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Abstract 

MDO is moving beyond the small group of NASA and Aerospace companies and is increasingly being 
adopted by organizations around the world. With MDO, we can optimize across multiple disciplines and 
find the ideal design which maximizes benefit to the company and society. Given the complexity of 
working with multiple disciplines and stakeholders, it is important to have a single metric which teams 
and organizations can use to choose the best design. Since financial metrics play a dominant role in the 
decision-making process, we can use them to choose the best design for the company.  

In the thesis, we created a framework for doing financial analysis in MDO. We applied the framework to 
the baseplate, a component used within the excavator pump, and optimized across three different 
disciplines of cost, natural frequency and temperature to find the baseplate design with the highest sales 
potential. We focused on sales as it is the most important financial metric for the product, but a similar 
framework can be used for maximizing profit, NPV, IRR or any other financial metric.  

We used two approaches for finding the best design for the company. In the first approach, we found 
designs which minimized cost and temperature, while increasing the natural frequency. We then 
converted the cost and temperature data into sales and chose the design with most sales. In the second 
approach, we only set one objective of maximizing sales and chose the design with the highest sales. In 
both the approaches we were able to significantly increase sales. We would recommend approach 1 as 
we get higher sales with the method, and because of limitations within the optimization software 
OptiSLang in regards to implementing approach 2. Approach 2 might become the better option in the 
coming years as MDO software, including OptiSLang, is in the early stage and might significantly improve. 
Approach 2 also has the advantage of MDO teams only setting one objective, helping establish consistency 
and uniformity in MDO implementation.  

We believe MDO has a lot of potential. Similar to CAD, it is an extremely powerful tool. Some of the 
challenges to successful implementation were: computational resources, high quality and reliable 
financial data and early stage MDO software. Organizations which implement MDO will create better 
products which maximize savings and financial benefit.  

Thesis Supervisor: Maria Yang 

Title: Professor of Mechanical Engineering 
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Chapter 1: Introduction 

Multidisciplinary Design Optimization (MDO) is a field of engineering in which we find the global optimum 
across multiple disciplines, ranging from structures to economics. We can use MDO to design and 
customize almost any product from an aircraft wing to a tennis racket. For instance, we can choose the 
range of the length of the tennis racket, desired limit on the weight, the strength requirement and can 
use MDO to create a tennis racket which is optimized for our game.  

Initially developed by NASA, MDO has been around for 50 years (Dunbar, 2020). The test cases have 
largely been used within the Aerospace industry. With decreasing computing costs, MDO is now becoming 
increasingly viable for mainstream applications and many companies are looking to incorporate MDO into 
their design process. In the project, Danfoss partnered with MIT to test MDO on their industrial 
components and use the project as a benchmark for expanding MDO throughout the organization.  

In MDO, we are trying to optimize many different disciplines and variables. It is easy to lose sight of the 
final objective. Individuals and users also have biases which makes them prioritize one discipline or 
variable over another. For instance, a thermal engineer might be singularly focused on minimizing 
temperature whereas the finance team might be more interested in cost. The allure of MDO is that it 
helps us choose the optimum design across multiple disciplines. However, it is important to have one key 
metric which teams and organizations can use to choose the best design. Almost all companies in the 
world are interested in maximizing their sales, revenues and profitability. The importance of financial 
metrics in decision-making allows us to use them in MDO for choosing the best design for the company.  

In this thesis, we created a framework for doing financial analysis in MDO. We created our own internal 
cost simulation so that MDO would efficiently calculate the cost of each design point. Since sales is the 
most important financial metric for the product, we created a sales model in which MDO would identify 
the design with the most amount of sales potential. A similar method can be used for creating a model 
which identifies the design with maximum profit, NPV, IRR or any other financial metric.  

Some of the challenges we faced while implementing MDO were computational limitations, early stage 
MDO software and availability of models of sufficient fidelity. We were able to overcome all of them, 
including the disruption caused by the pandemic, and successfully execute the project. We created a 
financial template which can be used as a reference for scaling MDO throughout the organization. We 
believe that MDO has the potential to become an important design tool and will add significant value and 
financial benefit to organizations using them in their design process.  
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Chapter 2: Background 

History about Danfoss 

Danfoss is a 70 year old automotive and energy company founded by Mads Clausen in 1933. From his 
parent’s farm in Nordborg, Denmark, the company has now expanded to a thirty thousand employee 
global company (Danfoss, 2020). Danfoss operates in four major segments: Power Solutions, Cooling 
Solutions, Vehicles, and Heating Solutions. Danfoss is a leading supplier for energy solutions around the 
world. Its products help in solving important problems from urbanization to global food supply. 

For the project we worked on power solutions and focused on the excavator market. Danfoss makes 
pumps which are used by excavator companies such as Komatsu and Caterpillar. The component used for 
MDO is the baseplate of the Digital Power Controller (DPC) for the pump. The DPC baseplate protects the 
PCB and is mounted in the excavator. In Figure 1 is the company logo and in Figure 2 is an excavator with 
Danfoss products.  

 

 

 

Figure 1: Danfoss Logo (Danfoss, 2020) 
 

 

 

Figure 2: Excavator with Danfoss products (Danfoss, 2020) 
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Danfoss Innovation Accelerator 

Our project was sponsored by Danfoss’ Innovation Accelerator in Cambridge, Massachusetts. The office 
is a key innovation hub for Danfoss, and plays a crucial role in identifying and implementing external 
technologies. Located near MIT in the CIC building (Figure 3), the office is at the center of one of America’s 
most innovative ecosystems. The team responsible for DPC baseplates is located in Danfoss’ 
manufacturing facility in Ames, Iowa. The broader pump team is located in Scotland, UK. 

MDO project was the winner of the company-wide competition for new moonshot project ideas. The 
winning team was led by Danfoss engineers Jens Paulik and Neil George. Danfoss is currently in the early 
stage of MDO implementation. 

 

 

 

Figure 3: CIC building in Cambridge (CIC, 2020) 
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Product used for MDO case study 

The baseplate covers the PCB and is mounted on the excavator (Figure 4 and Figure 5). The PCB controls 
the pump. The goal of the project is to reduce the maximum temperature and cost while improving the 
natural frequency. Heat on the PCB is an issue and we also need high frequency to avoid resonance with 
other components. Danfoss engineers have added fins to the product to increase heat transfer and reduce 
the maximum temperature. In the project, we added more fins, changed fin characteristics like fin 
thickness and height, and increased the baseplate thickness. The product was ideal as we were able to 
demonstrate the value of MDO within the project timeline. Other products were not suitable for MDO as 
there was no clear benefit in optimizing them across different disciplines or had significant engineering 
complexity such that we could not successfully model them with the available time and computational 
resources. Also, an additional plus was that we were able to work with the Danfoss plant in Ames, which 
was in a similar time zone.  

 

 

Figure 4: CAD of the baseplate with the PCB 
 

 

 

Figure 5: Actual baseplate
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Chapter 3: Research Methods 

Research methods is an overview of the tools and processes that helped us successfully implement 
MDO. In the first half, we explore the framework for implementing MDO, process for choosing the MDO 
software and the computational resources needed for MDO. In the second half, we look at the 
incorporation of Agile into the project and the two different workflows used for baseplate optimization.  

Division of the project 

The project was a team effort with fellow MIT graduate students Antoine Yazbeck and David Mimery 
and our manager Kevin Marty from Danfoss. Our advisors Maria Yang (Professor of Mechanical 
Engineering), Mark Shu (Innovation Director at Danfoss) and Jose Pacheco (Co-director of the MEngM 
program) mentored us through the project. We worked with many stakeholders across MIT, Danfoss 
and other organizations (see Acknowledgements, pg. 5, for more details).  

As mentioned in the previous page, the goal of the project was to demonstrate the value of MDO by 
optimizing the baseplate design. In order to find the optimum design we had to maximize the natural 
frequency and minimize the temperature and cost. To do this we split the project into the three 
disciplines based on our past experience and interests. Antoine created the Modal Model, David created 
the Thermal Model and I created the Financial Model. All of us worked together on background research 
and on integrating the different models and implementing MDO. We helped each other on our models 
and worked as one team. References to Antoine’s and David’s thesis can be found in the appendix.  
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Framework for implementing MDO 

MDO can be used in several different fields ranging from structures to economics. The first step is to 
choose the variables, set the objectives and define the constraints. In the second step we choose the 
fidelity of the project. Choosing the correct amount of fidelity is essential to the success of the project and 
involves a balance between robustness and process physics. Low amount of fidelity might undermine the 
findings of the optimization as the simulation would not accurately model the system, and a high amount 
of fidelity would result in inefficient optimization runs. The final step is choosing the architecture of the 
optimization. For the literature review we have explored Multidisciplinary Feasible and Collaborative 
Optimization (Balesdent et al., 2010).  

 

 

Figure 6: SpaceX Launch (SpaceX, 2020) 
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In the example, we are using MDO for launch vehicle design. We would first identify the different 
disciplines relevant for MDO. This could be aerodynamics, propulsion, structures, cost and trajectory 
optimization. Then we can set the objective, which for this case would be maximization of the payload 
mass, minimization of gross lift-off weight, and minimization of launch vehicle cost. The design variables 
would be masses, diameters, and propulsion variables like chamber pressure and mixture ratio. The 
coupling variable would be dry mass, specific impulse and length to the diameter. For the equality 
constraints we can specify the desired orbit and payload mass needed for the mission. In the inequality 
constraint we can define the maximum load factor and minimum nozzle exit pressure. The framework is 
summarized in Figure 7.  

 

 

 

Figure 7: MDO Framework used for launch vehicle design 
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For the architecture we could do the Multidisciplinary Feasible (MDF) method. As shown in Figure 8, MDF 
involves analyses at the sub-system level. The sub-system would refer to the specific discipline or 
component. Some of the advantages are that the system is easy to implement, there are a limited number 
of variables, and solutions are available even when the optimization is stopped. Some of the 
disadvantages are that this architecture does not take advantage of coupling between disciplines. There 
is a high calculation cost and the framework can only be applied to simple solutions. There also needs to 
be clear communication and transparent management.  

The other approach is the Collaborative Optimization (CO) method. This is a two-level optimization and 
over here there is greater freedom for sub-systems. In addition to global parameters, we have local 
variables, constraints and optimizers. Some of the advantages are that the system has high modularity 
and the sub-systems are easy to modify. We can have optimization methods adapted to each sub-system. 
The disadvantages are that the system is not robust and the computational efficiency decreases with the 
number of coupling variables.  

 

  

Figure 8: Multidisciplinary Feasible (Left) and Collaborative Optimization (Right) (Balesdent et al., 2010) 
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MDO Software  

 

Table 1: Matrix for evaluating different MDO software 
 

We evaluated different MDO software used within the industry (Table 1). Ansys-owned OptiSLang was 
Danfoss’ preferred software as it was already tested within the company. iSight and Simulia are part of 
Dassault Systemes’(3DS) product offering and are available on MIT’s IS&T system. Heeds is owned by the 
industrial giant Siemens. MSC’s Nastran was one of the first MDO software used within the industry. Credit 
goes to NASA’s office of technology utilization for launching Nastran. Nastran was later acquired by MSC 
and is independently run as part of MSC’s ecosystem (MSC, 2020). Having a strong early mover advantage, 
MSC has established itself as the leader in the industry. About 3000 companies in the aviation, automotive 
and higher education industry use Nastran (Enlyft, 2020). 1286 companies are part of the MSC One 
ecosystem which allows users to link Nastran with other simulation and optimization software. Given that 
Nastran is established in the industry, it is compatible with most commercial software. The costs are high, 
and the Nastran bundle can be in $20-45k range (Wong, 2010).  

At the second place was OptiSLang. We used OptiSLang for the project as the software is already 
established within Danfoss. OptiSLang was a German startup company, Dynardo, which was recently 
acquired by Ansys. Combining forces with Ansys has given OptiSLang several advantages. Ansys is widely 
used for simulations by 11,000 companies (Enlyft, 2020). Ansys offers customer and technical support in 
40 countries around the world (Ansys, 2020). Ansys is also expensive starting at $30k (Lavi, 2020). We 
luckily did not need to pay for using Ansys and OptiSLang as the thesis is sponsored by Danfoss.  

At the third and fourth position are 3DS’ Simulia and iSight and Siemens’ Heeds software. Owned by some 
of world’s well-known industrial companies, the software are rated poorly in our study not because they 
are terrible but because they are not the right fit for Danfoss. Both the MDO software are aimed towards 
the mass market and would not be suitable for complex simulations which Danfoss’ products would 
require. Both the choices, however, are excellent for companies using MDO on simple products. 
Companies already using Dassault CAD products like SolidWorks and CATIA can easily add on Simulia and 
iSight to their simulations. Simulia and iSight are compatible with standard software such as MATLAB and 
Excel (Dassault Systemes, 2020). Heeds is the most affordable MDO software at only 500$ per month 
(Siemens, 2020). It is focused on being user-friendly and would be a great choice for individuals and 
companies new to MDO.  
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The team received access to OptiSLang thanks to sponsorship from Danfoss. MDO software can be 
extremely expensive and this might be a limiting factor for many companies. We had a direct line with 
OptiSLang’s support team in Germany and access to commercial products, which are much more 
comprehensive than the student edition of Ansys and OptiSLang. We really enjoyed working with 
OptiSLang throughout the project. However, as mentioned in the feedback section there is scope for 
improvement and we recommend Danfoss to try MSC’s Nastran and compare it with OptiSLang. 
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Computational resources  

One of the most important ingredients for success in MDO is access to powerful computational tools. We 
can really attest to this. Throughout the project we were hobbled by lack of computational resources. We 
were innovative about our limitation and able to carry forward the project thanks to access to a powerful 
PC in Professor Hardt’s lab.  

There are two ways of running the powerful optimizations needed for MDO. The first step would be to 
invest in hardware and the second step would be to connect the PC with high performance computing 
resources. The first approach would involve buying a $5,000 PC. It is recommended that the PC has intel 
Xeon Gold with 16 cores, 192 Gb memory, 2 TB storge and Windows 10 operating system (Ansys, Calculate 
the Simulation Speed-up and ROI of a New Workstation, 2020). Depending on the application, we might 
also need access to a graphic card. For instance, running Ansys Polyflow would require Nvidia’s Tesla or 
Quadro series. The investment seems significant but is essential to running MDO. As shown in Figure 9, 
the hardware upgrade would pay for itself in less than 3 months for a typical design engineer. The savings 
would be due to the reduction of computation time, allowing engineers to do more work. 

 

 

Figure 9: Plots showing the benefit of investing in hardware resources (Ansys, 2020) 
         

The other approach would be to connect a simple laptop such as an 850$ HP G5 Zbook mobile workstation 
with HPC resources. They can range from Amazon’s AWS to Ansys’ cloud system. Renting cores might be 
an effective way for rapidly decreasing the computation time. For instance, if a “CFD simulation takes 16 
days on a single core, then adding 32 cores might reduce the simulation time to only four hours! Doubling 
the number of cores from 32 to 64 might cut the time in half again – from four hours to two hours” (Ansys, 
Ansys Cloud, 2020). Adding the number of cores saves a lot of time, but the value per core as shown in  
Figure 10 decreases after a certain point. With parallel computing, we can run multiple jobs and thus ROI 
increases in a linear fashion with the number of cores. With HPC parametric, HPC customized for design 
exploration, we can simultaneously run multiple design points.
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MDO is in the early stage of mainstream adoption and the resources supporting it are expanding. 
Computing has been one of the biggest limiting factors for MDO. The rapid lowering of computational 
costs from $160 billion per gigaflop in 1960 to $0.03 today (Figure 11) is helping MDO expand beyond the 
small enclave of NASA and Aerospace companies (Wikimedia Foundation, 2020). As mentioned in the 
MDO software section, all major design software companies are beginning to offer MDO in their 
portfolios. They are also offering innovative HPC solutions to support MDO. For OptiSLang, we would 
recommend using Ansys’ HPC parametric solution as it would allow us to compute multiple design points 
in a short period of time.  

 

 

 

Figure 10: Improvement in performance with more number of cores and design points (Ansys, 2020) 
 

 
Figure 11: Reduction in cost and improvement in energy efficiency (Wikimedia Foundation, 2020) 
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Being in MIT, we had access to plethora of computational resources. We connected with MIT Lincoln 
Laboratory’s Supercloud system. However, we soon realized that OptiSLang was not on the network and 
installing the software would take longer than the project timeline. We then contacted Ansys to access 
the company’s HPC offering, Ansys Cloud, but installing SolidWorks into the server for Ansys Cloud was 
not viable for a small project.  We were also not able to access OptiSLang on Danfoss’ servers as access 
was restricted to employees within the company. We tried purchasing computation from third-party HPC 
suppliers like Nimbix at a very reasonable price of $1,500 for 10,000 core-hrs. However, Nimbix also did 
not have OptiSLang installed on its servers and installing it would take about 2 months.  

Due to various roadblocks with access to HPC we decided to revert back to option 1. We used our laptops 
for limited runs where we tested the minimum viable optimization, and we ran the complete run on 
Professor Hardt’s powerful lab PC. Due to Coronavirus, we could not physically log in to the computer and 
we used TeamViewer to remotely connect with the PC. Due to limitations on computing, as a team we 
had to be efficient in using the lab PC and we collectively agreed to do only the optimization runs which 
would add value to the project. We also adjusted the project scope and timeline to minimize the number 
of optimization runs. Through the project, we learnt that it is critical to have computational resources and 
to be smart about which optimizations to run. The project setup is shown below in Figure 12.  

 

                                                   Figure 12: Project setup for MDO 
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Implementation of Agile into the project  

We used Agile to structure our project. Agile has been widely used in software companies in Silicon Valley, 
and is now moving into other industries. More information on Agile can be found in the appendix. The 
project is split into iterations and each iteration is reviewed and tested. The advantage of Agile is that 
early feedback prevents failure in the end when it is too late and allows teams to pivot the project. 
Software is ideal for Agile as iterations are very quick and do not require significant capital investments. 
From our experience, we believe Agile can also be successful for hardware products. Simulating real-world 
conditions and getting feedback on the results from the simulations can be extremely valuable to the 
product development cycle. All of us have taken the course Product Design and Development at MIT under 
our advisor Professor Yang, where we used Agile for creating hardware products.  

We split the project into three iterations (Figure 13). In each iteration we would add more parameters 
and complexity. We initially created a simple product on the Ansys workbench and conducted the 
optimization. In the first iteration, I created a completely theoretical cost model as I was still working with 
Danfoss on collecting cost information. In the second run we added more thickness and other parameters. 
I learnt from the first iteration that it is very important to have a simple interface with other simulations 
in the Ansys workbench, so that other team members can seamlessly connect their simulations with the 
cost model. In the second iteration, the cost model simulation would automatically link with other 
simulations, and the parameters in the cost model would automatically link with parameters in the global 
parameter set. In the third simulation, I finished collecting the relevant cost information from teams 
within Danfoss and also developed an understanding of their business. I updated the cost model with 
actual data, and successfully received results in the third iteration. I personally think implementation of 
MDO with Agile was effective and would recommend MDO teams to consider using Agile workflow.  

 

 

Figure 13: The three iterations used for the project 
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Workflow for optimization 

Since the CAD file for the baseplate is in SolidWorks, there are two ways to connect the CAD with Ansys. 
The two different workflows are shown in Figure 14. In the first method, the file can be imported into 
SpaceClaim, Ansys’ CAD editing software. In the second method, the SolildWorks file can be directly 
connected with Ansys. In an ideal world, parameters and information from SolidWorks should directly 
transfer into Ansys. However, as mentioned earlier, Ansys only recently acquired OptiSLang and there is 
no seamless interface and information transfer yet between the CAD, Ansys and OptiSLang. The 
parameters from SolidWorks would need to be redefined in SpaceClaim. Running SolidWorks directly also 
takes more time, and this makes a significant impact when we are running multiple design points. In the 
first half of the project, we were not able to use OptiSLang to run multiple design points on SolidWorks. 
However, thanks to additional support from the Ansys team in Germany we were able to fix the problem 
and run optimizations on the SolidWorks file.  

The other approach, which avoids a lot of the issues mentioned in the first approach, is to directly 
download the CAD file to SpaceClaim and create new parameters in SpaceClaim. The downside with this 
approach is that we lose fidelity when we use SpaceClaim. SolidWorks is a far superior designing software, 
and creating complex shapes and modifications is extremely difficult in SpaceClaim. We created simplified 
geometry in SpaceClaim and the results from the simulation were surprisingly close to the earlier 
approach.  

Our conclusion was that both methods are equally good but both have tradeoffs. With SolidWorks we get 
high fidelity results with more implementation and computation time, and with SpaceClaim we get lower 
fidelity results but faster implementation and computation time. Teams can also use a hybrid approach in 
which low fidelity, quick simulations are done in SpaceClaim and high fidelity, time consuming simulations 
are done in SolidWorks. 

 

 

Figure 14: Workflow I and Workflow II 
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Chapter 4: Developing the Cost Model 

For the project, we created our own cost model. Every time OptiSLang runs a design point, our cost 
simulation calculates the cost for that design point. We created the model based on data from aPriori, a 
cost simulation software used within Danfoss. The cost model only covers the cost of the baseplate and 
does not include the cost of the PCB. The cost consists of three different sub-components: the material 
cost, the process cost, and the supplier profit.  

One of the objectives of our MDO project was to reduce cost for the baseplate. Cost is one of the key 
drivers for any organization and any business decision. The supplier quote for the baseplate is 16.4$. In 
MDO, we have to obtain the cost for different geometries. Getting actual supplier quotes for multiple 
different orientations we are testing in MDO would not be viable due to the project timeframe. In order 
to address the pricing for the baseplate, we partnered with Danfoss India to obtain cost information from 
aPriori. aPriori is a cost simulation software used throughout Danfoss to calculate cost of different CAD 
geometries. The assumptions the team made are shown below in Figure 15.  

 

 

 

Figure 15: Assumptions used for calculating the baseplate cost in aPriori 
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Internal Cost Simulation & aPriori – Partnership with Danfoss India  

We explored the parameters and parameter ranges shown in Figure 16 during the MDO process. In order 
to get the approximate cost, we looked at the comprehensive set of design points which covered the 
entire range. We used a base model as a reference point and changed the individual parameters. We had 
to balance between having enough points for a rigorous model and not too much to overwhelm the 
Danfoss India team with work. aPriori on average takes 15 minutes to calculate the cost for a design point.  
Increasing the tolerance and details can increase the time to 2 hours. Danfoss has already tried linking 
aPriori with Ansys and running simulations. We have tried a different approach by creating our own cost 
model. Even though directly using aPriori would be more accurate, creating our own model in Excel has 
several advantages as it is significantly faster. We save 15 minutes per iteration and thereby save a lot of 
computation time and cost, the key limitations in implementing MDO.  

                             

Figure 16: aPriori data points used for creating the cost simulation. For fin thickness, we were interested 
in the range of 1 to 15 mm. We received aPriori cost estimates of the base model with a fin thickness of 
1, 3, 6, 9, 12 and 15 mm. 
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Converting CAD files into cost information  

We sent the step files to Danfoss India and received the cost information for all the design points. This is 
the estimated selling price of the supplier. We received the total cost and their breakdown in the three 
sub-components: material cost, process cost and supplier profit (Figure 17). Material cost is the cost for 
the raw material. Process cost includes the labor, direct overhead, setup, tooling, inventory and handling, 
packaging, indirect overhead and administrative expenses. The profit is the approximate margin for the 
supplier. In Figure 18, you can see the cost for different baseplate designs. Figure 19 is a sample step file 
sent to Danfoss India and Figure 20 is a snapshot of aPriori estimating the cost of a baseplate.  

 

 

Figure 17: Breakdown of baseplate cost in aPriori 
 

 

 

Figure 18: Cost for different baseplate designs. The cost for each design is broken down into cost for the 
raw material, process cost and supplier profit.  
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Figure 19: A step file sent to Danfoss India 
 

 

 

Figure 20: Snapshot of aPriori 
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Cost Model Concept  

 

 

 

Figure 21: Plot showing the impact of number of fins on cost 
    

Let us say we were trying to see the effect of the number of fins on the baseplate cost. We would find the 
cost of the baseplate with 2 fins, 4 fins, and continue in the increments of 4 to 40 fins.  As shown in the 
plot (Figure 21), we can see the change in baseplate cost if we were to increase the number of fins of the 
base model of the baseplate, which has 10 fins. On the x-axis, since values are referenced to the base 
model, 5 shows the baseplate with 15 fins and -5 shows the base plate with 5 fins. As seen in the plot, the 
values in aPriori are linear, giving us confidence in our model. For almost all parameters we have very high 
coefficients of regression, and for only fin angle and horizontal fins we have slightly lower coefficients of 
regression (Table 2). The remaining plots can be seen in the appendix. 

Dimension Slope  Constant             𝑅𝑅2 
Number of fins 0.12 -0.06 0.99 
Fin Height 0.09 0.04 0.99 
Fin Thickness 0.14 -0.04 0.99 
Fin Angle 0.02 0.02 0.97 
Baseplate Height 0.03 -0.01 1.00 
Baseplate Thickness 0.35 -0.09 0.99 
Hor. Fins 0.05 0.05 0.89 
Hor. Fin Height 0.09 0.04 0.99 
Hor. Fin Thickness 0.14 -0.04 0.99 
Hor. Fin Angle 0.02 0.02 0.97 

                                                                     
 Table 2: Slope, constant and 𝑅𝑅2 for different parameters 
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Usage of a ratio to work around the limited number of design points   

Adding horizontal fins is not a focus for our project as they were not recommended by the design team at 
Danfoss. We still added them to the baseplate design to show the value of MDO and the potential benefits 
of adding horizontal fins in the future. Due to limitation on the number of design points we were receiving 
from Danfoss India as they were doing this out of courtesy, we made an important assumption for 
calculating the cost of horizontal fin parameters and baseplate with different materials. Using the data 
points for the number of horizontal fins, we calculated the slope of the number of horizontal fins. We then 
compared the slope for the number of horizontal fins (0.05) with the slope for the number of vertical fins 
(0.116), and found the ratio between the two to be 0.42. We used this ratio to calculate the cost of 
horizontal fin thickness and height, by multiplying the cost of the respective vertical parameters times the 
ratio. For instance, if increasing the vertical fin height by 1’’ increased the cost by 1$, then the cost for 
increasing the horizontal fin height by 1’’ would be $0.42.  

We used a similar approach for baseplate material. The cost for the base model (Aluminum alloy A380) is 
$14.31. The cost for the base model with Aluminum alloy A360 is $14.65 and base model with A383 is 
$14.92. We used the ratio between the prices to calculate the approximate cost of the design with 
different materials. Let us say if the current design in OptiSLang with material A380 was $14.31, then the 
cost of the same design with material A383 would be $14.92.  
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Cost Model Simulation 

To show how the cost model works, let us say we have a design in OptiSLang with all parameters equal to 
10. We would then calculate the difference from the base model and use the slope from Table 2 (Cost 
Model Concept, pg. 25) to calculate the net price difference. Since this is a regression, even a difference 
of zero would have a negligible positive or negative value. As you can see in Table 3, for a fin angle of 84 
degrees, the difference would be 4 and the relative price difference would be $0.12. We combine the 
price differences and find the cumulative price difference. Then we add the cumulative price difference 
to the price of the base model ($14.31), and we find the cost of the current design in OptiSLang. For the 
current orientation shown in the example below (Table 3), the net price difference is $1.028 and the price 
for the current model would be $15.34.  

 

 

Dimension 
Current 
Model 

Base 
Model Difference Price Difference 

Number of fins 15 10 5 0.524 
Fin Height 14 10 4 0.390 
Fin Thickness 11 10 1 0.095 
Fin Angle 84 80 4 0.120 
Baseplate Height 0 0 0 -0.010 
Baseplate Thickness 3.3 3.3 0 -0.090 
Hor. Fins 0 0 0 0.000 
Hor. Fin Height 10 10 0 0.000 
Hor. Fin Thickness 10 10 0 0.000 
Hor. Fin Angle 10 80 -70 0.000 

                                                      
 Table 3: Cost calculation for the current design point 
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Comparison of internal cost simulation with aPriori 

We are adding the differences of individual parameters and adding them to find the cumulative price 
difference. However, the cost for changing multiple parameters might be different than changing the 
parameters individually and adding their difference. This can be due to economies of scale and different 
machining processes. In order to record the difference, we used a benchmark value. The parameters for 
the benchmark design point are shown below (Figure 22). The cost according to aPriori would be $16.91 
and the cost according to the internal cost simulation would be $15.34.  

 

 

 

Figure 22: SolidWorks dialog box showing the parameters of the benchmark design 
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Comparison with supplier quote 

The cost for manufacturing a single piece of the current baseplate in China is 114 Renminbi or $16.32. The 
quote is based on production volume of 20,000 pcs and is multiplied by a factor to avoid disclosing 
confidential Danfoss information. The irony is that the cost for manufacturing a part in China matches 
with the aPriori estimate for manufacturing the part in USA. It could be that aPriori significantly 
underestimates the cost of manufacturing or that Danfoss should look for alternate suppliers with lower 
costs. Obviously, this is beyond the scope of the thesis, and we are more concerned with finding a design 
with the lowest cost, irrespective of the supplier.  

 

Supply chain of the baseplate  

The baseplate is made in China by a supplier. The parts are then assembled with the PCB by an electronics 
contract manufacturer in Europe. The assembled baseplate is shipped to the Danfoss facility in Scotland, 
where it is combined with the pump. The pump is then shipped to the customers. Every dollar in savings 
in the baseplate translates to higher savings towards the end of the value chain. As mentioned in the sales 
model, it is important to take a holistic view as it might be beneficial to the company if we slightly increase 
the baseplate cost but sell to more number of customers. Since the baseplate is only one of the many 
components of the pump, and the profit from selling a pump far exceeds the cost of the baseplate. 
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Chapter 5: Connecting Cost Model with Ansys and OptiSLang 

Linking cost model with Ansys 

 

 

Figure 23: Ansys workflow 
 

In the Ansys workflow (Figure 23), the CAD file is located in the Geometry box. Ansys simulates the 
external forces and conditions, and calculates the natural frequency and heat flow in the modal and 
thermal simulations. More information on the two simulations can be found in the thesis written by my 
teammates Antoine and David. The output information from the geometry, modal and thermal simulation 
goes into the parameter set and then goes into the cost model. As shown in the global parameter set 
(Figure 24), information about the geometry like the number of fins, fin thickness etc., the natural 
frequency, and maximum temperature are used as inputs for the cost model. As shown in the OptiSLang 
input tab (Figure 25), the information is transferred to the cost model. OptiSLang is very well integrated 
with Excel, and “define name” function can be used to create input and output relations (Figure 26). If a 
variable has a unit, then it is very important that the variable is defined in a consistent way along with the 
unit in order to align variables in the cost model with variables in the parameter set (Figure 27). Using the 
information in the OptiSLang input tab, the cost model calculates the cost for manufacturing the current 
baseplate design, and outputs the current price. This value is then sent to the global parameter set.  
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Figure 24: The Global Parameter Set can be used to access and connect parameters of all models  
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Figure 25: OptiSLang input tab in the cost model 
 

 

Figure 26: Variables defined for the cost model as seen in the name manager 
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Figure 27: Edit configuration for the cost model toolbox can be used to define the relation between 
variables in the cost model and variables in the global parameter set. 
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Linking OptiSLang with Ansys 

 

Figure 28: Feedback loop for the project 
 

OptiSLang can be connected with Ansys in two different ways. OptiSLang can be used as a plug-in and can 
be connected with the parameter set (Figure 29). The second way would be to download the Ansys file 
into a standalone OptiSLang application (Figure 30). Our initial approach was to use OptiSLang as a plug-
in as it is a convenient and faster option. However, we later switched to using the OptiSLang application 
as it offers more flexibility and is more robust. Our recommendation would be to use the OptiSLang plug-
in for simple tasks and the OptiSLang application for more complex tasks. 

As shown in the feedback loop (Figure 28), information about the current model goes into the input of 
the cost model. The cost model calculates the price of the current baseplate design and sends it to 
OptiSLang. Based on the objectives and constraints, OptiSLang evaluates the current design points and 
choses the next one. OptiSLang continues iterating until it finds the best design point. 
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Figure 29: OptiSLang plug-in 
 

 

 

Figure 30: OptiSLang application 
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Choosing the algorithm 

Different algorithms are used by OptiSLang to find the optimum design point (Figure 31). OptiSLang uses 
green color to recommend the optimization software. Users also have the flexibility of using algorithms 
in yellow, even though they are not preferred by OptiSLang for the current task. Algorithms in red, 
however, cannot be used for the task. For our optimization, we used AMOP for the sensitivity analysis and 
Evolutionary Algorithm for optimization. More information about this can be found in the appendix. 

 

 

Figure 31: OptiSLang recommending the optimization method 

 

Setting up OptiSLang! 

The first step would be to complete all the simulations in the Ansys workbench. Next, import Ansys 
workbench into OptiSLang. Create a sensitivity analysis. Choose the parameters you are interested in and 
define the relevant ranges (Figure 32). The range can be continuous, discrete, constant, and can also 
involve functions and dependencies. Choose the input and output responses you are interested in (Figure 
33). Set target COP value and maximum number of design points. OptiSLang will stop when it reaches the 
desired COP or when it reaches the maximum number of design points. Once the sensitivity analysis is 
complete, the data is then sent to optimization. With results from the sensitivity analysis, we can see the 
impact of the inputs on the output response. As shown in the plot (Figure 34), we can see how the cost 
varies with different fin spacing and thickness. In the COP Matrix (Figure 35), we can see the quantitative 
impact of different inputs on the output parameters. The highest contributing factor to cost is the number 
of fins (indirectly indexed through fin spacing) at 51%, followed by fin thickness at 34%. Here we can also 
see that Ansys’ correlation coefficient, COP, is very high at 97%. Indicating that we can successfully 
proceed to optimization.  
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Figure 32: Selecting the variables for optimization 
 

 

 

Figure 33: Choosing the parameters and responses for sensitivity analysis 
 

 

 

     



38 
 

 

 

 

 

Figure 34: A sensitivity analysis showing the impact of fin thickness and fin spacing on cost 
 

 

 

Figure 35: COP Matrix shows the impact of input parameters on the output. Here we see that OptiSLang 
is able to predict cost with 98% certainty. In this optimization, fin thickness and the fin spacing contribute 
to 34% and 51% of the cost respectively. 
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Doing an Optimization – Single Objective and Multi-Objective 

Once the sensitivity analysis is complete, it is very easy to add different optimizations. To put in 
perspective, sensitivity analysis took us couple of days and adding an optimization took only 10 minutes. 
Even though OptiSLang gives us the option of performing both sensitivity analysis and optimization 
together, we would recommend completing the sensitivity analysis and then adding different 
optimizations to it. In the optimization task bar (Figure 36), we can choose the objectives and constraints 
for the project. We used two approaches for the project. In the first approach we did a multi-objective 
run. We minimized the cost and temperature while setting the natural frequency as a constraint. The 
output is a pareto front with best designs shown in red dots (Figure 37). The black dots are all the designs 
evaluated by OptiSLang. In the second approach, we did a single objective run. Here, we directly tried 
maximizing the sales. The designs evaluated by OptiSLang are shown in light green and the best design is 
shown in red (Figure 38). By clicking on the point, we can see the characteristics of the respective design 
point. We can also output all the relevant information into a spreadsheet.  

 

 

 

Figure 36: Choosing the parameters and responses for optimization 
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Figure 37: Output from the multi-objective run. A pareto front of cost versus temperature. 
 

 

  

Figure 38: Output from a single objective run  
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Chapter 6: Sales Model 

The need for a single holistic metric  

Our natural instinct was to try to minimize the cost. As shown in Table 4, we were able to find a design 
point with a cost of only 15.4$. However, reducing the cost made our temperature worse. As shown in 
the minimum temperature design point in Table 4, when we tried minimizing the temperature the cost 
became worse. We soon realized that we have a dilemma. How do we choose a design which satisfies 
both the objectives? For instance, Antoine might choose a design with the lowest cost and David might 
choose the design with the lowest temperature. Notwithstanding the fact that we only have a small team. 
Danfoss, however is a large, global, company operating in many different countries around the world. 
Every business unit and team will have a different way of looking at the problem. Also, over here it is a bit 
simple as we only have two objectives. It is possible that in other real-life scenarios we will have even 
more objectives, adding complexity to the problem. This shows the need for a universal holistic metric 
which we can use to choose the best design for the company. 

 

 

Table 4: Design points with minimal temperature and cost 
 

 

Single holistic value: sales 

For our case, that single holistic metric is sales. Sales is just the number of pieces we sell. The formula for 
sales (Equation 1) is straightforward. Sales is equal to the current sales plus the new sales due to lower 
cost and new sales due to lower temperature. Reducing the cost of the baseplate will make the product 
more competitive and will help Danfoss get more customers in the excavator market. If we are able to 
drastically reduce the price of the baseplate, not only will we sell the baseplate to more number of 
customers in the excavator market, but we can also sell the baseplate for other applications like the forklift 
market. Similarly, by lowering the temperature of the baseplate, we can store the baseplate in more 
locations within the excavator. This flexibility might be very attractive to some OEMs and will lead to more 
sales. As you can see in Figure 39, we converted the cost and temperature data into sales.  
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Equation 1: Sales formula 
      

 

 

Figure 39: The conversion process 
 

 

Sales model example - fictional 

To show how the conversion works, let us do an example! The sales numbers which we used here are 
fictional, due to the limited time and scope of the project. When Danfoss makes the decision to go from 
Design A to Design B, all Danfoss needs to do is update the table with the latest market information. The 
formula for sales is shown in Equation 1. Let us say the current sales for this example is 10,000 pcs and 
the design improves by 1.75$ and 2.5 C. Looking at Table 5, we know that 1.75$ falls between 1$ and 2$ 
and thus the new sales due to lower cost will be 7,500 pcs. Similarly, 2.5 C falls between 2C and 3C and 
therefore there will be 10,000 pcs in new sales due to lower temperature. The total sales for this design 
point will be 10,000 plus 7,500 plus 10,000, and this will be equal to 27,500 pcs. 

 

Table 5: New sales for cost and temperature improvement 
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Sales Model 2 – adding negative values 

 

 

Table 6: Sales model with improvement and worsening of cost 
 

To the sales model, we have added negative values. In the previous scenario, we only looked at the 
increase in sales in pcs if the design improved by a certain amount. This time we are also looking at the 
tradeoff between temperature and cost and are also quantifying the loss in sales. As shown in Table 6, if 
the design point improves by 1.5$ then we would get 7,500 pcs more in sales and if design becomes 1.5$ 
worse in cost then we would lose 7,500 pcs in sales. We applied the same concept with temperature. With 
the added complexity, we realistically model that improving on temperature would lead to more sales, 
but the subsequent increase in cost would also make the product unattractive to few of the present and 
future customers.  
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Sales model – Approach 1 and Approach 2 

We looked at two different approaches to the sales model. The first method was to set the objectives to 
minimize cost and temperature with natural frequency as a constraint. Then run the optimization and 
convert the cost and temperature data from the pareto front into sales. Pareto front consists of the best 
design points chosen by OptiSLang. In the second approach, we directly linked the cost and thermal model 
in Ansys to the sales model, and we only set one objective in OptiSLang of maximizing sales. 

 

Approach 1  

Same way as we did in the example (Sales model example – fictional, pg. 42), we converted all the cost 
and temperature information of all design points into sales (Figure 40). On the chart’s left-hand axis, we 
have sales and on the right-hand axis we have cost. On the x-axis we have the 33 best design points chosen 
by OptiSLang. We are choosing the best amongst the best design points. In the red line is sales and in the 
blue line is the cost. Looking at the red line, we can see that there is a maximum sales of 15,000 pcs. 
However, in this unique situation design points 1 to 7 all have the same maximum sales of 15,000 pcs. To 
choose the best between them, we look at cost. Design point 7 is the one with the lowest cost. As you can 
see, design point 7 has the maximum sales with the lowest cost. Thus, design point 7 is the most profitable 
design point for the company. 

 

Figure 40: Chart showing sales and cost of the best design points 
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We were able to use OptiSLang to increase sales from 10,000 to 15,000 pcs. Before we get to too excited, 
it is important to note that the sales numbers used over here are fictional. The reason we focused on sales 
is that the profit from selling a pump system is far greater than the baseplate cost. This might not be the 
case for other MDO applications. In that case we can create a profit framework and that would be very 
similar to the sales framework we just showed. Looking at Table 7, we can see the characteristics for the 
existing design and the best design chosen by OptiSLang. The best design has a slightly higher cost but has 
a much better natural frequency and maximum temperature, and this leads to more sales.  

 

 

Table 7: Characteristics of the existing design and the best design according to Approach 1 
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Approach 2 

 

 

Figure 41: Sensitivity analysis for the sales model. The plot shows the impact of fin spacing (an indirect 
index for the number of fins) and fin thickness on sales. 
 

The other approach which can be used is to create a sales model in Ansys. Sales would be defined in the 
same way as shown in Equation 2. The same calculation would instead be done in the sales model Excel 
spreadsheet in Ansys. For every iteration, cost (output from the cost model) and temperature (output 
from the thermal model) would be inputs for the sales model. The sales model would calculate the sales 
for each design point and would send the results to OptiSLang. In the optimization, there will be a need 
for only one objective and that would be to maximize sales. To make sure the design points are viable for 
the company, we can set a constraint for cost, temperature and natural frequency. The sensitivity analysis 
and optimization results are shown in Figure 41, Figure 42 and Figure 43. The maximum sales of 14,288 
pcs closely matches the 15,000 pcs in sales from approach 1.  

 

Equation 2 : Sales Formula 
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Figure 42: Output from sales model optimization. Sales is on the y-axis and the design points are on the 
x-axis. The red dot, design point 226, has the highest sales for the optimization. The characteristics of 
the design point are shown below in Figure 43.  
 

 

 

Figure 43: The design point with most amount of sales (14,288 pcs) for the optimization 
 



48 
 

Chapter 7: Results 

Cost Model 

 

 

 

Figure 44: The current baseline design in SolidWorks 
 

 

 

 

Figure 45: Characteristics of the baseline design 
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Figure 46: Pareto front of cost versus temperature 
   

The cost simulation calculated the cost of the existing baseline design (Figure 44) to be 15.5$. The other 
characteristics of the baseline design are shown in Figure 45. The current design has 21 vertical fins and 
no horizontal fins. The MDO team collectively decided on a set of objectives which included minimizing 
cost and maximum temperature while setting a lower bound for natural frequency. As shown in the pareto 
plot (Figure 46) in the results, there is a tradeoff between temperature and cost. Given how close the 
baseline design is to the pareto front, we know that the baseline design is almost optimized. With the new 
data from OptiSLang we can choose which area we can optimize on. So, if we were to reduce the cost of 
the baseplate design we would move towards the right and if we were to reduce the temperature then 
we would move towards the left. By reducing the number of vertical fins we can lower the cost to $15.36. 
If maximum temperature is a concern for Danfoss, then we can add more vertical fins and decrease the 
maximum temperature to 95C.  
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Approach 1  

Sales Model 1 shows the results of the sales model with only positive values and Sales Model 2 shows the 
results with the positive and negative values. In both the models, we were also able to increase the sales 
by 50%! Compared to the original design, the optimum design has a significantly better maximum 
temperature and natural frequency for a slightly higher cost (Table 8). Compared to recommendation for 
Sales Model 1, the recommendation for Sales Model 2 is more balanced with a slightly lower cost increase 
and lower performance improvement in maximum temperature and natural frequency. The best designs 
from Sales Model 1 and Sales Model 2 are also compared on the pareto front (Figure 47). The sensitivity 
analysis and optimization results are shown in the appendix.    

 

 

Table 8: Results from Approach 1. The units are in pcs, C, Hz, and $ respectively. 
 

 

 

Figure 47: Best design from Sales Model 1 and Sales Model 2 on the pareto front 
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Approach 2  

In the previous approach, we set multiple objectives in OptiSLang and converted the best design points 
into sales. In the second approach, we have combined the cost model with the sales model and have 
created a new sales variable in Ansys and OptiSLang. This time we only set one objective which is to 
maximize sales. Cost, maximum temperature and natural frequency are used as constraints in order to 
make sure the design points are viable. During the sensitivity analysis, we see the relation between 
variables and sales. We get a low COP, a correlation factor used within Ansys, as OptiSLang defines COP 
based on the relationship between the final output (sales) and initial inputs (the number of fins, fin 
thickness). Sales Model 1 has a COP of 85% and Sales Model 2 has a COP of 66%. Given the limitation of 
OptiSLang in which we cannot define COP based on the relation between intermediate variables (cost and 
temperature) and final output (sales), we get a low COP. Given that high COP is needed for optimization, 
we would recommend using approach 1 until OptiSLang develops additional functionalities. For Sales 
Model 1, we can maximize sales to 14,288 pcs and for Sales Model 2 we can maximize sales to 11,901 pcs 
(Table 9). The values are lower for approach 2, indicating that approach 1 is also more effective in 
maximizing revenues.  

 

 

Table 9: Results from Approach 2. The units are in pcs, C, Hz, and $ respectively. 
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Comparison between Approach 1 and Approach 2 

Approach 1 has a higher sales of 15,000 pcs for both Sales Model 1 and Sales Model 2 (Table 10). Approach 
2 has a sales of 14,288 pcs with Sales Model 1 and a significantly lower sales of 11,901 pcs with Sales 
Model 2. One of the disadvantages we noticed with approach 2 was that OptiSLang calculates the COP 
based on the correlation between the initial input and the final output. COP is a correlation factor used 
within Ansys and a high COP would indicate strong correlation. OptiSLang recommends a high COP for 
conducting an optimization. In approach 2, the initial inputs (number of fins, fin thickness) calculate the 
cost and temperature, and cost and temperature calculate the final output (sales). The indirect 
relationship between the initial input and final output causes a lower COP, even though we have very 
effective cost and thermal models.  

Currently, OptiSLang is only limited to initial inputs for optimization (based on our current knowledge). 
However, if OptiSLang were to include dependent inputs (cost and temperature) for optimization then we 
will have an equally high COP for approach 2. Another challenge with approach 2 might be getting detailed 
marketing information for optimization. Strong correlation, such as 0.1 $ in cost improvement with 10 pcs 
in new sales would be hard to quantify. 

Due to the limitations with approach 2, the near-term approach should be to use approach 1 and convert 
cost and temperature information into sales. However, as Danfoss and Ansys improve their MDO 
capabilities, approach 2 will become an increasingly viable option. Approach 2 will be easy to scale 
throughout the entire company, as Danfoss would be able to direct every employee using MDO to use 
sales maximization as the only objective. The uniformity and consistency from approach 2 for choosing 
the best design, will help Danfoss in implementing an effective company-wide procedure for MDO.  

 

 

Table 10: Summary of Sales from different methods. Current sales is 10,000 pcs. 
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Chapter 8: Next steps 

Profit framework and the addition of other financial information 

We focused on sales data as the profit from selling a pump is significantly greater than the baseplate cost. 
The baseplate is only a small component of the pump and the value lies in increasing the number of pumps 
being sold. We could also create a framework similar to the sales framework, in which we focus on 
profitability of the component. Similar to methods used for maximizing sales, we could convert the best 
designs from the multi-objective pareto front (approach 1) or use a single objective function to maximize 
profits (approach 2). We could also link the data with NPV, IRR and other advanced financial metrics and 
directly find the best design for the company. OptiSLang is very well integrated with Excel, allowing 
engineers, designers, and accountants and other key cross-functional stakeholders to easily access the 
data and help them in choosing the best design for the company. While scaling MDO, we would 
recommend Danfoss to create a financial template for OptiSLang which could be used throughout the 
entire company or a customized template for each business unit.  

 

Using MDO to improve the value chain 

aPriori not only gives us the cost of each design point but also gives us the breakdown of the expenses. 
On the high level, we get the process cost, material cost and supplier margin. We also get the detailed 
information of what contributes to each expense. For our project, we focused on the final cost of the 
baseplate. However, we can also link the sub-component costs with OptiSLang. For instance, instead of 
optimizing on the baseplate cost we could optimize the design for the process cost. This would be 
important if there was a labor strike or a steep projected increase in wages. Also, in case there was an 
increase in the commodity prices we could choose a design with low material usage. Having all the data 
linked with OptiSLang allows us to make immediate changes to our design, and would help the company 
react quickly to the changing business environment. We could also include units in different dimensions 
such as manufacturing time and create a design with quick lead time.  

We live in a global world with rapidly shifting supply chains. Danfoss can use MDO to choose a design best 
optimized for a certain geography or location. Engineers could rapidly adjust the design for cost-sensitive 
regions and adjust the design for quality conscious customers. The design could be adjusted depending 
on if it were being manufactured in low-cost regions in Asia or high-cost regions in North America. Well 
implemented MDO would give significant design freedom, and would contribute to flexibility in 
manufacturing, supply chain, finance and other critical operations of the company. MDO linked with 
financial information can also be used to make strategic decisions. Using aPriori we can find the cost of 
manufacturing different designs in different countries. We can then use OptiSLang to recommend us not 
only the best design but also the best location and plant for manufacturing the component. 
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Cross-functional data driven organizations 

Companies trying to implement MDO, should not view the process as simply adding a software tool to the 
design toolkit, but view this as a milestone moment in which they change towards interdisciplinary, data-
driven companies. Large industrial companies currently work in silos. Organizations are neatly split into 
separate divisions. Marketing and sales give information to R&D, which in turn give to product 
development and then the information finally goes to supply chain and manufacturing. Finance double 
checks at different points and gives direction to the process. Many parts of the process are qualitative and 
the recorded data is lost in different communication channels.  

In order for MDO to be successful and reach the potential described in the previous page, MDO users 
need access to high quality, reliable data. We need to know that if we improve the design by 1 deg. C we 
will get approximately 1000 new customers. And if that changes, then we need the sales team to 
immediately inform the MDO team. We need manufacturing and procurement teams to continuously 
double check on estimates from aPriori to make sure they are realistic. It is a chicken and egg dilemma. 
For MDO to be successful we need access to data, and for an organizational push towards data collection 
we need MDO to be effective.  

There are secular trends underway like the steep reduction in computing costs (discussed in the 
background section) which would likely make MDO an essential tool for design. Companies which invest 
today in data collection will develop a competitive edge in using MDO. As hinted in the name, teams 
implementing MDO would need to be interdisciplinary. When merged with an interdisciplinary, data-
driven organization, MDO can be an effective tool for creating products which maximize value for the 
company.  
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Feedback on the project 

Implementing MDO was an ideal project for the pandemic as we could work remotely. If MDO is the 
direction towards which the industry is heading, then I wouldn’t be surprised if industrial companies start 
resembling their technology counterparts. The best decisions we did was to split the project into parts we 
are interested in. I was always interested in business, and this was an amazing oppurtunity for me to 
explore the intersection of finance and engineering. The other good decision was to have regular weekly 
meetings during the Spring semester and daily updates during the summer.  

We did have a few hiccups on the way. We had issues finding computational resources for OptiSLang. HPC 
resources within MIT are set up for standard products licensed to MIT. Given that OptiSLang is a new niche 
addition to the Ansys product lineup, we could not directly connect with HPC resources. We did find 
Nimbix but the lead time for installing OptiSLang onto their servers was not viable. We are thankful for 
Professor Hardt for giving us access to his lab’s high performance PC. Teams looking to use MDO should 
invest in a $5k PC or invest time in installing OptiSLang onto their servers. The other key limitation during 
the project was OptiSLang. OptiSLang was only recently aquired by Ansys and is still in the process of being 
integrated with the company. We had to deal with many bugs and crashes. It might have been smarter if 
we had shown the value of MDO by using Simulia and iSight by SolidWorks as it is already present on the 
MIT license server. MDO is being integrated into mainstream with CAD and CAE applications and it will 
take couple of years before design exploration tools become user-friendly.  

On the whole this has clearly been an awesome project! After having worked in manufacturing and design, 
it was great to be downstream and focus on innovation and make strategic recommendations which might 
have a large influence on the company and the industry.  
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Chapter 9: Conclusion 

We were successfully able to use MDO to increase sales for the baseplate in hypothetical scenarios. In 
approach 1, we were able to increase sales from 10,000 to 15,000 pcs for both Sales Model 1 and Sales 
Model 2. In approach 2, the increase was lower at 14,288 pcs for Sales Model 1 and 11,901 pcs for Sales 
Model 2. Due to the higher sales number and limitations within OptiSLang we would recommend 
approach 1 for the near term. However, MDO software is increasing in sophistication and approach 2 
might become the better option due to uniformity and consistency in implementation.  

With the framework, we have shown how MDO can be used to create products which maximize value to 
the company. MDO can have a direct material impact on the bottom line of the company. Designs can be 
made which minimize cost or maximize sales. MDO could also potentially be used to maximize other 
financial metrics like NPV or IRR. We have created a template which Danfoss can use to implement MDO 
across the entire company. Using hypothetical scenarios, we were able to increase sales of the DPC 
baseplate by 50% while satisfying the natural frequency, maximum temperature and cost constraints. We 
were also able to find an optimized design which would minimize the cost and temperature while 
satisfying the natural frequency constraint. We explored many different ways of using MDO for choosing 
the best design for the company.  

We used cost information from aPriori, a simulation software used within Danfoss, to build our own 
internal cost model. We were successfully able to integrate the cost model with OptiSLang, and evaluate 
the cost for each design point. We were also able to expand the cost model to include sales. Similarly, 
other financial metrics like profit, IRR or NPV can also be added to the model. We used AMOP algorithm 
for sensitivity analysis and Evolutionary algorithm for optimization. Though simplified for the scope of the 
project, the cost model and optimization met the criteria set by OptiSLang for an accurate and reliable 
run.  

Teams at Danfoss can create similar simulations in Ansys for their respective products and can update the 
template with relevant market information. Once implemented, MDO can be an important tool for 
improving the company’s design process and can help realize savings in the entire value chain. Limitations 
to successful implementation would be access to computational resources, high quality and reliable 
financial data, and early stage MDO software. Given the commitment shown by Danfoss throughout the 
entire project and the allocation of key people and resources, we are confident that MDO has the potential 
to add significant value to Danfoss. The project has been a very successful industry-academia 
collaboration between Danfoss and MIT, and we hope that the thesis can act as a framework for using 
MDO to create products which maximize financial benefit to the company and society.  
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Appendix  

Thesis by Teammates 

More information about the Danfoss-MIT collaboration can be found in “Case Study of Multidisciplinary 
Design Optimization Implementation Process Management” by Antoine Yazbeck and “Multidisciplinary 
Design Optimization of Part Geometry in CAD” by David Mimery.  

Terms specific to OptiSLang 

The definition of EA, AMOP, and COP can be found in “Methods for multi-disciplinary optimization and 
robustness analysis” guide by Dynardo (OptiSLang) GmbH.  

Links on Agile 

https://hbr.org/2016/05/embracing-agile 

https://www.forbes.com/sites/stevedenning/2016/08/13/what-is-agile/?sh=50eef3cb26e3 

https://www.atlassian.com/agile 

Cost Model 

Characteristics of the design point with the lowest cost according to the cost model.  

 

 

Figure 48: The design with the lowest cost 
 

 

 

 

 

 

 

https://hbr.org/2016/05/embracing-agile
https://www.forbes.com/sites/stevedenning/2016/08/13/what-is-agile/?sh=50eef3cb26e3
https://www.atlassian.com/agile
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Approach 1 

Characteristics of design points with the highest sales according to Sales Model 1 and Sales Model 2.  

 

 

Figure 49: Best design for Sales Model 1 
 

 

 

Figure 50: Best Design for Sales Model 2
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Approach 2  

To do a brief recap here. Sensitivity analysis (Figure 51 and Figure 52) is the first step in which we see 
the impact of the inputs (number of fins, fin thickness) on the output (sales). In the next step, we 
optimize across design points to find the baseplate design with the highest sales (Figure 53 and Figure 
54). The design points with the highest sales are shown in red dots in the optimization plots and their 
characteristics are shown in Figure 55 and Figure 56.  

 

 

Figure 51: Sensitivity analysis for Sales Model 1 
 

 

Figure 52: Sensitivity analysis for Sales Model 2
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Figure 53: Optimization for Sales Model 1 
 

 

 

Figure 54: Optimization for Sales Model 2
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Figure 55: Best Design for Sales Model 1 
 

 

 

Figure 56: Best Design for Sales Model 2
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Impact of variables on baseplate price  

Remaining plots from Cost Model Concept section in pg. 25.  

 

 

Figure 57: Impact of Fin Height on Baseplate Price 
 

 

 

Figure 58: Impact of Fin Thickness on Baseplate Price 
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Figure 59: Impact of Fin Angle on Baseplate Price 
 

 

 

Figure 60: Impact of Baseplate Height on Baseplate Price
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Figure 61: Impact of Baseplate Thickness on Baseplate Price 
 

 

 

Figure 62: Impact of Horizontal Fins on Baseplate Price 
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Figure 63: Impact of Horizontal Fin Height on Baseplate Price 
 

 

 

Figure 64: Impact of Horizontal Fin Thickness on Baseplate Price 
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Figure 65: Impact of Horizontal Fin Angle on Baseplate Price 
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