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Abstract

Transport of any material quantity due to background fields, i.e. advective trans-
port, in fluid dynamical systems has been a widely studied problem. It is of crucial
importance in classical fluid mechanics, geophysical flows, micro and nanofluidics,
and biological flows. Even though mathematical models that thoroughly describe
such transport exist, the inherent nonlinearities and the high dimensionality of com-
plex fluid systems make it very challenging to develop the capabilities to accurately
compute and characterize advective material transport. We systematically study the
problems of predicting, uncovering, and learning the principal features of advective
material transport in this work. The specific objectives of this thesis are to: (i) de-
velop and apply new numerical methodologies to compute the solutions of advective
transport equations with minimal errors and theoretical guarantees, (ii) propose and
theoretically investigate novel criteria to detect sets of fluid parcels that remain the
most coherent / incoherent throughout an extended time interval to quantify fluid
mixing, and (iii) extend and develop new machine learning methods to infer and pre-
dict the transport features, given snapshot data about passive and active material
transport.

The first part of this work deals with the development of the PDE-based ‘method
of flow map composition’, which is a novel methodology to compute the solutions of
the partial differential equation describing classical advective and advective–diffusive–
reactive transport. The method of composition yields solutions almost devoid of nu-
merical errors, and is readily parallelizable. It can compute more accurate solutions
in less time than traditional numerical methods. We also complete a comprehensive
theoretical analysis and analytically obtain the value of the numerical timestep that
minimizes the net error. The method of flow map composition is extensively bench-
marked and its applications are demonstrated in several analytical flow fields and
realistic data-assimilative ocean plume simulations.

We then utilize the method of flow map composition to analyze Lagrangian ma-
terial coherence in dynamic open domains. We develop new theory and schemes to
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efficiently predict the sets of fluid parcels that either remain the most or the least
coherent over an extended amount of time. We also prove that these material sets are
the ones to maximally resist advective stretching and diffusive transport. Thus, they
are of significant importance in understanding the dynamics of fluid mixing and form
the skeleton of material transport in unsteady fluid systems. The developed theory
and numerical methods are utilized to analyze Lagrangian coherence in analytical and
realistic scenarios. We emphasize realistic marine flows with multiple time-dependent
inlets and outlets, and demonstrate applications in diverse dynamical regimes and
several open ocean regions.

The final part of this work investigates the machine inference and prediction of the
principal transport features from snapshot data about the transport of some mate-
rial quantity. Our goals include machine learning the underlying advective transport
features, coherent / incoherent sets, and attracting and repelling manifolds, given
the snapshots of advective and advective–diffusive material fields. We also infer and
predict high resolution transport features by optimally combining coarse resolution
snapshot data with localized high resolution trajectory data. To achieve these goals,
we use and extend recurrent neural networks, including a combination of long short-
term memory networks with hypernetworks. We develop methods that leverage our
knowledge of the physical system in the design and architecture of the neural network
and enforce the known constraints that the results must satisfy (e.g. mass conserva-
tion) in the training loss function. This allows us to train the networks only with
partial supervision, without samples of the expected output fields, and still infer and
predict physically consistent quantities. The developed theory, methods, and com-
putational software are analyzed, validated, and applied to a variety of analytical
and realistic fluid flows, including high-resolution ocean transports in the Western
Mediterranean Sea.

Thesis Supervisor: Pierre F.J. Lermusiaux
Title: Professor, Department of Mechanical Engineering

4



Acknowledgments

My research over the past five years would not have been possible without the con-

tributions from a number of people. First and foremost, I would like to express my

gratitude towards my advisor, Prof. Pierre Lermusiaux for his guidance and invalu-

able support during the course of this thesis. Pierre encouraged me to work on the

problems that I found interesting and fun to tackle. This intellectual freedom has

allowed me to grow as a researcher and as a person. His extraordinary work rate

and scrupulous attention to detail has never ceased to amaze me. I have learned a

lot from him about the academic areas such as computational science, stochastics,

dynamical systems. However, more importantly, he has taught me a lot about under-

standing the relevance and the broader implications of the research and approaching

open scientific problems with a principled and methodical manner. I am sure that

these skills will be useful in any discipline. Pierre’s sense of humor and quirky jokes

have lightened the mood during many long research and group meetings.

I would like to thank the members of my thesis committee - Prof. Thomas Peacock

and Prof. Stefanie Jegelka for their helpful suggestions during the committee meet-

ings. Many of the real-time work in this thesis has been in collaboration with Prof.

Peacock. His insights about the ocean physics and his knowledge about the deep

sea mining processes have been extremely beneficial to this work. Prof. Jegelka’s in-

sightful queries and comments especially about the machine learning work have been

instrumental in the development and the analysis of the proposed ML algorithms.

I thank Dr. Pat Haley for all his suggestions, guidance, and for patiently answer-

ing all my questions over the years. The realistic ocean examples would have been

impossible without Pat. His amazing ability of writing robust and bug-free code is

something I wish to learn one day. Thanks to Pat’s calming smile, the most intense

of situations became manageable. Dr. Chris Mirabito has been instrumental in the

real-time sea exercises and I have learned a lot from him about handling real data

and also about web-related work.

Navigating the administrative life at MIT is impossible without the staff and

5



administrators who are always willing to help. I thank Leslie Regan and Una Sheehan

at the MechE graduate office, and Kate Nelson CCSE office for all their help and

support. I thank Marcia Munger and Lisa Mayer for being a calming influence and

for taking care of all my administrative issues with remarkable efficiency.

We are grateful to the Office of Naval Research (ONR) for research support

under grants N00014-14-1-0476 (Science of Autonomy-LEARNS), N00014-15-1-2616

(DRI-NASCar), N00014-20-1-2023 (MURI ML-SCOPE), N00014-14-1-0725 (Bays-

DA), N00014-18-1-2781 (DRI-CALYPSO), N00014-15-1-2626 (DRI-FLEAT), and N00014-

19-1-2693 (IN-BDA), to the National Oceanographic Partnership Program (NOPP)

for research support under grant N00014-15-1-2597 (Seamless Multiscale Forecasting),

and to the National Science Foundation (NSF) for support under grant EAR-1520825

(Hazards SEES âĂŞ ALPHA), each to the Massachusetts Institute of Technology. We

also thank the MIT Environmental Solutions Initiative (MIT-ESI) for Seed Grant re-

search support.

Thank you to the MSEAS group for being a family away from home! I am thankful

to Tapovan, John, Jing, Deepak, and Sydney for initially helping me settle into

the group. Deepak has been a great academic and personal mentor over the years.

Abhinav and Manan have been great friends and labmates and I feel fortunate to have

had the ability to collaboratively work with them. Abhinav’s willingness to always

help out cannot be understated. Manan has been instrumental in furthering the

path planning work. I will always cherish our discussions about elegant mathematics,

puzzles, cricket, and Formula 1! Wael, Corbin, and Jing have been great labmates

over the years. The various seminars, birthday parties, and more recently the work on

SeaVizKit have all been memories that will stay with me. Many thanks to Manmeet,

Akis, Aaron, Mike, and Jacob for the great camaraderie in the lab. Starting my

MSEAS tenure alongside Johnathan, Florian, Corbin, and Arko was a great blessing.

JVo has been one of my closest friends over the years (and a birthday buddy!). Our

trip to India along with Abhinav was very memorable! Saviz and Alexis have almost

been our labmates over the years, and I thank them for the many bike rides and the

great discussions.

6



My friends outside the lab have made my MIT life really enjoyable. Shraddha

and Ben have been awesome housemates. I will never forget our impromptu dessert /

dumpling outings and the long hours spent playing different board games. These two

along with Nidhi, Sachin, and Prashanth have been great friends and I will cherish all

the fun times we have had. Thanks to Andrew for sharing my enthusiasm to try out

new food and for sharing my passion about aviation. I feel lucky to have a close friend

in my cousin Nupur. The night rides and the rides to RSC and beyond are some of

the most fun memories I have. Yamini has been a great friend since undergrad and it

has been amazing to have her around in Cambridge. I will always think fondly of our

many long and intense discussions and the never-ending search for good Biryani. I am

extremely grateful to my friends from undergrad - Bakshi, Kelkar, Prateek, Jayesh,

and Rik for being awesome friends and a source of emotional and mental support

during turbulent times.

Finally, I would like to thank all my family for their love, affection and constant

support over the years. My family in the US has been a true home away from home,

and I can always count on their help for any difficulty. I am grateful to my sister

Renu for looking out for me, and being the best sister anyone could have asked for.

I thank my girlfriend Jess for her love and kindness, and for always being there –

both in times of hardship and happiness. Above all, I am thankful to my parents for

everything in life. I cannot even begin to imagine where I would be without their

support, guidance, love, and friendship at every step.

This thesis is dedicated to Heena, Lisa, and DA.

7



THIS PAGE INTENTIONALLY LEFT BLANK

8



Contents

1 Introduction and Motivation 29

1.1 Introduction and Summary of Contributions . . . . . . . . . . . . . . 29

1.2 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2 Advective Transport and Flow Maps 37

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.1.1 Eulerian and Lagrangian Descriptions of Fluid Flow . . . . . . 38

2.1.2 Advective Material Transport in Fluid Flows . . . . . . . . . . 40

2.2 Setup and Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.3 Advective Tracer Transport . . . . . . . . . . . . . . . . . . . . . . . 44

2.4 Flow Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.4.1 Introduction and Definitions . . . . . . . . . . . . . . . . . . . 46

2.4.2 Governing Equations . . . . . . . . . . . . . . . . . . . . . . . 48

2.4.3 Flow Map Composition . . . . . . . . . . . . . . . . . . . . . . 49

2.4.4 Relationship Between Advective Transport and Flow Maps . . 51

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3 Advection Through Flow Map Composition - Theory 53

3.1 Introduction and Literature Review . . . . . . . . . . . . . . . . . . . 54

3.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3 Method of Composition for Tracer Advection . . . . . . . . . . . . . . 57

3.3.1 PDE-Based Flow Map Computation . . . . . . . . . . . . . . 58

3.3.2 PDE-Based Flow Map Composition . . . . . . . . . . . . . . . 59

9



3.3.3 Inclusion of Diffusion, Sources, and Reactions Terms . . . . . 61

3.3.4 Implementation of Boundary Conditions . . . . . . . . . . . . 64

3.4 Numerical Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.4.1 Error Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.4.2 Optimal Composition Timestep . . . . . . . . . . . . . . . . . 72

3.4.3 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.5 Software Development . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4 Advection Through Flow Map Composition - Applications 81

4.1 Benchmarking and Optimal Timestep Results . . . . . . . . . . . . . 82

4.2 Analytical Applications . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.2.1 Advection-Diffusion in a Reversible Analytical Swirl Flow . . . 86

4.2.2 Advection-Reaction in an Idealized Flow Exiting a Strait . . . 91

4.3 Realistic Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.3.1 Sediment Plumes in the Bismarck Sea . . . . . . . . . . . . . . 93

4.3.2 Real Time Prediction of Sediment Plumes in the Southern Cal-

ifornia Bight . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5 Lagrangian Analysis of Material Transport - Theory 107

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.1.1 Types of Material Coherence . . . . . . . . . . . . . . . . . . . 110

5.1.2 Connections Between Prominent Lagrangian Coherence Metrics

and the Flow Map . . . . . . . . . . . . . . . . . . . . . . . . 112

5.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.3 Flow Map Computation for Open Domains . . . . . . . . . . . . . . . 117

5.3.1 Flow Map Open Boundary Conditions . . . . . . . . . . . . . 118

5.3.2 Mask Field for Open Domains . . . . . . . . . . . . . . . . . . 121

5.4 Persistent Lagrangian Coherence / Incoherence in Dynamic Flows . . 123

5.4.1 Polar Distance as a Coherence / Incoherence Metric . . . . . . 124

10



5.4.2 Extended Polar Distance as a Persistent Coherence / Incoher-

ence Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.4.3 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6 Lagrangian Analysis of Material Transport - Applications 137

6.1 Flow Maps and Lagrangian Material Transport Studies in the Real

Ocean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.1.1 Realistic Ocean Test Case - Flow Around the Island of Palau

in the Southern Pacific Ocean . . . . . . . . . . . . . . . . . . 138

6.1.2 Benchmarking and Comparisons . . . . . . . . . . . . . . . . . 140

6.1.3 Computation of Flow Maps in Varied Marine Domains . . . . 146

6.2 Persistent Lagrangian Coherence / Incoherence . . . . . . . . . . . . 149

6.2.1 Analytical Double Gyre . . . . . . . . . . . . . . . . . . . . . 150

6.2.2 Southern Pacific Ocean . . . . . . . . . . . . . . . . . . . . . . 156

6.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

7 Machine Inference and Prediction of Material Transport Features -

Theory 161

7.1 Introduction and Motivation . . . . . . . . . . . . . . . . . . . . . . . 162

7.1.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . 163

7.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

7.3 Machine Learning for Flow Map Inference and Prediction . . . . . . . 165

7.3.1 Convolutional LSTMs . . . . . . . . . . . . . . . . . . . . . . 168

7.3.2 Hypernetwork LSTMs . . . . . . . . . . . . . . . . . . . . . . 170

7.3.3 Proposed Network Architecture . . . . . . . . . . . . . . . . . 172

7.3.4 Loss Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

7.3.5 Information Content and Predictive Capability . . . . . . . . . 178

7.4 Machine Inference and Prediction from Advective–Diffusive Tracers . 182

7.5 Extensions Towards Realistic Flows . . . . . . . . . . . . . . . . . . . 187

7.5.1 Flow Map Inference Using Multiple Advective Tracers . . . . . 187

11



7.5.2 Merging Eulerian and Lagrangian Information . . . . . . . . . 188

7.5.3 Handling Open Domains . . . . . . . . . . . . . . . . . . . . . 190

7.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

8 Machine Inference and Prediction of Material Transport Features -

Applications 197

8.1 Analytical Swirl Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

8.2 Analytical Double Gyre . . . . . . . . . . . . . . . . . . . . . . . . . 204

8.2.1 Inference and Prediction of Flow Map and Coherent Structures 205

8.2.2 Information Content and Predictive Capability . . . . . . . . . 213

8.2.3 Merging Eulerian and Lagrangian Information . . . . . . . . . 217

8.2.4 Learning from Advective–Diffusive Tracers . . . . . . . . . . . 219

8.3 Western Mediterranean (Alboran) Sea . . . . . . . . . . . . . . . . . 225

8.3.1 Modeling Region and Computational Details . . . . . . . . . . 225

8.3.2 Exact Flow Maps . . . . . . . . . . . . . . . . . . . . . . . . . 229

8.3.3 Learning from Simulated Advective Tracer . . . . . . . . . . . 231

8.3.4 Learning from Sea Surface Temperature . . . . . . . . . . . . 233

8.3.5 Learning from Sea Surface Temperature and Salinity . . . . . 236

8.3.6 Comparison of Coherent Structures . . . . . . . . . . . . . . . 239

8.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

9 Conclusions and Future Work 243

9.1 Advection Through Flow Map Composition . . . . . . . . . . . . . . 243

9.2 Lagrangian Analysis of Material Transport . . . . . . . . . . . . . . . 246

9.3 Inference and Prediction of Material Transport Features . . . . . . . 248

12



List of Figures

2-1 Streamlines and advective tracer transport in the velocity field specified

by Eq. (2.5). The streamlines of the flow field at every instant are

denoted by solid black lines and are concentric ellipses. The red regions

in each panel denote the tracer field. Note that even though all the

streamlines of the flow field are closed at all times and the tracer is

initiated within one such elliptical ‘vortex’, it exponentially diverges

away from the center. . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3-1 Composition-based advection methodology. The first step involves

computing the individual flow maps (while accounting for boundary

conditions), which can be done in parallel. The second step then in-

volves computing the cumulative flow map over the entire time interval

by sequentially interpolating and composing the individual flow maps.

The final step involves composing this cumulative flow map with the

initial tracer field to obtain the final tracer field. We note that the

methodology is schematized for R2 but it generalizes to R𝑛 as it is

agnostic to the spatial dimension. . . . . . . . . . . . . . . . . . . . . 61

13



4-1 Relative error in the final tracer field against the timestep size for

the donor-cell - forward-Euler and WENO5 - TVD-RK3 combinations,

respectively. For the donor-cell - forward-Euler (Fig. (4-1a)), the ana-

lytically evaluated ‘optimal timestep’ is ∆𝑡𝑜𝑝𝑡 = 0.01637 (dash-dotted

line), which is close to the observed minimum error timestep. For the

WENO5 - TVD-RK3 (Fig. (4-1b)), the predicted optimal timestep is at

∆𝑡𝑜𝑝𝑡 = 0.027633 (dash-dotted line), which is also close to its observed

minimum error timestep at ∆𝑡 = 0.019. . . . . . . . . . . . . . . . . . 84

4-2 Relative error in the tracer field at final time 𝑡 = 1 for the forward-

backward advection in a reversible analytical swirl flow. Fig. (4-2a)

shows the relative error against the number of grid points, where we ob-

serve the expected orders of convergence for the two numerical schemes

used. Fig. (4-2b) plots the relative error against the computational

time, for the same spatial grid resolutions as Fig. (4-2a). It can be

seen that composition-based advection requires an order of magnitude

lower computational time for the same accuracy. . . . . . . . . . . . . 87

4-3 Forward-backward advection in the analytical swirl flow: the three

panels in each panel show the initial tracer condition, the tracer field

after the forward advection is complete, and the tracer field after the

backward advection is complete, respectively. Regular advection with

low-order numerical schemes (Fig. (4-3a)) suffers heavily from spurious

numerical diffusion, whereas the method of composition can almost

exactly recover the initial tracer field (Fig. (4-3c)), due to the lack of

compounding numerical errors. . . . . . . . . . . . . . . . . . . . . . 88

4-4 Forward-backward advection and diffusion in the analytical swirl flow:

the three panels in each panel show the initial tracer condition, the

tracer field after the forward advection and diffusion part is complete

(i.e. at 𝑡 = 0.5), and the tracer field after the backward advection and

diffusion is complete (i.e. at 𝑡 = 1), respectively. . . . . . . . . . . . . 90

14



4-5 Flow exiting a strait: Test case setup and the velocity fields. Panel

(a) shows the setup and the latter three panels show the velocity field

at the specified times after the development period. The velocity field

is computed by solving the Navier–Stokes equations in a finite vol-

ume framework with second-order spatial and temporal schemes and a

projection method for pressure-velocity coupling [247]. . . . . . . . . 92

4-6 Flow exiting a strait: tracer advection-reaction. Panels on the left-

hand-side show results using regular tracer advection (WENO5 in space

and TVD-RK3 in time), specifically the tracer field at 10, 30 and 50 s

(after the flow development period). Panels on the right-hand-side

show the tracer fields at the same times but computed using the method

of composition (WENO5 in space and TVD-RK3 in time, along with

flow map composition). It is clear, especially at 30 and 50 s, that the

method of composition is less prone to spurious numerical errors. . . 93

4-7 Sediment advection over 5 days from two possible deep sea mining

sites, using regular advection with high-order WENO5 for the spatial

gradients and TVD-RK3 time marching. . . . . . . . . . . . . . . . . 97

4-8 As in Fig. (4-7), but using the method of composition with the first-

order donor-cell scheme for the spatial gradients and forward Euler

time marching. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4-9 As in Fig. (4-7), but using Lagrangian trajectory advection using the

Runge-Kutta 4 advection scheme. . . . . . . . . . . . . . . . . . . . . 99

4-10 Comparison of the final sediment fields (on 27 January 2016, 00Z),

when advected using the method of composition (Fig. (4-8f)) and tra-

jectory advection (Fig. (4-9f)). The advected fields are extremely close

to each other. However, the loss of spatial accuracy for trajectory

advection can be seen in the zoomed sections. . . . . . . . . . . . . . 100

15



4-11 The MIT-MSEAS modeling domain for the 2018 PLUMEX sea ex-

ercise, along with the bathymetry of the region. The solid red line

denotes the computational domain and the dashed red line demarcates

the special focus area around the gulf of San Catalina. The red stars

indicate potential plume release locations. . . . . . . . . . . . . . . . 102

4-12 Plume transport forecast over 3 hours when released at a depth of

140 𝑚. The initial plume release markers are in blue and the final

transported plume is in red. . . . . . . . . . . . . . . . . . . . . . . . 104

4-13 The observed (hollow red circles) and predicted (colored patches) plume

locations and (vertically averaged) spread at 78, 120, 250, and 371

minutes after the start of plume discharge. It can be see that the ob-

served plume locations lie within the plume spread predicted by our

composition-based advection methodology. . . . . . . . . . . . . . . . 106

5-1 Schematic of the different types of coherent / incoherent sets in fluid

flows. We assume that a material set of fluid starts with a particular

shape at time 𝑡 = 0. The yellow panel shows the evolution of this set as

an incoherent set at times 𝑡𝑖 (< 𝑇 ) and 𝑇 , the green panel depicts its

evolution as a coherent set, and the red panel showcases its evolution

if it were to be a persistently coherent set. Persistently coherent sets

are coherent sets, but not vice versa. . . . . . . . . . . . . . . . . . . 111

6-1 The MIT-MSEAS modeling domain around the island of Palau in the

Southern Pacific Ocean along with the bathymetry of the region. The

left panel shows the relative location of Palau with respect to the Malay

archipelago and our modeling domain. The right panel is the island

modeling domain, showing the complex shape of the island along with

the steep bathymetry drop just southeast of the island. . . . . . . . . 139

16



6-2 Mask fields denoting the active domains for the backward flow maps,

for the realistic flow around the island of Palau. A value of 1 indicates

that the corresponding location is in the active domain, whereas a value

of 0 indicates that the location lies outside the active domain. . . . . 142

6-3 Comparison of 6 day backward flow maps around Palau when com-

puted using high-order regular advection (WENO5 - TVD-RK3), low-

order composition-based advection (Donor-cell - forward Euler), and

Lagrangian trajectory integration (RK4). The flow maps computed

using high-order regular advection suffer from numerical diffusion /

dispersion as well as non-physical artifacts around the active domain

boundaries, whereas the low-order composition-based advection results

are extremely close to the true results (computed using high-resolution

Lagrangian trajectory integration). . . . . . . . . . . . . . . . . . . . 144

6-4 Comparison of the 6 day backward FTLE field computed using high-

order regular advection, low-order composition-based advection, and

Lagrangian trajectory integration. It can be seen that composition-

based advection is able maintain high gradients without numerical dif-

fusion as evident from the sharp FTLE ridges, whereas such ridges are

smeared out for the regular advection computation due to the com-

pounding numerical diffusion, even though it uses higher-order schemes.145

6-5 Summary of flow map and coherent structure results to support the

2018 NSF ALPHA real-time sea exercise south of Cape Cod and around

the MarthaâĂŹs Vineyard and Nantucket islands. We computed the

3D flow maps, FTLE fields and their associated uncertainties along

with various drifter deployment and dye release advisories. . . . . . . 147

6-6 The 96 hour forward vertical (𝑍) flow map at 48 𝑚 depth in the Albo-

ran Sea. The regions highlighted in red contain water parcels that rise,

whereas the blue areas contain water parcels that sink, with respect to

their initial depths over 96 hours . . . . . . . . . . . . . . . . . . . . 147

17



6-7 The residence time and the entrance time maps for the Al Wajh lagoon,

along with the 13 day forward (repelling) FTLE field over the entire

Red Sea. The residence time field indicates how long it takes for a

water mass to leave the lagoon as a function of its initial position,

whereas the entrance time field specifies the amount of time required

for a water mass outside the lagoon to enter the lagoon. . . . . . . . . 148

6-8 Surface plastic location initially and after 20 days of simulated pas-

sive advection. Red denotes plastics originating at the mouth of the

Merrimack River, beige plastics originate at the shoreline, blue plas-

tics originate in the rest of the Massachusetts Bay domain, and white

plastics originate outside the domain. . . . . . . . . . . . . . . . . . . 149

6-9 Velocity streamlines overlaid on the vorticity for the analytical double

gyre test case over one time period of the flow. The time period of the

flow is 2𝜋/𝜔 = 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

6-10 Equivalence of polar distance fields computed using the forward and

the backward flow maps for the analytical double gyre. The polar

distance field computed using the forward flow map matches the polar

distance field computed using the backward flow map when advected

backward, and vice-versa. . . . . . . . . . . . . . . . . . . . . . . . . 152

6-11 Polar distance and extended polar distance fields for the analytical

double gyre over a time interval of [0, 15]. . . . . . . . . . . . . . . . . 153

6-12 Evolution of the rigid sets in an analytical double gyre.These material

sets are advected with the underlying flow field and are observed to

undergo severe stretching at intermediate times, however their initial

and final shapes are almost identical. . . . . . . . . . . . . . . . . . . 154

6-13 Evolution of the persistently rigid sets in an analytical double gyre.

These material sets are advected with the fluid flow but undergo min-

imal distortion throughout the time interval and are able to approxi-

mately maintain their shape. . . . . . . . . . . . . . . . . . . . . . . . 155

18



6-14 Evolution of the non-rigid sets in an analytical double gyre. We ini-

tialize three sets in regions with high polar distance values. We can

clearly see that these sets undergo extreme amounts of stretching and

their final shapes are completely dissimilar to their initial configurations.156

6-15 The polar distance and the extended polar distance fields (plotted on

a logarithmic scale) for the realistic flow around the island of Palau in

the Southern Pacific Ocean. High values of the extended polar distance

indicate low persistent rigidity, and low values indicate high persistent

rigidity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

6-16 Initial location of a non-rigid set (green), a rigid set (red), and a per-

sistently rigid set (blue) around the island of Palau on 08 May 2015

00Z along with the bathymetry contours in the region. . . . . . . . . 158

6-17 Evolution of a non-rigid set (green), a rigid set (red), and a persistently

rigid set (blue) around the island of Palau, from 08 May 2015, 00Z until

13 May 2015, 00Z. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

7-1 Schematic of the proposed ML framework. We input the spatial grid

𝑥, and expect the framework to output 𝜑𝑖
0(𝑥) for 𝑖 = 0, 1, . . . , 𝑁𝑡, 𝑁𝑡 +

1, . . .. To train the network, we utilize the available tracer transport

data as well as the known physical constraints on 𝜑𝑖
0(𝑥) in the loss

function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

7-2 Schematic of a convolutional LSTM. Each convolutional unit takes the

previous cell state (𝑐𝑖−1) and cell output (ℎ𝑖−1) along with the input 𝒳𝑖

to produce 𝑐𝑖 and ℎ𝑖 according to Eq. (7.2). This operation is performed

for all 1 ≤ 𝑖 ≤ 𝑁𝑡. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

19



7-3 Schematic of our proposed network architecture to infer and predict

flow maps from tracer transport data. There are two main components:

a main convLSTM and a hyperLSTM. The hyperLSTM generates the

weights and biases for the main convLSTM, which then predicts the

flow map 𝜑𝑖
0 in its 𝑖𝑡ℎ iteration. The information about the tracer trans-

port fields is used in the loss function, along with the other physical

constraints imposed on the flow map. . . . . . . . . . . . . . . . . . . 172

7-4 Schematic of the individual cells in the proposed architecture. One can

observe how the hyperLSTM and the main convLSTM interact with

each other, and how the hyperLSTM effectively enables us to choose

a linear combination from a collection of learned kernels for the main

convLSTM, based on the spatial location of the point of interest. Solid

arrows indicate the flow of data, and dotted arrows indicate the flow

of data from the past iteration of the recurrent network. . . . . . . . 175

7-5 Schematic qualitatively depicting the different possible types of tracer

snapshot data. There is no information and hence no learning when

the tracer values are uniform and constant (left). However, in the case

of a perfectly random tracer (right), one can exactly learn the flow

maps only using tracer advection. Most physical tracers lie somewhere

in between, for whom the flow maps are inferred using tracer advection

along with incompressibility and velocity smoothness. . . . . . . . . . 179

7-6 Schematic of the proposed ML framework for flow map inference and

prediction from advective–diffusive tracer transport. Unlike Fig. (7-1),

we now expect the framework to output the incremental flow maps

𝜑𝑖+1
𝑖 (𝑥) (or 𝜑𝑖

𝑖+1(𝑥)) for 𝑖 = 0, 1, . . . , 𝑁𝑡 − 1, 𝑁𝑡, . . . To train the net-

work, we utilize the available tracer transport data as well as the known

physical constraints that 𝜑𝑖+1
𝑖 (𝑥) (or 𝜑𝑖

𝑖+1(𝑥)) must satisfy. . . . . . . 185

20



7-7 Schematic of the proposed ML framework to infer and predict flow

maps in open domains. Unlike Fig. (7-1), we now expect the framework

to output both 𝜑𝑖
0(𝑥) and 𝜑0

𝑖 (𝑥) for 𝑖 = 0, 1, . . . , 𝑁𝑡, 𝑁𝑡+1, . . .. In order

to train the network, we utilize the available tracer transport data as

well as the known physical constraints and invertibility conditions that

𝜑𝑖
0(𝑥) and 𝜑0

𝑖 (𝑥) must satisfy. . . . . . . . . . . . . . . . . . . . . . . 191

8-1 Tracer advection in a steady swirl flow. Panel (a) shows the initial

condition of the tracer which is 4 randomly initialized Gaussian bumps.

The proceeding five panels show the eventual advection of the tracer

at the various times mentioned. Our flow map inference algorithm sees

such 101 fields (one field for each time instance 𝑡 = 0, 0.01, . . . , 0.99, 1.00).199

8-2 Exact and inferred 𝑋 and 𝑌 flow maps along with the corresponding

errors for both variants of the algorithm (i.e. with and without hyper-

LSTM) at 𝑡 = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

8-3 Training loss values for both variants of the algorithm. It can be seen

that the variant without the hyperLSTM has a lower loss value than

the variant with the hyperLSTM due to less trainable parameters and

thus a smaller optimization search space. . . . . . . . . . . . . . . . . 202

8-4 Exact and predicted 𝑋 and 𝑌 flow maps along with the correspond-

ing errors for both variants of the algorithm (i.e. with and without

hyperLSTM) at 𝑡 = 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

8-5 Inferred and predicted sample trajectories (constructed by using the

inferred / predicted flow maps) for 3 sample passive particles starting

at different locations. One can see that although both the variants are

able predict the trajectories well, the variant without the hyperLSTM

consistently does better. . . . . . . . . . . . . . . . . . . . . . . . . . 204

21



8-6 Tracer advection in an unsteady double gyre flow. Panel (a) shows the

initial condition of the tracer which is 4 randomly initialized Gaussian

bumps. The proceeding five panels show the eventual advection of

the tracer at the various times mentioned. Our flow map inference

algorithm sees such 68 fields (one field for each time instance 𝑡 =

0, 0.15, . . . , 9.90, 10.05. . . . . . . . . . . . . . . . . . . . . . . . . . . 206

8-7 Exact forward 𝑋 and 𝑌 flow maps at 𝑡 = 10.05 and 𝑡 = 15 for the

analytical double gyre flow. . . . . . . . . . . . . . . . . . . . . . . . 207

8-8 Exact and inferred forward 𝑋 and 𝑌 flow maps along with the corre-

sponding errors at 𝑡 = 10.05 for the variants of the algorithm with and

without a hyperLSTM . . . . . . . . . . . . . . . . . . . . . . . . . . 208

8-9 Exact and predicted forward 𝑋 and 𝑌 flow maps along with the cor-

responding errors at 𝑡 = 15 for the variant of the algorithm with a

hyperLSTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

8-10 Training loss values for both variants of the algorithm in the analytical

double gyre. It can be seen that the variant without the hyperLSTM

cannot fit the (steady) flow maps to the available data and hence its

loss value remains high throughout. However, the variant with the

hyperLSTM fits the dynamic flow maps well to the available data,

yielding a low loss value. . . . . . . . . . . . . . . . . . . . . . . . . . 210

8-11 Forward flow maps predicted by the variant of the machine learning

algorithm without hyperLSTM at 𝑡 = 15 show great agreement when

compared to the exact flow maps of a steady double gyre flow. This

suggests that the variant of our algorithm without the hyperLSTM

learns the closest steady approximation to the underlying unsteady flow.211

22



8-12 The exact and predicted forward FTLEs between 𝑡 = 0 and 𝑡 = 15

along with the corresponding errors for the two variants of the algo-

rithm. In line with the prior observations, the predictions from the

algorithm with the hyperLSTM are very close to the truth, and the

errors are larger only at the ridges of the FTLE field. However, the

version without the hyperLSTM is only able to learn the steady version

of the flow maps, and hence its predicted FTLE field is similar to that

of a steady double gyre (panel (b)). . . . . . . . . . . . . . . . . . . . 212

8-13 Evolution of the inferred rigid sets using the developed ML framework.

The evolution of these inferred rigid sets almost exactly matches the

corresponding ‘exact’ evolution from Fig. (6-12), suggesting that our

algorithm learns such coherent structures well without any information

about the underlying flow field. . . . . . . . . . . . . . . . . . . . . . 213

8-14 Information content, quantified by the fraction of locations in Ω where

the flow map value is correctly predicted, versus the fraction of unique

values in the tracer field 𝛼0 (normalized by the number of grid points

𝑁). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

8-15 Quantifying the predictive capability of our ML algorithm for the an-

alytical double gyre flow. Panel (a) looks at the relative error in the

inferred and predicted tracer fields as a function of time for different

simulation configurations. Each time-series is a 10-run average for the

considered configuration. Panel (b) shows the size of the time inter-

val with reliable prediction versus the size of the time interval used for

training the network in the case of 𝑁𝑥 = 200 and 𝑁𝑦 = 100 for different

∆𝑡 values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

23



8-16 Coarse resolution tracer advection along with high resolution trajec-

tories in an unsteady double gyre flow. Panel (a) shows the initial

condition of the tracer which is 4 randomly initialized Gaussian bumps

along with the starting locations of the 105 Lagrangian trajectories.

The proceeding five panels show the eventual advection of the tracer

and the motion of the Lagrangian particles at the various times men-

tioned. Our flow map inference algorithm sees such 68 fields (one field

for each time instance 𝑡 = 0, 0.15, . . . , 9.90, 10.05. . . . . . . . . . . . . 218

8-17 Forward 𝑋 and 𝑌 flow maps at 𝑡 = 10.05 inferred only using Eulerian

information, i.e. coarse tracer field (row 1), only using Lagrangian in-

formation, i.e. trajectories (row 2)), and using both the Eulerian and

Lagrangian information simultaneously (row 3). These can be com-

pared to the corresponding exact fields from Fig. (8-7). . . . . . . . . 220

8-18 Forward 𝑋 and 𝑌 flow maps at 𝑡 = 15 predicted only using Eulerian

information, i.e. coarse tracer field (row 1), only using Lagrangian in-

formation, i.e. trajectories (row 2)), and using both the Eulerian and

Lagrangian information simultaneously (row 3). These can be com-

pared to the corresponding exact fields from Fig. (8-7). . . . . . . . . 221

8-19 Tracer advection and diffusion in an unsteady double gyre flow with

tracer diffusivity 𝜅 = 5 × 10−3. The initial condition of the tracer

field is the same as that from Fig. (8-6). When compared to Fig. (8-6),

tracer diffusion can be clearly observed throughout the time interval.

Further, the lack of long thin filaments indicates that chaotic advection

is suppressed due to diffusion. . . . . . . . . . . . . . . . . . . . . . . 222

8-20 Forward flow maps at 𝑡 = 10.05 inferred by the variant of the ML

algorithm learning from advective–diffusive tracers. . . . . . . . . . . 223

8-21 Forward flow maps at 𝑡 = 15 inferred by the variant of the ML algo-

rithm learning from advective–diffusive tracers. . . . . . . . . . . . . 223

24



8-22 Performance of the flow map inference algorithm while learning from a

diffusive tracer field. Panel (a) shows the relative error in the inferred

flow maps at 𝑡 = 10.05 against tracer diffusivity 𝜅. Panel (b) shows

the value of 𝜅 inferred against the actual 𝜅. We can clearly see that

unless the value is extremely low (< 10−3) or extremely high (> 10−1),

our algorithm is able to accurately infer it. . . . . . . . . . . . . . . . 224

8-23 The MIT-MSEAS modeling domain in the Western Mediterranean

(Alboran) Sea along with the bathymetry of the region. . . . . . . . . 226

8-24 The initial and advected tracer field. The initial tracer field consists of

8 Gaussian bumps of random intensities, as seen in panel (a). Panels

(b), (c), and (d) show the simulated advection of the tracer after 24

hours, 48 hours, and 72 hours respectively. . . . . . . . . . . . . . . . 227

8-25 The sea surface temperature (SST; in ∘𝐶) field on 20, 21, 22, and 23

March 2019 at 00Z. The SST is governed by an advection–diffusion

equation with external forcing. . . . . . . . . . . . . . . . . . . . . . . 228

8-26 The sea surface salinity (SSS; in 𝑃𝑆𝑈) field on 20, 21, 22, and 23 March

2019 at 00Z. The SSS is governed through an advection–diffusion equa-

tion with external forcing similar to the SST. . . . . . . . . . . . . . . 229

8-27 Exact forward 𝑋 and 𝑌 flow maps between 20 March 2019 and 23

March 2019 (panels (a), (b)) and between 20 March 2019 and 24 March

2019 (panels (c), (d)). . . . . . . . . . . . . . . . . . . . . . . . . . . 230

8-28 Exact backward 𝑋 and 𝑌 flow maps between 20 March 2019 and 23

March 2019 (panels (a), (b)) and between 20 March 2019 and 24 March

2019 (panels (c), (d)). . . . . . . . . . . . . . . . . . . . . . . . . . . 231

8-29 Forward and backward flow maps between 20 March 2019, 00Z and 23

March 2019, 00Z inferred using simulated advective tracer transport

data. These can be compared to their exact counterparts in panels (a)

and (b) of Fig. (8-27) and Fig. (8-28). . . . . . . . . . . . . . . . . . . 232

25



8-30 Forward and backward flow maps between 20 March 2019, 00Z and 24

March 2019, 00Z predicted using simulated advective tracer transport

data. These can be compared to their exact counterparts in panels (c)

and (d) of Fig. (8-27) and Fig. (8-28). . . . . . . . . . . . . . . . . . . 234

8-31 Forward and backward flow maps between 20 March 2019, 00Z and

23 March 2019, 00Z inferred only using the SST data. These can be

compared to their exact counterparts in panels (a) and (b) of Fig. (8-

27) and Fig. (8-28). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

8-32 Forward and backward flow maps between 20 March 2019, 00Z and

24 March 2019, 00Z predicted only using the SST data. These can be

compared to their exact counterparts in panels (c) and (d) of Fig. (8-

27) and Fig. (8-28). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

8-33 Forward and backward flow maps between 20 March 2019, 00Z and

23 March 2019, 00Z inferred using SST and SSS data. These can be

compared to their exact counterparts in panels (a), (b) of Fig. (8-27)

and Fig. (8-28). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

8-34 Forward and backward flow maps between 20 March 2019, 00Z and

24 March 2019, 00Z predicted using SST and SSS data. These can be

compared to their exact counterparts in panels (c), (d) of Fig. (8-27)

and Fig. (8-28). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

8-35 Exact forward and backward FTLEs between 20 March 2019, 00Z and

24 March 2019, 00Z and when computed from flow maps learned from

simulated advective tracer (second row), SST only (third row), and

SST and salinity together (fourth row). . . . . . . . . . . . . . . . . . 242

26



List of Tables

2.1 Notation and Symbols used in this thesis. . . . . . . . . . . . . . . . . 45

4.1 Relative errors in solving the advection-diffusion equation for the re-

versible swirl flow (all methods use Lie operator splitting with a second-

order implicit solve for diffusion). . . . . . . . . . . . . . . . . . . . . 89

4.2 Relative errors in predicting sediment advection from two possible deep

sea mining sites over 5 days. . . . . . . . . . . . . . . . . . . . . . . . 101

5.1 Equivalence between the Lagrangian trajectories and the Eulerian po-

sitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

8.1 Parameters for flow map inference and prediction in the swirl flow. . . 199

8.2 Parameters for flow map inference and prediction in the analytical

double gyre. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

8.3 Parameters for flow map inference and prediction in the Alboran Sea. 228

27



28



Chapter 1

Introduction and Motivation

1.1 Introduction and Summary of Contributions

The transport of fluid parcels (and any material that they carry) due to the back-

ground flow is called ‘advective transport’ [15]. Advective fluid transport plays a

major role in many disciplines of science and engineering. Often times, it occurs as

a part of a larger dynamical context involving advection, diffusion, and/or reaction

processes [139]. It is essential in classical fluid mechanics [20], microfluidics [236],

and biological flows [219]. However, one of the most important fields where advective

fluid and material transport plays a key role is atmospheric and ocean sciences [202].

The transport of anthropogenic and natural material in environmental flows is

ubiquitous and profoundly impacts society. Preparedness and effective response can

save many lives, untold environmental damage, and enormous financial cost. For

example, the potential proliferation of large-scale ocean exploitation such as deep sea

mining activities creates major risks to the surrounding marine environment as the

generated plumes are advected and dispersed due to the background ocean currents

[181]. The ever-increasing size of the great Pacific garbage patch and of the pollution

from macro- and micro-plastics and other ocean debris are of great concern due to

the harm they cause to the local, regional, and global ecosystems [142]. At the same

time, several natural systems rely heavily on flow transport in order to survive and

thrive. For example, marine biological ecosystems require advection of nutrients for
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plankton and fish growth [252]. Predicting and quantifying the overall impact and

risks of such natural events and harmful human activities is essential in deciding the

best course of action.

Understanding the dynamics of flow transport and predicting where things go in

unsteady and complex environmental flows remains a formidable scientific challenge

[101]. Some of the reasons that make this process demanding are the following: (i)

unsteady transport processes require precise analysis so that material transport is

accurately defined and predicted, (ii) accurate high-resolution numerical modeling of

the flow field and advective transport is highly challenging due to nonlinearity, un-

certainty, and compounding numerical errors, (iii) data is only partially and sparsely

available in the form of snapshot observations of material transport or trajectories of

marine floats and drifters, with no access to the actual underlying flow fields.

Addressing several of the above challenges, this thesis develops fundamental theo-

ries and rigorous methodologies for predicting, quantifying, and learning key material

transport processes and structures in dynamic fluid flows, often observed in marine

and geophysical sciences. The research is specifically driven by the following ques-

tions: (i) can we develop a highly accurate and efficient numerical method to solve

the advective transport equation which ensures that numerical errors are not com-

pounded?, (ii) can we efficiently quantify the sets of passively advected material that

remain the most / least coherent over a considered time interval and so characterize

fluid mixing and diffusion?, and (iii) can we utilize the recent advances in scientific

machine learning to infer and predict the underlying material transport features from

snapshot data about the transport of a material quantity?

This thesis may be broadly categorized into three topics: (i) development of a

novel highly accurate numerical method to solve the advective transport equation,

(ii) Lagrangian coherence analysis of passive advective material transport, and (iii)

inference and prediction of transport features and coherent structures from snapshot

data about material flow. In the following, we summarize the main contributions of

this thesis by highlighting the major research accomplishments.

30



Advection Through Flow Map Composition

In the first part, we develop theory and advanced numerical tools to accurately pre-

dict and quantify material transport in fluid dynamic systems. Specifically, we pro-

pose a novel numerical methodology for the computation of advective and advective–

diffusive–reactive transport of tracer quantities in fluid flows. Our ‘method of flow

map composition’ is readily parallelizable, ensures that the numerical errors are not

compounded in time resulting in a much higher accuracy, and can be used in con-

junction with any of the well-established numerical schemes and partial differential

equation (PDE) solvers. We also derive rigorous theoretical expressions for numerical

errors and for the optimal composition timestep, i.e. the numerical timestep value

that results in the minimum total error. We show that the optimal composition

timestep minimizes the net numerical error by balancing the errors from the advec-

tion PDE solve and the composition-interpolation operation. Our theoretical results

are analyzed and illustrated through several idealized and realistic two and three-

dimensional examples, including regional ocean plume simulations. We discover that

in both hindcast and real-time studies, the composition-based results match very

well with the observations ehile preserving the accuracy and ensuring uniform spatial

coverage. These examples validate our theoretical developments and showcase the

efficiency and the superiority of the method of composition for predicting advective

transport when compared to regular numerical advection schemes. The increased

accuracy and decreased computational cost along with the ease of implementation

make the method of flow map composition an attractive choice for a wide range of

flow and material transport applications.

Lagrangian Analysis of Material Transport

We utilize the method of flow map composition to analyze Lagrangian material co-

herence in dynamic open domains, with special attention to flow fields with multiple

time-dependent inlets and outlets. Specifically, we quantify sets of fluid parcels that

remain the most (or the least) rigid over an extended time interval of interest, referred

to as ‘persistently rigid (non-rigid) sets’. Such sets are of paramount importance in
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quantifying fluid mixing, as it can be shown that these material sets that remain rigid

are the ones to minimally mix with their complement. This coherence-incoherence

information is valuable in determining turbulent, chaotic, and diffusive mixing re-

gions in the flow. Based on the previously theorized ‘polar distance’, we propose the

‘extended polar distance’ criterion, which quantifies the persistent rigidity or coher-

ence (or the lack thereof) of all the possible fluid sets in the spatio-temporal domain

of interest. We prove that the persistently rigid material sets determined using the

extended polar distance are the ones that maximally resist both chaotic advection

and diffusive mixing. Further, by utilizing the method of composition, we develop

efficient schemes to compute this parameter. Several analytical flow fields and real-

istic data-assimilative ocean simulations in diverse dynamical regimes are considered

as examples, wherein we demonstrate the capabilities of our criterion to capture the

persistently coherent and incoherent sets. We discover that even through two material

sets might initially be very close to each other, their behaviors can be very different

from each other.

Inference and Prediction of Material Transport Features

Finally, we focus our attention on the machine inference and prediction of the trans-

port features and coherent structures only from the snapshot data about the passive

advection and advection–diffusion of some material. Our goals include machine learn-

ing and predicting the underlying flow maps, coherent / incoherent material sets, and

attracting and repelling manifolds, given a time series of snapshot data about mate-

rial transport. We utilize and extend the recent developments from machine learning

(ML) for this purpose. The fundamental difference in our case from the typical

supervised ML applications is that there does not exist any labeled training data

of material flow snapshots and the corresponding flow maps / coherent structures.

However, we have the knowledge of the physical constraints that the results must

satisfy (e.g. conservation laws). We thus develop new theory and algorithms that can

leverage our physical knowledge of the system in the design of the network and the

constraints on the output fields in the loss function to be minimized. Specifically, we
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extend recurrent neural networks, including a combination of long short-term memory

networks with hypernetworks, and introduce relaxed weight sharing, while enforcing

advective transport, mass conservation, and velocity smoothness in the loss function.

The developed theory, methods, and computational architectures are validated and

tested on a variety of analytical and realistic fluid flows, including high-resolution

ocean transports in the Western Mediterranean Sea. The results highlight our ability

to extract the generic transport features from specific material flow data.

1.2 Outline of the Thesis

Flow Maps and Advective Transport: In Chapter 2, we formally introduce the no-

tion of flow maps of a dynamical system, which forms the backbone of this thesis.

We describe the mathematical setup and the relevant notation, define the flow maps,

discuss their governing equations, and study the relationship between flow maps and

passive advective transport.

Advection Through Flow Map Composition - Theory: Chapter 3 discusses the theo-

retical foundations of the method of flow map composition to numerically solve the

advective transport equation. We first describe the proposed method, followed by

provisions to account for additional source and diffusion terms as well as the appli-

cation of various different boundary conditions. This is followed by rigorous error

analysis to obtain global error bounds and the optimal composition timestep - a nu-

merical timestep value that yields the least total numerical error. Some results from

this chapter have been published in Kulkarni and Lermusiaux [132].

Advection Through Flow Map Composition - Applications: In Chapter 4, we exem-

plify the method of composition using a variety of analytical and realistic applications.

We first benchmark and analyze the developed scheme using advection and advection–

diffusion in a reversible swirl flow with a known solution and an advection–reaction

in an idealized flow exiting a strait. This is followed by the prediction of simulated
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advective transport of sediment plumes in the Bismarck Sea and the real-time pre-

diction of sediment plume transport during the 2018 PLUMEX sea exercise. Results

from this chapter have been published in Kulkarni and Lermusiaux [132]; Kulkarni

et al. [131]; Munoz-Royo et al. [181]; Coulin et al. [38].

Lagrangian Analysis of Material Transport - Theory: Chapter 5 establishes the role

of flow maps as a backbone of Lagrangian material transport and extends the method

of composition to compute flow maps in dynamic open domains. This is followed by

the development of rigorous theory and criteria to predict sets of fluid parcels that

remain the most (or the least) rigid over an extended time interval, along with several

remarks that highlight the objectivity, efficient computation, and theoretical connec-

tions of the proposed criteria to chaotic advection and diffusive mixing. This work is

the basis of Kulkarni and Lermusiaux [136].

Lagrangian Analysis of Material Transport - Applications: In Chapter 6, first we

extensively benchmark the computation of flow maps for open domains using a re-

alistic marine flow around the island of Palau in the Southern Pacific Ocean. This

is followed by a demonstration of some of the applications of the software toolbox

based on the method of composition to analyze Lagrangian coherence in a variety of

dynamical regimes and different marine regions around the world. We then focus on

the prediction of coherent, persistently coherent, and incoherent sets in the analytical

double gyre flow and in realistic data-assimilative ocean simulations around Palau.

The results from this chapter appear in Kulkarni and Lermusiaux [136]; Doshi et al.

[47]; Lermusiaux et al. [153].

Inference of Material Transport Features - Theory: In Chapter 7, we develop a novel

machine learning (ML) based algorithm that can infer and predict the underlying ad-

vective transport features and coherent structures using a time series of snapshot data

about material transport. We describe the proposed deep recurrent neural network

architecture, the loss function, and its extension to learn flow maps from data about
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advective–diffusive material flow. Finally, we extend our algorithm to learn flow maps

in open domains, simultaneously learn from transport data about multiple quantities,

and optimally combine low resolution snapshot data and high resolution Lagrangian

trajectory data. This work is a part of Kulkarni and Lermusiaux [133, 134].

Inference of Material Transport Features - Applications: The applications of our ML

framework developed in Chapter 7 on a variety of analytical and realistic flows are

detailed in Chapter 8. We look at the inference and prediction capability of the ML

algorithm through two analytical flow fields: a swirl flow and a double gyre flow. We

then study the applications of the developed algorithm to learn the flow maps and

coherent structures in the Western Mediterranean (Alboran) Sea using data about

sea surface temperature and salinity. Results from this work appear in Kulkarni and

Lermusiaux [133, 134].
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Chapter 2

Advective Transport and Flow Maps

In this chapter, we formally introduce the notion of flow maps of non-autonomous

(i.e. time-dependent) dynamical systems. In fluid dynamic systems, flow maps di-

rectly govern the advective transport of any passive material, and they can be viewed

as the Lagrangian counterpart to the Eulerian velocity fields. In Sec. 2.1, we first

introduce the Eulerian and Lagrangian perspectives in fluid mechanics to highlight

why one must adopt the Lagrangian perspective while studying material transport.

We then look at the associated mathematical setup and notation in Sec. 2.2. The

governing equations satisfied by passive advective transport of any material quantity

from the Eulerian and the Lagrangian viewpoints are specified in Sec. 2.3. Finally,

Sec. 2.4 defines the flow maps, specifies their governing equations, and other impor-

tant properties. This section also establishes the relationship between advective tracer

transport and flow maps, thereby highlighting the role of flow maps as the backbone

of passive material transport. The various contributions of this thesis are directly

connected to flow maps, and this chapter serves to build the necessary background

and technical knowledge.
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2.1 Introduction

2.1.1 Eulerian and Lagrangian Descriptions of Fluid Flow

There are two ways to describe the motion of any continuum entity (e.g. fluids). In

the first approach, often referred to as the Eulerian perspective or field description

of fluid motion, the properties of the flow field are monitored at fixed locations in

space. However, the complimentary viewpoint, called the Lagrangian perspective or

the particle description of fluid motion, follows individual fluid parcels as they move

through the flow field. These two perspectives are equivalent and either of them is

capable of completely describing any fluid flow and the related processes. However,

both have certain strengths and pitfalls, hence an understanding of both descriptions

and the ability to switch between these viewpoints is of paramount importance. For

example, the acceleration following a fluid parcel is needed for the application of New-

ton’s second law to fluid flows and the motion of individual fluid parcels is necessary

to understand the transport of material carried by these parcels. However, obser-

vations, measurements, and simulations of fluid flows are commonly made at fixed

spatial locations with the fluid moving past the locations or through certain regions.

The Eulerian description focuses on the flow field and its properties at fixed lo-

cations or in regions of interest, and typically involves three or four independent

variables: the two or three spatial coordinates (represented by the position vector 𝑥),

and time 𝑡. Thus, in this field-based Eulerian description of fluid motion, any scalar,

vector, or tensor flow field property or a related quantity, denoted by 𝐹 , depends

directly on 𝑥 and 𝑡 as 𝐹 = 𝐹 (𝑥, 𝑡).

The Lagrangian description of fluid flow is the direct extension of single particle

kinematics to a whole field of fluid parcels labeled by their initial location, 𝑟0, at an

initial reference time, 𝑡 = 𝑡0. The subsequent position 𝑟 of each parcel as a function

of time, 𝑟(𝑡; 𝑟0, 𝑡0) ∀ 𝑟0, implicitly specifies the the flow field. Here, 𝑟0 and 𝑡0 are

the boundary or initial condition parameters that label each of the fluid parcels,

and are not independent variables. The only independent variable is 𝑡. Thus, the

instantaneous flow field velocity 𝑣 at the location 𝑥 at time 𝑡 is the same as the
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instantaneous velocity of the fluid parcel that was located at 𝑟0 at time 𝑡0 which now

is at 𝑟 (= 𝑥) at time 𝑡. That is,

𝑑𝑥(𝑡)

𝑑𝑡
= 𝑣(𝑥(𝑡), 𝑡) = 𝑣(𝑟, 𝑡) =

𝑑𝑟(𝑡; 𝑟0, 𝑡0)

𝑑𝑡
. (2.1)

In this particle-based Lagrangian description of fluid motion, fluid parcel kinematics

are identical to that in ordinary particle mechanics, and any flow field property or a

related quantity affected by the flow field 𝐹 may depend on the path(s) followed of

the relevant fluid parcel(s) and time, i.e. 𝐹 = 𝐹 (𝑟(𝑡; 𝑟0, 𝑡0), 𝑡).

Kinematic relationships between the two descriptions can be determined by re-

quiring equality of the flow field properties when 𝑥 and 𝑟 define the same point in

space, both are resolved in the same coordinate system, and a common clock is used

to determine the time 𝑡:

𝐹 (𝑟(𝑡; 𝑟0, 𝑡0), 𝑡) = 𝐹 (𝑥, 𝑡) when 𝑥 = 𝑟(𝑡; 𝑟0, 𝑡0) . (2.2)

Here the condition 𝑥 = 𝑟(𝑡; 𝑟0, 𝑡0) specifies the trajectory followed by a fluid parcel.

Taking the total time derivative of Eq. (2.2) yields Eq. (2.3):

𝑑𝐹 (𝑥, 𝑡)

𝑑𝑡
=

𝑑𝐹 (𝑟(𝑡; 𝑟0, 𝑡0), 𝑡)

𝑑𝑡
=

𝜕𝐹

𝜕𝑡
+

𝑑𝑟

𝑑𝑡
· ∇𝑟𝐹 . (2.3)

However, we have that 𝑑𝑟
𝑑𝑡

= 𝑣 from Eq. (2.1), and as 𝑥 = 𝑟(𝑡; 𝑟0, 𝑡0), we have that

∇𝑟 = ∇𝑥 = ∇. Thus we define the total derivative or the material derivative of any

quantity 𝐹 as:

𝐷𝐹 (𝑥, 𝑡)

𝐷𝑡
,

𝜕𝐹 (𝑥, 𝑡)

𝜕𝑡
+𝑣(𝑥, 𝑡) ·∇𝐹 (𝑥, 𝑡) =

𝑑𝐹 (𝑟(𝑡; 𝑟0, 𝑡0), 𝑡)

𝑑𝑡
where 𝑥 = 𝑟(𝑡; 𝑟0, 𝑡0) .

(2.4)

Material derivative 𝐷∙
𝐷𝑡

in the Eulerian description is equivalent to the total time

derivative 𝑑∙
𝑑𝑡

in the Lagrangian formulation. It is also called particle derivative, sig-

nifying that it provides Eulerian time derivative information following a fluid parcel.

Material derivative is the key component in transitioning between the Eulerian and
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the Lagrangian perspectives and is composed of unsteady and advective acceleration

terms. The unsteady part of 𝐷𝐹
𝐷𝑡

, i.e. 𝜕𝐹
𝜕𝑡

, is the local temporal rate of change of 𝐹

at the location 𝑥. The advective (or convective) part of 𝐷𝐹
𝐷𝑡

, 𝑣 · ∇𝐹 , is the rate of

change of 𝐹 that occurs as fluid parcels move from one location to another due to

the velocity field 𝑣. It is zero either where 𝐹 is spatially uniform, where the fluid

is not moving, or where 𝑣 and ∇𝐹 are orthogonal. For clarity and consistency, the

movement of fluid parcels from place to place is referred to as advection throughout

this work, and we avoid using the term convection as it is typically used to specifically

describe heat transport through fluid movement.

Eulerian description of a fluid flow can often be visualized through streamlines,

which are curves that are instantaneously tangent to the fluid velocity throughout

the flow field. Lagrangian description of fluid flow is formulated through pathlines. A

pathline is the trajectory (through time) of a fluid parcel of fixed identity. Eulerian

description of the flow field through streamlines is defined over the entire domain of

interest, but is only defined at an instance in time. That is, a streamline description

of the fluid flow can be obtained at every time instant and the streamline plots at

two different time instants are in general independent of each other. However, the

Lagrangian description of the fluid flow using pathlines describes an integrated effect

through the entire time interval of interest, but the pathlines are independent for two

different fluid parcels. Streamlines and pathlines coincide in steady flows but have no

direct relation in unsteady flows.

We refer the readers to the classic texts of Batchelor [15]; Kundu et al. [139] for

an extensive introduction as well as a detailed review of Eulerian and Lagrangian

viewpoints in fluid mechanics.

2.1.2 Advective Material Transport in Fluid Flows

It is of paramount importance to understand the transport of ‘tracers’ in any fluid

flow. A tracer is defined as any scalar or vector material, property, or quantity that is

transported with the fluid parcels due to the motion of these parcels. The transport

can be active (i.e. active tracers) or passive (i.e. passive tracers), depending on if
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changes in the tracer values do, or do not, affect the fluid motions [139; 42]. Common

examples of tracers in geophysical environments include temperature, salinity, dis-

solved Oxygen, plankton etc [42]. Further, external materials in the ocean such as oil

(from oil spills), marine plastics, debris from airplanes or ships often behave as passive

tracers and are advected with the background flow. Thus, predicting, quantifying,

and understanding advective tracer transport is extremely valuable.

Typically, tracers are expressed in terms of their concentration, which is an Eule-

rian field, and the movement of tracer is reflected as the change in the concentration

field. In this thesis, we will refer to the tracer concentration field as the tracer field for

convenience. As mentioned before, passive tracers travel with the fluid parcels with-

out affecting the dynamics of the fluid parcels. Thus, the path followed by a tracer is

exactly the same as that of the fluid parcel that this tracer belongs to. Further, ev-

ery tracer is transported along the trajectory originating at the initial location of the

tracer at the initial time. This inherently implies that one must adopt the Lagrangian

view while studying the transport of these tracers (that are contained within the fluid

parcels).

However, many researchers have attempted to utilize Eulerian information such

as the streamlines of the flow field, the vorticity field etc. to predict and quantify

material transport. Criteria such as the Okubo-Weiss parameter [186; 256] which

identifies regions where vorticity dominates strain have been used to detect coherent

vortices. However, these formulations do not account for the temporally integrated

effect of the flow field on tracer transport. Further, they all lack objectivity (observer

independence), as well as a clear mathematical connection to sustained material co-

herence. As a consequence, vortex boundaries suggested by instantaneous Eulerian

diagnostics tend to lose their coherence rapidly under advection in unsteady flows,

rendering these metrics insufficient [99; 120; 61; 21].

The incapability of Eulerian diagnostics to quantify material transport and co-

herence is illustrated through the following example [101]. Consider the velocity field
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(a) 𝑡 = 0 (b) 𝑡 = 𝜋
8 (c) 𝑡 = 𝜋
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(d) 𝑡 = 3𝜋
8 (e) 𝑡 = 𝜋

2 (f) 𝑡 = 5𝜋
8

Figure 2-1: Streamlines and advective tracer transport in the velocity field specified by
Eq. (2.5). The streamlines of the flow field at every instant are denoted by solid black lines
and are concentric ellipses. The red regions in each panel denote the tracer field. Note that
even though all the streamlines of the flow field are closed at all times and the tracer is
initiated within one such elliptical ‘vortex’, it exponentially diverges away from the center.

given by Eq. (2.5):

𝑥̇ = 𝑣 =

⎡⎣ sin 4𝑡 2 + cos 4𝑡

−2 + cos 4𝑡 − sin 4𝑡

⎤⎦𝑥 . (2.5)

The streamlines of this field are plotted as black solid lines in Fig. (2-1) for various

time instants. Once can clearly observe that all the streamlines are closed and main-

tain concentric elliptical shapes while these ellipses rotate about the origin with a

uniform speed and a period of 𝜋/2. Due to the closed nature of the streamlines, most

Eulerian diagnostics (e.g. the Okubo-Weiss parameter) detect this as a vortex.

To actually verify this claim, Haller [98] initiate a tracer field, denoted by red in

Fig. (2-1), in a region contained within one of the closed streamlines at the initial

time. This tracer is passively advected under the action of the velocity field 𝑣 from

Eq. (2.5), essentially by solving Eq. (2.1) for all the tracer start locations. Contrary to

the predictions of the Eulerian diagnostics, we observe that instead of being contained

within the area inside the original streamline, the tracer diverges exponentially fast
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away from the origin and ends up forming a thin filament. This example clearly

highlights the fact that even in simple periodic flows, the behavior of passive tracer

transport is vastly different from that predicted by the Eulerian diagnostics or that

obtained by simply looking at the snapshots of the velocity field. Thus there is no

basis to expect that such Eulerian criteria and analysis would yield reliable and correct

predictions of advective material transport in complex aperiodic flows, and hence one

must resort to the Lagrangian or particle tracking approach to predict, analyze, and

quantify advective transport in fluid flows.

Given the initial tracer field, its evolution can be obtained analytically for a few

known velocity fields [158]. In most cases however, the dynamic velocity fields 𝑣(𝑥, 𝑡)

are derived as the output of some computational fluid dynamics (CFD) simulation or

are observed quantities. In such cases, one must numerically compute the evolution

of the tracer concentration field. It must be made clear that throughout this thesis,

we assume that the tracer advected with the fluid does not alter the velocity of the

fluid in any way. Further, it is assumed that the velocity fields 𝑣(𝑥, 𝑡) used in this

work are either obtained through simulations, measurements, or observations and are

known as a function of space and time. This work does not deal with computing

these velocity fields. Our focus in the first two parts of this thesis is the prediction

and analysis of advective material transport in these known dynamic velocity fields.

In the last part, we do not have any information about the velocity fields. Rather we

are given data about the transport of a particular tracer, and our objective is to infer

the flow maps and coherent structures (not the velocity fields) from this information.

2.2 Setup and Notation

In this section, we define our problem setup and the relevant notation that would be

used throughout this thesis. Let the spatial domain of interest be denoted by Ω ⊂ R𝑛,

and its boundary by 𝜕Ω. 𝑛 is the spatial dimension of the problem (often, 𝑛 = 2 or 3).

The outward normal over 𝜕Ω is defined by n̂𝜕Ω. The (unsteady) velocity field is given

by 𝑣 : Ω × [0, 𝑇 ] → R𝑛, where [0, 𝑇 ] is the fixed time interval of interest. Further,
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we assume that the velocity 𝑣 is Lipschitz continuous in the spatial coordinate with

Lipschitz constant ℒ𝑣. That is, |𝑣(𝑥, 𝑡) − 𝑣(𝑦, 𝑡)| ≤ ℒ𝑣 |𝑥− 𝑦| for all 𝑥,𝑦 ∈ Ω and

0 ≤ 𝑡 ≤ 𝑇 . 𝑥 indicates a general spatial coordinate in Ω and 𝑡 indicates a general

temporal coordinate within [0, 𝑇 ]. The density of the fluid flow at (𝑥, 𝑡) is 𝜌(𝑥, 𝑡).

The tracer, whose advection is to be studied is denoted by 𝛼. Although many phys-

ical tracers tend to be scalar, we do not limit ourselves to scalar tracer concentrations.

We assume that in general, the tracer concentration 𝛼 can be vector valued. Thus,

𝛼 : Ω×[0, 𝑇 ] → ℛ𝛼, where ℛ𝛼 is the range of values of 𝛼. Often times, ℛ𝛼 = R+∪{0}

for physical scalar tracers (e.g. salinity), but ℛ𝛼 = Ω if studying the advective trans-

port of coordinate positions. The initial tracer concentration over the entire domain

is assumed to be known and denoted by 𝛼0 : Ω → ℛ𝛼. We assume that 𝛼0 is also

Lipschitz continuous, with Lipschitz constant ℒ0
𝛼, i.e. |𝛼0(𝑥) − 𝛼0(𝑦)| ≤ ℒ0

𝛼 |𝑥− 𝑦|

for all 𝑥,𝑦 ∈ Ω.

To perform numerical analysis and computation, we assume that the spatio-

temporal domain of interest is discretized. Specifically, we assume that the temporal

direction is discretized into 𝑁𝑡 discrete times with a timestep of ∆𝑡. The spatial

domain is discretized into 𝑁𝑥, 𝑁𝑦, and 𝑁𝑧 nodes along the 𝑋, 𝑌 , and 𝑍 directions

respectively, with a corresponding grid spacing of ∆𝑥, ∆𝑦, and ∆𝑧.

The transpose of a matrix ∙ is denoted by ∙* and its determinant by det(∙). A

well-defined tensor norm of a tensor ∙ is denoted by |∙|. Finally, the numerically

computed value of a quantity ∙ is denoted by ∙̃. Table 2.1 summarizes the relevant

notion that is used throughout this thesis.

2.3 Advective Tracer Transport

We now look at the fundamental governing equations for the evolution of the tracer

field 𝛼 from the Eulerian and Lagrangian perspectives.

The evolution of the tracer 𝛼(𝑥, 𝑡) is governed by the classic advective transport
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Table 2.1: Notation and Symbols used in this thesis.

Symbol Description

∙* Transpose of a matrix ∙
det(∙) Determinant of a matrix ∙
|∙| Norm of a tensor ∙
∙̃ Numerically computed value of ∙
𝑛 Spatial dimension
I𝑑 Identity matrix of size 𝑑× 𝑑
Ω ∈ R𝑛 Spatial domain
𝜕Ω Boundary of Ω
n̂𝜕Ω Outward normal over 𝜕Ω
𝑥 ∈ Ω Spatial position
[0, 𝑇 ] Time interval of interest
𝑡 ∈ [0, 𝑇 ] temporal coordinate
𝑣 : Ω × [0, 𝑇 ] → R𝑛 Unsteady velocity field
𝛼 : Ω × [0, 𝑇 ] → ℛ𝛼 Passive tracer
𝛼0 : Ω → ℛ𝛼 Initial concentration of 𝛼
ℒ𝑣 ∈ R+ Lipschitz constant of the velocity field 𝑣
ℒ0

𝛼 ∈ R+ Lipschitz constant of the initial tracer field 𝛼0

𝜌 : Ω × [0, 𝑇 ] → R+ ∪ {0} Density of the fluid
𝜑𝑡

𝑠 : Ω → Ω Flow map between times 𝑠 and 𝑡
𝐶𝑡

𝑠(𝑥) = [∇𝜑𝑡
𝑠(𝑥)]

*
[∇𝜑𝑡

𝑠(𝑥)] Right Cauchy-Green (CG) strain tensor
𝜆
(𝑠,𝑡)
𝑖 (𝑥) 1 ≤ 𝑖 ≤ 𝑛 Eigenvalues of 𝐶𝑡

𝑠(𝑥) indexed in decreasing order
𝜉
(𝑠,𝑡)
𝑖 (𝑥) Eigenvectors corresponding to 𝜆

(𝑠,𝑡)
𝑖 (𝑥)

𝑁𝑥, 𝑁𝑦, 𝑁𝑧 Number of grid points in the spatial dimension(s)
𝑁 = 𝑁𝑥 ×𝑁𝑦 ×𝑁𝑧 Number of total grid points in the domain
∆𝑥,∆𝑦,∆𝑧 Grid spacing in the spatial dimension(s)
𝑁𝑡 Number of intervals in the temporal dimension
∆𝑡 Numerical timestep

Eq. (2.6), subject to appropriate boundary conditions [15; 67]:

𝜕𝜌(𝑥, 𝑡)𝛼(𝑥, 𝑡)

𝜕𝑡
+ ∇ · (𝜌(𝑥, 𝑡)𝑣(𝑥, 𝑡)𝛼(𝑥, 𝑡)) = 0 ,

𝛼(𝑥, 0) = 𝛼0(𝑥) .

(2.6)

This equation models the transport of a passive tracer 𝛼 defined per unit mass of the

fluid, under the velocity field 𝑣. Further, from mass conservation, we have that,

𝜕𝜌(𝑥, 𝑡)

𝜕𝑡
+ ∇ · (𝜌(𝑥, 𝑡)𝑣(𝑥, 𝑡)) = 0 , (2.7)
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Eq. (2.6) is simplified into Eq. (2.8) using Eq. (2.7), without further assumptions:

𝜕𝛼(𝑥, 𝑡)

𝜕𝑡
+ 𝑣(𝑥, 𝑡) · ∇𝛼(𝑥, 𝑡) = 0 ,

𝛼(𝑥, 0) = 𝛼0(𝑥) .

(2.8)

If the tracer concentration was defined per unit volume, the equation equivalent to

Eq. (2.6) is given by Eq. (2.9),

𝜕𝛼(𝑥, 𝑡)

𝜕𝑡
+ ∇ · (𝑣(𝑥, 𝑡)𝛼(𝑥, 𝑡)) = 0 ,

𝛼(𝑥, 0) = 𝛼0(𝑥) .

(2.9)

Eq. (2.9) simplifies to Eq. (2.8) if one assumes an incompressible velocity field, i.e. ∇·

𝑣 = 0. In this work, we assume that the fluid is incompressible and thus tracer

transport is governed by Eq. (2.8). As Eq. (2.8) specifies the evolution of the tracer

field over a fixed domain through time, it is considered an Eulerian description of 𝛼.

One can equivalently consider the Lagrangian description of tracer transport cor-

responding to the Eulerian Eq. (2.8). Comparing Eq. (2.8) with Eq. (2.4), we get:

𝜕𝛼(𝑥, 𝑡)

𝜕𝑡
+ 𝑣(𝑥, 𝑡) · ∇𝛼(𝑥, 𝑡) = 0 with 𝛼(𝑥, 0) = 𝛼0(𝑥) ,

=⇒ 𝐷𝛼(𝑥(𝑡), 𝑡)

𝐷𝑡
= 0 with 𝛼(𝑥, 0) = 𝛼0(𝑥) . (2.10)

Eq. (2.10) follows the motion of individual tracers through time and hence is the

Lagrangian description of tracer transport [43; 159].

2.4 Flow Maps

2.4.1 Introduction and Definitions

The two principal questions in advective tracer transport, given a fixed time interval,

are: (i) where does a tracer that started at a particular location at the initial time

end up at the final time? and (ii) where did a tracer come from at the initial time
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that ends up at a particular location at the final time? Since any advective tracer

passively travels with the fluid parcels, the mapping between the initial and the final

concentrations of a tracer can be determined through the mapping between the initial

and the final positions of the fluid parcels in the concerned domain. The forward and

backward flow maps corresponding to the velocity field 𝑣 quantify this mapping [237].

The forward flow map describes the mapping of the positions in Ω at the initial

time to their respective locations at the final time under the advective action of the

velocity field 𝑣, given by Eq. (2.11):

𝜑𝑇
0 (𝑥0) = 𝑥(𝑇 ) where

𝑑𝑥

𝑑𝑡
= 𝑣(𝑥(𝑡), 𝑡); 𝑥(0) = 𝑥0 ∈ Ω s.t. 𝑥(𝑇 ) ∈ Ω . (2.11)

Similarly, the backward flow map describes the mapping of the positions in Ω at the

final time to their respective locations at the initial time, and is the inverse of the

forward flow map:

𝜑0
𝑇 (𝑥𝑇 ) = 𝑥(0) where

𝑑𝑥

𝑑𝑡
= 𝑣(𝑥(𝑡), 𝑡); 𝑥(𝑇 ) = 𝑥𝑇 ∈ Ω s.t. 𝑥(0) ∈ Ω . (2.12)

The ODE in Eq. (2.12) is solved backwards in time with the specified terminal con-

dition starting from 𝑡 = 𝑇 ending at 𝑡 = 0.

Note that in general, the flow maps are not defined at all locations in Ω. Specif-

ically, the forward flow map is undefined at locations that exit Ω during [0, 𝑇 ] and

the backward flow map is undefined at locations that enter the domain during [0, 𝑇 ].

This implies that the domains of definitions of the forward and the backward flow

map are different from each other and are a function of the end time 𝑇 . Further,

the forward flow map over a time interval is defined at the start time of this interval,

whereas the backward flow map over a time interval is defined at the end time of this

interval. This together implies that the forward and the backward flow maps are not

directly comparable with each other.

One may look at flow maps from two complementary perspectives: (i) as a dif-

feomorphism or (ii) as a functional operator. The first perspective considers flow

maps as a vector-valued Eulerian fields 𝑥→ 𝜑𝑇
0 (𝑥) and 𝑥→ 𝜑0

𝑇 (𝑥) that describe the
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motion of individual positions 𝑥 ∈ Ω forward and backward in time respectively. In

the second perspective, flow maps are viewed as functional operators 𝜇 → 𝜇 ∘𝜑0
𝑇 and

𝜇 → 𝜇 ∘ 𝜑0
𝑇 that map all density functions 𝜇 on Ω to their corresponding solutions

from the advection equation (Eq. (2.8)) forward and backward in time respectively.

These perspectives can be shown to be equivalent by considering the action of the

flow map operator on the density function 𝜇 = 𝑥. Further details about the equiva-

lence of diffeomorphism and operator based approaches in dynamical systems can be

found in [6; 44]. This work mainly deals with understanding and utilizing the role

of the Eulerian flow map fields in the transport of tracers. We thus refer to the flow

map fields (i.e. 𝜑𝑇
0 (𝑥) and 𝜑0

𝑇 (𝑥)) as ‘flow maps’ for convenience henceforth. The

operator theoretic notion of the flow map (i.e. 𝜇 → 𝜇 ∘ 𝜑0
𝑇 ) is referred to as the the

‘flow map operator’ when required.

2.4.2 Governing Equations

The instantaneous evolution of the flow map 𝜑𝑡
0(𝑥) can be quantified in terms of the

velocity field. For an infinitesimally small time interval 𝛿𝑡, we can write that:

lim
𝛿𝑡→0

𝜑𝑡+𝛿𝑡
0 (𝑥) = lim

𝛿𝑡→0

(︀
𝜑𝑡

0(𝑥) + 𝑣(𝜑𝑡
0(𝑥), 𝑡)𝛿𝑡

)︀
. (2.13)

Rearranging and replacing the differential limit with the derivative, we obtain:

𝑑𝜑𝑡
0(𝑥)

𝑑𝑡
= lim

𝛿𝑡→0

𝜑𝑡+𝛿𝑡
0 (𝑥) − 𝜑𝑡

0(𝑥)

𝛿𝑡
= 𝑣(𝜑𝑡

0(𝑥), 𝑡) . (2.14)

To obtain the governing equations for the gradients of the forward flow maps, we

differentiate Eq. (2.14) with respect to 𝑥:

𝜕

𝜕𝑥

𝑑𝜑𝑡
0(𝑥)

𝑑𝑡
=

𝜕

𝜕𝑥

(︀
𝑣(𝜑𝑡

0(𝑥), 𝑡)
)︀
. (2.15)
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Denoting 𝜕𝜑𝑡
0(𝑥)

𝜕𝑥
by ∇𝜑𝑡

0(𝑥) and using chain rule, we write Eq. (2.15) as:

𝑑∇𝜑𝑡
0(𝑥)

𝑑𝑡
=

(︂
𝜕𝑣(𝜑𝑡

0(𝑥), 𝑡)

𝜕𝜑𝑡
0(𝑥)

)︂(︀
∇𝜑𝑡

0(𝑥)
)︀

=
(︀
∇𝑣(𝜑𝑡

0(𝑥), 𝑡)
)︀ (︀

∇𝜑𝑡
0(𝑥)

)︀
. (2.16)

Similarly, the evolution of the backward flow map is governed by Eq. (2.17)

𝑑

𝑑𝑡
∇𝜑0

𝑡 (𝑥) = −
(︀
∇𝑣(𝜑0

𝑡 (𝑥), 𝑡)
)︀ (︀

∇𝜑0
𝑡 (𝑥)

)︀
. (2.17)

It can be shown that the determinant of ∇𝜑𝑡
0(𝑥) satisfies the following equation [176]:

𝑑

𝑑𝑡
det(∇𝜑𝑡

0(𝑥)) = det(∇𝜑𝑡
0(𝑥))

(︀
∇ · 𝑣(𝜑𝑡

0(𝑥), 𝑡)
)︀
. (2.18)

For an incompressible flow we have that ∇ · 𝑣(𝑥, 𝑡) = 0 ∀ 𝑥 ∈ Ω, ∀ 𝑡 ∈ [0, 𝑇 ]. This

yields 𝑑
𝑑𝑡

det(∇𝜑𝑡
0(𝑥)) = 0, implying that det(∇𝜑𝑡

0(𝑥)) is a constant for all 𝑡. However,

at 𝑡 = 0, we have that 𝜑0
0(𝑥) = 𝑥. Thus we get that:

∇ · 𝑣(𝑥, 𝑡) = 0 =⇒ det(∇𝜑𝑡
0(𝑥)) = det(∇𝜑0

0(𝑥)) = det(I𝑛) = 1 . (2.19)

Analogous results can also be obtained for the backward flow map. Overal, for in-

compressible flow fields, we obtain that for all times 𝑡:

det(∇𝜑𝑡
0(𝑥)) = det(∇𝜑0

𝑡 (𝑥)) = 1 . (2.20)

These constraints are utilized in various capacities in Chapter 5 and Chapter 7.

2.4.3 Flow Map Composition

We now show that the forward and the backward flow map computations can be

decoupled in time. Consider an arbitrary time instant τ ∈ [0, 𝑇 ]. The forward flow
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maps over [0, τ] and [τ, 𝑇 ] are defined by Eq. (2.21) and Eq. (2.22):

𝜑τ
0(𝑥0) = 𝑥(τ) where

𝑑𝑥

𝑑𝑡
= 𝑣(𝑥(𝑡), 𝑡); 𝑥(0) = 𝑥0 ∈ Ω s.t. 𝑥(τ) ∈ Ω , (2.21)

𝜑𝑇
τ (𝑥τ) = 𝑥(𝑇 ) where

𝑑𝑥

𝑑𝑡
= 𝑣(𝑥(𝑡), 𝑡); 𝑥(τ) = 𝑥τ ∈ Ω s.t. 𝑥(𝑇 ) ∈ Ω . (2.22)

Substituting 𝑥(τ) = 𝑥τ = 𝜑τ
0(𝑥0) from Eq. (2.21) in Eq. (2.22), we get that:

𝜑𝑇
τ (𝜑τ

0(𝑥0)) = 𝑥(𝑇 ) where
𝑑𝑥

𝑑𝑡
= 𝑣(𝑥(𝑡), 𝑡); 𝑥(0) = 𝑥0 ∈ Ω s.t. 𝑥(𝑇 ) ∈ Ω .

(2.23)

Comparing Eq. (2.23) to Eq. (2.11), one can clearly see that:

𝜑𝑇
0 (𝑥0) = 𝜑𝑇

τ (𝜑τ
0(𝑥0)) = 𝑥𝑇 for all 𝑥0 ∈ Ω such that 𝑥𝑇 ∈ Ω . (2.24)

The analogous expression for backward flow map is given by Eq. (2.25):

𝜑0
𝑇 (𝑥𝑇 ) = 𝜑0

τ (𝜑τ
𝑇 (𝑥𝑇 )) = 𝑥0 for all 𝑥𝑇 ∈ Ω such that 𝑥0 ∈ Ω . (2.25)

In terms of the flow map operators, we get that the flow map operators 𝜑𝑇
0 , 𝜑τ

0, and

𝜑𝑇
τ (or 𝜑0

𝑇 , 𝜑0
τ, and 𝜑τ

𝑇 ) are connected through operator composition (∘) as:

𝜑𝑇
0 = 𝜑𝑇

τ ∘ 𝜑τ
0 and 𝜑0

𝑇 = 𝜑0
τ ∘ 𝜑τ

𝑇 (2.26)

This implies that flow maps over a larger duration can be obtained by composing flow

maps over shorter and mutually independent time intervals [132; 24; 266].

Specifically, when the considered time interval [0, 𝑇 ] is divided into 𝑁𝑡 smaller

intervals [𝑡0 = 0, 𝑡1), [𝑡1, 𝑡2), . . . , [𝑡𝑁𝑡−1, 𝑡𝑁𝑡 = 𝑇 ], one can recursively apply Eq. (2.24)

and Eq. (2.25) to obtain that,

𝜑𝑇
0 (𝑥) = 𝜑

𝑡𝑁𝑡
𝑡0 (𝑥) = 𝜑

𝑡𝑁𝑡
𝑡𝑁𝑡−1

∘ 𝜑𝑡𝑁𝑡−1

𝑡𝑁𝑡−2
∘ . . . ∘ 𝜑𝑡1

𝑡0(𝑥) = 𝜑
𝑡𝑁𝑡
𝑡𝑁𝑡−1

(︀
. . .
(︀
𝜑𝑡1

𝑡0(𝑥)
)︀)︀

, (2.27)

𝜑0
𝑇 (𝑥) = 𝜑𝑡0

𝑡𝑁𝑡
(𝑥) = 𝜑𝑡0

𝑡1 ∘ . . . ∘ 𝜑
𝑡𝑁𝑡−2

𝑡𝑁𝑡−1
∘ 𝜑𝑡𝑁𝑡−1

𝑡𝑁𝑡
= 𝜑𝑡0

𝑡1

(︁
. . .
(︁
𝜑

𝑡𝑁𝑡−1

𝑡𝑁𝑡
(𝑥)
)︁)︁

. (2.28)
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Thus, Eq. (2.27)) and Eq. (2.28) suggest that the desired flow maps 𝜑𝑇
0 (𝑥) and 𝜑0

𝑇 (𝑥)

can be recursively written as a composition of elementary functions (flow maps) over

independent time intervals. This important observation allows us to decouple flow

map computations in a mutually independent way.

2.4.4 Relationship Between Advective Transport and Flow Maps

The Lagrangian interpretation of advective material transport, i.e. Eq. (2.10) implies

that the tracer value 𝛼0(𝑥0), initially located at 𝑥0, travels with the fluid parcel

at 𝑥0 along the pathline (trajectory) originating at 𝑥0 to end up at the same final

location as this fluid parcel. However, from Eq. (2.11), we know that the fluid parcel

originating at 𝑥0 ends up at 𝑥 = 𝜑𝑇
0 (𝑥0) at the end time 𝑡 = 𝑇 . Thus, we have that:

𝛼(𝜑𝑇
0 (𝑥0), 𝑇 ) = 𝛼(𝑥0, 0) = 𝛼0(𝑥0) , (2.29)

=⇒ 𝛼0(𝑥) = 𝛼(𝜑𝑇
0 (𝑥), 𝑇 ) . (2.30)

However, as the forward and the backward flow maps are inverses of each other, we

can represent 𝑥0 as 𝑥0 = 𝜑0
𝑇 (𝑥) in Eq. (2.29). This yields:

𝛼(𝑥, 𝑇 ) = 𝛼0(𝜑
0
𝑇 (𝑥)) . (2.31)

Eq. (2.30) states that the initial tracer value at any position 𝑥 is the composition

of the final tracer field at time 𝑇 with the forward flow map between times 0 and 𝑇 ,

evaluated at 𝑥. Eq. (2.31) states that the tracer value at any position 𝑥 at time 𝑇 is

the composition of the initial tracer field with the backward flow map between times

0 and 𝑇 , evaluated at 𝑥. This implies that the backward (or forward) flow map com-

pletely determines the advected tracer field, given its initial (final) condition. That

is, flow maps capture and quantify the underlying features of passive tracer advection

independent of the actual tracer considered and thus are the generic advective trans-

port maps over the considered time interval. Predicting and analyzing the transport

features of any passive tracer is tantamount to predicting and quantifying the excep-
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tional features of the flow maps. Hence, flow maps serve as the backbone of this work

on predicting, analyzing, and inferring advective transport.

2.5 Summary

In this chapter, we introduce the two principal perspectives in fluid mechanics and

justify why the Lagrangian perspective must be adopted to study advective trans-

port in fluid flows. We then specify the mathematical setup and the notation used

throughout this thesis. This is followed by the classic PDEs governing the advective

transport of passive tracers. Finally, we look at the formal definition of the flow map

along with its governing equations and delineate the connections between the flow

maps and passive advective transport. This chapter builds fundamental knowledge

about the notion of flow maps, and the contributions from the succeeding chapters

utilize and build up on the concepts introduced in this chapter.
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Chapter 3

Advection Through Flow Map

Composition - Theory

In this chapter, we propose and theoretically investigate the foundations and capa-

bilities of the method of flow map composition, a novel numerical methodology to

compute the advection and advection–diffusion–reaction of tracer quantities. The

method of composition accurately solves Eq. (2.8) to determine the evolution of the

tracer field 𝛼(𝑥, 𝑡), given a (possibly unsteady) velocity field. Tracer advection oc-

curs through flow map composition and is super-accurate, yielding numerical solutions

almost devoid of compounding numerical errors, while allowing for direct paralleliza-

tion in time. It is computed by implicitly solving the characteristic evolution through

a modified transport partial differential equation and domain decomposition in the

temporal direction, followed by composition with the known initial condition. This

advection scheme allows a rigorous computation of the spatial and temporal error

bounds, yields an accuracy comparable to that of Lagrangian methods, and main-

tains the advantages of Eulerian schemes. We further show that there exists an

optimal value of the composition timestep that yields the minimum total numerical

error in the computations, and derive the expression for this value. We prove that

the optimal composition timestep minimizes the net numerical error by balancing the

errors from the advection PDE solve and the composition-interpolation operation.

The results from this chapter form the theoretical basis of Kulkarni and Lermusiaux
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[132].

We first provide a brief introduction and a literature review of the existing methods

in Sec. 3.1. The problem statement is specified in Sec. 3.2. The theoretical descrip-

tion of the composition-based advection is in Sec. 3.3; emphasizing the fundamentals

behind the new methodology, the addition of tracer diffusion and source terms, and

the implementation of boundary conditions. Sec. 3.4 derives specific numerical prop-

erties of the new composition-based numerical advection. We first analyze the error

estimates and then derive the expression for the optimal composition timestep - the

numerical timestep value that results in the minimum total numerical error. Finally,

in Sec. 3.5, we discuss the development of a software toolbox that relies on the method

of composition to analyze advective material transport. We detail the architecture of

the solver, the flexibility afforded in the computation, and its performance metrics.

3.1 Introduction and Literature Review

The pure hyperbolic nature of Eq. (2.8) presents significant numerical challenges and

most schemes are either susceptible to a high degree of unwanted numerical diffusion

or exhibit excessive nonphysical oscillations [159]. Although the use of extremely fine

mesh is an option for high fidelity solutions, the computational cost quickly becomes

prohibitive and often rules out this possibility for large, realistic problems [158].

Computing the accurate solution of Eq. (2.8) is not trivial and there are several

classes of numerical methods for such solutions. First, the more traditional ‘Eulerian

methods’ or ‘optimal spatial methods’ [28] compute the numerical solution using fi-

nite differences [39; 196], finite volumes [159; 116; 172], finite elements [115; 69; 112],

or other numerical discretization techniques on a spatial grid. It can be proven that

central difference approximations for the temporal and spatial derivatives commonly

yields excessive oscillations and unstable solutions [159]. Considering an upstream

bias (‘upwinding’) for the spatial gradients, where the upwind direction is decided by

the local velocity fields, removes these spurious oscillations to a great extent. Some

of the benefits of these methods include rigorous theoretical bounds on the spatial
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and temporal errors and straightforward use of well-established robust and high-order

accurate numerical methods [179; 203; 243; 230; 191; 189], many of which are imple-

mented in numerical toolboxes [7; 53; 138] However, they tend to exhibit significant

numerical diffusion when the temporal truncation error dominates [159]. Such spu-

rious diffusion effects can be large enough when they compound to overshadow the

physical tracer dispersion [28], and hence produce inaccurate solutions. In order to

minimize such errors, one can use high-order accurate schemes that rely on wide com-

putational stencils increasing the cost and posing challenges near boundaries. The use

of hp-adaptivity [126; 34] reduces the local truncation errors but does not eliminate

their compounding over time. Further, explicit numerical schemes often pose restric-

tions on the Courant number whereas implicit methods involve a large matrix–vector

or a nonlinear system solve. For such Eulerian methods, the computational cost can

thus become high and there are no direct avenues for temporal parallelization.

The second type, often referred to as ‘Lagrangian methods’ leverage the hyperbolic

nature of the system to compute tracer transport by utilizing the characteristic lines of

Eq. (2.8). The various techniques developed under the umbrella of Lagrangian meth-

ods involve the method of characteristics [201], the modified method of characteristics

[48; 57; 214], and transport-diffusion methods [108; 114] amongst others. Eulerian-

Lagrangian methods (ELM) [12; 184; 188] and their extensions such as localized

adjoint-based methods (ELLAM) [28; 255] are used for advection-diffusion equations

where the advective transport is computed by a Lagrangian method, the diffusive

component is treated on an Eulerian grid, and finally both solutions are combined

through operator-splitting methods [258]. Lagrangian methods significantly reduce

the temporal truncation error, alleviate the Courant number restrictions often found

in Eulerian methods, and can be readily parallelized [171]. They pose problems how-

ever in the rigorous treatment of boundary fluxes, especially in domains with multiple

inlets and outlets, and in maintaining mass conservation. Further, Lagrangian meth-

ods involve some form of particle tracking, which implies that the solutions are seldom

computed on uniform spatial grids leading to a loss of resolution in some regions of

the domain [156; 64; 65]. Further, the Lagrangian methods require the velocity field
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defined not only at the (known) grid points, but also at arbitrary locations in the do-

main. Although high-order reconstruction or interpolation schemes can be used, they

increase the overall computational cost. This also implies that rigorous estimates for

the spatial error bounds are often not available.

Another class of advection schemes, called ‘jet schemes’ [220; 183] or ‘characteristic

mapping methods’ [177] propose a semi-Lagrangian ‘advect-and-project’ approach to

numerically solve Eq. (2.8). These schemes use Hermite polynomials to achieve local

high-order accuracy, and the advection process is simulated by Lagrangian particle

tracking. For classical examples of level set function evolutions [190], it is observed

that these methods can produce solutions with accuracy comparable to discontinuous

Galerkin methods. These methods may be combined with appropriate parallel-in-time

methods [79] to achieve some speedup.

It would be ideal to obtain numerical diffusion- and dispersion-free accurate solu-

tions comparable to those of Lagrangian methods, while maintaining the theoretical

consistency, soundness and ease of use of Eulerian methods (i.e. on a spatially fixed

grid). In this work, we develop a new method to numerically solve Eq. (2.8), referred

to as the method of flow map composition or simply the method of composition, and

extend it to advection-diffusion-reaction problems. It generalizes prior results in the

area of flow map computation for dynamical systems [265; 266; 156]. As will be shown,

this is a special case of the method of composition, i.e. solving Eq. (2.8) but for very

specific initial and boundary conditions. A main novelty of the present methodology

is its capability to handle the advection of any passive tracer while respecting space

and time-dependent boundary conditions and to also account for any classic diffusion

and reaction operators. We further prove that the order of accuracy of the method

is at least equal to the minimum amongst the orders of accuracy of the constituent

operations, which serves as a generalization of Theorem 1 from You and Leung [265].

We also prove that there exists a particular value of the composition timestep that

minimizes the total numerical error. Finally, this method is parallelizable in time,

which leads to a much lower computational time, given enough resources.

The new method of composition in a nutshell involves three components. We first
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divide the temporal domain into smaller intervals and compute a modified flow map

by solving Eq. (2.8) taking into account the boundary conditions over each of these

intervals. These flow maps are mutually independent and hence can be computed

in parallel. Second, we compose these independent (modified) flow maps together

through appropriate composition (interpolation) operators to yield the flow map over

the entire time interval, similar to the work of [24; 220; 177]. Last, we compose this

modified flow map with the initial condition for the tracer field to yield the advected

tracer field. There are multiple advantages to this method: (i) it can be readily

parallelized in the temporal direction as the flow map computations are mutually

independent, (ii) as we simply solve Eq. (2.8), the computation can be performed on

any spatial discretization with any existing solvers or numerical toolboxes, (iii) due

to the Eulerian nature of the computations, we can easily obtain error estimates, and

(iv) as the flow maps are independently computed and then composed, the truncation

errors are not compounded in time and we obtain an accuracy comparable to that of

the particle methods.

3.2 Problem Statement

We now formally define the problem at hand using the notation from Table 2.1. Our

goal is to numerically compute the tracer field 𝛼(𝑥, 𝑡) for all 0 ≤ 𝑡 ≤ 𝑇 and 𝑥 ∈ Ω,

with minimum practical numerical error, by solving Eq. (2.8) over a discretized spatio-

temporal domain. For error analysis, we assume the domain to be homogeneous in

all spatial directions, and discretize it into 𝑁𝑥 distinct nodes, with a spacing of ∆𝑥

along each direction without loss of generality.

3.3 Method of Composition for Tracer Advection

This section derives and discusses the method of composition to compute tracer ad-

vection, defined by Eq. (2.8), as well as the handling of tracer diffusion, reaction, and

source terms, and the imposition of generic boundary conditions.
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3.3.1 PDE-Based Flow Map Computation

Instead of devising numerical schemes to solve for Eq. (2.8), we take advantage of the

flow map. Utilizing the Lagrangian interpretation of tracer transport from Sec. 2.4.4,

we know that a fluid parcel starting from the location 𝑥0 carries with it the tracer

value 𝛼0(𝑥0). The position of this fluid parcel (and thus the tracer value 𝛼0(𝑥0))

at time 𝑡 is given by 𝑥 = 𝜑𝑡
0(𝑥0). From this, we get Eq. (3.1) (same as Eq. (2.31);

restated for convenience):

𝛼(𝑥, 𝑡) = 𝛼(𝜑𝑡
0(𝑥0), 𝑡) = 𝛼0(𝑥0) = 𝛼0

(︀
𝜑0

𝑡 (𝑥)
)︀
∀ 𝑡 ∈ [0, 𝑇 ] . (3.1)

However, note that, this is valid for any Lipschitz continuous initial condition field

𝛼0. Specifically, we choose the initial condition given by 𝛼0(𝑥) = 𝑥 ∀ 𝑥 ∈ Ω. This

then implies that:

𝛼(𝑥, 𝑡) = 𝛼0

(︀
𝜑0

𝑡 (𝑥)
)︀

= 𝜑0
𝑡 (𝑥) ∀ 𝑥 ∈ Ω and ∀ 𝑡 ∈ [0, 𝑇 ] . (3.2)

Thus, the backward flow map of of the underlying velocity field over the time interval

[0, 𝑇 ] can be obtained by solving the following PDE system forward in time with the

given initial condition [156; 266]:

𝜕𝛼(𝑥, 𝑡)

𝜕𝑡
+ 𝑣(𝑥, 𝑡) · ∇𝛼(𝑥, 𝑡) = 0 ,

𝛼(𝑥, 0) = 𝑥 ,

then 𝛼(𝑥, 𝑇 ) = 𝜑0
𝑇 (𝑥) .

(3.3)

Similarly, the forward flow map (𝜑𝑇
0 (𝑥)) can be obtained by solving the following

PDE backward in time, with the stated terminal condition:

𝜕𝛼(𝑥, 𝑡)

𝜕𝑡
+ 𝑣(𝑥, 𝑡) · ∇𝛼(𝑥, 𝑡) = 0 ,

𝛼(𝑥, 𝑇 ) = 𝑥 ,

then 𝛼(𝑥, 0) = 𝜑𝑇
0 (𝑥) .

(3.4)
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Thus, by simply solving Eq. (2.8) with the initial condition 𝛼0(𝑥) = 𝑥, we can

compute the backward flow map 𝜑0
𝑇 (Eq. (3.3)). Similarly, by solving Eq. (2.8) back-

ward in time with the terminal condition given by 𝛼(𝑥, 𝑇 ) = 𝑥, we can compute the

forward flow map 𝜑𝑇
0 . We refer to this as the ‘PDE-based flow map computation’

[156; 157]. Without loss of generality, we only deal with the specifics of the back-

ward flow map in this chapter. The corresponding conclusions hold true also for the

forward flow map, and can be derived by simply flipping the temporal index.

It must be noted that our definition of the flow map is a slight extension of the

classical flow maps from dynamical systems theory (Chapter 2). This is because

we look at the flow maps as solutions of advective transport PDEs with specific

initial conditions, and hence have the ability to impose specific boundary conditions.

However, we will still use the term ‘flow map’ to refer to such flow maps that include

the imposition of boundary conditions.

3.3.2 PDE-Based Flow Map Composition

Computing flow maps over longer time intervals may be expensive, especially without

the possibility of parallelization. Further as the governing equation is hyperbolic,

the flow map computation is susceptible to compounding diffusive and dispersive

numerical errors. To alleviate these problems, we utilize and build upon the idea

first proposed by [24] and later used by [266] to efficiently compute the flow map, as

described in Sec. 2.4.3. Instead of computing the flow map over the entire duration,

the interval is broken up into multiple smaller intervals of the order of a numerical

timestep, and the individual flow maps (over these smaller intervals) are computed

independently of each other. Finally, flow maps are composed to obtain the flow map

over the larger interval.

Let us assume that the time interval [0, 𝑇 ] is broken up into 𝑁𝑐 distinct flow map

intervals (of length ∆𝑡𝑐 = 𝑇/𝑁𝑐 each), and the flow map is independently computed

over each of these intervals. Further, ∆𝑡𝑐 is assumed an integral multiple of the

discrete timestep ∆𝑡, i.e. ∆𝑡𝑐 = 𝑀∆𝑡. Then, the flow map over the entire duration
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is given by,

𝜑0
𝑁𝑐

(𝑥) = 𝜑0
1 ∘ 𝜑1

2 ∘ . . . ∘ 𝜑𝑁𝑐−2
𝑁𝑐−1 ∘ 𝜑

𝑁𝑐−1
𝑁𝑐

(𝑥) , (3.5)

where 𝜑𝑖
𝑖+1 = 𝜑

(𝑖)Δ𝑡𝑐
(𝑖+1)Δ𝑡𝑐

. Each of these individual flow maps is computed by using

Eq. (3.3). Numerically, once the flow maps over the individual timesteps are com-

puted, interpolation is required to compose the new flow map at the positions given

by the previous (total) flow map. We denote the interpolation operator associated

with the flow map 𝜑𝑖
𝑖+1 by ℐ 𝑖

𝑖+1. Note that this interpolation operator is specific to

the flow map, and does not change with the argument of the flow map: hence it needs

to be computed only once (per flow map), see also Sec. 3.4.3. With the inclusion of

this interpolation operator, Eq. (3.5) is transformed into Eq. (3.6):

𝜑0
𝑁𝑐

(𝑥) = ℐ0
1𝜑

0
1 ∘ ℐ1

2𝜑
1
2 ∘ . . . ∘ ℐ𝑁𝑐−2

𝑁𝑐−1𝜑
𝑁𝑐−2
𝑁𝑐−1 ∘ 𝜑

𝑁𝑐−1
𝑁𝑐

(𝑥) . (3.6)

While computing the flow maps using this method, each individual computation can

be readily parallelized. Further, the method also allows the very efficient computation

of 𝜑0
𝑡+τ for any τ given 𝜑0

𝑇 , as we can use

𝜑0
𝑡+τ(𝑥) = ℐ0

𝑡 𝜑
0
𝑡 ∘ 𝜑𝑡

𝑡+τ(𝑥) (3.7)

Finally, the application of general boundary conditions is straightforward, as will be

discussed in the following section.

To summarize, the solution of Eq. (2.8) is computed by solving Eq. (3.8),

𝛼(𝑥, 𝑇 ) = 𝛼(𝑥, 𝑁𝑐∆𝑡𝑐) = ℐ𝛼𝛼0 ∘ ℐ0
1𝜑

0
1 ∘ ℐ1

2𝜑
1
2 ∘ . . . ∘ ℐ𝑁𝑐−2

𝑁𝑐−1𝜑
𝑁𝑐−2
𝑁𝑐−1 ∘ 𝜑

𝑁𝑐−1
𝑁𝑐

(𝑥) , (3.8)

where ℐ𝛼 is the interpolation operator for the initial tracer field 𝛼0(𝑥). The individual

flow maps are computed according to Eq. (3.3), using a numerical timestep of ∆𝑡 and

appropriate boundary conditions. The methodology is schematized in Fig. (3-1).
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Figure 3-1: Composition-based advection methodology. The first step involves computing
the individual flow maps (while accounting for boundary conditions), which can be done in
parallel. The second step then involves computing the cumulative flow map over the entire
time interval by sequentially interpolating and composing the individual flow maps. The
final step involves composing this cumulative flow map with the initial tracer field to obtain
the final tracer field. We note that the methodology is schematized for R2 but it generalizes
to R𝑛 as it is agnostic to the spatial dimension.

3.3.3 Inclusion of Diffusion, Sources, and Reactions Terms

We now incorporate the effects of tracer diffusion, sources, sinks, and reactions while

computing the advective contribution through the method of composition. We utilize

the commonly used technique of operator splitting. Splitting methods include Lie

splitting [170] and Strang splitting [235], which we shall discuss. As will be seen, the

Lie splitting introduces a first-order splitting error while Strang splitting introduces

a second-order splitting error. However, in certain situations, these operator splitting

methods can either yield a higher order of accuracy or even be exact and introduce

no splitting error [140].

Let us consider the general form of advection-diffusion-reaction Eq. (3.9) which is

an extension of Eq. (2.8),

𝜕𝛼(𝑥, 𝑡)

𝜕𝑡
+𝑣·∇𝛼(𝑥, 𝑡) = ∇·(𝜅(𝑥, 𝑡)∇𝛼(𝑥, 𝑡))+𝑆𝛼(𝛼(𝑥, 𝑡),𝑥, 𝑡) with 𝛼(𝑥, 0) = 𝛼0(𝑥) .

(3.9)

where 𝜅(𝑥, 𝑡) is the diffusivity of the tracer and 𝑆𝛼(𝛼(𝑥, 𝑡),𝑥, 𝑡) serves to model the
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reaction terms (if any) and the source/sink contributions (if any). We shall refer to

𝑆𝛼(𝛼(𝑥, 𝑡),𝑥, 𝑡) as the ‘source term’, keeping in mind the fact that it may very well

represent any of the aforementioned phenomena.

In our methodology, we solve for the advection contribution using flow map com-

position. The source contribution is computed explicitly or implicitly for a first-order

scheme, or integrated over one time stage or timestep for a higher-order time march-

ing scheme. This is followed by solving for the diffusion implicitly. An implicit solve

for the diffusion operator is often preferred as it is stiff and imposes a strict CFL

condition. We will denote this resulting implicit diffusion operator by 𝒟.

If using the Lie operator splitting, the split equations are given by Eq. (3.10):

𝛼* = 𝛼(𝜑𝑡
𝑡+Δ𝑡(𝑥), 𝑡) ,

𝛼** = 𝑆𝛼(𝛼*,𝑥, 𝑡)∆𝑡 ,

𝛼(𝑥, 𝑡 + ∆𝑡) = 𝒟 (𝛼* + 𝛼**) .

(3.10)

The BCs are incorporated in the advection contribution and the diffusion contri-

bution, according to the corresponding fluxes (see Sec. 3.3.4 next). The possible

ill-posedness of the diffusion operator (under zero Neumann boundary conditions ev-

erywhere, for example) can be eliminated by any of the established singularity removal

techniques [168; 247]. It can further be shown that the leading order truncation error

term in the splitting error is given by Eq. (3.11) [234]:

ℰlie =
∆𝑡

2

(︂
∇ · 𝑣

(︂
𝑆𝛼 − 𝜕𝑆𝛼

𝜕𝛼
𝛼

)︂
+ ∇ · (𝜅∇𝑆𝛼) − 𝜕𝑆𝛼

𝜕𝛼
(∇ · (𝜅∇𝛼))

)︂
(3.11)

Thus, the Lie splitting is second-order accurate if the (i) source term is absent (i.e. an

advection–diffusion equation), (ii) diffusion is absent (i.e. an advection–reaction equa-

tion) and the velocity field 𝑣 is divergence free or the source term is linear in 𝛼.
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One can also use the second-order Strang splitting method given by Eq. (3.12),

𝛼* = 𝛼(𝜑𝑡
𝑡+Δ𝑡

2
(𝑥), 𝑡) ,

𝛼** = 𝑆𝛼(𝛼*,𝑥, 𝑡)
∆𝑡

2
,

𝛼′ = 𝒟 (𝛼* + 𝛼**) ,

𝛼′
* = 𝛼′(𝜑

𝑡+Δ𝑡
2

𝑡+Δ𝑡 (𝑥)) ,

𝛼 = 𝑆𝛼

(︂
𝛼′
*,𝑥, 𝑡 +

∆𝑡

2

)︂
∆𝑡

2
.

(3.12)

Similar to the Lie splitting, the boundary conditions are accounted separately in the

advection and the diffusion computation. Note that we chose the order of operations

in the splitting to ensure that the implicit diffusion solve is only carried out once for

computational efficiency. However, this sequence is not unique, and maybe altered

depending on the specific application. For specific forms of the source term, it is

also possible to absorb it in the advection / diffusion operators and in such cases the

computation would be appropriately altered.

Even though the Strang splitting is second-order accurate in general, there are

specific cases under which it is exact and no splitting error is introduced. We borrow

the results from Lanser and Verwer [140] who detail the sufficient conditions for the

absence of the splitting error. They prove that for Eq. (3.9) with Strang splitting,

no splitting error exists if (i) 𝑆𝛼 is at most linear in 𝛼 and independent of 𝑥, and

(ii) 𝑣 and 𝜅 are independent of 𝑥. Note that this is rarely possible in realistic cases,

and hence there will always be a splitting error introduced. Lanser and Verwer [140]

detail several ingenious approaches to split Eq. (3.9) based on the specific nature of

various terms involved to minimize the splitting error. Although higher-order splitting

methods are possible [121], they are rarely used in practice due to the computational

overhead and complexity of implementation. Further, it is typically observed that the

temporal / spatial errors in the computation of the individual terms (i.e. advection,

diffusion, and reaction) often dominate the splitting errors, which further curbs the

need to go to higher-order accurate splitting methods [249].
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In our examples, we solve an advection–diffusion equation in Sec. 4.2.1 and an

advection–reaction equation in Sec. 4.2.2. We use the Lie splitting method for both.

For the first case, the source term is absent, and, for the second, diffusion is absent

and the velocity field is divergence free (as it is obtained from an incompressible flow

simulation). Thus Lie splitting is second-order accurate in both cases.

3.3.4 Implementation of Boundary Conditions

As Eq. (2.8) and Eq. (3.9) are PDEs, boundary conditions (BCs) are typically required

to solve them, especially when inlets and/or outlets are present.

Previous works that compute PDE-based flow maps [156; 157] solve Eq. (3.3)

which essentially amounts to Eq. (2.8) for a very specific initial condition, i.e. 𝛼0(𝑥) =

𝑥. The examples studied either involve closed domains (such as the analytical double

gyre flow) or open domains with a very specific set of BCs, stating that either the

flow map field (𝜑) is free to leave the domain or, when new flow map positions are to

enter, they bear the value equal to the value at the position at the initial time. These

BCs, well-posed for the flow map problem, are summarized in Eq. (3.13),

𝜕𝜑(𝑥, 𝑡)

𝜕n̂𝜕Ω

= 0 if n̂𝜕Ω · 𝑣 > 0 and 𝜑(𝑥, 𝑡) = 𝜑(𝑥, 0) if n̂𝜕Ω · 𝑣 < 0 . (3.13)

For Eq. (3.9) and general tracer advection-diffusion-reaction problems, these BCs are

however not sufficient as one may have time-dependent inlets, outlets with varying

strengths, specified tracer advection-diffusion fluxes, or more complex conditions. The

nature of the BCs may itself also locally change in time. None of these possibilities

are accounted for in Eq. (3.13). More general BCs are thus needed.

For tracer advection-reaction without diffusion, Eq. (3.9) becomes hyperbolic as

Eq. (2.8) and Eq. (3.3). Either a single Dirichlet or Neumann BC is then commonly

imposed at boundaries. For open boundaries, due to the hyperbolic nature, if the

velocity vector at the boundary is outwards then no BCs are necessary, as the tracer

then is simply advected outside the domain. However, BCs are commonly provided

when the velocity vector points into the domain. In some cases, BCs may be irrelevant
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even for open domains and the equations can be exactly solved without BCs [141; 67].

This occurs for example when the whole domain of computation, e.g. the whole fluid,

is deformed according to the advection process itself.

Next, we discuss the generic implementation of Dirichlet and Neumann type BCs,

noting that results extend to other well-posed conditions. We discuss these BCs

when the velocity vector points inwards, but the treatment extends to the outward

BCs when they are needed.

Dirichlet Boundary Condition

Let us assume that the BC for Eq. (2.8) consists of provided tracer values, given by

Eq. (3.14),

𝛼(𝑥, 𝑡) = 𝛼𝐵𝐶(𝑥, 𝑡) for 𝑥 ∈ 𝜕Ω such that 𝑣 · n̂𝜕Ω < 0 . (3.14)

For regular PDE-based advection, such BCs are typically imposed by using ghost

cells, i.e. numerical cells at the domain boundaries with the tracer value set equal

to 𝛼𝐵𝐶(𝑥, 𝑡) [159]. Such a setup makes the resulting discretized equation well-posed.

The addition of the diffusion operator can also be handled in a similar way. Through

operator splitting, we split the advection-diffusion equation into a hyperbolic contri-

bution (advection part) and a parabolic contribution (diffusion part). BCs for the

hyperbolic part are handled as described before. As diffusion is a stiff operator, we

solve the parabolic part implicitly. Dirichlet boundary conditions are readily incor-

porated in the RHS of the resulting linear system by again considering ghost cells at

the boundary with known tracer value 𝛼𝐵𝐶(𝑥, 𝑡) [141].

For the method of composition, we solve the transport PDE to compute 𝜑(𝑥, 𝑡),

not 𝛼(𝑥, 𝑡). Thus, we need to reformulate the BCs given by Eq. (3.14) into BCs

that make Eq. (3.3) well-posed. This is achieved by the using marker positions. The

marker positions are defined as fictitious position values that do not lie in the domain,

and are exclusively utilized to impose boundary values on the flow map computation,

i.e. on Eq. (3.3). These marker positions simply keep track of where a particular
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position entered the domain from, and what its corresponding tracer value was. Thus,

the total number of distinct marker positions required is equal to the number of

distinct discrete Dirichlet BC values throughout the entire spatio-temporal domain

of interest. Let us denote the marker position corresponding to a location 𝑥 on 𝜕Ω

at time 𝑡 by 𝑥𝐵𝐶(𝑡). Note that 𝑥𝐵𝐶(𝑡) /∈ Ω. We also define composition operations

over these marker positions through Eq. (3.15),

𝛼0 (𝑥𝐵𝐶(𝑡)) , 𝛼𝐵𝐶(𝑥, 𝑡) and 𝜑𝑖
𝑖+1 (𝑥𝐵𝐶(𝑡)) , 𝑥𝐵𝐶(𝑡) . (3.15)

The numerical solution of Eq. (2.8) with Dirichlet BCs starts by solving the following

system of PDEs,

𝜕𝜑𝑖
𝑖+1(𝑥, 𝑡)

𝜕𝑡
+ 𝑣(𝑥, 𝑡) · ∇𝜑𝑖

𝑖+1(𝑥, 𝑡) = 0 ,

𝜑𝑖
𝑖+1(𝑥, 𝑡𝑖) = 𝑥 and 𝜑𝑖

𝑖+1(𝑥, 𝑡) = 𝑥𝐵𝐶(𝑡) ∀ 𝑥 ∈ 𝜕Ω ,

(3.16)

which provides the set of individual flow maps. The addition of the diffusion operator

is handled similarly, as described above, by reformulating the resulting linear system

to include these BCs in the RHS by using ghost cells. The composition step Eq. (3.8)

is then completed, utilizing the composition operation over the marker positions 𝑥𝐵𝐶 ,

defined by Eq. (3.15).

Neumann Boundary Condition

We now discuss the implementation of the Neumann BC, given by Eq. (3.17),

𝜕𝛼(𝑥, 𝑡)

𝜕n̂𝜕Ω

= 𝑘𝛼(𝑥, 𝑡) for 𝑥 ∈ 𝜕Ω such that 𝑣 · n̂𝜕Ω < 0 . (3.17)

Although we discuss BCs on the first derivative, results directly extend to higher-

order BCs and Robin BCs. Neumann BCs are implemented by suitably modifying

the problem such that they can be reduced to special Dirichlet BCs for the individual
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flow maps. For the advection PDE, we write Eq. (2.8) along the boundary as follows:

𝜕𝛼(𝑥, 𝑡)

𝜕𝑡
+ (𝑣n̂(𝑥, 𝑡),𝑣⊥(𝑥, 𝑡)) · (∇𝛼n̂(𝑥, 𝑡),∇𝛼⊥(𝑥, 𝑡)) = 0 , (3.18)

where the subscript n̂ indicates gradients along the normal direction to the bound-

ary and the subscript ⊥ gradients along the basis components of the hyperplane

orthogonal to n̂. Note that n̂ and the basis of its orthogonal hyperplane can always

be uniquely expressed in terms of the grid coordinates. Substituting Eq. (3.17) in

Eq. (3.18), we obtain:

𝜕𝛼(𝑥, 𝑡)

𝜕𝑡
+ 𝑣(𝑥, 𝑡)⊥ · ∇𝛼(𝑥, 𝑡)⊥ = −𝑣n̂(𝑥, 𝑡)𝑘𝛼(𝑥, 𝑡) . (3.19)

Note that Eq. (3.19) is similar to Eq. (3.9) with 𝜅 = 0 (see Sec. 3.3.3), simply one

dimension lower, with Dirichlet BCs over the co-dimension one hyperplane locally

orthogonal to the boundary. Thus, Eq. (3.19) can be solved by the combination of

schemes already presented in Sec. 3.3.3 and Sec. 3.3.4.

For the advection-diffusion PDE, the BC is implemented similarly to Sec. 3.3.4.

We first split the PDE into a hyperbolic part (solved explicitly) and a parabolic

part (solved implicitly). Neumann BCs can be applied as described above to the

hyperbolic part. For the parabolic part, we can accommodate the BCs again through

ghost cells, where the ghost cell values are implicitly incorporated by adding local

numerical approximations of the derivative to the linear system.

Computationally, another approach to impose Neumann BC is as follows. First,

according to the numerical stencil used to discretize 𝜕𝛼(𝑥,𝑡)
𝜕n̂𝜕Ω

, the boundary values of

𝛼 can be explicitly computed in terms of the interior values by solving a local linear

system resulting from the BC discretization. Once the boundary values to be advected

into the domain are computed, they can be imposed as Dirichlet BCs, as described

above. Such numerical Neumann BCs is then completed for each of the individual

time duration independently.

Imposition of Neumann BCs for the individual flow maps require special attention

at the composition/interpolation step. Specifically, the order of the numerical inter-
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polation scheme must be equal to or higher than the order of the derivative involved

in the BC. This ensures that the error introduced in the composition of the BC is at

least one order higher than the error in the discretization of the BC itself, and the

dominant order of accuracy thus remains unchanged.

3.4 Numerical Properties

This section derives numerical properties of the computation of advective transport,

i.e. Eq. (2.8), using the method of flow map composition. First, total error bounds

are derived. This is followed by a discussion on the existence and derivation of the

‘optimal’ composition timestep value, for which the net error is minimized.

3.4.1 Error Estimates

We derive error bounds for the computation of the flow map using the method of

composition in terms of the spatial discretization (∆𝑥) and temporal discretization

(∆𝑡). We assume that the accuracy of the velocity gradient computation is 𝒪(∆𝑥𝛽)

and that of all interpolation operations are 𝒪(∆𝑥𝛾). The time marching scheme

for the advection computation is assumed to have a local truncation error of order

𝒪(∆𝑡𝜃). The numerically computed value of a quantity ∙ is denoted by ∙̃.

The proof extends the results of You and Leung [265] who show that the com-

position of the flow map for a dynamical system is second-order accurate, as their

advection scheme, if the interpolation is at least second-order accurate. Inspired by

classic initial value problem error analyses [241; 30], we generalize this result to the

advection of any passive tracer and prove that the advection computation has a tem-

poral accuracy equal to that of the time marching scheme used, and has a spatial

accuracy at least equal to the minimum amongst the orders of accuracies of the ad-

vection and interpolation operations, regardless of the specific numerical schemes and

orders of integration employed.

The exact value of the tracer field at time 𝑇 is given by 𝛼(𝑥, 𝑇 ) = 𝛼0(𝜑
0
𝑁𝑐

(𝑥)),

whereas the computed solution is given by ℐ𝛼𝛼0(𝜑̃
0
𝑁𝑐

(𝑥)). The total global error
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(omitting the 𝑥 dependency for brevity) is then:

𝐸 =
⃒⃒⃒
ℐ𝛼𝛼0(𝜑̃

0
𝑁𝑐

) − 𝛼0

(︀
𝜑0

𝑁𝑐

)︀⃒⃒⃒
=
⃒⃒⃒
ℐ𝛼𝛼0

(︁
ℐ0
1 𝜑̃

0
1

(︁
𝜑̃1

𝑁𝑐

)︁)︁
− 𝛼0

(︀
𝜑0

1

(︀
𝜑1

𝑁𝑐

)︀)︀⃒⃒⃒
. (3.20)

Adding and subtracting 𝛼0

(︁
ℐ0
1 𝜑̃

0
1

(︁
𝜑̃1

𝑁𝑐

)︁)︁
and using the triangle inequality, we get:

𝐸 ≤
⃒⃒⃒
ℐ𝛼𝛼0

(︁
ℐ0
1 𝜑̃

0
1

(︁
𝜑̃1

𝑁𝑐

)︁)︁
− 𝛼0

(︁
ℐ0
1 𝜑̃

0
1

(︁
𝜑̃1

𝑁𝑐

)︁)︁⃒⃒⃒
+
⃒⃒⃒
𝛼0

(︁
ℐ0
1 𝜑̃

0
1

(︁
𝜑̃1

𝑁𝑐

)︁)︁
− 𝛼0

(︀
𝜑0

1

(︀
𝜑1

𝑁𝑐

)︀)︀⃒⃒⃒
.

(3.21)

Further simplifying the notation, we henceforth omit the temporal indices of interpo-

lation operators (since each interpolation corresponds to the flow map following it).

We denote the exact tracer advection over [0, 𝑡𝑖] by 𝛼𝑖(∙) = 𝛼0 (𝜑0
𝑖 (∙)) and the exact

backward propagation to 𝑡 = 0 of errors made beyond 𝑡 = 𝑡𝑖 by ℰ𝑖 = |𝛼𝑖 (∙̃) − 𝛼𝑖 (∙)|.

The Eq. (3.21) can then be rewritten,

𝐸 ≤
⃒⃒⃒
ℐ𝛼𝛼0

(︁
ℐ𝜑̃0

1

(︁
𝜑̃1

𝑁𝑐

)︁)︁
− 𝛼0

(︁
ℐ𝜑̃0

1

(︁
𝜑̃1

𝑁𝑐

)︁)︁⃒⃒⃒
+ ℰ0 , (3.22)

where the first norm is the error due to the interpolation of the tracer field at 𝑡 = 0

and the second is the net error ℰ0 due to the numerical backward flow map integration

over [𝑇, 0]. As the interpolations are of order 𝛾, we can further bound 𝐸 by:

𝐸 ≤ 𝐶𝐼𝛼∆𝑥𝛾 + ℰ0 , (3.23)

where 𝐶𝐼𝛼 is a constant independent of ∆𝑥 and ∆𝑡. Next, we expand ℰ0 to link ℰ0 to

ℰ1, using the fact that, ∀𝑖 = 1, · · · , 𝑁𝑐 , 𝛼𝑖(∙) = 𝛼0 (𝜑0
𝑖 (∙)) = 𝛼0

(︀
𝜑0

𝑖−1

(︀
𝜑𝑖−1

𝑖 (∙)
)︀)︀

=

𝛼𝑖−1

(︀
𝜑𝑖−1

𝑖 (∙)
)︀
, thus, ℰ𝑖 =

⃒⃒
𝛼𝑖−1

(︀
𝜑𝑖−1

𝑖 (∙̃)
)︀
− 𝛼𝑖−1

(︀
𝜑𝑖−1

𝑖 (∙)
)︀⃒⃒

. We obtain Eq. (3.24),

ℰ0 ≤
⃒⃒⃒
𝛼0

(︁
ℐ𝜑̃0

1

(︁
𝜑̃1

𝑁𝑐

)︁)︁
− 𝛼0

(︁
ℐ𝜑0

1

(︁
𝜑̃1

𝑁𝑐

)︁)︁⃒⃒⃒
+
⃒⃒⃒
𝛼0

(︁
ℐ𝜑0

1

(︁
𝜑̃1

𝑁𝑐

)︁)︁
− 𝛼0

(︁
𝜑0

1

(︁
𝜑̃1

𝑁𝑐

)︁)︁⃒⃒⃒
+ℰ1 ,

(3.24)

where the first norm is an error due to the numerical flow map integration over [0, 𝑡1],

the second is an interpolation error for the flow map over [0, 𝑡1], and the third is the
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net error ℰ1 due to the numerical backward flow map integration over [𝑇, 𝑡1]. Since

𝛼0 is Lipschitz continuous of constant ℒ0
𝛼 (see Sec. 3.2),

ℰ0 ≤ ℒ0
𝛼

⃒⃒⃒
ℐ𝜑̃0

1

(︁
𝜑̃1

𝑁𝑐

)︁
− ℐ𝜑0

1

(︁
𝜑̃1

𝑁𝑐

)︁⃒⃒⃒
+ ℒ0

𝛼

⃒⃒⃒
ℐ𝜑0

1

(︁
𝜑̃1

𝑁𝑐

)︁
− 𝜑0

1

(︁
𝜑̃1

𝑁𝑐

)︁⃒⃒⃒
+ ℰ1 . (3.25)

Let us assume that the norm of each discrete interpolation operator, |ℐ|, is bounded

by 𝐶𝐼 independent of ∆𝑥. The dominant numerical advection error in the individual

flow map computation can be asymptotically written as 𝑀
(︀
𝐶𝐴𝑋∆𝑥𝛽 + 𝐶𝐴𝑇∆𝑡𝜃

)︀
,

where 𝐶𝐴𝑋 and 𝐶𝐴𝑇 are non-negative constants independent of ∆𝑥 and ∆𝑡, and of

𝐶𝐼 . As a result, we obtain for the first term in Eq. (3.25),

⃒⃒⃒
ℐ𝜑̃0

1

(︁
𝜑̃1

𝑁𝑐

)︁
− ℐ𝜑0

1

(︁
𝜑̃1

𝑁𝑐

)︁⃒⃒⃒
≤ 𝐶𝐼 max

⃒⃒⃒
𝜑̃0

1 − 𝜑0
1

⃒⃒⃒
≤ 𝐶𝐼𝑀

(︀
𝐶𝐴𝑋∆𝑥𝛽 + 𝐶𝐴𝑇∆𝑡𝜃

)︀
.

(3.26)

For the second term in Eq. (3.25), as the interpolation is of order 𝛾, we obtain:

⃒⃒⃒
ℐ𝜑0

1

(︁
𝜑̃1

𝑁𝑐

)︁
− 𝜑0

1

(︁
𝜑̃1

𝑁𝑐

)︁⃒⃒⃒
≤ ∆𝑥𝛾 max

⃒⃒
𝜕𝛾𝜑0

1

⃒⃒
≤ 𝐶𝐼𝜑∆𝑡𝑐∆𝑥𝛾𝑒(2𝛾−1)ℒ𝑣Δ𝑡𝑐 , (3.27)

where the latter step is obtained by using Lemma 5 from [265], and 𝐶𝐼𝜑 is a con-

stant independent of ∆𝑥 and ∆𝑡. Finally, substituting Eq. (3.26) and Eq. (3.27) in

Eq. (3.25) results in Eq. (3.28),

ℰ0 ≤ ℒ0
𝛼

(︀
𝐶𝐼𝑀

(︀
𝐶𝐴𝑋∆𝑥𝛽 + 𝐶𝐴𝑇∆𝑡𝜃

)︀
+ 𝐶𝐼𝜑∆𝑡𝑐∆𝑥𝛾𝑒(2𝛾−1)ℒ𝑣Δ𝑡𝑐

)︀
+ ℰ1 = ℒ0

𝛼ℰ + ℰ1 ,

(3.28)

where ℰ = 𝐶𝐼𝑀
(︀
𝐶𝐴𝑋∆𝑥𝛽 + 𝐶𝐴𝑇∆𝑡𝜃

)︀
+ 𝐶𝐼𝜑∆𝑡𝑐∆𝑥𝛾𝑒(2𝛾−1)ℒ𝑣Δ𝑡𝑐 . Finally, to obtain

a recursive relation to compute ℰ0, we need to compute the Lipschitz constant of 𝛼𝑖

(denoted by ℒ𝑖
𝛼) in terms of the known quantities. Lemma 4 from [265] provides a

way to relate these quantities. It states that if the velocity field 𝑣 has a Lipschitz

constant ℒ𝑣, then we have

⃒⃒
𝜑0

𝑁(𝑥1) − 𝜑0
𝑁(𝑥2)

⃒⃒
≤ 𝑒ℒ𝑣𝑁Δ𝑡 |𝑥1 − 𝑥2| . (3.29)
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The theorem stated in [265] deals with forward flow maps, however the analogous

results hold true for backward flow maps as well. As a result, we have:

|𝛼𝑖(𝑥1) − 𝛼𝑖(𝑥2)| ≤ ℒ0
𝛼

⃒⃒
𝜑0

𝑖 (𝑥1) − 𝜑0
𝑖 (𝑥2)

⃒⃒
≤ ℒ0

𝛼𝑒
ℒ𝑣𝑖Δ𝑡𝑐 |𝑥1 − 𝑥2| . (3.30)

Eq. (3.30) implies that the Lipschitz constant of 𝛼𝑖 is ℒ𝑖
𝛼 = ℒ0

𝛼𝑒
ℒ𝑣𝑖Δ𝑡𝑐 . Using Eq. (3.28),

recursively substituting for ℰ𝑖 and using ℒ𝑖
𝛼, we obtain Eq. (3.31),

ℰ0 ≤ ℒ0
𝛼ℰ + ℰ1 ≤ ℰ

(︀
ℒ0

𝛼 + . . . + ℒ𝑁𝑐
𝛼

)︀
+ ℰ𝑁𝑐 . (3.31)

However, ℰ𝑁𝑐 =
⃒⃒
𝛼0

(︀
𝜑0

𝑁𝑐

)︀
− 𝛼0

(︀
𝜑0

𝑁𝑐

)︀⃒⃒
= 0. Substituting for ℒ𝑖

𝛼 in Eq. (3.31):

ℰ0 ≤ ℰℒ0
𝛼

(︀
1 + . . . + 𝑒ℒ𝑣𝑖Δ𝑡𝑐 + . . . + 𝑒ℒ𝑣𝑁𝑐Δ𝑡𝑐

)︀
≤ ℰℒ0

𝛼

𝑒ℒ𝑣𝑇 − 1

𝑒ℒ𝑣Δ𝑡𝑐 − 1
. (3.32)

Substituting Eq. (3.32) in Eq. (3.23), we obtain:

𝐸 ≤ ℒ0
𝛼

𝑒ℒ𝑣𝑇 − 1

𝑒ℒ𝑣Δ𝑡𝑐 − 1

(︂
𝐶𝐼𝑀

(︀
𝐶𝐴𝑋∆𝑥𝛽 + 𝐶𝐴𝑇∆𝑡𝜃

)︀
+𝐶𝐼𝜑∆𝑡𝑐∆𝑥𝛾𝑒(2𝛾−1)ℒ𝑣Δ𝑡𝑐

)︂
+𝐶𝐼𝛼∆𝑥𝛾 .

(3.33)

Note that, even though the first term on the right hand side has a non-polynomial

dependence on ∆𝑡, the following relation always holds:

1 + . . . + 𝑒ℒ𝑣𝑖Δ𝑡𝑐 + . . . + 𝑒ℒ𝑣𝑁𝑐Δ𝑡𝑐 ≤ 𝑁𝑐 max
(︀
1, 𝑒ℒ𝑣𝑇

)︀
. (3.34)

Substituting this in Eq. (3.33), we finally have:

𝐸 ≤ ℒ0
𝛼 max

(︀
1, 𝑒ℒ𝑣𝑇

)︀(︂
𝐶𝐼

(︀
𝑁𝑐𝑀𝐶𝐴𝑋∆𝑥𝛽 + 𝐶𝐴𝑇𝑇∆𝑡𝜃−1

)︀
+ 𝐶𝐼𝜑𝑇∆𝑥𝛾𝑒(2𝛾−1)ℒ𝑣Δ𝑡𝑐

)︂
+ 𝐶𝐼𝛼∆𝑥𝛾 .

(3.35)

We note that this is the global error summed over all timesteps and not the instan-

taneous local error [46; 241]. At worst, there is an addition of errors. There is indeed

no multiplicative compounding of errors. This leads to ‘super-accurate’ properties
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discussed in Section 3.4.3.

3.4.2 Optimal Composition Timestep

We note that the method of composition involves two basic operations, namely ad-

vection and interpolation. We now present an analysis that provides an optimal com-

position timestep, yielding minimum (or near minimum) total error. As the available

velocity field is gridded, we have an already established ∆𝑥, and hence we are only

concerned with finding an optimal ∆𝑡𝑐, henceforth denoted by ∆𝑡𝑜𝑝𝑡.

The intuitive argument for the existence of the optimal composition timestep is

as follows. First, each individual flow map advection (over 𝑀 timesteps) introduces

errors that depend on both ∆𝑥 and ∆𝑡. Second, when composing this flow map with

the flow map for the previous time interval, the interpolation operation introduces

an error that depends only on ∆𝑥, as this operation is localized in time. Hence for

fixed start and end times, as ∆𝑡 and thus ∆𝑡𝑐 = 𝑀∆𝑡 decrease, the advection error

decreases. However with a decreasing ∆𝑡𝑐 more interpolations are performed, and the

total interpolation error increases. Conversely, for a large ∆𝑡𝑐, the total advection

error is high, but the interpolation error is low (as less number of interpolations

are performed). Such an interplay between the advection and interpolation errors

suggests the existence of an optimal ∆𝑡𝑐 that minimizes the total error.

For the following analysis, we assume that 𝑀 = 1 (i.e. ∆𝑡𝑐 = ∆𝑡, 𝑁𝑐 = 𝑁𝑡,

and ∆𝑡 = 𝑇/𝑁𝑡). That is, the number of composition intervals is the same as the

number of timesteps. Eq. (3.3) is thus solved for each timestep independently, and

the resulting timestep flow maps composed with each other. The extension of this

result is straightforward for 𝑀 > 1.

We could start from the bounds provided by Eq. (3.26) and Eq. (3.27). However,

we can obtain an estimate of the optimal timestep in closed form from a simpler

analysis. We consider the errors in the computation of the tracer field during a single

timestep. They are due to the numerical advection and interpolation errors, but

for ∆𝑡𝑐 = ∆𝑡, without compounding of errors within the flow-map computation. We

assume that we are given an exact backward flow map 𝜑1
𝑁𝑡

and consider the remaining
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timestep [0, 𝑡1]. The error then is:

𝐸Δ𝑡 =
⃒⃒⃒
ℐ𝛼𝛼0

(︁
ℐ𝜑̃0

1

(︀
𝜑1

𝑁𝑡

)︀)︁
− 𝛼0

(︀
𝜑0

1

(︀
𝜑1

𝑁𝑡

)︀)︀⃒⃒⃒
. (3.36)

Separating the interpolation error from the flow-map error and using triangle inequal-

ity leads to the bound:

𝐸Δ𝑡 ≤
⃒⃒⃒
ℐ𝛼𝛼0

(︁
ℐ𝜑̃0

1

(︀
𝜑1

𝑁𝑡

)︀)︁
− 𝛼0

(︁
ℐ𝜑̃0

1

(︀
𝜑1

𝑁𝑡

)︀)︁⃒⃒⃒
+
⃒⃒⃒
𝛼0

(︁
ℐ𝜑̃0

1

(︀
𝜑1

𝑁𝑡

)︀)︁
− 𝛼0

(︀
𝜑0

1

(︀
𝜑1

𝑁𝑡

)︀)︀⃒⃒⃒
.

As the order of interpolation is of order 𝛾 and 𝛼0 is Lipschitz continuous, we obtain,

𝐸Δ𝑡 ≤ 𝐶𝐼𝛼∆𝑥𝛾 + ℒ0
𝛼

⃒⃒⃒
ℐ𝜑̃0

1

(︀
𝜑1

𝑁𝑡

)︀
− 𝜑0

1

(︀
𝜑1

𝑁𝑡

)︀⃒⃒⃒
.

Next, as for Eq. (3.26), since the numerical advection is of order 𝛽 in space and 𝜃 in

time, the error in the computation of ℐ𝜑̃0
1

(︀
𝜑1

𝑁𝑡

)︀
can be written asymptotically as ∆𝑥

and ∆𝑡 → 0,

⃒⃒⃒
ℐ𝜑̃0

1

(︀
𝜑1

𝑁𝑡

)︀
− 𝜑0

1

(︀
𝜑1

𝑁𝑡

)︀⃒⃒⃒
≈
⃒⃒⃒
ℐ𝜑̃0

1

(︀
𝜑1

𝑁𝑡

)︀
− ℐ𝜑0

1

(︀
𝜑1

𝑁𝑡

)︀⃒⃒⃒
≈ 𝐶𝐴𝑋∆𝑥𝛽 + 𝐶𝐴𝑇∆𝑡𝜃 .

Hence, if we now only retain the lowest-order terms for ∆𝑥 and ∆𝑡 in the estimate

for 𝐸, we obtain,

𝐸Δ𝑡 ≈ 𝐶𝑋∆𝑥𝜆 + ℒ0
𝛼𝐶𝐴𝑇∆𝑡𝜃 . (3.37)

where 𝜆 = min{𝛾, 𝛽} and 𝐶𝑋 = 𝐶𝐼𝛼𝑋 if 𝛾 < 𝛽, 𝐶𝑋 = ℒ0
𝛼𝐶𝐴𝑋 if 𝛾 > 𝛽, and

𝐶𝑋 = 𝐶𝐼𝛼𝑋 +ℒ0
𝛼𝐶𝐴𝑋 if 𝛾 = 𝛽. Eq. (3.37) yields the error bound for the computation

of a single timestep, independent of the errors committed in the other timesteps. With

the present method of composition, the order of the largest possible error is only the

sum of these errors from the individual timesteps (individual composition steps when

∆𝑡𝑐 > ∆𝑡), unlike the faster compounding of errors seen in common time integration

schemes of ODEs and PDEs (e.g. exponential or polynomial growth). Hence, using
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Eq. (3.37), we write the net error as:

𝐸 = 𝑁𝑡𝐸Δ𝑡 ≈ 𝑁𝑡

(︀
𝐶𝑋∆𝑥𝜆 + ℒ𝛼𝐶𝐴𝑇∆𝑡𝜃

)︀
,

⇔ 𝐸 ≈ 𝑁𝑡

(︂
𝐶𝑋∆𝑥𝜆 +

ℒ0
𝛼𝐶𝐴𝑇𝑇

𝜃

𝑁 𝜃
𝑡

)︂
.

Denoting 𝐶𝑇 = ℒ0
𝛼𝐶𝐴𝑇𝑇

𝜃, we then have:

𝐸 ≈ 𝐶𝑋∆𝑥𝜆𝑁𝑡 +
𝐶𝑇

𝑁 𝜃−1
𝑡

. (3.38)

Our goal is to compute the optimal timestep, i.e. optimal 𝑁𝑡, given the time interval.

Hence we enforce:
𝜕𝐸

𝜕𝑁𝑡

⃒⃒⃒⃒
𝑁𝑜𝑝𝑡

𝑡

= 0 .

We then obtain:
𝐶𝑋∆𝑥𝛾 − (𝜃 − 1)𝐶𝑇(︀

𝑁 𝑜𝑝𝑡
𝑡

)︀𝜃 = 0 ,

⇔ 𝑁 𝑜𝑝𝑡
𝑡 =

(︂
(𝜃 − 1)𝐶𝑇

𝐶𝑋∆𝑥𝛾

)︂ 1
𝜃

.

Therefore, the optimal timestep ∆𝑡 = 𝑇/𝑁 𝑜𝑝𝑡
𝑡 is given by Eq. (3.39):

∆𝑡𝑜𝑝𝑡 = 𝑇

(︂
𝐶𝑋∆𝑥𝜆

(𝜃 − 1)𝐶𝑇

)︂ 1
𝜃

. (3.39)

The computation of the optimal timestep requires prior knowledge of 𝐶𝑋 and 𝐶𝑇 ,

which is typically well-known for low-order schemes. However, for higher-order schemes,

these estimates may not be available in closed form, or the bounds may be coarse. In

such cases, the optimal timestep may still be computed numerically. As the existence

of the optimal timestep is known, we compute the total error while decreasing the

timestep. The value of the timestep at which the total error just starts increasing is

the optimal timestep.

Another possible approach is as follows. The value of ℒ0
𝛼 can be easily computed as

the initial tracer field is known. For example, if the initial tracer field is differentiable,
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ℒ0
𝛼 = max𝑥∈Ω

𝜕𝛼0

𝜕𝑥
. To estimate the constants 𝐶𝐼𝑋 , 𝐶𝐴𝑋 , and 𝐶𝐴𝑇 , we complete a set

of simulations with different ∆𝑥 and ∆𝑡. The 𝑌 intercepts of the appropriate log− log

plots yield the asymptotic values of these constants [151]. Using these values along

with Eq. (3.39), we can compute the optimal timestep value for higher-order schemes,

as will be illustrated in Chapter 4

3.4.3 Remarks

Super-accuracy.

If the numerical PDE advection involves explicit schemes, stability (e.g. CFL) con-

ditions would be commonly imposed. However, each composed advection is here

carried out separately (if 𝑀 = 1, for each ∆𝑡), and are thus independent and decou-

pled from the other advections, without multiplication of errors. This is because the

numerical advections of past composition timesteps are not directly utilized in the

new numerical advection. Within ∆𝑡𝑐 = 𝑀 ∆𝑡, past numerical advections are only

used 𝑀 − 1 times, with 𝑀 = 1 or small. After ∆𝑡𝑐, there is thus no multiplicative

compounding of past errors, neither of spatial and temporal truncation errors, nor of

round-off errors. For 𝑀 small, there is thus no possibility for numerical instability,

even for classically unstable advection schemes. Without multiplicative error growth,

spurious numerical diffusion or dispersion are also not possible. Hence, in all of our

simulations (not all shown), we observed neither growth nor propagation of numerical

errors and instabilities, even for larger timesteps. Combining all of these properties

together, the result is what we refer to in short as ‘super-accuracy’.

To ensure stability in the case of 𝑀 large and large optimal composition timestep

∆𝑡𝑐 = ∆𝑡𝑜𝑝𝑡, one needs to ensure that ∆𝑡 is small enough. This is because each

individual flow map (of duration ∆𝑡𝑜𝑝𝑡) is computed by solving Eq. (3.3) using the

small timestep ∆𝑡, ensuring that the advection scheme is stable.

Of course, in all cases, the global truncation error is in general larger if ∆𝑡 is

larger. The super-accuracy however ensures that this global error is not affected by

compounding of the local truncation errors.
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Optimal grid spacing.

If the velocity field is analytically known or if spatial interpolations can be performed,

then the optimal grid spacing may also be computed, by using a desired Couran-

tâĂŞFriedrichsâĂŞLewy (CFL) number or desired local accuracy. Considering the

former, let us assume a characteristic velocity 𝒰 and a desired CFL value of 𝒞. Then

we have:

𝒞 = 𝒰 ∆𝑡

∆𝑥
. (3.40)

Inserting the optimal timestep of Eq. (3.39), we obtain,

𝒞 = 𝒰𝑇
(︂
𝐶𝑋∆𝑥𝜆−𝜃

(𝜃 − 1)𝐶𝑇

)︂ 1
𝜃

. (3.41)

As a result, for the desired 𝒞, the optimal grid spacing is given by Eq. (3.42):

∆𝑥𝑜𝑝𝑡 =

(︂
(𝜃 − 1)𝐶𝑇

𝐶𝑋

)︂ 1
𝜆−𝜃
(︂

𝒞
𝒰𝑇

)︂ 𝜃
𝜆−𝜃

. (3.42)

The corresponding optimal timestep is given by Eq. (3.43):

∆𝑡𝑜𝑝𝑡 =
𝒞
𝒰

(︂
𝒞
𝒰𝑇

)︂ 𝜃
𝜆−𝜃
(︂

(𝜃 − 1)𝐶𝑇

𝐶𝑋

)︂ 1
𝜆−𝜃

. (3.43)

Parallelization and memory.

It is clear from Sec. 3.3.2 that the individual flow map computations and the corre-

sponding interpolation operator computations are completely independent and hence

can be parallelized. Thus, if one has access to large number of processors (larger

than the number of flow map computations i.e. 𝑁𝑐), the entire computation would

simply require a computational time comparable to the time needed for a single ad-

vection timestep computation. However, where we gain in computational time, we

lose in storage. The more the parallelization, the more the storage (if all the 𝑁𝑐

processes are run in parallel, we need to store 𝑁𝑐 fields instead of just one). Often,

one has access to only a small number of processors. In such cases, efficient par-
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allelization strategies can be designed to minimize the net computational time and

memory requirement. For example, if we have access to four processors, than an

efficient strategy can be to compute the flow map 𝜑0
0.25𝑁𝑐

on processor 1, 𝜑0.25𝑁𝑐
0.5𝑁𝑐

on

processor 2, 𝜑0.5𝑁𝑐
0.75𝑁𝑐

on processor 3, and 𝜑0.75𝑁𝑐
𝑁𝑐

on processor 4 in parallel. Each of

these four computations would still use composition of constituent flow maps (each

over a single optimal composition timestep duration), but now without storing the

intermediate fields. Once these computations are complete, they can be composed

together and with the tracer initial condition to yield the final tracer field. In general,

if 𝑁𝑝𝑟𝑜𝑐 processors are available, then the computational time is reduced by a factor

of 𝑁𝑝𝑟𝑜𝑐 while the memory usage is increased by the same factor (as compared to a

completely serial solve). Depending on the specifications of the system (FLOP count,

I/O speeds etc.) an optimal choice about the degree of parallelization can be made.

Note that this discussion is only pertinent to the case of the advection equation, and

if one is to solve for a case with diffusion and/or sources, no time parallelization is

possible. Of course, space parallelization can still be used.

Storage vs. re-computation of the flow map.

For multiple tracers, it may be desirable to store the computed intermediate flow

maps (and the associated interpolation operators) in memory if the storage access is

efficient, or they can be recomputed whenever required if the machine has a better

FLOP count. In general, there is no preferred choice, and the decision may vary from

case-to-case. If the flow map computation is completed online, just after the new

advection velocity is itself computed, the storage needs are limited. These needs then

depend on the ratio of the optimal flow map composition timestep to the velocity

advection timestep.

Unavailability of the velocity field at all intermediate times.

It is common for velocity fields to be available as snapshots only at certain fixed

times, and not at all the required times. This occurs when one is trying to study

the advection of a tracer field in experimentally observed velocity fields, either in
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a lab or in nature (ocean, atmosphere, etc.). In such cases, the snapshots of the

velocity field need to be interpolated at the required times. This introduces further

errors in the numerical advection, however it does not affect the interpolation as this

operation simply requires only the computed flow maps. Even though a rigorous

treatment as in Sec. 3.4.2 is possible, here we present a qualitative description of

the effect of velocity interpolations. As the timestep size decreases, the number of

advection computations increase. Even though the truncation error in each of the

advection computations is small, the error due to the interpolation of the velocity

fields required for these computations is larger (along with the interpolation error

in the flow maps). However, for larger timesteps, even though the (truncation) error

from the individual advection computations is large, the error due to the interpolation

of the velocity fields at intermediate times is low (as the velocity field is needed at less

intermediate times). This implies that knowing the velocity field only as snapshots

in time has the same effect on the optimal composition timestep size as the flow map

interpolation. Thus, if this fact is not taken into account while predicting the optimal

composition timestep, the computed optimal timestep value would be smaller than

the actual optimal timestep (i.e. when the velocity interpolation is accounted for).

Effect of round-off error on the optimal composition timestep.

The current analysis to compute the optimal numerical composition timestep only ac-

counts for the truncation errors in the flow map computation, interpolation operation,

and the propagated error. However, during the actual implementation, one might

also want to consider the effect of round-off errors due to finite precision arithmetic.

Specifically, let us assume that round-off errors in a single advection computation (to

compute 𝜑𝑖
𝑖+1) is E𝐴 and that in the interpolation computation is E𝐼 . The value of E𝐴

would not be significantly affected by the size of the timestep (i.e. even though the

truncation error will be large for large timesteps, the magnitude of the round-off errors

may not change much). Assuming that 𝑁𝑡 is large enough, and as all the individual

advection computations are decoupled, we can assume that the total round-off error

in the advection computations is of the order of the maximum amongst the individual
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E𝐴’s. We can further assume that the round-off error in the interpolation operations

(E𝐼 ’s) would all be of the same order. Thus, similar to E𝐴, the net round-off error

in interpolation would be of the order of the maximum amongst the individual inter-

polation round-off errors. Once these are estimated, we can account for these in the

error balance equation (Eq. (3.38)) that now yields the modified optimal composition

timestep. Often times, the round-off errors will be negligibly small as compared to the

truncation errors and can be neglected. However, for machines with lower precision,

and stiff flow fields, the round-off errors may be significant.

3.5 Software Development

To practically employ the method of composition to predict tracer advection in vari-

ous analytical and realistic flow fields, we have developed an efficient and easy-to-use

computational framework. Our software framework has been extensively tested and

benchmarked, and has been utilized to study advective transport in simulated ma-

rine flow fields as well as to predict transport features and the associated coherent

structures in real-time sea experiments [131; 47; 87; 88; 180; 181; 51; 148; 3; 38; 132].

Our toolbox is programmed in Matlab with extensions to read data from the

native Matlab data structures as well as from netCDF files commonly used in ocean

modeling. The entire setup is object oriented and modular wherein a user can eas-

ily set up new simulations, create complex domains, and implement new numerical

methods. The involved difference equations are solved on a regular Cartesian grid us-

ing the finite volume method with upto 5𝑡ℎ-order accurate spatial and upto 3𝑟𝑑-order

accurate temporal numerical schemes. The numerical timestep is either set explic-

itly, governed implicitly through a maximum permissible CFL number, or chosen to

be the optimal composition timestep. The solver is capable of handling both two-

dimensional (2D) and three-dimensional (3D) domains and makes use of the internal

Matlab parallelization for efficient matrix-vector solves. Further, flow maps over

different time intervals are computed independently and in parallel. The amount of

parallelization is intelligently chosen based on the availability of processors and free
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memory (see Sec. 3.4.3).

To make conclusive decisions from the predicted data, visualization of the re-

sults must be in intuitively interpretable. To better visualize our advective transport

predictions and the other Lagrangian fields such as the flow maps and coherent struc-

tures, we have incorporated a direct visualization interface through SeaVizKit - a

novel browser-based tool used for visualizing various ocean products [3].

Our software toolbox has been used to generate all relevant results in this thesis

and the applications of our software toolbox coupled with the SeaVizKit visualization

framework are showcased in Sec. 6.1.3 for various different marine flow fields around

the world for various different purposes.

3.6 Summary

In this chapter, a novel numerical methodology was derived for the numerical com-

putation of advective transport and diffusion–reaction of tracer quantities through

flow map composition. The method of composition for advection is ‘super-accurate’,

yielding numerical solutions almost devoid of compounding numerical errors but with

the advantage of Eulerian resolution in space. We develop schemes for the addition

of tracer diffusion, reaction, and source terms, and the implementation of various

boundary conditions. We derive rigorous error bounds and prove that the method

of composition yields additive (and not compounding) errors. We further show that

there exists an optimal value of the composition timestep that yields the minimum

total numerical error by balancing the advection and composition errors, and de-

rive the expression for this value. We conclude with some remarks and a discussion

about the development of the software toolbox based on the method of composition.

The applications of the developed numerical method are showcased in Chapter 4 for

various analytical flow fields and realistic data-assimilative plume simulations.
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Chapter 4

Advection Through Flow Map

Composition - Applications

In this chapter we illustrate the properties and capabilities of the new method of

composition, introduced in Chapter 3, and compare and contrast the results with

those from classic high and low-order schemes. We first consider a forward-backward

advection in a swirl flow with an analytically known solution in Sec. 4.1. This allows

us to accurately capture and illustrate the error trends and the effectiveness of the

optimal composition timestep value for schemes of varied orders of accuracy. We

then add a diffusion term in Sec. 4.2.1 and create a new benchmark test case for

advection–diffusion in the swirl flow. We show that the net spurious numerical dif-

fusion is minimized for the method of composition. The second example (Sec. 4.2.2)

considers an idealized version of a fluid flow exiting a narrow constriction that cre-

ates unsteady eddies and meanders downstream. We study the advection–reaction

of a tracer to show that composition-based advection can be easily combined with

source / reaction terms as well as with different kinds of tracer boundary conditions.

Sec. 4.3.1 considers the simulated advection of sediment plumes resulting from deep

sea mining operations around a possible mining site in the Bismarck Sea. After 5

days of advection by the underlying dynamic ocean currents, we again see that the

composition-based advection leads to a more accurate sediment field evolution than

regular PDE advection schemes. Finally, after analyzing these various simulated flow
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fields, we look at the performance of the method of composition to provide real-time

predictions during the 2018 PLUMEX sea exercise conducted in the Southern Cali-

fornia Bight (Sec. 4.3.2). We compare the predicted sediment plume transport in the

dynamic ocean in 3D with the corresponding real-time observations to find a satisfac-

tory match between the predicted and the observed plumes for up to 6 hours after the

initial release. This real-time application highlights the usability and the accuracy

of the method of composition to support and analyze real-time sea experiments and

data. Results from this chapter have been published in Kulkarni and Lermusiaux

[132]; Kulkarni et al. [131]; Munoz-Royo et al. [181]; Coulin et al. [38].

4.1 Benchmarking and Optimal Timestep Results

To compare the resulting numerical errors accurately, we require a test case where

the analytical solution is exactly known. We therefore choose the classic test case of

an analytical swirl flow in a closed square domain (𝑥, 𝑦) ∈ [0, 1] × [0, 1] and 𝑡 ∈ [0, 1]

[49; 161], where the non-dimensional velocity is given by Eq. (4.1),

𝑣(𝑥, 𝑦, 𝑡) =
(︀
𝐶(𝑡) sin2(𝜋𝑥) sin(2𝜋𝑦),−𝐶(𝑡) sin2(𝜋𝑦) · sin(2𝜋𝑥)

)︀
. (4.1)

Here 0 ≤ 𝑡 < 1, and 𝐶(𝑡) = 1 ∀ 𝑡 < 0.5 and 𝐶(𝑡) = −1 ∀ 𝑡 ≥ 0.5. The direction of the

flow thus reverses at 𝑡 = 0.5. Due to symmetry, the final tracer field is exactly equal

to the initial condition. This allows computing the errors incurred in the various

methods to a high degree of precision. The non-dimensional initial condition for the

tracer field is given by Eq. (4.2),

𝛼0(𝑥, 𝑦) = exp
(︀
−100

(︀
(𝑥− 0.25)2 + (𝑦 − 0.25)2

)︀)︀
. (4.2)

Optimal Composition Timestep

To illustrate the results related to the optimal composition timestep, we use the

first-order upwind scheme (also called the donor-cell method) for the advection flux,
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forward Euler time marching, and bilinear interpolation. The composition operation

is here performed after every timestep, i.e. 𝑀 = 1. The domain is discretized in

256×256 control volumes. As explicit error bounds are available for these schemes, the

optimal timestep ∆𝑡𝑜𝑝𝑡 is evaluated using Eq. (3.39). Fig. (4-1a) shows this optimal

timestep value and compares it to the actual total error (numerically computed) for

a wide range of timestep sizes. This actual total error is observed to be minimum at

a timestep very close to the optimal one.

Fig. (4-1b) shows the actual total error against the size of the timestep for the same

test case, but when the 5𝑡ℎ-order accurate WENO scheme (WENO5) [191; 122] along

with third-order accurate TVD Runge Kutta (TVD-RK3) time marching [85] are used

for advection and a WENO-based interpolation scheme (also 5𝑡ℎ-order accuracy) is

used for interpolation [216]. It is observed that the actual total error is minimum

for a certain timestep value. It can be challenging to compute the optimal timestep

value accurately for higher-order schemes, as the analytical error bounds may not

be available and/or may be loose. To estimate the optimal timestep in this case, we

follow the approach outlined in Sec. 3.4. We know the values of 𝛾, 𝛽 and 𝜃 through our

choices of numerical schemes, along with the value of ℒ0
𝛼. We estimate the constants

𝐶𝐼𝑋 , 𝐶𝐴𝑋 , and 𝐶𝐴𝑇 through multiple simulations with different ∆𝑥 and ∆𝑡. Once the

values for these constants are obtained, we compute the optimal timestep value for

higher-order schemes using Eq. (3.39). Fig. (4-1) confirms that this optimal value is

close to the observed minimum of the actual total error. Lastly, as the following results

describe, when using the method of composition for advection, higher-order schemes

are typically not needed, as lower-order schemes already provide accurate solutions

without compounding errors. Hence, even though the analytical optimal timestep

may not be not available, or might be difficult to estimate for certain higher-order

schemes, it is of little impact in practice.

In Fig. (4-1), we note that the two predicted optimal timesteps are very close to,

but slightly larger than, the two observed minima. Overall, a larger analytical optimal

timestep will be observed when interpolation errors are overestimated or PDE errors

are underestimated. This can occur for several reasons. First, interpolation errors are
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(a) Optimal timestep for first-order donor-cell scheme
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(b) Optimal timestep for 5𝑡ℎ-order WENO scheme

Figure 4-1: Relative error in the final tracer field against the timestep size for the donor-cell
- forward-Euler and WENO5 - TVD-RK3 combinations, respectively. For the donor-cell -
forward-Euler (Fig. (4-1a)), the analytically evaluated ‘optimal timestep’ is Δ𝑡𝑜𝑝𝑡 = 0.01637
(dash-dotted line), which is close to the observed minimum error timestep. For the WENO5 -
TVD-RK3 (Fig. (4-1b)), the predicted optimal timestep is at Δ𝑡𝑜𝑝𝑡 = 0.027633 (dash-dotted
line), which is also close to its observed minimum error timestep at Δ𝑡 = 0.019.
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estimated using the global bound through 𝜕𝛾𝜑. Since this value varies in space, the

expected average interpolation error could be low but the maximum could be high (in

which case we overestimate the true averaged error). Second, the PDE error can be

underestimated since we only consider the dominant error component and truncate

the rest of the error expression. This truncated expression can thus underestimate

the net error in the PDE solve. We note that the magnitude of the truncated terms

relative to the actual total error will vary with the order of the schemes, and so the

relative accuracy of the optimal timestep will also vary, as shown in Fig. (4-1). Finally,

in deriving Eq. (3.39), the integrated effects of the interpolation and advection errors

over one timestep were separated into to a sum of errors.

Advection by the Reversible Swirl Flow

Building on the above validation of the optimal timestep derivations, in all the studies

henceforth, we utilize ∆𝑡 = ∆𝑡𝑜𝑝𝑡 and select 𝑀 = 1. Fig. (4-2a) shows the relative

total error in the final tracer field at 𝑡 = 1 against the grid spacing. The relative

error for the method of composition is found to be much smaller than that for the

regular PDE-based approach even if the order of convergence of the latter is signifi-

cantly higher. One observes that even a first-order composition-based method yields

smaller errors than a 5𝑡ℎ-order regular PDE-based method, for up to about 600× 600

grid points. This is mainly because the composition-based method computes an in-

dependent flow map for each timestep, thus the diffusive or dispersive errors in the

numerical scheme for advection are not compounded in time. The computational

time required for a specific accuracy is orders of magnitude lower for the method of

composition. This is clearly observed in Fig. (4-2b), which plots the relative error in

the solution against the computational time (in seconds). The spatial grid resolu-

tions considered in this study are the same as those from the study of relative error

against grid spacing, and the computational time increases with decreasing grid spac-

ing (increased resolution). These simulations were performed in Matlab on a single

quad-core Intel i7-4790 CPU clocked at 3.60 GHz. It was ensured that no paralleliza-

tion was used between the different flow map computations for the composition-based
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advection to maintain a fair comparison between the methods. However, Matlab’s

internal vectorization/parallelization for matrix-vector operations was not disabled.

As both the approaches used the same internal routines and sub-routines, these inter-

nal operations impacts both the methods similarly. These results suggest that even as

low as first-order accurate composition-based advection should yield good accuracy,

and practically there is little need to go to higher-order schemes.

Finally, Fig. (4-3) shows the initial tracer field followed by the tracer fields at

𝑡 = 0.5 and at 𝑡 = 1. As mentioned above, ideally the tracer field at 𝑡 = 1 should

be identical to the initial condition. We find that regular advection with low-order

numerical schemes (Fig. (4-3a)) suffers heavily due to numerical diffusion, whereas

regular advection with high-order numerical schemes (Fig. (4-3b)) is minimally prone

to such errors, and recovers the initial tracer field well. However, even when using

low-order numerical schemes, the method of composition is able to almost exactly

recover the initial tracer field (Fig. (4-3c)) due to the lack of compounding numerical

errors. This further reinforces the result that low-order composition-based advection

produces results comparable to much higher-order regular advection schemes.

4.2 Analytical Applications

4.2.1 Advection-Diffusion in a Reversible Analytical Swirl Flow

To showcase the developments of Sec. 3.3.3, we now add tracer diffusion, specifically

a non-dimensional diffusivity 𝜅 = 3.510−4 in Eq. (3.9). We create a new benchmark

problem that extends the classic swirl flow advection test to a new advection-diffusion

test. The underlying velocity field is still given by Eq. (4.1), but the tracer is now

advected and diffused, with an initial condition given by Eq. (4.3),

𝛼0(𝑥, 𝑦) = I
(︂

0.185 ≤
√︁

(𝑥− 0.25)2 + (𝑦 − 0.25)2 ≤ 0.20

)︂
, (4.3)

where I is the indicator function, that is equal to unity if the condition in the paren-

theses is satisfied, and is zero otherwise. That is, the initial tracer is unity inside
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(b) Relative error in the tracer field against computational time

Figure 4-2: Relative error in the tracer field at final time 𝑡 = 1 for the forward-backward
advection in a reversible analytical swirl flow. Fig. (4-2a) shows the relative error against
the number of grid points, where we observe the expected orders of convergence for the two
numerical schemes used. Fig. (4-2b) plots the relative error against the computational time,
for the same spatial grid resolutions as Fig. (4-2a). It can be seen that composition-based
advection requires an order of magnitude lower computational time for the same accuracy.
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(a) Regular advection: Donor-cell, forward Euler

(b) Regular advection: WENO5, TVD-RK3

(c) Composition-based advection: donor-cell, forward Euler

Figure 4-3: Forward-backward advection in the analytical swirl flow: the three panels in
each panel show the initial tracer condition, the tracer field after the forward advection is
complete, and the tracer field after the backward advection is complete, respectively. Reg-
ular advection with low-order numerical schemes (Fig. (4-3a)) suffers heavily from spurious
numerical diffusion, whereas the method of composition can almost exactly recover the initial
tracer field (Fig. (4-3c)), due to the lack of compounding numerical errors.
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a ring of outer radius 0.2 and thickness 0.015, centered at (0.25, 0.25). This initial

condition provides high tracer gradients along the inner and outer circumferences of

the ring for diffusion to work, during both the forward and backward swirl advections.

The results thus highlight the effects of spurious numerical diffusion and dispersion.

We solve this benchmark using Lie operator splitting (see Sec. 3.3.3) with, for

all advection schemes, a second-order accurate implicit diffusion solve. We compare

and contrast classic advections (first-order donor-cell and 5𝑡ℎ-order WENO) with

the composition-based advection (first-order donor-cell) using the optimal numerical

timestep of Eq. (3.39). The grid resolution is 256 × 256.

Fig. (4-4) shows the initial tracer field followed by the tracer fields at 𝑡 = 0.5

and 𝑡 = 1 for the regular advection–diffusion solve (with low-order and high-order

advection schemes) and the composition-based advection–diffusion solve. Once can

clearly see that the numerical diffusion in Fig. (4-4a) causes the inner hole in the

ring to close up by 𝑡 = 0.5, whereas the hole is not closed up for the higher-order

regular advection and composition-based advection (even though this composition

scheme is only first-order). Further, after backward advection and diffusion (𝑡 = 1),

contrasting the last panels of Fig. (4-4b) and Fig. (4-4c), we find that the hole is

closed up for the WENO-based regular advection, but still persists for composition-

based advection, indicating that the former has larger spurious numerical diffusion

than the latter. This fact is corroborated by the relative error in these fields (where

the exact solution is assumed to be that on a 1024×1024 grid, using 5𝑡ℎ-order WENO

regular advection), as illustrated in Table 4.1. This showcases the usability and the

superiority of composition-based advection in solving advection-diffusion PDEs.

Table 4.1: Relative errors in solving the advection-diffusion equation for the reversible swirl
flow (all methods use Lie operator splitting with a second-order implicit solve for diffusion).

Advection Method Relative Error

Regular advection: Donor-cell, forward Euler 7.32%
Regular advection: WENO5, TVD-RK3 1.02%

Composition-based advection: Donor-cell, forward Euler 0.76%
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(a) Regular advection: Donor-cell, forward Euler; diffusion: second-order implicit solve

(b) Regular advection: WENO5, TVD-RK3; diffusion: second-order implicit solve

(c) Composition-based advection: donor-cell, forward Euler; diffusion: second-order implicit solve

Figure 4-4: Forward-backward advection and diffusion in the analytical swirl flow: the
three panels in each panel show the initial tracer condition, the tracer field after the forward
advection and diffusion part is complete (i.e. at 𝑡 = 0.5), and the tracer field after the
backward advection and diffusion is complete (i.e. at 𝑡 = 1), respectively.
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4.2.2 Advection-Reaction in an Idealized Flow Exiting a Strait

We now examine tracer advection in flows encountered in the coastal oceans and in

urban environments, and include a source term and variable boundary conditions. A

barotropic jet exits a strait or an estuary into a wider channel and creates unsteady

eddies and meanders downstream [163]. In urban settings, wind blowing through

narrow constrictions between buildings into an open area also creates similar dynam-

ics. Such flows can be idealized as sudden expansion flows that have been studied

extensively [32; 50; 63].

Fig. (4-5a) shows the schematic of the idealized 2D test case. We consider a

20 𝑚 × 1 𝑚 channel with an inlet narrow constriction of width 1/3 𝑚 and length

4 𝑚. A uniform jet with a velocity 1 𝑚/𝑠 enters the inlet constriction at 𝑥 = 0.

The other boundary conditions for the velocity are no slip at all the walls and an

open (radiation) boundary condition at the 𝑥 = 20 outlet. The velocity field is

first developed for 500 s. Recirculation zones and breaks form, either to the north or

south of the centerline, depending on the initial uncertain perturbations. The Navier–

Stokes equations are solved using a finite volume framework with second-order spatial

and temporal schemes and a projection method for pressure-velocity coupling [247].

Fig. (4-5) shows the advection flow field, at three discrete times 𝑡 = 10, 𝑡 = 30, and

𝑡 = 50 s, after the initial development period of 500 s.

For the non-dimensional tracer field, we assume that a unit value enters the domain

at the 𝑥 = 0 inlet along the centerline, with a width of 0.1 𝑚, and that there exists

another Gaussian-shaped tracer source of intensity 0.05 s−1 centered at 𝑥 = 2 𝑚,

𝑦 = 0.25 𝑚. The boundary conditions are Dirichlet at the inlet, no flux at all

the walls, and open (radiation) at the outlet. Further, we assume that there is

no tracer diffusion, i.e. 𝜅 = 0. The tracer advection-reaction Eq. (3.9) is solved for

𝑡 = 0, · · · , 50 s after the initial velocity development period. The tracer computational

setup involves a 160× 120 grid, and both the method of composition and the regular

advection computations utilize the WENO5 scheme for the spatial gradients and

TVD-RK3 for time marching. The timestep value is the optimal timestep for the
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(a) Schematic of the test case setup (b) Velocity field at 10 seconds

(c) Velocity field at 30 seconds (d) Velocity field at 50 seconds

Figure 4-5: Flow exiting a strait: Test case setup and the velocity fields. Panel (a)
shows the setup and the latter three panels show the velocity field at the specified times
after the development period. The velocity field is computed by solving the Navier–Stokes
equations in a finite volume framework with second-order spatial and temporal schemes and
a projection method for pressure-velocity coupling [247].

method of composition. The contributions from the source and advective transport

are computed independently of each other using Lie splitting, as outlined in Sec. 3.3.3.

This example showcases the ability of composition-based advection to correctly handle

tracer sources and multiple types of boundary conditions, as the inlet has a Dirichlet

boundary condition whereas all the walls have a Neumann boundary condition.

Fig. (4-6) shows the tracer fields at 𝑡 = 10, 𝑡 = 30, and 𝑡 = 50 s after the initial

development period. It is clear that the method of composition results in minimal

numerical diffusion in the advection process, whereas the regular advection results in

a much higher amount of numerical errors. To compute the accuracy of our solution,

we compare both the results with a more refined simulation (of grid size 480 × 360).

We obtain that the relative error in the method of composition is 1.27%, whereas

that in the regular advection is 4.18%. This showcases the advantages of the method

of composition to simulate advection-reaction problems.
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(a) Regular advection: tracer at 10 sec (b) Composition-based advection: tracer at 10 sec

(c) Regular advection: tracer at 30 sec (d) Composition-based advection: tracer at 30 sec

(e) Regular advection: tracer at 50 sec (f) Composition-based advection: tracer at 50 sec

Figure 4-6: Flow exiting a strait: tracer advection-reaction. Panels on the left-hand-
side show results using regular tracer advection (WENO5 in space and TVD-RK3 in time),
specifically the tracer field at 10, 30 and 50 s (after the flow development period). Panels on
the right-hand-side show the tracer fields at the same times but computed using the method
of composition (WENO5 in space and TVD-RK3 in time, along with flow map composition).
It is clear, especially at 30 and 50 s, that the method of composition is less prone to spurious
numerical errors.

4.3 Realistic Applications

4.3.1 Sediment Plumes in the Bismarck Sea

Now moving on to realistic ocean examples, we first simulate the advection of passive

sediment plumes in the Bismarck Sea. This example is inspired by the need to study

the impacts of proposed activities to mine the seabed for rare metal resources [110; 35].

Extracting these metal ores from the seabed can create a plume of fine particles.
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These sediment plumes may be released at various depths within the ocean, and they

can prove to be extremely harmful to the local marine ecosystems and its components

[251]. Further, they are advected by the dynamic ocean currents and hence can end up

far from the original release location. It is thus of utmost importance to quantify and

mitigate the impact of such activities on the surroundings. High-accuracy sediment

transport forecasts without compounding numerical errors are thus needed.

To advect the sediment plumes, realistic dynamic ocean fields (currents, temper-

ature, salinity, and ocean free-surface) are simulated by our MIT Multidisciplinary

Simulation, Estimation and Assimilation System (MSEAS). MSEAS has been uti-

lized for varied data-assimilative transports studies, including the Prestige oil spill

[146], biogeochemical transports [17; 37], advection of drifting objects [144; 148],

and tracer plumes in the Bismark Sea [38] and Southern California Bight [131].

The MSEAS numerical schemes include second-order finite-volumes with leapfrog

time-stepping and implicit two-way nesting for multi-resolution hydrostatic primi-

tive equation dynamics with a nonlinear free-surface [e.g., 96; 155; 95], as well as

a high-order finite element code on unstructured grids for non-hydrostatic processes

[246; 248; 68]. The MSEAS software has provided realistic data-assimilative simula-

tions and predictions in varied regions of the world’s ocean and for varied purposes

[e.g., 154; 262; 94; 152; 80; 208; 147; 36; 128; 238; 240; 149].

The present MSEAS simulation domain covers a 855.36 𝑘𝑚 × 650.43 𝑘𝑚 region

around the Bismarck Sea. The initial ocean conditions were downscaled from the

coarse analysis fields of 15 January 2016 of the 1/12∘ HYCOM (Hybrid Coordinate

Ocean Model) [41]. The higher-resolution MSEAS simulations were then ran up to

31 January 2016, with full tidal forcing [160]. For the dynamical and numerical

parameters, as well as the validation of the MSEAS simulations, we refer to [38].

Using these MSEAS four-dimensional dynamic ocean currents, we simulate the

advection of passive plumes from two sites in the Bismarck Sea. One site is the Sol-

wara 1 proposed mining site [35]. The other is to the southeast, inside the St. Georges

channel. Both the release sites are at a depth of 1275 𝑚 below the sea level. For the

present example, we neglect the vertical movements of the material, and consider only
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its advection in the horizontal plane at 1275 𝑚 depth. We assume that the material

is released in a square box around the two sites (shown in panel (a) of Fig. (4-7),

Fig. (4-8), and Fig. (4-9)), on 22 January 2016, 00Z. The sediment plumes are then

advected by the dynamic ocean currents for 5 days. Without loss of generality for

the present numerical study, it is assumed that there is no sediment diffusion. For

the sediment advection, the horizontal computational domain is discretized in rotated

Cartesian grid of size 1152×876, hence each control volume is of size 742 𝑚×742 𝑚.

The timestep is chosen to be the optimal timestep for the method of composition (see

Sec. 3.4.2), and the resulting mean CFL number is 0.8. The net duration of advection

is 5 days. For the method of composition, we use a first-order donor-cell (upwind)

scheme for the spatial gradients and forward Euler time marching. For the regular

advection (i.e. without composition), we use the 5𝑡ℎ-order WENO scheme for the

spatial gradients and TVD-RK3 time marching. Hence, we compare the first-order

composition scheme to a much higher-order regular advection scheme.

For contrast, we also advect the passive tracer plumes using the method of charac-

teristics, i.e. by seeding Lagrangian particles in the regions of interest and advecting

them under the influence of the unsteady velocity field. This allows the comparison

between the method of composition and the method of characteristics / Lagrangian

advection. For this purpose, we seed each of the sites with 900 uniformly spaced

particles. These particles are advected using 4𝑡ℎ-order Runge-Kutta time marching.

Fig. (4-7), Fig. (4-8), and Fig. (4-9) show the advection of the two initial sediment

plumes under the effect of the MSEAS dynamic ocean currents over 5 days. We

clearly observe that for the method of composition, even though it is only first-order,

the numerical diffusion is minimal and the hyperbolic nature of the advection process

is well maintained. However, even when using much higher 5𝑡ℎ-order schemes, classic

advection suffers from large numerical diffusion due to the compounding of errors.

In the method of characteristics, as the particles are advected individually, no

diffusion is expected, which is clearly seen in Fig. (4-9). Comparing this with Fig. (4-

8), as shown in Fig. (4-10), confirms the lack of numerical diffusion in the method of

composition, even though we solve a PDE in an Eulerian setting. The drawback of
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using the method of characteristics when compared to the method of composition is

however the loss of spatial accuracy in certain regions of the domain as computations

are carried out in a Lagrangian frame. This is especially clear from the zoomed plots

in Fig. (4-10), where one can observe this loss of spatial accuracy and coverage in

certain regions, e.g. near the submesoscale eddies in the bottom left plot and near the

mouth of St. Georges channel in the top right plot.

For a more quantitative comparison of the three used methods (regular advection,

the method of composition, and the method of characteristics), we compute their

relative errors with respect to a field advected using the method of characteristics

but using 16 times as many particles. The results are summarized in Table 4.2, where

we see that the method of composition yields more accurate solution than the method

of characteristics. If the norm focuses only on the regions where final errors are largest

(e.g. where the particle coverage is low), the comparison is much more favorable for

the composition.

Further, as the composition-based computation uses simple first-order schemes,

it was about 30 times faster than the regular high-order advection. The general ad-

vection patterns for the two schemes are logically similar (the velocity fields used are

identical), but the method of composition maintains sharp gradients and detailed fea-

tures (effects of submesoscale eddies, fronts, etc.), whereas sharp edges are smeared

out by the regular advection. The method of characteristics takes the least amount

of time (half that of the method of composition) as its computations were paral-

lelized over the individual particles. However, the Lagrangian particles scheme looses

accuracy in regions with low particle density (e.g. repulsive regions), as shown above.

Finally, in operational simulations, turbulent sediment plume diffusion would be

modeled, but for accurate sediment forecasts, it would remain crucial for the spurious

compounded numerical tracer diffusion to be eliminated. The present composition-

based advection is an efficient solution.
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(a) 22 January 2016, 00Z (b) 23 January 2016, 00Z

(c) 24 January 2016, 00Z (d) 25 January 2016, 00Z

(e) 26 January 2016, 00Z (f) 27 January 2016, 00Z

Figure 4-7: Sediment advection over 5 days from two possible deep sea mining sites, using
regular advection with high-order WENO5 for the spatial gradients and TVD-RK3 time
marching.
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(a) 22 January 2016, 00Z (b) 23 January 2016, 00Z

(c) 24 January 2016, 00Z (d) 25 January 2016, 00Z

(e) 26 January 2016, 00Z (f) 27 January 2016, 00Z

Figure 4-8: As in Fig. (4-7), but using the method of composition with the first-order
donor-cell scheme for the spatial gradients and forward Euler time marching.
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(a) 22 January 2016, 00Z (b) 23 January 2016, 00Z

(c) 24 January 2016, 00Z (d) 25 January 2016, 00Z

(e) 26 January 2016, 00Z (f) 27 January 2016, 00Z

Figure 4-9: As in Fig. (4-7), but using Lagrangian trajectory advection using the Runge-
Kutta 4 advection scheme.
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Figure 4-10: Comparison of the final sediment fields (on 27 January 2016, 00Z), when
advected using the method of composition (Fig. (4-8f)) and trajectory advection (Fig. (4-
9f)). The advected fields are extremely close to each other. However, the loss of spatial
accuracy for trajectory advection can be seen in the zoomed sections.
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Table 4.2: Relative errors in predicting sediment advection from two possible deep sea
mining sites over 5 days.

Advection Method Relative Error

Regular advection: WENO5, TVD-RK3 3.22%
Composition-based advection: Donor-cell, forward Euler 1.04%

Method of characteristics: RK4 1.09%

4.3.2 Real Time Prediction of Sediment Plumes in the South-

ern California Bight

Our modeling systems and software were employed to forecast the sediment plume

transport in the southern California Bight during the 2018 PLUMEX sea exercise.

This sea exercise occurred from 26 February to 05 March 2018 off the coast of San

Diego. As a part of this experiment, sediment plumes mimicking those generated

from deep sea mining operations were released and tracked. The results of the ex-

periment provide insights into the behavior of such plumes and form the basis of our

understanding of the potential environmental impacts of deep sea mining activities.

Real-Time Results

The considered modeling domain is off the coast of San Diego with an area of 687 𝑘𝑚×

720 𝑘𝑚 as shown in Fig. (4-11). The red dashed lines show the special focus area

around the gulf of San Catalina, where most of the at-sea experimental work occurred.

The plume releases were planned at the starred locations in Fig. (4-11) at depths of

60 𝑚, 80 𝑚 and 140 𝑚 below the ocean surface and the plumes were observed up to

8 hours. For the real-time ocean forecasting, the MSEAS modeling system was set

up with 2-way nesting with resolutions of 1.5 𝑘𝑚 and 0.5 𝑘𝑚 for the full and nested

domains (the special focus area within the dashed red line in Fig. (4-11)) respectively.

Further, 100 optimized terrain following levels were used in the vertical direction.

The model bathymetry used was obtained from the 15 arcseconds SRMT15 data

set [231]. The tidal forcing fields were computed from the high resolution TPXO8-

Atlas from OSU [55; 54] and reprocessed for the higher resolution bathymetry [160]
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and nonlinear bottom drag. The forecasts were initialized from the 1/12∘ HYCOM

(Hybrid Coordinate Ocean Model) analysis fields, but with updates based on available

in-situ data.

Figure 4-11: The MIT-MSEAS modeling domain for the 2018 PLUMEX sea exercise, along
with the bathymetry of the region. The solid red line denotes the computational domain
and the dashed red line demarcates the special focus area around the gulf of San Catalina.
The red stars indicate potential plume release locations.

The forecasts of the ocean fields were used as the input to the plume advection

computation, where the sediment plumes were assumed to be passively advected by

the background ocean currents. Their evolution was numerically computed using the

method of flow map composition in fully three-dimensional (3D) domains in real-time

to support and guide the at-sea experiments. A collocated Cartesian grid was used

with WENO5 scheme for spatial gradients and TVD-RK3 for time marching in a

finite volume setup. To obtain the plume transport at a comparable scale to the ship

movement, velocity output of the implicit 2-way nested ocean model was interpolated

4 times in each direction, resulting in a horizontal grid spacing of 125 𝑚 and vertical

grid spacing of 2 𝑚. A numerical timestep of 5 minutes was used.

The velocity fields as well as the plume transport forecasts were issued a day in

advance, and an updated forecast for the day was issued early in the morning through
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the MSEAS sea exercise web interface [87]. The sediment transport was predicted

in real-time and reported in two ways: horizontal (2D) transport maps at different

depths and fully (3D) maps. The plume transport was predicted for different start

times ranging from 8AM PST to 8PM PST, starting every hour. This was done

using the sliding time window approach and by storing the individual flow maps

and composing them in the correct order to avoid recomputation (see Sec. 3.5). The

intervals for plume tracking were up to 12 hours.

Let us now focus on a single plume release experiment that was conducted on 04

March 2018, 2PM PST to qualitatively better understand the dynamics of the 2D

and the 3D dispersion and transport from the three potential locations over 12 hours.

Fig. (4-12a) shows the plume transport in 2D at a depth of 140 𝑚. Fig. (4-12b) shows

the fully 3D evolution of the plume, assuming the plume was released at 140 𝑚 below

the ocean surface.

It can be clearly seen that plumes from all the start locations are generally forecast

to be transported southwards due to the ocean currents. Plumes from the two central

locations are advected more as the strength of currents in this region is higher as

compared to the currents near the California coast or around San Clemente island.

As can be seen from Fig. (4-12b), the 3D forecast captures the vertical transport of

the plumes which is quite substantial for the two eastern release locations. This is

mainly because of the upwelling zones near the coast and other bathymetric effects.

However the releases in the deeper ocean travel more coherently in the vertical.

Comparison with Experimental Data

We now compare our plume transport predictions with the data from the experiment

that was conducted at 04 March 2018, 2:11PM PST. A sediment plume of density

1030.4 𝑘𝑔/𝑚3 was released at a depth of 59 𝑚 aboard the research vessel Sally Ride

[245]. The release location was 32.6920∘𝑁, 117.6126∘𝑊 . The plume was tracked for

371 minutes by using the shipboard transmissometer and tow-yo CTD [181].

We compare the accuracy of our plume advection predictions with the highlighted

locations of the actual plume observation at 78, 120, 250, and 371 minutes after the
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(a) Two-dimensional (2D) cross section at 140 𝑚

(b) Three-dimensional (3D) view

Figure 4-12: Plume transport forecast over 3 hours when released at a depth of 140 𝑚.
The initial plume release markers are in blue and the final transported plume is in red.

start of the release. The locations of the direct observations of the plume by the

tow-yo CTD are highlighted in Fig. (4-13a) with hollow red circles [181].

Fig. (4-13b) shows the plumes as predicted by our method of composition at the

considered time instants along with the corresponding observations. Specifically, the

blue patch shows the plume location at 80 minutes after the release, the orange patch

at 120 minutes after the release, the green patch at 250 minutes after the release,

and finally the red patch at 370 minutes after the release. We predict that the plume

travels about 0.44 𝑘𝑚 to the south-southwest in the first 80 minutes, followed by a

southeastward motion of about 0.34 𝑘𝑚 in the next 40 minutes. The plume then again
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travels south-southwest for about 0.49 𝑘𝑚 in the next 130 minutes. The final plume

location is predicted to be at about 1.39 𝑘𝑚 to the south of the initial release point

after 370 minutes from the release time. We find that the forecast plume location

match well with the actual measurements. Specifically, we observe that the plume

location predicted by our forecasting methodology contains the actual observation

locations for the 80, 120, and 370 minute observations. The distances between the

centroids of the forecasted plumes and the corresponding observations are 0.16 𝑘𝑚,

0.13 𝑘𝑚, 0.25 𝑘𝑚, and 0.17 𝑘𝑚 for 80 minute, 120 minute, 250 minute, and 370 minute

timestamps (since the initial release time), respectively. Note that these deviations

are of the order of the size of a single grid cell. Our forecasting system is thus able to

predict the general trend of the plume transport very well. All the results in Fig. (4-

13b) are a vertical projection of the three-dimensional plume onto the horizontal

plane. Since the plume size is comparable to the model resolution, the numerical

errors may have a non-negligible role in the net plume area in the horizontal.

Considering that the our numerical modeling system did not use any of the ADCP

data or other shipboard instruments in real-time, these results are promising for

future high-resolution modeling integrated with plume monitoring and serve as a great

experimental validation of the composition-based advection method in real time.

4.4 Summary

The new method of flow map composition for computing advective tracer transport

and its capabilities are thoroughly illustrated through a wide set of examples in this

chapter, including new benchmark problems for advection-diffusion-reaction schemes.

The advection and advection-diffusion in an analytical reversible swirl flow and a flow

undergoing sudden expansion verify the behavior of errors, inclusion of diffusion and

source terms, and the implementation of various tracer boundary conditions. The

advection of sediment plumes by ocean currents resulting from potential deep sea

mining operations in the Bismarck Sea are simulated for two possible mining sites.

We find that, even for low-order schemes, advection using the method of composi-
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(a) The ship track overlaid with plume observa-
tion locations and timestamps

(b) Predicted (vertically averaged) plume loca-
tion at the four observation times

Figure 4-13: The observed (hollow red circles) and predicted (colored patches) plume
locations and (vertically averaged) spread at 78, 120, 250, and 371 minutes after the start
of plume discharge. It can be see that the observed plume locations lie within the plume
spread predicted by our composition-based advection methodology.

tion yields minimal total numerical errors, much smaller than the errors of high-order

Eulerian schemes, and with a spatial coverage much better than particle-based meth-

ods. Finally, we study the results from the 2018 PLUMEX real-time sea exercise.

We compare the real-time 3D predictions of sediment plume transport made by the

method of composition with the experimentally observed data to find a satisfactory

match between the predictions and the observations, even with limited feedback and

coarse simulation resolution.
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Chapter 5

Lagrangian Analysis of Material

Transport - Theory

In this chapter, we first utilize the method of flow map composition to compute the

flow maps in dynamic open domains with multiple time-dependent inlets and outlets.

We then develop theory and schemes to extract and compute material subregions in

dynamic fluid flows that remain the most or the least coherent throughout the time

interval of interest. Such subregions are extremely important to quantify fluid and

tracer mixing and dispersion in ocean flows.

First, in Sec. 5.1, we briefly review the existing results in Lagrangian coherence

and show how the most prominent coherence metrics are derived from the flow map,

highlighting the importance of the flow map as the backbone of material transport.

In Sec. 5.2, we discuss we state the problem statement and provide some preliminar-

ies. Sec. 5.3 extends the method of composition to compute flow maps in dynamic

open domains with time-dependent inlets and / or outlets, which is often required for

realistic marine scenarios. We propose a new metric called extended polar distance in

Sec. 5.4 to extract subregions of the fluid domain that exhibit persistent coherence

or rigidity, i.e. sets that undergo minimal local distortion (stretching or compression)

while undergoing arbitrary amounts of translation and rotation over the entire tem-

poral domain of interest. Finally, we detail certain remarks about the objectivity of

the proposed coherence measure and methodologies for its efficient computation using
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the method of composition. We also relate this proposed metric with the expected

strain on the material subregions and prove that persistently coherent sets maximally

resist chaotic advection and diffusive mixing. This work is the theoretical basis of

Kulkarni and Lermusiaux [136].

5.1 Introduction

Coherent structures have been extensively employed in fields such as fluid mechanics

and dynamical systems to understand and study a wide range of phenomena rang-

ing from the formulation of reduced order models of the flow [65] to understanding

the material transport pathways [52; 222]. Specifically, studying the role of coherent

structures as the ‘skeleton’ of Lagrangian material transport in fluid dynamic sys-

tems has been an active area of research. There exist several notable approaches to

extract coherent structures in a flow, most often described through the coherent and

incoherent sets and attracting and repelling barriers [93]. Many traditional methods

for this purpose utilize an Eulerian approach by looking at individual snapshots of

the flow field to analyze the coherent structures through streamlines, velocity stag-

nation points etc. [186; 256; 113; 120]. Although such approaches may be sufficient

for steady flows (as the streamline structure does not change with time), they can-

not capture the complex transport structures and features of material transport in

unsteady flows.

The foundations of quantifying Lagrangian transport of passive materials in time-

dependent flows over finite duration were laid by Haller and colleagues, who also

coined the term Lagrangian coherent structures (LCSs) [103]. In this perspective, the

attracting (stable) and repelling (unstable) manifolds are also advected with the un-

derlying flow and hence are considered ‘material surfaces’, resulting in a much more

rich and complex transport structures. The viewpoint in this setting is inherently La-

grangian, as it explicitly tracks the motion of individual parcels and their trajectories

that are governed by an unsteady velocity field.

LCSs have been very helpful in improving our understanding of material transport
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over finite durations in unsteady fluid flows [101]. It has long been known that such

coherent structures are an intrinsic property of fluid flows [197] and they often refer

to the distinguished (attracting or repelling) material surfaces or sub-domains in

the fluid flow over the time of interest [59; 102]. There is a wide range of LCS

applications, ranging from fluid dynamic and aerodynamic analyses [173; 56; 124],

combustion studies [33; 27; 194] to biological and bio-inspired fluid flows [223; 86; 226].

However, the most prominent studies and applications of Lagrangian analyses have

been in the field of geophysical and marine sciences. These include oil spill and

spread predictions, pollution tracking, environmental hazards studies, and marine-

biology studies [143; 217; 101; 117; 187] to name a few. Several definitions of LCS

have been put forth by various researchers [59; 76; 101; 127; 224] along with multiple

methodologies and schemes to extract the LCS from the given flow fields [4; 93].

So far, popular techniques for LCS studies have suggested that such relevant fea-

tures can be co-dimension one (i.e. of dimension 1 less than that of Ω) surfaces across

which the underlying flow map exhibits a discontinuity or a sharp gradient. Indeed,

parcels that are located from either side of a discontinuity surface have diverging tra-

jectories. Hence these co-dimension one LCSs, typically extracted from Finite Time

Lyapunov Exponent (FTLE) fields [224] or from tensorlines of the flow map Jacobian

[100; 104], exhibit extremal properties of repulsion or attraction, ideally globally, or

at least in some neighborhood of these surfaces. These methods have the advantage

of yielding LCS that can be computed at a relatively low cost even for highly resolved

velocity fields, but may also have the flaw of offering hardly interpretable pictures

when too many LCS are found in the domain [64; 66]. Recently, there has been

significant interest in finding coherent / almost invariant material sets in autonomous

and non-autonomous fluid flows. Some approaches determine these sets by partition-

ing the domain into sets that may have heavy mixing within, but that mix very slowly

with their complement [71; 78; 74]. Other proposed methodologies include spectral

clustering [92], fuzzy clustering [4], and braid theory [5]. The reader is pointed to

recent articles [93; 250] for a critical comparison of these methods over a variety of

simulated and realistic flow fields.
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A common drawback of these methods is that they study coherence exclusively

between the start and the end time. That is, a fluid set is considered coherent if

its initial and final shapes are similar, even though it could undergo heavy distor-

tion during the time interval of interest. There has been an interest in developing

methodologies that consider the coherence of sets through the entire time interval.

We refer to such sets that undergo minimal stress or distortion during the entire time

of interest as ‘persistently coherent sets’.

In this chapter, we propose an approach to compute persistently coherent sets

in dynamic fluid flows. We discuss the theoretical underpinnings of the proposed

objective metric and approaches for its efficient computation, with special attention

towards realistic flow fields, including high-resolution ocean simulations with multiple

time-dependent inlets and outlets.

5.1.1 Types of Material Coherence

As stated before, most techniques to compute coherent material subdomains consider

the coherence or rigidity of fluid sets by comparing their configurations only at the

initial and the final times. These methods determine material sets that have similar

shape at the start and the end times, or that undergo minimal net strain. However, the

possible deformations that these sets may undergo during the entire time interval of

interest are not considered. There may be cases where the material set first undergoes

severe stretching followed by compression to end up in a shape similar to its initial

one. In real fluids, such transformations could not be defined as coherent since the

set would be more prone to small-scale (turbulent) diffusion at its boundaries when

in the intermediate stretched state (and thus may not actually remain coherent).

These large-gradient effects are unaccounted for by theories focusing only on advective

transport, but it would often be inaccurate to define such transformation as remaining

coherent. However, such a set is more prone to small-scale diffusion at the boundaries

(and thus may not actually remain coherent), which is unaccounted for by theories

focusing only on advective transport [106].

Fig. (5-1) shows the possibilities for the evolution of a generic material set in an
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unsteady fluid flow. Certain material sets will be continually distorted by the fluid,

and will typically undergo a net non-zero strain. We term these as ‘incoherent sets’

or ‘non-rigid sets’, and these are shown in the yellow panel of Fig. (5-1). The second

kind, called ‘coherent sets’ or ‘rigid sets’, undergo non-zero distortion at intermediate

times, but these distortions cancel out over the total time of interest, and these sets

return to their original shape at time 𝑡 = 𝑇 , as seen in the green panel. Finally the

third kind, i.e. ‘persistently coherent sets’ or ‘persistently rigid sets’ are shown in the

red panel. These sets maintain their shape throughout the entire time of interest. At

any intermediate time, their shape is similar to (within certain tolerance) their initial

shape. Persistently coherent sets fall under the umbrella of coherent sets for obvious

reasons, however not all coherent sets are persistently coherent.

Figure 5-1: Schematic of the different types of coherent / incoherent sets in fluid flows. We
assume that a material set of fluid starts with a particular shape at time 𝑡 = 0. The yellow
panel shows the evolution of this set as an incoherent set at times 𝑡𝑖 (< 𝑇 ) and 𝑇 , the green
panel depicts its evolution as a coherent set, and the red panel showcases its evolution if it
were to be a persistently coherent set. Persistently coherent sets are coherent sets, but not
vice versa.

As flow maps quantify the generic advective transport features between the con-

sidered time instants, they are a key element in our methodology to determine persis-
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tently coherent material sets. To achieve this, we use the method of composition to

effectively compute and extract information from flow maps at all intermediate times.

As the persistently rigid sets never undergo any appreciable strain / distortions, they

are also the least prone to small-scale (turbulent) diffusion processes. Further, simply

by inverting the developed criterion, we can also determine material sets that are the

most incoherent, or are distorted the most. We can capture such sets by searching for

the material sets that are either prone to large stretching / compression or to diffusive

distortion or both. Such material sets with large gradients are often the primary

regions where small-scale diffusion and chaotic and turbulent mixing occur. It is thus

important to predict their existence and location.

5.1.2 Connections Between Prominent Lagrangian Coherence

Metrics and the Flow Map

Let us now review some popular metrics to compute LCSs their connections to the

flow map. This cements the role of flow maps as the central component of Lagrangian

transport analysis. Following the discussion from Sec. 2.4, the major approaches of

extracting LCSs from dynamic flows can be broadly classified into two categories: (i)

those that attempt to extract the relevant features of the flow map fields, and (ii)

those that focus on the action of the flow map operator on density distributions [64].

We first discuss the Lagrangian coherence metrics based in analyzing the excep-

tional features of the flow map fields. Specifically, we first analyze the criteria derived

from the (right) Cauchy-Green (CG) strain tensor. We then focus our attention on

the variational methods to determine LCSs. Finally, we look at the operator theoretic

methods to determine LCSs.

The (right) CG strain tensor 𝐶𝑇
0 (𝑥) ∈ R𝑛×𝑛 is defined by Eq. (5.1) (where 𝑛 is

the spatial dimension of the system, i.e. 𝑛 = 2 or 3),

𝐶𝑇
0 (𝑥) =

[︀
∇𝜑𝑇

0 (𝑥)
]︀* [︀∇𝜑𝑇

0 (𝑥)
]︀
. (5.1)

It specifies the local strain that an infinitesimal material element at 𝑥 experiences
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between times 0 and 𝑇 . It can be shown that 𝐶𝑇
0 (𝑥) is a symmetric positive definite

matrix for all 𝑥 and 𝑇 [101]. As 𝐶𝑇
0 (𝑥) is the strain tensor, its eigenvectors and

eigenvalues denote the principal directions and magnitudes of the strain respectively.

One can easily compute these quantities using the gradient of the flow map.

Let us assume that the singular value decomposition (SVD) of the gradient of

the flow map vector (Jacobian matrix of the flow map) is given by ∇𝜑𝑇
0 (𝑥) =

𝑈 (0,𝑇 )Σ(0,𝑇 )
(︀
𝑉 (0,𝑇 )

)︀*, where 𝑈 (0,𝑇 ), 𝑉 (0,𝑇 ) ∈ R𝑛×𝑛 are orthogonal matrices and Σ(0,𝑇 ) ∈

R𝑛×𝑛 is a diagonal matrix whose entries 𝜎
(0,𝑇 )
1 , . . . , 𝜎

(0,𝑇 )
𝑛 ≥ 0 are in decreasing or-

der of magnitude. The columns of 𝑈 (0,𝑇 ), denoted by 𝑈
(0,𝑇 )
1 , . . . , 𝑈

(0,𝑇 )
𝑛 are the left

singular vectors of ∇𝜑𝑇
0 and the columns of 𝑉 (0,𝑇 ), denoted by 𝑉

(0,𝑇 )
1 , . . . , 𝑉

(0,𝑇 )
𝑛 are

the right singular vectors of ∇𝜑𝑇
0 . Note that 𝑈

(0,𝑇 )
𝑗 , 𝑉

(0,𝑇 )
𝑗 , and 𝜎

(0,𝑇 )
𝑗 are a func-

tion of 𝑥 for all 𝑗 = 1, . . . , 𝑛. The CG strain tensor can be written as 𝐶𝑇
0 (𝑥) =

𝑉 (0,𝑇 )
(︀
Σ(0,𝑇 )

)︀2 (︀
𝑉 (0,𝑇 )

)︀*, implying that its eigenvectors are 𝑉
(0,𝑇 )
1 , . . . , 𝑉

(0,𝑇 )
𝑛 and its

eigenvalues, denoted by 𝜆
(0,𝑇 )
𝑗 ∀ 𝑗 = 1, . . . , 𝑛, are

(︁
𝜎
(0,𝑇 )
1

)︁2
, . . . ,

(︁
𝜎
(0,𝑇 )
𝑛

)︁2
. Similarly,

the eigenvalues of 𝐶0
𝑇 = [∇𝜑0

𝑇 ]
*

[∇𝜑0
𝑇 ], denoted by 𝜆

(𝑇,0)
𝑗 ∀ 𝑗 = 1, . . . , 𝑛, are equal to(︁

𝜎
(𝑇,0)
1

)︁2
, . . . ,

(︁
𝜎
(𝑇,0)
𝑛

)︁2
. Invariants of the CG strain tensor (such as its eigenvalues)

do not change under Euclidean change of coordinates [103]. Thus they tend to be

ideal candidates to quantify material stretching and distortion.

Finite Time Lyapunov Exponent (FTLE) and Polar Rotation Angle (PRA)

The FTLE is a popular objective metric used to approximate the hyperbolic LCS in a

flow (i.e. attracting and repelling manifolds) [101; 14; 225]. It is simply a logarithmic

rescaling of the largest eigenvalue of the CG strain tensor. One can write the forward

(repelling) FTLE in terms of 𝜎1 as given by Eq. (5.2); similar analogue holds for the

backward (attracting) FTLE:

𝐹𝑇𝐿𝐸𝑇
0 (𝑥) =

1

𝑇
log(𝜎

(0,𝑇 )
1 ) . (5.2)

It is clear that the FTLE field estimates the maximal local stretching experienced

by a fluid parcel. Ridges of the forward and backward FTLEs, i.e. lines where the
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forward and backward FTLE is locally maximal, have been used to define repelling

and attracting LCS [224], respectively.

The polar rotation angle (PRA; denoted by 𝜃𝑇0 (𝑥)) attempts to capture the elliptic

LCS, i.e. material vortices in a flow, by identifying material elements that rotate by

similar angles about some points over the considered time interval [62]. PRA can be

computed from ∇𝜑𝑇
0 (𝑥) as specified by Eq. (5.3):

cos
(︀
𝜃𝑇0 (𝑥)

)︀
=

1

2

(︃
𝑛∑︁

𝑗=1

𝑈
(0,𝑇 )
𝑗 𝑉

(0,𝑇 )
𝑗 − 1

)︃
. (5.3)

It is proven that the level curves of PRA are objective only for 1D and 2D flows

but not objective in 3D flows, and better measures have been recently proposed to

identify material vortices [105].

Variational Methods

Variational methods capture distinguished material surfaces across which a feature of

the deformation field shows no leading-order change. Hyperbolic and parabolic LCSs

are captured by identifying curves / surfaces for whom the variation of shear strain

is an order of magnitude less than that of any neighboring curves / surfaces. Elliptic

LCSs are identified as closed curves / surfaces across which the normal stretching

varies by an order of magnitude less than any neighboring curves / surfaces.

In 2D, variational shearless LCSs are defined through the direction fields formed

by the second eigenvectors of 𝐶𝑇
0 (𝑥). Specifically, repelling LCSs are the trajectories

of 𝑑𝑥
𝑑𝑡

= 𝑉
(0,𝑇 )
1 (𝑥) starting from the local maxima of 𝜆(0,𝑇 )

2 (𝑥) and attracting LCSs

are the trajectories of 𝑑𝑥
𝑑𝑡

= 𝑉
(0,𝑇 )
2 (𝑥) starting from the local minima of 𝜆(0,𝑇 )

1 (𝑥).

Similarly, variational elliptic LCS are obtained by solving for the direction field

Eq. (5.4), where 𝜆 = 1 yields perfectly elliptic LCS (while they are undefined at
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locations where 𝜎
(0,𝑇 )
1 = 𝜎

(0,𝑇 )
2 ):

𝜂±[0,𝑇 ](𝑥) =

⎯⎸⎸⎸⎸⎷
(︁
𝜎
(0,𝑇 )
2

)︁2
− 𝜆2(︁

𝜎
(0,𝑇 )
2

)︁2
−
(︁
𝜎
(0,𝑇 )
1

)︁2𝑉 (0,𝑇 )
1 ±

⎯⎸⎸⎸⎸⎷ 𝜆2 −
(︁
𝜎
(0,𝑇 )
1

)︁2
(︁
𝜎
(0,𝑇 )
2

)︁2
−
(︁
𝜎
(0,𝑇 )
1

)︁2𝑉 (0,𝑇 )
2 ,

for 𝜆 ∈
(︂(︁

𝜎
(0,𝑇 )
1

)︁2
,
(︁
𝜎
(0,𝑇 )
2

)︁2)︂
.

(5.4)

Further details may be found in [105; 60].

Transfer Operator Based Methods

Finally, we summarize another major direction of research that uses the transfer

operator, also called the Parron–Frobenius operator, to compute LCSs in dynamic

flows [74; 78; 71; 64; 73]. These approaches is fundamentally different from the earlier

approaches, as they analyze the features of the flow map from an operator theoretic

aspect. These methods can also be thought of as probabilistic approaches to study

material transport and quantify the LCSs through coherent and incoherent material

sets. Coherent sets are defined as those material sets that may have mixing within the

set but minimally mix with their complement. While we do not delve into the specifics

of the different approaches in this area, we simply show how the transfer operator

can be computed from the flow map and refer the reader to [70; 77; 75; 72; 65] for

the details. The transfer operator between times 0 and 𝑇 , denoted by 𝑃 𝑇
0 , is defined

by Eq. (5.5).

𝑃 𝑇
0 (𝜇(𝑥)) =

𝜇 (𝜑0
𝑇 (𝑥))

det (∇𝜑𝑇
0 )

. (5.5)

Here, 𝜇 is a density measure on Ω that denotes distribution or concentration of a

quantity of interest. The numerator of Eq. (5.5) denotes the advection of the density

𝜇 from the initial to the final time due to the movement of fluid parcels, whereas the

denominator denotes the change in the area measure of the domain Ω from the initial

to the final time.

The transfer operator describes the density value at 𝜑𝑇
0 (𝑥) induced by the flow

map. A finite rank numerical approximation for the transfer operator, when the
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domain is split into small partitions (typically the numerical grid cells) {𝒜1, . . . ,𝒜𝒫}

is given by Eq. (5.6), where 𝑚 denotes Lebesgue measure associated with 𝜇:

[︀
𝑃 𝑇
0

]︀
𝑖𝑗

=
𝑚 (𝒜𝑖 ∩ 𝜑0

𝑇 (𝒜𝑗))

𝑚 (𝒜𝑖)
. (5.6)

Essentially,
[︀
𝑃 𝑇
0

]︀
𝑖𝑗

quantifies the fraction of the quantity of interest that starts in 𝒜𝑖

at the start time and ends up in 𝒜𝑗 at the end time. the Lebesgue measure value

𝑚 (𝒜𝑖) can be thought of as the amount of the quantity of interest originating in 𝒜𝑖

that is advected by the velocity field. Similarly, 𝑚 (𝒜𝑖 ∩ 𝜑0
𝑇 (𝒜𝑗)) denotes the amount

that starts in 𝒜𝑖 and ends up in 𝒜𝑗. If 𝜇(𝑥) = 𝑥 ∀ 𝑥 ∈ Ω, then
[︀
𝑃 𝑇
0

]︀
𝑖𝑗

simply denotes

the fraction of fluid parcel trajectories that start in 𝒜𝑖 and end up in 𝒜𝑗.

From the above definitions, it can be seen that most of the prominent techniques

for detecting LCSs and coherent material sets are rooted in the flow map. Once the

flow map of the flow field over the time interval of interest is known, these material

transport metrics can be readily computed. This reinforces our notion that flow maps

can be thought of as the backbone of Lagrangian material transport in dynamic flows.

5.2 Problem Statement

In this section, we state the problem statement using the notation from Table 2.1.

We assume that the spatial domain Ω is open, with multiple time-dependent inlets

and outlets. That is, in general, there is unrestricted fluid and material inflow and

outflow through the domain boundary 𝜕Ω. Thus, Eq. (2.11) and Eq. (2.12) imply

that the flow maps are not defined over the entire domain at all times. Specifically,

the forward flow map is not defined at the locations that leave Ω during [0, 𝑇 ] and

the backward flow map is not defined at the locations that enter Ω during the time

interval [0, 𝑇 ]. We refer to the region of Ω where the flow map is defined as the ‘active

domain’ and denote it by Ω𝑎(𝑡). Ω𝑎 is time-dependent, as the region over which the

flow map is defined decreases monotonically with time, and Ω𝑎(0) = Ω.

Thus, Eq. (2.11) and Eq. (2.12) imply that the flow map is not defined over the
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entire domain at all times. Specifically, the forward flow map is not defined at the

locations that leave Ω during [0, 𝑇 ] and the backward flow map is not defined at the

locations that enter Ω during the time interval [0, 𝑇 ]. We refer to the region of Ω

where the flow map is defined as the ‘active domain’ and denote it by Ω𝑎(𝑡). Ω𝑎 is

time-dependent, as the region over which the forward / backward flow map is defined

decreases monotonically with forward / backward time, with Ω𝑎(0) = Ω / Ω𝑎(𝑇 ) = Ω.

Our goal is two fold. First, we utilize and extend the method of flow map com-

position to accurately and efficiently compute flow maps in open domains, where the

actual subdomain over which the flow maps are defined (i.e. Ω𝑎(𝑡)) is of an arbitrary

shape that is time-dependent. Our second aim is to derive a criterion, which when

thresholded to an appropriate tolerance would yield material subdomains of Ω whose

connected components undergo minimal stretching and compression throughout the

entire time duration of interest. We hope to relate this tolerance parameter to the ex-

pected amount of stretching experienced by the material set. We further enforce that

high values of this criterion should indicate material subdomains that undergo the

largest amount of distortion, either due to advective stretching or due to smaller-scale

diffusion or both. The required criterion should be frame independent (objective),

efficiently computable, and applicable to 2D and 3D unsteady flows.

5.3 Flow Map Computation for Open Domains

As seen in Chapter 3, one can compute the backward flow map 𝜑0
𝑇 by solving Eq. (3.3)

forward in time with the initial condition 𝛼0(𝑥) = 𝑥. Similarly, the forward flow map

𝜑𝑇
0 is obtained by solving Eq. (3.4) backward in time with 𝛼𝑇 (𝑥) = 𝑥. As these

differential equations are purely hyperbolic, boundary conditions are not required if

the domains are closed, i.e. the velocity vectors everywhere on the boundary 𝜕Ω have

no component along the local normal direction n̂𝜕Ω.

However, for typical realistic cases, when there is either fluid inflow or outflow,

open boundary conditions are necessary. Further, as mentioned before, the forward

flow map is undefined at locations that exit the domain Ω during [0, 𝑇 ], whereas the
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backward flow map is undefined at locations that enter the domain Ω during [0, 𝑇 ].

This implies that the shape of the active domain Ω𝑎 (i.e. domain over which the flow

map is defined) is different for forward and backward flow maps and it varies with

time. Thus, adapting the PDE-based method of composition to compute flow maps

over such changing and shrinking domains requires careful design and imposition

of very specific boundary conditions. As mentioned in Sec. 3.3.4, previous work in

the area of PDE-based flow map computation [156; 157] has largely been applied to

closed domains where no boundary conditions are required, and the examples that

do consider open boundaries [156; 157] only apply a very specific boundary condition

(Eq. (3.13)). These boundary conditions, although well-posed, are incorrect due to

the fact that new positions are allowed to enter the domain. They do not distinguish

between the positions that start in the domain at the initial time and those that enter

the domain at intermediate times, and can thus lead to incorrect results.

5.3.1 Flow Map Open Boundary Conditions

The correct open boundary conditions can be obtained by considering the Lagrangian

viewpoint of flow map computation. While computing the flow maps using the par-

ticle transport Eq. (2.1), all the trajectories that exit Ω at any time are discarded

and never reconsidered. The flow maps corresponding to these trajectories are unde-

fined. Further, no new trajectories are allowed to enter Ω at any point in time. The

PDE-based flow map computation (Sec. 3.3.1) computes the flow maps by advecting

positions over a fixed spatial domain in an Eulerian setting. Thus, we can classify

these positions into four distinct categories based on the above-mentioned Lagrangian

interpretation. The first type, called ‘inside-inside’ positions are the positions that

start inside Ω and also end up inside Ω. The second type, ‘inside-outside’ positions are

the ones that start inside Ω but leave the domain during the considered time interval.

Conversely, ‘outside-inside’ positions start outside Ω but enter it during the consid-

ered time interval. Finally, ‘outside-outside’ positions start and also end up outside

Ω. The PDE-based method requires backward (forward) advection to compute the

forward (backward) flow map. Thus, the inside-outside positions (i.e. the ones that
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leave Ω) correspond to Lagrangian trajectories that start outside Ω but end up inside.

As the Lagrangian trajectories starting outside Ω have no bearing on the flow map

definition inside Ω, the corresponding inside-outside positions should freely leave Ω in

the PDE-solve. Conversely, the outside-inside positions (i.e. the ones that enter Ω)

correspond to trajectories that start inside Ω but end up outside. As the flow map

is not defined for such trajectories, the corresponding outside-inside positions should

be prohibited from entering Ω in the PDE-solve. Thus the only locations where the

flow maps are well-defined correspond to the positions that start inside Ω and also

end up inside Ω. We refer to this as the inside-inside rule. This duality between

the Lagrangian trajectories and the Eulerian positions is summarized in Table 5.1.

Even though both the flow maps are only defined for the inside-inside positions, the

Table 5.1: Equivalence between the Lagrangian trajectories and the Eulerian positions.

Name Lagrangian Trajectory PDE Position

Inside-outside position Start outside Ω, end up inside. Start inside Ω and
leave it during [0, 𝑇 ].

Outside-inside position Start inside Ω, end up outside. Start outside Ω and
enter it during [0, 𝑇 ].

Inside-inside position Start and end up inside Ω. Start inside Ω and
end up inside Ω.

Outside-outside position Start and end up outside Ω. Start outside Ω and
end up outside Ω.

forward flow map is defined at the initial locations of these positions, whereas the

backward flow map is defined at their final locations. Hence, the domain of definition

of the forward and the backward flow maps are different from each other.

These open boundary conditions imply that there may be regions of domain with-

out any tracer present (i.e. locations that are contained in Ω but not in Ω𝑎). Further,

as the tracer is free to flow out, but prohibited to enter, the amount of tracer inside

the domain is never-increasing, and hence the active domain Ω𝑎 shrinks over time.

Thus, the flow map PDEs Eq. (3.3) and Eq. (3.4) need to be solved on an increasingly

irregular and shape-changing domain.

If the solver used for Eq. (3.3) or Eq. (3.4) is able to handle shape changing do-
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mains then the implementation is straightforward, as the effective domain shape is

readily available through the previous computations. However, this eliminates the

parallelization capabilities of the method of composition, as now the resultant do-

main is an outcome of the previous flow map computations and the corresponding

compositions. Hence, the individual flow map computations are not independent of

each other and a sequentiality is established through the domain shape requirement.

We propose a novel approach to compute the active domain Ω𝑎 by considering a

new ‘mask’ field along with the flow map. This approach does not require the solver

to adapt to shape changing domains, and can be used on prior-defined grids and

domains. Further, it does not inhibit the parallelization capabilities of the proposed

method. Intuitively, the mask field represents regions in the domain where the flow

map is defined. The mask field is a function ℳ(𝑥, 𝑡) : Ω → {0, 1}, which is defined

to be 1 when the corresponding location belongs to the active part of the domain,

and is 0 when the location is outside the active part at time 𝑡. That is,

ℳ(𝑥, 𝑡) = 1 ⇐⇒ 𝑥 ∈ Ω𝑎(𝑡) ,

ℳ(𝑥, 𝑡) = 0 ⇐⇒ 𝑥 ∈ Ω ∩ (R𝑛∖Ω𝑎(𝑡)) .

Here, R𝑛∖Ω𝑎(𝑡) denotes the complement of Ω𝑎(𝑡). The flow map computation is

carried out on the original domain with open boundary conditions (OBCs) given by

Eq. (5.7),

OBCs:

⎧⎪⎨⎪⎩𝛼(𝑥, 𝑡) = ̂︀𝑥 if 𝑣(𝑥, 𝑡) · n̂𝜕Ω(𝑥) < 0 ,

open (radiation) boundary if 𝑣(𝑥, 𝑡) · n̂𝜕Ω(𝑥) ≥ 0 .

(5.7)

where ̂︀𝑥 is some fixed value not contained in Ω, and the final flow map is obtained

by a bit-wise And operation with the mask field ℳ(𝑥, 𝑡).
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5.3.2 Mask Field for Open Domains

The above operations requires the availability of the mask field ℳ(𝑥, 𝑡). We now

show that the evolution of the mask field is also governed by the advective transport

Eq. (2.8), with specific well-posed initial and boundary conditions. Let us look at

the computation of the mask for the backward flow map (i.e. forward advection).

Analogous treatment follows for the forward flow map (with appropriate reversal of

the temporal coordinate).

We show that the mask field for the backward flow map is obtained by solving

the advective transport Eq. (5.8) forward in time, with a specified constant initial

condition (1 in our case),

𝜕ℳ(𝑥, 𝑡)

𝜕𝑡
+ 𝑣(𝑥, 𝑡) · ∇ℳ(𝑥, 𝑡) = 0 ,

Initial condition: ℳ(𝑥, 0) = 1 ∀ 𝑥 ∈ Ω .

(5.8)

The OBCs for the computation are given by Eq. (5.9),

OBCs:

⎧⎪⎨⎪⎩ℳ(𝑥, 𝑡) = 0 if 𝑣(𝑥, 𝑡) · n̂𝜕Ω(𝑥) < 0 ,

open (radiation) boundary if 𝑣(𝑥, 𝑡) · n̂𝜕Ω(𝑥) ≥ 0 .

(5.9)

A simple OBC consist of numerically enforcing a null second-order-derivative, 𝜕2ℳ
𝜕n̂2

𝜕Ω
=

0, when 𝑣(𝑥, 𝑡) · n̂𝜕Ω(𝑥) ≥ 0 (i.e. outward flow). However any other consistent OBC

formulations including radiation or other semi-provided OBCs can be used [150]. In

the Lagrangian sense, these OBCs for Eulerian fields model the trajectories incoming

or outgoing the numerical domain.

The fact that ℳ(𝑥, 𝑡) satisfies Eq. (5.8) can be proven as follows. We assume the

existence of a globally defined Lipschtiz continuous velocity field V : R𝑛×[0, 𝑇 ] → R𝑛,

whose restriction to Ω at time 𝑡 is the known velocity field 𝑣(𝑥, 𝑡) for all 𝑡 (a practical

approach for constructing such a velocity field is proposed in Tang et al. [242], for

example).

We now consider the advective transport of a tracer field ̂︀𝛼 : R𝑛 → R𝑛, with an
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initial value given by Eq. (5.10),

̂︀𝛼(𝑥, 0) = 𝑥 ⇐⇒ 𝑥 ∈ Ω ,

̂︀𝛼(𝑥, 0) = ̂︀𝑥 ⇐⇒ 𝑥 ∈ R𝑛∖Ω .
(5.10)

The restriction of ̂︀𝛼(𝑥, 0) on Ω yields the requisite initial condition for the com-

putation of the backward flow map on Ω𝑎, as Ω𝑎(0) = Ω. Further, as the advective

transport equation Eq. (2.8) is hyperbolic (i.e. the equation is reversible in time, with

no global irreversible effects such as diffusion), the restriction of ̂︀𝛼(𝑥, 𝑡) on Ω𝑎(𝑡) al-

ways yields the flow map 𝜑0
𝑡 (𝑥) for all times 𝑡. As we solve Eq. (2.8) with ̂︀𝛼 defined

over the entire R𝑛, the domain boundaries lie at infinity. This makes the imposed

boundary conditions irrelevant. Further, the positions that initially start outside Ω

but now lie inside are obtained by considering the locations where ̂︀𝛼 = ̂︀𝑥, inside Ω.

By definition, these are the locations where the mask should have value 0. Thus, we

define the mask field as follows:

ℳ(𝑥, 𝑡) =

⎧⎪⎨⎪⎩0 ⇐⇒ ̂︀𝛼(𝑥, 𝑡) = ̂︀𝑥 ,

1 otherwise .
(5.11)

ℳ has a direct linear dependence on 𝛼, and hence it is also governed by the transport

equation Eq. (2.8). Also, as Ω𝑎(0) = Ω, we have ℳ(𝑥, 0) = 1. Finally, while evolvinĝ︀𝛼 on R𝑛, the tracer values are advected according to the velocity field V (𝑥, 𝑡). We

choose V on R𝑛∖Ω such that any parcel with a tracer value different than ̂︀𝑥 that

enters R𝑛∖Ω (from Ω) is advected to infinity without it re-entering Ω (as is done in

Tang et al. [242]). Note that the restriction of V (𝑥, 𝑡) to Ω is still 𝑣(𝑥, 𝑡). Thus, it

is clear that the tracer values entering Ω after 𝑡 = 0 are only ̂︀𝑥. This implies that

for 𝑥 ∈ 𝜕Ω with 𝑣(𝑥, 𝑡) · n̂𝜕Ω(𝑥) < 0, we have ̂︀𝛼(𝑥, 𝑡) = ̂︀𝑥. Thus, at such 𝑥, we have

ℳ(𝑥, 𝑡) = 0. Finally, as tracer evolution is solved over R𝑛, there is no restriction on

the values that leave Ω, as they are advected away by the velocity field V and never

return to Ω. This implies that there exists an open boundary for the tracer values to

exit Ω. The above statements imply that the boundary conditions for the mask field
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are the ones given by Eq. (5.9), thus completing the proof.

Numerically, the mask field brings forth other issues. Typically, any numerical

advection scheme is diffusive and/or dispersive. This implies that the mask field

values in Ω are not exactly equal to 0 or 1. In such cases, a heuristic can be used.

The potential numerical issues in the application of the mask field are simplified to

a great extent by composing the intermediate mask fields, similar to the method of

composition. This is due to the following reason: We compute each individual mask

field (of length one numerical timestep) independently of the others. As the interval

of advection is just one timestep, there is virtually no numerical diffusion and/or

dispersion in the field. Finally, while composing these individual mask fields, any

point 𝑥 is considered to be inside Ω𝑎(𝑡) if and only if all the individual constituent

mask fields have this point inside their corresponding Ω𝑎. This can be very easily

achieved by setting the masked values of the flow map field in Ω (i.e. the values of

the flow map field over Ω ∩ (R𝑛∖Ω𝑎(𝑡))) to be NaN. This ensures that whenever the

flow map composition operation encounters a NaN value in the mask field for any

particular location 𝑥, the corresponding final flow map value will always be NaN.

Thus, using our method of composition greatly increases the accuracy of PDE-based

flow map computation in open domains over longer time intervals, without the need

for heuristics.

5.4 Persistent Lagrangian Coherence / Incoherence

in Dynamic Flows

We now discuss the quantification of rigid, persistently rigid, and non-rigid material

sets in dynamic fluid flows. We propose new mathematical criteria which define these

sets when thresholded appropriately. The criteria are Lagrangian, objective, and can

be efficiently computed through flow map composition. Unlike most existing La-

grangian measures, these criteria can be used to detect both rigid and non-rigid sets

- low values of these coherence criteria indicate rigid/persistently rigid sets whereas
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high values of these criteria indicate most non-rigid/incoherent sets. We also show

how the obtained rigid material sets are the ones that maximally resist chaotic ad-

vection and material diffusion.

5.4.1 Polar Distance as a Coherence / Incoherence Metric

An infinitesimal vector 𝜉0(𝑥) at position 𝑥 at time 𝑡 = 0 is transformed into 𝜉𝑇 (𝑥) at

time 𝑡 = 𝑇 under the action of the flow map 𝜑𝑇
0 such that:

⟨𝜉𝑇 (𝑥), 𝜉𝑇 (𝑥)⟩ = ⟨∇𝜑𝑇
0 (𝑥)𝜉0(𝑥),∇𝜑𝑇

0 (𝑥)𝜉0(𝑥)⟩ = ⟨𝐶𝑇
0 (𝑥)𝜉0(𝑥), 𝜉0(𝑥)⟩ . (5.12)

This implies that the relative change in the magnitude, i.e. the stretching of this vec-

tor, is locally maximum if 𝜉0(𝑥) corresponds to the eigenvector of 𝐶𝑇
0 (𝑥) with the

largest eigenvalue 𝜆(0,𝑇 )
1 (𝑥), i.e. 𝜉0(𝑥) = 𝑉1(𝑥). In that case, |𝜉𝑇 (𝑥)|2 = 𝜆

(0,𝑇 )
1 (𝑥)|𝜉0(𝑥)|2.

One can obtain the finite time Lyapunov exponent (FTLE) field by logarithmically

rescaling the 𝜆
(0,𝑇 )
1 (𝑥) with the time duration of interest (see Sec. 5.1.2). Another

approach defines LCS as integral curves of direction fields obtained from the singular

vectors 𝑉𝑗(𝑥) (of either the forward or the backward flow map) [101]. Although these

curves are locally most repelling when allowing deformations [102], this approach does

not yield globally coherent structures since a LCS can be drawn from every point of

the domain, and it is unclear how to retain the most influential ones. One can choose

the curve passing through the global maxima of the FTLE field [101], however it is

not guaranteed that the global-maximum property is maintained all along the curve.

Other variants of this approach have been considered in [104] as well as some instan-

taneous reductions in [221]. Further, although FTLEs quantify ridges along which a

fluid parcels experience high shear strain, it is not always true that fluid parcels in

areas with low FTLE values experience low shear / distortion. Finally, all of these

approaches help us compute material transport barriers that are co-dimension one

surfaces (i.e. of dimension 𝑛 − 1). However, our goal in this work is to extract co-

herent / rigid and incoherent / deformed material sets, which are subregions of Ω and

hence have the same dimension as Ω (i.e. they are co-dimension zero).
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A new criterion called the polar distance, first proposed in [64; 66] allows us to

extract subdomains (instead of co-dimension one surfaces) that exhibit the highest or

the lowest degree of material coherence. Feppon [64] makes use of the work by John

[123] that states that any transformation ℱ is rigid (i.e. expressible as a translation

plus a rotation) if and only if its Jacobian ∇ℱ is orthonormal. Applying this general

theorem when the transformation at hand is the flow map 𝜑𝑇
0 , we can say that a

material set 𝒜 ∈ Ω𝑎(0) is perfectly rigid if and only if the flow map Jacobian is

orthonormal when restricted over 𝒜.

However, it is expected that no material set would exhibit perfect rigidity espe-

cially in the case of realistic flows. Thus, we require a quantitative metric to judge the

deviation of material sets from perfect rigidity and the associated expected amount

of stretching. To this end, [66] shows that a material set is expected to undergo

stretching by a factor of 𝑒ℓ𝑇 , where ℓ is the characteristic length of the set and 𝑒 > 0

is such that |𝜎𝑗 − 1| ≤ 𝑒 ∀ 1 ≤ 𝑗 ≤ 𝑛. A suggested choice of 𝑒 is |∇𝑣|Ω×[0,𝑇 ]
∞ [66]. One

can further see that:

|𝜎𝑗 − 1| ≤ 𝑒 =⇒
(︀
𝜎2
𝑗 − 1

)︀
− 2 (𝜎𝑗 − 1) ≤ 𝑒2 =⇒

(︀
𝜎2
𝑗 − 1

)︀
≤ 𝑒2 + 2𝑒 .

However, as 𝜎2
𝑗 = 𝜆

(0,𝑇 )
𝑗 , we have

⃒⃒⃒
𝜆
(0,𝑇 )
𝑗 − 1

⃒⃒⃒
≤ 𝑒2+2𝑒 =⇒

⃒⃒⃒
𝜆
(0,𝑇 )
𝑗 − 1

⃒⃒⃒
/ 2𝑒 for small 𝑒.

This result suggests that the expected amount of stretching of a material set can

be quantified in terms of the deviation of the eigenvalues of the Cauchy-Green strain

tensor from unity restricted over this set. This motivates us to define this deviation

as a metric to determine materially rigid subdomains of a flow domain. Eq. (5.13)

defines the resulting polar distance metric:

𝒫𝑇
0 (𝑥) =

𝑛∑︁
𝑗=1

(︁
1 − 𝜆

(0,𝑇 )
𝑗 (𝑥)

)︁2
𝜆
(0,𝑇 )
𝑗 (𝑥)

. (5.13)

Note that our definition of the polar distances defers from that of [64; 66]. This is

done to make the polar distance metric equaivalent when computed using the forward

and the backward flow maps, and hence truly Lagrangian (see Sec. 5.4.3). However,
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we can still relate the tolerance 𝑒 with this metric as follows:

As we have that
⃒⃒⃒
𝜆
(0,𝑇 )
𝑗 − 1

⃒⃒⃒
/ 2𝑒 for small 𝑒, we get that 𝜆

(0,𝑇 )
𝑗 ∈ [1 − 2𝑒, 1 + 2𝑒],

=⇒ 1√︁
𝜆
(0,𝑇 )
𝑗

∈
[︁
(1 + 2𝑒)−1/2 , (1 − 2𝑒)−1/2

]︁
.

Using second-order Taylor approximation,

1√︁
𝜆
(0,𝑇 )
𝑗

∈
[︂
1 − 𝑒 +

3𝑒2

2
, 1 + 𝑒 +

3𝑒2

2

]︂
,

=⇒
𝜆
(0,𝑇 )
𝑗 − 1√︁
𝜆
(0,𝑇 )
𝑗

∈
[︀
−2𝑒 + 2𝑒2 − 3𝑒3, 2𝑒 + 2𝑒2 + 3𝑒3

]︀
.

Thus, for small 𝑒, we have that
⃒⃒⃒⃒
𝜆
(0,𝑇 )
𝑗 −1√︁
𝜆
(0,𝑇 )
𝑗

⃒⃒⃒⃒
≤ 2𝑒. This implies:

𝒫𝑇
0 =

𝑛∑︁
𝑗=1

(︁
1 − 𝜆

(0,𝑇 )
𝑗

)︁2
𝜆
(0,𝑇 )
𝑗

≤ 4𝑛𝑒2 . (5.14)

Rigid sets 𝒜𝜖,(0,𝑇 ) (with tolerance 𝜖) are obtained as the connected components of:

𝒜𝜖,(0,𝑇 ) = {𝑥 ∈ Ω | 𝒫𝑇
0 (𝑥) ≤ 𝜖} . (5.15)

As the polar distance is thresholded above by 𝜖, we get that 𝑒 = 0.5(𝜖/𝑛)1/2 from

Eq. (5.14). Thus a connected component of 𝒜𝜖,(0,𝑇 ) with a characteristic length ℓ

undergoes an expected stretching of 0.5ℓ𝑇
√︀

𝜖/𝑛 over the time interval [0, 𝑇 ].

Analogously, the most incoherent sets, ℬ𝜖′,(0,𝑇 ), are obtained by considering loca-

tions with high polar distance values and by thersholding the value from below,

ℬ𝜖′,(0,𝑇 ) = {𝑥 ∈ Ω | 𝒫𝑇
0 (𝑥) ≥ 𝜖′} . (5.16)
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5.4.2 Extended Polar Distance as a Persistent Coherence /

Incoherence Metric

To determine persistently rigid sets, we need to consider the rigidity of material sets

between the start time and all the intermediate times. That is, the values of the polar

distance for all intermediate times (i.e. 𝒫 𝑡
0 ∀ 𝑡 ∈ [0, 𝑇 ]) must be considered instead

of only at the end time. The desired persistent coherence field (that is yet to be

defined), denoted by 𝒫𝑇

0 : Ω𝑎(𝑇 ) → R, should only indicate coherence in regions that

are observed to be appreciably rigid for all intermediate times. Persistently coherent

sets are then obtained by thresholding 𝒫𝑇

0 to an appropriate tolerance. We call this

metric extended polar distance. 𝒫𝑇

0 is defined in Eq. (5.17):

𝒫𝑇

0 (𝑥) =

∫︁ 𝑇

0

𝑤(𝑥, 𝑡)𝒫 𝑡
0(𝑥)𝑑𝑡 =

∫︁ 𝑇

0

𝑤(𝑥, 𝑡)

⎛⎜⎝ 𝑛∑︁
𝑖=1

(︁
1 − 𝜆

(0,𝑡)
𝑗 (𝑥)

)︁2
𝜆
(0,𝑡)
𝑗 (𝑥)

⎞⎟⎠ 𝑑𝑡 , (5.17)

where 𝑤(𝑥, 𝑡) is a normalized weighing function (i.e.
∫︀ 𝑇

0
𝑤(𝑥, 𝑡)𝑑𝑡 = 1 ∀ 𝑥 ∈ Ω𝑎).

This expression considers the coherence between the start time and an intermediate

time 𝑡, for all 𝑡 ∈ [0, 𝑇 ]. Typically 𝑤(𝑥, 𝑡) = 1
𝑇
; however unequal weight can be conve-

niently assigned depending on the specifics of the problem. While computing 𝒫𝑇

0 , it is

extremely important to consider 𝒫 𝑡𝑗
𝑡𝑖 where at least one amongst 𝑡𝑖 and 𝑡𝑗 is either the

start time or the end time. This way, it is ensured that the coherence at intermediate

times is measured only with respect to the start or the end times. If coherence is

considered over the individual subintervals of [0, 𝑇 ], then the translation and rotation

of the individual sets is not respected and only those sets that remain fixed in space

and time are detected to be coherent. The numerical version of the extended polar

distance (assuming uniform weighing function 𝑤(𝑡)), denoted by 𝒫̃
𝑇

0 (𝑥), is given by

Eq. (5.18),

𝒫̃
𝑇

0 (𝑥) =
1

𝑁𝑡

𝑁𝑡∑︁
𝑖=1

𝑛∑︁
𝑗=1

(︁
1 − 𝜆

(0,𝑖Δ𝑡)
𝑗 (𝑥)

)︁2
𝜆
(0,𝑖Δ𝑡)
𝑗 (𝑥)

. (5.18)
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Once 𝒫𝑇

0 is computed, persistently rigid / coherent sets, denoted 𝒜𝜖,(0,𝑇 ), can be ob-

tained by thresholding 𝒫𝑇

0 from Eq. (5.17) up to a certain tolerance,

𝒜𝜖,(0,𝑇 )
= {𝑥 ∈ Ω | 𝒫𝑇

0 (𝑥) ≤ 𝜖} . (5.19)

Persistently incoherent sets, ℬ𝜖′,(0,𝑇 ), are obtained by considering locations with high

extended polar distance values and by thersholding the value from below,

ℬ𝜖′,(0,𝑇 )
= {𝑥 ∈ Ω | 𝒫𝑇

0 (𝑥) ≥ 𝜖′} . (5.20)

In Sec. 5.4.3 we show that the extended polar distance captures the tendency of a

material set to be distorted due to advection and its tendency to be diffused. Thus,

the sets that are deemed to be persistently incoherent either undergo large distortions

due to advection or are highly susceptible to small-scale diffusion or both.

5.4.3 Remarks

Objectivity

One of the foremost requirements for any Lagrangian coherence measure is objectiv-

ity, i.e. frame independence [101]. This means that the proposed metric should be

appropriately transformed under any Gallilean transformation of the reference frame

to detect the same coherent / incoherent material sets. This requirement arises from

the fact that should the observer change reference frames, the material sets that

are detected to be coherent / incoherent should not change, as they are an intrinsic

property of the considered flow field.

Most Eulerian coherence criteria, such as the Okubo-Weiss criterion etc., are not

objective. This is exemplified in Fig. (2-1), wherein a material blob considered co-

herent by the Okubo-Weiss criterion stretches out exponentially fast. In that case,

even though the streamlines appear vortical in a stationary frame of reference, they

transform into a saddle if one jumps onto a reference frame moving with a constant

velocity, justifying the diverging material flow.
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Our polar distance and extended polar distance criteria solely rely on the spectrum

of the right CG strain tensor. As the spectrum of the CG strain tensor is known to be

objective [99; 101; 225], the polar distance and the extended polar distance criteria

are also objective.

Forward - Backward Duality

We have utilized the forward flow maps in defining the polar distance (Eq. (5.13)) and

the extended polar distance (Eq. (5.17)). However, one can equivalently choose to use

the backward flow maps to compute these quantities. A couple of natural questions

that arise are: (i) which flow maps should be used to compute these criteria? and (ii)

is there any relation between the material sets predicted by these criteria when using

the forward flow maps and those predicted when using the backward flow maps?

As shall be seen, the sets obtained through the polar distance and the extended

polar distance while using the forward and the backward flow map are equivalent.

Specifically, the criteria when using either the forward or the backward flow map pre-

dict the same material sets but at different points in time, eliminating any ambiguity.

This can be proven as follows. We know that the forward and the backward flow

maps are inverses of each other. That is:

𝑥0 = 𝜑0
𝑇 (𝑥𝑇 ) = 𝜑0

𝑇

(︀
𝜑𝑇

0 (𝑥0)
)︀
. (5.21)

Differentiating Eq. (5.21) with respect to 𝑥0, we get that:

I𝑛 = ∇𝜑0
𝑇 (𝑥𝑇 )∇𝜑𝑇

0 (𝑥0) . (5.22)

Eq. (5.22) implies that 𝜑0
𝑇 (𝑥𝑇 ) and 𝜑𝑇

0 (𝑥0) are inverses of each other, and thus their

singular values are inverses of each other. Thus the eigenvalues of 𝐶𝑇
0 (𝑥0) and 𝐶0

𝑇 (𝑥𝑇 ),

i.e. 𝜆(0,𝑇 )
𝑗 (𝑥0) and 𝜆

(𝑇,0)
𝑗 (𝑥𝑇 ) are inverses of each other, given by Eq. (5.23):

𝜆
(0,𝑇 )
𝑗 (𝑥0) =

(︁
𝜆
(𝑇,0)
𝑗 (𝑥𝑇 )

)︁−1

∀ 1 ≤ 𝑗 ≤ 𝑛 . (5.23)
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Substituting Eq. (5.23) in Eq. (5.13), we obtain:

𝒫𝑇
0 (𝑥0) =

𝑛∑︁
𝑗=1

(︁
1 − 𝜆

(0,𝑇 )
𝑗 (𝑥0)

)︁2
𝜆
(0,𝑇 )
𝑗 (𝑥0)

=
𝑛∑︁

𝑗=1

(︂
1 −

(︁
𝜆
(𝑇,0)
𝑗 (𝑥𝑇 )

)︁−1
)︂2

(︁
𝜆
(𝑇,0)
𝑗 (𝑥𝑇 )

)︁−1 ,

=⇒ 𝒫𝑇
0 (𝑥0) =

𝑛∑︁
𝑗=1

(︁
𝜆
(𝑇,0)
𝑗 (𝑥𝑇 ) − 1

)︁2
𝜆
(𝑇,0)
𝑗 (𝑥𝑇 )

= 𝒫0
𝑇 (𝑥𝑇 ) .

(5.24)

Thus, we have that 𝒫0
𝑇 (𝑥𝑇 ) = 𝒫𝑇

0 (𝑥0) = 𝒫𝑇
0 (𝜑0

𝑇 (𝑥𝑇 )). Rigid sets obtained at time

𝑡 = 0 by thresholding Eq. (5.13) computed using the forward flow map (denoted

by 𝒜𝜖,(0,𝑇 )) coincide with those obtained at time 𝑡 = 𝑇 by thresholding Eq. (5.13)

computed using the backward flow map (denoted by 𝒜𝜖,(𝑇,0)), advected backward in

time. This is summarized by the polar distance duality of Eq. (5.25),

𝒜𝜖,(0,𝑇 ) = {𝑥0 ∈ Ω | 𝒫𝑇
0 (𝑥0) ≤ 𝜖} = 𝜑0

𝑇

(︀
{𝑥𝑇 ∈ 𝜑𝑇

0 (Ω) | 𝒫0
𝑇 (𝑥𝑇 ) ≤ 𝜖}

)︀
,

=⇒ 𝒜𝜖,(0,𝑇 ) = 𝜑0
𝑇

(︀
𝒜𝜖,(𝑇,0)

)︀
. (5.25)

Similar to the polar distance (Eq. (5.25)), the forward - backward duality for the

extended polar distance (when appropriately thresholded to obtain persistently rigid

sets) also holds true, given by Eq. (5.26):

𝒜𝜖,(0,𝑇 )
= {𝑥0 ∈ Ω | 𝒫𝑇

0 (𝑥0) ≤ 𝜖} = 𝜑0
𝑇

(︁
{𝑥𝑇 ∈ 𝜑𝑇

0 (Ω) | 𝒫0

𝑇 (𝑥𝑇 ) ≤ 𝜖}
)︁
,

=⇒ 𝒜𝜖,(0,𝑇 )
= 𝜑0

𝑇

(︁
𝒜𝜖,(𝑇,0)

)︁
. (5.26)

Here, 𝒜𝜖,(0,𝑇 ) are the persistently rigid sets computed using the forward flow map

𝜑𝑇
0 (𝑥) whereas 𝒜𝜖,(𝑇,0) are the persistently rigid sets computed using the backward

flow map 𝜑0
𝑇 (𝑥).

Simply put, these criteria predict the initial configuration of the rigid / persistently

rigid sets while using the forward flow maps and predict the final configuration of the

same rigid / persistently rigid sets when using the backward flow maps.
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Efficient Computation of the Extended Polar Distance

The computation of 𝒫𝑇

0 requires the availability of flow maps 𝜑𝑡
0 for all 𝑡 ∈ [0, 𝑇 ].

Typically, this can be prohibitively expensive to compute, especially for large domains

or longer time durations. However, the method of composition can be effectively used

to minimize the extra computation required for Eq. (5.17) or Eq. (5.18).

The computation of 𝒫 𝑡
0 only requires the eigenvalues of the corresponding CG

strain tensor (𝐶𝑡
0), which are equal to the squares of the singular values of the gradient

of the associated flow map (∇𝜑𝑡
0). We can use this observation to efficiently compute

the extended polar distance. As the final flow map is a composition of the individual

flow maps, its Jacobian is simply the multiplication of the corresponding individual

flow map Jacobians through chain rule. That is:

𝜑𝑖
0 (𝑥) = 𝜑𝑖

𝑖−1

(︀
𝜑𝑖−1

0 (𝑥)
)︀

= 𝜑𝑖
𝑖−1

(︀
𝜑𝑖−1

𝑖−2

(︀
. . .
(︀
𝜑2

1

(︀
𝜑1

0 (𝑥)
)︀)︀)︀)︀

,

=⇒ ∇𝑥𝜑
𝑖
0 (𝑥) = ∇𝜑𝑖−1

0 (𝑥)𝜑
𝑖
𝑖−1

(︀
𝜑𝑖−1

0 (𝑥)
)︀
· ∇𝑥𝜑

𝑖−1
0 (𝑥) = ∇𝜑𝑖

𝑖−1 · ∇𝑥𝜑
𝑖−1
0 (𝑥) .

This can recursively be computed, where the explicit form of ∇𝑥𝜑
𝑖
0(𝑥) then becomes:

∇𝑥𝜑
𝑖
0(𝑥) =

𝑖∏︁
𝑘=1

∇𝑥𝜑
𝑖−𝑘+1
𝑖−𝑘 (𝑥) . (5.27)

Eq. (5.27) allows us to compute ∇𝜑𝑖
0 on the fly (along with 𝜑𝑖

0). Similarly, for the

backward flow map, we have:

𝜑0
𝑖 (𝑥) = 𝜑0

1

(︀
𝜑1

𝑖 (𝑥)
)︀

= 𝜑0
1

(︀
𝜑1

2

(︀
. . .
(︀
𝜑𝑖−2

𝑖−1

(︀
𝜑𝑖−1

𝑖 (𝑥)
)︀)︀)︀)︀

,

∇𝑥𝜑
0
𝑖 (𝑥) =

𝑖∏︁
𝑘=0

∇𝑥𝜑
𝑘
𝑘+1 (𝑥) . (5.28)

This simultaneous computation of the flow map and its Jacobian greatly reduces

the cost of computing the extended polar distance. Further, efficient algorithms such

as the one proposed by Golub et al. [84] can be utilized to compute the singular

values of ∇𝜑𝑖
0, given the singular values of ∇𝜑𝑖

𝑖−1 and ∇𝜑𝑖−1
0 . Cases where enough
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computational power and / or memory both are unavailable can be handled by using

approximate techniques. For example, the memory requirement can be decreased by

considering the individual flow maps over longer duration (multiple timesteps) such

that the number of flow map fields to be stored is reduced.

Equivalence with Existing Measures

We now show that the extended polar distance is closely related to the recently pro-

posed ‘diffusion barrier strength’ (DBS) [106], which is an objective measure that

indicates distinguished material surfaces that are local minimizers of diffusive trans-

port. Analogous to the FTLE field in purely advective flows, the most prevailing

diffusion barriers at the initial time are marked by the ridges of 𝐷𝐵𝑆𝑇
0 (𝑥). These

surfaces may undergo arbitrary amounts of advective distortion but the diffusive flux

through them is an order of magnitude smaller than any material surface in their

neighborhood. However unlike FTLE, DBS is a predictive diagnostic, i.e. it does not

require any actual diffusive simulation and arises from the construction of diffusion

extremizers. The diffusion barrier strength is defined by Eq. (5.29),

𝐷𝐵𝑆𝑇
0 (𝑥) = Tr

(︁
𝒯 𝑇

0 (𝑥)
)︁

= Tr
(︂

1

𝑇

∫︁ 𝑇

0

𝒯 𝑡
0 (𝑥)𝑑𝑡

)︂
=

1

𝑇

∫︁ 𝑇

0

Tr
(︀
𝒯 𝑡
0 (𝑥)

)︀
𝑑𝑡 . (5.29)

The tensor 𝒯 𝑡
0 (𝑥) ∈ ℜ𝑛×𝑛 is called the ‘transport tensor’ [106] and is defined in terms

of the local diffusion tensor (𝒟(𝑥) ∈∈ ℜ𝑛×𝑛) as:

𝒯 𝑡
0 (𝑥) =

[︀
𝜑𝑡

0(𝑥)
]︀−1 𝒟

(︀
𝜑𝑡

0(𝑥)
)︀ [︀(︀
𝜑𝑡

0(𝑥)
)︀*]︀−1

(5.30)

Under an isotropic diffusion assumption (i.e. 𝒟(𝑥) = I𝑛 ∀ 𝑥 ∈ Ω), we have:

𝒯 𝑡
0 (𝑥) =

[︀
𝜑𝑡

0(𝑥)
]︀−1 [︀(︀

𝜑𝑡
0(𝑥)

)︀*]︀−1
=
(︀
𝐶𝑡

0(𝑥)
)︀−1 (5.31)

As the Cauchy-Green strain tensor is always symmetric positive-definite, the eigen-

values of its inverse are the reciprocals of its eigenvalues. Invoking the definition of
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the trace of a matrix as the sum of its eigenvalues, we have:

Tr
(︀
𝒯 𝑡
0 (𝑥)

)︀
= Tr

(︁(︀
𝐶𝑡

0(𝑥)
)︀−1
)︁

=
𝑛∑︁

𝑗=1

1

𝜆
(0,𝑡)
𝑗 (𝑥)

. (5.32)

Thus, the DBS field under isotropic diffusion is given by:

𝐷𝐵𝑆𝑇
0 (𝑥) =

1

𝑇

∫︁ 𝑇

0

𝑛∑︁
𝑗=1

1

𝜆
(0,𝑡)
𝑗 (𝑥)

𝑑𝑡 . (5.33)

Let’s now show how this result is linked to our extended polar distance by expanding

it, assuming uniform weighting,

𝒫𝑇

0 =
1

𝑇

∫︁ 𝑇

0

𝒫 𝑡
0(𝑥)𝑑𝑡 ,

=
1

𝑇

∫︁ 𝑇

0

𝑛∑︁
𝑗=1

(︁
1 − 𝜆

(0,𝑡)
𝑗 (𝑥)

)︁2
𝜆
(0,𝑡)
𝑗 (𝑥)

𝑑𝑡 ,

=
1

𝑇

∫︁ 𝑇

0

𝑛∑︁
𝑗=1

(︃
𝜆
(0,𝑡)
𝑗 (𝑥) +

1

𝜆
(0,𝑡)
𝑗 (𝑥)

− 2

)︃
𝑑𝑡 ,

=
1

𝑇

∫︁ 𝑇

0

𝑛∑︁
𝑗=1

𝜆
(0,𝑡)
𝑗 (𝑥)𝑑𝑡 +

1

𝑇

∫︁ 𝑇

0

𝑑∑︁
𝑗=1

1

𝜆
(0,𝑡)
𝑗 (𝑥)

𝑑𝑡− 2𝑛 .

Thus, we have that:

𝒫𝑇

0 (𝑥) = Tr
(︁
𝐶𝑇

0 (𝑥)
)︁

+ 𝐷𝐵𝑆𝑇
0 (𝑥) − 2𝑛 . (5.34)

Here, 𝐶𝑇
0 (𝑥) denotes the averaged CG strain tensor, given by:

𝐶𝑇
0 (𝑥) =

1

𝑇

∫︁ 𝑇

0

𝐶𝑡
0(𝑥)𝑑𝑡 . (5.35)

Recall that the CG strain tensor 𝐶𝑇
0 (𝑥) is the instantaneous advective strain at time

𝑡 experienced by an infinitesimal element initially located at 𝑥. Thus, the averaged

CG strain tensor, i.e. 𝐶𝑇
0 (𝑥) denotes the mean advective strain experienced by an

infinitesimal element over the entire time interval [0, 𝑇 ]. Tr
(︁
𝐶𝑇

0 (𝑥)
)︁

quantifies the

133



magnitude of the mean strain through the trace norm of 𝐶𝑇
0 (𝑥).

Eq. (5.34) implies that the extended polar distance is the sum of the trace of

the time averaged CG strain tensor and the diffusion barrier strength, offset by a

constant (2𝑛). The first part, i.e. Tr
(︁
𝐶𝑇

0 (𝑥)
)︁
, quantifies the time averaged strain on

the material parcels due to advective transport, and the latter part, i.e. 𝐷𝐵𝑆𝑇
0 (𝑥),

captures the tendency of local material diffusion. A fluid set is classified as persistently

rigid if and only if the time averaged stretching of the material and its susceptibility

to diffusion over the time of interest are both low. Conversely, the set is deemed to

be non-rigid if it either undergoes a lot of stretching or is prone to material diffusion

during the time interval of interest.

In the case of a 2D incompressible flow, we have that:

det
(︀
𝜑𝑡

0(𝑥)
)︀

= 𝜆
(0,𝑡)
1 (𝑥)𝜆

(0,𝑡)
2 (𝑥) = 1 ∀ 𝑡 ∈ [0, 𝑇 ], 𝑥 ∈ Ω𝑎(𝑡) .

=⇒ 𝐷𝐵𝑆𝑇
0 (𝑥) =

1

𝑇

∫︁ 𝑇

0

2∑︁
𝑗=1

1

𝜆
(0,𝑡)
𝑗 (𝑥)

𝑑𝑡 =
1

𝑇

∫︁ 𝑇

0

2∑︁
𝑗=1

𝜆
(0,𝑡)
𝑗 (𝑥)𝑑𝑡 = Tr

(︁
𝐶𝑇

0

)︁
.

Thus the extended polar distance and the 𝐷𝐵𝑆 in this case are related by:

𝒫𝑇

0 (𝑥) = 2𝐷𝐵𝑆𝑇
0 (𝑥) − 4 . (5.36)

That is, the extended polar distance is simply a scaled version of the DBS. This implies

that the sets that are deemed to be persistently rigid are also the ones minimally

susceptible to material diffusion. Similarly, the sets that are deemed to be non-rigid

are also the ones for whom material diffusion is large, as evident from the high DBS

value. This is also because the perimeter of non-rigid sets is expected to increase

exponentially with time, which indicates enhanced material diffusion.

5.5 Summary

In this chapter, we utilize the method of flow map composition to compute forward

and backward flow maps in realistic open domains, with multiple time-dependent in-
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lets and/or outlets. This is achieved by defining a new ‘mask’ field. We prove that

this mask field is also governed by the advective transport equation with well-posed

initial and open boundary conditions. We further show that the mask field can be

accurately computed through composition, and eliminates the need for heuristics to

extract active domains from this mask field. Equipped with the ability to exactly

compute flow maps in open domains, we develop a mathematical definition of per-

sistent Lagrangian coherence and incoherence. Specifically, our new ‘extended polar

distance’ metric quantitatively identifies material sets in open fluid flow domains that

are persistently coherent or the most incoherent. We highlight the objectivity and the

duality of the extended polar distance, eliminating any ambiguity and establishing

this criterion as a fully Lagrangian coherence metric. We also show how the method

of composition can be used to very efficiently compute this extended polar distance.

Finally, we derive and describe the connections of the extended polar distance with

some existing coherence metrics. We find that the extended polar distance can be

expressed as a sum of the time averaged trace of the Cauchy-Green strain tensor and

the diffusion barrier strength. The former component quantifies the average strain

on the material set whereas the latter denotes the tendency of the material set to

diffusive. We thus show that the sets deemed persistently coherent through the ex-

tended polar distance are the ones that resist both advective distortion and diffusive

mixing. The applications of the developed theory are demonstrated on a wide array

of analytical and realistic data-assimilative flow examples in Chapter 6.
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Chapter 6

Lagrangian Analysis of Material

Transport - Applications

In this chapter, we apply the theory and schemes developed in Chapter 5 in both

ideal and realistic flow fields. In Sec. 6.1, we first analyze, compare, and bench-

mark the method of composition to compute flow maps and coherent structures in

open domains. For this purpose, we consider a data-assimilative realistic ocean flow

around the island of Palau in the Southern Pacific Ocean. We show that while reg-

ular advection schemes require heuristics to determine the active domains and lead

to non-physical artifacts in the flow maps and coherent structures, the method of

composition is able to accurately compute these quantities. Following this, we apply

the computational toolbox based on the theory and schemes developed in Chapter

3 and Chapter 5 to compute determinants of Lagrangian material transport in 2D

and 3D in diverse dynamical regimes and in various marine regions around the world.

We then focus our attention on determining incoherent, coherent, and persistently

coherent material sets in dynamic fluid flows in Sec. 6.2. To apply the related theory

and schemes developed in Sec. 5.4, we first consider the analytical double gyre flow,

which is a popular test case in the field of Lagrangian coherence due to the chaotic

nature of material transport. Using our novel criteria, we find that there are four

coherent and two persistently coherent sets in this flow field. We also study the evo-

lution of three of the most incoherent sets in this flow to observe the chaotic transport
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behavior. Finally, we determine such different material sets in the realistic multiscale

flow around Palau and study their evolution. We find that even though the material

sets might be initially close to each other, their evolution can be appreciably different.

The results from this chapter appear in Kulkarni and Lermusiaux [136]; Doshi et al.

[47]; Lermusiaux et al. [153].

6.1 Flow Maps and Lagrangian Material Transport

Studies in the Real Ocean

We first validate and benchmark the extensions to the method of flow map compo-

sition to compute flow maps in open domains. To this end, we utilize a realistic

data-assimilative flow around the island of Palau in the Southern Pacific Ocean over

6 days. We first describe the considered flow field and then benchmark and com-

pare the computed and the actual active domains and the resulting flow maps and

FTLE fields. We observe that the method of composition yields results as accurate as

trajectory-based methods, while maintaining global error bounds and uniform spatial

coverage.

6.1.1 Realistic Ocean Test Case - Flow Around the Island of

Palau in the Southern Pacific Ocean

The island of Palau lies just to the east of the Malay archipelago and sits atop a

plateau along Kyushu-Palau ridge with a deep trench to the southeast. The consid-

ered marine domain is centered at the Palau archipelago chain with narrow shelves

and tides and includes the ridge with steep topography to the deep ocean with eddy

fields and broad currents. Across the southern boundary of the domain, the North

Equatorial Counter Current (NECC) flows to the east. North of the domain, the

North Equatorial Current flows to the west. Between these two, a surface flow im-

pinges on the archipelago, during the period considered from the southeast, and flows

around and over the plateau to the northwest, generating vorticity and eddies.
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Figure 6-1: The MIT-MSEAS modeling domain around the island of Palau in the Southern
Pacific Ocean along with the bathymetry of the region. The left panel shows the relative
location of Palau with respect to the Malay archipelago and our modeling domain. The
right panel is the island modeling domain, showing the complex shape of the island along
with the steep bathymetry drop just southeast of the island.

As before, the dynamic ocean fields (currents, temperature, salinity, and ocean

free-surface) are simulated by our MIT Multidisciplinary Simulation, Estimation and

Assimilation System (MSEAS) [96; 155; 95] (see Sec. 4.3.1). The present MSEAS

simulation domain covers a 420.24 𝑘𝑚 × 358.44 𝑘𝑚 region, as seen in Fig. (6-1).

The domain is discretized with 𝑁𝑥 = 853 and 𝑁𝑦 = 728 and a total integration

time of 144 hours (6 days) from 08 May 2015, 00Z to 14 May 2015, 00Z. The initial

ocean conditions were downscaled from the coarse analysis fields of 08 May 2015 of

the 1/12∘ HYCOM (Hybrid Coordinate Ocean Model) [41]. The higher-resolution

MSEAS simulations were then run up to 14 May 2015, with full tidal forcing [160].

All the boundaries of the domain are open and there is considerable inflow and

outflow during the time of interest. Further, the domain involves an obstacle (i.e. the

island) with complex geometry. Finally, due to the presence of vertical velocities and

of a free-surface in the ocean, this flow field is not exactly divergence-free. These

factors make it a challenging test case for the theory and schemes developed in this

work.
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6.1.2 Benchmarking and Comparisons

We now compare and contrast the different PDE-based approaches to compute flow

maps in open domains, and benchmark them against the corresponding exact solution

which is obtained through high-resolution Lagrangian trajectory advection.

Mask Field Computation in Open Domains

We compute the flow maps in the considered open domain by utilizing the novel

mask field approach developed in Sec. 5.3. The mask field allows us to track the

shape and the evolution of the active domain Ω𝑎 with time. It satisfies the advective

transport equation with well-defined initial and boundary conditions. As described

before, the two possible approaches to compute the evolution of the mask field are (i)

regular advection and (ii) composition-based advection. Any numerical scheme rooted

in difference approximations when used to solve the advective transport equation

suffers from numerical diffusion or dispersion. Thus, when numerically computing

the evolution of the mask field ℳ using regular advection, we observe that ℳ takes

all values in [0, 1]. However, we require the mask field to be binary at all times (equal

to 1 inside Ω𝑎 and 0 outside), and hence heuristics are needed to extract the binary

mask field from this diffused mask field. This causes several issues - (i) the extracted

mask field tends to be inaccurate and is heavily dependent on the employed heuristic,

(ii) based on the heuristic used, one may observe sharp gradients in the flow map fields

at the edges of the active domain, which manifest as high FTLE values, incorrectly

classifying domain edges as hyperbolic attractors or repellers.

However, by using the method of flow map composition to evolve the mask field

itself, the aforementioned pitfalls are greatly overcome. As the interval of numerical

advection is just one timestep in the method of composition, there is virtually no dif-

fusion and / or dispersion in the advection solve. For the composition (interpolation)

step, one can resort to an interpolation method that maintains the binary nature of

the mask field at all times. This ensures that the mask field is binary at all times and

no heuristics are needed. Thus, we do not observe sharp gradients in the flow maps
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at the edges of the active domain, and the spurious FTLE ridges along the active

domain boundaries are eliminated.

To compare the numerical diffusion in the mask field as well as its effects on the

flow map and FTLE computation, we look at the backward flow map computation

around Palau from 08 May 2015, 00Z to 14 May 2015, 00Z. Fig. (6-2) compares the

mask fields obtained from the regular advection (with low and high-order schemes)

and composition-based advection (with low-order schemes) with the true mask field

(computed using Lagrangian trajectory advection).

As expected, one can clearly observe significant numerical diffusion of the mask

field when advected using the first-order accurate donor-cell method for spatial gra-

dients [151] and first-order accurate forward Euler time marching (Fig. (6-2a)). The

numerical diffusion significantly reduces, but is still clearly present (especially arounnd

the eddies formed towards the eastern side of the island) when using the 5𝑡ℎ-order ac-

curate WENO5 method for spatial gradients [230] and 3𝑟𝑑-order accurate TVD-RK3

time marching [189] (Fig. (6-2b)). For both these fields, we use a threshold of 0.5 for

the mask field, i.e. the mask field value is set to 0 if less than 0.5, and it is otherwise

set to 1. For the composition-based computation (Fig. (6-2c)), the obtained mask

field is almost entirely diffusion free, even when using low-order accurate numerical

methods (first-order donor-cell for spatial gradients and forward Euler time march-

ing). The mask field also matches well with the true field from Fig. (6-2d) owing to

the aforementioned reasons. Further, we observe that the mask field values in this

case either belong to the interval [0, 0.012] or to the interval [0.983, 1], implying that

no heuristics are required except for setting the values from the former interval to 0,

and from the latter interval to 1.

Flow Map and Coherent Structures Computation in Open Domains

We now examine the 6 day long backward flow maps and the corresponding FTLE

fields for the realistic data-assimilative ocean flow around Palau. Specifically, we

compare 3 different approaches of computing the backward flow maps: (i) high-order

accurate regular advection, (ii) method of flow map composition with low-order ac-
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(a) Donor-cell - forward Euler mask advection (b) WENO5 - TVD-RK3 mask advection

(c) Composition-based mask advection (d) True active domain

Figure 6-2: Mask fields denoting the active domains for the backward flow maps, for the
realistic flow around the island of Palau. A value of 1 indicates that the corresponding
location is in the active domain, whereas a value of 0 indicates that the location lies outside
the active domain.

curate numerical schemes, and (iii) Lagrangian trajectory-based computation. In the

first case, we use the WENO5 scheme for spatial gradients and TVD-RK3 scheme

for time marching. In the second case, we use the first-order donor-cell (upwind)

method for spatial gradients and forward Euler time marching with the method of

flow map composition (with the optimal composition timestep). Finally, for the third

case, we use Lagrangian trajectory-based computation with Runge Kutta 4 (RK4)

temporal integration. Fig. (6-3) shows the 6 day backward 𝑋 and 𝑌 flow maps over
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the considered domain, using the above three numerical methods. As was the case for

computing the mask fields, we observe that the flow maps computed using high-order

regular advection are susceptible to numerical diffusion, seen around the eddies shed

to the northwest of the island. Secondly, due to the heuristic employed in computing

the mask field for the case of the regular advection, we see several non-physical ar-

tifacts near the boundaries of the active domain, especially at the northern, eastern

and western boundaries. Such artifacts are heavily dependent on the threshold value

chosen for the mask field and lead to spurious coherent structures, as will be seen.

However, it can be clearly seen that the backward flow maps computed using the

method of composition have minimal numerical diffusion, and they match well with

the ones computed using Lagrangian trajectory integration. However, as the method

of composition is rooted in a PDE solve, the error estimates and other theoreti-

cal guarantees are still maintained unlike the Lagrangian trajectory integration. To

quantitatively compare the results from high-order regular advection and low-order

composition-based advection, we compute the mean relative errors in the flow maps

over the entire spatial domain. We find that the relative error of the regular advection

computation is 12.78%, whereas that of the composition-based computation is 1.84%.

To better understand the resulting errors in the coherent structures, Fig. (6-4)

shows the FTLE fields corresponding to the backward flow maps from Fig. (6-3).

Hyperbolic LCSs are often extracted as ridges of the FTLE fields, and thus ideally

we would want these ridges to be as sharp as possible. We can clearly see that the

method of composition is able to produce such sharp ridges of the FTLE field very well

when compared to the true field, indicating that it can maintain the underlying large

gradients in the flow map without being numerically diffusive. However, the FTLE

field computed using high-order regular advection schemes is unable to produce such

sharp ridges, which indicates that numerical diffusion and other compounding errors

are significant in areas where the gradients of the flow maps are large. Further, the

FTLE field resulting from high-order regular advection also has spurious FTLE ridges

at the eastern boundary of the active domain (Fig. (6-4a)). These ridges are created
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(a) 𝑋 flow map - regular advection (b) 𝑌 flow map - regular advection

(c) 𝑋 flow map - composition-based advection (d) 𝑌 flow map - composition-based advection

(e) True 𝑋 flow map - trajectory integration (f) True 𝑌 flow map - trajectory integration

Figure 6-3: Comparison of 6 day backward flow maps around Palau when computed using
high-order regular advection (WENO5 - TVD-RK3), low-order composition-based advection
(Donor-cell - forward Euler), and Lagrangian trajectory integration (RK4). The flow maps
computed using high-order regular advection suffer from numerical diffusion / dispersion as
well as non-physical artifacts around the active domain boundaries, whereas the low-order
composition-based advection results are extremely close to the true results (computed using
high-resolution Lagrangian trajectory integration).
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because the heuristic chosen while determining the active domain is inaccurate. Such

spurious ridges incorrectly classify the domain boundaries to be attracting / repelling

manifolds and thus must be eliminated.

(a) High-order regular advection (b) Low-order composition-based advection

(c) True field - trajectory integration

Figure 6-4: Comparison of the 6 day backward FTLE field computed using high-order
regular advection, low-order composition-based advection, and Lagrangian trajectory inte-
gration. It can be seen that composition-based advection is able maintain high gradients
without numerical diffusion as evident from the sharp FTLE ridges, whereas such ridges
are smeared out for the regular advection computation due to the compounding numerical
diffusion, even though it uses higher-order schemes.
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6.1.3 Computation of Flow Maps in Varied Marine Domains

We now briefly showcase the applications of the computational toolbox based on the

theory and schemes developed in Chapter 3 and Chapter 5 to study Lagrangian

transport in realistic ocean flows. This computation and visualization toolbox has

been extensively used in various marine regions to study material transport, coherent

structures, and other associated metrics in three dimensions in hindcast mode as well

as to support real-time sea exercises [38; 131; 181; 47; 153; 148; 88; 87]. Specifically, we

illustrate four different applications of the computational and visualization framework

and highlight its various capabilities in different contexts.

Our computational setup was used to predict, support, and analyze the real-time

sea exercise that focused on studying and comparing the various Lagrangian metrics

through drifter deployment, mannequin release, and dye tracking as a part of the 2018

NSF ALPHA (Advanced Lagrangian Predictions for Hazards Assessments) real-time

sea exercise, south of Cape Cod, Massachusetts [88]. As an example of our real-time

Lagrangian predictions, Fig. (6-5) shows surface 6 hour backward FTLEs between

08 August 2018, 10Z and 08 August 2018, 16Z in the two 2-way nested modeling

domains. We also predicted the statistics of the FTLE field using ensemble ocean

forecasts obtained from the MSEAS modeling system, as seen in the two right panels

in Fig. (6-5). Such stochastic Lagrangian predictions were imperative in designing

and executing suitable real-time sea experiments while accounting for the underlying

uncertainties.

Fig. (6-6) showcases an application of our computational setup in the Alboran

Sea just to the east of the Strait of Gibraltar to support the 2019 DRI CALYPSO

(Coherent Lagrangian Pathways from the Surface Ocean to Interior) sea exercise

focused on determining the major modes of vertical transport and areas of subduction

in the Alboran Sea. Our predictions focused on identifying subduction regions in the

Alboran Sea through Lagrangian measures such as flow maps and coherent structures.

Fig. (6-6) shows a sample prediction of the vertical (𝑍) flow map at a depth of 48 𝑚,

computed and visualized in real-time, where the red shaded areas in the 𝑍 flow map
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Figure 6-5: Summary of flow map and coherent structure results to support the 2018 NSF
ALPHA real-time sea exercise south of Cape Cod and around the MarthaâĂŹs Vineyard
and Nantucket islands. We computed the 3D flow maps, FTLE fields and their associated
uncertainties along with various drifter deployment and dye release advisories.

contain water masses that rise up relative to their starting position, while the blue

areas contain water masses subducting relative to their starting position, in each case

over the considered 4 day period. Such maps in real-time help identify regions of

interest and guide the drifter deployment as well as other observational strategies.

Figure 6-6: The 96 hour forward vertical (𝑍) flow map at 48 𝑚 depth in the Alboran
Sea. The regions highlighted in red contain water parcels that rise, whereas the blue areas
contain water parcels that sink, with respect to their initial depths over 96 hours

It is imperative to predict the residence times of water masses and connectivity
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between ocean domains to understand the dynamics and health of marine ecosystems

such as lagoons and coral reefs and to understand the impact of human activities on

these systems. We focus on understanding such connectivity patterns and residence

time / entrance time forecasts using 3D Lagrangian analyses in the pristine lagoons

and coral reefs of the Red Sea. We use the method of flow map composition to predict

the time needed for any particular water parcel to leave the domain of interest (i.e. a

lagoon) as well as the time for any particular water parcel to enter this domain. We

make these predictions around the Al Wajh lagoon in the Red Sea to understand the

connectivity patterns between lagoons and coral reefs scattered all along its coasts,

as seen in Fig. (6-7). More details about this work can be found in [47].

Figure 6-7: The residence time and the entrance time maps for the Al Wajh lagoon, along
with the 13 day forward (repelling) FTLE field over the entire Red Sea. The residence time
field indicates how long it takes for a water mass to leave the lagoon as a function of its
initial position, whereas the entrance time field specifies the amount of time required for a
water mass outside the lagoon to enter the lagoon.

Finally, Fig. (6-8) shows results from a recent study [153] that leverages the

method of composition to understand the fate of marine plastics in Massachusetts
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Bay. Specifically, red denotes surface plastics originating at the mouth of the Mer-

rimack River, beige signifies plastics originating at the shoreline, blue are plastics

originating in the rest of the Massachusetts Bay domain, and white plastics are con-

sidered to originate outside the domain. We see that after 20 days of passive advective

transport due to the underlying ocean currents, most of the surface plastics that orig-

inated at the shoreline end up getting trapped in the Cape Cod Bay. Such studies

can provide insight into the transport of marine pollutants and can guide in making

effective policy decisions to mitigate the impact of the same.

(a) (b)

Figure 6-8: Surface plastic location initially and after 20 days of simulated passive advec-
tion. Red denotes plastics originating at the mouth of the Merrimack River, beige plastics
originate at the shoreline, blue plastics originate in the rest of the Massachusetts Bay do-
main, and white plastics originate outside the domain.

6.2 Persistent Lagrangian Coherence / Incoherence

We now determine the coherent, persistently coherent, and incoherent material sets

in two different flow fields. We first analyze our proposed coherence and persistent

coherence criteria, the material sets resulting from these criteria, and their evolution

in an unsteady double gyre flow. This is then followed by looking at the behavior of
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an incoherent set, a coherent set, and a persistently coherent set around the island of

Palau, using the realistic flow field described in Sec. 6.1.

6.2.1 Analytical Double Gyre

Let us first look at the analytical unsteady double gyre . This analytical flow field is

a popular 2D test case for studying Lagrangian material coherence [225; 74; 156]. It

involves 2 vortices rotating in opposite directions while the vertical separatrix between

the vortices oscillates horizontally in a sinusoidal fashion. It is described analytically

by Eq. (6.1). This field satisfies the incompressibility criterion but it is not a solution

of the Navier–Stokes’ equations:

𝑣(𝑥, 𝑡) =

(︂
−𝜕𝜓(𝑥, 𝑡)

𝜕𝑦
,
𝜕𝜓(𝑥, 𝑡)

𝜕𝑥

)︂
,

𝜓(𝑥, 𝑡) = 𝐴 sin
(︀
𝜋
(︀
𝜖 sin (𝜔𝑡)𝑥2 + (1 − 2𝜖 sin (𝜔𝑡))𝑥

)︀)︀
.

(6.1)

Here 𝐴 is the magnitude of the velocity, 𝜔 is the oscillation frequency of the sepa-

ratrix, and 𝜖 is (approximately) the amplitude of oscillation of the separatrix. We

use values identical to Shadden et al. [225], with 𝐴 = 0.1, 𝜔 = 0.2𝜋, and 𝜖 = 0.1.

The computational domain Ω is [0, 2] × [0, 1] and the flow field is considered on a

512×256 grid. The temporal domain of interest is [0, 15]. Note that, as Ω is closed at

all times, the boundary conditions are irrelevant. Fig. (6-9) shows the streamlines of

the velocity field overlaid on the vorticity field highlighting the two gyres. At 𝑡 = 0,

the two vortices are of equal size and the flow is symmetric about the separatrix. At

𝑡 = 2.5, the separatrix is in its rightmost position, with the right counter-clockwise

gyre assuming its narrowest shape, and the left clockwise gyre assuming its widest

shape. The separatrix returns to the center with the two gyres being equal in size

at 𝑡 = 5. Finally, at 𝑡 = 7.5, the separatrix assumes its leftmost position, with the

clockwise gyre being the narrowest, and the counter-clockwise gyre being the widest.

This motion of the separatrix leads to very interesting material transport behavior

in the flow field. Even though most of the material is retained in the vortex that
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(a) 𝑡 = 0 (b) 𝑡 = 2.5

(c) 𝑡 = 5 (d) 𝑡 = 7.5

Figure 6-9: Velocity streamlines overlaid on the vorticity for the analytical double gyre
test case over one time period of the flow. The time period of the flow is 2𝜋/𝜔 = 10.

it starts in, there is some leakage, and thin filaments of this leaked material are

formed that lead to intricate coherent structures [9]. This chaotic advective transport

of passive tracers, manifested through thin tracer filaments and sharp boundaries

between such filaments is also known as ‘Lagrangian turbulence’ [58; 18]. The presence

of Lagrangian turbulence makes the analytical double gyre a challenging test case to

determine incoherent, coherent, and persistently coherent material sets in.

Fig. (6-10) shows the polar distance field (over the time interval [0, 15]; on a log-

arithmic scale) when computed using the forward and the backward flow map to

establish the equivalence between these fields. It can be clearly seen that the polar

distance field from the forward flow map (Fig. (6-10a)) is equal to the polar distance

field from the backward flow map, advected backward (Fig. (6-10c)). Analogously,

the polar distance field from the backward flow map (Fig. (6-10b)) is equal to the

polar distance field from the forward flow map, advected forward (Fig. (6-10d)). This
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numerically validates the forward - backward duality of our proposed criteria.

(a) Polar Distance using the forward flow map (b) Polar Distance using the backward flow map

(c) Polar Distance using the backward flow map,
advected backward

(d) Polar Distance using the forward flow map,
advected forward

Figure 6-10: Equivalence of polar distance fields computed using the forward and the
backward flow maps for the analytical double gyre. The polar distance field computed using
the forward flow map matches the polar distance field computed using the backward flow
map when advected backward, and vice-versa.

Fig. (6-11) shows the polar distance field and the extended polar distance field for

direct comparison. It can be seen that even though the polar distance indicates the

presence of coherent material sets in the bottom left and the top right regions of the

domain, the extended polar distance has high values in these regions. This indicates

that although the initial and the final shapes of the material sets starting in these

regions are similar (indicating rigidity), they undergo severe distortion during the

time interval of interest (i.e. indicating a lack of persistent rigidity). These results

show that the persistently coherent sets represent 7% of the domain while incoherent

regions where mixing is most likely to occur are concentrated on the edges of thin

filaments of the extended polar distance.

The extended polar distance field indicates the presence of two persistently rigid
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sets at the center of the two gyres. That is, these two material sets are predicted to

approximately maintain their shape throughout the time interval of interest. Note

that the polar distance field also has low values in these regions. This is expected, as

every persistently rigid set is also a rigid set (but the converse is false).

(a) Polar Distance (b) Extended Polar Distance

Figure 6-11: Polar distance and extended polar distance fields for the analytical double
gyre over a time interval of [0, 15].

Our predictions are corroborated by the observed evolution of these material sets,

as seen in Fig. (6-12), wherein the rigid sets are obtained by thresholding the polar

distance field. We can clearly see that these sets that are deemed rigid but not

persistently rigid undergo significant stretching and compression throughout the time

interval of interest, but return to a shape that is very close to their original shape

at the end time. Further, the shape and the orientation of the rigid sets at the end

time exactly matches the regions of low value in the polar distance field computed

using the backward flow map in Fig. (6-10b), as expected. The large distortions in

the shape of material sets lead to significant changes in the ratio of the set area to

the set boundary. For example, it can be clearly seen that the boundary length of

the orange set in Fig. (6-12) increases significantly around 𝑡 = 9. Such an increased

boundary length would lead to small-scale diffusive transport, and thus these sets

are often prone to material diffusion (which is not modeled under purely advective

transport).

Fig. (6-13) depicts the evolution of persistently rigid sets determined by thresh-

olding the extended polar distance from Fig. (6-11b). It can be clearly seen that

these two persistently rigid sets are contained within the two central rigid sets from
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(a) 𝑡 = 0 (b) 𝑡 = 3

(c) 𝑡 = 6 (d) 𝑡 = 9

(e) 𝑡 = 12 (f) 𝑡 = 15

Figure 6-12: Evolution of the rigid sets in an analytical double gyre.These material sets
are advected with the underlying flow field and are observed to undergo severe stretching at
intermediate times, however their initial and final shapes are almost identical.

Fig. (6-12). However, unlike the material sets in Fig. (6-12), the two sets in Fig. (6-

13) are observed to approximately maintain their shape throughout the time period

of interest. Further, as these sets experience minimal change in their boundary length

with time, they also tend to resist small-scale diffusion unlike non-persistently rigid

sets.

Finally, we examine some of the most non-rigid sets by considering areas of high

polar distance / extended polar distance values. Fig. (6-14) shows three of the most
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(a) 𝑡 = 0 (b) 𝑡 = 3

(c) 𝑡 = 6 (d) 𝑡 = 9

(e) 𝑡 = 12 (f) 𝑡 = 15

Figure 6-13: Evolution of the persistently rigid sets in an analytical double gyre. These
material sets are advected with the fluid flow but undergo minimal distortion throughout
the time interval and are able to approximately maintain their shape.

non-rigid sets in the double gyre flow. We can see that these sets undergo large

amounts of chaotic advection and their intermediate and final shapes are completely

different from their initial shapes. Local diffusion would also increase for such sets

as their boundary length increases exponentially with time, leading to further mixing

(not modeled in our case). Note that the method of flow map composition accurately

captures the Lagrangian turbulence (manifested through thin and long material fila-

ments) with minimal numerical diffusion during the evolution of these sets.

155



(a) 𝑡 = 0 (b) 𝑡 = 3

(c) 𝑡 = 6 (d) 𝑡 = 9

(e) 𝑡 = 12 (f) 𝑡 = 15

Figure 6-14: Evolution of most non-rigid sets in an analytical double gyre. We initialize
three sets in regions with high polar distance values. We can clearly see that these sets
undergo extreme amounts of stretching and their final shapes are completely dissimilar to
their initial configurations.

6.2.2 Southern Pacific Ocean

In this section, we characterize different types of material sets in the realistic data-

assimilative flow field around the island of Palau in the Southern Pacific Ocean (see

Sec. 6.1). This flow field is highly unsteady, and is characterized by a northwest-

ward flow impinging on the steep topography presented by the Palau archipelago,

generating vorticity and eddies to the northwest of the island.
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Fig. (6-15) shows the polar distance and the extended polar distance fields for

the considered domain over the 6 day interval (08 May 2015 - 14 May 2015). It can

be seen that there are regions of significant incoherence on all sides of the island,

as evidenced from the high polar distance and extended polar distance values. This

is expected as these are areas of high mixing due to the turbulence caused by the

impinging northwestward flow. However, the polar distance field suggests that there

exist rigid material sets to the east of the island. Further, the extended polar distance

field indicates that the rigid sets originating to the east - southeast of the island are

actually persistently rigid, i.e. they approximately maintain their shape throughout

the time interval of interest.

(a) Polar Distance (b) Extended Polar Distance

Figure 6-15: The polar distance and the extended polar distance fields (plotted on a
logarithmic scale) for the realistic data-assimilative flow around the island of Palau in the
Southern Pacific Ocean. High values of the extended polar distance indicate low persistent
rigidity, and low values indicate high persistent rigidity.

To illustrate the evolution of the different material sets in this complex multiscale

dynamic flow field, we consider: (i) a coherent / rigid set, (ii) a persistently coherent

/ persistently rigid set, and (iii) an incoherent / non-rigid set. Fig. (6-16) shows the

initial location of these considered material sets. We initialize these sets to be cir-

cular, and in areas of (i) low polar distance values but high extended polar distance

values, (ii) low extended polar distance values, and (iii) high polar distance values,
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respectively. It can be see that the initial positions of the coherent and the persis-

tently coherent sets are close to each other. However, their behavior under advective

transport is observed to be significantly different, as will be seen.

Figure 6-16: Initial lo-
cation of a non-rigid set
(green), a rigid set (red),
and a persistently rigid set
(blue) around the island of
Palau on 08 May 2015 00Z,
overlaid on the bathymetry
contours in the region.

Fig. (6-17) shows the evolution of three considered material sets. We first look

at the motion of the incoherent/non-rigid set (colored green). This set is located

just behind the island, and it undergoes heavy strain throughout the considered time

interval due to the eddies formed behind the island (especially seen in panels (b) and

(c) of Fig. (6-17)). Evidently, its final shape is extremely different from its initial

configuration. The initial and final shapes of the rigid set (colored red) are similar to

each other (Fig. (6-16) and Fig. (6-17f)), however, it undergoes significant stretching

and compression at intermediate times, which can make it prone to material diffusion.

The persistently rigid set, colored in blue, does not experience any appreciable change

in its shape over the entire time duration. It undergoes translation and rotation in

an approximately rigid manner unlike the other two material sets. We also observe

that the area of these material sets slightly decreases over time. This is mainly due

to the nonzero divergence of the flow field, as this flow field is simply a 2D slice of an

otherwise 3D flow with both vertical velocities and a dynamic free-surface.
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6.3 Summary

The extensions of the method of composition to compute flow maps in open domains

as well as the theory and schemes to determine coherent, incoherent, and persistently

coherent material sets are illustrated through various examples and applications. We

first benchmark the method of composition for computing flow maps and coherent

structures in open domains with multiple inlets and / or outlets. By analyzing a

complex multiscale dynamic flow field around the island of Palau in the Southern

Pacific Ocean, we show that the method of composition yields flow maps similar to

those from Lagrangian trajectory advection, while maintaining the theoretical guar-

antees and uniform spatial coverage. We then highlight the various applications of

the software toolbox based on the method of composition to perform Lagrangian

analyses in a variety of realistic marine flows. This is followed by the applications

of the developed theory and schemes to determine rigid, persistently rigid, and non-

rigid material sets in dynamic fluid flows. First, we consider the analytical double

gyre flow, a popular test case to study Lagrangian coherence. We numerically verify

the duality of the proposed criteria, and determine that there are four rigid and two

persistently rigid material sets in this flow. Some of the most incoherent sets are

also analyzed to observe the underlying chaotic advection patterns and Lagrangian

turbulence. Finally, we look at rigid and persistently rigid material sets around the

island of Palau. We find that the regions around the island are highly incoherent

due to the turbulent dynamics. However, there exist areas of material coherence and

persistent coherence to the east and southeast of the island. We study the evolution

of an incoherent set, a coherent set, and a persistently coherent set to observe that

even though the coherent and the persistently coherent sets are initially close to each

other, the persistently coherent set maintains its shape throughout the considered 6

days. However, the coherent set undergoes significant distortion, but its final shape

is similar to its initial shape, as predicted.
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(a) 09 May 2015, 00Z (b) 10 May 2015, 00Z

(c) 11 May 2015, 00Z (d) 12 May 2015, 00Z

(e) 13 May 2015, 00Z (f) 14 May 2015, 00Z

Figure 6-17: Evolution of a non-rigid set (green), a rigid set (red), and a persistently rigid
set (blue) around the island of Palau, from 08 May 2015, 00Z until 13 May 2015, 00Z.
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Chapter 7

Machine Inference and Prediction of

Material Transport Features - Theory

In this chapter, we investigate the machine inference and prediction of transport

features and coherent structures only from snapshot data about the advective and

advective–diffusive transport of some tracer quantity (e.g. snapshots of the sea surface

temperature or salinity fields), without knowing the underlying flow field. Such a

machine inference framework enables one to use large-scale Eulerian observations of

geophysical systems that have become ubiquitous, in part due to advances in satellite

imagery and other similar techniques. To achieve this, we utilize and advance different

approaches from machine learning (ML). Specifically, we use and extend recurrent

neural networks, including a combination of long short-term memory networks with

hypernetworks. The ML methods we develop enforce our knowledge of the physical

system and the constraints it must satisfy (e.g. mass conservation) in the algorithm

design and the training loss function to limit the ML search space. This allows us

to train the networks only with partial supervision, without samples of the expected

output fields, and still infer and predict physically consistent transport properties and

coherent structures only from sparse, coarse resolution data.

Sec. 7.1 provides a deeper introduction and a brief literature review of the rapidly

expanding area of scientific machine learning and other developments related to the

problem at hand. We then describe the problem paradigm and setup in Sec. 7.2.
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Sec. 7.3 presents the proposed novel ML algorithm in detail, including the network

architecture, the loss function, and performance analysis. Sec. 7.4 builds upon the

developed ML algorithm to learn the underlying advective transport properties from

data about advective–diffusive tracer, while simultaneously learning its diffusivity.

Finally, Sec. 7.5 extends the machine inference algorithm to i) learning the transport

properties from multiple tracer observations, ii) optimally combining Eulerian and

Lagrangian information, and iii) learning flow maps in open domains. These exten-

sions are critical for the application of the developed theory and schemes to realistic

ocean data. The theoretical developments from this chapter are also developed in

Kulkarni and Lermusiaux [133, 134].

7.1 Introduction and Motivation

As seen in the prior chapters, Lagrangian coherent structures (LCSs) such as material

barriers to flow, rigid sets etc. serve as important features to understand passive ma-

terial transport, and are referred to as the ‘skeleton of the flow field’ [198]. Most such

Lagrangian determinants of material transport are directly computed from the flow

maps (see Sec. 5.1.2). Thus, it is sufficient to know the flow maps of the underlying

flow field to learn the generic advective transport features. Computing flow maps,

given the dynamic flow field is a well-posed problem. It is often solved by first comput-

ing flow maps either by numerically integrating several particle trajectories (Eq. (2.1))

[101; 20] or in our case by solving Eq. (3.3) and Eq. (3.4). However, for both of these

approaches, the exact time-dependent velocity field is required to be known over the

entire domain. This is often not the case in real ocean flows. Furthermore, the various

in-situ observation devices (such as buoys, floats, gliders, autonomous vehicles, ships,

satellite, etc.) yield measurements that are sparse in space-time and often noisy.

Thus observations alone fall short of describing the time-dependent ocean fields over

the entire domain of interest.

Instead of using the velocity field to compute the flow maps, we propose to ma-

chine infer and predict the flow maps only from Eulerian data about advective and
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advective–diffusive material transport in the domains of interest. Specifically in ma-

rine settings, tracers such as salt, temperature, energy, nutrients, particulate matter,

pollutants, etc., are advected with the fluid flow. Thus, the data about these tracers,

often observed in an Eulerian setting at periodic intervals through satellite imagery

or other macro-observation techniques, can be utilized to machine infer and predict

the flow maps. These learned flow maps can then be used to characterize the land-

scape of material transport, either through the associated LCSs or through any other

means. The machine inference and prediction of flow maps directly from Eulerian

snapshot data of material transport is the inverse problem corresponding to the for-

ward problem described in Chapter 3. It is an ill-conditioned problem [20], and thus

extremely challenging in nature. Some of the reasons that make this a problem dif-

ficult to tackle include the (i) multiscale and chaotic nature of Lagrangian transport

in unsteady flows, (ii) large computational domains with many degrees of freedom,

and (iii) no direct access to true flow map observations.

7.1.1 Literature Review

The nascent explosion of artificial intelligence (AI) methods, from dynamic Bayesian

inference to deep learning (DL), provides an unprecedented opportunity for researchers

analyze data and accelerate scientific progress by extracting new knowledge [23; 178;

107]. Scientific machine learning broadly involves the idea of using known physical

invariants and constraints along with certain observations to learn the quantities of

interest. For example, Brunton et al. [25]; Schaeffer [218]; Rudy et al. [213]; Kulkarni

et al. [137] utilize sparse regression techniques to learn symbolic forms of governing

ODEs or PDEs of dynamical systems from data. Long et al. [164] learn the functional

forms of PDEs by using convolutional neural networks with specifically constrained

kernels. Bar-Sinai et al. [13] use ML to obtain data driven numerical discretizations of

differential equations. Raissi et al. [205, 206] develop approaches to solve PDEs using

Gaussian processes and deep neural networks, and further this approach to infer the

velocity and pressure fields from flow visualizations [207]. There has also been a great

push in using ML methods as proxies to model the subgrid-scale phenomena in geo-
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physical flows and to learn closure models in turbulence simulations [209; 81; 267; 259].

Generative adversarial networks (GANs) have also been explored as a viable tool for

problems such as stochastic simulations and super-resolution [264; 260]. Lu [166]; Lu

and Lermusiaux [165]; Gupta and Lermusiaux [89] developed a Bayesian approach to

simultaneously discover unknown model formulations such as the functional forms of

the governing equations, domain geometry, state variables, and other parameters, by

using and extending a nonlinear non-Gaussian filter [232; 233] to dynamical model

learning. The use of machine learning in physical sciences and especially in fluid me-

chanics remains an active area of research, and we refer the readers to Brunton et al.

[26] for an overview.

Some recent works have explored the idea of using the available observations to

directly predict physical variables of interest in oceanic settings. Aksamit et al. [2]

utilize ocean drifter trajectory data to train a recurrent neural network that minimizes

the error in a reduced-order Maxey–Riley equation while improving the spatial and

temporal resolution of the underlying coarse velocity field. An analytical approach to

reconstruct the velocity field from high resolution measurements of a diffusive tracer

is presented in Sharma et al. [227]. Finally, Balasuriya et al. [11] define ‘generalized

Lagrangian coherent structures’ and look at approaches to extract these structures

using the 𝑢* approach of Pratt et al. [204].

7.2 Problem Statement

We now describe the problem statement using the notation from Table 2.1. In this

work, the unsteady velocity field 𝑣 is not available to us, nor do we intend to directly

compute or infer it. It is simply the velocity field that governs the flow maps, which

we are interested to infer and predict. We are given a snapshots of a tracer field, 𝛼, at

𝑁𝑡 + 1 discrete times 𝑡0 = 0, 𝑡1, 𝑡2, . . . , 𝑡𝑁𝑡 = 𝑇 . Without significant loss of generality,

we assume these observation times to be equally distributed in [0, 𝑇 ], with a separation

∆𝑡. We denote the snapshot of the tracer 𝛼 at time 𝑡𝑖 as 𝛼𝑖. We assumed that 𝛼 is a

scalar, hence, 𝛼𝑖 : Ω → R. Further, in this first part of our study, it is assumed that
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the tracer 𝛼 is passively advected with the ocean flows, and thus satisfies Eq. (2.8).

In Sec. 7.4, we extend our ML framework to account for diffusive tracers, governed

through the advection–diffusion equation (Eq. (3.9)) with an unknown diffusivity.

We denote the flow map admitted by the (unknown) velocity field 𝑣(𝑥, 𝑡) from

time 𝑠 until time 𝑡 by 𝜑𝑡
𝑠(𝑥). Further, when dealing with the discrete time instants

of the form 𝑡𝑖 = 𝑖∆𝑡, we use the abbreviated notation 𝜑𝑗
𝑖 (𝑥) to denote 𝜑𝑗Δ𝑡

𝑖Δ𝑡 (𝑥).

Our goal is to infer the flow maps 𝜑𝑖
0 (or 𝜑0

𝑖 ) ∀ 𝑖 = 0, 1, . . . , 𝑁𝑡 and also predict

the flow maps 𝜑𝑖
0 (or 𝜑0

𝑖 ) for 𝑖 = 𝑁𝑡 + 1, 𝑁𝑡 + 2, . . .; given only the snapshot data

𝛼𝑖(𝑥) ∀ 𝑖 = 0, 1, . . . , 𝑁𝑡. In this process, we make the assumption that the flow field is

incompressible, i.e. ∇·𝑣 = 0. Further, for the initial part of the work, we also assume

that the domain Ω is closed. Sec. 7.5.3 extends our framework to open domains where

the tracer (and the fluid) can freely enter and exit the domain.

7.3 Machine Learning for Flow Map Inference and

Prediction

To machine infer flow maps from snapshot tracer transport data, we utilize and build

upon the plethora of ML techniques. Specifically, we encode our physical knowledge

of the problem and the expected solution in the design of the ML algorithm and the

corresponding loss function to be minimized.

We turn to using ML methods instead of the more conventional tools such as data

assimilation for a variety of reasons: (i) the lack of governing equations for the flow

map evolution that do not involve the velocity field 𝑣, (ii) no direct observations of the

flow map, and a complex nonlinear relationship between the observations (the tracer

fields) and the variable of interest (the flow map), and (iii) little prior knowledge to

generate an appropriate initial ensemble distribution.

Eq. (2.27) and Eq. (2.28) suggest that the flow maps we desire to infer and predict,

say 𝜑𝑖
0, can be recursively written as a composition of elementary functions, one after

the other. Overall, 𝑖−1 of these elementary functions are (implicitly) governed by the
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velocity field 𝑣 from time 0 to 𝑡𝑖−1, whereas the 𝑖𝑡ℎ elementary function is governed

solely by the velocity field between 𝑡𝑖−1 and 𝑡𝑖. One can see striking similarities

when comparing this setup to the functional form of neural networks (Eq. (7.1)),

which approximates a complex function through a recursive composition of trainable

elementary functions [23; 107]:

𝒩 (𝑥) = 𝜓 (𝑊𝐿 (𝜎 (𝑊𝐿−1 (. . . 𝜎 (𝑊1 (𝑥)))))) . (7.1)

Here, 𝒩 is the neural network function approximator, 𝑊𝑙 are the (trainable) weights

of different layers (𝑙 = 1, . . . , 𝐿), and 𝜎 and 𝜓 are the nonlinearities. This in turn

implies that neural networks are designed to and hence are capable of approximating

functions that live in the same functional space as the flow map. Further, typical ML

methods are empirically known to avoid the curse of dimensionality, can be easily

parallelized for efficient computation, and do not require a prior ensemble construction

[23; 107]. These observations and benefits prompt us to look at ML as a viable tool,

and guide us in designing an effective inference/prediction engine.

Most (supervised) machine learning methods require ‘training data’ through which

the tunable parameters in the algorithm are learned by minimizing a pre-defined loss

function. This training data is most commonly in the form of pairs of input and the

corresponding output, where the training input is assumed to be from the same distri-

bution as the expected (unseen) inputs. The amount of required input and expected

output data may vary based on the application, and several techniques to reduce the

requirement for training data have been proposed. However, this need for training

data is a central element of most supervised ML algorithms [23; 130]. In our case, the

output of the algorithm is the flow map, of which we have no training samples, i.e. we

do not have any pairs of a suitable tracer field input and the corresponding flow map

output. Thus, we cannot directly use supervised ML algorithms. However, the ex-

pected output (i.e. the flow map) is defined implicitly through Eq. (2.16), Eq. (2.17),

and Eq. (2.20), Eq. (2.30), and Eq. (2.31). Thus we need to ensure that the outputs

we obtain always satisfy these physics constraints. We achieve this by considering the
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flow maps as an unknown latent state governing the transport dynamics, and learn

this latent state through data about material transport and physics constraints that

are embedded in the loss function.

Fig. (7-1) shows a high-level schematic of highlighting the basic function and the

input/output of our ML algorithm. As stated in Sec. 7.2, we require our algorithm

to output the flow maps 𝜑𝑖
0 for 𝑖 = 0, . . . , 𝑁𝑡 (i.e. the inference phase) and for 𝑖 =

𝑁𝑡 + 1, . . . (i.e. the prediction phase). As the spatial grid 𝑥 and the flow maps are

both defined on Ω, we provide 𝑥 as an input to the ML framework. Further, as we

require the flow maps over various time instants (𝑡𝑖 ∀ 𝑖 = 1, . . .), we require this

framework to have recurrence in time, as will be seen.

Figure 7-1: Schematic of the proposed ML framework. We input the spatial grid 𝑥, and
expect the framework to output 𝜑𝑖

0(𝑥) for 𝑖 = 0, 1, . . . , 𝑁𝑡, 𝑁𝑡+1, . . .. To train the network,
we utilize the available tracer transport data as well as the known physical constraints on
𝜑𝑖
0(𝑥) in the loss function.

We utilize three key insights obtained from the physical knowledge of the flow

maps. First, flow maps have local spatial structure but weak global spatial depen-

dence, Second, flow maps encode the sequential effect of Lagrangian motion and thus

can be thought to have memory of past times. For example, the flow map between

times 0 and 𝑡𝑖 can be divided into two components - a component capturing the events

between 0 and 𝑡𝑖−1 and the other component capturing events between 𝑡𝑖−1 and 𝑡𝑖.

This suggests that the flow map 𝜑𝑖
0 retains information from [0, 𝑡𝑖−1]. Third, the

elementary flow maps (𝜑𝑖+1
𝑖 ) change with time due to the underlying dynamic flow

field. However, they are not significantly different from each other as the underlying

flow field is assumed to change smoothly and slowly (as is the case in most ocean

flows).

The above insights broadly guide our design of a suitable network architecture.

First, we incorporate fully convolutional layers in our network to respect the local
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spatial structure in flow maps. Such convolutional layers also reduce the number of

trainable parameters as compared to a corresponding fully connected network (with a

stacked input) [23]. Second, to encode the sequential effect of Lagrangian motion, we

utilize neural networks with memory, i.e. recurrent neural networks (RNNs). These

allow us to efficiently infer and predict flow maps over different time intervals while

using only a single trained network. However, a drawback of RNNs is strictly weight

sharing in time. That is, the neural network uses the same weights and biases through

time. In our application, however, each iteration (𝑖) of the RNN implicitly corresponds

to the composition of an elementary flow map 𝜑𝑖+1
𝑖 (that changes in time). Thus, we

require the parameters of the RNN to also vary in time.

To effectively design a network while incorporating the above architecture ele-

ments, we merge two existing ML algorithms to construct the core of our flow map

inference and prediction engine. Specifically, we utilize convolutional LSTMs (long

short term memory networks) [229] which are RNNs with convolutional kernels, and

hypernetworks [91] which allow for variable RNN parameters in time. We first briefly

look at these two architectures. This is followed by the specifics of our new network

architecture and loss function for flow map inference and prediction.

7.3.1 Convolutional LSTMs

The convolutional LSTMs (convLSTM) were introduced by Shi et al. [229] for pre-

cipitation nowcasting, but have found several uses in areas where known existence of

local spatial structure in the a sequential dataset needs to be leveraged along with

the larger spatio-temporal correlations. Such fields include video sequence prediction

[254], learning of driving models from video datasets [261], anomaly detection [175],

and semantic video segmentation [199].

The (fully connected) LSTM is an approach for general purpose sequence model-

ing, and has been an effective solution to the typical exploding and vanishing gradients

of the vanilla RNNs [111; 193]. The LSTM architecture involves a cell state (𝑐𝑖) at

iteration 𝑖 (1 ≤ 𝑖 ≤ 𝑁𝑡) which contains the accumulated state information. This cell

state is written to, cleared, and accessed through different ‘gates’. These gates are
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certain tensors (defined through Eq. (7.2)) that regulate the removal or addition of

information to the cell state. The input gate (𝑖𝑖) controls the accumulation of new

information in 𝑐𝑖 when a new input comes. The forget gate (𝑓𝑖) enables the provision

to forget the past cell state (𝑐𝑖−1) as required. The output gate (𝑜𝑖) controls how

much of the cell state 𝑐𝑖 will be propagated to the final state ℎ𝑖, which is output

at every iteration 𝑖. The convolutional LSTM extends the fully connected LSTM

by using convolutional structures in the input-to-state and the state-to-state transi-

tions. In this setup, the fully connected LSTM can be viewed as a spatial case of the

convLSTM with a 1 × 1 spatial domain.

Figure 7-2: Schematic of a convolutional LSTM. Each convolutional unit takes the previous
cell state (𝑐𝑖−1) and cell output (ℎ𝑖−1) along with the input 𝒳𝑖 to produce 𝑐𝑖 and ℎ𝑖 according
to Eq. (7.2). This operation is performed for all 1 ≤ 𝑖 ≤ 𝑁𝑡.

Fig. (7-2) shows the schematic of the convLSTM structure, and Eq. (7.2) details its

functional representation, where 𝜎 denotes the sigmoid function, i.e. 𝜎(𝑡) = (1+𝑒−𝑡)−1

and 𝜓 is the tanh function, i.e. 𝜓(𝑡) = (𝑒2𝑡 − 1) / (𝑒2𝑡 + 1),

𝑦𝑖 = 𝜎 (𝑊 𝑦
ℎ * ℎ𝑖−1 + 𝑊 𝑦

𝑥 * 𝒳𝑖 + 𝑊 𝑦
𝑐 ⊗ 𝑐𝑖−1 + 𝑏𝑦) where 𝑦 = {𝑖, 𝑓} ,

𝑐𝑖 = 𝑓𝑖 ⊗ 𝑐𝑖−1 + 𝑖𝑖 ⊗𝜓 (𝑊 𝑐
ℎ * ℎ𝑖−1 + 𝑊 𝑐

𝑥 * 𝒳𝑖 + 𝑏𝑐) ,

𝑜𝑖 = 𝜎 (𝑊 𝑜
ℎ * ℎ𝑖−1 + 𝑊 𝑜

𝑥 * 𝒳𝑖 + 𝑊 𝑜
𝑐 ⊗ 𝑐𝑖 + 𝑏𝑜) ,

ℎ𝑖 = 𝑜𝑖 ⊗𝜓 (𝑐𝑖) .

(7.2)

The input at iteration 𝑖 is denoted by 𝒳𝑖. We denote the convolution operation (with

pre-decided kernel sizes and appropriate zero-padding where necessary) by ‘*’ and the

Hadamard product by ‘⊗’. The initial state of the convLSTM is assumed to be zero,
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indicating no prior knowledge. All the weights 𝑊 ∙
∙ and the biases 𝑏∙ are iteratively

learned by minimizing some loss function.

7.3.2 Hypernetwork LSTMs

Typical RNNs employ strict weight sharing - the weights 𝑊 and the biases 𝑏 are the

same for all iterations (𝑖). Thus when unfurled, every RNN cell is identical to all

other cells. This inherently restricts our ability to model a dynamic flow field (and

the corresponding flow maps). We thus use the idea of hypernetworks [91]. The core

idea behind hypernetworks is simple: we use a separate neural network, called the

hypernetwork, to generate weights and biases for the main neural network. In our

case, both the hypernetwork and the main network are convLSTMs. As the weights of

the main LSTM are generated by a hypernetwork LSTM (hyperLSTM), they can vary

in time. However the hypernetwork provides some implicit regularization over the

variation of these weights in time and hence controls how much the individual LSTM

units differ from each other, limiting abrupt changes. As the weights of the main

LSTM change in time but not completely randomly, it is referred to as ‘relaxed weight

sharing in time’ [185]. This notion of relaxed weight sharing can be seen as a trade-off

between RNNs (strict weight sharing) and fully connected neural networks (no weight

sharing) [91]. HyperLSTMs are end-to-end-trainable with backpropagation through

time (BPTT), and achieve respectable results with fewer learnable parameters [91].

The equations defining the hyperLSTM can be divided in multiple stages. In the

first step, the hyperLSTM uses the previous main LSTM state ℎ𝑖−1 and the current

input 𝒳𝑖 to generate a set of embeddings unique to each of the gates in the main

LSTM. These embeddings are linear projections of the corresponding gates of the

hyperLSTM. Finally, the main LSTM weights and biases are generated by scaling

the embeddings through a weight scaling vector that is learned. The hyperLSTM

equations are given by Eq. (7.3), where the hyperLSTM gate corresponding to ∙ is
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denoted by ∙̂,

𝒳𝑖 = [ℎ𝑖−1,𝒳𝑖]
𝑇 ,

𝑦𝑖 = LN
(︁
𝑊 𝑦

ℎ̂
ℎ̂𝑖−1 + 𝑊 𝑦

𝑥̂𝒳𝑖 + 𝑏𝑦
)︁

where 𝑦 = {𝑖, 𝑔, 𝑜, 𝑓} ,

𝑐𝑖 = 𝜎
(︁
𝑓𝑖

)︁
⊗ 𝑐𝑖−1 + 𝜎

(︁
𝑖̂𝑖

)︁
⊗𝜓 (𝑔𝑖) ,

ℎ̂𝑖 = 𝜎 (𝑜𝑖) ⊗𝜓 (LN (𝑐𝑖)) .

(7.3)

The operator LN(∙) denotes the Layer Normalization layer [10], similar to [91]. The

LN is a normalization method that normalizes the inputs across the features instead

of across a mini-batch as in batch normalization [119] or across the weights of a layer

as in weight normalization [215]. Once the hyperLSTM gate tensors are computed,

the embeddings for the weight matrices of each of the gates in the main LSTM are

generated as linear projections of the corresponding hyperLSTM gates,

𝑧𝑦ℎ = 𝑊 𝑦

ℎ̂ℎ
ℎ̂𝑖 where 𝑦 = {𝑖, 𝑔, 𝑜, 𝑓} ,

𝑧𝑦𝑥 = 𝑊 𝑦

ℎ̂𝑥
ℎ̂𝑖 ,

𝑧𝑦𝑏 = 𝑊 𝑦

ℎ̂𝑏
ℎ̂𝑖 .

(7.4)

Finally, the main LSTM weights are generated through the embeddings as given by

Eq. (7.5) (where 𝑦 = {𝑖, 𝑔, 𝑜, 𝑓}):

𝑦𝑖 = LN ((𝑊 𝑦
ℎ𝑧𝑧

𝑦
ℎ) ⊗𝑊 𝑦

ℎℎ𝑖−1 + (𝑊 𝑦
𝑥𝑧𝑧

𝑦
𝑥) ⊗𝑊 𝑦

𝑥𝒳𝑖 + 𝑊 𝑦
𝑏𝑧𝑧

𝑦
𝑏 + 𝑏𝑦0) , (7.5)

𝑐𝑖 = 𝜎 (𝑓𝑖) ⊗ 𝑐𝑖−1 + 𝜎 (𝑖𝑖) ⊗𝜓 (𝑔𝑖) , (7.6)

ℎ𝑖 = 𝜎 (𝑜𝑖) ⊗𝜓 (LN (𝑐𝑖)) . (7.7)

Similar to convLSTMs, all the weights 𝑊 ∙
∙ and the biases 𝑏∙∙ are iteratively learned

by minimizing some loss function typically through gradient based algorithms.
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7.3.3 Proposed Network Architecture

As discussed before, to infer and predict the flow maps generated by an unknown

dynamic flow field, we require our ML algorithm to have local spatial structure,

memory, and relaxed weight sharing in time. While convLSTMs provide us with

the first two components, hyperLSTMs account for the latter two. Thus an obvious

approach is to combine these two ideas. We use a convLSTM to output flow maps,

where the weights of this main convLSTM are generated by a hyperLSTM.

Specifically, our RNN setup takes the spatial grid 𝒳𝑖 = 𝑥 = [𝑥, 𝑦] ∈ R2×𝑁𝑥×𝑁𝑦

as an input at every iteration 𝑖 and outputs the flow map 𝜑𝑖
0(𝑥) = 𝜑𝑖Δ𝑡

0 (𝑥), where

𝑖 = 0, . . . , 𝑁𝑡. We use the information about the tracer fields 𝛼𝑖(𝑥) in the loss

function, along with the physics constraints that the flow maps must satisfy. The

grid 𝑥 is passed as an input for multiple epochs and the loss is computed over all the

iterations 𝑖 for every epoch. The weights and biases are then trained through BPTT

to minimize this loss function. Once the solution converges, the network output for

iteration 𝑖 is the flow map 𝜑𝑖
0, for 0 ≤ 𝑖 ≤ 𝑁𝑡. Thus, these outputs are the inferred

flow maps at the times that the tracer transport data is available (recall Fig. (7-1)).

However, as our network is a RNN, we can simply continue to run this network for

iterations 𝑖 > 𝑁𝑡, which corresponds to prediction of flow maps for future times. This

together addresses both the objectives posed in Sec. 7.2.

Figure 7-3: Schematic of our proposed network architecture to infer and predict flow maps
from tracer transport data. There are two main components: a main convLSTM and a
hyperLSTM. The hyperLSTM generates the weights and biases for the main convLSTM,
which then predicts the flow map 𝜑𝑖

0 in its 𝑖𝑡ℎ iteration. The information about the tracer
transport fields is used in the loss function, along with the other physical constraints imposed
on the flow map.
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Fig. (7-3) illustrates the schematic of our algorithm. The hyperLSTM (shown

in orange) receives both the input 𝑥 and the main LSTM state ℎ and generates the

embeddings 𝑧 for the main LSTM. These embeddings are used to generate the weights

in the main LSTM, which then outputs the flow map 𝜑. To obtain the functional

formulation of the proposed recurrent cell, we introduce a tensor product, denoted by

⊙ and defined by Eq. (7.8), along with convolution (*) and Hadamard product (⊗):

If 𝐴 ∈ R𝑎1×𝑎2×...×𝑎𝑝×𝑐1×...×𝑐𝑞 and 𝐵 ∈ R𝑐1×...×𝑐𝑞×𝑏1×𝑏2×...×𝑏𝑟 ,

Then 𝐴⊙𝐵 ∈ R𝑎1×𝑎2×...×𝑎𝑝×𝑏1×𝑏2×...×𝑏𝑟 , such that:

(𝐴⊙𝐵)𝑖1,...,𝑖𝑝,𝑗𝑞 ,...𝑗𝑞 := 𝐴𝑖1,...,𝑖𝑝,𝑘1,...,𝑘𝑟𝐵𝑘1,...,𝑘𝑟,𝑗1,...,𝑗𝑞 (in Einstein notation) .

(7.8)

We now look at the equations of our proposed network design. First, we generate

the hyperLSTM cell gates (denoted by ∙̂), using the current input 𝒳𝑖 and the previous

main LSTM state ℎ𝑖−1 given by Eq. (7.9).

𝒳𝑖 = [ℎ𝑖−1,𝒳𝑖]
𝑇 ,

𝑦𝑖 = LN
(︁
𝑊 𝑦

ℎ̂
* ℎ̂𝑖−1 + 𝑊 𝑦

𝑥̂ * 𝒳𝑖 + 𝑏𝑦
)︁

where 𝑦 = {𝑖, 𝑔, 𝑜, 𝑓} ,

𝑐𝑖 = 𝜎
(︁
𝑓𝑖

)︁
⊗ 𝑐𝑖−1 + 𝜎

(︁
𝑖̂𝑖

)︁
⊗𝜓 (𝑔𝑖) ,

ℎ̂𝑖 = 𝜎 (𝑜𝑖) ⊗𝜓 (LN (𝑐𝑖)) .

(7.9)

Once the hyperLSTM cell gates are computed, we compute the embeddings 𝑧 accord-

ing to Eq. (7.10) that are to be fed to the main LSTM:

𝑧𝑦ℎ = 𝑊 𝑦

ℎ̂ℎ
⊙ ℎ̂𝑖 where 𝑦 = {𝑖, 𝑔, 𝑜, 𝑓} ,

𝑧𝑦𝑥 = 𝑊 𝑦

ℎ̂𝑥
⊙ ℎ̂𝑖 ,

𝑧𝑦𝑏 = 𝑊 𝑦

ℎ̂𝑏
⊙ ℎ̂𝑖 + 𝑏𝑦0 .

(7.10)

The main convLSTM (introduced in Eq. (7.2)) uses these embeddings to generate the
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final output using Eq. (7.11):

𝑦𝑖 = (𝑧𝑦ℎ ⊗𝑊 𝑦
ℎ ) * ℎ𝑖−1 + (𝑧𝑦𝑥 ⊗𝑊 𝑦

𝑥 ) * 𝒳𝑖 + 𝑏𝑦 where 𝑦 = 𝑖, 𝑔, 𝑜, 𝑓 ,

𝑐𝑖 = 𝜎(𝑓𝑖) ⊗ 𝑐𝑖−1 + 𝜎(𝑖𝑖) ⊗𝜓(𝑔𝑖) ,

ℎ𝑖 = 𝜎(𝑜𝑖) ⊗𝜓(𝑐𝑖) .

(7.11)

Again, all the weight tensors 𝑊 ∙
∙ and the bias tensors 𝑏∙∙ are trainable, and are learned

by minimizing the considered loss function.

In the above, 𝒳𝑖 = 𝑥 ∈ R2×𝑁𝑥×𝑁𝑦 and ℎ𝑖 = 𝜑𝑖
0(𝑥) ∈ R2×𝑁𝑥×𝑁𝑦 . Let us denote

the number of hidden units in the hyperLSTM cell by 𝑝. Thus, we have that ℎ̂𝑖 ∈

R𝑝×𝑁𝑥×𝑁𝑦 . Once the hyperLSTM state is generated, we take the tensor product of this

state ℎ̂𝑖 with 𝑊 𝑦

ℎ̂ℎ
∈ R𝑘1×𝑘2×2×𝑝 according to Eq. (7.8) to obtain 𝑧𝑦ℎ ∈ R𝑘1×𝑘2×2×𝑁𝑥×𝑁𝑦 ,

where 𝑘1 × 𝑘2 is the kernel size used for ℎ𝑖−1 in the main convLSTM. Similarly, we

take the tensor product of ℎ̂𝑖 with 𝑊 𝑦

ℎ̂𝑥
∈ R𝑘3×𝑘4×2×𝑝 to obtain 𝑧𝑦𝑥 ∈ R𝑘3×𝑘4×2×𝑁𝑥×𝑁𝑦 ,

where 𝑘3 × 𝑘4 is the kernel size used for 𝒳𝑖 in the main convLSTM. Even though 𝑧𝑦𝑥

and 𝑧𝑦ℎ are both 5D tensors, they do not need to be pre-computed, and instead their

entries be computed independently for each grid point as required. 𝑧𝑦𝑥 and 𝑧𝑦ℎ are

then rescaled (with 𝑊 𝑦
𝑥 and 𝑊 𝑦

ℎ ) and used as kernels for the input-to-state and state-

to-state convolutions in the main convLSTM. Fig. (7-4) illustrates the inner details

for a single unit in the recurrent setup (from Fig. (7-3)) to show the data flow and

approximate sizes of the various variables and parameters.

An intuitive interpretation for our network is as follows. We look at each of 𝑊 𝑦

ℎ̂ℎ

and 𝑊 𝑦

ℎ̂𝑥
as a collection of 𝑝 different learned convolutional kernels that are to be used

in the main convLSTM. The output of the hyperLSTM, ℎ̂𝑖 of size 𝑝 × 𝑁𝑥 × 𝑁𝑦 is a

weight matrix detailing the weights of each of the kernels in 𝑊 𝑦

ℎ̂ℎ
and 𝑊 𝑦

ℎ̂𝑥
for each

spatial grid point. That is, 𝑧𝑦ℎ and 𝑧𝑦𝑥 are formed by taking the linear combination

of the kernels in 𝑊 𝑦

ℎ̂ℎ
and 𝑊 𝑦

ℎ̂𝑥
according to the weights in ℎ̂𝑖, for every grid point

(𝑚𝑥,𝑚𝑦) where 1 ≤ 𝑚𝑥 ≤ 𝑁𝑥 and 1 ≤ 𝑚𝑦 ≤ 𝑁𝑦. Thus, the embeddings are essentially

a collection of convolutional kernels to be used for all the grid points in the main

convLSTM computation: 𝑧𝑦ℎ(∙, ∙, ∙,𝑚𝑥,𝑚𝑦) and 𝑧𝑦𝑥(∙, ∙, ∙,𝑚𝑥,𝑚𝑦) are used in the
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Figure 7-4: Schematic of the individual cells in the proposed architecture. One can ob-
serve how the hyperLSTM and the main convLSTM interact with each other, and how the
hyperLSTM effectively enables us to choose a linear combination from a collection of learned
kernels for the main convLSTM, based on the spatial location of the point of interest. Solid
arrows indicate the flow of data, and dotted arrows indicate the flow of data from the past
iteration of the recurrent network.

convLSTM computation for the grid point (𝑚𝑥,𝑚𝑦). Our network has the ability

to choose appropriate kernel weights (through ℎ̂𝑖) based on the spatial location and

the iteration number (time). Although the collection of kernels is itself learned, all

the kernels used in the main convLSTM are always some linear combination of these

collections and cannot be arbitrary. This provides an implicit regularization. The

layer normalization used in Eq. (7.9) ensures the weighted combination is normalized,

and the filter weights are of comparable orders of magnitudes.

7.3.4 Loss Function

The final component of our proposed setup is to define an appropriate loss function

to be minimized to the train the neural network. The loss function encodes the infor-

mation about the tracer transport through which the flow maps are inferred, along

with the physical constraints that they must satisfy. Our proposed loss function com-

prises of three components: (i) tracer advection loss, (ii) incompressibility loss, and
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(iii) velocity smoothness loss. In what follows, our convLSTM–hyperLSTM network

provides the estimate of the flow map, i.e. 𝜑𝑖
0(𝑥) = ℎ𝑖, during its training, see above.

Tracer Advection Loss

Without diffusion and reactions, we know that the flow map and the observed tracer

fields have to satisfy Eq. (2.30). This equation can be enforced while learning the

flow map 𝜑𝑖
0 by adding a term given by Eq. (7.12) to the loss function. This is the

only component in our entire setup that uses the tracer transport data:

ℒ𝑖
trc =

∑︁
𝑥∈Ω

(︀
𝛼0 (𝑥) − 𝛼𝑖

(︀
𝜑𝑖

0 (𝑥)
)︀)︀2

. (7.12)

Incompressibility Loss

We assume that the underlying dynamic field that defines the flow maps is incom-

pressible. This implies that flow maps have to be area preserving, see Eq. (2.20).

Thus the incompressibility of the flow map 𝜑𝑖
0 is enforced by including the term given

by Eq. (7.13) to the loss function:

ℒ𝑖
ic =

∑︁
𝑥∈Ω

(︀
det
(︀
∇𝜑𝑖

0(𝑥)
)︀
− 1
)︀2

. (7.13)

Eq. (7.13) involves computing the gradients of 𝜑𝑖
0(𝑥) with respect to 𝑥. However, as

𝑥 is the input to our network while 𝜑𝑖
0(𝑥) is its output, these gradients are available

using automatic differentiation [16], and no numerical approximations are required.

Further, even though the loss term involves computing det (∇𝜑𝑖
0(𝑥)), the determinant

computation is inexpensive as ∇𝜑𝑖
0(𝑥) ∈ R2×2 ,∀ 𝑥 ∈ Ω.

Velocity Smoothness Loss

The final term in the loss function captures our physical intuition that the underlying

velocity fields change smoothly in space, which is the case for most marine and geo-

physical systems. Note that this does not imply smoothness at all scales, but simply

that the grid is sufficiently refined such that the finest and sharpest gradients of in-
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terest are resolved (if the grid is too coarse, physical fields could appear discontinuous

and not smooth). This translates to the fact that |∇𝑣| is finite. Unfortunately, we

do not have access to (nor do we infer) the underlying velocity field, and hence we

cannot directly impose any restrictions on it. However, Eq. (2.16) relates ∇𝑣 to the

gradient of the flow map. Using this, we can impose the smoothness of the underlying

velocity field by adding the term given by Eq. (7.14) to the loss function:

𝑑

𝑑𝑡
∇𝜑𝑖

0(𝑥) = ∇𝑣(𝜑𝑖
0(𝑥), 𝑡)∇𝜑𝑖

0(𝑥) =⇒
⃒⃒⃒⃒
𝑑

𝑑𝑡
∇𝜑𝑖

0(𝑥)

⃒⃒⃒⃒
2

/
⃒⃒
∇𝑣(𝜑𝑖

0(𝑥), 𝑡)
⃒⃒
2

⃒⃒
∇𝜑𝑖

0(𝑥)
⃒⃒
2
,

ℒ𝑖
𝑣 =

∑︁
𝑥∈Ω

⃒⃒
𝑑
𝑑𝑡
∇𝜑𝑖

0(𝑥)
⃒⃒2
2

|∇𝜑𝑖
0(𝑥)|22

. (7.14)

We require numerical approximations to compute 𝑑
𝑑𝑡
∇𝜑𝑖

0(𝑥), and we use a backward

Euler discretization, given by Eq. (7.15):

𝑑

𝑑𝑡
∇𝜑𝑖

0(𝑥) =
𝜑𝑖

0(𝑥) − 𝜑𝑖−1
0 (𝑥)

∆𝑡
. (7.15)

Net Loss

We obtain the total loss as the weighted sum of the above three components, averaged

over all iterations, given by Eq. (7.16) and Eq. (7.17):

ℒ =
1

(𝑁𝑡 + 1)

𝑁𝑡∑︁
𝑖=0

(︀
𝑤trcℒ𝑖

trc + 𝑤icℒ𝑖
ic + 𝑤𝑣ℒ𝑖

𝑣

)︀
, (7.16)

ℒ =
1

𝑁(𝑁𝑡 + 1)

𝑁𝑡∑︁
𝑖=0

∑︁
𝑥∈Ω

(︃
𝑤trc

(︀
𝛼0 (𝑥) − 𝛼𝑖

(︀
𝜑𝑖

0 (𝑥)
)︀)︀2

+

𝑤ic

(︀
det
(︀
∇𝜑𝑖

0(𝑥)
)︀
− 1
)︀2

+ 𝑤𝑣

⃒⃒
𝑑
𝑑𝑡
∇𝜑𝑖

0(𝑥)
⃒⃒2
2

|∇𝜑𝑖
0(𝑥)𝑣|22

)︃
.

(7.17)

The weighing factors 𝑤trc , 𝑤ic , and 𝑤𝑣 are chosen such that the loss terms are of

the same order of magnitude and the loss function is robust to any perturbations.

However, these factors can be edited according to any prior knowledge. For example,
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one may want to decrease the weight of the incompressibility loss if the underlying

flow field is known to only be weakly incompressible (such as a 2D slice of a 3D flow

with large vertical velocities).

7.3.5 Information Content and Predictive Capability

Information Content of the Tracer Fields

The quality of the flow maps inferred by our algorithm depends on two principal

components: (i) the amount of information contained in the available tracer fields,

and (ii) the accuracy of the inference algorithm. Even though the inference procedure

may be devoid of any errors, the quality of the learned fields is still constrained by the

inherent amount of information in the tracer field. For example, if the initial tracer

field is simply a single value (i.e. 𝛼0(𝑥) = 𝑐 ∀ 𝑥 ∈ Ω) then even a perfect inference

algorithm cannot learn the underlying flow maps, since there is no distinction be-

tween any domain positions based on their corresponding tracer values. On the other

extreme, if the initial tracer field has 𝑁 distinct values (𝑁 being the number of grid

points in the discretized domain), then a perfect inference algorithm can exactly infer

the underlying flow maps only through tracer advection, without using incompress-

ibility and velocity smoothness. This can be achieved by tracking a particular tracer

value through time and setting the flow map value to be its final position. However,

most physical tracer fields lie somewhere between these two extremes in that they

contain more than a single distinct tracer value but less than 𝑁 unique tracer values.

This is illustrated schematically in Fig. (7-5).

We now attempt to quantify the extent of information contained in the tracer field,

given a perfect inference algorithm. Clearly, the amount of information is related to

the number of unique values in the tracer, and not on the actual values themselves.

To quantify the information content, we look at the expected fraction of locations

without an error in the inferred flow map. Let us assume that there are 𝑟 unique

values in the tracer initial condition, with 𝑛𝑞 locations bearing the initial tracer value

𝛼𝑞, for 𝑞 = 1, . . . , 𝑟. Clearly, 𝑛1 + 𝑛2 + . . . + 𝑛𝑟 = 𝑁 . Further, we expect the
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Figure 7-5: Schematic qualitatively depicting the different possible types of tracer snapshot
data. There is no information and hence no learning when the tracer values are uniform
and constant (left). However, in the case of a perfectly random tracer (right), one can
exactly learn the flow maps only using tracer advection. Most physical tracers lie some-
where in between, for whom the flow maps are inferred using tracer advection along with
incompressibility and velocity smoothness.

error in inference at a particular location to be dependent on the the number of

other locations in its neighborhood with the same tracer value. Let us denote this

(unknown) neighborhood by Ω𝑛 ⊆ Ω. The area measure of Ω𝑛, 𝐴(Ω𝑛), is given by:

𝐴(Ω𝑛) = 𝑠𝐴(Ω) where 𝑠 ∈ [0, 1] ,

where 𝐴(Ω) is the area measure of Ω. Let E(∙) and P(∙) denote the expected value

and the probability of ∙, respectively. We have that:

E

⎡⎣fraction of locations

without an error

⎤⎦ =
𝑟∑︁

𝑞=1

E

⎡⎣fraction of locations without error

that have initial tracer value 𝛼𝑞

⎤⎦ , (7.18)

E

⎡⎣fraction of locations without error

that have initial tracer value 𝛼𝑞

⎤⎦ =
𝑛𝑞

𝑁

⎛⎝1 − P

⎡⎣error at a location with

initial tracer value 𝛼𝑞

⎤⎦⎞⎠ .

As there are a total of 𝑛𝑞 locations with the initial tracer value 𝛼𝑞 in Ω, the expected

number of locations with the initial tracer value 𝛼𝑞 in Ω𝑛 is 𝑠·𝑛𝑞. Thus, the probability
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correctly inferring the flow map at the considered location is 1/(𝑠 ·𝑛𝑞). Thus we have:

P

⎡⎣error at a location with

initial tracer value 𝛼𝑞

⎤⎦ = 1 − 1

𝑠 · 𝑛𝑞

. (7.19)

Substituting Eq. (7.19) in Eq. (7.18), we get:

E

⎡⎣fraction of locations

without an error

⎤⎦ =
𝑟∑︁

𝑞=1

𝑛𝑞

𝑁

(︂
1 −

(︂
1 − 1

𝑠 · 𝑛𝑞

)︂)︂
=

𝑟

𝑠𝑁
. (7.20)

Note that the expression given by Eq. (7.20) is valid for 𝑟/𝑁 ∈ [0, 𝑠], and the expected

fraction is equal to 1 for 𝑟/𝑁 ∈ (𝑠, 1]. This simply signifies that the inference algo-

rithm is not expected to make any errors if all the tracer values in every neighborhood

Ω𝑛 are distinct. Thus, we have:

E

⎡⎣fraction of locations

without an error

⎤⎦ =

⎧⎪⎨⎪⎩
𝑟
𝑠𝑁

for 𝑟/𝑁 ∈ [0, 𝑠] i.e. 𝑠 ∈ [𝑟/𝑁, 1] ,

1 for 𝑟/𝑁 ∈ (𝑠, 1] i.e. 𝑠 ∈ [0, 𝑟/𝑁) .

(7.21)

To quantify the information content as the expected fraction of locations without

an error, the specifics about Ω𝑛, especially the value of 𝑠 must be known. However,

this value (signifying the size of the neighborhood Ω𝑛) depends on several parameters

such as the (unknown) characteristic velocity scale of the flow, the timestep etc. To

eliminate this dependence on 𝑠, we define the information content (denoted by ℐ) as

the mean expected fraction of the locations without an error, given by Eq. (7.22):

ℐ(𝑟,𝑁) = E𝑠

⎡⎣E
⎡⎣fraction of locations

without an error

⎤⎦⎤⎦ =

∫︁ 𝑠=1

𝑠=0

E

⎡⎣fraction of locations

without an error

⎤⎦ 𝑑𝑠 .

(7.22)
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Substituting Eq. (7.21) in Eq. (7.22), we get the following:

ℐ(𝑟,𝑁) =

∫︁ 𝑠=1

𝑠=0

E

⎡⎣fraction of locations

without an error

⎤⎦ 𝑑𝑠 =

(︃∫︁ 𝑠=𝑟/𝑁

𝑠=0

1 · 𝑑𝑠 +

∫︁ 𝑠=1

𝑠=𝑟/𝑁

𝑟

𝑠𝑁
· 𝑑𝑠

)︃
.

Thus, we define the information content in the initial tracer field as:

ℐ(𝑟,𝑁) =
𝑟

𝑁

(︁
1 − log

(︁ 𝑟

𝑁

)︁)︁
. (7.23)

ℐ = 0 signifies no learning whereas ℐ = 1 implies perfect inference. Note that this

analysis to determine the information content does not require the exact flow maps

to be known. However, it only looks at inferring flow maps through tracer advection,

and does account for the effects of incompressibility and velocity smoothness that are

additionally imposed. Finally, this formulation to quantify the information content

in the tracer field is not unique, and other consistent approaches are possible. One

may look at approaches to quantify the information content that is dependent on the

spatial distribution of the tracer field and also relate such the information content of

the tracer field to other information theoretic metrics [169; 40].

Predictive Capability of the Inference Algorithm

The other important aspect is the capability of our inference algorithm to predict

the flow maps (and thus the tracer fields) at times beyond the availability of the

tracer transport data. To asses the accuracy of these predicted flow maps, we use

standard validation techniques from ML [23]. However, one needs to be cautious

about the two underlying factors that eventually determine the predictive capability

[211; 200] of our inference framework. These factors are (i) the predictive power

of our trained algorithm and (ii) the inherent predictability limit of the underlying

dynamical system. The first factor is trivial – in general, the more data our algorithm

sees in the training phase, the longer it can predict in future. Of course, this is not
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always true, but this is often the case [23; 182]. However, the underlying dynamical

system governing the flow maps is often chaotic. This means that even when the

exact state of the system is known, there is an inherent limit to how long one can

faithfully predict its future states, called the predictability limit [129].

We expect that the more tracer snapshots our neural network sees during training,

the more snapshots it can predict in the future, until this prediction time gets closer

to the predictability limit of the underlying system. As the data fed to our neural

network is normalized, neither the time difference between two consecutive snapshots

nor the length of the time interval over which the snapshots are presented are expected

to individually affect the prediction duration. However, we expect that the predictive

capability of our algorithm reduces significantly as it attempts to predict flow maps

closer to the predictability limit.

We study this phenomenon by training our neural network using tracer snapshots

at times 𝑡0 = 0, 𝑡1, . . . , 𝑡𝑁𝑡 = 𝑇 , and running it at future times to predict the flow maps

between 𝑡0 and 𝑡𝑁𝑡+1, 𝑡𝑁𝑡+2, . . . We then predict the advected tracer fields at these

future times by composing the predicted flow maps with the tracer initial condition.

We quantify the predictive capability of our ML algorithm by considering the relative

error between the predicted and the actual (observed) tracer fields.

7.4 Machine Inference and Prediction from Advective–

Diffusive Tracers

We now extend our machine learning schemes to the inference and prediction of flow

maps using Eulerian snapshot data about advective–diffusive tracers. Most marine

tracers such as temperature and salinity are advective–diffusive in nature. Further,

the transport of certain particulates that may not be diffusive (e.g. plastics) is better

modeled through an advection–diffusion (turbulent) process as compared to a purely

advective process as the former accounts for the random motion on smaller scales

than those resolved by the flow field.
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Learning the underlying flow maps from the transport of an advective–diffusive

tracer presents several challenges: (i) often, the diffusivity or turbulence closure of

the tracer is not known a priori and depends on the flow field, and thus estimating

the advective and diffusive contributions separately is not possible, (ii) adding dif-

fusion eliminates the purely hyperbolic nature of the advective transport equation.

This implies that the tracer field cannot be expressed as a composition of the initial

condition with the corresponding flow maps.

It must be made clear that even though advective–diffusive tracer transport is not

directly governed by flow maps, the underlying flow field that the tracer is transported

in still admits well-defined flow maps, as they are an intrinsic property of the flow field.

The advective component of the tracer transport, i.e. how the tracer is transported

by the velocity field, is governed by these well-defined flow maps. However, the

additional diffusive component of tracer transport at a particular time now depends

on the relative concentration gradients of the tracer at that time, and possibly the flow

field itself for several turbulence models. The velocity field only implicitly impacts

the advective component of tracer transport only through flow maps when tracer

diffusion and turbulent mixing do not depend directly on the velocity field. That is,

in such cases, access to the actual flow field is never required to learn the flow maps

governed by it. However, it is impossible to learn the flow maps without the knowing

/ learning the velocity field when the turbulent mixing of the tracer explicitly depends

on the velocity field (or its derivatives). This is because in such situations the velocity

field implicitly impacts the advective transport (through flow maps) and explicitly

impacts the diffusive mixing. Hence the velocity field is explicitly required to quantify

the diffusive mixing.

We extend the previously developed ML framework to learn the underlying flow

maps as well as the unknown diffusivity of the tracer only from Eulerian tracer ob-

servations. Following upon the earlier discussion, we assume that the tracer diffusion

does not depend on the flow field in this work. This implies that the velocity field only

affects the flow maps, and explicit access to the velocity field is not required to learn

the flow maps. It is assumed that the unknown diffusivity of the tracer, denoted by
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𝜅(𝑥, 𝑡), is a constant. That is, 𝜅(𝑥, 𝑡) = 𝜅. However, extensions of the presented work

for spatio-temporally varying diffusivity as well as flow-dependent turbulent models

are certainly possible, as will be seen.

In such a setting, the governing equation for 𝛼 is given by Eq. (7.24), which is a

special case of Eq. (3.9) with constant diffusivity and an absent source term:

𝜕𝛼(𝑥, 𝑡)

𝜕𝑡
+ 𝑣 · ∇𝛼(𝑥, 𝑡) = 𝜅∇2𝛼(𝑥, 𝑡) . (7.24)

Our goal now is to infer and predict the flow maps 𝜑𝑖
0 (𝑖 = 0, . . . , 𝑁𝑡, 𝑁𝑡 + 1, . . .) and

the unknown diffusivity 𝜅 only from the tracer field observations 𝛼𝑖 (𝑖 = 0, . . . , 𝑁𝑡).

As mentioned before, under advective and diffusive transport, one cannot express a

direct relationship between 𝛼0(𝑥), 𝛼𝑖(𝑥), and 𝜑𝑖
0(𝑥). This makes the task of inferring

𝜑𝑖
0(𝑥) only from 𝛼𝑖(𝑥) extremely challenging. To simplify the task at hand and make

the problem more tractable, we resort to operator splitting, as done in Sec. 3.3.3. That

is we assume that advection and diffusion act independently during the time interval

∆𝑡. Of course, this is an assumption and not exactly true in real life. However, it is

well justified when ∆𝑡 is small compared to the time interval 𝑇 [235]. By assuming

the independence of advection and diffusion over all time intervals [𝑡𝑖, 𝑡𝑖+1], we draw

a relationship between 𝛼𝑖(𝑥), 𝛼𝑖+1(𝑥), and 𝜑𝑖+1
𝑖 (𝑥) (or 𝜑𝑖

𝑖+1(𝑥)). Hence, instead of

learning flow maps of the form 𝜑𝑖
0 (or 𝜑0

𝑖 ), we learn the incremental flow maps of the

form 𝜑𝑖+1
𝑖 (or 𝜑𝑖

𝑖+1), for 𝑖 = 0, . . . , 𝑁𝑡 − 1, 𝑁𝑡, . . . Once these incremental flow maps

are learned, the corresponding flow maps over the entire duration can be obtained by

flow map composition Eq. (2.27) and Eq. (2.28).

Motivated by this, we alter our inference algorithm in two main aspects. First, we

modify the algorithm to now predict the incremental flow maps 𝜑𝑖+1
𝑖 instead of the

full flow maps 𝜑𝑖
0. The new schematic of our ML algorithm is given by Fig. (7-6).

We also modify our loss function to be minimized to account for the advective–

diffusive transport instead of purely advective transport. However, the incremental

flow maps still must satisfy the incompressibility and the velocity smoothness con-

straints, and hence those components of the loss function are unaffected.
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Figure 7-6: Schematic of the proposed ML framework for flow map inference and prediction
from advective–diffusive tracer transport. Unlike Fig. (7-1), we now expect the framework
to output the incremental flow maps 𝜑𝑖+1

𝑖 (𝑥) (or 𝜑𝑖
𝑖+1(𝑥)) for 𝑖 = 0, 1, . . . , 𝑁𝑡 − 1, 𝑁𝑡, . . .

To train the network, we utilize the available tracer transport data as well as the known
physical constraints that 𝜑𝑖+1

𝑖 (𝑥) (or 𝜑𝑖
𝑖+1(𝑥)) must satisfy.

As stated before, we assume that advection and diffusion act independently over

a time interval [𝑡𝑖, 𝑡𝑖+1] , ∀ 𝑖. We use a simple first-order Lie splitting (see Sec. 3.3.3),

where the advection and diffusion operators are assumed to act sequentially.

We split Eq. (7.24) into its components given by Eq. (7.25). Each of the con-

stituent PDEs is solved over [𝑡𝑖, 𝑡𝑖+1] and the solution of the diffusion PDE, 𝛼*, is

used as the initial condition for the advection PDE, whose final solution is 𝛼𝑖+1:

𝜕𝛼(𝑥, 𝑡)

𝜕𝑡
= 𝜅∇2𝛼(𝑥, 𝑡) ,

𝜕𝛼(𝑥, 𝑡)

𝜕𝑡
+ 𝑣 · ∇𝛼(𝑥, 𝑡) = 0 .

(7.25)

We compute 𝛼* by using a simple forward Euler time marching for the diffusion PDE:

𝛼* − 𝛼𝑖

∆𝑡
≈ 𝜅∇2𝛼𝑖 =⇒ 𝛼* ≈ 𝛼𝑖 + 𝜅∆𝑡∇2𝛼𝑖 . (7.26)

The advection component of Eq. (7.25) can be represented through flow maps as:

𝛼𝑖+1(𝑥) = 𝛼*(𝜑
𝑖
𝑖+1(𝑥)) =⇒ 𝛼* = 𝛼𝑖+1

(︀
𝜑𝑖+1

𝑖

)︀
. (7.27)

Comparing Eq. (7.26) and Eq. (7.27), we get that:

𝛼𝑖+1

(︀
𝜑𝑖+1

𝑖 (𝑥)
)︀
≈ 𝛼𝑖(𝑥) + 𝜅∆𝑡∇2𝛼𝑖(𝑥) . (7.28)

This suggests the tracer advection–diffusion loss component at time instant 𝑡𝑖 (with
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𝑖 = 0, . . . , 𝑁𝑡 − 1) should be:

ℒ𝑖
diff =

∑︁
𝑥∈Ω

(︀
𝛼𝑖+1

(︀
𝜑𝑖+1

𝑖 (𝑥)
)︀
− 𝛼𝑖(𝑥) + 𝜅∆𝑡∇2𝛼𝑖(𝑥)

)︀2
. (7.29)

As the tracer fields 𝛼𝑖(𝑥) are given, their spatial gradients (∇𝛼𝑖,∇2𝛼𝑖) can be easily

computed with any difference approximation. Clearly, this form of ℒ𝑖
diff is well-suited

to learn the incremental forward flow maps (𝜑𝑖+1
𝑖 ).

Now, instead of writing 𝛼* = 𝛼𝑖+1

(︀
𝜑𝑖+1

𝑖

)︀
as in Eq. (7.27), we invert this form to

obtain 𝛼𝑖+1 = 𝛼*
(︀
𝜑𝑖

𝑖+1

)︀
. Using this relation with Eq. (7.26), we obtain Eq. (7.30):

𝛼𝑖+1 = 𝛼*
(︀
𝜑𝑖

𝑖+1

)︀
≈ 𝛼𝑖

(︀
𝜑𝑖

𝑖+1

)︀
+ 𝜅∆𝑡

(︀
∇2𝛼𝑖

(︀
𝜑𝑖

𝑖+1

)︀)︀
,

=⇒ 𝛼𝑖+1(𝑥) ≈ 𝛼𝑖

(︀
𝜑𝑖

𝑖+1(𝑥)
)︀

+ 𝜅∆𝑡∇2
(︀
𝛼𝑖

(︀
𝜑𝑖

𝑖+1(𝑥)
)︀)︀

.
(7.30)

However, ∇2
(︀
𝛼𝑖

(︀
𝜑𝑖

𝑖+1(𝑥)
)︀)︀

can be efficiently computed through the chain rule as:

∇2
(︀
𝛼𝑖

(︀
𝜑𝑖

𝑖+1(𝑥)
)︀)︀

=
(︁
∇2𝛼𝑖(𝑥)

⃒⃒
𝑥=𝜑𝑖

𝑖+1(𝑥)

)︁ (︀
∇𝜑𝑖

𝑖+1(𝑥)
)︀2

+
(︁
∇𝛼𝑖(𝑥)

⃒⃒
𝑥=𝜑𝑖

𝑖+1(𝑥)

)︁ (︀
∇2𝜑𝑖

𝑖+1(𝑥)
)︀
.

(7.31)

∇𝜑𝑖
𝑖+1 and ∇2𝜑𝑖

𝑖+1 are computed using automatic differentiation [16].

Note that Eq. (7.30) can also be obtained by first applying the advection operator

and then applying the diffusion operation on this advected field.Thus, the tracer

advection–diffusion loss for the learning the backward flow maps (𝜑𝑖
𝑖+1) is:

ℒ𝑖
diff =

∑︁
𝑥∈Ω

(︀
𝛼𝑖+1(𝑥) − 𝜅∆𝑡∇2

(︀
𝛼𝑖

(︀
𝜑𝑖

𝑖+1(𝑥)
)︀)︀)︀2

. (7.32)

Finally, once the incremental flow maps are obtained, the full flow maps 𝜑𝑖
0 and 𝜑0

𝑖

are obtained through flow map composition Eq. (2.27) and Eq. (2.28).

By keeping the diffusivity 𝜅 as a learnable parameter in our neural network, we

can infer its unknown value. Further, if the (turbulent) diffusive processes are pa-

rameterized through multiple unknown parameters, we can also learn values of all

these parameters in the same fashion. If the forward and the backward flow maps
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are predicted simultaneously (see Sec. 7.5.3), the diffusivity can be eliminated using

Eq. (7.28) and Eq. (7.30):

𝛼𝑖+1(𝑥) ≈ 𝛼𝑖

(︀
𝜑𝑖

𝑖+1(𝑥)
)︀

+

(︀
𝛼𝑖+1

(︀
𝜑𝑖+1

0 (𝑥)
)︀
− 𝛼𝑖

)︀
∇2𝛼𝑖(𝑥)

∇2
(︀
𝛼𝑖

(︀
𝜑𝑖

𝑖+1(𝑥)
)︀)︀

,

=⇒ ℒ𝑖
diff =

∑︁
𝑥∈Ω

(︃
𝛼𝑖+1(𝑥) − 𝛼𝑖

(︀
𝜑𝑖

𝑖+1(𝑥)
)︀

+

(︀
𝛼𝑖+1

(︀
𝜑𝑖+1

0 (𝑥)
)︀
− 𝛼𝑖

)︀
∇2𝛼𝑖(𝑥)

∇2
(︀
𝛼𝑖

(︀
𝜑𝑖

𝑖+1(𝑥)
)︀)︀)︃2

.

(7.33)

This loss formulation emphasizes a stronger coupling between operator splitting by

indirectly imposing that the order of operations in the Lie splitting should be irrele-

vant. However, this is done at a cost of requiring to infer both the forward and the

backward flow maps. Once they are learned, the unknown diffusivity can be inferred

by using Eq. (7.28) or Eq. (7.30).

7.5 Extensions Towards Realistic Flows

We now develop several extensions to our flow map inference and prediction engine to

allow applications realistic flow fields. We first show how the inference and prediction

of flow maps can be improved by using data from multiple tracers. We then show how

sparse, high resolution Lagrangian information (such as float / drifter trajectories)

can be combined with low resolution Eulerian tracer transport data (e.g. data ob-

tained through satellite altimetry) to infer and predict high resolution flow maps and

coherent structures. Finally, we extend our approach to handle open domains. This is

of utmost importance in realistic cases, as regional ocean flow fields are rarely closed,

and there is significant inflow and outflow of fluid (and the tracer that is transported

with it) which needs to be addressed.

7.5.1 Flow Map Inference Using Multiple Advective Tracers

Often times in marine applications, a measuring device (e.g. satellite) may observe

several different Eulerian fields (such as the sea surface temperature, salinity etc.)
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simultaneously. The ability to incorporate data about the transport of additional

tracers in our inference procedure is beneficial, as the transport of all such tracers

is governed by the same underlying flow maps. Thus, with such additional data, we

expect our algorithms to better learn the underlying flow maps.

Let us assume that along with the data about tracer 𝛼 at times 𝑡0 = 0, 𝑡1, . . . , 𝑡𝑁𝑡 =

𝑇 , we also have data about another tracer 𝛽, also at times 𝑡0, . . . , 𝑡𝑁𝑡 (for example,

𝛼 is the temperature and 𝛽 is the salinity). Similar to 𝛼𝑖, let us denote 𝛽(𝑥, 𝑡𝑖)

as 𝛽𝑖(𝑥). Obviously, this methodology can be extended to more than two tracers.

However, for clarity, we demonstrate it only for the case of two tracers. To account

for the additional tracer, we amend the tracer advection loss component in the net

loss function, as given by Eq. (7.34):

ℒ𝑖
trc =

∑︁
𝑥∈Ω

[︁
𝑤𝛼

(︀
𝛼0 (𝑥) − 𝛼𝑖

(︀
𝜑𝑖

0 (𝑥)
)︀)︀2

+ 𝑤𝛽

(︀
𝛽0 (𝑥) − 𝛽𝑖

(︀
𝜑𝑖

0 (𝑥)
)︀)︀2]︁

. (7.34)

Here, the weights 𝑤𝛼 and 𝑤𝛽 are required to normalize the scale and units of the

tracers so that both these components are of the same order of magnitude. As this

extension of our algorithm to account for multiple tracers only requires us to amend

the loss function, it can easily be used in conjunction with any of the other extensions.

7.5.2 Merging Eulerian and Lagrangian Information

Often times, only low resolution data about the transport of the tracer is available,

possibly because it is measured over a larger domain or is a product of certain indirect

measurements. One can obviously use these Eulerian observations to infer and predict

the flow maps and coherent structures on the same coarse grid. However, that is

typically not sufficient as most coherent structure predictions require high resolution

flow maps. For example, the resolution of satellite remote sensing in coastal and

estuaries regions is commonly not sufficient to resolve the coastal scales of motion.

Thus, to infer and predict flow maps at a fine scale, an interesting idea is to augment

the coarse Eulerian data with the Lagrangian data that is high resolution but sparse.

Such data is typically obtained in the form of the trajectories of marine drifters or
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floats in the domain of interest over the considered time interval (e.g. the Argo float

program [212], targeted drifter deployments such as the CARTHE program [192], or

combinations of Lagrangian assets [29; 148] etc.).

Although such float/drifter data are available at a high resolution, i.e. each drifter

reports its own position with high accuracy, they are also sparse in an Eulerian sense.

That is, these data is available for several drifters but only along their individual

trajectories. It does not cover the entire spatial domain of interest and is only available

as a time series of the drifter/float positions (one time series for each drifter). Let

us assume that the tracer data is available at times 𝑡𝑖, 𝑖 = 0, . . . 𝑁𝑡 on a coarse grid,

denoted by 𝑥𝑐. Further, we assume that we have position data from 𝐷 different

drifters, each as a time series, denoted as 𝑟𝑑(𝑡𝑖) for 𝑑 = 1, . . . , 𝐷. We wish to predict

the flow maps and the coherent structures on a grid with a fine spatial resolution,

denoted by 𝑥𝑓 . The spatial accuracy of the drifter data 𝑟𝑑(𝑡𝑖) should be comparable

to the grid spacing of 𝑥𝑓 . Let the flow map between times 𝑡𝑖 and 𝑡𝑗 on 𝑥𝑓 be denoted

by 𝜑𝑗
𝑖,𝑓 and its restriction on 𝑥𝑐 be denoted by 𝜑𝑗

𝑖,𝑐. Then our goal is to infer and

predict 𝜑𝑖
0,𝑓 , ∀𝑖 = 0, . . . , 𝑁𝑡, 𝑁𝑡 + 1, . . ., given 𝛼𝑖(𝑥𝑐) and 𝑟𝑑(𝑡𝑖) , ∀ 𝑖 = 0, . . . , 𝑁𝑡 and

𝑑 = 1, . . . , 𝐷.

We achieve this by modifying the network slightly from what is shown in Fig. (7-3)

and by amending our loss function. Specifically, we input 𝒳𝑖 = 𝑥𝑓 instead of 𝑥𝑐 and

expect the network to output 𝜑𝑖
0 = 𝜑𝑖

0,𝑓 instead of 𝜑𝑖
0,𝑐. We also amend the tracer

advection loss, as the tracer transport data (i.e. 𝛼𝑖(𝑥)) is only available on the coarse

grid 𝑥𝑐. We do this by imposing the tracer advection loss on 𝜑𝑖
0,𝑐, which is obtained

by restricting 𝜑𝑖
0,𝑓 to 𝑥𝑐. This modified tracer advection loss component is given by

Eq. (7.35):

ℒ𝑖
trc =

∑︁
𝑥∈Ω

(︀
𝛼0 (𝑥𝑐) − 𝛼𝑖

(︀
𝜑𝑖

0,𝑐 (𝑥𝑐)
)︀)︀2

. (7.35)

Further, we add another loss component to the net loss Eq. (7.17) to enforce that the

drifter positions predicted by the flow map and the observed drifter positions should

be close. Note that, if the initial position of a drifter is 𝑟0, then its position at time

189



𝑡 is given by 𝜑𝑡
0(𝑟0). Thus, we can write this drifter position loss component as:

ℒ𝑖
drft =

𝐷∑︁
𝑑=1

(︀
𝑟𝑑(𝑡𝑖) − 𝜑𝑖

0,𝑓 (𝑟𝑑(𝑡0))
)︀2

. (7.36)

The net loss in this case is given by:

ℒ =
1

(𝑁𝑡 + 1)

𝑁𝑡∑︁
𝑖=0

(︀
𝑤drftℒ𝑖

drft + 𝑤trcℒ𝑖
trc + 𝑤icℒ𝑖

ic + 𝑤𝑣ℒ𝑖
𝑣

)︀
, (7.37)

As before, 𝑤drft , 𝑤trc , 𝑤ic , and 𝑤𝑣 are the appropriate weighing factors. The incom-

pressibility loss and the velocity smoothness loss are applied to 𝜑𝑖
0,𝑓 . By training our

inference and prediction engine using the loss function in Eq. (7.37), we obtain high

resolution flow map predictions.

7.5.3 Handling Open Domains

Most often, real ocean domains are open, i.e. there is a significant amount of inflow

and outflow of fluid (and the tracer that it carries). As we are only given the Eu-

lerian snapshots of the tracer field at discrete time instants, there is no direct way

to determine which tracer values were present inside the domain and which tracer

values came from the outside. As was discussed in Sec. 5.3.1, flow maps are only de-

fined at the inside-inside positions, i.e. at the positions that were inside the domain

at both the start and the end times. The positions corresponding to the trajectories

that enter the domain, i.e. inside-outside positions, and the positions corresponding

to the trajectories that leave the domain, i.e. outside-inside positions, need to be

eliminated. Further, the forward flow map is defined at the start position of the

inside-inside trajectory, whereas the backward flow map is defined at the end posi-

tion of the inside-inside trajectory. This implies that the domains of definitions of

the forward and the backward flow map are different. Thus, along with inferring the

flow map fields, the active domains corresponding to the flow maps also need to be

learned in this case. This makes the problem of inferring and predicting the flow

maps in open domains extremely challenging.
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Even though there is little information about what fluid parcels enter or exit the

domain, we utilize an important observation to extend our ML framework to infer

and predict flow maps in such domains. As the forward and the backward flow maps

are inverses of each other, the domain of definition of the backward flow map is the

range of the forward flow map and vice versa. Specifically, as mentioned before, the

forward flow map is defined at the start location of an inside-inside trajectory, whose

value is the final location of this trajectory. Conversely, the backward flow map is

defined at the end location of an inside-inside trajectory, whose value is the initial

location of this trajectory.

Thus, the forward flow map values (i.e. the final locations of the inside-inside

trajectories) are the locations where the backward flow map is defined. Similarly, the

backward flow map values (i.e. the initial locations of the inside-inside trajectories)

are the locations where the forward flow map is defined.

Thus, we can extract the domain of definition of the forward flow map by looking

at the unique values in the range of the backward flow map and vice-versa.

Proposed Network Architecture

The above insight implies that if we learn both the forward and the backward flow

maps simultaneously, then we can use the range of the former to extract the domain

of definition of the latter, and vice-versa. Motivated by this, we modify the basic

requirements of our ML algorithm to simultaneously output both the forward and

the backward flow maps, as in Fig. (7-7).

Figure 7-7: Schematic of the proposed ML framework to infer and predict flow maps in
open domains. Unlike Fig. (7-1), we now expect the framework to output both 𝜑𝑖

0(𝑥) and
𝜑0
𝑖 (𝑥) for 𝑖 = 0, 1, . . . , 𝑁𝑡, 𝑁𝑡 + 1, . . .. In order to train the network, we utilize the available

tracer transport data as well as the known physical constraints and invertibility conditions
that 𝜑𝑖

0(𝑥) and 𝜑0
𝑖 (𝑥) must satisfy.
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By combining the forward and the backward flow map predictions in the same

network, we can impose additional invertibility constraints (i.e. the fact that the for-

ward and the backward flow maps must be inverses of each other) in the loss function

and reduce the number of trainable parameters. This greatly enhances the training

and prediction of our algorithm. Secondly, we could have also simply provided 𝑥 as

an input to the algorithm instead of [𝑥,𝑥]. However, the current input specification

ensures that this new network design is consistent in size with the original building

block (Fig. (7-4)) and also allows for an easy inversion of the outputs as follows. Let

us denote the ML function approximator from Fig. (7-7) as ℱ𝑖 for the 𝑖𝑡ℎ iteration.

We then require:

ℱ𝑖

⎛⎝⎡⎣𝑥
𝑥

⎤⎦⎞⎠ =

⎡⎣𝜑𝑖
0 (𝑥)

𝜑0
𝑖 (𝑥)

⎤⎦ . (7.38)

However, as the forward and the backward flow maps are mutual inverses, we get:

ℱ𝑖

⎛⎝⎡⎣𝜑0
𝑖 (𝑥)

𝜑𝑖
0 (𝑥)

⎤⎦⎞⎠ =

⎡⎣𝜑𝑖
0 (𝜑0

𝑖 (𝑥))

𝜑0
𝑖 (𝜑𝑖

0 (𝑥))

⎤⎦ =

⎡⎣𝑥
𝑥

⎤⎦ =⇒ ℱ𝑖

⎛⎝flip

⎛⎝ℱ𝑖

⎛⎝⎡⎣𝑥
𝑥

⎤⎦⎞⎠⎞⎠⎞⎠ =

⎡⎣𝑥
𝑥

⎤⎦ .

(7.39)

Here the ‘flip’ operator flips the order of the inputs, i.e. flip([𝑥1,𝑥2]) = [𝑥2,𝑥1]. The

identity given by Eq. (7.39) yields a convenient approach to impose the constraint

that 𝜑𝑖
0 and 𝜑0

𝑖 are inverses of each other without actually inverting the ML algorithm

ℱ𝑖. Similar ideas have been used in supervised and generative learning algorithms

[45; 210; 167].

Loss Function

As stated before, as we learn the forward and the backward flow maps simultaneously,

we can impose several constraints in the loss function. First, we impose the tracer

advection loss, the incompressibility loss, and the velocity smoothness loss for both the

forward flow map and the backward flow map simultaneously. These loss components
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are given by Eq. (7.40):

ℒ𝑖
trc =

(︀
𝛼0 (𝑥) − 𝛼𝑖

(︀
𝜑𝑖

0 (𝑥)
)︀)︀2

+
(︀
𝛼𝑖 (𝑥) − 𝛼0

(︀
𝜑0

𝑖 (𝑥)
)︀)︀2

,

ℒ𝑖
ic =

(︀
det
(︀
∇𝜑𝑖

0(𝑥)
)︀
− 1
)︀2

+
(︀
det
(︀
∇𝜑0

𝑖 (𝑥)
)︀
− 1
)︀2

,

ℒ𝑖
𝑣 =

⃒⃒
𝑑
𝑑𝑡
∇𝜑𝑖

0(𝑥)
⃒⃒2
2

|∇𝜑𝑖
0(𝑥)𝑣|22

+

⃒⃒
𝑑
𝑑𝑡
∇𝜑0

𝑖 (𝑥)
⃒⃒2
2

|∇𝜑0
𝑖 (𝑥)𝑣|22

.

(7.40)

We further impose an additional constraint which enforces the fact that 𝜑𝑖
0 and 𝜑0

𝑖

are inverses of each other for all 𝑖. This is enforced by adding a loss component given

by Eq. (7.41) to the total loss function:

ℒ𝑖
inv =

(︀
𝜑0

𝑖

(︀
𝜑𝑖

0 (𝑥)
)︀
− 𝑥

)︀2
+
(︀
𝜑𝑖

0

(︀
𝜑0

𝑖 (𝑥)
)︀
− 𝑥

)︀2
. (7.41)

By using Eq. (7.39), ℒ𝑖
inv can be efficiently computed as:

ℒ𝑖
inv =

⃒⃒⃒⃒
⃒⃒ℱ𝑖

⎛⎝flip

⎛⎝ℱ𝑖

⎛⎝⎡⎣𝑥
𝑥

⎤⎦⎞⎠⎞⎠⎞⎠−

⎡⎣𝑥
𝑥

⎤⎦⃒⃒⃒⃒⃒⃒
2

2

. (7.42)

Thus after training our modified ML algorithm by minimizing the above-described

loss function, we obtain the forward and the backward flow maps simultaneously.

Note that these obtained fields are still defined over the entire domain. That is, these

fields have (incorrect) values at the initial / final locations of the trajectories that

leave / enter the domain. Such locations need to be filtered out from these fields to

obtain the correct forward / backward flow maps defined over their corresponding

active domains.

Extraction of the Active Domain

Let us denote the output of the inference and prediction framework at time instant

𝑡𝑖 as [Ψ𝑖
0(𝑥),Ψ𝑖

0(𝑥)] and the active domains corresponding to the forward and the

backward flow maps as Ω𝑓
𝑎(𝑡𝑖) and Ω𝑏

𝑎(𝑡𝑖) respectively. The restriction of Ψ𝑖
0(𝑥) to

Ω𝑓
𝑎(𝑡𝑖) is the desired forward flow map 𝜑𝑖

0(𝑥) and the restriction of Ψ0
𝑖 (𝑥) to Ω𝑏

𝑎(𝑡𝑖) is
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the desired backward flow map 𝜑0
𝑖 (𝑥).

The active domains Ω𝑓
𝑎 and Ω𝑏

𝑎 are simply defined by the initial and the final

locations of the inside-inside trajectories respectively. Thus, in order to extract these

domains, we iteratively eliminate locations that either left or entered the domain Ω,

as given in Algorithm 1.

We first obtain the range of the backward flow map, i.e. the set of unique values

of the backward flow map field. We then only retain the forward flow map values

at the locations contained in the range of the backward flow map and eliminate all

the locations that are not in the range. As the range of the backward flow map is

essentially all the domain positions where trajectories start at the initial time, this

operation corresponds to eliminating the outside-inside positions. We then consider

the updated forward flow map (defined only at the aforementioned locations), and

compute its range. The range of the forward flow map denotes all the end locations

of the trajectories that start inside Ω. We then only retain the backward flow map

at the locations in the range of the forward flow map. This corresponds to elimi-

nating all the inside-outside positions. Thus by alternatively completing these two

steps, we eliminate the outside-inside and the inside outside positions. The outside-

outside positions are never considered and hence do not need to be eliminated. Thus,

through these two steps, we eliminate the outside-inside and the inside-outside po-

sition, thereby only retaining the inside-inside positions as desired. Ideally, just one

such iteration of filtering the forward and the backward flow map should yield the true

active domains. However, we observe that in practice we require about 2-5 iterations

to obtain convergence of results due to numerical effects.

Algorithm 1 Active domain extraction for the forward and the backward flow maps
Require: Ψ𝑖

0(𝑥) and Ψ0
𝑖 (𝑥)

Set 𝜑𝑖
0(𝑥) = Ψ𝑖

0(𝑥) and 𝜑0
𝑖 (𝑥) = Ψ0

𝑖 (𝑥)
while not converged do

Compute the unique values in 𝜑𝑖
0(𝑥) and 𝜑0

𝑖 (𝑥):
Set Ω𝑓

𝑎(𝑡𝑖) = Unique (𝜑0
𝑖 (𝑥)) and Ω𝑏

𝑎(𝑡𝑖) = Unique (𝜑𝑖
0(𝑥))

Update 𝜑𝑖
0(𝑥) = 𝜑𝑖

0(𝑥) ∀𝑥 ∈ Ω𝑓
𝑎(𝑡𝑖) and 𝑁𝑎𝑁 otherwise

Update 𝜑0
𝑖 (𝑥) = 𝜑0

𝑖 (𝑥) ∀𝑥 ∈ Ω𝑏
𝑎(𝑡𝑖) and 𝑁𝑎𝑁 otherwise
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7.6 Summary

In this chapter, we develop the theoretical framework to machine infer and predict

flow maps and coherent structures only from Eulerian data about the transport of

advective and advective–diffusive tracers. We achieve this by designing a novel recur-

rent neural network using our insights about the flow map. Specifically, we use and

extend recurrent neural networks, including a combination of long short-term mem-

ory networks (LSTMs) with hypernetworks. The LSTM captures the sequentiality

of Lagrangian trajectory motion. The hypernetwork enables relaxed weight sharing

in time, i.e. it allows for the main LSTM weights to change every iteration, thereby

capturing the dynamic nature of the incremental flow maps. The loss function of the

said neural network accounts for the accuracy of the observed tracer evolution (that

is implicitly governed by the underlying flow maps), along with incompressibility and

velocity smoothness to obtain physically consistent fields, at the scales resolved by the

data. We further build upon these developments to learn from transport data about

multiple tracers, account for both Eulerian and Lagrangian information, and build a

more general setup to infer the forward and the backward flow maps simultaneously,

which then allows us to learn coherent structures in dynamic open domains. Appli-

cations of the theory developed in this chapter are showcased on various analytical

and realistic flow fields in Chapter 8.
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Chapter 8

Machine Inference and Prediction of

Material Transport Features -

Applications

In this chapter, we first look at the applications of the ML framework developed

in Chapter 7 to two canonical flow fields often used as idealized manifestations of

typical marine flows - a steady swirl flow (in Sec. 8.1) and an unsteady double gyre

flow (in Sec. 8.2). We look at the application of the proposed framework to learn

flow maps and coherent structures, our approach of combining Eulerian and La-

grangian information, and also some interesting improvements in the results when

certain physical insights about the flow field are accounted for. We also consider the

advective–diffusive transport of a tracer in the analytical double gyre, where we learn

the underlying flow maps and the unknown diffusivity of this tracer. This is followed

by the application of the proposed framework to a realistic marine flow field in the

Western Mediterranean (Alboran) Sea in Sec. 8.3. We show how the flow maps and

coherent structures can be learned from (i) simulated advective tracer transport data,

(ii) sea surface temperature, and (iii) combined data about the sea surface tempera-

ture and salinity in this open domain. We find that our algorithms are able to infer

the flow maps and coherent structures accurately, even in the presence of significant

fluid inflow and outflow. Further, we find that in the Alboran Sea, our algorithms can
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accurately predict future flow maps for more than 1 day beyond the availability of the

observed data. However, the errors increase beyond that and the predictions become

unreliable. The results from this chapter are published in Kulkarni and Lermusiaux

[133, 136].

8.1 Analytical Swirl Flow

We first look at an analytical swirl flow in a closed square domain Ω = [0, 1] × [0, 1]

[49; 161], where the non-dimensional velocity is given by Eq. (8.1) (same as Eq. (4.1);

restated for convenience):

𝑣(𝑥, 𝑦, 𝑡) =
(︀
sin2(𝜋𝑥) sin(2𝜋𝑦),− sin2(𝜋𝑦) · sin(2𝜋𝑥)

)︀
. (8.1)

The velocity field 𝑣(𝑥, 𝑡) satisfies incompressibility, but it is not a solution of the

Navier–Stokes’ equations. The advection of the tracer field 𝛼(𝑥, 𝑡) is simulated using

the method of composition (see Chapter 3) for 𝑡 ∈ [0, 1] with a timestep of ∆𝑡 = 0.01.

Thus we have 𝑁𝑡 = 100. The simulation domain is discretized such that 𝑁𝑥 = 𝑁𝑦 =

100. The exact flow maps, which are never seen by the ML algorithm and only used

for estimating errors in the machine inference, are also computed using the method

of composition. The initial condition for the tracer field is chosen to be 4 randomly

located Gaussian bumps of random intensities. Fig. (8-1) shows the advected tracer

field at various times in [0, 1]. These advected tracer fields (on the (𝑥, 𝑦) grid) at the

100 time instants are the only data seen by our algorithm.

We use backpropagation through time (BPTT) [257] with RMSProp optimizer [19]

and a learning rate of 10−3 and a decay rate of 0.9 to train our ML algorithm. The loss

is minimized until the relative difference is less than 0.01 for 10 consecutive iterations,

indicating that it has stabilized. Table 8.1 lists the neural network parameters that

are used for the machine inference and prediction of the flow maps in this case. The

hyperparameters of the ML algorithm are tuned by an exhaustive search over a pre-

defined range.
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(a) 𝑡 = 0.0 (b) 𝑡 = 0.2 (c) 𝑡 = 0.4

(d) 𝑡 = 0.6 (e) 𝑡 = 0.8 (f) 𝑡 = 1.0

Figure 8-1: Tracer advection in a steady swirl flow. Panel (a) shows the initial condition of
the tracer which is 4 randomly initialized Gaussian bumps. The proceeding five panels show
the eventual advection of the tracer at the various times mentioned. Our flow map inference
algorithm sees such 101 fields (one field for each time instance 𝑡 = 0, 0.01, . . . , 0.99, 1.00).

Table 8.1: Parameters for flow map inference and prediction in the swirl flow.

Parameter Value

Number of hidden units in the hyperLSTM (𝑝) 10
Convolutional kernel size in the hyperLSTM 3 × 3

Convolutional kernel size in the main convLSTM 3 × 3
Number of convLSTM-hyperLSTM layers 5

Using the advected tracer data 𝛼𝑖(𝑥) with 𝑖 = 0, 1, . . . , 100, we infer the flow maps

𝜑𝑖Δ𝑡
0 (𝑥) for 𝑖 = 0, 1, . . . , 100 (i.e. over the time interval [0, 1]) and predict the flow

maps for 𝑖 = 101, 102, . . . , 200, i.e. for the time interval (1, 2]. Note that in this case

the flow field is steady and the domain is closed. This consequently implies that the

flow maps for the swirl flow are independent of the actual start (or end) time but
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only depend on the duration of the flow map. This is represented by Eq. (8.2),

𝜑𝑡+Δ𝑡
𝑡 (𝑥) = 𝜑Δ𝑡

0 and 𝜑𝑡
𝑡+Δ𝑡(𝑥) = 𝜑0

Δ𝑡 ∀ 𝑡 . (8.2)

This implies that all the incremental flow maps 𝜑(𝑖+1)Δ𝑡
𝑖Δ𝑡 are equal, and one can write:

𝜑𝑖Δ𝑡
0 (𝑥) = 𝜑Δ𝑡

0

(︀
𝜑Δ𝑡

0

(︀
. . .𝜑Δ𝑡

0 (𝑥) . . .
)︀)︀

=
[︀
𝜑Δ𝑡

0

]︀𝑖
(𝑥) . (8.3)

The purpose of the hyperLSTM in our algorithm is to allow the main LSTM weights

to vary in time to account for the changing incremental flow maps 𝜑𝑖+1
𝑖 . However,

given that our flow field is steady, we can enforce that the incremental flow maps are

the same by removing hyperLSTM altogether and only using the main convLSTM.

We expect this version of our network without the hyperLSTM to perform better for

steady flows as it enforces the equality of the intermediate flow maps, and also reduces

the effective number of trainable parameters. We thus compare results obtained with

and without the use of a hyperLSTM in this steady flow field.

For the hyperparameters mentioned in Table 8.1, the number of trainable param-

eters for the version with the hyperLSTM is 462,238 and for the version without the

hyperLSTM is 40,086. As the number of trainable parameters is lower in the latter

case (even though the network maintains its ability to perfectly learn the underlying

dynamical system), we expect the quality of inference and predictions to be better.

Fig. (8-2) shows the inferred flow maps, the corresponding exact flow maps and

the error for 𝑡 = 1, for both the variants of the algorithm. One can see that the

version without the hyperLSTM is better at inferring the flow maps. However, for

either cases, the error norms are small at 𝑡 = 1 with a relative error of 0.076 for the

case with the hyperLSTM and 0.059 for the case without the hyperLSTM.

Fig. (8-3) plots the loss function values with training iterations (epochs) for the

two versions of the ML algorithm. Although the loss generally decreases for both the

versions, we can clearly see that the loss value stabilizes at about 0.088 for the version

with the hyperLSTM whereas it stabilizes at around 0.052 for the version without

the hyperLSTM, indicating that the inferred flow maps are better fit to the provided
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With hyperLSTM

Without hyperLSTM

Figure 8-2: Exact and inferred 𝑋 and 𝑌 flow maps along with the corresponding errors
for both variants of the algorithm (i.e. with and without hyperLSTM) at 𝑡 = 1
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tracer transport data by the latter version.

Figure 8-3: Training loss values for both variants of the algorithm. It can be seen that the
variant without the hyperLSTM has a lower loss value than the variant with the hyperLSTM
due to less trainable parameters and thus a smaller optimization search space.

Fig. (8-4) plots the predicted flow maps by running the LSTM beyond 𝑡 = 1. We

look at the flow maps at 𝑡 = 2 to observe that our ML algorithm predicts the flow

maps very well even for times when no tracer data is available, with a relative error

of about 0.124 for the version with the hyperLSTM and 0.098 for the version without

the hyperLSTM. As expected, we see that the relative errors are larger than those

during the inference time due to the unavailability of tracer data.

Finally, Fig. (8-5) shows the actual and the learned trajectories of passive particles

(derived from the flow maps above) at 𝑡 = 1 and 𝑡 = 2. One can clearly see that the

learned trajectories are a good approximation to the actual trajectories throughout

the entire time period considered. The learned trajectories from the variant without

the hyperLSTM are consistently better than the variant with the hyperLSTM.
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With hyperLSTM

Without hyperLSTM

Figure 8-4: Exact and predicted 𝑋 and 𝑌 flow maps along with the corresponding errors
for both variants of the algorithm (i.e. with and without hyperLSTM) at 𝑡 = 2
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(a) 𝑡 = 1 (b) 𝑡 = 2

Figure 8-5: Inferred and predicted sample trajectories (constructed by using the inferred
/ predicted flow maps) for 3 sample passive particles starting at different locations. One
can see that although both the variants are able predict the trajectories well, the variant
without the hyperLSTM consistently does better.

8.2 Analytical Double Gyre

We now look at the performance of our algorithm in an unsteady flow field. As seen

before in Sec. 6.2.1, the analytical double gyre is an unsteady flow that involves two

vortices abreast of each other rotating in opposite directions, while the separatrix

between the vortices oscillates horizontally. It is described analytically by Eq. (8.4):

𝑣(𝑥, 𝑡) =

(︂
−𝜕𝜓(𝑥, 𝑡)

𝜕𝑦
,
𝜕𝜓(𝑥, 𝑡)

𝜕𝑥

)︂
,

𝜓(𝑥, 𝑡) = 𝐴 sin
(︀
𝜋
(︀
𝜖 sin (𝜔𝑡)𝑥2 + (1 − 2𝜖 sin (𝜔𝑡))𝑥

)︀)︀
.

(8.4)

We use 𝐴 = 0.1, 𝜔 = 0.2𝜋, and 𝜖 = 0.1 (same as Sec. 6.2.1). The computational

domain Ω is [0, 2]× [0, 1]. Like the swirl flow, this field is also incompressible but not

a solution of the Navier–Stokes’ equations. However, it mimics certain oceanic flow

fields such as the quasi-geostrophic double gyre flow [263]. As mentioned before, even

though the unsteady double gyre is a smooth periodic flow, one observes chaotic tracer

transport, or ‘Lagrangian turbulence’, manifested through thin tracer filaments and
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sharp boundaries between these filaments [9]. Such chaotic tracer transport presents

a challenging test for our machine inference and prediction algorithm.

8.2.1 Inference and Prediction of Flow Map and Coherent

Structures

Similar to the swirl flow, The advection of the tracer field 𝛼(𝑥, 𝑡) and the computation

of the exact flow maps is done using the composition-based advection scheme for

𝑡 ∈ [0, 10.05] with a timestep of ∆𝑡 = 0.15. Thus we have 𝑁𝑡 = 67. The simulation

domain is discretized such that 𝑁𝑥 = 200 and 𝑁𝑦 = 100. The initial tracer field is

chosen to be 4 randomly located Gaussian bumps of random intensities.

Fig. (8-6) shows the advected tracer field at various times in [0, 10.05]. As before,

these advected tracer fields (on the (𝑥, 𝑦) grid) are the only data fed to our algorithm

to learn the flow maps. Using this data, we plan to infer the flow maps 𝜑𝑡
0 for

𝑡 ∈ [0, 10.5], i.e. 𝜑𝑖Δ𝑡
0 (𝑥) for 𝑖 = 1, . . . , 67 and also predict the flow maps for 𝑡 ∈

(10.05, 15], i.e. 𝜑𝑖Δ𝑡
0 (𝑥) for 𝑖 = 68, . . . , 100 when no tracer data is available. Table

8.2 lists the network parameters used for the machine inference and prediction of the

flow maps, which are tuned by an exhaustive search over a pre-defined range.

Table 8.2: Parameters for flow map inference and prediction in the analytical double gyre.

Parameter Value

Number of hidden units in the hyperLSTM (𝑝) 10
Convolutional kernel size in the hyperLSTM 3 × 3

Convolutional kernel size in the main convLSTM 5 × 5
Number of convLSTM-hyperLSTM layers 10

Similar to the previous case, we test two versions of our algorithm: one with the

hypernetwork and other one without. As the flow field at hand is now dynamic, we

expect the former version to perform significantly better even though it has larger

number of trainable parameters (2,343,528), as the latter version (with 76,204 train-

able parameters) is unable to account for the time-evolving nature of the flow field.

We expect the latter version to learn an ‘averaged’ version of the incremental flow
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(a) 𝑡 = 0.00 (b) 𝑡 = 1.95

(c) 𝑡 = 4.05 (d) 𝑡 = 6.00

(e) 𝑡 = 7.95 (f) 𝑡 = 10.05

Figure 8-6: Tracer advection in an unsteady double gyre flow. Panel (a) shows the ini-
tial condition of the tracer which is 4 randomly initialized Gaussian bumps. The pro-
ceeding five panels show the eventual advection of the tracer at the various times men-
tioned. Our flow map inference algorithm sees such 68 fields (one field for each time instance
𝑡 = 0, 0.15, . . . , 9.90, 10.05.

maps (𝜑𝑖+1
𝑖 ) in this case. Fig. (8-7) shows the exact 𝑋 and 𝑌 flow maps for the

analytical double gyre at 𝑡 = 10.05 and 𝑡 = 15. These are only used to compare the

inferred and predicted fields by the different variants of the algorithm.

Fig. (8-8) shows the inferred flow maps for the unsteady double gyre along with

the corresponding error for 𝑡 = 10.05 for both the versions of the algorithm. In this

case, as the flow is unsteady, we observe that the version with the hyperLSTM does
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(a) Exact 𝑋 flow map at 𝑡 = 10.05 (b) Exact 𝑌 flow map at 𝑡 = 10.05

(c) Exact 𝑋 flow map at 𝑡 = 15 (d) Exact 𝑌 flow map at 𝑡 = 15

Figure 8-7: Exact forward 𝑋 and 𝑌 flow maps at 𝑡 = 10.05 and 𝑡 = 15 for the analytical
double gyre flow.

significantly better at inferring the flow maps. However, the version without the

hyperLSTM learns a steady approximation of the underlying unsteady flow maps.

The relative error made by the version with the hyperLSTM at 𝑡 = 10.05 is 0.097

whereas the one for the version without the hyperLSTM is 0.320.

Fig. (8-9) shows the predicted forward flow maps between 𝑡 = 0 and 𝑡 = 15, when

the algorithms are trained on 68 tracer snapshots between times 𝑡 = 0 and 𝑡 = 10.05.

We can clearly see that the version with the hyperLSTM predicts the flow map well,

and the errors are high near the edges of the protruding lobes. This simply indicates

that our algorithm makes an error in learning the exact location of the lobe, which is

expected. The version without the hyperLSTM performs poorly in prediction, as it

can only learn a constant incremental flow map to be composed recursively in time.

The relative errors made by the two variants in predicting the flow map at 𝑡 = 15 is

about 0.130 and 0.446 respectively.

The training losses while inferring the flow maps for the unsteady double gyre are

plotted in Fig. (8-10). We can clearly see that the version without the hyperLSTM
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(a) 𝑋 flow map inferred with hyperLSTM (b) 𝑌 flow map inferred with hyperLSTM

(c) Error in 𝑋 flow map with hyperLSTM (d) Error in 𝑌 flow map with hyperLSTM

(e) 𝑋 flow map inferred without hyperLSTM (f) 𝑌 flow map inferred without hyperLSTM

(g) Error in 𝑋 flow map without hyperLSTM (h) Error in 𝑌 flow map without hyperLSTM

Figure 8-8: Exact and inferred forward 𝑋 and 𝑌 flow maps along with the corresponding
errors at 𝑡 = 10.05 for the variants of the algorithm with and without a hyperLSTM

only learns steady incremental flow map, and hence it is never able to fit the flow

maps well to the available data, resulting in a large loss value. Specifically, the tracer

advection loss component is large and non-decaying for this version, as the tracer
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(a) 𝑋 flow map predicted with hyperLSTM (b) 𝑌 flow map predicted with hyperLSTM

(c) Error in 𝑋 flow map with hyperLSTM (d) Error in 𝑌 flow map with hyperLSTM

(e) 𝑋 flow map predicted without hyperLSTM (f) 𝑌 flow map predicted without hyperLSTM

(g) Error in 𝑋 flow map without hyperLSTM (h) Error in 𝑌 flow map without hyperLSTM

Figure 8-9: Exact and predicted forward 𝑋 and 𝑌 flow maps along with the corresponding
errors at 𝑡 = 15 for the variant of the algorithm with a hyperLSTM

transport cannot be described through constant incremental flow maps. However,

the version with the hyperLSTM is able to fit the data well and thus has a decreasing

loss value, and a low final loss.
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Figure 8-10: Training loss values for both variants of the algorithm in the analytical double
gyre. It can be seen that the variant without the hyperLSTM cannot fit the (steady) flow
maps to the available data and hence its loss value remains high throughout. However, the
variant with the hyperLSTM fits the dynamic flow maps well to the available data, yielding
a low loss value.

As mentioned before, the version of the algorithm without the hyperLSTM learns

an averaged version of the unsteady incremental flow maps. Hence, we compare the

flow maps generated by the said version with the exact flow maps arising from a

steady double gyre flow (i.e. 𝑤 = 0 in Eq. (8.4)) at 𝑡 = 15 in Fig. (8-11). We can

clearly see that the flow maps that our algorithm learns are very close to the steady

double gyre flow maps. This highlights that in an unsteady flow field, the version

without the hyperLSTM learns the flow maps arising from a steady approximation

of the unsteady field.

Fig. (8-12) plots the exact forward FTLE field for the unsteady and steady double

gyre and the predicted forward FTLEs by the two versions between 𝑡 = 0 and 𝑡 = 15.

One can see that the version with the hyperLSTM accurately captures the prominent

ridges of the FTLE field, while the version without the hyperLSTM predicts an FTLE

field close to that of a steady double gyre flow - especially noticeable is the absence of

the ridges delineating the lobes in either gyres and the presence of a strong vertical
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(a) Exact 𝑋 flow map (steady double gyre) (b) Exact 𝑌 flow map (steady double gyre)

(c) Predicted 𝑋 flow map (no hyperLSTM) (d) Predicted 𝑌 flow map (no hyperLSTM)

(e) Error in the 𝑋 flow map at 𝑡 = 15 (f) Error in the 𝑌 flow map at 𝑡 = 15

Figure 8-11: Forward flow maps predicted by the variant of the machine learning algorithm
without hyperLSTM at 𝑡 = 15 show great agreement when compared to the exact flow maps
of a steady double gyre flow. This suggests that the variant of our algorithm without the
hyperLSTM learns the closest steady approximation to the underlying unsteady flow.

ridge at the separatrix.

Finally, we look at the inferred rigid sets and their predicted evolution from our

algorithm (with the hyperLSTM). In Fig. (8-13), we show the rigid sets and their

evolution obtained by thresholding the polar distance metric (Eq. (5.13)) computed

using the learned forward flow map over the time interval [0, 15]. The evolution of

these sets is computed by composing the initial position of the sets with the corre-

sponding learned flow maps. Comparing the evolution of these sets to the ‘exact’

evolution from Fig. (6-12), we can clearly see that our framework learns these rigid
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(a) Exact forward FTLE: unsteady double gyre (b) Exact forward FTLE: steady double gyre

(c) Learned forward FTLE with the hyperLSTM and the corresponding error

(d) Learned forward FTLE without the hyperLSTM and the corresponding error

Figure 8-12: The exact and predicted forward FTLEs between 𝑡 = 0 and 𝑡 = 15 along
with the corresponding errors for the two variants of the algorithm. In line with the prior
observations, the predictions from the algorithm with the hyperLSTM are very close to the
truth, and the errors are larger only at the ridges of the FTLE field. However, the version
without the hyperLSTM is only able to learn the steady version of the flow maps, and hence
its predicted FTLE field is similar to that of a steady double gyre (panel (b)).

sets extremely well, without any information about the underlying flow field.
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(a) 𝑡 = 0 (b) 𝑡 = 3

(c) 𝑡 = 6 (d) 𝑡 = 9

(e) 𝑡 = 12 (f) 𝑡 = 15

Figure 8-13: Evolution of the inferred rigid sets using the developed ML framework.
The evolution of these inferred rigid sets almost exactly matches the corresponding ‘exact’
evolution from Fig. (6-12), suggesting that our algorithm learns such coherent structures
well without any information about the underlying flow field.

8.2.2 Information Content and Predictive Capability

Information Content of the Tracer Field

Based on the theory developed in Sec. 7.3.5, we quantify information content of the

tracer field in terms of the fraction of total grid points where no error is made in
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flow map prediction, which we show to be a function of the number of unique values

in the tracer field 𝛼 (denoted by 𝑟). Specifically, we consider different simulation

configurations, namely 𝑁𝑥 = 20, 𝑁𝑦 = 10 (𝑁 = 200), 𝑁𝑥 = 40, 𝑁𝑦 = 20 (𝑁 = 800),

and 𝑁𝑥 = 50, 𝑁𝑦 = 25 (𝑁 = 1250). Fig. (8-14) plots the fraction of grid points

without an error in the flow map inference at 𝑡 = 10.05 as a function of the number

of unique values in the tracer field 𝛼. Each result is a 10-run average, and the shaded

areas denote the associated standard errors. This plot can be qualitatively split into

three distinct regions, indicated by the vertical gray lines. The first region corresponds

to tracer fields with too few distinct values - we observe poor learning in this case,

as expected. The second region, with 𝑟/𝑁 values in [0.25, 0.75] reflects most physical

tracer fields. The observed fraction of locations without an error is comparable to

the analytical value for all 𝑁 in this region, as the ill-conditioned problem is solved

by imposing incompressibility and velocity smoothness constraints in addition to the

tracer transport data. Finally, in the third region with 𝑟/𝑁 > 0.75, the observed

values saturate, their standard errors increase, and they fall below the analytical

value. This is mainly due to the errors involved in the machine inference algorithm.

At such high 𝑟/𝑁 values, the tracer fields are increasingly random. Even though

this is ideal to learn from for a perfect algorithm, the numerical machine inference

algorithm suffers from errors and thus the accuracy saturates.

Predictive Capability of the Inference Algorithm

Fig. (8-15) quantifies the predictive capability of our neural network for the case

of the analytical double gyre. As stated before, the predictive capability of our

machine inference algorithm constitutes of two key components: (i) the predictive

power of the trained algorithm, and (ii) the predictability limit of the underlying

dynamical system. We first consider the relative error in the predicted tracer field

when our neural network is trained using tracer data from the time interval [0, 10.05]

for different simulation configurations, as seen in Fig. (8-15a). We can see that for

all configurations, the results (which are a 10-run average) have low errors while

inferring the tracer fields (i.e. in the time interval [0, 10.05]). These errors start to
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Figure 8-14: Information content, quantified by the fraction of locations in Ω where the
flow map value is correctly predicted, versus the fraction of unique values in the tracer field
𝛼0 (normalized by the number of grid points 𝑁).

increase after during the prediction phase (i.e. 𝑡 = 10.05), however, they do not grow

fast until about 𝑡 = 15. After 𝑡 ≈ 15, the errors are erratic and significantly larger

in magnitude. One can thus say that the when trained on the data from the time

interval [0, 10.05], our neural network can predict the flow maps reliably for up to

𝑡 = 15 for the analytical double gyre. It is interesting to observe that this predictive

power of the algorithm is largely independent of the numerical discretization as well

as the timestep.

To illustrate the interplay between the predictive power of the trained algorithm,

and the predictability limit of the underlying dynamical system, we plot the size of

the time interval of reliable prediction against the size of the time interval used for

training in Fig. (8-15b). The time interval for reliable prediction is determined by

considering the rolling average of the relative errors, and thresholding it to be twice

that of the average relative error over the inference interval. We find that there is

largely a linear relationship between these quantities (indicated by the shaded red

cone) until the size of the training interval is about 20. This indicates that the

predictive capability of our algorithm in this region is limited by the amount of data

it sees. The more data it sees, the more it can predict. Beyond this point, the size of
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(a) Relative error in tracer fields vs. time

(b) Reliable prediction vs. training time interval

Figure 8-15: Quantifying the predictive capability of our ML algorithm for the analytical
double gyre flow. Panel (a) looks at the relative error in the inferred and predicted tracer
fields as a function of time for different simulation configurations. Each time-series is a 10-
run average for the considered configuration. Panel (b) shows the size of the time interval
with reliable prediction versus the size of the time interval used for training the network in
the case of 𝑁𝑥 = 200 and 𝑁𝑦 = 100 for different Δ𝑡 values.

the interval with reliable prediction rapidly drops and we actually observe that the

more we train our algorithm, the less it is able to predict. This occurs because we

reach the predictability limit of the analytical double gyre for such a large training

216



time interval size. Beyond this point, the more data that our algorithm sees, the more

it gets confused and is unable to predict reliably.

8.2.3 Merging Eulerian and Lagrangian Information

To infer high resolution flow maps from low resolution Eulerian data combined with

Lagrangian trajectories in the analytical double gyre, we consider the following setup.

We simulate the low resolution Eulerian tracer snapshots by considering the same four

Gaussian bumps at 𝑡 = 0 as Fig. (8-6), but now on a 20 × 10 grid. As before, our

machine learning algorithm is presented with 68 snapshots of this evolving tracer field

(on the 20 × 10 grid) between times 𝑡 = 0 and 𝑡 = 10.05, with a uniform timestep

∆𝑡 = 0.15. In addition to this Eulerian data, we also present our algorithm data about

105 Lagrangian trajectories, originating at 15 uniformly spaced 𝑋 coordinates and 7

uniformly spaced 𝑌 coordinates, at the same time instants as the tracer fields. The

data seen by our algorithm is plotted in Fig. (8-16), where the Lagrangian trajectories

are overlaid in red on top of the coarse Eulerian tracer field.

As before, our goal is to infer the flow maps 𝜑𝑡
0 for 𝑡 ∈ [0, 10.5], i.e. 𝜑𝑖Δ𝑡

0 (𝑥)

for 𝑖 = 1, . . . , 67 and also predict the flow maps for 𝑡 ∈ (10.05, 15], i.e. 𝜑𝑖Δ𝑡
0 (𝑥) for

𝑖 = 68, . . . , 100 using the above-mentioned Eulerian and Lagrangian information at a

high resolution, i.e. on a 200 × 100 grid.

Fig. (8-17) shows the inferred forward flow maps at 𝑡 = 10.05. Specifically, we

compare results obtained from three approaches: the first row shows the 𝑋 and the

𝑌 flow maps obtained only by using the coarse resolution Eulerian tracer transport

data. As the Eulerian data is only available on a 20 × 10 grid, the corresponding

results are also only available on this coarse grid. The inferred flow maps lack any

fine structure but coarsely resemble the actual underlying flow maps. The second row

shows results obtained only by using Lagrangian trajectory data. This is achieved

by dropping the tracer advection loss term from Eq. (7.37). These results are very

interesting. The inferred flow maps are almost unchanged from the original 𝑥 and

𝑦 grids, but the initial locations of the considered Lagrangian trajectories bear very

different flow map values as compared to their neighborhood. Such a structure arises
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(a) 𝑡 = 0.00 (b) 𝑡 = 1.95

(c) 𝑡 = 4.05 (d) 𝑡 = 6.00

(e) 𝑡 = 7.95 (f) 𝑡 = 10.05

Figure 8-16: Coarse resolution tracer advection along with high resolution trajectories in
an unsteady double gyre flow. Panel (a) shows the initial condition of the tracer which is 4
randomly initialized Gaussian bumps along with the starting locations of the 105 Lagrangian
trajectories. The proceeding five panels show the eventual advection of the tracer and the
motion of the Lagrangian particles at the various times mentioned. Our flow map inference
algorithm sees such 68 fields (one field for each time instance 𝑡 = 0, 0.15, . . . , 9.90, 10.05.

because the drifter position loss component (ℒ𝑖
drft) correctly enforces the flow map

value to be the current trajectory position at the trajectory initial locations, but

provides no information about the flow map anywhere else in the domain. At the

same time, the incompressibility and velocity smoothness loss components force the

flow map field to be as smooth and regular as possible everywhere else in the domain.

Thus the 𝑋 and the 𝑌 flow maps appear to be very close to the 𝑥 and 𝑦 grids
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respectively at locations other than the trajectory initial locations.

Ideally, we want our algorithm to utilize the coarse Eulerian data to infer the

basic underlying structure, and utilize the Lagrangian information to locally correct

the flow maps to yield the high resolution results. This is exactly what we observe in

the last row of Fig. (8-17). Our algorithm is able to use the coarse Eulerian field along

with high resolution Lagrangian trajectories to infer flow maps at a high resolution

that are very close to the true fields (see panels (a) and (b) of Fig. (8-7)). Obviously,

the inferred fields are less accurate than those predicted using high resolution tracer

transport data (panels (a) and (b) of Fig. (8-8)). This is expected, as high resolution

tracer data can be thought of as Lagrangian data at all locations on a fine grid,

which provides much more information than only using Lagrangian information from

the 105 locations. However, these inferred flow maps are able to satisfyingly capture

the general structure of the gyres as well as elements of chaotic advective transport

through the presence of long and thin filaments.

Fig. (8-18) shows the predicted forward 𝑋 and 𝑌 flow maps at 𝑡 = 15. Similar to

Fig. (8-17), we see that when only using the Eulerian snapshots, we are able to predict

the general structure of the flow maps but only at a coarse resolution. When only

using Lagrangian data, our algorithm again predicts a background fields close to the

𝑥 or 𝑦 grids with very different values at the trajectory start locations. However, the

variant of the algorithm utilizing both Eulerian and Lagrangian information predicts

the 𝑋 and 𝑌 flow maps that are close to the exact fields (Fig. (8-7)(c) and (d)).

8.2.4 Learning from Advective–Diffusive Tracers

Finally, we look at learning the flow maps from data about an advective–diffusive

tracer field (see Sec. 7.4). In this work, we assume that the (unknown) diffusivity

of the tracer, denoted by 𝜅, is a constant. However, straightforward extensions are

possible wherein the diffusivity may be allowed to vary or be parametrized, as men-

tioned earlier. The simulation setup is the same as that in Sec. 8.2.1. However, to

incorporate the effect of tracer diffusion, we utilize Lie splitting (see Sec. 3.3.3). As

the diffusion operator is numerically stiff, it is solved implicitly using a central differ-
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(a) 𝑋 flow map - only Eulerian data (b) 𝑌 flow map - only Eulerian data

(c) 𝑋 flow map - only Lagrangian data (d) 𝑌 flow map only using Lagrangian data

(e) 𝑋 flow map - Eulerian and Lagrangian data (f) 𝑌 flow map - Eulerian and Lagrangian data

Figure 8-17: Forward 𝑋 and 𝑌 flow maps at 𝑡 = 10.05 inferred only using Eulerian infor-
mation, i.e. coarse tracer field (row 1), only using Lagrangian information, i.e. trajectories
(row 2)), and using both the Eulerian and Lagrangian information simultaneously (row 3).
These can be compared to the corresponding exact fields from Fig. (8-7).

ence scheme for the Laplacian and backward Euler time marching. Fig. (8-19) shows

the snapshots of the diffusive tracer field with diffusivity 𝜅 = 5 × 10−3 at 6 different

time instants. When compared to Fig. (8-6), it can be clearly seen that tracer diffu-

sion leads to a much smoother field, and the signatures of chaotic advection (such as

long and thin filaments) are absent. For larger values of 𝜅 or longer time durations,

the tracer occupies the entire domain and has a constant, average value everywhere.

Alluding to the earlier discussion, this implies that the information in the tracer field

decreases with time in advective–diffusive transport.
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(a) 𝑋 flow map - only Eulerian data (b) 𝑌 flow map - only Eulerian data

(c) 𝑋 flow map - only Lagrangian data (d) 𝑌 flow map only using Lagrangian data

(e) 𝑋 flow map - Eulerian and Lagrangian data (f) 𝑌 flow map - Eulerian and Lagrangian data

Figure 8-18: Forward 𝑋 and 𝑌 flow maps at 𝑡 = 15 predicted only using Eulerian infor-
mation, i.e. coarse tracer field (row 1), only using Lagrangian information, i.e. trajectories
(row 2)), and using both the Eulerian and Lagrangian information simultaneously (row 3).
These can be compared to the corresponding exact fields from Fig. (8-7).

Fig. (8-20) shows the inferred flow maps and their corresponding errors at 𝑡 =

10.05, whereas Fig. (8-21) shows the predicted flow maps at 𝑡 = 15. The appreciable

agreement of these results when compared to the exact flow maps (Fig. (8-7)) suggests

that our algorithm effectively distills the underlying advective features even from

advective–diffusive tracer transport. Even though the errors are larger than the earlier

results, we can see that the critical features of the flow maps (such as the vertical

separatrix and the material leakage) are correctly learned by our algorithm. Further,

by keeping the diffusivity as a learnable parameter, our neural network is able to infer
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(a) 𝑡 = 0.00 (b) 𝑡 = 1.95

(c) 𝑡 = 4.05 (d) 𝑡 = 6.00

(e) 𝑡 = 7.95 (f) 𝑡 = 10.05

Figure 8-19: Tracer advection and diffusion in an unsteady double gyre flow with tracer
diffusivity 𝜅 = 5 × 10−3. The initial condition of the tracer field is the same as that from
Fig. (8-6). When compared to Fig. (8-6), tracer diffusion can be clearly observed throughout
the time interval. Further, the lack of long thin filaments indicates that chaotic advection
is suppressed due to diffusion.

its value. The inferred value of 𝜅 by the network is 4.65 × 10−3 which is 7% off from

the true value of 5 × 10−3.

We now analyze the learning capability of our algorithm as a function of the tracer

diffusivity. Fig. (8-22a) plots the relative error in the inferred flow maps at 𝑡 = 10.05

as a function of the diffusivity 𝜅. We consider two cases: (i) the tracer transport is

(incorrectly) modeled as pure advection (as in Sec. 8.2) and (ii) the tracer transport
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(a) Inferred 𝑋 flow map (b) Inferred 𝑌 flow map

(c) Error in the 𝑋 flow map (d) Error in the 𝑌 flow map

Figure 8-20: Forward flow maps at 𝑡 = 10.05 inferred by the variant of the ML algorithm
learning from advective–diffusive tracers.

(a) Inferred 𝑋 flow map (b) Inferred 𝑌 flow map

(c) Error in the 𝑋 flow map (d) Error in the 𝑌 flow map

Figure 8-21: Forward flow maps at 𝑡 = 15 inferred by the variant of the ML algorithm
learning from advective–diffusive tracers.
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is (correctly) modeled as an advective–diffusive process (as done above). Clearly the

latter case has lower error overall, especially at higher values of 𝜅. However, the

former performs better for extremely low 𝜅, as at such low values, the diffusion effect

is negligible. The error for both cases is large for large 𝜅 values. This is because at

high diffusivity, the tracer almost immediately fills the entire domain with a uniform

value and the tracer field then contains no information going forward (see Sec. 8.2.2).

Fig. (8-22b) plots the inferred diffusivity (learned by the algorithm) against the actual

diffusivity. We see that for 𝜅 between 10−3 and 10−1, our algorithm makes little error

in inferring the value. For 𝜅 lower than 10−3, the values are off mainly due to the

numerical errors as the diffusion process has minimal impact. At high values of 𝜅,

inference is poor as the tracer field is too diffusive and quickly fills the entire domain

with a constant tracer value.

(a) Relative error in the flow maps with diffusivity (b) Inferred against actual diffusivity

Figure 8-22: Performance of the flow map inference algorithm while learning from a
diffusive tracer field. Panel (a) shows the relative error in the inferred flow maps at 𝑡 = 10.05
against tracer diffusivity 𝜅. Panel (b) shows the value of 𝜅 inferred against the actual 𝜅. We
can clearly see that unless the value is extremely low (< 10−3) or extremely high (> 10−1),
our algorithm is able to accurately infer it.
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8.3 Western Mediterranean (Alboran) Sea

The final part of this chapter deals with the machine inference and prediction of flow

maps and coherent structures in realistic marine domains. Such marine domains most

often have open boundaries, i.e. there is material inflow and outflow at the domain

boundaries. We thus utilize the algorithm developed in Sec. 7.5.3 to predict both the

forward and the backward flow maps simultaneously and extract the active domains

using them.

To apply our theory and schemes, we consider a realistic ocean flow in the Alboran

Sea, which is the westernmost part of the Mediterranean Sea. In this case, we show-

case our ML framework by simultaneously inferring forward and backward flow maps

over three days and predicting them for the fourth day using data about (simulated)

advective tracer transport, sea surface temperature, and salinity.

8.3.1 Modeling Region and Computational Details

The Alboran Sea in the Western Mediterranean has a strong semi-permanent front

between the fresher Atlantic water that enters the Western Mediterranean at Gibral-

tar, and the more saline Mediterranean waters. It is populated by organized, time-

evolving features (jets, fronts, and gyres) that provide an ideal test bed for our dy-

namical systems-based Lagrangian analysis. Specifically, the Western Alboran Gyre

near Gibraltar, whose Lagrangian signature is clearly visible through flow maps and

coherent structures, provides a good case to compare and contrast the predictions

obtained while using different types of data.

As before, the dynamic ocean fields (currents, temperature, salinity, and ocean

free-surface) are simulated by our MIT Multidisciplinary Simulation, Estimation and

Assimilation System (MSEAS) [96; 155; 95] (see Sec. 4.3.1). The present MSEAS

simulation domain covers a 430.13 𝑘𝑚×266.53 𝑘𝑚 region, as seen in Fig. (8-23). The

domain is discretized to have 𝑁𝑥 = 773 and 𝑁𝑦 = 480 with a total integration time of

96 hours from 20 March 2019, 00Z to 24 May 2019, 00Z. However as this domain is

too large for our computational setup, we upscale the spatial grid by a factor of 3 to
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arrive at a resolution of 𝑁𝑥 = 258 and 𝑁𝑦 = 160. The initial ocean conditions were

downscaled from the coarse analysis fields of 20 March 2019 of the 1/12∘ HYCOM

(Hybrid Coordinate Ocean Model) [41]. The higher-resolution MSEAS simulations

were then ran up to 24 May 2019, with full tidal forcing [160]. All the domain

boundaries are open and there is significant fluid inflow and outflow.

Figure 8-23: The MIT-MSEAS modeling domain in the Western Mediterranean (Alboran)
Sea along with the bathymetry of the region.

Specifically, we consider the variants where our ML algorithm is provided informa-

tion about: (i) simulated transport of an advective tracer, (ii) sea surface temperature

(SST), and (iii) sea surface temperature and sea surface salinity (SSS) together. The

initial simulated tracer field consists of 8 Gaussian bumps of random intensity, and

its evolution is obtained through the method of composition, using the true velocity

field. The sea surface temperature and salinity are obtained directly through the

MSEAS regional ocean modeling system.

These fields are provided with ∆𝑡 = 1 hour, from 20 March 2019, 00Z to 23 March

2019, 00Z, i.e. at 𝑁𝑡 = 72 uniformly spaced time instants. We infer the flow maps at

all these 72 time instants, as well as predict them for 24 more uniformly space time

instants (from 23 March 2019, 01Z to 24 March 2019, 00Z) by running the LSTM

for future times. That is, we infer 𝜑𝑖Δ𝑡
0 and 𝜑0

𝑖Δ𝑡 for 𝑖 = 0, . . . 72 and predict 𝜑𝑖Δ𝑡
0

and 𝜑0
𝑖Δ𝑡 for 𝑖 = 73, . . . 96. We compare these results with the corresponding exact

flow maps computed using the actual velocity fields. Note that our algorithms only
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(a) 20 March 2019, 00Z (b) 21 March 2019, 00Z

(c) 22 March 2019, 00Z (d) 23 March 2019, 00Z

Figure 8-24: The initial and advected tracer field. The initial tracer field consists of 8
Gaussian bumps of random intensities, as seen in panel (a). Panels (b), (c), and (d) show
the simulated advection of the tracer after 24 hours, 48 hours, and 72 hours respectively.

receive data until 23 March 2019, 00Z, and no data is seen by the algorithms between

23 March 2019 and 24 March 2019. Fig. (8-24) shows the initial and the advected

tracer fields at 00Z on the considered 3 days. Fig. (8-25) and Fig. (8-26) show the

SST and SSS fields respectively at the same times as in Fig. (8-24). Through these

snapshots, one can clearly see the structure of the Western Alboran Gyre, as well as

the other dynamic currents and features affecting tracer transport.

Table 8.3 lists the neural network parameters used for the machine inference and

prediction of the flow maps in this case, tuned by a local search starting from those

used for the analytical double gyre. The total number of learnable parameters in our

neural network setup is 9,365,400. As stated before, we infer the forward and back-

ward flow maps over the considered time window simultaneously and use Algorithm

1 to extract the active domains. We empirically observe that running the iterative

domain extraction procedure 3 to 5 times yields good convergence.
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(a) 20 March 2019, 00Z (b) 21 March 2019, 00Z

(c) 22 March 2019, 00Z (d) 23 March 2019, 00Z

Figure 8-25: The sea surface temperature (SST; in ∘𝐶) field on 20, 21, 22, and 23 March
2019 at 00Z. The SST is governed by an advection–diffusion equation with external forcing.

Table 8.3: Parameters for flow map inference and prediction in the Alboran Sea.

Parameter Value

Number of hidden units in the hyperLSTM (𝑝) 13
Convolutional kernel size in the hyperLSTM 4 × 4

Convolutional kernel size in the main convLSTM 4 × 4
Number of convLSTM-hyperLSTM layers 12

Note that the simulated tracer is governed by an advective transport equation, and

as we use the method of composition to compute its evolution, minimum numerical

errors are committed. However, SST and SSS are not perfectly advective and include

atmospheric forcing (net heat flux, evaporation-precipitation), implemented as flux

boundary conditions in the vertical diffusion terms. In the horizontal, a Shapiro filter

with a variable equivalent diffusivity is employed. The resulting effective diffusivity

(for both the SST and the SSS) is about 800 𝑚2/𝑠 for a 2 grid point resolution

(∼ 1 𝑘𝑚-scales) and 45 𝑚2/𝑠 for a 10 grid point resolution (∼ 5 𝑘𝑚-scales), resulting

in a mean diffusivity of 𝜅 = 103.58 𝑚2/𝑠. This implies that both the temperature
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(a) 20 March 2019, 00Z (b) 21 March 2019, 00Z

(c) 22 March 2019, 00Z (d) 23 March 2019, 00Z

Figure 8-26: The sea surface salinity (SSS; in 𝑃𝑆𝑈) field on 20, 21, 22, and 23 March 2019
at 00Z. The SSS is governed through an advection–diffusion equation with external forcing
similar to the SST.

and the salinity are governed by an advection–diffusion equation rather than a pure

advective transport equation. Hence, we utilize the extension of our methodology

that accounts for diffusive tracers to learn the flow maps and the unknown tracer

diffusivity from the SST and SSS data. In this work, we assume that SST and SSS

have constant and equal diffusivity. Adding this constraint implies that our algorithm

is able to better infer the unknown value. However, one can also parameterize the

diffusivity in an appropriate way to learn its parametric form, as discussed before.

8.3.2 Exact Flow Maps

Fig. (8-27) and Fig. (8-28) show the exact forward and backward flow maps respec-

tively between 20 March 2019 and 23 March 2019 (72 hour time window), and 20

March 2019 and 24 March 2019 (96 hour time window), all at 00Z. These flow maps

are computed with the exact velocity fields and using the method of flow map compo-
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sition for open domains (Sec. 6.1), with a timestep of 24 minutes and WENO5 scheme

for spatial gradients and TVD-RK3 time marching. We use these results to compute

the relative errors in the learned flow maps from the three cases considered. These

fields are never seen by the ML algorithm and are only used for comparison.

(a) 𝑋 flow map: 23 March 2019 (b) 𝑌 flow map: 23 March 2019

(c) 𝑋 flow map: 24 March 2019 (d) 𝑌 flow map: 24 March 2019

Figure 8-27: Exact forward 𝑋 and 𝑌 flow maps between 20 March 2019 and 23 March
2019 (panels (a), (b)) and between 20 March 2019 and 24 March 2019 (panels (c), (d)).

One can clearly see the Lagrangian signature of the Western Alboran Gyre in

the western region of the domain. Further, the backward flow maps are undefined

near the Strait of Gibraltar as waters from the Atlantic Ocean (outside the considered

domain) enter the Alboran Sea in this area. The forward and backward flow maps are

undefined in the eastern areas of the domain due to the inflow and the outflow from

the central Mediterranean Sea. We further notice that the active domains reduce in

size as the time window increases for both the flow maps.
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(a) 𝑋 flow map: 23 March 2019 (b) 𝑌 flow map: 23 March 2019

(c) 𝑋 flow map: 24 March 2019 (d) 𝑌 flow map: 24 March 2019

Figure 8-28: Exact backward 𝑋 and 𝑌 flow maps between 20 March 2019 and 23 March
2019 (panels (a), (b)) and between 20 March 2019 and 24 March 2019 (panels (c), (d)).

8.3.3 Learning from Simulated Advective Tracer

Fig. (8-29) shows the 72 hour inferred flow maps learned only using the hourly sim-

ulated advective tracer transport fields. It can be clearly seen that the flow maps

learned by our ML algorithm are close to the exact fields (Fig. (8-27) and Fig. (8-

28)) and the relative errors are low. Our algorithm infers the Western Alboran Gyre

boundaries to be slightly off from the exact situation and thus there exist small re-

gions with high errors around the periphery of the gyre. However, often times in real

scenarios, errors from the data resolution and its inherent stochasticity may dominate

these localized errors. Further, one can clearly see that our active domain extraction

algorithm is able to correctly decipher the active domains for the forward and the

backward flow maps, and is able to capture the inflow of the Atlantic waters through

the Strait of Gibraltar (as seen in the backward flow maps) and the inflow and out-

flow of water masses to the central Mediterranean Sea (as seen in both forward and

backward flow maps).

231



(a) Forward 𝑋 flow map (b) Forward 𝑌 flow map

(c) Relative error: forward 𝑋 flow map (d) Relative error: forward 𝑌 flow map

(e) Backward 𝑋 flow map (f) Backward 𝑌 flow map

(g) Relative error: backward 𝑋 flow map (h) Relative error: backward 𝑌 flow map

Figure 8-29: Forward and backward flow maps between 20 March 2019, 00Z and 23 March
2019, 00Z inferred using simulated advective tracer transport data. These can be compared
to their exact counterparts in panels (a) and (b) of Fig. (8-27) and Fig. (8-28).
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Fig. (8-30) shows the flow maps predicted by our ML algorithm for the 96 hour

time window between 20 March 2019, 00Z and 24 March 2019, 00Z, only using the

advective tracer transport data for the first 72 hours. We can clearly see that the

predicted flow maps capture the expected clockwise rotation of the gyre and also the

intrusion of the Atlantic waters through the Strait of Gibraltar. We also see that

the relative errors are higher, especially around the Western Alboran Gyre. This is

expected, as this is the most dynamically active area in the considered domain with

larger sensitivity to small prediction errors. Finally, the predicted active domains for

the forward and the backward flow maps are similar to their exact counterparts.

8.3.4 Learning from Sea Surface Temperature

Fig. (8-31) shows the forward and backward flow maps and their corresponding rela-

tive errors between 20 March 2019 and 20 March 2019 (all 00Z). These are inferred

using the data about SST through the extension of our algorithm that accounts

for advective–diffusive tracers. As both the forward and the backward flow maps

are simultaneously inferred (required to determine the active domains), we enforce

Eq. (7.33) to be the advection–diffusion loss component to emphasize stronger cou-

pling between advection and diffusion in the operator splitting scheme. The inferred

value of the diffusivity 𝜅 is 119.78 𝑚2/𝑠 which is close to the the mean diffusivity

of 103.58 𝑚2/𝑠. The errors in the learned diffusivity and flow maps arise due to a

variety of factors: (i) we assume that the diffusivity is a constant, which is not the

case in the MSEAS simulation as mentioned before, (ii) we do not account for the

vertical transport, mixing, diffusion, and atmospheric forcing, and (iii) numerical er-

rors and approximate machine inference, as the problem is inherently ill-conditioned.

The relative errors are higher around the gyre as well as around Gibraltar from where

the Atlantic waters enter the Alboran Sea. However, our active domain extraction

algorithm captures the actual domain well.

Fig. (8-32) shows the predicted flow maps over a 96 hour time window, from 20

March 2019, 00Z to 24 March 2019, 00Z, using SST data only for the first 72 hours.

It can be clearly seen that the predictions get worse with increasing time, as there
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(a) Forward 𝑋 flow map (b) Forward 𝑌 flow map

(c) Relative error: forward 𝑋 flow map (d) Relative error: forward 𝑌 flow map

(e) Backward 𝑋 flow map (f) Backward 𝑌 flow map

(g) Relative error: backward 𝑋 flow map (h) Relative error: backward 𝑌 flow map

Figure 8-30: Forward and backward flow maps between 20 March 2019, 00Z and 24 March
2019, 00Z predicted using simulated advective tracer transport data. These can be compared
to their exact counterparts in panels (c) and (d) of Fig. (8-27) and Fig. (8-28).
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(a) Forward 𝑋 flow map (b) Forward 𝑌 flow map

(c) Relative error: forward 𝑋 flow map (d) Relative error: forward 𝑌 flow map

(e) Backward 𝑋 flow map (f) Backward 𝑌 flow map

(g) Relative error: backward 𝑋 flow map (h) Relative error: backward 𝑌 flow map

Figure 8-31: Forward and backward flow maps between 20 March 2019, 00Z and 23
March 2019, 00Z inferred only using the SST data. These can be compared to their exact
counterparts in panels (a) and (b) of Fig. (8-27) and Fig. (8-28).
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is no transport data available during this period. However, even with this limited

amount of data, our algorithm forecasts the flow maps and the active domains well.

Specifically, it correctly predicts the further entrainement of the Atlantic waters at

Gibraltar and the clockwise rotation of the Western Alboran Gyre. The entering and

escaping waters in the northeastern region of the domain are also correctly captured.

8.3.5 Learning from Sea Surface Temperature and Salinity

Finally, we look at the machine inference and prediction results obtained by using

data about SST and SSS together. The ML algorithm is trained by incorporating

the tracer advection–diffusion loss for both the temperature and salinity fields as

detailed in Sec. 7.5.1, assuming constant and equal diffusivity for both. One can

observe considerable improvement over the results obtained only by using the SST

data, as now our algorithm has access to two independent tracer transport datasets,

allowing it to infer the underlying common advective transport features better. The

learned diffusivity value by the algorithm is 115.21 𝑚2/𝑠, which is an improvement

over the prior prediction of 119.78 𝑚2/𝑠. However, a larger improvement is seen in

the learned flow map fields. Fig. (8-33) shows the inferred forward and backward flow

maps between 20 March 2019 and 23 March 2019. As with the prior two cases, it can

be seen that the ML algorithm infers both the forward and the backward flow maps

well, along with their corresponding active domains. Errors are committed around the

Western Alboran Gyre as well as around the influx of the Atlantic waters. However,

the inferred fields are accurate and are able to capture the small-scale features of the

flow maps in the central Alboran Sea. When compared to Fig. (8-31), we see that the

shape of the Western Alboran gyre is inferred more accurately when using both SST

and SSS data.

Fig. (8-34) shows the forward and backward flow maps between 20 March 2019

and 24 March 2019 predicted using SST and SSS data only until 23 March 2019

(all 00Z). Similar to the previous two cases, we obtain appreciably close fields for

both flow maps. However, the errors around the Western Alboran Gyre are larger
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(a) Forward 𝑋 flow map (b) Forward 𝑌 flow map

(c) Relative error: forward 𝑋 flow map (d) Relative error: forward 𝑌 flow map

(e) Backward 𝑋 flow map (f) Backward 𝑌 flow map

(g) Relative error: backward 𝑋 flow map (h) Relative error: backward 𝑌 flow map

Figure 8-32: Forward and backward flow maps between 20 March 2019, 00Z and 24
March 2019, 00Z predicted only using the SST data. These can be compared to their exact
counterparts in panels (c) and (d) of Fig. (8-27) and Fig. (8-28).

237



(a) Forward 𝑋 flow map (b) Forward 𝑌 flow map

(c) Relative error: forward 𝑋 flow map (d) Relative error: forward 𝑌 flow map

(e) Backward 𝑋 flow map (f) Backward 𝑌 flow map

(g) Relative error: backward 𝑋 flow map (h) Relative error: backward 𝑌 flow map

Figure 8-33: Forward and backward flow maps between 20 March 2019, 00Z and 23
March 2019, 00Z inferred using SST and SSS data. These can be compared to their exact
counterparts in panels (a), (b) of Fig. (8-27) and Fig. (8-28).
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when compared to the 3 day inferred flow maps due to the lack of data beyond 23

March 2019. Like before, our algorithm correctly captures the clockwise rotation of

the gyre and the shrinkage of the active domains due to the influx and egress of the

water masses. When compared to Fig. (8-32), the quality of the flow map predictions

improves when additional data about the SSS is used along with the SST data.

8.3.6 Comparison of Coherent Structures

The first row of Fig. (8-35) shows the exact forward and backward FTLE field high-

lighting the repelling and the attracting coherent structures over 4 days in the consid-

ered domain. One can clearly see the Lagrangian boundary of the Western Alboran

gyre as well as several other repelling and attracting ridges scattered throughout the

domain. We compare the FTLE fields predicted by the considered three simulations

with these exact fields to comment on the capability of our algorithm to capture the

prominent LCSs in the domain. The second, third, and fourth rows of Fig. (8-35)

show the forward and backward FTLEs learned using data about (i) simulated ad-

vective tracer (second row), (ii) SST only (third row), and (iv) SST and SSS together

(fourth row). It can be clearly seen that the FTLEs resulting from the first case are

most similar to the exact FTLEs, and they capture most of the prominent attracting

and repelling LCSs. The FTLEs learned only from SST show less similarity with

the corresponding exact fields, but they approximately capture the signature of the

gyre. As stated before, this is mainly due to the fact that our algorithm does not

account for some components governing the transport of the SST (such as vertical

transport, atmospheric forcing, variable diffusivity etc.). Finally, the FTLEs learned

when using data about both SST and SSS more accurate than when only using SST

as expected, but fall short of the results from when using the simulated advective

tracer. This can be alluded to the fact that now both SST and SSS independently

satisfy the advection–diffusion equation (with the same diffusivity), and hence our

algorithm is better able to learn the common advective transport features by using

this data simultaneously. However, as it does not have access to any purely advective

transport data, the results fall short of those obtained when using simulated advective
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(a) Forward 𝑋 flow map (b) Forward 𝑌 flow map

(c) Relative error: forward 𝑋 flow map (d) Relative error: forward 𝑌 flow map

(e) Backward 𝑋 flow map (f) Backward 𝑌 flow map

(g) Relative error: backward 𝑋 flow map (h) Relative error: backward 𝑌 flow map

Figure 8-34: Forward and backward flow maps between 20 March 2019, 00Z and 24
March 2019, 00Z predicted using SST and SSS data. These can be compared to their exact
counterparts in panels (c), (d) of Fig. (8-27) and Fig. (8-28).

240



tracer data.

8.4 Summary

In this chapter, we showcase the applications of the theory and schemes developed

in Chapter 7 to infer and predict the flow maps only from tracer transport data.

We highlight the various aspects of the developed theory and schemes in two analyt-

ical flow fields and one realistic flow field. We first look at the analytical swirl flow,

wherein we show that the knowledge about the underlying flow field (e.g. knowing

that it is steady) greatly enhances our learning capabilities. We then focus on the an-

alytical double gyre, wherein we showcase our ability to learn the flow maps, coherent

structures, and coherent sets. We also learn these quantities by optimally combining

low resolution Eulerian information and high resolution Lagrangian information, and

from transport data about an advective–diffusive tracer field. Finally, we look at a

realistic ocean flow in the Western Mediterranean (Alboran) Sea, and highlight the

applications of our ML framework to learn and predict flow maps and LCSs from

data from (i) simulated advective tracer transport, (ii) sea surface temperature, and

(iii) sea surface temperature and salinity together. We observe that our algorithm

best learns the flow maps and coherent structures from simulated advective tracer

transport, followed by from sea surface temperature and salinity. The machine infer-

ence and prediction only using sea surface temperature is the least accurate, but our

algorithm is still able to capture the dominant Lagrangian features of the flow.
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(a) Exact forward FTLE (b) Exact backward FTLE

(c) Forward FTLE using advective tracer (d) Backward FTLE using advective tracer

(e) Forward FTLE only using SST (f) Backward FTLE only using SST

(g) Forward FTLE using SST and SSS (h) Backward FTLE using SST and SSS

Figure 8-35: Exact forward and backward FTLEs between 20 March 2019, 00Z and 24
March 2019, 00Z and when computed from flow maps learned from simulated advective
tracer (second row), SST only (third row), and SST and salinity together (fourth row).
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Chapter 9

Conclusions and Future Work

The transport of anthropogenic and natural material in environmental flows is ubiq-

uitous and profoundly impacts society. Preparedness and effective response can save

many lives, untold environmental damage, and enormous financial cost. Predicting,

quantifying, and inferring the passive transport and the subsequent dispersal of such

substances in geophysical environments is imperative to designing effective mitiga-

tion, control, and conservation strategies. Using this as the primary motivation, the

present thesis develops fundamental theories and rigorous methodologies for predict-

ing, uncovering, and learning advective and advective–diffusive material transport in

dynamic fluid flows. Research contributions of this work are: (i) the development of a

highly accurate numerical method to solve the advective transport equation, (ii) the

formulation of theory and schemes to efficiently determine material sets that remain

the most or the least coherent over the considered time to quantify fluid mixing, and

(iii) the development of a machine learning framework to infer and predict the un-

derlying generic advective transport features from snapshot data about the transport

of any material quantity.

9.1 Advection Through Flow Map Composition

A novel methodology was derived for the numerical computation of advective trans-

port and diffusion-reaction of tracer quantities through flow map composition. The
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method of composition for advection is ‘super-accurate’, yielding numerical solutions

almost devoid of compounding numerical errors with an accuracy as that of particle-

based methods but with the advantage of Eulerian resolution in space. It is also

readily parallelizable in the temporal direction and can utilize existing computational

frameworks. Instead of advecting a tracer field, we advect the spatial positions in the

domain independently over smaller intervals and then compose (map) them with the

corresponding initial (or diffused and forced) tracer value. There are several benefits

to the new methodology: (i) as advection computations over each time interval are

independent, the numerical errors are not compounded, which results in much higher

accuracy and much lower computational expense for comparable accuracy, (ii) these

independent advection computations are parallelizable, (iii) only a single advection

computation is required for multiple tracers, and (iv) any PDE toolbox can be used to

compute the individual position advections, hence minimal programming is required.

Theoretically, we derive rigorous expressions for numerical errors and for the ‘optimal

composition timestep’, i.e. the timestep value that results in the minimum total nu-

merical error. This is achieved by balancing the advection error and the composition

error with each other. We also develop schemes for the addition of tracer diffusion,

reaction, and source terms, and for the implementation of boundary conditions.

The new methodology and its capabilities are thoroughly illustrated through a

wide set of examples, including new benchmark problems for advection–diffusion-

reaction schemes. The forward-backward advection and advection–diffusion in an

analytical reversible swirl flow verify the behavior of errors, illustrate the effectiveness

of the optimal composition timestep, and show that the new methodology eliminates

the compounding of numerical errors while being faster than regular methods. The

flow undergoing sudden expansion is then used to highlight the applicability of the

method of composition with tracer sources and multiple types of tracer boundary

conditions. By comparison with highly-resolved tracer fields, we confirm that the

novel methodology is more accurate and efficient than the regular advection schemes.

Finally, the applications of our method of composition in realistic geophysical flows

is demonstrated through two studies. The advection of sediment plumes by ocean
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currents resulting from deep sea mining operations in the Bismarck Sea is simulated

for two possible mining sites. We find that, even for low-order schemes, advection

using the method of composition yields minimal total numerical errors, much smaller

than the errors of high-order Eulerian schemes and with a spatial coverage much

better than particle-based methods. The second application highlights the use of

the method of composition to support and analyze the predictions and observations

during the 2018 PLUMEX real-time sea exercise in the Southern California Bight.

We compare the real-time 3D predictions of sediment plume transport made by the

method of composition with the experimentally observed data to find a satisfactory

match between the predictions and the observations.

Portability and the ease of implementation of our method of flow map composi-

tion make it attractive for applications in various domains. The methodology can be

extended with minimal effort to the advection of stochastic tracers: even if the uncer-

tainties in the tracer and/or velocity fields are large, an accurate numerical advection

is still needed for accurate probabilistic prediction, either in a Monte-Carlo sense or

using dynamic reduced-order models [145; 65; 109]. For the latter, it would also de-

crease the computational cost dependence in the number of stochastic modes from

quadratic to linear, which is a substantial gain. Our method of composition is also

related to the reinitialization ideas from level set methods [190; 1], and it can be used

effectively in optimal path planning computations [162; 238; 239; 148; 149; 138; 135].

Composition-based advection would also be effective in iterative pressure correction

methods for Navier–Stokes’ equations [8]. Finally, other broad disciplines that rely on

accurate simulations of material transport such as atmospheric emissions and plume

dispersal [82; 83], marine pollution [118; 146; 142; 228; 22], and biogeochemical pre-

diction [174; 195; 90; 97] could substantially benefit from our composition-based ad-

vection.
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9.2 Lagrangian Analysis of Material Transport

The second part of this thesis extends the method of composition to compute flow

maps in realistic ocean flow fields and develops efficient theoretical and computational

techniques to extract incoherent, coherent, and persistently coherent material subre-

gions in dynamic flow fields. We first extend the method of flow map composition

to compute flow maps in open domains where the fluid (and the material it carries)

is free to enter of leave the domain, which is often the case in realistic ocean flows.

This is achieved by defining and computing a new ‘mask’ field, which we prove is

governed by the advective transport equation with well-defined initial and boundary

conditions. Thus we use composition-based advection to compute the mask field as

a function of time, and then extract the active domains of the flow maps using it.

We show that this PDE-based method yields solutions with comparable accuracy to

trajectory-based methods, and eliminates spurious numerical artifacts.

Second, a novel approach to determine the material sets that remain coherent

throughout the entire time duration, i.e. ‘persistently coherent sets’ is proposed. The

metric, called the ‘extended polar distance’ quantifies the deviation of a material set

transformation from being a rigid body motion at all times. The level sets of the

extended polar distance field yield the persistently rigid sets up to a certain tolerance

value, where this tolerance is connected to the expected amount of stretching that

these material sets undergo. Further, as this metric highlights material subdomains

and not co-dimension one surfaces, it can be used to also detect lack of coherence

(i.e. incoherence or non-rigidity) simply by considering locations with high extended

polar distance values. We prove that the proposed metrics are frame-independent

(objective) and yield equivalent results irrespective of whether the forward or the

backward flow map is used for their computation. Such persistently coherent sets are

of paramount importance in quantifying fluid mixing, as we prove that these sets are

the ones to maximally resist both advective stretching and local diffusion.

In order to benchmark the developed theory and schemes and to demonstrate

their applicability in analytical and realistic flow fields, we consider two canonical
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flows, namely the analytical double gyre flow and a realistic ocean flow around the

island of Palau in the Southern Pacific Ocean. We first benchmark our flow map

computation scheme for open domains, and show that through the use of the mask

field and the method of composition, we can accurately compute the flow maps in open

domains with minimal numerical errors and while maintaining theoretical guarantees

and uniform spatial coverage. We also show the various examples of the real-time

and hindcast studies conducted in various marine regions in the world in which our

composition-based advection and Lagrangian analysis systems were utilized. We then

move to analyzing the proposed coherence and persistent coherence metrics. We

first demonstrate that the coherence measures computed using the forward and the

backward flow map are equivalent to each other. We then study the evolution of the

rigid and persistently rigid material sets as well as some of the most non-rigid sets

in the analytical double gyre flow. The second example looks at the behavior of an

incoherent set, a coherent set, and a persistently coherent set in the realistic ocean flow

around the island of Palau. The incoherent set continually gets distorted due to the

turbulent fluid motion westward of the island. The coherent set initially gets distorted

but later undergoes compressive strain to end up with a final shape similar to its

initial shape. The persistently coherent set does not undergo any appreciable strain

at any time during the considered interval and approximately maintains its shape

throughout. We show that even though the coherent and the persistently coherent

sets are initially located close to each other, their dynamics during the considered

time interval are very different. This emphasizes the need to use accurate Lagrangian

analyses in predicting and quantifying material transport in dynamic flows.

The present analysis can be readily applied to study the transport features, at-

traction zones, and mixing zones for passive tracer materials such as plastics, debris,

oil, and plankton [187; 143; 198; 131]. Further, given the specific transport dynamics

of a particular material, say through an ODE for its motion, the presented analysis

can be extended to determine the corresponding persistently rigid sets and non-rigid

sets. Beyond the domain of geophysical flows, Lagrangian analyses have been used

in a variety of different disciplines, from studying carotid artery bifurcations [253]

247



and cardiovascular systems [223] to understanding the foraging patterns of marine

predators such as tuna, seabirds etc. [125]. We believe that the present work would

be useful to several studies in these disciplines.

9.3 Inference and Prediction of Material Transport

Features

The final part of this thesis deals with inferring and predicting the generic advec-

tive transport features and coherent structures only by using Eulerian snapshot data

about the transport of advective and advective–diffusive tracers. Conventional data

assimilation techniques tend to be ineffective for this task due to the lack of evolution

equations and a complex nonlinear relationship between the observations and the

variables of interest. This, along with the fact that the compositionality of flow maps

closely resembles the functional form of neural networks lead us towards scientific

machine learning (ML) as a viable solution approach.

Central to our inference and prediction algorithm is a long-short term memory

network (LSTM) designed based on our knowledge and insights of the physical sys-

tem at hand. Specifically, we utilize a convolutional LSTM (convLSTM) to account

for strong local spatial dependence of the flow maps, and employ a hypernetwork to

account for relaxed weight sharing in time. Further, we incorporate the known con-

straints on the flow map in the loss function to ensure physically consistent results.

Once trained using the given Eulerian tracer transport data, the neural network can

infer the flow maps over the time interval of the given tracer transport data and can

also predict the flow maps at future times. To quantify the quality of the learned

flow maps, we analyze the predictive capability of the neural network and the infor-

mation contained in the Eulerian tracer field. We further develop extensions of our

algorithm to handle data from multiple advective tracers, optimally combine Eulerian

and Lagrangian information, and infer and predict flow maps in open domains.

Three flow fields are considered to highlight different facets of our ML algorithm.
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First, we demonstrate the effect of strict and relaxed weight sharing to infer the flow

maps in an analytical swirl flow and conclude that strict weight sharing performs bet-

ter in steady flow fields whereas relaxed weight sharing performs better in unsteady

flows. We then look at tracer transport in the analytical double gyre wherein we infer

the unsteady flow maps, coherent structures, and coherent sets. We also highlight the

ability to optimally combine low resolution Eulerian and high resolution Lagrangian

information, and demonstrate the capacity to learn the flow maps from the observa-

tions of an advective–diffusive tracer. Finally, we demonstrate and comment on the

information content of the tracer field and the predictive capability of our algorithm,

i.e. the accuracy of future flow map predictions in this flow field. Finally, we consider

a realistic flow in the Alboran Sea, wherein we infer and predict the flow maps and

coherent structures using the observations of (i) a simulated advective tracer, (ii)

sea surface temperature (SST), and (iii) SST along with sea surface salinity (SSS).

We discover that our algorithm performs the best when using a simulated advective

tracer, followed by when using SST and SSS together, followed by when only using

the SST data. This is because while the simulated tracer is exactly advective, both

the SST and SSS are also diffusive, thus hampering the learning capability. However,

when using information about both these fields, our algorithm is better able to learn

the underlying common advective transport features and the tracer diffusivities than

when only using data about SST. Further, we show that, our algorithm can accu-

rately predict future flow maps for more than 1 day beyond the availability of the

observed data. However, the errors increase beyond that and the predictions become

unreliable.

Our work towards inferring the transport features from observational data is only a

first step at solving this ill-conditioned inverse problem. There are several extensions

to this work that would enable it be be employed in a wide gamut of real-time settings.

Often times, the transported tracer data is noisy, sparse, and not available at uniform

time intervals or over fixed spatial regions. Our current approach can be extended

to account for such inconsistencies in the tracer transport data by appropriately

modifying the loss function. Our algorithm may further be utilized and extended to
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not only infer the flow maps and coherent structures but also infer regions of specific

interest, such as regions with the highest tracer mixing, areas of subduction etc.

One can utilize our approach to develop methods that can quantify the uncertainty

associated with the flow map predictions. The recent developments in new neural

network architectures such as neural ODEs [31; 244] may be well suited to extend

our proposed ML algorithm to infer and predict material transport features as a

continuous function of time. Finally, in this work, we assume that the considered

tracers are passive and non-inertial. However, the present work can be extended to

account for dynamically active and inertial tracers through state augmentation.
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