formula. '
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2) probability of i and j matching in new domain
= Sim'(i,jnew domain)
= 9-CATIi,j] + (1-9)«FSLilljl,

~where the function CAT[i,j] = 1 if i and j belong to the same sub-category and 0
otherwise. A choice of a particular o' between 0 and 1 is appropriate if one, in
effect, believes that p2 = ' + (1-9")+p1. It is a simple exercise to check relative
to this latter formula that p2 ranges monotonically between p1 and 1.0 as o'
ranges monotonically between 0.0 and 1.0. The idealistic justification for
these equations is the following. Features or properties logically come in two
types: those which are homogenous with respect to sub-categories and those
which are not. Relative to the domain of familiar properties in the mammal-
feature database, some fraction of p1 of the properties are homogenous and
some fraction (1-p1) are not. It is not convenient to actually compute p1
however. In an idealized model of the new domain of unfamiliar properties,
some fraction p2 are homogenous and some fraction 1-p2 are not. When
confronted with a property in the new domain, we would ideally want to
predict the probability of two mammals matching in the new domain given
that a property belongs to the homogenous fraction according to whether the
mammals belong to the same subcategory, and ideally we want to predicf the
probability of two mammals matching relative to properties in the
inhomogeneous part of the new domain according to their tendency to match
in the inhomogeneous part of the old, familiar domain. Since we wouldn't
generally have any information about whether a property in the new domain
was homogenous or not, this is all an "as if" story. But we can get an estimate
of the probability that j matches i relative to a random property in the new
domain that makes a prediction "as if" there is a p2 chance the property is
homogenous and a (1-p2) chance that it is not by using formula 2) above.

Since different subjects have different opinions about the categories of
mammals, the function CATIi,j] in formula 2) is replaced by CP[i][j] in
formula 1) above, where CP[i][j] corresponds to the percentage of subjects
which place mammal i and mammal j together in a category. Since the story
which says that every pair of mammals either belong to a single subcategory
or do not is idealized anyway it is possible that using CP brings some
additional advantage to the descriptive validity of the simple account given
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above by taking some account of different kinds of homogeneity through the
stochastic mechanism of having different subjects select different categories at
different times and then averaging them together. Realistically, the fraction
9" will vary across subjects, but for the purposes of the current analysis, in
which I am only using some composite of a typical subject's knowledge base
anyway, I will idealistically use a single global estimate of overall biological
similarity with a single d parameter.

The similarity judgments that were to be predicted were those provided by
the 20 subjects of experiment II in their second experimental session plus the
judgments provided by an additional group of subjects that participated in
another experiment not described here. The first experimental session of this
other experiment was a minor variation on the first session of experiment o
and the second sessions of the two experiments were identical. Each subject
in these experiments provided judgments for the similarity of each distinct
pair of seven mammals relative to their overall biological similarity (among
other similarity aspects). There are 21 distinct pairs of 7 mammals, and so 21
times 40 = 840 pairs in all. However, because some of the mammals
appearing in these experiments did not appear in the feature rating and
categorization tasks it was necessary to remove from consideration all of the
pairs containing these now extraneous mammals. After doing this there was
a remaining total of 647 rated pairs distributed among the 40 subjects. There
were never more than 2 extraneous mammals in the mammal set of any
subject, and so after the removal of the extraneous.'mammals there was either
"7 choose 2" = 21 pairs, "6 choose 2" = 15 pairs, or "5 choose 2" = 10 pairs of
mammals rated and potentially predictable for each subject. Of the 647
different instances of similarity judgments under consideration, 347 were
actually distinct pairings of mammals, each appearing in the ratings only a
single subject.

I11.6.2 Data Analysis and Results
Because of the uncertainty concerning the scale of the similarity ratings, the
predictions generated by formula 1) above were allowed to try and match the

judgment data as best they could by adjusting the parameters of a two
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parameter linear transformation as well as the value of the parameter 0.
These three parameters were adjusted to find the best match (in terms of the
sum of the absolute value of the differences) between the adjusted predictions
of formula 1) and the 647 judgments of the overall biological similarity of
mammals. The technique for doing this was essentially the same as the
technique for calibrating the simple models of section IIL.4.5. In this way, a
value of d was globally fixed at approximately .4. Subsequent to the
calibration of d, the Spearman rank order correlation between formula 1) and
each subject's 10,15, or 21 judgments was obtained, and finally the median of
these rank order correlations was computed. A value of .74 for the median
rank order correlation between the predictions of the model, representing a
global knowledge base, and the judgments of overall biological similarity of
the 40 subjects was obtained.

To further examine the nature of the information provided by the
categorization data, the same analysis as above was performed again with the
substitution of subjects' judgments of similarity of ancestral lineage used
instead of their judgments of overall biological similarity. The value of 9 that
was now obtained was .81 with a median correlation of .66.

I11.6.3 Discussion of EQ4

The rank order correlation of .74 for this similarity model relative to overall
biological similarity provides support for the interpretation of similarity
applied in the modelling of section II1.4.5. The fact that the value of the
parameter d was .40, a value significantly greater than 0, supports the idea that
the information contained in the subjects' categorizations of the mammals
was statistically useful. There are at least two different kinds of reasons why
this might be true though. One reason is of the type outlined above. The
other hypothesis is the categorization data is simply another measurement of
overall similarity itself, like unto the featural similarity, and the fact that
information from the two is averaged by the best predicting function is
simply a statistical mechanism for removing unwanted some uncorrelated
variance from the estimate. Arguing against the complete truth of this
second hypothesis though is the fact that the value of the 9 parameter
obtained when ancestral lineage was substituted for overall biological
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similarity was increased to .81 (resulting in a model with a still respectable
correlation of .66 with the ratings of similarity of ancestral lineage) argues that
the categorization data is not simply a reflection of similarity itself. The
formula that was used for combining the similarity and categorization data
reflected the use of featural and categorical information in a way that was
commensurate with the beliefs of the similarity model. Taken alone, this
data provides only minimal support for the view that the statistical
importance of categorization information to similarity with respect to a
domain is related to the expected percentage of homogeneous properties in
that domain. I argue that an analysis of the role of categories in inference in
terms of a conceptual division of properties into the homogeneous and the
inhomogeneous can provide a coherent interpretation for some previous
results in the inductive reasoning literature. In order to do this it will be
necessary to generalize the notion of “homogeneous” used above. This
generalization will retain the idea that the statistical importance of
categorization information can be expressed in terms of beliefs about patterns
of mammals having and not having properties.

I will use the notation (H,{C1,...,Cn}) to stand for the set of properties for
which the following is true: i. they are "homogeneous" relative to the set of
categories {C1,...,Cn}, meaning that given any property in H and any pair of
individuals i and j belonging to a category Ck, either both i and j have the
property or both do not and also ii. if animal i is in Ck and has the property
and animal j is in Cl and k # | then animal j does not have the property. The
notation (I,{C1,...,Cn}) = (H,{C1,...,.Cn})C will in general be used to stand for the
"inhomogeneous" properties which are the complement of (H,{C1,....Cn)}).

IIL..7 Probabilistic interpretations of some effects of categories on inductive
reasoning

I11.7.1 Another Interpretation of Rips '75

In his 1975 paper entitled "Inductive judgments about natural categories” L.
Rips investigated the joint effects of similarity and typicality within a category

on inductive judgments. He performed parallel versions of the same
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inductive task involving two groups of items (or “individuals” in the current
terminology), a set of birds and a set of mammals. In an earlier study, Rips et
al. '73, he had obtained ratings from subjects for the similarities of all pairs of
items in each each group as well as ratings for the similarity between the
items of each group and their superordinate ("bird" or "mammal”). This
similarity data was then used to infer a representation for each group in
which the individual members and the superordinate were mapped onto
points in a two dimensional Euclidean plain (details in Rips et al. '73). The
interpretation given to to these planar representations is that the distance
between the points in the plain representing two items is inversely related to
the similarity of the items. This is true of the distance between basic items
and the superordinates as well. The induction task that Rips had subjects
perform was as follows.

"Subjects read a problem concerning animal species inhabiting a
small island. The problem listed the names of the species (e.g.
robins, geese, and hawks) together with the fact that the number of
animals in each was approximately the same. The problem then
stated that all of the animals in one of the species (e.g. all of the
robins) had a new type of communicable disease. Subjects were
then asked to estimate, for each of the other species, the proportion
of animals that also had the disease. We can let the Given Instance
denote that species said to have the disease, and the Target Instances
those species about which estimates must be made."

The first of Rips' two principle findings was that the estimate of the
proportion of target instances having the disease given the uniformity of the
disease among the given instances was well predicted by the following
equation.

1) prop.(T | G) = c1 - c2+d(G,T) - 2+d(G,C)

where c1,c2, and c3 are positive constants, the function d(A,B) returns the
distance between A and B as measured by the planar representation of the
similarity data for the category, G stands for the given instance, T stands for
the target instance, and C stands for the superordinate (e.g. mammals or
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birds). The constants c1,c2, and c¢3 were determined by the best fit of a linear
regression. The candidate terms to be included in the fitted equation included
d(T,C) in addition to the terms appearing in the equation above. It was found
that, after the constant term, the statistical importance of the various
predictors corresponded to the following ordering: dG,T), d(G,C), A(T.C). The
significance of the latter term was not great enough to warrant its inclusion in
the formula given above. Because d(A,C) and d(B,C) will not in general be
equal for particular choices of A and B, the equation above implies the
observed fact that judgments of prop.(A | B) were greater than judgments of
prop.(B | A) when B was closer to the superordinate, or more

"representative" of the category, than was A. Rips describes this phenomena
in the following terms, "A representative instance, by definition, is one that
shares many important properties with other instances in its class. If we learn
that such an instance possesses some new property, then we assume that this
property, too, is shared by other instances...The new property may be assumed
to be based on other well-known properties of the typical instance which are,
in fact, widely shared. Therefore, the new property itself, or at least |
susceptibility to it, should be common to many instances of the set."

The second important finding that Rips describes in his paper is that the effect
of typicality can be eliminated by providing subjects with additional
information. Rips performed a parallel version of the experimental task
described above in which subjects are also told that "scientists know that any
of the other animals could also contract the disease.” It turns out that this
information alone is sufficient to render the term d(G,C) in the equation
above statistically insignificant, or as we are told, to eliminate the effect of
representativeness. The group of subjects which were given this additional
information were termed the "informed group" while the other subjects were
termed the "uninformed group".

From the comments above, and others in the article, it is clear Rips assumes
that, by and large for most subjects, questions of the form "Given that all
mammals of type 1 have a disease, what is the proportion of mammals of
type II that have the disease?" will elicit essentially the same judgment
strategies and responses as questions of the form "Given that (all) mammals
of type 1 have a certain property, what is the likelihood that mammals of type
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I will (all) have the property?" If we accept this assumption, which seems to
be supported by the data, then Rips' results are directly related to the
experimental results reported in this paper concerning the factors which
influence similarity and likelihood judgments about arguments.

What I would like to argue is that Rips' results are agreeably consistent with
the story of homogeneous and nonhomogeneous sets of properties that I laid
out in section III.6.1. The only superordinate categories which are mentioned
in Rips' experiment are "bird" and "mammal". It is difficult to know what
other sub-categories might implicitly have played a role in subjects’
judgments on Rips task. My experience with the categorization task described
in experiment IV suggests that ideas about "biologically meaningful groups"
vary widely among different subjects and may reflect different criteria. Let us
assume though that at any given time, a typical subjects will recognize some
set {C1,...Cn} of sub-categories of birds or mammals, and when I speak about
(H,{C1,...,Cn} and (1,{C1,...,.Cn} it will be to these subcategories that I refer.

I will now consider a possible probabilistic analysis of the observed patterns of
judgment on Rips' task. The conditional probability of interest, the |
probability that 'the target' has a property given that 'the given' does can be
broken into cases according to whether P is in (H,{C1,...Cn}) or not. In other
words, cases are determined by the question is 'the property’ of a type that is
particular to a given type or sub-category of mammal? If so, then knowledge
that a member of a given sub-category has the property will imply that other
animals that are not members of that sub-category do not. If this is not the
case, then the sub-categories are essentially irrelevant. I realize that reference
to 'the property’ is somewhat bizarre in this scenario but as I stated above, I
am assuming that the reasoning patterns take on this form because Rips
himself describes them in this way and it is consistent with the data; 'the
property' can be though of as 'a propensity of m'agnitude m to contract the
disease’. T use the notation P(A) to mean A has 'the property’. The analysis
of the conditional probability broken into cases is a follows.

2) pr(P(T) | P(G)) =

pr(P(T) | P(G) & (P in (H,{C1,...Cn}))+pr(P in (H,{C1,...Cn})) | P(G)) +
pr(P(T) | P(G) & P in (L{C1,...Cn})+pr(P in (I{C1,...Cn}) | P(G)).
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One reasonable interpretation of the Rips' instructions and the performance
of subjects on the "informed" condition of the experiment is that the
information that "any of the other animals could also contract the disease" is
implies that P is in (I{C1,...Cn]), because this information says that it is not the
case that only a certain type of mammal has the property. If P is known to be
in (L{C1,..Cn}) then the formula above reduces to

3) pr(®(T) | P(G)) = pr(P(T) | P(G) & (P in (1,(C1,..Cn}))

To understand the effect of typicality on this formula, let's consider two
animals, A and B, taking A to be a typical mammal and B to be an atypical
mammal. Since the judgments were symmetric under the exchange of the
given and target animals in the informed case, we assume that

4) pr(P(B) | P(A) & (Pin (1,{C1,..Cn})) ) = pr(P(B) | P(A) & (P in (1{C1,...Cn}))

Note that if one assumes that the unconditional likelihood of A and B are
equal then for a fixed type of P, pr(P(A) | P(B)) = pr (P(B) | P(A) - I discuss this
point further below, but it seems intuitively plausible that if P is known to be
a type of property which any sub-categorical type animal might have, that the
‘unconditional probability of its occurrence among any individual animal
should be equal to any other, knowing nothing else. 1 will give the label c1 to
the quantity on either side of the equality in 4). Plugging this back into the
original formula 2), which still applies to the "uninformed" case, we get the
following.

5) pr(P(T) | P(G)) =
pr(P(T) | P(G) &Pin (H,(C1,...Cn}))+pr(P in (H,{C1,...Cn}) | P(G)) +
clepr(P in (L{C1,..Cn})) | P(G)).

If we assume that a typical animal A and an atypical animal B are in different
sub-categories, then the probability of one having the property given that the
other has the property and the property is homogeneous among sub-
categories will be 0 regardless of which animal is the given and which is the
target. If we replace this quantity by 0 then the formula above reduces to
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6) pr(P(T) | P(G)) = clepr(P in (1(C1,...,Cn}) | P(G))

Therefore, we expect that pr(P(B) | P(A)) > pr(P(A) | P(B)) in the uninformed
case if and only if pr(P in (I,{C1,...,Cn}) | P(A)) is greater than

pr(P in (L{C1,...,Cn}) | P(B)). Rips' discussion of the psychological origin of the
asymmetry due to "representativeness" which I quoted above is more directly
an argument to the effect that this inequality is expected than it is a
description of his model. As he says, "A representative instance, by
definition, is one that shares many important properties with other instances
in its class. If we learn that such an instance possesses some new property,
then we assume that this property, too, is shared by other instances...The new
property may be assumed to be based on other well-known properties of the
typical instance which are, in fact, widely shared." Putting aside questions
about the factual content of this matter, either it is a valid psychological
description, in which case we may except the prediction of the typicality
phenomena from the formula above, or there is some other explanation for
the descriptive success of Rips' model that depends on some other
psychological belief or process. I will assume that the former is the case.

I have just given a probabilistic analysis of Rips' results in which everything
seemed to come out reasonably in a way that is compatible with probability.
Rips himself considers and dismisses the following simpler probabilistic
analysis which superficially seems to contradict the argument made above.

7) pr(A | B) = pr(B | A)epr(A) / pr(B).

This is Bayes' rule. It suggests that if the unconditional probability of two
animals having the disease is equal, then the conditional probability of one
given the other should be symmetric in the choice of given instance and
target. If we want the typicality result to come out as observed - i.e. P(B | A) >
P(A | B) where A is the more typical animal - then we must have pr(B) >
pr(A). Rips' asked subjects about the unconditional probabilities of animals
having the disease. Exactly what pattern of responses he obtained is not clear
to me from reading his article, but they were evidently not the appropriate
ones to make the formula compatible with the observations. It is hard to
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definitively pinpoint where the contradiction in the two probabilistic analysis
lies, but I suggest the following. The instance of Bayes' rule given above
should actually be written out as

8) pr(P(A) | P(B)) = pr(P(B) | P(A))+pr(P(A)) / pr(P(B)).

The question that must be answered to apply such an analysis is whether the
'P' that one has in mind is when evaluating pr(P(A) | P(B)) is the same P
that one has in mind when evaluating pr(P(B) | P(A)) (where by same I mean
drawn from the same reference class), or whether what actually takes place is
an evaluation of pr(P1(A) | P1(B)) and of pr(P2(B) | P2(A)) where P # P, in
which case formula 8) is irrelevant. The analysis given above suggests that
there are at root two different types of 'P' because they reflect different
mixtures of the homogeneous and the inhomogeneous. To put it another
way, on the basis of the knowledge that a typical or an atypical member of a
superordinate category has a property we form different expectations about
the likelihood of that property being one of the properties that pattern along
the lines of biological sub-categories, and hence are rarely jointly observed in
dissimilar animals, or one of the properties which are observed in many
different kinds of animals. In Rips' "informed" condition, subjects are
essentially told that 'the property’ under consideration is of the
inhomogeneous variety. In the uninformed condition, the property is
effectively a statistical mixture of the two. What is shown to be required for
the observed typicality effect, according to the anaiysis given above, is that
there is a difference in the mixing proportion which is inferred on the basis of
the knowledge that a typical vs. an atypical animal has the property. There
may very well be a good reason for such an inference.

I11.7.2 Representing Categories as Higher Order Statistics

The interpretations of similarity that have been proposed in this work have
all focused on similarities as slightly different types of second order statistics.
Relative to a distribution defined on a set {i1,i2,...,in} of individuals, a first-
order statistic is a constraint on the expected value of some ik. A second order
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statistic relates to the joint distribution of some ik and il. Typically, a category
may have several i’s as members. One way of representing the inductive
significance of a category relative to a certain property domain is as an
expectation about the proportion of properties from that domain for which it
will be true that all of the members of the category will “agree” on the
property homogeneously. In section IV.1 I introduce the notion of an
exponential family and explain how the maximum entropy distribution
compatible with a set of similarities is one example of an family. In general,
such families describe distributions in terms of “factors” that influence the
assignment of likelihood to events. For the distributions involved in the
pure form of similarity based likelihood judgment that has been studied in
this work, these factors are the joint presence and absence of a property
among two individuals. The framework of exponential families is very
general however. A factor can just as easily be the joint presence of a property
among all the members of a category. Essentially, this is accomplished
mathematically by using functions like the following in a way that is precisely
parallel to the way the fij were used in the specification of the maximum
entropy estimator: '

fc(a basic event) = 1.0 if either all of the members of category C have the
property in this basic event or all the members of category C do not have the

property in this basic event.

The role of functions like this one is discussed in detail in section IV.1.
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IV Theoretical Perspectives on Similarity Based Likelihood Judgment

IV.1 The Ubiquity and Relevance of Exponential Families and Their
Sufficient Statistics

In this section I will provide a brief introduction to a class of probability
distributions called exponential families that underly most parametric
statistical analysis. Understanding the nature of this abstract class of
parametric probability distributions can provide a unifying framework in
which to describe a number of important issues relevant to similarity based
likelihood judgment. A skeletal sketch of these issues is conveyed by
contemplation of the following facts:

1) All maximum entropy distributions based on a given set of expected value
equality constraints are exponential distributions parameterized by the values
of those constraints.

2) Every probability distribution defined on a discrete space is a multinomial
distribution and every multinomial distribution is a distribution from some
exponential family, so, extensionally speaking, saying that a distribution
defined on a discrete space is from an exponential family is uninteresting by
itself. However, the framework of the exponential family gives one a way of
talking about particular sets of distributions on discrete spaces that are
interesting. For example, the exponential family of distributions on the space
of the 20 yes/no patterns of n individuals with the property that the
likelihood of any given pattern is determined by which individuals pairwise
“agree” with one another in that pattern is the maximum entropy
distribution that was estimated from the similarities in the data analysis of
section I11.4.5.4. The distribution on this space in which the likelihood of any
given pattern is a function of which individuals agree in that pattern plus
which individuals said “yes” in that pattern turns out to be the distribution
that is generated by the, now familiar, Boltzmann machine neural network
when it is running freely under the interprétation that the “firing” of a
specific node in the network at a given time represents a vote for the patterns
in which that node or individual says “yes” (see Hinton et al. ‘86). This
relationship will be elaborated on below. To specify how often any two of the
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n individuals agree, plus how often each individual says “yes” takes just (n(n-
1)/2 + n) numbers. This is a small number as compared to 2"-1 numbers
required to specify an arbitrary distribution on this space.

3) If there is some particular subset or “category” of the n individuals which
all say “yes” together some fraction of the time - more often than they would
all say yes together just by dumb luck - then with an additional parameter
their behavior can be factored into the distribution as well.

The expected values which parameterize exponential families and maximum
entropy distributions are expected values of some function from values in the
sample space on which the probability distribution is defined to real numbers.
These functions are commonly called “statistics”. R.A. Fischer called a
statistic sufficient "when no other statistic which can be calculated from the
same sample provides any additional information as to the value of the
parameter to be estimated.” Suppose that X1...Xn are independent identically
distributed random variables, and that the true distribution of X1...Xn is some
member of a known class of distributions P depending on a (possibly multi-
dimensional) parameter THETA. In other words, each member of P is" -
indexed by one and only one value of THETA. Let T be a function defined on
Xn (the space given by n repetitions of X). Then T is said to be sufficient for
the family P if the conditional distribution of X1...Xn given the value of
T(X1,...,Xn) is equal to the conditional distribution of X1...Xn given THETA.
Some familiar examples of families of distributions and their sufficient
statistics are 1) the family of binomial distributions with n observations and
the statistic whose value is the number of "successes”, and 2) the family of
normal distributions and the two dimensional statistic equal to the sample
mean and sample variance. For a more formal definition one may turn to
Lehmann ‘83.

In general, there is not a unique sufficient statistic for a family of
distributions, and some sufficient statistics are uninteresting. For example,
the complete set of observations themselves are always sufficient. A more
interesting notion is that of a minimal sufficient statistic. It is difficult to
define this notion precisely without a lot of mathematical machinery but the
basic idea is that T1 is minimal sufficient for P if for any other statistic T2 that
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is sufficient for P there is a (possibly non-invertible) function f such that T1 = {
(T2). Example 1) and 2) in the last paragraph were in fact examples of
minimal sufficient statistics.

Most familiar parametric families of probability distributions are examples of
exponential families. This is true of the normal, poisson, and multinomial
families to name a few. A family of probability measures on a domain X is
called an exponential family if there are real valued functions T1..Tk on X
such that the probability density of every member of the family is equivalent
to an expression of the form

p(x) = cOeexplcl #T1(x) + ... + ck*Tk(x)] for some choice of constants cl,...ck.

The constant c0 is then determined by the need to normalize the integral of
this function to make it a probability density. The T1...Tj are called affinely
dependent if there exist constants c0,cl,...cj, not all equal to zero, such that the
equation c0 + c1T1(x) + ...+ ¢jTj(x) = 0 holds for all x in the domain. If this
condition holds then some ci is non-zero and we can solve for Ti as a linear
combination of the other Tk and a constant. If so, then Ti contains only
redundant information and we can eliminate it in the sense that any linear
equation that could be formed with the T's before can still be formed without
Ti. A representation of an exponential family will be called minimal if the Ti
mentioned in its definition are not affinely dependent. The basic properties
of exponential families revolve around their relationship to their minimal
sufficient statistics. One of these properties is that for every sample X1...Xn
that is i.i.d. from an exponential family P, if T1...Tk are functions appearing in
a minimal representation of P then the vector (XT1(x)/n,...XTk(x)/n) is a
sufficient statistic. Under some further assumptions about the richness of the
family P, which are usually satisfied in practical cases of interest, this statistic
will be minimal sufficient. When the parameter space of an exponential
family is not artificially restricted, then statistical estimation is particularly
simple since a maximum likelihood estimate is always defined, unique, and
equal to the parameterization that equates the observed sample averages of
the functions Ti with their expected values. Which is in turn equal to the
distribution of maximum entropy that has those observed sample averages as
its expected values of those statistics.

140




Sufficient Statistics and Data Reduction

The computational significance of the existence of low dimensional
sufficient statistics is twofold. On an algorithmic level, there is the capability
for substantial data reduction leading to low storage requirements. On an
informational level, the amount of data that is required to achieve statistical
accuracy is greatly reduced. If the sample space on which a family of
distributions is continuous, and all of the distributions are supported by the
whole space then, under some mild regularity conditions, the very existence
of a set of jointly sufficient statistics that do not grow in size with the size of
the data sample already implies that the family of distributions is exponential.
On a finite sample space, such as the one we are concerned with, all possible
probability distributions are always finite multinomial. It is easy to show that
every finite multinomial distribution can be written in exponential form.
For example, suppose a sample space has three possible disjoint outcomes, A,
B, and C, and a distribution on this space assigns probabilities .2, .3, and .5
respectively. Let IA, IB, and IC be functions defined on this domain that
return 1.0 if a point of the domain is in A, B, or C respectively, and 0.0
otherwise. Then p(x) = exp[In(.2)IA(x) + In(.3)IB(x) + In(.5)IC(x)] is an
equivalent exponential representation. In light of the discussion above
however, it is clear that such a representation cannot be minimal since
knowledge about the occurrence of IA(x) and IB(x) is sufficient to completely
determine IC(x). The representation p(x) = 0.5exp[ln(.4)IA(x) + In(.6)IB(x)]] is a
minimal representation. This example is an instance of the general fact that a
multinomial distribution with M possible outcomes is completely defined by
at most M-1 independent parameters and has at most M-1 jointly sufficient
statistics in its minimal representation. Very often it will be the case that
there are known relationships between the various outcomes of a
multinomial distribution, and it is in such circumstances that exponential
families with fewer than M-1 terms are interesting (for discrete spaces such
models are often termed "loglinear" and introduced with somewhat different
terminology). The common reason for this is that the different outcomes
represent combinations of a small number of "factors" that can assume two or
more values. The factors are in the similarity based likelihood model are the

141



presence or absence of a biological property in a particular type of mammal. It
is typical of most statistical modelling in such cases to investigate low order
interactions between different factors, before positing higher order
interactions. It is straightforward to understand the assumptions made by
such models in terms of exponential families. To use the example at hand,
let the set of distributions of interest represent the presence and absence of a
property among a set of k mammals, m1 ... mk. A model including all first
and second order factors could use k functions ti, 1...i...k, that record the
presence or absence of the property for m1...mk and fij, defined as above,
recording whether mi and mj match on a particular property. In general,
there will be k(k-1)/2 second order functions fij. So the number of statistics
(and free parameters) in this family of models is k + k(k-1)/2. As k grows
large, this number is absolutely and proportionally drawfed by the number of
parameters in the full interaction (general multinomial) model, 2k-1,

Expected Values as Parameters

It is simple to evaluate an expression of the form p(x) = cO®exp[c1¢T1(x) + ... +
ck®Tk(x)] when the constants c0,cl,....ck are known. As was stated above, the
constants cl,...ck are determined by the expected values of the T1...Tk and the
constant c0 is determined by normalization. It is theoretically true therefore
that known values for XT1(x)/n, ... XTk(x)/n uniquely define and
parameterize such a distribution, and this fact is made use of here for relating
probability distributions and similarity values. When k is large it becomes
computationally prohibitive to actually find the exact value of the maximum
entropy distribution for these constraints. For small k, finding the ci can be
done by an iterative process that cycles repeatedly through the individual
equations, and converges reasonably quickly; for large k, the preferred
approach in practice is not to solve for the d at all, but rather to estimate the
required probabilities using stochastic simulation. This technique is allied
with that of the Hopfield nets and Boltzmann machines proposed as
computational models of neuron like computation by Hinton et al ‘86. The
computational technique actually dates back Mitropolis ‘53.

The function relating a set of avgTi constraints to a set of ci is partial. Every
choice of real numbers for the ci from 1 to k results in a probability
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distribution after the appropriate normalizing constant c0 is chosen.
However, many choices of the numbers for E[Ti] are not mutually
compatible, given the desired interpretation of the Ti. For this reason it is
worth considering the possiblity that what people actually store as a
representation of similarity is the “weights” and “thresholds” of a
Boltzmann-like network. If that is the case then the “estimated similarities”
would actually be produced by a type of monte-carlo estimation of their
association values. All of this is naturally speculative, but it is fair to say that
on the relative scale of these things, the similarity based likelihood strategy
proposed here is readily implementable by biological models. In the next
section I briefly review what a Boltzmann machine actually is and how it
relates to these exponential models.

IV.2 Neural Network Models for the Maximum Entropy Estimator

The maximum entropy estimator described in section IL.5 is closely related to
the Boltzmann machine models of Hinton and Sejnowski ‘86, as well as a
number of other associative memory models in the neural network literature
(e.g. Hopfield '82) . I will first describe the basic elements of this network and
then explain the connection with the maximum entropy estimator. My
presentation will follow MacKay '91.

A Neural Network Implementation

Architecture: The network consists of N "neurons" which have binary
activities x; = 1. Each neuron is connected to every other through
symmetrical connections that are assigned real-numbered weights wij = Wiji.
The neurons do not feedback to themselves so wj; = 0.

Dynamics: The dynamics of an individual neuron x; depend on the value of
its "activation" aj, which is described by the equation:

aj = 2 Wijxj - bj where t;, a real variable represents the threshold or bias of the
neuron x;. :
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The x; are updated at random intervals according to the equation

1, with probability (1.0 / [1.0 + exp[-aill), |
-1, with probability 1.0- (1.0 / [1.0 + expl-ail])

xij(t+1)

Distribution:

We define a global “energy” for the network relative to a given state or
realization of a combination of x values by E = 3 a;, It is well known that
after this network has run for a while and reached “equilibrium” it will have
a Gibbs distribution in which the probability of being in any state depends
only on the ratio of the enegry of that state to the other states, and that for any
state k, the probability of being in state k at equilibrium it will be

pr(k) = exp[-Ex ]/ Zj exp[-E; ] where j ranges over all 2N states.

The most convenient way to obtain the expected values of various events
from such a network is by random sampling of the occurrence of the events
during some time window of events.

Mapping from Similarity Space to Network Space:

The activation state (1,-1) of a node of the network represents the “yes
property” /”no property” status of some individual in similarity space. If the
unconditional probability of each of the individuals in our similarity space is
identical - we don’t have reason to believe than any individual is a priori
more likely than any other individual to have a random unknown property -
then the threshold values of the network, the b, should be set to identical
constants. If every individual is as likely as not to have a random property,
then the b; would be set to 0.0. If it is less likely than an individual has a
property than that the individual does not, then the b; would be greater than
0. If the unconditional probabilities are all equal, whatever their value, the
the “weights” of the Boltzmann network, the wjj should be set equal to the
parameters cjj of the associated maximum entropy distribution which has the
correct expected values for the similarity statistics of individuals i and j. The
Boltzmann machine can evaluate condtional probabilties defined relative to
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this distribution by sampling (monte carlo). The sampling that takes place in
the evaluation of conditional probabilities proceeds by letting the network
run freely after the nodes which are being conditionalized on are “clamped”
to the required values. This can be made clear with an example. Suppose we
are interested in evaluating the conditional probability that individual i has a
random property given that individual j does and individual k does not. The
way that this conditional probability is evaluated is by momentarily
“clamping” individual network node j so that it stays in the ‘1’ state and
“clamping” individual network node k so that it stays in the -1’ state. The
network is then allowed to “run” with the same dynamics as before except
that the updating of node j and node k is held in obeyance. The relative
frequency with which node i will be “on” in the network, so running, has an
expected value equal to the condtional probability of individual i having a
random property given that individual j has this random property and
individual k does not, where conditional probability is defined relative to the
maximum entropy probability distribution compatible with the similarities.

Learning “Similarity” with a Boltzmann machine:

Hinton & Sejnowski ‘86 describes a learning algorithm for Boltzmann
machines used as associative memories. The relevance of this learning
algorithm to the current context is that the network could learn the statistical
content of the similarity relationships, if such relationships were determined
solely by property sampling, by learning to match the expectations of the
network, as expressed by on/off patterns of nodes, to the sampled distribution
of some environment or domain of properties. I will not describe this
learning algorithm here. The reader is referred to Hinto & Sejnowski ‘86.
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V Perspective and Conclusion

The theories proposed in this work were framed with the explicit goal in mind of
establishing a conceptual link between similarity-based likelihood judgment and
probabilistic inference. The most important empirical result in this work has been the
finding that similarity based likelihood judgments, under the proper circumstances,
may be viewed as coherent evaluations of conditional probabilities. These conditional
probabilities are not conditional on all of a person’s knowledge and beliefs. They are
rather conditional on a small number of locally relevant sources of evidence. For
similarity based likelihood judgment, these sources of evidence are provided by
similarities between individuals. Although similarity based likelihood judgment may
be understood as a form of judgment that parallels statistical inference, there are
important differences. Some of these differences are the following.

a) In some situations, this reasoning pattern is applied in a way that is incompatible
with a statistical interpretation (e.g. “inclusion fallacy”) and its application can result in
serious errors of judgment.

b) Although similarities may be interpreted as probabilistic beliefs, they do not arise
solely through any conventional form of statistical sampling plan. Similarities may
rather be estimated on the basis of heterogeneous sources of evidence. Some of these
types of evidence were discussed in section Ir.3.

¢) Similarity based likelihood judgments are made “on the fly” rather than at the
conclusion of any pre-planned experiment. '

The present work has provided a description of similarity based likelihood which
involves a number of seemingly disparate principles.which have appeared at various
points throughout the thesis. In actuality, most of these principles are closely related to
one another, although the relationships have frequently been left implicit in the
discussion. 1 will now list these principles and describe some of the relationships
between them.

1) Similarity Postulate i - the probability that an individual ig has a property P
will vary positively with the similarity of the pairs consisting of ip and each
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of the individuals known to have P and negatively with the similarity of
the pairs consisting of igp and each of the individuals known not to have P.

2) Similarity Postulate ii - in the absence of information other than the GIs,
and if the likelihood of each of the individuals in the set {ix,0<k<m}
having a property from a domain P is identical, the probability that ig has P
will be a function of only the knowledge of which other individuals in the
set {ix,0<k<m} have and do not have P and the set of values given by the
similarity function applied to each pair of individuals in the set (i 0<k<m)},
holding the domain P containing P constant.

3) Similarity Postulate iii - pairwise similarities between individuals relative
to a domain are functions of beliefs about patterns of individuals having
and not having properties of that domain. These patterns are described by
the functions p11(A,B,D), p19o(A,B,D), po1(A,B,D), and ppo(A,B,D).

4) Maximum entropy estimator part a) and b) - similarity based likelihood
judgments involving a small set of related individuals, (ix,0<k<m]}, and
properties that are drawn from a common domain are coherently
describable as conditional probabilities relative to a single probability
measure, pr, which is the maximum entropy distribution compatible with
the pairwise similarities between these individuals relative to the fixed
domain. These conditional probabilities are the conditional probability that
the conclusion individual has some property given the known positive and
negative cases of related individuals having the property.

5) Similarities as sufficient statistics - knowledge of the estimated pairwise
similarities of a set of individuals with respect to a domain is sufficient, in a
statistical sense, to estimate the probability that one of these individuals has
a property chosen from this domain given some knowledge of other related
individuals having and not having the property. This is to say that further
information about the frequency with which n-place combinations of these
individuals (for n>2) have simultaneously shared particular properties is
not actually utilized.
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Principles 1) through 5) are highly redundant. For example, principle 4) and

~ principle 3) together imply principle 1). This was proved in section IL.5 of the
thesis. Given principle 3), principles 4) and 5) are essentially different ways of
saying the same thing. Given principle 3) these principles also imply
principle 2). Given principle 3), principle 2) implies principle 5), and therefore
4) and 1) as well.

It can readily be concluded from the preceding discussion that an important, perhaps
THE important empirical claim at stake here is that principles 2) and 3) hold at once for
what has been described as similarity based likelihood judgment. Because “similarity”
is a concept that intrinsically has so many degrees of freedom about it, the answer is not
necessarily a simple yes/no/maybe. The positive evaluation of the maximum entropy
estimator in section I11.4.5.5 indicates that we can provide an affirmative answer in at
least one non-trivial sense. In order to provide this however, it was necessary to
“bend” the concept of >similarity into the form required by the model - both literally and
metaphorically. Are principles 2) and 3) absolutely correct? It's hard to know. The
discussion of the probabilistic representation of categorical information (within
exponential families) in section IIL.7.2 , for example, contains an implicit suggestion
about other factors, not described by principle 2), which would be likely to play a role in
the type of experimental task examined here. This other information is not described
by the GIs so it would not contradict the theory, but would rather be some form of
“noise” in the evaluation of the theory. Future research will undoubtably instruct us as
to whether or not the analysis proposed here fashions a truly useful theoretical tool
from similarity, or whether similarity as an explanatory concept will eventually shatter
into many small pieces. We'll see.
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Appendix A - Generation of the likelihood booklets.

There are two stages to the pseudo-random generation of a likelihood
booklet: the first stage consists of choosing a set of seven mammals

which will be used in the construction of all of the likelihood rating
arguments. The second stage consists of the random selection of the
arguments themselves. There is actually a third stage which consists of
outputting a description of the physical form of the likelihood booklet in a
language appropriate to a text formatting program, which will later operate
on this description to produce the physical manifestation of the booklet.

I will omit the description of this third stage however.

Both of the first two stages of booklet generation make reference to a
qualitative internal representation of mammal similarity that is
stored by the booklet generation program. The information in this
representation is made use of in order to guard against "unnatural”
arguments, as these were described in section I1.2 of the text. I

will first describe this representation.

Similarity databases

The program makes reference to four-databases organized around the
abstract similarity domains of ancestral lineage, physical form, diet,

and habitat. Each database represents a number of clusters of the

47 mammals. Each represented cluster expresses the intuitive

idea that all of its member mammals are similar to one another with
respect to the domain of that database. The set of clusters in each similarity
database forms a non-overlapping exhaustive partition of the 47
mammals. If a given mammal was not considered similar to any of the
other 47 mammals with respect to the domain of that database then that
mammal forms its own cluster of one.

Choice of the 7 mammals
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The "goal" of the random algorithm for choosing the set of 7

mammals to be used in generating the current likelihood booklet was

to obtain a set of mammals having a balance of "similar" and

"dissimilar” pairs relative to the 4 represented similarity aspects of ancestral
lineage, physical form, diet, and habitat. The algorithm for selecting

a set of mammals proceeds sequentially. If there have been k (2 <= k <=

7) mammals selected at the current stage then there are "k choose 2" =
k!/(2!)(k-2)! distinct pairs. Relative to each of the above similarity

aspects, each of these "k choose 2" pairs is considered to be either

similar or dissimilar. The selection algorithm seeks to select new
mammals in such a way that the number of similar and dissimilar pairs
are roughly balanced for each aspect. Specifically, define the "badness" of a set
of k mammals as the sum over the 4 aspects of the square of the difference
between the number of similar and dissimilar pairs for each aspect.

The constrained random algorithm to choose a set of 7 mammals proceeds
as follows. '

1. A random permutation of the 47 total mammals is generated.

2. The first two mammals on this list that met the following criteria
were chosen to be included in the set of seven mammals: the pair of
mammals are similar in ancestral lineage but not in physical form, diet, and
habitat. The chosen mammals were removed from the current list of
available choices and placed in the chosen set.

3. All of the mammals on the current list of available choices are
examined to determine the "badness" of the set of mammals that would
result if they were chosen for inclusion in the current set.

4. The mammal resulting in the minimum "badness" is chosen to be
included in the set and removed from the available list. In case of

ties, the ordering of the list is used as a tie-breaker.

5. Steps 3. and 4. are repeated until a set of 7 mammals is arrived

at. This set is examined to insure that for every aspect, there are

no less than 6 similar and 6 dissimilar pairs (out of a possible 21).

If the current set passes this test it is accepted and the algorithm
terminates, otherwise the algorithm returns to step 1. and the process
repeats.
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Formation of the arguments
A single argument is specified by the following set of choices:

i. an unfamiliar property aspect

ii. a conclusion mammal

iii. the number of mammals in a set of premise mammals that are
considered "similar" to the conclusion

iv. the choice of the mammals to be included in the set described in
choice iii.

v. the number of mammals in a set of premise mammals that are
considered "dissimilar" to the conclusion.

vi. the choice of the mammals to be included in the set described in
choice v.

vii. a choice is made of whether the set of similar premise mammals
are to appear as the positive premises (those mammals having the
property) or the negative premises (those mammals not having the

property).

Each argument was formed by a process of making each of these choices
randomly in the order that they appear. The distribution of each of

these choices was uniform subject to the obvious constraints of availability.
In the representation scheme of the argument generating algorithm,

each of the unfamiliar aspects {bone structure, dentition, digestion,
thermal regulation, fluid regulation] is paired with one of the familiar
similarity aspects {physical form, diet, habitat}. The pairings were

(bone structure, physical form), (dentition, diet), (digestion,diet),

(thermal regulation,habitat), (fluid regulation, habitat). In step i.

of the algorithm above, an unfamiliar property aspect is chosen at

random. Given the choice of the unfamiliar property aspect, the specific
determination of the predicates "similar" and "dissimilar” which were
mentioned in steps iii.-vii., is determined according to the qualitative
similarity cluster representation of the familiar aspect that is paired with the
unfamiliar aspect chosen for that argument. The argument set algorithm
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constructs a total of 60 arguments by sequentially making choices i.-vii. and
then checking that the argument form so chosen is not too much like an
argument form already chosen. Two argument forms are considered too
much alike if choices i-vi were identical. Finally, the order of premises
within each argument and the order of arguments in the total set were
randomly permuted

The Logic of This program

In section I1.2 I showed an example of an "unnatural” argument. It was

stated that this type of argument should not appear in the likelihood
booklets, though no definition for what exactly constituted an

unnatural argument was offered. The likelihood booklet generation program
just described embodies, in effect, what I take to be a form of sufficient criteria
for determining that an argument will not be unnatural. This criteria is that,
for me, either all of the positive premise mammals or all of the negative
premise mammals are similar to one another and the conclusion mammal in
some way that is relevant to the unfamiliar property aspect. Precautions were
taken to insure that this sufficient criteria did not go too far, and make every
argument a "ringer" with, for example, all of the positive premise mammals
and the conclusion mammal as felines, and all of the negative premises

as rodents. One of these precautions was that the set of seven mammals

was guaranteed to contain a pair of mammals that were biologically

related and which would frequently appear as premises of the opposite
polarity (this precaution was carried out by step ii. of the mammal

selection algorithm). In general, the program described above tried

to produce booklets as randomly as possible while steering between the
extremes of unnaturalness and bluntness.
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Appendix B- Details of Error Model fitting and evaluation

The error models tested for experiment-I describe distributions on the 10 bin
histogram 0-9, 10-19,...,90-100. The data points in each bin represent the
number of discrepancies between related pairs that had an absolute difference
in that range. The data from each of the twenty subjects was considered
separately. The actual quality of the fit was determined by considering the
match between model predictions and the observed counts of related pair
discrepancies in the 0-9,10-19, and in a composite 20-100 bin. The quality of
the fit was determined by a chi-square test with two degrees of freedom, and
the fit was deemed unacceptable if the match fell on the upper 5% of that
distribution.

The parameters of the model distribution were fit according to the following
procedure. Every model was required to precisely predict the observed
expected square difference between a given subject’s related pairs of
judgments from the first and second session. A noise model itself is
considered to be the noise distribution for a single judgment for some given
argument, distributed around the mode or the expected value of that
argument. If the noise is zero-mean additive then the prediction made by the
model about the quantity of the expected square discrepancy between related
pairs of argument ratings is equal to twice the canonical variance. For the two
models which did not have a mixing component this meant that their
variance was set to precisely one half the observed value of this quantity.

For the models with a mixing component of 9, the value of the prediction
that they make about the expected square discrepancy between related pairs
will be equal to (1-9)2.2VARN) + (1 - (1-0)2)+Var(J) where VAR(N) is the
variance of the additive component and VAR(]) is the variance of the
judgments themselves. Since this formula is to be equated to the observed
square discrepancy between related pairs, we can solve for VAR(N) as a
function of a given 3. The procedure that was adopted for fitting the two
parameters of this mixture model was to perform a one-dimensional search
for the value of @ which provided the best fit, the value of VAR(N) being
determinate for any given 8. The quality of any given fit was determined by
the chi-square distribution mentioned above.
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Appendix C - Derivation of the Correlation Formula For Mixtures

The correlation between a set of judgments and predictions is given by the
formula 1):

1) E[ (i - E[JiD(®P; - E[P;]) ] / (VAR(])« VAR(P))!/2
Assuming that E[J;] = E[P;] this formula reduces to 2):
2) (E[J;Pi] - E[]?) / (VAR()*VAR(P))1/2

Let the notation M; (for the "Mode" of judgment i) be a value such that the
distribution of J; as a random variable is equal to a mixture of a) a (1 - 9) part
that is equal to M;j plus a zero mean independent random noise variable with
variance V(N) and b) an 0 part that is an independent random variable with
the same distribution as the collection of judgments. Then the expectation of
Ji is given by line 3).

3) ElJi] = Pi = (1 - ))M; + 0E[]]
The variance of P can now be computed as 4).

4) VAR(P) =E[(P-E[P))?]
= E[ ((1-9)M; + 9E[]] - E[P])2]
= E[ ((1-9)M; + 9E[J] - E[J1)2]
= (1-9)2E[ (M; - E[J))2]
= (1-9)2( VAR()) - VAR(N))

The numerator of line 2) is now re-written as

5)  (1-9)E[ (M; + N)((1-9)M; + 9E[J])] + 9E[J]2 - E[J]2
(1 - 9)( El (M + N)((1 - 9)M; + 9E[J1)] - E[J]2 )
(1-9)( (1 - AE[M;2]+ oEIM;IE[]]) - E[J12 )
(1-9)2(E[M;2] - E[J12 ) :

(1-9) VAR(]) - VAR(N) )

and the denominator of line 2) can be written as
6) (1-9)( VAR()XVAR() - VAR(N)) )1/2
Recombining 5) and 6) after cancelling related terms gives

7) (1 - 3) [ (VAR() - VAR(N)) / VAR())) ] 172
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Appendix D -
The free parameter calibration procedure for the maximum entropy estimator

In this appendix I describe how the 25 “free” parameters are actually adjusted to fit
the data provided by 21 judgments of overall similarity and 59 rated arguments (=60
-1 “left out”). The basic procedure starts out with a beginning value of these free
parameters and adjusts them to minimize an error function. The adjustment stops
when no more improvement in the error function is being produced. The basic
error function is as follows.

1) Error of total fit = swe"Error of similarity it" + "Error of likelihood fit".
where sw is the meta-parameter mentioned above.

The meta parameter is a fixed constant throught the computation being currently
described. This error is defined in terms of the seperate errors for similarity
matching and likelihood rating matching. ‘

2) Error from similarity fit = Xj; D((a«Sim(i,j) + b) - SIM(,j,OVER) )

where D is a differentiable error norm to be discussed momentarily, a and b are two
of the free parameters, Sim(i,) is the “true” similarities which are a function of the
current state of the model, and SIM(i,jOVER) is the current subject’s rating of the
overall biological similarity of mammal pair (i,).

3) Error from likelihood fit = Yy D((ce Condit(argyk)+d) - Rating(argy))
where D is as before, c and d are two of the free parameters, and Condit(argy) is the
condtional probability for argument k derived from the current model’s version of

pr.

Observe that if D is a differentiable function, then partial derivatives of the total
error function with respect to each of the 25 free parameters will be differentiable if
and only if Condit(argy) and Sim(i,j) are differentiable with respect to the other 21
paramets. The nature of the other free parameters is as follows. There exist 21
constants cijj and a special constant cg such that

1) pr(.be.x) =cg «EXP[ Zij Gij * ii(.be.k)] and
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2)  1/cp=3kEXP[ Zjj cj « fijl-be.x)]

The special constant c( is not a free parameter but the cij are. Given the 21 Cij, the
values of pr(.be.i) for the 27 are determined. Given the values of the 27 pr(.be.k),
Condit(argy) is determined for each k by the conditionalization formula. Therefore,
the partial derivative of Condit(argy) with respect to each of the pr(.be.x) exists and
the partial derivative of each of the pr(.be.x) with respect to the cjj from formula 1)
and 2). So by several applications of the “chain rule”, the partial derivative of the
error of the likelihood fit with respect to each of the cjj exists. A given set of values
for the 27 pr(.be) also determine the Sim(i,j). Specifically, the Sim(j,j) involve
summing up a certain set of pr(.be.x). Therefore, the partial derivative of the error
of the similarity fit with respect to the cjj exists and therefore so do the partials of
the overall error of fit with respecto the cj;.

The algorithm which was used to adjust the free parameters from a starting value to
a final value was an algorithm commonly known as “conjugate gradient descent”.
A program implementing this algorithm and a description of why it works can be
found in Press et al. ‘88, pp- 309-323.

Two passes were made with the minimization algorithm. In the first pass, the error
norm used (the value of the variable ‘D’ above) was simply the square of the
discrepancy. After the minimization routine had run its course using this error
norm, it was restarted from its final value using the following error norm obtained
from the paper by Girosi et al. ‘90.

D(x) = x2 - (1/B) In(1+EXP[Bx2 -K]) where B and K are fixed constants.

This error norm is particularly appropriate when dealing with outliers such as the
uncorrelated “mixture judgments” described in the analysis of experiment I. It is
shaped like a gutter. At the bottom it curves like a cup but after rising for a while
the curve levels off and becomes flat. Error norms with this shape protect against
the contingency that outlier data points will have a large effect on judgments. If 9 is
the percentage of these “mixture” judgments or outliers, then the parameter K
should be set to In ((1 - 9)/9). The value of K that was used in experiment II was
given by this expression for a d of 0.1, something like a median value from the
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analysis of experiment I. Given a choice of K, the value of B can be chosen so as to
determine where the curve levels off. The derivative of the D(x) with respect to x is
given by the following equation.

D'(x) = 2x(1 - (EXP[ Bx2 -K] / (1 + EXP[B x2 -K])))

It can be observed that as x grows large, this term goes to zero. A value of B was
chosen so that, roughly, D(x) reaches 90% of its asymptotic maximum at x = % 20
(relative to the 100 point scale).

The only thing left to specify is the starting values for the free parameters. The
parameters a and c are started at 1.0. The parameters b and d are started at 0.0. The
starting values of the ¢jj were obtained from the values of the SIM(i,j OVER) by
linear transformation. There initial values were as follows

cij = Zij 3.0 (SIM(ij,OVER) - 1/21%;j SIM(i,jOVER) ).

A theoretical ahalysis suggesting that the ¢jj might be expected to have something
like these values may be found in the paper MacKay ‘91.




