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Abstract

The satellite ocean color remote sensing paradigm developed by government space agencies
enables the assessment of ocean color products on global scales at kilometer resolutions.
A similar paradigm has not yet been developed for regional scales at sub-meter resolu-
tions, but it is essential for specific ocean color applications (e.g., mapping algal biomass
in the marginal ice zone). While many aspects of the satellite ocean color remote sensing
paradigm are applicable to sub-meter scales, steps within the paradigm must be adapted to
the optical character of the ocean at these scales and the opto-electronics of the available
sensing instruments. This dissertation adapts the three steps of the satellite ocean color re-
mote sensing paradigm that benefit the most from reassessment at sub-meter scales, namely
the correction for surface-reflected light, the design and selection of the opto-electronics,
and the post-processing of over-sampled regions. First, I identify which surface-reflected
light removal algorithm and view angle combination are optimal at sub-meter scales, using
data collected during a field deployment to the Martha’s Vineyard Coastal Observatory. I
find that of the three most widely used glint correction algorithms, a spectral optimization
based approach applied to measurements with a 40∘ view angle best recovers the remote-
sensing reflectance and chlorophyll concentration despite centimeter scale variability in the
surface-reflected light. Second, I develop a simulation framework to assess the impact of
higher optical and electronics noise on ocean color product retrieval from unique ocean color
scenarios. I demonstrate the framework’s power as a design tool by identifying hardware
limitations, and developing potential solutions, for estimating algal biomass from high dy-
namic range sensing in the marginal ice zone. Third, I investigate a spectral super-resolution
technique for application to spatially over-sampled oceanic regions. I determine that this
technique more accurately represents spectral frequencies beyond the Nyquist and that it
can be trained to be invariant to noise sources characteristic of ocean color remote sensing on
images with similar statistics as the training dataset. Overall, the developed and critically
assessed sub-meter ocean color remote sensing paradigm enables researchers to collect high
fidelity sub-meter data from imaging spectrometers in unique ocean color scenarios.

Thesis Supervisor: Dr. Samuel R. Laney
Title: Associate Scientist with Tenure, Biology Department
Woods Hole Oceanographic Institution
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Chapter 1

Introduction

The ocean’s color is determined by the composition and concentration of optical constituents

in the water column [Jerlov, 1976; Morel and Prieur, 1977]. Principal examples of optical

constituents are suspended plant matter (algae), the calcium carbonate shells formed by

some of the algae, and decaying organic matter. Algae, their calcium carbonate shells, and

decaying organic matter each serve important roles in the ocean’s biogeochemical cycles:

algae are the dominant primary producers, calcium carbonate shells sequester carbon to the

ocean floor, and decaying organic matter stores carbon, nitrogen, and phosphorus within the

water column. Since the optical constituents determine the ocean’s color, measurements of

the ocean’s color can be inverted, using spectral algorithms, to estimate the concentration

of these key biogeochemical indicators. This process of measuring the ocean’s color to char-

acterize the ocean is known as ocean color remote sensing. Ocean waters can be categorized

into two domains for ocean color remote sensing, waters where the optical constituents co-

vary (Case I) and waters where the optical constituents vary independently (Case II) [Morel

and Prieur, 1977]. Simple algorithms can be used to retrieve constituent concentrations in

Case I waters, but more complex algorithms that use additional spectral bands are required

for retrieving constituent concentrations from Case II waters. In modern oceanography,

ocean color remote sensing is primarily accomplished from satellite platforms.

In 1978, the National Aeronautics and Space Administration (NASA) deployed the

Coastal Zone Color Scanner (CZCS) on-board the Nimbus 7 satellite, making it the first

space-based ocean color sensor. CZCS was a proof-of-concept sensor deployed to determine

if suspended plant matter could be quantified from measurement of the ocean’s color from

space, using the optics and electronics available at the time. CZCS measured reflected sun-
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light at 1 km resolution in 6 bands, four of which were for ocean color (443 nm, 520 nm, 550

nm, and 670 nm), one for terrestrial masking (750 nm), and one for ocean surface temper-

ature measurement (11,500 nm) [Austin]. Researchers were able to estimate algal pigment

concentrations using spectral ratios of the blue and green light (443 nm, 520 nm, and 550

nm), but only after estimating light scattered by the atmosphere using the red band (670

nm) and subtracting it from the total measured signal [Gordon et al., 1980; Gordon and

Morel, 1983]. The algal pigment concentration maps were then used to confirm preexisting

hypotheses about the global distribution of chlorophyll and its seasonal variability [Yentsch].

The success of this proof-of-concept mission to recover global algal concentrations revolu-

tionized the field of oceanography, as algae are the base of the ocean’s food web and an

indicator for the health of marine systems.

CZCS collected algal products for 7 years longer than intended. After the resounding

success of the first ocean color satellite, various space agencies deployed next generation

ocean color satellites that dramatically improved our understanding of the ocean. While

this paradigm has been successful for kilometer scale sensing from high altitude platforms,

the satellite ocean color remote sensing paradigm has not yet been adapted to sub-meter

ocean color remote sensing from low-altitude platforms. Accurately collecting data at sub-

meter scales is necessary for studying fine-scale physical dynamics, such as turbulent mixing,

and their effects upon oceanic biology (e.g., algae). The same concepts required for satellite

remote sensing can, in principle, be applied to ocean color remote sensing on sub-meter

scales, but new challenges arise (Table 1.1) from the higher noise and limited spectral reso-

lution of the available optical instrumentation, as well as changes in the characteristics of the

surface reflected light (glint). This thesis focuses on the optical considerations necessary to

adapt key steps of the satellite ocean color remote sensing paradigm to capture the spatially

heterogeneous ocean color signal on sub-meter scales, despite capillary wave induced surface

reflected light fluctuations, high dynamic range requirements, and high electronic noise.

1.1 Evolution of the Satellite Ocean Color Remote Sensing

Paradigm

After the algal pigment concentration maps produced by CZCS were proven to match with

surface measured values [Gordon et al., 1980], the maps could then be used for research,
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Table 1.1: The dominant factors that limit sub-meter ocean color remote sensing, where
measurements are made from low altitudes with low quality optics, are dramatically different
from those at km spatial resolutions from high altitudes with state-of-the-art optics (1,2[Su,
2017; Larson et al., 2018; Totsuka et al., 2019; Kwon et al., 2020; Kislik et al., 2018], 3,4[Kislik
et al., 2018; O’Shea et al., 2020; O’Shea and Laney, 2020], 4[Honkavaara et al., 2013]). This
dissertation ameliorates the highest impact factors within chapters 2-4.

either directly for studying biological processes or as indicators for physical processes. The

initial maps visually confirmed preexisting hypothesis in biological oceanography, such as

nutrient and light limiting the growth of algae on global scales, and the major role of ocean

currents in determining algal production [Yentsch]. In addition to confirming prior hypothe-

ses, the novel perspective also allowed researchers to contradict prior assumptions. In one

specific case researchers determined that subsurface Gulf Stream waters had a much higher

impact on the biological productivity in continental shelf waters than previously thought

[McClain; Ishizaka, 1990]. The synoptic view provided by CZCS also alerted researchers

about the extent and frequency of blooms of coccolithophore (algae that form calcium car-

bonate shells), which was particularly surprising as the blooms occurred in relatively well

studied regions of the ocean [Holligan et al., 1983]. Additionally, the new perspective pro-

vided by CZCS imagery identified new bio-physical interactions. In one biological applica-

tion attempting to understand the variability of algae in nearshore regions, topography was

identified to play a major role in along shelf algal variability by forming saline eddies that

promoted algal growth on 32-124 km scales [Yoder et al., 1987]. Finally, the algal estimates

also served as indicators for physical processes, and enabled the study of oceanic features,

such as warm core rings [Gordon and Morel, 1983; Brown et al., 1985]. Although CZCS
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was mainly intended as a proof-of-concept sensor, it ended up providing a synoptic view of

bio-physical oceanographic processes in Case I waters that confirmed, refuted, and generated

scientific hypotheses; all while measuring only 6 total bands of light.

After the success of CZCS, a wide variety of more advanced ocean color sensors, which

provided on-orbit calibration approaches, additional spectral bands, and increased spatial

resolution, were launched into space by several space agencies. The second generation

sensors were: the Ocean Color and Temperature Sensor (OCTS) and the Global Imager

(GLI) launched by the Japanese Aerospace Exploration Agency (JAXA) in 1996 and 2002,

the Medium Resolution Imaging Spectrometer (MERIS) launched by the European Space

Agency (ESA) in 2002, and the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) and

the two Moderate Resolution Imaging Spectroradiometers (MODIS) deployed by NASA in

1996, 2000 and 2002. OCTS and GLI both collected less than a years worth of data, while

SeaWiFS, MODIS, and MERIS (the focus of the following sections) all remained functional

for at least a decade.

One of the major limitations of CZCS for long-term (decadal) studies was the lack of

on-orbit calibration techniques available to compensate for decreased electronics sensitivity

over time. To deal with this issue, SeaWiFS provided on-orbit calibration by monitoring

the reflectance of the moon, a standard target which would not change its reflectance char-

acteristics over a decade [McClain, 2009]. In addition to monitoring the moon, MERIS

and MODIS used on-board solar diffusers to monitor the output of the sun, which served

as another stable source [Barnes et al., 2004]. The increased long-term stability provided

by these, and other, advanced on-orbit calibration techniques compensated for the shifts in

electronic and optical efficiency on decadal scales. The new stability allowed for high impact

long-term studies, including the identification the effects of El Nino [Arrigo and Van Dijken,

2004] and the potential effects of global warming on marine primary production [Doney,

2006; Behrenfeld et al., 2006].

The additional spectral bands and increased spatial resolution of the second generation

ocean color sensors enabled sensing in optically complex and spatially variable regions, such

as the coastal ocean. Despite the name Coastal Zone Color Scanner, CZCS was mainly

successful at observing features within open ocean (Case I) waters, as it lacked the spectral

bands required to accurately remove atmospheric effects and compute individual optical

constituent products in optically complex (Case II) regions. SeaWiFS and MODIS provided
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additional spectral bands in the near-infrared (NIR), encompassing 750 and 850 nm, which

were insensitive to variations in the optical constituents in turbid regions, and could there-

fore be used to correct for path radiance in these regions [Gordon and Wang, 1994]. The

additional spectral bands in the far-red provided on MODIS and MERIS, at 665 nm, 680

nm, and 705 nm (on MERIS), enabled the retrieval of algal products in Case II regions by

measuring their fluorescence [Mishra and Mishra, 2012; Gurlin et al., 2011]. The fluorescence

in the red is due to light that algal pigments re-emit during photosynthesis, which makes

the signal insensitive to fluctuations in other optical constituents in Case II regions. The

additional far-blue band (at 410 nm) included on the second generation ocean color satellites

enabled accurate colored dissolved organic matter (CDOM, which is optically active decay-

ing organic matter) products in Case II regions, due to CDOM’s uniquely high absorption in

this region of the spectrum [Gordon and Wang, 1994]. While the additional spectral bands

increased the accuracy of individual optical constituent products, the increased spatial res-

olution reduced aliasing in coastal regions, which have scales of variability at or below 200

meters [Moses et al., 2016]. In one application, MERIS’s 300 m resolution was sufficient

to resolve gradients in the dissolved organic carbon (DOC) and colored dissolved organic

matter (CDOM) in coastal regions containing tributaries, which one kilometer resolution

data (e.g., from CZCS or MODIS’s ocean color bands) would not capture [Cao et al., 2018].

The increased spatial and spectral resolutions heavily advanced the range of applications

that ocean color sensors could accomplish in Case II regions.

1.2 The Current Satellite Ocean Color Remote Sensing Paradigm

The satellite ocean color remote sensing paradigm has been developed by multiple research

teams and space agencies (e.g., ESA, JAXA, and NASA) over the past 40 years of ocean

color measurement [McClain, 2009; International Ocean-Colour Coordinating Group, 2012a].

Ocean color remote sensing is performed passively by measuring reflected sunlight. Most

ocean color satellites are deployed in sun-synchronous polar orbits, which are orbits that

result in satellites being over the same latitude on the earth at the same solar time each

day. The sun-synchronous orbit can therefore keep the satellite (and the target below) in

constant sunlight, a requirement for passive remote sensing. Ocean color sensors on polar

orbiting satellites image wide swaths of the earth from high altitudes to achieve their global
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Table 1.2: The available bands and achievable spatial resolutions of the most commonly
used satellite-borne ocean color sensors have slowly increased over time.

coverage. Polar orbiting satellites (CZCS, SeaWiFS, MERIS, MODIS) are deployed at very

similar altitudes, but their swath widths and revisit times can vary substantially (Table

1.2). Ocean color sensors typically view near to nadir in order to minimize atmospheric

path radiance, but they often sense at +/- 20 degrees from nadir to avoid direct solar glint.

Polar orbiting satellites are able to achieve global monitoring of biogeochemical cycles in the

ocean with their given viewing geometry and orbital characteristics.

The satellite ocean color remote sensing paradigm leverages knowledge and advances

made within a wide range of optical disciplines to passively retrieve optical constituent

products from ocean color sensors on satellites (Figure 1-1). In the first step (Figure 1-1, 1)

of the passive remote sensing paradigm, sunlight propagates from the top of the atmosphere

to the surface of the ocean. Along this path, the incident light is scattered by molecules

and aerosols in the atmosphere into the optics of the ocean color sensor (Fig. 1-1, 2). After

propagation through the atmosphere, part of the incident light (2% at typical view-angles)

reflects off the surface of the ocean and into the camera optics, while the rest of the light

transmits through the ocean’s surface (Fig. 1-1, 3). Most of the incident light is absorbed

by water and the optical constituents within the water column, but a small percentage of

the light (<5%) is scattered by the optical constituents back up towards the surface of

the ocean, and ultimately the optics of the ocean color sensor (Fig. 1-1, 4). A spectrally

dispersive element in the ocean color sensor then splits the total measured signal into its

color components before measurement by the camera’s electronics (Fig. 1-1, 5-8). Spectral

algorithms can then be applied to the measurements to estimate and then subtract the
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scattered atmospheric light, as well as the light reflected off of the surface of the ocean, to

retrieve the ocean color signal (Fig. 1-1, 9). Finally, ocean color algorithms, which relate

the changes in the ocean’s color to the concentration of the optical constituent, are applied

to the ocean color signal to calculate products such as optical constituent concentrations

(Fig. 1-1, 10). The following subsections detail the complexities within each step.
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1.2.1 Insolation of the Ocean’s Surface: Fundamental Physics &

Atmospheric Optics

Passive sensing of ocean color starts with insolation of the ocean’s surface by the sun.

Therefore, the available spectrum is dictated by the incident solar spectrum, which can be

approximated by the radiation emitted from a 5800 K blackbody. The emitted radiation

is low in the UV, peaks in the visible, and slowly drops off in intensity in the NIR and

shortwave infrared (SWIR). To give a sense scale of the brighter part of this solar spectrum,

the downwelling irradiance at the top of the atmosphere is about 1.5 𝑊 · 𝑚-2 · 𝑛𝑚-1 in

the visible part of the spectrum [Mobley, 2020]. The brighter visible and NIR sections are

typically used for sensitive ocean color applications, however the range of usable wavelengths

is further limited by interactions in the atmosphere and water column.

As the solar radiance propagates from the top of the atmosphere down to the ocean’s

surface it interacts with molecules and aerosols in the atmosphere. Water and oxygen

molecules in the atmosphere absorb the solar radiance in sections of the red and NIR, creating

variable depth features in the remote sensing reflectance data. Nitrogen dioxide (NO2) and

ozone (O3) in the atmosphere absorb broadly across the visible, and must be corrected in

the measured top of atmosphere radiance [Mobley et al., 2016c]. Some of the solar radiance

is also scattered via Mie and Rayleigh scattering, depending on the size of the particles

relative to the wavelength of the incident light. Light interacting with molecules, which are

much smaller than the wavelengths of the incident light, undergoes Rayleigh scattering at a

magnitude inversely proportional to the wavelength to the fourth power. Light interacting

with aerosols, particles which are on roughly the same size scale as the incident wavelength

of light, undergoes Mie scattering. The scattering has multiple effects. First, the scattering

attenuates the intensity of the sunlight that reaches the surface of the ocean, and the intensity

of the ocean color signal that reaches the top of the atmosphere. Second, the wavelength

dependent Rayleigh scattering by molecules in the atmosphere diffuses the light over the the

entire hemisphere of the sky. The skylight illuminates the ocean, and therefore shifts the

color of the irradiance measured at the ocean’s surface, typically towards blue. Third, some

of the scattered light (referred to as path radiance) is redirected into the optics of the ocean

color sensor, and overwhelms the low intensity ocean color signal. When viewing dark ocean

waters the path radiance from the 500 km path-length of atmosphere between the sensor and
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the ocean can comprise as much as 85% of the satellites signal [Orcutt, 2012]. Therefore, to

approximate the ocean color signal from the total measured signal, an estimate for the path

radiance must be removed from the total signal.

Unfortunately, the path radiance is not spatially and temporally invariant. While the

contribution of molecular scattering to the path radiance is spatially and temporally invari-

ant, and can be computed using look-up tables with the known viewing and solar geometries

as well as the windspeed conditions [Wang, 2002], the aerosol contribution is not. Changes

in the aerosol size distribution, index of refraction, and optical depth substantially alter the

spectrum and intensity of the aerosol contribution of the path radiance [Gordon et al., 1997;

Nair and Moorthy, 1997]. Depending on the region and local conditions, the aerosols could

be comprised of soot, smoke, sea salt, dirt, or even ice crystals, which each have unique ab-

sorption and scattering characteristics [Gordon et al., 1997; Chin et al., 2009; Mobley et al.,

2016b]. Overall, the aerosol imposed variations in the path radiance limit the accuracy with

which the ocean’s color can be retrieved from the total measured signal.

Accurately removing the atmospheric path radiance requires using a spectral algorithm

that takes advantage of bands that do not co-vary with optical constituents (which determine

the ocean’s color). Learning from the limitations of CZCS’s sole red band for atmospheric

removal above turbid waters, MODIS included bands in the NIR at 748 nm and 869 nm,

which covary significantly less with turbidity [Mobley et al., 2016c]. To begin the atmospheric

correction process, the ratio between the long and short NIR bands [𝜖(748, 869)] is taken as:

𝜖(748, 869) =
𝜌TOAC(748)

𝜌TOAC(869)
, (1.1)

where 𝜌TOAC is the reflectance calculated from the top of atmosphere radiance that has

been corrected for whitecaps, Rayleigh radiance, surface reflected skylight (included in the

Rayleigh radiance correction), surface reflected sunlight, O3 attenuation, and NO2 attenua-

tion [Gordon and Wang, 1994; Mobley et al., 2016c]. The relative humidity and 𝜖(748, 869)

are then used with predefined look up tables, specified for given solar and view geome-

tries, to identify the NIR ratios of the two aerosol types that bound 𝜖(748, 869) [known

as 𝜖low(748, 869), and 𝜖high(748, 869)] [Ahmad et al., 2010]. It is then assumed that the

proportional difference (∆) in 𝜖(748, 869) relative to the look up table values holds across
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wavelength as:

∆ =
𝜖(748, 869) − 𝜖low(748, 869)

𝜖high(748, 869) − 𝜖low(748, 869).
(1.2)

Therefore, the reflectance due to aerosols at any wavelength [𝜌A(𝜆)] can be calculated from:

𝜌A(𝜆) = [(1 − ∆) * 𝜖low(𝜆, 869) + ∆𝜖high(𝜆, 869)] * 𝜌TOAC(869). (1.3)

The spectral reflectance due to aerosols can then be subtracted from the corrected reflectance

to get the water-leaving reflectance. This process assumes that the water-leaving reflectance

in the NIR is negligible and that there are no strongly absorbing aerosols. In cases where

the water-leaving reflectance in the NIR is non-negligible, an extended process is imple-

mented. After determining the water-leaving reflectance from the above equations, a series

of equations then iteratively estimates the actual reflectance from estimates of the absorp-

tion due to chlorophyll and backscatter from particles. Finally, the actual remote sensing

reflectance at the two correction wavelengths is removed from the total reflectance, before

re-implementing the algorithm from the first step [Bailey et al., 2010]. In summary, the two

NIR wavebands are critical for path radiance estimation and correction in both open ocean

and turbid regions.

1.2.2 Transmission and Reflection at the Ocean’s Surface:

Classical Optics

After propagating through the atmosphere, incident sunlight next interacts with the ocean

surface. At the ocean’s surface, a fraction of the incident sunlight is reflected back into the

atmosphere, and the remainder is coupled into the ocean. The Fresnel equations describe

the amount of light that is transmitted, or reflected, at any given incidence angle and

polarization state, for a planar surface.

𝑅s
1/2 =

𝑛1𝑐𝑜𝑠(𝜃i) − 𝑛2𝑐𝑜𝑠(𝜃t)

𝑛1𝑐𝑜𝑠(𝜃i) + 𝑛2𝑐𝑜𝑠(𝜃t)
(1.4)

𝑅p
1/2 =

𝑛1𝑐𝑜𝑠(𝜃t) − 𝑛2𝑐𝑜𝑠(𝜃i)

𝑛1𝑐𝑜𝑠(𝜃t) + 𝑛2𝑐𝑜𝑠(𝜃i)
(1.5)

Here, n1 is the index of refraction of the air (1.0), n2 is the index of refraction of salt water

(1.34), 𝜃i is the incident angle (typically <20∘), and 𝜃t is the transmitted angle. The Fresnel
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equations can be simplified to only depend upon the incidence angle, 𝜃i through substitution

of Snell’s law:

𝑛1𝑠𝑖𝑛(𝜃i) = 𝑛2𝑠𝑖𝑛(𝜃t). (1.6)

At the off-nadir view angles typical of satellite remote sensing, the reflection coefficients

for both polarization states are around 4%. Therefore, roughly 4% of the incident sunlight

and skylight are reflected off of the surface of the ocean and into the optics of the ocean

color sensor. Although this seems quite low, it is often higher than the typical reflectance of

constituents in the open ocean water column (<2%), and therefore requires avoidance (for

the surface reflected sunlight) and correction (for the surface reflected skylight). Sun-glint,

the more intense of the two surface reflected light sources, can be mitigated by imaging

with the ocean color sensor at slightly off-nadir view angles, so the solar disk is not within

the image. The sky glint is typically removed during molecular scattering correction, by

assuming that the reflectance is wind-speed and view-angle dependent [Wang, 2002]. The

sun and sky light that is not reflected at the ocean’s surface is instead transmitted through

the air-sea interface, where it interacts with optical constituents in the water column.

1.2.3 Absorption, Scattering, and Fluorescence in the Water Column:

Ocean Optics

Once transmitted through the air-ocean interface the incident solar radiation can interact,

through absorption or scattering, with the optical constituents within the water column.

The radiative transfer of light through the ocean is characterized by the water column’s

inherent optical properties (IOPs), properties that are due to the optical constituents and

are invariant to changes in the light field [Preisendorfer, 1976]. The absorption coefficient,

scattering coefficient, and the volume scattering function are the principal IOPs that domi-

nate optical propagation through the water column. While the IOPs describe the radiative

transfer within the water column, they cannot be measured directly via remote sensing.

Instead apparent optical properties (AOPs), properties that vary with sensing conditions

and viewing geometries (e.g., the water-leaving radiance), are used to estimate both the

constituent concentrations and the IOPs.

Light in the water column decreases exponentially with depth, due to absorption and

scattering by both water and the optical constituents. The depth above which 90% of
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the remotely sensed upwelling irradiance originates is referred to as the penetration depth

[Gordon and McCluney, 1975]. The penetration depth varies heavily based on the optical

constituents. In the clearest unproductive, oligotrophic, ocean regions such as the north

pacific gyre, the penetration depth of blue light is approximately 50 meters, while the pen-

etration depth of red light is around 2 meters. In typical Case I open ocean waters, such as

the center of the north pacific gyre, where the optical constituents covary with suspended

plant matter, the penetration depth of blue light is around 25 meters and the penetration

depth of red light is slightly less than 2 meters. In the most turbid Case II coastal waters,

such as the Baltic Sea, the penetration depth of both blue and red light can be reduced

to less than 1 meter. Therefore, products calculated from different spectral bands or in

different regions describe the optical constituents at different depths.

The IOPs are clearly important to recover via remote sensing, as they describe optical

propagation in the water column, but the concentrations of the optical constituents, such as

suspended plant matter, colored dissolved organic matter, and suspended particulate mat-

ter, are also important as they serve as indicators of key biogeochemical cycles (e.g., the

carbon cycle) in the ocean. Nearly half of the Earth’s primary production, where organic

compounds are produced within organisms from inorganic compounds, occurs in the ocean.

Thus, suspended plant matter, the dominant primary producer in the ocean, is a key part

of the oceanic carbon cycle and the base of the food chain in much of the ocean [Falkowski

and Raven, 2007; Malone et al., 2016]. Not only does suspended plant matter contribute

to organic carbon cycling, but also inorganic cycling. Suspended plant matter that forms

calcite shells, known as coccolithophores, contribute 75% of the ocean originating inorganic

carbon sequestered to the ocean floor [Gordon and Balch, 1999]. Another constituent, col-

ored dissolved organic matter (CDOM), serves as a tracer for total dissolved organic matter

(DOM). Dissolved organic matter is important to oceanic health because it releases nitrogen,

inorganic carbon, and trace metals into the water column when it is destroyed by photo-

bleaching, and these elements are used during primary production [Coble, 2007]. A final

constituent of import, suspended particulate matter, can be comprised of dirt, silt, sand,

or detritus (decaying organisms). Suspended particulate matter impacts oceanic health by

adding to nutrient availability for primary production and limiting light availability. Clearly,

the optical constituents in the ocean can serve as important indicators of the biogeochemical

cycles, as well as marine health.
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Seawater and the optical constituents within the water column each have their own typ-

ical absorption and scattering properties due to their physical characteristics. Water itself

absorbs quite strongly in the far red and near-infrared (NIR), weakly in the visible, and mod-

erately in the ultraviolet [Dorsey, 1940; Pope and Fry, 1997]. The molecular structure of

water (H20) causes local absorption maxima within water’s absorption spectrum at multiple

frequencies above 450 nm, due to the harmonics in the O-H bond vibrational mode. Water’s

polarity allows it to form clusters of hydrogen bonded molecules which change its absorption

characteristics, however temperature and salinity can affect the formation of these clusters.

Increases in temperature can break apart the weak hydrogen bonds, forcing smaller clus-

ters, while increases in salinity can cause the hydrogen bonds to form larger clusters. The

temperature and salinity effects must be calibrated when using the absorption of water as a

constant, especially in the NIR [Pegau et al., 1997].

Suspended plant matter (algae) are primary producers within the ocean that have evolved

to convert sunlight into chemically stored energy, in a process known as photosynthesis. The

dominant pigment that absorbs sunlight in algae, chlorophyll a, absorbs heavily in the blue

and red [Clarke et al., 1970; Morel and Prieur, 1977]. While pigments, and therefore the

spectral shape, vary from species to species, there is a general tendency for the pigments

to absorb in the blue and red [Bricaud et al., 2004]. Although most of the absorbed light

is either used during photosynthesis or turns into heat, some of the absorbed light excites

molecules that emit light at longer wavelengths when they return to non-excited states

(i.e., they fluorescence). While chlorophyll fluorescence has a relatively minor intensity,

its presence at this particular wavelength is unique, which makes it useful for estimating

chlorophyll in optically complex (Case II) waters [Abbott and Letelier]. Overall, due to

the high absorption in the blue and red, and scattering in the green, waters with high

concentrations of suspended plant matter are characteristically green.

The dissolved component within the water column, operationally defined as being able

to pass through a filter with pore sizes ranging from 0.2-0.7 um, is typically comprised of

humic substances originating from soil runoff in coastal regions and fulvic acids originating

from phytoplankton in open ocean regions [Mostofa et al., 2009]. While not all dissolved

organic matter substantially affects the ocean’s color, the part that does (CDOM) has a

logarithmically decreasing absorption curve, which dominates in the ultraviolet and blue

[Morel and Prieur, 1977; Gholizadeh et al., 2016]. The wide variety of dissolved materials
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results in an exponentially decreasing absorption spectrum [𝑎CDOM(𝜆)] with few features

[Coble, 2007], which can be represented by the following equation [Bricaud et al., 1981]:

𝑎CDOM(𝜆) = 𝑎CDOM(𝜆0)𝑒𝑥𝑝[−𝑆(𝜆− 𝜆0)], (1.7)

where S is the mean (or spectral) slope, 𝜆0 is a reference wavelength (typically in the blue),

and 𝜆 is the desired wavelength. The spectral slope can be indicative of the origin (terrestrial

or marine) of the CDOM. Equation 1.7 can be used to calculate the absorption due to

CDOM at higher wavelengths and therefore correct for CDOM absorption effects across the

spectrum. Scattering by CDOM is typically assumed to be negligible. CDOM can also

fluoresce, though the exact wavelength can vary depending upon the chemical composition

of the dissolved organic matter.

Suspended particulate matter (SPM), operationally defined as being unable to pass

through a filter of 0.2-0.7 um pore size, is typically comprised of suspended sand, sedi-

ment, dirt, or the calcium carbonate shells of coccolithophores. The relatively large size

of SPM, relative to the visible and NIR wavelengths of light, leads to a wavelength inde-

pendence in the scattering of light [Kirk, 1994]. The scattering is most notable in the red

and NIR sections of the water-leaving radiance section, where water absorption typically

dominates.

1.2.4 Measuring Ocean Color: Spectral Imaging

After propagating through the air-sea interface, and back up through the atmosphere, the

incident light is then imaged into its component colors by a spectral camera on-board the

satellite platform. A myriad of spectral separation techniques exist for multispectral and

hyperspectral cameras, but only a few are optimal for ocean color imaging. Fabry-Pérot

Interferometers, wedge filters, linear variable filters, and rotating multispectral filter wheels

are unable to simultaneously image the spectral content of a single spatial location, so are not

typically used by ocean color sensors. Since satellites typically move at 7.5 𝑘𝑚 ·𝑠-1 [McClain

et al., 2014], the spectral bands derived from these approaches would image slightly different

spatial regions, which is undesirable for ocean color product retrieval as the estimation

algorithms leverage ratios between the bands. Bandpass filters and grating are the spectral

separation techniques typically used in ocean color remote sensing, as they are able to
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simultaneously image the spectral bands of a given spatial location. Most ocean color

sensors (CZCS, MERIS, Hyperion, HICO, OLCI) leverage a dispersive grating to separate

the spectra, though a couple of the earlier sensors (MODIS and SeaWiFs) used bandpass

filters [Qian, 2020; McClain et al., 2014].

Historically, each ocean color sensor utilized a unique spectral imaging system. CZCS

was a whiskbroom, or scanning, spectral imager. It used a rotating mirror to spatially scan

perpendicularly to the satellites orbit track [McClain et al., 2014]. The scanning mirror had

the ability to tilt to avoid sun-glint. Spectral dispersion was achieved by using a grating,

and sampling the spectrally separated light at the appropriate spatial locations. MODIS

was also a whiskbroom sensor that used a rotating mirror. Unlike CZCS, spectral separation

was not accomplished via a grating, but instead via dichroic beamsplitters and filters on the

focal plane arrays. The system used four focal plane arrays to capture the wide intensity

range of the incident radiation. MERIS was a pushbroom sensor, which is a sensor that

simultaneously acquires spectra from a spatial line perpendicular to the satellites orbital

trajectory. Since the sensor simultaneously acquired spatial and spectral data, it could

utilize higher exposure times for each spatial region, as it did not have to spatially scan.

MERIS spectrally dispersed light by using gratings. Unfortunately, since MERIS uses 5

different cameras for the full spectral information, there can be discontinuities in the ocean

color products [McClain et al., 2014]. Despite the idiosyncrasies with the data from the 5

different cameras on MERIS, image correction approaches made the data useful for ocean

color remote sensing.

1.2.5 Signal Detection: Photonics & Optoelectronics

After being split into the component spectra, the light must be imaged and converted into

digital numbers for digital recording. Photons from the ocean’s surface are imaged onto the

focal plane array and are converted to electrons at the spectral quantum efficiency of the

focal plane array (imaging sensor). The integration time of the imager controls the amount

of time that photons are converted into electrons. The number of electrons captured by the

detector is a function of surface area being imaged, the solid angle of the aperture, the input

radiance, the optical efficiency, and the spectral bandwidth:

𝑁E = 𝐿t · Ωaperture ·𝐴surface · 𝑡 · 𝐸Optical · 𝐸Quantum · ∆𝜆 · 𝜆

ℎ𝑐
· (1.8)
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Table 1.3: The increasing radiometric resolution and SNR demonstrate the advancement of
the ocean color imager electronics through the ocean color sensor deployments. The lower
SNR of HICO is due to the increased spectral resolution. Full-well depths in parenthesis are
estimated based on the maximum stated SNR [Qian, 2015; Lucke et al., 2011; Bezy et al.,
1997; Qimaging].

where 𝑁E is the number of electrons on the imager, 𝐿t is the total radiance at the sensor,

Ωaperture is the solid angle of the instruments aperture, 𝐴surface is the area of the surface being

measured, 𝑡 is the exposure time, 𝐸Optical is the optical efficiency, 𝐸Quantum is the quantum

efficiency of the focal plane array, ∆𝜆 is the spectral bandwidth, 𝜆 is the wavelength, ℎ is

Planck’s constant, and 𝑐 is the speed of light [Mobley et al., 2016a]. Clearly increasing the

spatial resolution (decreasing 𝐴surface and 𝑡) or increasing spectral resolution (decreasing

∆𝜆) limits the amount of photons captured. Therefore, increases in the spatial or spectral

resolution must be offset by increasing the optical efficiency, solid angle, or exposure time

to maintain the same signal-to-noise ratio (SNR). Since satellites use the state-of-the-art

sensors, they typically trade spatial for spectral resolution (and vice versa) to achieve their

remote sensing goals.

The imaged electrons are stored within the camera’s full-well, and cannot exceed the full-

well capacity of the imager. The full-well capacity is typically around one million electrons

on second generation ocean color sensors (Table 1.3). The number of electrons in the full-

well is converted to a digital number via the analog-to-digital converter (ADC), which has a

specific radiometric resolution as measured in bits (typically 10-14 bits for second generation

ocean color sensors), for digital storage [Qian, 2020; McClain et al., 2014]. The wide dynamic

range (from the full-well capacity of one million electron) and high radiometric resolution

(from the 10-14 bit ADCs) are necessary because of the large dynamic range between the

dark ocean color pixels and the bright land, ice, and cloud pixels typical of oceanic images.

In addition to the previously discussed environmental noise sources, optical and electronic

43



noise sources further limit the accuracy of the measured total radiance. Since satellite sensors

have large full-well capacities, signal dependent shot noise typically dominates. Shot noise

occurs due to the discretization of photons, and follows a Poisson distribution [McClain et al.,

2014]. The next highest noise source is typically the quantization noise. The quantization

noise results from round-off error from when the ADC converts electrons in the full well

to a digital number [Boncelet, 2005], and follows a uniform distribution. Other common

noise sources, which are typically minimal for satellite sensors, are dark noise, which is

temperature and time dependent [Gow et al., 2007; Farrell et al., 2012], and read noise,

which is a result of the electronic readout within the camera system [Chen et al., 2009].

Since spatially scanning hyperspectral imagers measuring the ocean color signal image a

wide dynamic range, it is possible for shot-noise to dominate in one region of the spectrum

while another noise source, such as quantization noise, dominates in another section of the

spectrum.

Both dark noise and the temperature dependence of the electronics must be corrected

for when used for sensitive ocean color applications. MODIS included a space view port,

through which it could image dark sections of the sky, to estimate the dark noise in the

images [Xiong et al., 2004]. The estimate of the dark noise could then be subtracted from

the images of the Earth to remove dark noise effects. Another optoelectronic effect was

the temperature dependence of the measured signal on the focal plane array. SeaWiFS

included thermistors on-board each focal plane array to monitor the temperature [Barnes and

Zalewski, 2003]. The correction removed temperature effects using pre-computed coefficients,

inherently assuming that the temperature dependence would not change in orbit [Barnes

et al., 1994]. Overall, the dark-noise and temperature dependent effects on the signal can

be largely ameliorated with these correction techniques.

1.2.6 Mitigating Optical Errors: Optical Engineering &

Information Processing

A major limitation of using CZCS data for timeseries analysis was the lack of a method

for long-term on-orbit stability monitoring of the optical and electronic components. The

calibration process is critical, as errors as small as 1% in the satellite measured radiance

can result in errors of 10% in the water-leaving radiance, because the path radiance is such

a significant portion of the signal [Barnes et al., 2001; Mobley et al., 2016b]. The space
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agencies that launched the second generation of ocean color sensors included a variety of

different optical components to aid in on-orbit calibration of the top of the atmosphere total

measured radiance.

SeaWiFS used a four step radiometric calibration approach to accurately compare mea-

surements made over the entire instrument deployment. The first step was a lab-based

characterization, where the MODIS sensor measured an integrating sphere with a National

Institute of Standards and Technology (NIST) traceable lamp. The second was the measure-

ment of the solar disk before and after launch, using a solar diffuser, to determine changes

in the optical train due to the launch [Barnes et al., 2001]. The measurement of the solar

disk allows for changes in the diffuser-instrument system to be characterized after the sen-

sor had been launched into orbit. The third step was measurement of the lunar surface,

which served as a stable and independent diffuser that could be measured to characterize

fluctuations in the instrument response without containing degradation of the solar diffuser.

SeaWiFS pitch-axis momentum wheels rotate the sensor at specific time intervals to view

the moon under similar conditions on an approximately monthly basis. After correcting for

variations in the sensing conditions and oversampling of the moon due to rotation of the

sensor, the moon can be used to determine long-term trends in the variations in the optics

of the sensor. The solar diffuser also makes daily measurements of the solar radiation, to

determine if there were discontinuities in the degradation of the sensors performance, which

must be known to apply the lunar calibration. The degradation in the response of SeaWiFS

band 8 (865 nm) was as much as 12% over just 3 years time, so clearly this band requires

recalibration for determining trends in ocean color data [Barnes et al., 2004]. The fourth,

and final, step is a vicarious calibration, which forces the radiometrically and atmospheri-

cally corrected top of the atmosphere measured radiance to match with in-situ radiometric

measurements made in an optically homogeneous region. SeaWiFS uses data collected by

the Marine Optical Buoy (MOBY) to correct in the visible, and data collected in the Pacific

and southern Indian oceans to correct the NIR [Franz et al., 2007]. The on-orbit calibration

methods reduce errors sufficiently to be able to compare measurements made over multiple

years.

In addition to solar diffuser and lunar monitoring capabilities, MODIS also includes a

Spectroradiometric Calibration Assembly (SRCA) and a Solar Diffuser Stability Monitor

(SDSM) for further calibration [Xiong et al., 2004]. The SRCA enables on-board spectral,
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radiometric, and spatial calibration. The spectral calibration data is produced by an on-

board light source that is spectrally filtered using a monochromator, before it is redirected

onto MODIS’s scan mirror. To collect radiometric data, the SRCA uses the on-board source

with a feedback diode to control the input radiance to MODIS and repeats this process for

6 different radiance levels. The spatial registration is performed by the SRCA placing a

spatial pattern, called a reticle, as the input to MODIS’s scan mirror, so that it can align

the various focal plane arrays. Despite having the on-board calibration source, the solar

diffuser is typically used to calibrate MODIS. The SDSM iteratively monitors the sun and

the solar diffuser to calibrate the radiometric correction due to degradation of the solar

diffuser. Overall, the SRCA and SDSM provide further on-board calibration capabilities

than MODIS’s predecessors.

In addition to the standard optical aberrations and uncertainties in imaging systems

(e.g., defocus, chromatic aberration, etc.), a few specific optically induced errors have been

prominently featured in ocean color sensors. In MODIS, the spectral imaging technique

introduced striping errors in the measured radiance. Images captured by the multi-detector

bandpass filter used on MODIS suffered from alternating bright and dark lines (striping)

due to differences in the detectors [Rakwatin et al., 2007]. Specific algorithms were required

to correct for these bands, to accurately estimate the ocean color signal. Another source

of error in MODIS was stray-light from nearby bright targets (e.g., clouds) [Meister et al.,

2008]. Stray light within an imaging system is the light that has been been scattered off

of the internal housing into pixels capturing light from other targets. Stray light has a

particularly large impact in ocean color remote sensing due to the wide dynamic range of

the signals being measured. Since radiance emanating from the ocean is typically much

darker than either land, clouds, or sun glint, stray light from these sources becomes a

significant concern. Without correction, water pixels adjacent to these sources could be

affected by stray light and have their estimated radiances significantly altered. Therefore,

baffling and pre-deployment characterization of stray light correction techniques are also

important considerations for ocean color remote sensing tasks.

1.2.7 Ocean Color Algorithms: Information Acquisition

The radiometrically corrected data, which was collected under a wide range of measure-

ment conditions (e.g., view angles, solar zenith angles, Earth-Sun distances, etc), must be
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normalized before it can be used in ocean color algorithms [Mobley et al., 2016b]. The mea-

sured water-leaving radiance is typically converted to either the remote sensing reflectance

[𝑅rs(𝜆)] or the normalized water-leaving reflectance. The remote sensing reflectance is sim-

ply the water-leaving radiance divided by the downwelling irradiance above the surface. The

normalized water-leaving reflectance is similarly the water-leaving radiance divided by the

downwelling irradiance, but it also attempts to mathematically correct for solar zenith angle,

the earth sun distance, and atmospheric attenuation.

After the water-leaving reflectance signal has been isolated from the environmental noise,

ocean color algorithms can be applied to the normalized reflectance data to recover bio-

geochemical information, typically referred to as ocean-color products. Basic ocean color

algorithms typically leverage ratios in different bands in the visible and NIR spectrum to

retrieve the optical constituent concentrations. One widely used algorithm for open ocean

chlorophyll (a proxy for algae) concentration retrieval is the ocean color 4 (OC4) algorithm

[O’Reilly et al., 1998]:

log 10([𝑐ℎ𝑙]) = 𝐶4 log 10
4 (𝑀𝐵𝑅) + 𝐶3 log 10

3 (𝑀𝐵𝑅) + 𝐶2 log 10
2 (𝑀𝐵𝑅) +

𝐶1 log 10 (𝑀𝐵𝑅) + 𝐶0, (1.9)

where [chl] is the chlorophyll concentration, Ci are the empirically derived coefficients, and

MBR is the maximum band ratio:

𝑀𝐵𝑅 =

(︂
𝑚𝑎𝑥(𝑅rs(443 𝑛𝑚), 𝑅rs(490 𝑛𝑚), 𝑅rs(510 𝑛𝑚))

𝑅rs(560 𝑛𝑚)

)︂
. (1.10)

Here, Rrs(𝜆) is the remote sensing reflectance at a specific wavelength (𝜆). The OC4 al-

gorithm leverages a band ratio between blue and green to estimate the concentration of

chlorophyll in the water. The coefficients (Ci) are empirically derived for each satellite

instrument though the use of in-situ data that is temporally aligned up with satellite re-

trieved water-leaving radiances. Similar band ratio algorithms exist for estimating CDOM

and SPM concentrations, which leverage their specific spectral absorption and scattering

features (section 1.2.3). Hyperspectral algorithms also exist for more complex tasks such

as CDOM spectral slope estimation, pigment separation [Chase et al., 2017], and differenti-

ating between phytoplankton functional types (phytoplankton function type identification)
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[Aiken et al., 2014; Lubac et al., 2008].

Semi-analytical algorithms, which combine radiative transfer theory with empirical mea-

surements, can also be used to retrieve ocean-color products. Inherent optical properties

can be estimated from remote sensing reflectance measurements by using the Generalized

Inherent Optical Property (GIOP) model with region specific assumptions [Werdell et al.,

2013; Franz and Werdell, 2010]. The GIOP model solves for the magnitude of the absorption

and scattering of different optical constituents through iteratively attempting to match the

measured subsurface remote sensing reflectance to the modeled subsurface remote sensing

reflectance. Following Lee et al. [Lee et al., 2002], the measured subsurface remote sensing

reflectance (rrs) can be calculated from the remote sensing reflectance:

𝑟rs(𝜆) =
𝑅rs(𝜆)

0.52 + 1.7 *𝑅rs(𝜆)
. (1.11)

The modeled remote sensing reflectance can be related to the absorption and backscattering,

following Gordon et al. [Gordon et al., 1988], as:

𝑟rs(𝜆) = 0.0949 * 𝑏b(𝜆)

𝑎(𝜆) + 𝑏b(𝜆)
+ 0.0794 *

(︂
𝑏b(𝜆)

𝑎(𝜆) + 𝑏b(𝜆)

)︂2

. (1.12)

where 𝑎(𝜆) is the total absorption, 𝑏b(𝜆) is the total backscattering, and the coefficients are

empirically determined. The total backscattering and absorption can be split into spectral

components with magnitudes as:

𝑏b(𝜆) = 𝑏bw(𝜆) + 𝑀bp * 𝑏bp(𝜆). (1.13)

where 𝑏bw(𝜆) is the water contribution calculated from the remotely sensed temperature and

estimated salinity from prerecorded measurements, 𝑏bp(𝜆) is the particulate backscattering

spectral shape, and Mbp is the magnitude of the scattering. For absorption it can be broken

into magnitude and spectral shape components from water [𝑎w(𝜆)], phytoplankton [𝑀ph

and 𝑎ph(𝜆)], and colored dissolved organic matter [𝑀CDOM and 𝑎CDOM(𝜆)]:

𝑎(𝜆) = 𝑎w(𝜆) + 𝑀ph * 𝑎ph(𝜆) + 𝑀CDOM * 𝑎CDOM(𝜆). (1.14)

The absorption due to water (𝑎w) is known [Pope and Fry, 1997], and typically the spec-
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tral absorption for phytoplankton and CDOM [𝑎ph(𝜆) and 𝑎CDOM(𝜆)] are assumed for a

particular region. Using these equations, the magnitudes (𝑀x) are iteratively solved for by

comparing the modeled subsurface remote sensing reflectance to the measured subsurface

remote sensing reflectance at as many wavelengths as there are unknowns. Therefore, the

estimate of the magnitude of the absorption due to colored dissolved organic matter, phy-

toplankton, and particulates can be estimated simultaneously. While users can change the

specific assumptions that are used, to be region or task dependent, NASA leverages specific

assumptions by Maritorena et al. [Maritorena et al., 2002] in their default product. Overall,

through the use of either empirical or semi-analytical algorithms, a wide range of inherent

and apparent oceanic properties can be remotely retrieved from spectral images.

1.3 Challenges in Ocean Color Remote Sensing on Meter Scales:

Limitations of the Satellite Paradigm

Space-borne ocean color sensors are still unable to meet the spatio-temporal resolution

combinations required to image many coastal and inland processes [Mouw et al., 2015;

Robinson, 2010], despite the significant advances in satellite ocean color remote sensing

over the past 40 years. Coastal and inland processes can occur on sub-meter and sub-

hourly scales in sub-km scale regions [Mouw et al., 2015; Robinson, 2010; International

Ocean-Colour Coordinating Group, 2012a]. Physical dynamics, such as Langmuir cells and

turbulent patches, can impact the local environment, and in turn alter the ocean color signal

on sub-meter scales (Figure 1-2) [International Ocean-Colour Coordinating Group, 2012a].

Not only is the ocean color signal different on these scales, but also the noise sources.

Dynamic physical processes, such as surface and capillary waves, can alter the reflections

and transmission characteristics of the solarlight and skylight at sub-meter scales (Figure

1-2, yellow circle). Accurately measuring variations in the ocean color signal is critical not

only to study the impact of the physical processes at this scale, but also to inform the effects

of the sub-pixel variability on the coarser resolution (5-1,000 m) products provided by ocean

color sensors on-board satellites and aircraft, as the coarser resolution products are not

always equivalent to the mean of the finer resolution products [Lee et al., 2012]. Overall,

polar orbiting satellites do not provide sufficient spatio-temporal resolution to study the

dynamic physical processes in coastal ocean regions, but while hyperspectral cameras on
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low-altitude drone platforms can provide sufficient spatio-temporal resolution, changes in

the optical characteristics of the surface at this scale will limit the accuracy of the retrieval

of the ocean color data.

The spatio-temporal limitations of polar orbiting satellites have been recognized in mea-

suring both algal bloom dynamics as well as turbidity fluctuations. Monitoring algal blooms,

which are rapid rises in algal content, requires fine spatial (25 meters [Lekki et al., 2019]

or below [Kutser, 2004]) and temporal resolution (1 hr [Choi et al., 2014]) data, as well

as near real time data processing [Sawtell et al., 2019]. The fine spatial resolution is ex-

tremely important as the chlorophyll concentration can vary by as much as two orders of

magnitude in just a few tens of meters [Kutser, 2004]. Even 30 meter data can be too

coarse for sampling potentially harmful algae slicks, and can result in extreme underestima-

tion of the chlorophyll content due to the spatial distribution of the bloom [Kutser, 2004].

In fact, researchers are calling for sub-meter resolution remote sensing data to study the

impact of the fractal structure of the slicks on remote sensing products at coarser spatial

resolutions [International Ocean-Colour Coordinating Group, 2017]. Another example task

that is limited by the current satellite-based ocean color sensor’s spatio-temporal resolution

combinations is the assessment of the spatial variability of turbidity in coastal regions on

sub-meter scales [Luis et al., 2019]. A few specific examples where sub-meter data could

be useful is in studying the impact of dredging [Ehmann et al., 2019], river outflow [IGOS,

2006], and glacial meltwaters [Wójcik et al., 2019] on local turbidity. In summary, algae

and turbidity are two optical constituents that require measurement on sub-meter scales to

assess their regional impact.

1.3.1 Spatio-temporal limitations of Satellite Deployment Approaches

The orbital mechanics of polar orbiting satellites are the main factor limiting their spatial

and temporal resolution combinations. Polar orbiting satellites follow Kepler’s third law of

planetary motion, which when combined with Newton’s law of gravity follow:

𝑇 2 =
4 · 𝜋2 · 𝑟3

𝐺 ·𝑀
, (1.15)

where T is the orbital period (1.5 hours), G is the gravitational constant (6.7 · 10-11 𝑚3 ·

𝑘𝑔-1 ·𝑠-2), M is the mass of the earth (6 ·1024 𝑘𝑔), and r is the radius of the orbit (6.7 ·106𝑚)
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Figure 1-2: Physical and biological processes within the global oceans occur over a wide range
of spatio-temporal resolution combinations. Satellites are able to collect global datasets over
decadal timespans, but only at coarse resolutions. Aircraft are able to sense at finer spatial
and temporal resolutions, but at the cost of limited temporal and spatial coverage. Drones
can sense at sub-meter spatial scales, but sub-meter fluctuations in the surface characteristics
(yellow circle) mar the radiometric data at these scales. This figure was adapted from
IOCCG Report No. 12 [International Ocean-Colour Coordinating Group, 2012b] which was
itself adapted from Dickey et al. [Dickey et al., 2006].

[Mobley et al., 2016a]. The orbital period combined with the swath width of the optical

sensor limits the time required to resample the same region, resulting in the 2 day typical

repeat cycle for polar orbiting satellites. The spatial resolution is limited by the amount of

spatial smear induced by satellite velocity (𝑣) during exposure, as set by the orbital period:

𝑣 =
2 · 𝜋 · 𝑟

𝑇
, (1.16)

The typical satellite velocity is roughly 8 · 103 𝑚 · 𝑠-1. With this given velocity, the exposure

time would be limited to roughly 10-4 seconds to achieve meter scale resolutions. This

short of an exposure time is not sufficient to achieve the high SNR at the fine spectral

resolution required for ocean color remote sensing. While this low exposure time is sufficient

for panchromatic imagers imaging terrestrial scenes, it is not sufficient for multispectral or
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hyperspectral ocean color imagers which split the light into many more channels and require

high SNRs. For the more typical km scale resolutions, the exposure time is limited to 10-1

seconds [Mobley et al., 2016a]. In summary, the orbital mechanics set the velocity, which

limits the repeat cycle and spatial resolution (through the exposure time) of satellite ocean

color remote sensors.

Changing the satellite remote sensing orbital characteristics and optics can overcome

these limitations to some degree. Higher temporal coverage, at 1 hour sampling intervals of

a single region, can be achieved by deploying satellites in geosynchronous orbits that match

the rotation period of the earth. Geosynchronous orbits therefore sacrifice global coverage for

temporal resolution. In one specific example, the increased temporal resolution provided by

GOCI (Geostationary Ocean Color Imager, launched in 2010) enabled the study of a harmful

algal bloom at hourly intervals, which revealed the relationship between water temperature

and bloom formation in this region [Choi et al., 2014]. If the spatial resolution is limited

not by the exposure time, but by the number of pixels sampling the swath width, then

either the number of pixels must be increased, or the swath width decreased, to increase the

spatial resolution. Since increasing the number of pixels would decrease the measured signal

per pixel (and therefore SNR), this solution is typically avoided for ocean color sensors.

Instead the swath can be decreased, such as on Hyspiri which has a swath width of 150 km

and achieves 60 meter resolution, but this limits the repeat cycle by about a factor of 10

(to 20 days) as more orbits must be completed to achieve global coverage [Jet Propulsion

Laboratory, 2018]. Overall, although the optics and orbits of satellite sensors can be altered,

the orbital mechanics still limit the achievable spatio-temporal combinations for sensing dark

ocean color waters.

1.3.2 Overview of Non-Satellite Platforms for Ocean Color Measurement

Manned aircraft enable assessment of ocean properties at finer spatio-temporal resolution

combinations, as they do not suffer from orbital mechanic limitations, but there are several

practical and technical challenges associated with their use. Unlike satellites, aircraft can

vary their speed, altitude, be easily reconfigured with different optical payloads, and can

alter their flight paths. Aircraft can therefore achieve the appropriately high spatial (5-10

m), temporal (selectable), and spectral (5 nm) resolution combinations by varying these

operational parameters. Unfortunately, manned aircraft have a few significant disadvan-
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tages. Practically, manned aircraft have low availability [Orcutt, 2012], require a dedicated

pilot, and are quite costly for the researcher, at $350 per square mile [Chipman et al., 2009].

Technically, aircraft must correct for variable amounts of path radiance depending upon the

sensors slant range (which is a function of altitude) and low frequency shifts in the reflected

sky-light [Kim et al., 2013]. Due to their limited availability and significant technical chal-

lenges, ocean color sensors deployed on aircraft are therefore typically used for high impact

applications such as testing satellite sensors at altitude and over specific regions, targeted

studies of more complex regions in the ocean, and validating satellite products at finer spa-

tial and temporal scales. While aircraft are often used for 2-10 meter resolution surveys of

regions [Green et al., 2001a; Fichot et al., 2016; Moses et al., 2012b; Hunter et al., 2010;

Olmanson et al., 2013], they are rarely used at sub-meter spatial scales (though they have

been used to achieve 20 cm resolution in at-least one case [Kim et al., 2013]) .

Low altitude platforms, such as towers, aerostats (blimps), and drones offer alternative

low-altitude solutions to achieve sub-meter resolutions. Tower platforms, aerostats, and

drones each fill a unique role in fine-scale remote sensing applications. Sensors deployed on

tower platforms can collect long timeseries of a specific regions ocean color signal, as they

can have power and data lines connected from shore. The timeseries, which would include

data from a wide variety of oceanographic conditions, would be quite useful for validating

instrumentation [O’Shea et al., 2020; Gilerson et al., 2018]. Additionally, instruments on

tower platforms can be deployed in harsher conditions, such as during high wind events,

than those deployed on aerial vehicles. Aerostats also provide a stable platform to collect

fine-scale timeseries data of a particular region, but they can be deployed in regions without

the infrastructure to support a tower. Aerostats could be particularly useful for measuring

river outflow in Arctic regions, the impact of glacier melt waters on local primary production,

and the effect of tidal cycles in remote coastal regions. Unlike towers and aerostats, drones

can quickly respond to events and cover significant areas at meter scales [Klemas, 2015].

Although drones, can vary widely in size and operational ability (Table 1.4), the focus of

the following sections is on Micro and Miniature drones. Micro and Miniature drones have

the payload capacity to fly spectral cameras, the flight duration to cover several kilomters,

and are light enough to be deployed by a single researcher. Drones are the most versatile

low altitude platform due to their mobility, but their mobility is limiting and comes with

additional complications. The additional complications include power and weight limitations
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of the electronic sensors and spatial resolution limitations due to spatial smearing of the

measured water-leaving radiance signal. Drones are able to map and explore larger areas

than the static low-altitude platforms, which is particularly useful for applications such as

mapping harmful algal blooms along coastal shellfish beds and sediment plumes in estuaries

after extreme weather events. Overall, towers, aerostats, and drones can each fill a specific

niche for low-altitude sub-meter remote sensing, but drones are the most versatile and

practically limiting of the low-altitude platforms.

The satellite ocean color remote sensing paradigm relies on many platform and task

specific assumptions, which may not hold when remote sensing on meter or sub-meter res-

olutions. The deployment platform changes the remote sensing capabilities (e.g., spatial

resolution), the weight and power limits of the camera (which are linked to the camera’s

sensitivity), the scientific resources that can be allocated to calibrating and testing the spec-

tral cameras for ocean color remote sensing, and the pertinent environmental noise sources.

While the broad effects of sensing on finer spatial scales than satellite sensors were covered

previously (Table 1.1), a more detailed description of the changes required for the drone

and aircraft remote sensing paradigms are outlined in the following sections (Tables 1.5, 1.6,

1.7, and 1.8). The focus of sub-meter remote sensing is from a drone based perspective, as

operationally the drone is the most versatile low-altitude platform and practically it is the

most limiting.

Table 1.4: The available drones can be placed into classes based upon their operational
capabilities, following a similar classification system as the U.S. Army [U.S. Army UAS
Center of Excellence, 2010]. This dissertation focuses on the Micro and Miniature classes of
drones as they have sufficient payload for ocean color sensors and sufficient endurance for
km scale ocean color missions, but can still be launched by a single researcher.
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1.3.3 Observational Considerations

Lower altitudes and velocities enable measurement on finer spatial and spectral resolution

combinations for a given optical instrument, at the expense of area covered. Since the spatial

resolution is often limited by spatial blurring from platform movement during exposure,

slower velocities can enable longer integration times that achieve the same spatial resolution.

While drones can only cover smaller regions (1-100 km2) due to their typically lower velocities

and altitudes, the lower velocity and altitude enable them to achieve finer spatial resolutions

(< 1 m) at higher spectral resolutions (2 nm), as they can increase the exposure times to

make up for the limited spectral bandwidth captured by the optical sensors (Table 1.5).

Typical aircraft sensors must maintain a minimum velocity to stay airborne (100-200 𝑘𝑚·ℎ-1

at 0.6-5 km altitude), and satellite velocities are fixed based on their orbit (27,000 𝑘𝑚 · ℎ-1

at 700 km), clearly limiting their achievable spatial resolutions.

Unfortunately, the smaller drone platforms suffer from size, weight, and stability limi-

tations. The camera systems available for drone based sensing must be less than 5 kg and

must fit within the drone’s small payload. The size and weight constraints limit the size of

the optics and electronics that can be relative to those used on satellite sensors, therefore

limiting the sensitivity of drone-borne ocean color imagers. The weight constraint also limits

the amount of power that is available for the camera system (100 watts), while aircraft and

satellite power availability no longer significantly limits the camera system. Finally, the

smaller size platform also makes the system more susceptible to pitch and roll effects during

flight than an aircraft, which will affect the geometry of the ocean color measurements and

inhibit accurate georectification.

The reduction in the altitude, spatial resolution, area covered, and available power and

weight will effect the sensitivity of the camera system that can be deployed (Table 1.6),

the resources that can be dedicated to calibration (Table 1.7), the pertinent environmental

factors (Table 1.8), and the assumptions that can be made when correcting for the environ-

mental factors (Table 1.8).

1.3.4 Camera and Imaging Considerations

Unfortunately, the severe power and weight constraints on Micro and Miniature drones limit

the sensitivity of the deployable cameras (Table 1.6). Commercially available drone-borne
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Table 1.5: A comparison between the platform induced limitations of satellites, aircraft, and
drones. Bold characteristics in the drone column may impact the validity of the satellite
remote sensing paradigm on sub-meter estimates.

sensors are uncooled (due to weight and power constraints), have relatively low full-well

capacities, and have slow optics. The combined effect of these camera characteristics is a

limited dynamic range and signal-to-noise ratio, which disproportionately effects the lower

intensity spectra of the ocean color signal. The increased noise in drone-borne camera

systems can propagate to inaccuracy in fine-scale environmental noise correction and ocean

color product estimation. Therefore, the available spectral camera systems must be assessed

for retrieving ocean color products on sub-meter scales.

In contrast to drones, satellite and aircraft do not severely constrain the size and weight

of their ocean color imagers, and are therefore able to achieve much more complex optical

systems. These systems typically have fast and efficient optics as well as state-of-the art

electronics with high full-well capacities, which set the dynamic range and shot-noise limited

SNR. Specifically, the ocean color imagers on these platforms are able to use multiple state-

of-the-art, large, heavy, and cooled camera systems, which are able to meet the high SNR

requirements (500-1,000) for wide dynamic range satellite ocean color remote sensing from

high altitudes.
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Table 1.6: A comparison between the typical camera characteristics available for each plat-
form. Bold characteristics in the drone column may impact the validity of the satellite
remote sensing paradigm on sub-meter estimates.

1.3.5 Calibration and Testing Considerations

A major limitation of drone based remote sensing is that the researcher must maintain and

validate their own camera system for specific ocean color remote sensing tasks (Table 1.7).

The wide range of available camera systems remain untested in most sensing conditions, with

only a sparse representation being used for regional low altitude ocean color applications,

so researchers cannot rely on other published reports to determine if their specific system

will work. The SNR requirements for specific tasks at these lower altitudes are poorly

defined for low altitude measurements at sub-meter spatial scales. Instead of relying on

previously published reports or the SNR of the camera to determine if it is useful for a

task, the researcher must test the system during a field deployment to determine if the

instrument and platform combination will be required to identify the accuracy limitations

of the system. Overall, calibrating and testing each low-altitude camera system for a specific

remote estimation task will introduce significant uncertainty into the results and put more

of the burden on the ocean color scientists, slowing the adoption of this platform.

Satellite and aircraft based ocean color imager are calibrated and validated by indepen-

dent research teams, separating this task from the ocean color scientist. The instrumentation

can be calibrated and validated on a specific ocean color imager by one research team, and
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then a separate research team can use those calibration coefficients algorithms for future

studies. This setup reduces the burden that falls upon the ocean color scientist, and reduces

the uncertainty in the ocean color products. Unfortunately, since the areas that each sensor

cover are much smaller for drones, the calibration and validation must be unique to each

imager. Therefore, drone based imagers cannot utilize a similar separation of tasks during

the calibration and testing phase.

Table 1.7: The burden of calibration and validation of drone-borne ocean color imagers
currently falls upon the ocean color scientist. Requiring the ocean color scientist to calibrate
and validate the products will introduce additional uncertainty and reduce productivity
relative to the aircraft or satellite calibration model. Bold characteristics in the drone column
may impact the validity of the satellite remote sensing paradigm on sub-meter estimates.

1.3.6 Environmental Considerations

The lower altitude and higher spatial resolution achieved by drone-borne ocean color im-

agers changes the relevant environmental noise sources and their characteristics, relative to

the satellite ocean color remote sensing paradigm. Drone-based ocean color imagers are

most effected by fluctuations due to glint on sub-meter spatial scales. Capillary waves and

heterogeneous sky conditions limit the validity of the typical assumptions used during glint

correction for the sub-meter spatial resolutions achievable from drone platforms (Table 1.8).

The capillary waves change the reflectance factor and polarization state on sub-meter scales,

potentially inducing changes in ocean color products if not algorithmically corrected. The

typical sky glint correction approaches leverage either the reflectance factor to subtract the

downwelling sky radiance [Mueller and Austin, 1995] or a polarizer to remove the vertically

polarized reflected skylight [Fougnie et al., 1999]. The heterogeneous sky will reflect unique
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contributions of downwelling skylight into the sensor, which cannot be collected by a single

upward facing radiometer. The differences in the environmental factors and correction tech-

niques require further introspection to be able to successfully leverage the traditional glint

correction approaches for ocean color product retrieval.

Ocean color imagers on aircraft and satellite are mainly affected by path radiance instead

of glint. At 0.01-1 kilometer scale spatial resolutions, the surface reflected light can be

approximated as coming from a specific portion of the sky and being vertically polarized at

specific view angles. While the surface reflected light is relatively straightforward to correct

for, and can be done using look up tables given the local windspeed, the path radiance

can comprise nearly 85% of the environmental noise on satellite and aircraft based sensors

[Orcutt, 2012], due to their high altitudes. Since a significant fraction of the signal on these

sensors is due to path radiance, the ocean color sensors must maintain high SNR values to

accurately estimate the ocean color signal.

1.3.7 State-of-the-Art for Sub-Orbital Optical Constituent Mapping

The above material covered the changes required for collecting meter and sub-meter data

using the aircraft and drone ocean color remote sensing paradigms, and the following ma-

terial will introduce the applications of these platforms at these scales. Aircraft were the

preliminary test platform to determine if remotely measured changes in the ocean’s color

could be related to changes in the optical constituents. In 1970, a custom off-plane Ebert

point spectrometer, with 5-7.5 nm bandwidth and 400-700 nm spectral range, was flown

on an aircraft at an altitude of 305 m over ocean waters with a wide range of chlorophyll

concentrations [Clarke et al., 1970]. The variations in the ocean color signal in the blue,

green, and red measured from an aircraft were successfully correlated with changes in the

chlorophyll concentration taken aboard a ship following the same track. Also, path radiance

was noticed as a significant environmental source of noise, with the path radiance increasing

the total measured signal by a factor of 5 when the altitude was varied from 200 to 3,000

meters. A spectrometric removal procedure was suggested, though not demonstrated, to be

able to remove the path radiance from high altitude measurements made from a satellite.

The research also identified surface reflected light (glint) and other optical constituents as

potential sources of error when estimating chlorophyll. The initial assessment of remote

estimation of chlorophyll informed the myriad of areas that required further advancement
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Table 1.8: A comparison between the environmental factors effecting ocean color measure-
ments from satellites, aircraft, and drones. Bold characteristics in the drone column may
impact the validity of the satellite remote sensing paradigm on fine-scale estimates.

for the accurate remote estimation of ocean color products.

The next major advance in low-altitude applications in ocean color remote sensing oc-

curred in 1988, with NASA’s Airborne Visible-Infrared Imaging Spectrometer (AVIRIS)

(Table 1.9, 2nd column). AVIRIS was used to truth future satellites, with a focus on ter-

restrial applications. AVIRIS’s initial SNR characteristics were too low for sensitive ocean

color measurement, as the instrument was designed for terrestrial sensing, however signif-

icant spatial binning was sufficient to increase the SNR to usable levels for ocean color

remote sensing [Carder et al., 1993]. The instrument’s spatial resolution was reduced due to

binning from 20 m to 280 m at red wavelengths, and from 20 meters to 1,000 m at blue wave-

lengths. With the increased SNR, ocean color scientists were able to map CDOM and SPM,

by using absorption at 415 nm and backscattering at 671 nm as indicators, in a unusual

nearshore plume in Tampa Bay. After initial testing, AVIRIS underwent many electronic
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Table 1.9: Airborne ocean color imagers advanced significantly over the past few decades.
The size and weight of the airborne imagers has decreased, while their optical efficiency
and spectral resolution has dramatically increased. Unfortunately, the airborne ocean color
imagers are too large for deployment on the available drone platforms. [Mouroulis et al.,
2014; Kramer; Green et al., 2001b,a; Dickey et al., 2006; Davis; Davis et al., 2002]

and optical retrofits that increased the SNR to the point that it could be used for chlorophyll

estimation in dark Case I waters [Hamilton et al., 1991]. Additionally, the spectrometric

atmospheric removal algorithm (ATREM) was developed to enable accurate estimation and

removal of the significant path radiance within the signal [Gao et al., 2000]. In addition to

basic mapping tasks, AVIRIS has also been deployed to calibrate ocean color satellites, such

as the Ocean Color and Temperature Scanner (OCTS), for changes that occurred due to the

launching of the satellite to orbit and due to the differences in the radiation and temperature

while in orbit [Green et al., 2001b]. In addition to calibrating ocean color satellites, AVIRIS

has also been used to determine the ideal bands for the remote estimation of chlorophyll,

CDOM, and SPM products from MODIS and MERIS in an estuary [Lunetta et al., 2009].

The evolution of the sensor sensitivity, atmospheric removal algorithms, and ocean color

algorithms by different teams has allowed AVIRIS to become a versatile airborne sensor for

ocean color remote sensing applications.

A major problem with AVIRIS is that it was not originally designed nor intended for

high sensitivity ocean color research. Ocean color scientists developed their own sensor,

Ocean Portable Hyperspectral Imager for Low-Light Spectroscopy (PHILLS) (Table 1.9,

3rd column), specifically for ocean color remote sensing. The commercial availability of the

components allowed multiple sensors to be constructed for oceanographic applications [Davis

et al., 2002]. Ocean PHILLS has been used in optically complex regions for bathymetry
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[Louchard et al., 2003], bottom type estimation [Louchard et al., 2003], and leaf area index

of benthic seagrass [Dierssen et al., 2003]. Ocean PHILLS eventually evolved into the Spec-

troscopic Aerial Mapping System with On-board Navigation (SAMSON) sensor. SAMSON

informed users that the spatial, spectral, and temporal resolution needed to be increased for

coastal regions [Davis et al., 2007]. In addition to providing a commercially assemble-able

system to meet the needs of ocean color scientists, a higher sensitivity airborne hyperspec-

tral imager was also developed and maintained by NASA specifically for coastal ocean color

remote sensing applications. PRISM (Portable Remote Imaging Spectrometer [Mouroulis

et al., 2014], Table 1.9, fourth column), the latest ocean color hyperspectral imager from

NASA, has been used for targeted assessment of floating seagrass as well as other ocean color

monitoring programs [Dierssen et al., 2015]. Clearly, aircraft based imagers fill a sampling

niche for high spatial, spectral, and temporal resolution data at specific time intervals for

large-scale oceanographic projects.

While the history and expertise of using advanced ocean color imagers on-board aircraft

for 10 meter scale ocean color remote sensing and satellite validation stretches back 4 decades,

the use of lightweight multispectral cameras for sub-meter ocean color product retrieval

from drones only stretches back a few years. One of the the seminal assessments of a drone-

borne multispectral camera for simultaneously estimating multiple water quality parameters

occurred in 2015. In this study, Secchi disk depth, total phosphorus, and chlorophyll a

were all estimated in a bright reservoir in Kinmen, Taiwan. The researchers created an

environmental noise (e.g., surface reflected light) removal algorithm which they applied

during the regression training process to achieve the highest accuracy estimates. The fine-

scale fluctuation in the data were present in other data sets, which resulted in the creation of

spatial filtering algorithms to eliminate the sub-meter fluctuations in the the field estimated

SPM, chlorophyll, and turbidity [Totsuka et al., 2019]. In summary, the lightweight cameras

that can be flown on drones are able to estimate specific optical constituents in near ideal

conditions, despite the sub-meter environmental noise sources and low SNRs by leveraging

spatial filtering.

The drone ocean color remote sensing paradigm has advanced beyond retrieving esti-

mates of surface optical constituent concentrations from ocean color algorithms. The stan-

dard band ratio based ocean color algorithms were unable to achieve sufficient accuracy for

SPM estimation from low-altitude multispectral cameras, so instead artificial neural net-
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works (ANNs) were implemented to increase the SPM estimation accuracy for a specific

region [Guimarães et al., 2019]. In addition to being able to retrieve ocean color products

on the surface, spectral algorithms were also proven to retrieve SPM products at multiple

depths from drone-borne multispectral cameras [Larson et al., 2018]. Finally, lightweight

multispectral cameras were used to estimate both optically active and non-optical con-

stituents in the water column, such as nitrogen and phosphorus, at fine scales [Arango and

Nairn, 2019]. The range of ocean color remote sensing applications has moved beyond using

ocean color algorithms for estimation of optical constituents in surface waters.

A limited number of studies also used lightweight hyperspectral cameras to examine the

ocean’s color from low-altitude platforms. A snapshot hyperspectral imager was deployed

from tower platforms in multiple locations to study glint variations on fine spatial scales

[Gilerson et al., 2018; Carrizo et al., 2019]. This imager quantified the variations in the

reflection coefficient on sub-meter scales at a wide range of view angles and solar positions,

due to wind speed. The standard deviaition of the reflection coefficient is as high as 35%

for windspeeds under 5 𝑚 · 𝑠-1, and more than 100% at higher windspeeds and view angles

[Carrizo et al., 2019]. In addition to using hyperspectral cameras to study variations in

the ocean color signal, a pushbroom hyperspectral imaging spectrometer was also deployed

from a drone to map cyanobacteria within the Daechung reservoir in South Korea [Kwon

et al., 2020]. A spatial filtering method removed environmental noise fluctuations in the

20 cm resolution ocean color data. The hyperspectral camera system successfully mapped

depth integrated phycocyanin. Unfortunately, the same algorithm struggled to recover phy-

cocyanin at specific depths using the same band ratio. Overall, there are a limited number

of studies testing lightweight hyperspectral imaging spectrometers, as the imagers are only

now becoming widely available for ocean color remote sensing.

1.3.8 Identified Limitations in Fine-scale Optical Constituent Estimation

Factors that currently limit the use of lightweight spectral cameras on drones fall into two

main categories: practical limitations due to the platform, and optical limitations due to

changes in the environmental optics and sensor payload. The first platform limitation that

comes to mind for small drones is wind induced pitch and roll variations. These changes in

the pitch and roll can lead to measurement of the ocean color signal and incident irradiance

at fluctuating view angles [Shang et al., 2017], which require correction. Additionally, the
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images taken under pitch and roll effects require image processing based georectification

before they can be used to map the ocean color signal. However, unlike terrestrial scenes, the

dynamics of the ocean’s surface limit the accuracy of image processing based georectification

algorithms on images lacking land or static ground control points [Su, 2017; Guimarães et al.,

2019; Larson et al., 2018]. While the practical problems are important for all drone based

mapping, their impact can be reduced through advancing the platform; either increasing

the orientation measurement accuracy of the platform or increasing the platform stability.

The second category of limitations, optical limitations, is specific to sensing the ocean color

signal. A few region specific optical limitations include scattering by the seafloor [Zeng

et al., 2017], tree shadows reducing the incident irradiance [Guimarães et al., 2019], and

urban objects blocking the ocean color signal [Larson et al., 2018]. However, the impact of

these features is limited to small spatial regions of very nearshore applications. The more

influential optical limitations for ocean color sensing, which this dissertation investigates

further, include: sub-meter glint induced variations in the oceans color, the limited spectral

resolution of the available imagers, and the impact of electronic noise sources on the ocean

color products.

Surface reflected light (glint) is the major limiting environmental noise source in sub-

meter applications. In the initial assessments of multispectral cameras from drones, wind

driven capillary waves induced severe variations in the glint, which created fluctuations in the

ocean color products on sub-meter scales that did not exist within the surface waters [Zeng

et al., 2017; Su, 2017]. A few glint removal algorithms were created to correct for this fine-

scale glint issue in multispectral images collected from drones, but each relied upon spatial

filtering. One algorithm was based upon median filtering, innately trading spatial resolution

for ocean color product estimation accuracy [Totsuka et al., 2019]. Another algorithm, the

matching pixel by pixel algorithm, removed glint fluctuations during empirical algorithm

training by iterating through combinations of pixels in the training images to find the most

accurate regression [Su, 2017]. A previously proven spatially filtering algorithm, Savitzky-

Golay filtering, was also used to reduce the fluctuations induced by the surface reflected

light [Kwon et al., 2020]. Consequently, the traditional glint removal approaches typically

used for ocean color measurement must be assessed on sub-meter scales, to achieve higher

resolution estimates than the spatial filtering glint correction algorithms currently provide.

An additional limitation of the currently tested sensors is that complex ocean color
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product retrieval tasks require more spectral bands than are currently provided. In one

study, a multispectral camera deployed on a drone was unable to achieve the same accuracy

as a hyperspectral spectroradiometer for multi-depth SPM estimation [Larson et al., 2018].

While a hyperspectral camera was used for multi-depth estimation of a common pigment for

harmful algae, phycocyanin, the three band algorithm used on the hyperspectral data poorly

estimated the phycocyanin at multiple depths. Although lightweight hyperspectral cameras

could provide the additional spectral bands required to increase the accuracy of multidepth

estimation tasks, the finest spectral resolution of the commercially available lightweight hy-

perspectral cameras (2 nm) is not sufficient for all tasks. For example, the validation of

the satellite-borne ocean color imager (OCI), which is part of the Plankton, Aerosol, Cloud,

Ocean Ecosystem (PACE) mission, requires 1 nm spectral resolution ocean color measure-

ments [Zibordi et al., 2017]. Accordingly, the spectral resolution of the currently available

hyperspectral cameras must be increased through the use of custom cameras [Sigernes et al.,

2018] or novel data processing approaches (e.g., spectral super-resolution), before they can

be used for satellite vicarious calibration from ships.

A final limitation of drone-borne sensors is that the optoelectronics and photonics noise

sources will limit the radiometric accuracy of the hyperspectral imagers required to retrieve

more complex ocean color products. The currently available hyperspectral cameras have sig-

nificantly lower signal-to-noise ratios (SNR) and dynamic ranges than hyperspectral cameras

typically used in aircraft or satellite based ocean color remote sensing [O’Shea et al., 2020;

International Ocean-Colour Coordinating Group, 2012a]. The real-world SNR is even lower

than the theoretical value on hyperspectral cameras because they simultaneously image the

entire spectrum, so the lowest intensity spectra will have a lower SNR than the highest

intensity pixel [O’Shea et al., 2020; O’Shea and Laney, 2020]. The low SNR can signifi-

cantly alter the accuracy of the computed ocean color products, either through the ocean

color algorithms directly or through the environmental noise correction algorithms [Levin

et al., 2005; Levin and Levina, 2007; Moses et al., 2012a, 2015]. Therefore, the impact of

optoelectronic and photonic noise needs to be considered in the most sensitive ocean color

applications before using lightweight hyperspectral cameras to map optical constituents.
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1.4 Dissertation Overview

Each of the chapters within this dissertation focuses on the optical considerations necessary

to adapt a key step within the satellite ocean color remote sensing paradigm to accurately

measure hyperspectral data at sub-meter spatial scales from low altitude platforms over

water bodies. Specifically, each chapter focuses on one of the limitations in fine-scale optical

constituent estimation previously discussed in section 1.3.8. The chapters are laid out as

follows:

Chapter 2 Overview: Chapter 2 explores the limitations of three traditional glint

correction approaches for use on fine spatial scales through a field deployment. At centimeter

scales, capillary wave induced fluctuations in the ocean’s surface may invalidate assumptions

in the glint correction approaches, such as the polarization state at Brewster’s angle and

the value of the reflection coefficient. Of the three traditional algorithms tested during the

field deployment, the Lee et al. [Lee et al., 2010] glint correction approach most accurately

recovered centimeter scale optical constituent concentrations [O’Shea et al., 2020]. However,

the polarization based approach matched the chlorophyll estimation accuracy of the Lee et

al. correction, without the same technical requirements (e.g., additional spectral bands and

radiometer).

Chapter 2 Contributions: The optical considerations discussed in Chapter 2 enable

sensing despite fluctuations in the sky and solar glint due to fine-scale capillary waves (pre-

viously discussed in section 1.3.8). First, with the assessed viewing geometry and glint

correction approaches, researchers can now collect accurate sub-meter data even when cap-

illary waves are present (i.e., when there is wind) and the sun is near zenith. Second, the

sub-meter scale glint correction process no longer needs to sacrifice spatial resolution to cor-

rect for glint, thereby increasing the area that can be covered while maintaining the desired

spatial resolution.

Chapter 3 Overview: Chapter 3 demonstrates a simulation framework for assessing

the photonic and optoelectronic induced limitations on the ocean color products estimated

from lightweight imaging spectrometers in non-ideal sensing scenarios [O’Shea and Laney,

2020]. In the first application, the simulation framework provides quantitative accuracy

metrics to compare between specific camera systems for chlorophyll fluorescence line height

estimation in a simulated coastal region. In the second application, the framework identifies
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dynamic range limitations with currently available hyperspectral imagers for simultaneously

imaging biological productivity in Antarctic waters and sea ice. By identifying the dynamic

range limitation, an engineering solution to that problem was hypothesized without having

to deploy the system in that region.

Chapter 3 Contributions: To date, applications of fine-scale ocean color product

retrieval has largely focused on ideal sensing scenarios using multispectral cameras (section

1.3.7), where optoelectronic and photonic noise sources were minor issues compared to glint

correction. The simulation framework provides researchers with a quantitative means of

selecting cameras, developing algorithms, and engineering solutions for accurate ocean color

product retrieval in non-ideal scenarios, without the need for deployment in these regions.

Chapter 4 Overview: Chapter 4 develops a new machine learning based data pro-

cessing approach to overcome hardware induced limitations on the spectral resolution of

a grating-based imaging spectrometer. The spectral super-resolution approach uses the

sub-pixel spectral shift in spatially oversampled images taken by a commercially available

imaging spectrometer as the non-redundant information required to increase the spectral

resolution beyond the pixel-limited value. We demonstrate that by leveraging the spectral

shift, an imaging spectrometer can estimate frequencies beyond the Nyquist for data with

similar statistics as the training dataset, despite environmental and optoelectronic noise

sources characteristic of ocean color remote sensing. For testing datasets with substantially

different statistics from the training set, such as laboratory generated ocean color datasets,

frequencies up to and slightly past the Nyquist are better represented, at the cost of addi-

tional high frequency noise which reduces the overall accuracy of the prediction.

Chapter 4 Contributions: In the satellite ocean color remote sensing paradigm, over-

sampled homogeneous ocean color regions would have been binned to increase the signal-

to-noise ratio, but this chapter introduces an alternative approach to instead improve the

spectral resolution by leveraging the spatial homogeneity. The spectral super-resolution tech-

nique weakly generalized to ocean color datasets, but further increasing the generalizability

of the technique by training on higher spectral resolution ocean color datasets could provide

the spectral resolution required for the vicarious calibration of next generation ocean color

satellites [Zibordi et al., 2017]. Outside of the ocean optics domain, this technique could

relax the spectral resolution requirement for many industrial and agricultural applications

that spatially over-sample the target, such as conveyor belt based identification of materials.
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Chapter 5 Overview: Chapter 5 first summarizes the individual contributions of

each chapter to advancing the sub-meter ocean color remote sensing paradigm and then

demonstrates how each step in the paradigm benefits successive steps through an example

sub-meter ocean color application. Additionally, Chapter 5 covers non-standard ocean color

applications that benefit from this research, including applications that leverage aerostats

and towers as platforms. Finally, this chapter discusses the future research required to

advance the presented sub-meter ocean color remote sensing paradigm to fully leverage

imaging spectrometers to map optical constituents from low altitude platforms in optically

complex regions.
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Chapter 2

Evaluation of glint correction approaches for

fine-scale ocean color measurements by lightweight

hyperspectral imaging spectrometers

This chapter was published in the Optical Society of America’s Journal of Applied Optics

[O’Shea et al., 2020] and a reformatted version is reproduced here.

Abstract

Low-power, lightweight, off-the-shelf imaging spectrometers, deployed on above-water fixed
platforms or on low-altitude aerial drones, have significant potential for enabling fine-scale
assessment of radiometrically-derived water quality properties (WQPs) in oceans, lakes,
and reservoirs. In such applications it is essential that the measured water-leaving spectral
radiances be corrected for surface-reflected light, i.e. glint. However, noise and spectral
characteristics of these imagers, and environmental sources of fine-scale radiometric vari-
ability such as capillary waves, complicate the glint correction problem. Despite having
a low signal-to-noise ratio, a representative lightweight imaging spectrometer provided ac-
curate radiometric estimates of chlorophyll concentration - an informative WQP - from
glint-corrected hyperspectral radiances in a fixed-platform application in a coastal ocean
region. Optimal glint correction was provided by a spectral optimization algorithm, which
outperformed both a hardware solution utilizing a polarizer and a subtractive algorithm
incorporating the reflectance measured in the near-infrared. In the same coastal region
this spectral optimization approach also provided the best glint correction for radiometric
estimates of backscatter at 650 nm, a WQP indicative of suspended particle load.
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2.1 Introduction

2.1.1 Motivation

Commercially available imaging spectrometers are now low-power, lightweight, and inexpen-

sive enough to find wider application in environmental monitoring. Such imagers have been

used in terrestrial applications on small aerial drones to provide spectral reflectance imagery

that remote sensing algorithms can in turn utilize to map plant biomass [Honkavaara et al.,

2013; Aasen et al., 2015; Zhu et al., 2018; Sankey et al., 2017] and distributions of terrestrial

plant phenotypes [Behmann et al., 2018] or tree species [Dalponte et al., 2012], all on fine

spatial scales. Analogous environmental radiometry of aquatic systems (i.e., oceans, rivers,

and reservoirs) using fixed-platform or low-altitude drones has to date instead relied primar-

ily on multispectral cameras, not hyperspectral ones, to provide fine-scale spatial insight into

distributions of water quality properties (WQPs) that can be derived radiometrically [Choo

et al., 2018; Su, 2017]. The multispectral approaches currently used in aquatic systems are

roughly comparable to the state-of-the-art seen in satellite-based ocean color remote sens-

ing of roughly a decade ago. In principle, newer imaging spectrometers can be used with

recently developed hyperspectral algorithms to estimate a much broader range of WQPs

from measured hyperspectral water-leaving radiance spectra [e.g., Defoin-Platel and Chami,

2007; Lubac et al., 2008; Aiken et al., 2014]. These hyperspectral algorithms rely on accurate

estimation of the water-leaving radiance and so require correction for surface-reflected light

(i.e., glint) [Mobley, 1999; Lee et al., 2010]: a largely unavoidable component of upwelling

radiance spectra whose effect must be minimized in order to maximize accuracy of WQPs

estimated radiometrically from natural water bodies.

Aquatic applications of such lightweight, low-power imaging spectrometers are not di-

rectly analogous to terrestrial applications in several respects. First, aquatic water-leaving

radiance reflectances are typically much lower than those of comparable terrestrial scenes

and so the signal-to-noise (SNR) characteristics of the imager are of primary importance.

Second, glint correction is a particular aquatic challenge which requires simultaneous mea-

surement of additional radiances in the NIR, beyond those needed to compute a particular

WQP of interest (Fig. 2-1). These measured NIR radiances may exhibit a lower SNR than

the visible radiances, due to a combination of the spectral efficiency of the imager (i.e., the

spectral efficiency of the optics and the quantum efficiency of the detector) and a lower ra-
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Figure 2-1: Center wavelengths used in common algorithms for various WQPs [Lee et al.,
2010; Mobley, 1999; Mueller and Austin, 1995; Shahraiyni et al., 2007; Keith et al., 2014;
Ekercin, 2007; Woźniak et al., 2018; Gurlin et al., 2011; O’Reilly et al., 1998; Gholizadeh
et al., 2016]. Highest accuracy algorithms often utilize a larger number of wavelengths.
The gap in the waveband set for Lee10 (a glint correction algorithm) indicates wavelengths
omitted surrounding the chlorophyll fluorescence emission. Abbreviations: CDOM - colored
dissolved organic matter; bb620 - optical backscatter at 620 nm; SPM - suspended particulate
material; [chl] - chlorophyll concentration.

diance in the NIR relative to the visible emanating from aquatic bodies [Moses et al., 2012a;

Su, 2017]. Since the shot-noise limited SNR is inversely proportional to the measured signal,

only the radiance with the highest intensity measured signal (green) can reach the maximum

possible SNR. Although in fine-scale terrestrial applications imagers with different exposures

could simultaneously collect high SNR visible and NIR radiances, at sub-meter spatial scales

natural water bodies can exhibit strong spatial and temporal variability due to glint, which

necessitates the simultaneous collection of radiances at all pertinent wavelengths. Addition-

ally, the fine-scale fluctuations in the reflectance may limit the effectiveness of software glint

correction algorithms that assume a specific, fixed reflectance character. Lastly, although

glint is strongly polarized at particular observation angles, simply affixing a polarizer to the

imaging spectrometer will not be sufficient without understanding how any particular WQP

estimate is jointly affected by the change in the spectral efficiency (and therefore spectral

SNR) due to the polarizer and the capillary wave-induced fluctuations in the polarization

of the surface reflected light. It is reasonable to expect that the combined effect of these

various factors may lead to certain correction approaches outperforming others, which is

an important factor to examine before applying terrestrial-oriented imaging approaches to
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Figure 2-2: Suspended particulate matter (SPM), colored dissolved organic matter (CDOM),
and phytoplankton are optically active WQPs that shape the water-leaving radiance (LW)
in optically deep water bodies. Accurately estimating their concentrations from a ratio of
the total at-sensor spectral radiance [LT(h)] and the downwelling solar spectral irradiance
[Ed(h)] is complicated by environmental noise sources including the path radiance (Lpath),
reflected solar glint (LS), and reflected sky radiance (Lsky). On fine spatial scales, glint is
strongly affected by sea state and wave characteristics.

aquatic applications on above-water fixed platforms and low-altitude aerial drones.

2.1.2 Radiometrically estimating WQPs from low altitude

Specific optically-active WQPs of natural aquatic bodies affect the shape and magnitude of

the water-leaving radiance spectrum (Lw(𝜆), Fig. 2-2) in characteristic ways. Chlorophyll is

the primary pigment of suspended plant matter (i.e., phytoplankton), and its concentration

in aquatic systems is used as a WQP indicating the suspended algal biomass. This pigment

absorbs strongly in the blue wavelengths and thus shifts the peak of the water-leaving ra-

diance reflectance spectrum toward the green [Clarke et al., 1970; Morel and Prieur, 1977].

Colored dissolved organic matter (CDOM) in natural aquatic systems absorbs primarily in

the ultraviolet, blue, and green wavelengths and thus shifts the reflectance peak toward

the yellow [Morel and Prieur, 1977; Gholizadeh et al., 2016]. Suspended particulate matter

(SPM), often inorganic in composition (e.g. silt and sediment) typically has a broad scat-
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tering spectrum which increases the overall magnitude of water-leaving radiances in aquatic

systems [Kirk, 1994]. Algorithms developed to estimate these and other WQPs typically

rely on simple band-ratios of different wavelengths with spectral widths of tens of nm (Fig.

2-1) [Hoge et al., 1987]. Such simple band-ratios are often adequate for many environmental

applications, but reflectance measurements with higher spectral resolution can in principle

increase the number of WQPs that can be simultaneously recovered. Operationally, such

a hyperspectral approach to estimating multiple WQPs simultaneously has significant ad-

vantages in environmental monitoring applications, especially those employing aerial drones

with limited flight capabilities. Similarly, hyperspectral data can also simultaneously pro-

vide additional wavelengths for applying glint-correction algorithms (Fig. 2-1), which can

increase the accuracy of estimated WQPs by minimizing the effect of this particular source

of noise.
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An important caveat is that higher spectral resolution in a radiometric measurement

does not necessarily improve the accuracy of the recovered water-leaving radiance signal.

For natural aquatic systems roughly 15 spectral bands are considered sufficient to represent

the entire hyperspectral range at 5 nm resolution, due to the spectral interdependence of the

water-leaving radiance signal [Lee et al., 2014]. From a representative sample of lightweight

off-the-shelf multispectral and hyperspectral imagers currently available in North America

(Table 2.1), the multispectral ones do not provide enough discrete wavelengths to approxi-

mate hyperspectral data for WQP applications. It is technically feasible to employ multiple

individual multispectral imagers in an array in order to achieve this 15-band recommenda-

tion, but for drone-based applications such an approach would increase weight and power

requirements, which could be prohibitive for use on the ‘lightweight’ drones as defined by the

US Federal Aviation Administration (i.e., < 25 kgs [Federal Aviation Administration (FAA),

2016b]). For practical purposes, hyperspectral imaging is likely optimal for collecting the

water-leaving radiance wavelengths needed for applying modern WQP algorithms on fine

spatial scales.

2.1.3 Spectral signal-to-noise ratio considerations

The theoretical SNR is an estimate of the impact of the inherent noise sources in the imager

electronics and light on the measured signal at any pixel. It is defined as the intensity of a

radiometric measurement divided by a measure of its noise [Eq. 2.1].

𝑆𝑁𝑅(𝜆) = 𝑆(𝜆)/𝑁(𝜆) (2.1)

Here, 𝜆 is the wavelength, 𝑆 is the signal, and 𝑁 is the noise. For this theoretical per-pixel

SNR the signal is taken as the number of electrons on the pixel. By applying a camera-

specific conversion factor, the digital number recorded at any pixel can be converted into

this number of electrons. The noise at any pixel (𝑁pixel) is a combination of photon shot

noise (𝑁photon), detector dark noise (𝑁dark), readout noise (𝑁 readout), and digitization noise

(𝑁digitization) [Eq. 2.2] [Hu et al., 2012; Moses et al., 2012a].

𝑁pixel = (𝑁2
photon + 𝑁2

dark + 𝑁2
readout + 𝑁2

digitization)1/2 (2.2)
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Photon shot noise (𝑁photon) is Poisson distributed, and by assuming high photon levels

𝑁photon can be approximated as the square root of the mean value of electrons recorded

at that pixel, after correcting for the detector and readout noise offsets and assuming that

the digitization noise is negligible. The dark noise offset can be corrected by subtracting

images taken of a dark target at an exposure time that matches the original images exposure

time. The read noise offset can be corrected for by taking images of the readout noise at the

imager’s minimum exposure time of 20 𝜇s. The digitization noise arises from round-off error

when converting from electrons to integer digital numbers and can be assumed negligible due

to its theoretically low impact at the typical 12 bit resolution of modern camera systems

(Table 2.1). Typically, with high numbers of electrons on a given pixel the SNR can be

estimated from the intensity at that pixel by assuming that shot noise dominates.

Several lightweight, low-power, multi- and hyperspectral imagers currently available com-

mercially (Table 2.1) have been used in agricultural applications where small pixel footprint

(pitch) is a critical selection requirement, as it provides the highest spatial resolution im-

ages. High spatial resolution is especially important in terrestrial applications to eliminate

spectral mixing between plant leaves and nearby background terrestrial material (e.g. soil)

[Zhou et al., 2018]. The highest possible shot-noise limited SNR (calculated as the square

root of the full well capacity) of the tabulated imagers is 180 (Table 2.1). Although nomi-

nally low, this SNR is not limiting for most terrestrial applications, but it may be limiting

for ocean color applications which typically require higher sensitivity [Moses et al., 2012a;

Hu et al., 2012]. For satellite ocean color applications the minimum recommended SNR

is between 600 and 1400 [International Ocean-Colour Coordinating Group, 2012a]. How-

ever, the same level of sensitivity is likely unnecessary for lower altitude applications (~100

meters) or above-water platforms because atmospheric path radiance is considerably less

important at such low altitudes compared to its integrated effect in top-of-the-atmosphere

measurements [Kim et al., 2013; Moses et al., 2012a].

In addition to an imager’s maximum theoretical SNR, the typical spectral shape of a

water-leaving radiance spectrum is also an important consideration in aquatic environmen-

tal hyperspectral radiometry. For any given image, only the wavelength with the highest

intensity signal on the imager’s sensor can reach the maximum possible SNR (limited by the

full well capacity). Within the same image, lower intensity wavelengths will not reach the

full well capacity and therefore will exhibit a lower SNR. When imaging aquatic scenes, the
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spectral intensity and therefore spectral SNR is determined by the combined spectral shape

of the water-leaving radiance signal multiplied by the imager’s spectral efficiency (the total

spectral efficiency of the system, including the spectral effects of the optics and the quantum

efficiency of the detector). The water-leaving radiance spectrum generally exhibits a lower

radiance in the NIR relative to visible wavelengths due to the high NIR absorption of water

[Pegau et al., 1997]. Depending on the imager optics and electronics, an imager’s spectral

efficiency can also have a higher efficiency in the visible compared to the NIR and so it can

be expected that the NIR will have a lower SNR relative to the visible wavelengths.

One final important consideration when examining imager SNR in such applications is

the approach used to correct for glint (Fig. 2-2). Software algorithms have been developed

that correct for glint in the visible wavelengths of interest, by using spectral information

measured in the NIR [Mueller and Austin, 1995; Mobley, 1999; Lee et al., 2010; Lucke et al.,

2011]. For algorithms presented by Mueller and Austin [Mueller and Austin, 1995] and by

Lee et al. [Lee et al., 2010], NIR radiances are used to scale the downwelling sky remote

sensing reflectance (the radiance divided by the irradiance) spectrum before subtracting it

from the total water-leaving remote sensing reflectance spectrum. Due to this scaling, a low

signal and by extension low SNR in the NIR may lead to poor glint correction of the visible

light. Any errors in correcting measurements in the visible will in turn affect estimates of

WQP concentrations, which now depend on both the NIR and band ratios in the visible

(Fig. 2-1). Hardware strategies to correct for glint, such as adding a polarizer to the optical

train, may also change the spectral SNR and thus affect the accuracy of the WQP estimates.

2.1.4 Correcting for sun and sky glint within a single image

Beyond these basic SNR considerations, imaging applications on natural water bodies must

also consider within-image variability due to glint and its contribution of variations in re-

flectance on fine spatial scales. Such effects have been examined by Zeng et al. [Zeng et al.,

2017] by comparing above-water imagery of an RGB camera to spot measurements made

by a nonimaging hyperspectral spectrometer. Glint introduced severe contamination in the

spectra of both the RGB camera and hyperspectral spot sensor, with further fine spatial

scale glint variations arising from partial cloud cover and surface capillary waves. These

fine-scale spatial variations in the reflectance spectra moreover affected the visible and near-

infrared sections of the spectrum, which Zeng et al. [Zeng et al., 2017] noted may lead to

77



inaccuracy in chlorophyll concentration estimates once WQP algorithms were applied. A

similar study with a drone-based multispectral camera also examined this effect in glint-

induced spatial variations [Su, 2017], where areas of a reservoir experiencing wind-driven

capillary waves introduced spatial variability in sun and sky reflectances that significantly

contaminated estimates of chlorophyll concentration on those fine spatial scales. To take

full advantage of the spatiotemporal resolution that low-altitude imaging offers for mapping

WQPs in aquatic systems, removal of the glint effects is essential.

Novel image-processing approaches have been explored to reduce the glint induced spa-

tial variation in WQP estimates made from low-altitude drone imagery [Totsuka et al., 2019;

Su, 2017], but they each exhibit some limitations. The non-local mean filter used by Totsuka

et al. [Totsuka et al., 2019] reduces the maximum achievable spatial resolution. Su’s [Su,

2017] matching pixel by pixel algorithm is only able to remove variations during training of

the WQP estimation algorithms by leveraging the in-situ data, so it does not work while es-

timating WQPs in the field. Two standard algorithm-based glint correction approaches that

would preserve pixel-level spatial resolution while potentially improving the WQP estima-

tion accuracy have yet to be assessed quantitatively on fine spatial scales: one proposed by

Mueller and Austin [Mueller and Austin, 1995; Mobley, 1999] and another proposed by Lee

et al. [Lee et al., 2010] (hereafter referred to as MASC (Muller Austin software correction)

and SOSC (spectral optimization software correction) respectively).

The MASC approach utilizes NIR subtraction: first subtracting the downwelling sky

radiance, scaled by the reflection coefficient calculated for a planar surface at the instruments

particular view angle, from the water-leaving radiance signal and then subtracting the value

at 750 nm from the entire spectra [Eq. 2.3, adapted from Mueller and Austin [Mueller and

Austin, 1995]].

𝑅rs(𝜆) = {[𝐿t(𝜆) − 𝜌 * 𝐿s(𝜆)] − [(𝐿t(750 𝑛𝑚) − 𝜌 * 𝐿s(750 𝑛𝑚)]}/𝐸d(𝜆) (2.3)

Here 𝜆 is the wavelength, Lt is the total water leaving radiance, Ls is the downwelling sky

radiance, 𝜌 is the reflection coefficient, and Ed is the downwelling irradiance. The inherent

assumptions in this algorithm are that the contributions at 750 nm are solely from surface

reflected light and that the reflection coefficient can be well estimated by a planar surface

(though the spectrally flat subtraction at 750 nm attempts to correct the inaccurate reflection
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coefficient) [Mueller and Austin, 1995; Mobley, 1999]. The first assumption is typically true

in case I waters, where chlorophyll dominates, but can be false in high sediment load waters,

because the sediment exhibits a high reflectance in the NIR. The second assumption, that

the reflection coefficient can be well estimated by a planar surface, typically holds at course

spatial resolutions where variations due to capillary waves and surface waves are averaged

out. However, when imaging on fine scales on the order of centimeters this assumption does

not hold [Carrizo et al., 2019], gusts of wind and surface waves can change the angle of the

wave facets relative to the imager, and decrease the accuracy of the reflection coefficient

estimate.

The Lee et al. [Lee et al., 2010] spectral optimization correction (SOSC) algorithm

starts by estimating the initial water-leaving radiance signal by first subtracting the reflec-

tion coefficient scaled signal in the NIR. This initial estimate is then compared to a modeled

water-leaving radiance signal, while an offset value (constant across all wavelengths) is iter-

atively changed to more accurately match the measured and modeled signals. The modeled

water leaving remote sensing reflectance is derived from constant wavelength dependent

absorption and backscattering coefficients representing algae, seawater, colored dissolved or-

ganic matter, and particles, with associated magnitudes that are also allowed to vary during

iteration (except for seawater). The SOSC also assumes that the reflection coefficient is for

a planar surface on the initial guess, but the optimization of the offset value to fit the mod-

eled spectra allows for some correction of the absolute offset. Although the SOSC algorithm

is able to adapt using the offset value, it still may not perfectly capture the water-leaving

radiance signal in all ocean color scenarios, as the correction technique is assuming that the

offset value is spectrally flat, where the actual offset (glint) may have a different spectral

shape. Additionally, the constant absorption and scattering coefficients used may actually

vary by region. Overall, the optimization framework allows for more accurate estimation

of the reflected skylight than the MASC algorithm, particularly when sensing in aquatic

regions with non-zero NIR water leaving radiances.

Both of these algorithm-based glint correction approaches have been evaluated in field

studies, such as Shang et al. [Shang et al., 2017] who employed the SOSC approach with

a nonimaging ocean color radiometer deployed on a drone platform. However, these ap-

proaches have not yet been applied to fine-scale imaging spectrometer data, where certain

prior assumptions must be reconsidered. For example, assuming an average reflection co-
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efficient such as one found in both SOSC and MASC will often not match the estimated

value based on the view angle [Carrizo et al., 2019], which in principle will decrease the

effectiveness of these approaches.

An alternate approach to correct for glint effects in ocean color radiometry involves using

a vertical polarizer viewing close to Brewster’s angle (˜53∘), to block the horizontally polar-

ized reflected skylight. Fougnie et al. [Fougnie et al., 1999] demonstrated that polarization

can be a viable correction technique for glint but Gilerson et al. [Gilerson et al., 2018] noted

the need for further assessment of this hardware-based approach. Such further assessment

is especially appropriate with our intended area of spatial studies of aquatic systems using

imaging spectrometers, given that the polarization of glint may vary significantly within the

spatial scales of interest due to capillary waves changing the angle at which sun or skylight

is reflected off the water’s surface.

For the comparison of glint correction approaches presented in this study it was neces-

sary to modify a computational aspect of the SOSC. Specifically, we implemented additional

bounds on the optimization approach, in order to minimize the instances where the opti-

mization failed to converge (Appendix C). This change allowed us to obtain a much higher

number of realistic fits of model parameters and thus have more data with which to assess

the efficacy of the SOSC approach in real-world applications.

2.2 Materials and Methods

In this study, the benefits and limitations of using the traditional glint correction approaches

(SOSC, MASC, and polarizer) for estimating fine-scale WQPs from imaging spectrometer

data are explored in a realistic ocean color setting, from a fixed-platform. The view angle

dependence of each glint correction approach is also determined. To implement this study,

a radiometrically calibrated representative imaging spectrometer was required.

2.2.1 A representative lightweight imaging spectrometer

The Resonon Pika L was chosen as a representative hyperspectral imaging spectrometer

whose weight, power, and cost are suitable for fine-scale mapping of aquatic WQPs from

either fixed platforms or aerial drones. This system is a line scan imager, obtaining hy-

perspectral data over a broad spectral range of the visible and near-infrared (400-1000 nm)
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wavelengths, in a single spatial dimension. It is optically fast with an f-number of 2.4.

Its shot noise limited SNR (180) is the highest among those we surveyed (Table 2.1). It

has 12-bit radiometric resolution, and its software development environment allows for the

implementation of auto-exposure algorithms in order to utilize its full dynamic range for

each image (though we auto-expose to only ~30% of the full-well capacity, to allow for

capturing data with significant variations due to glint). The ability to auto-expose is an

advantage in aquatic remote sensing applications given the large fluctuations that can be

expected in incident irradiance, due to varying cloud cover for example. These hardware and

software characteristics make this imager a representative example of the current commer-

cially available, lightweight, low-power imaging spectrometers suitable for fine-scale aquatic

radiometry.

2.2.2 Laboratory calibration of imaging spectrometer

This representative imaging spectrometer was radiometrically calibrated, both with and

without a polarizer in the optical train, in the laboratory by using an integrating sphere and

a spectroradiometer. The imager captured single images of the interior of the integrating

sphere at 20 ms and 40 ms, while the radiometer measured the radiance internal to the

integrating sphere. When applying these calibrations to data later taken in the field, we

applied the imaging spectrometer’s calibration image (i.e., from the integrating sphere)

having the exposure time closest to that used for any given field image (4-87 ms). When

the integration times of a field image did not match the intervals used in the laboratory

calibration, a linear interpolation was applied, from the nearest calibration image. We

also assessed the linearity of the imaging spectrometer using the integrating sphere, and

found that it was linear only until the full-well was ~96% full (𝑟=0.9999), so we do not use

near-saturated calibration images. Since only a single radiometric correction image is used

for correction, the SNR then becomes limited by the shot noise present in the correction

image (as shown in Appendix B). We expect the reduction in SNR due to this single-image

calibration approach to be significantly less than the inaccuracies induced by the surface

reflected light in the field images. During the assessment of this imager it was also necessary

to determine its digital number to electron conversion factor 𝑔, which was ~7.9 (Appendix

A).
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Figure 2-3: The imaging spectrometer and ancillary instruments (right) as deployed at the
MVCO ASIT (left). Numbers marking the various components are referenced in Table 2.2

2.3 Field assessment: fixed-platform study

We examined the performance of this candidate hyperspectral imager in a 2.5 month field

study conducted at the Martha’s Vineyard Coastal Observatory Air-Sea Interaction Tower

(MVCO ASIT). The MVCO ASIT is located in the coastal Atlantic Ocean, 2 km south

of Martha’s Vineyard (Massachusetts, USA) at 41∘ 19.50’ N, 70∘ 34.0’ W. This location is

strongly tidal with a water depth of 12 m. The height of the platform where the imager and

ancillary above-water radiometers were placed (Fig. 2-3 and Table 2.2) is 12 m above the

ocean’s surface.
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2.3.1 Imaging spectrometer: observational geometry

The observational geometry of the imaging spectrometer on the ASIT (Fig. 2-3) was chosen

to accommodate basic requirements for the glint correction approaches that are the basis

of this study. The spatial axis of the imager was oriented perpendicular to the water sur-

face, viewing from 40∘ from nadir (recommended by Mobley [Mobley, 1999] for shipboard

measurements) to 53∘ (Brewster’s angle), where glint from a planar surface would be hori-

zontally polarized [Fougnie et al., 1999]. Further, radiometric data were sampled only when

the azimuth angle between the sun and imager was between 115∘ and 155∘ (encompassing

the recommended 135∘ [Mobley, 1999]), where glint correction approaches are expected to

be tractable.

The observational geometry results in the imager achieving quite fine spatial resolution.

The spatial resolution is roughly 3.0 cm x 0.1 cm over the view angle range, as set by the

instantaneous field of view and the spatial geometry. In comparable field applications where

such fine spatial resolution is achieved, observations will be more susceptible to changes in

the reflection coefficient and polarization state due to capillary waves.

2.3.2 Ancillary above-water instruments and measurements

A suite of ancillary instruments were deployed along with the imaging spectrometer to

provide observations necessary to evaluate the software sky glint correction approaches, the

conversion of radiance to remote sensing reflectance, and estimation of WQPs (Fig. 2-3

and Table 2.2). Downwelling irradiance was measured by an upward-looking irradiometer

(1), and sky radiance was measured by an upward-looking radiometer (2) as needed for the

SOSC and MASC algorithms. Two RGB cameras (3) imaged the sea state as well as the

sky state which provided information on cloud cover. A second spectroradiometer (4) with

view angle aligned to the imaging spectrometer (5) provided coincident data for evaluating

the radiometric accuracy of the imager (5). The remote sensing reflectance (Rrs, with units

of sr-1) is then determined as the water leaving radiance at each wavelength as measured

by the imaging spectrometer or nonimaging spectroradiometer, divided by the downwelling

irradiance at that same wavelength as measured by the upward-looking irradiometer on the

ASIT. A servo was used to place a vertical polarizer in front of the imaging spectrometer,

under computer control, to obtain both polarized and unpolarized images.
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Environmental conditions including wind speed and incident downwelling solar irradiance

were also measured throughout the 2.5 month study. Wind speed was measured by a 3D-

Sonic Anemometer located ~3 miles from the ASIT, and ranged from 0.8 to 14 m/s during

the study (Fig. 2-4, top panel). This large range of wind speeds can be expected to create

a variety of surface conditions for testing the glint correction approaches. Data from the

above-water downwelling irradiance sensor was used to calculate the incident downwelling

solar irradiance, which serves as an indicator of sky conditions (Fig. 2-4, second panel).

The incident downwelling solar irradiance varied substantially from day to day in this study,

indicating a wide range of sky conditions from overcast to clear skies. Overall these wind

speed and sky conditions encompass an environmentally realistic range of non-ideal ocean

conditions over which radiometric glint correction approaches must be examined.

2.3.3 In situ time series of [chl] and bbp650

Several In situ instruments (Fig. 2-3, ’6’) were deployed on the ASIT on two subsurface

mounts, at ~1 m and ~5 m, to provide in situ ‘truth’ observations of chlorophyll concentra-

tion ([chl]) and particulate backscattering at 650 nm (bbp650). These time series were used to

train and validate our above-water, radiometric WQP estimation algorithms. A WETLabs

ECO Triplet-w at 1 m depth measured the particulate backscattering at 650 nm and also

chlorophyll concentration via a fluorescence approach, exciting at 470 nm and observing at

695 nm. At 5 m depth a WETLabs ECO FLBB-SB measured chlorophyll again using the

470/695 excitation/emission pair. The bbp650 time series from the 1 m sensor was sufficient

to serve as our in situ truth for its radiometrically estimated analog (Fig. 2-4, third panel),

but neither chlorophyll sensor provided data for the entire duration of the time series due

to biofouling. To create an in situ truth time series for [chl] we merged the two time series

and corrected for daytime fluorescence quenching (Fig. 2-4, bottom panel).

2.3.4 Algorithms used for WQP estimation: [chl] and bbp650

The purpose of this study was to examine glint correction approaches suitable for lightweight

hyperspectral imagers and not to assess the accuracy of ocean color algorithms that may

be applied to these imager data in this specific location. Nonetheless, such an examina-

tion still requires use of some basic remote sensing algorithms for chlorophyll concentration

and particulate backscatter in order to quantify any improvements that glint correction
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Figure 2-4: Environmental conditions over the 2.5 month field assessment study. Top panel:
wind speed. Second panel: incident solar irradiance at the ASIT. Third panel: daily in situ
[chl]. Bottom panel: bbp650.

approaches may have. For this study we modified standard ocean color algorithms to deter-

mine chlorophyll concentration and bbp650 from radiance spectra measured on the imaging

spectrometer and the companion nonimaging spectroradiometer. Chlorophyll concentration

([chl]) was estimated using a modification of the Ocean Color 4 (OC4) algorithm [Eq. 2.4],

log 10([𝑐ℎ𝑙]) = 𝐶1 log 10

(︂
𝑚𝑎𝑥(𝑅rs(443), 𝑅rs(490), 𝑅rs(510))

𝑅rs(555)

)︂
+ 𝐶0 (2.4)

where the input Rrs’s are centered at 443 nm, 490 nm, 510 nm, and 555 nm and each have

20 nm bandwidths [O’Reilly et al., 1998]. For our analyses we used a 1st order polynomial
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instead of the typical 4th order polynomial to avoid overfitting with our narrow data range.

Our remote-estimation algorithm for the particulate backscatter coefficient at 650 nm is

adapted from one originally developed for backscatter at 620 nm [Eq. 2.5] [Woźniak et al.,

2018].

log 10(𝑏bp650) = 𝐶2 log 10 (𝑅rs(650)) 2 + 𝐶1 log 10 (𝑅rs(650)) + 𝐶0 (2.5)

This modification allowed us to utilize the bbp650 time series that we measure in situ. This

algorithm uses a single spectral band centered at 650 nm with a bandwidth of 20 nm. Using

this 1st order polynomial modification of the standard OC4 algorithm, and adjusting the

center wavelength of the backscatter algorithm, allowed us to more robustly employ Eqs.

(2.4) and (2.5) with our observational data.

To determine the coefficients (Cn) of Eqs. (2.4) and (2.5) we split the entire radiometric

and in situ data set into individual days and then randomly assigned ~50% and ~40% of

these days to serve as the training set for coefficient estimation for these two equations. The

remaining days were reserved for the validation data set. We then calculated the coefficients

for Eqs. (2.4) and (2.5) at each spatial pixel of the imaging spectrometer (i.e., at every

view angle) by fitting a polynomial curve to the band ratio and in situ measurements from

the assigned training days. Coefficients were calculated at each pixel (view angle) in order

to determine the optimal coefficients for each view angle, to examine expected differences

in that respect. With these optimizations, any remote sensing reflectances used in the

WQP estimation algorithms that exceeded 0.2 sr-1 or were below 0 sr-1 indicate physically

unrealistic data and were therefore omitted from coefficient training and WQP accuracy

validation. Finally, we calculated these two WQPs from the validation days using the

coefficients. Any predicted values an order of magnitude higher or lower than the maximum

or minimum seen in the training set were also excluded.

Because our field study only spanned ~2.5 months, the specific days selected to train

the coefficients (Cn) of Eqs. (2.4) and (2.5) could introduce artifacts into the accuracy of

these two WQPs and their apparent dependence on view angle. To minimize this potential

artifact we performed the coefficient training and subsequent WQP estimation process for

30 separate randomized realizations, and then calculated the mean absolute percent error

(MAPE) from these validation sets at each view angle. We then smoothed the results

using a median filter over the 30 realizations to better observe underlying trends in the
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relationship between MAPE and view angle. This relationship was largely insensitive to

the coefficients derived from any individual training set. This strategy increased confidence

in any subsequent analyses despite having only a relatively short data set. One further

smoothing step was used to median-filter these MAPE values in an angular sense, using a

window of 1.5∘ width over the range of view angles observed by the imaging spectrometer

(39.75-53.25∘). This decreased a large apparent pixel-to-pixel variation in the median MAPE

in estimates of bbp650 that were obtained from the algorithm-corrected observations.

2.3.5 Rrs Quality Assurance

An alternative metric for comparing the glint corrected Rrs’s measured in the field study,

which does not depend upon the WQPs and does not require in situ radiometric measure-

ments, is the quality assurance (QA) as defined by Wei et al. [Wei et al., 2016]. The QA for

an individual spectrum is a measure of how well the Rrs matches with previously observed

ocean color spectra. The QA is typically calculated from 9 wavelengths spanning 412 nm to

680 nm. First the Rrs is assigned to an ocean color group, next the Rrs of each wavelength is

checked against bounds set from prior information. If the Rrs is within the bounds for that

wavelength it receives a 1, if it is outside the bound it receives a 0. The results are summed

and normalized to 1, with 0 denoting a low QA and 1 denoting a high QA.

2.4 Results

2.4.1 Glint correction approaches and radiometric precision

The 2.5 month field study provided environmentally representative radiometric data for ex-

amining the performance of this representative imaging spectrometer over varied insolation

conditions, wind speeds, and magnitudes of each WQP. We computed the SNR using se-

lected images from this observational data set (Introduction section 2.1.3 and Appendix B).

Images used for this purpose were chosen specifically to span bright and dark insolation

conditions as well as high and low concentrations of chlorophyll. The water-leaving radi-

ance and the SNR are highest in the blue-green wavelengths and lowest in the short-blue,

red, and NIR wavelengths (Fig. 2-5). The SNR exhibits a shape similar to the radiance

because the number of electrons captured in a given exposure time is proportional to the

radiance. However, spectral SNR is not perfectly proportional to the radiance across these
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Figure 2-5: Top panel: Water-leaving radiances during high [chl] conditions were maximum
at ~550 nm in this field study whereas maxima were ~490 nm during low [chl] conditions.
Conditions of high downwelling irradiance (i.e., bright sunlight) corresponded with greater
upwelling radiances. The shape of the SNR is comparable to its associated radiance, with
higher SNRs lining up with higher relative intensities.

wavelengths because of the camera’s spectral efficiency and the single image radiometric

correction approach we employed (explained in Materials and Methods section 2.2.2 and

Appendix B). Since each image was auto-exposed to capture a specific amount of electrons

in the blue-green section of the spectrum, the maximum SNR values for each image are

independent of large downwelling irradiance fluctuations: the same number of electrons are

captured in the blue-green section of the spectrum under bright and dark illumination. The

median SNR over the entire time series shows the same characteristic SNR shape, with high-

est values in the green and lower values in the red and NIR for both the uncorrected and

polarizer corrected data (Fig. 2-6). ’Uncorrected’ data represent radiometrically-corrected

measurements with no glint correction applied. Overall, the SNR of these field-observed

images is highest in the blue-green and lowest in the dark blue and far-red to NIR, despite

large differences in insolation and WQP magnitude seen throughout the field assessment.

Since these correction approaches remove glint from the total measured radiance, they

decrease the radiance, and in turn the estimated Rrs, nonuniformly across this spectral range

relative to the uncorrected ‘Rrs’ (Fig. 2-7, top panel). The uncorrected ‘Rrs’ is calculated

using the total sensor measured radiance in place of the water leaving radiance. The ap-
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Figure 2-6: The median (theoretically-derived) SNR as calculated over the entire time series.
Highest SNRs are in the green section of the spectrum for both spectra. Use of a polarizer
decreased the SNR in the red and part of the NIR. The uncorrected SNR data represent
a range of view angles between 39.75-42.70∘ and the polarizer-corrected SNR is calculated
from a range of view angles from 50.30-53.25∘.

proaches also decrease the standard deviation of Rrs, here calculated around 39.75-42.70∘

for uncorrected, SOSC, and MASC Rrs and 50.30-53.25∘ for polarizer corrected Rrs, towards

their theoretical limits (Fig. 2-7, bottom panel). These theoretical limits in Rrs are de-

termined by the theoretical SNR and were computed by dividing the median Rrs by the

median spectral SNR (Fig. 2-6). Observations corrected using the SOSC and polarizer

approaches exhibited the lowest spectral standard deviations (i.e., noise) at these view an-

gles and across this spectral range, while data glint-corrected using the MASC algorithm

showed only a slightly lower standard deviation compared to the uncorrected data (Fig. 2-7,

bottom).

2.4.2 Glint correction approaches and WQP estimate accuracy

The results shown in Fig. 2-7 indicate that the SOSC approach can achieve the highest

precision because it exhibits the lowest standard deviation of measured Rrs. By apply-

ing the SOSC glint correction approach and using Rrs data observed at 40∘, the resulting

radiometrically-estimated values for both [chl] and bbp650 showed strong correlation with

the in situ measured values across a large but environmentally realistic dynamic range (Fig.

2-8). Correlation coefficients for [chl] and bbp650 using the SOSC approach were 0.68 and

0.73 respectively (Model II geometric mean linear regression, [Peltzer, 2016]), which is a

substantial improvement over the correlation coefficients of the uncorrected data (0.65 and

0.55 respectively).

To demonstrate the impact of the capillary waves on the uncorrected ‘Rrs’, the Rrs and
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Figure 2-7: The median Rrs and standard deviation for the entire time series, as a function
of wavelength. Each glint correction approach reduces the median Rrs (top panel) and
decreases the SD towards the shot noise limited theoretical value (bottom panel) relative to
the uncorrected ‘Rrs’ (in which the total radiance approximates the water leaving radiance).

the associated chlorophyll estimates are plotted against distance starting from the lowest

view angle (where the higher distances are the higher view angles of the imager) (Fig. 2-9,

top panel). The view angle range covers a short spatial range (~6 m) that we assume is

homogeneous with regards to its WQPs. The capillary waves (bright vertical lines in the

uncorrected dataset) reduce the precision of the chlorophyll estimates made from the uncor-

rected Rrs (Fig. 2-9, top panel). The SOSC approach attempts to correct for the capillary

waves, and in this example case increases the precision of the chlorophyll estimates (Fig.

2-9, bottom panel). Although the SOSC algorithm increases the precision in particularly

wavy waters (shown here), on calm days the chlorophyll estimate from the uncorrected data

can be more precise (not shown).

Further analysis revealed that all three of the glint correction approaches led to decreases

in the MAPE of estimates of [chl], and thus increases in its accuracy, but with varying ef-

fects among each approach (Fig. 2-10, top panel). In terms of their MAPEs the SOSC
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Figure 2-8: Training data relationships between in situ measured (abscissa) and
radiometrically-estimated (ordinate) WQPs of chlorophyll (top panel) and bbp650 (bottom
panel) using Eqs. 2.4 and 2.5 respectively. The SOSC glint correction approach was used
in both cases. Grey lines define a 1:1 relationship.

approach provided the best radiometric estimates of [chl], followed by MASC, followed by

the hardware solution of using a polarizer. For bbp650 however, MAPE decreased in only two

of the three approaches: when the SOSC approach was applied and in certain cases when

employing the polarizer, depending on the view angle. The MASC approach provided the

least accurate estimates of bbp650 and there was no uniform difference between the uncor-

rected and polarizer-corrected data across these view angles. For both of these WQPs the

MAPE of the best-case estimates (i.e., those utilizing SOSC glint correction) were relatively

insensitive to view angle over the 40-50∘ range, but became increasingly sensitive at angles

above 50∘ (Fig. 2-10). When utilizing the MASC approach, MAPE was lowest near 40∘

and increased as the view angle neared 53∘. The MASC approach more frequently failed to

produce reasonable results than the other two glint correction approaches when estimating

bbp650 due to several factors, notably by substantially over- or under-correcting for the glint.

This over- and under-correction leads either to physically unrealistic magnitudes of Rrs (e.g.,

< 0 or > 0.2 sr-1) or WQP estimates that fall beyond an order of magnitude of those in

the training set. Under such conditions the MASC approach introduces erroneous results

for a large fraction of the input data, from ~3% of observations made at a 40∘ view angle to

as high as ~24% of observations made near a 53∘ view angle. Rejection rates for poor fits
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Figure 2-9: An example of hyperspectral Rrs data taken with the candidate imager first
uncorrected (top panel) and after applying the SOSC approach (bottom panel). An ex-
ample spatial distribution of remotely estimated [chl] that would be interpreted from these
data is presented at the top of each panel. Artifacts due to glint can clearly be seen as
bright streaks across all wavelengths at specific distances in the uncorrected images (ar-
rows). Left uncorrected this introduces substantial spatial variability in the estimated [chl]
that is solely an artifact of variations in the glint. Here, the SOSC approach reduces this
artifact considerably. The in situ [chl] is 8.6 𝜇𝑔 · 𝑙-1.
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when using the other two glint correction approaches are largely insensitive to view angle,

remaining below 5% of the data set. For data glint-corrected with the polarizer, the MAPE

of both WQPs was highest near a 40∘ view angle and lowest from 44∘ to Brewster’s angle at

53∘ (Fig. 2-10). The MAPE of input images with no applied glint correction (uncorrected)

was lowest for [chl] observed around 40∘ and highest around 53∘ (Fig. 2-10, top panel).

For bbp650 the MAPE was highest near 40∘ and lowest when approaching 53∘ (Fig. 2-10,

middle panel). These results show that for each glint correction approach there is a similar,

dependence of MAPE on view angle for radiometrically-derived estimates of these WQPs.

The mean QA of each correction method across the time series, median filtered across

view angle with the same filter size as the MAPE of the WQP estimates in Fig. 2-10,

exhibited significant negative correlation with the view angle dependence of the MAPE in the

estimates of the two WQPs. The QA was calculated from radiances at only 8 wavelengths,

omitting 412 nm, as the polarizer corrected data was anomalous at this lowest wavelength

(Fig. 2-7, top panel). The correlation coefficients between the view angle dependent mean

QA (Fig. 2-10, bottom panel) and median MAPE for [chl] (Fig. 2-10, top panel) were -0.98,

-0.73, -0.80, and -0.89 and for the uncorrected, polarizer, MASC, and SOSC glint removal

methods respectively (Model II geometric mean linear regression, [Peltzer, 2016]). For bbp650

the correlation coefficients calculated between the QA and MAPE were 0.50, -0.72, -0.89, and

-0.82 for the uncorrected, polarizer, MASC, and SOSC glint removal methods respectively.

The relative order of the correction methods, as measured by the maximum QA within the

view angle range, in descending order was the SOSC (0.91), polarizer (0.83), MASC (0.81),

and then uncorrected data (0.63). The correlation coefficients demonstrate that the view

angle dependence of the MAPE in the estimates of both WQPs are significantly negatively

correlated with the QA of the Rrs, except in the case of bbp650 estimation from uncorrected

data.

The nonimaging spectroradiometer deployed in parallel on the ASIT (Fig. 2-3, label ‘4’)

provided data for comparing the radiances measured by this imaging spectrometer against

a state-of-the-art ocean color field instrument. When no glint correction is applied to either

the imaging and nonimaging hyperspectral data, the MAPEs of both WQPs are in close

agreement (Fig. 2-10, light circles, top and middle panels). When glint corrections are

applied, however, differences can be seen. When the SOSC approach is applied, the MAPEs

from the imager and the nonimaging radiometer agree for estimates of [chl] (top panel) but
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Figure 2-10: The median MAPE between estimates of [chl] and bbp650 as determined from
radiometric algorithms. Measurements from a nonimaging hyperspectral radiometer (circles)
were made at only one view angle (45∘) whereas the vertical orientation of this imaging
spectrometer in our deployment allowed us to examine MAPE along a broader range of
view angles. Notations in the top panel indicate which trace relates to each glint correction
algorithm. The mean Wei et al. [Wei et al., 2016] quality assurance (QA) of the Rrs generally
demonstrates an inverse relationship with the MAPE of the WQP estimates.

95



Table 2.3: Minimum median MAPE in estimates of [chl] (top rows) and bbp650 (bottom
rows), derived from radiometer-measured and imager-measured spectral radiances, com-
paring three glint correction approaches (polarizer, SOSC, and MASC) and the non glint
corrected (uncorrected) data. The radiometer’s view angle (relative to nadir) was 45∘ and
the imagers was the optimal view angle that minimized MAPE.

[chl] Uncorrected Polarizer SOSC MASC
Radiometer 53.0 % N/A 39.0% 39.2%

Imager 48.7% 41.8% 38.5% 39.6%
(View angle) 43.7∘ 44.3∘ 44.6∘ 40.6∘

bbp650 Uncorrected Polarizer SOSC MASC
Radiometer 78.5% N/A 62.6% 62.3%

Imager 79.0% 77.5% 67.3% 75.5%
(View angle) 45.4∘ 46.3∘ 42.8∘ 41.3∘

not for estimates of bbp650 (bottom panel). When applying the MASC approach, neither

of the two WQPs showed agreement between the imaging and nonimaging spectrometers.

These results indicate that the representative imager can achieve a MAPE for [chl] roughly

within 5% of that obtained with a nonimaging spot radiometer with all glint correction

approaches. In contrast, although the SOSC approach provided a clear advantage over the

other two glint correction approaches for bbp650 made with the imager, the spot radiometer

nonetheless achieved roughly 10% better MAPE for this WQP.

These results can be summarized in terms of the median MAPE between the radiometrically-

estimated WQPs and their in situ measured counterparts, for each glint correction approach

at its lowest MAPE view angle (Table 2.3). It is important to note that the exact accuracies

may not be visible in Fig. 2-10 due to the median filtering over the view angle. Overall, the

imaging spectrometer and radiometer were similarly accurate in estimates of [chl]. All three

approaches achieve similar accuracy in [chl], improving estimates by roughly 7 to 10%. For

bbp650 the imager has a lower accuracy than the spot radiometer for all three glint correction

approaches, most dramatically by over 13% MAPE for estimates of bbp650 when the MASC

approach is applied. The SOSC approach provides the highest accuracy in imager-derived

estimates of bbp650. Overall, the hyperspectral imager achieves similar estimation accuracy

as the spot radiometer for the uncorrected data, and the SOSC approach achieves the highest

accuracy estimates when using the hyperspectral imager.
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Figure 2-11: The MAPE of median daily estimates of [chl] and bbp650, binned across the
dynamic range observed in the field study. Numbers above each bin indicate the median
number of data points used. The dashed line indicates the 35% [chl] accuracy goal for the
SeaWiFS satellite sensor [McClain et al., 1998].

With the optimal view angles now determined for each glint correction approach, it is

possible to examine variability in MAPE for each WQP across the dynamic ranges seen in

the field study (Fig. 2-11). Glint-corrected [chl] and bbp650 estimates typically exhibited

lower MAPE at the high and low ends of these distributions whereas glint correction actually
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increased MAPE in the middle of these ranges (4-6 𝜇𝑔/𝑙 and 0.02-0.04 𝑚−1 for [chl] and

bbp650 respectively). A caveat with the low MAPEs seen at in the high value range of

both WQPs is that these ranges corresponded with fewer observations, which may affect

these results. For [chl], these glint correction approaches improve accuracy towards the 35%

ideal goal for the SeaWiFS satellite sensor [McClain et al., 1998]. Overall, this analysis

demonstrated that the ranking of accuracy in these three glint correction approaches holds

across the entire dynamic range of WQP values observed in this field study, with the SOSC

approach generally being preferable.

2.5 Discussion

This study is one of the first to compare algorithm-based and hardware-based glint correction

approaches to fine-scale WQP assessment scenarios that employ an imaging spectrometer.

This study examined a line-scan hyperspectral imager but these findings are equally appli-

cable to imagers that capture two-dimensional spatial images with an added spectral dimen-

sion. These results have broader implications for selecting and deploying glint correction

approaches for field studies, but several aspects of this study merit additional discussion.

2.5.1 Glint correction in a fine-scale ocean imaging context

The spectral signal-to-noise ratio of this particular imaging spectrometer did not limit its

accuracy in estimates of [chl] and bbp650 when no glint correction was applied. Despite the

fact that the per-pixel SNR of the imaging spectrometer (Fig. 2-6) was lower than what is

prescribed for satellite ocean color applications [Mueller et al., 2003], it was still sufficient

to match the accuracy of the non-imaging spectrometer using the uncorrected data (Fig.

2-10). Therefore, it may be possible to collect even fewer photons while still maintaining

the estimation accuracy with these empirical algorithms, which would allow for finer spatial

or spectral resolution for cameras mounted on moving platforms. However, it would be

ill-advised to not implement a glint correction approach, as they generally granted higher

[chl] estimation accuracy.

In contrast to the uncorrected data, when correcting for glint the combination of low

spectral SNR of the imager and fine-scale variations in the surface-reflected light limited

the WQP estimation accuracy. This limitation occurred when either the MASC or the
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SOSC approaches were used to remove glint before estimating bbp650 using this imaging

spectrometer (Fig. 2-10, middle panel). It follows that the estimates of bbp650 would be

more sensitive to the glint correction uncertainties, as the uncertainty represents a larger

percentage of the Rrs at 650 nm than in the blue-green wavelengths (Fig. 2-7). It is also

possible that the error in the MASC algorithm arises due to over-correction when bb650 is

at elevated values, due to the algorithms assumption that the NIR light is solely due to

glint. Modeling approaches could potentially provide a means to identify if the inaccuracy

is due to the low SNR in the NIR, the increased variability resulting from variations in

the surface-reflected light at these fine spatial scales, or other assumptions made by each

algorithm.

Although our comparison of glint correction approaches were only applied to two partic-

ular WQPs ([chl] and bbp650), the radiometric precision gained by applying glint correction

approaches applies across the imager’s entire spectral range and thus will benefit estimates

of other WQPs that rely on wavelengths different than the ones we used to estimate [chl]

and bbp650 in this study. All three corrective approaches reduced the absolute variability

in the Rrs below the precision achieved in the uncorrected data (Fig. 2-7, bottom panel).

Yet none of these three approaches eliminated all of the fine-scale spatial variability because

they were unable to reach the theoretically-derived precision set by shot noise (Fig. 2-7,

bottom panel). Any remaining imprecision is likely due to imperfect correction of the fine-

scale glint variations, but it could theoretically also reflect actual fine-scale environmental

spatial differences in the water-leaving radiance such as that generated by spatial patchiness

in suspended particulate matter.

Even though the SOSC approach increased the precision of [chl] estimates despite capil-

lary waves as in Fig. 2-10, not every scenario shows an increase in the precision relative to

the uncorrected data. Although the SOSC approach typically removes the offset in the Rrs

due to capillary waves, this did not lead to increased precision in the [chl] estimates derived

from every image. Oddly, the SOSC approach often increased the imprecision on particu-

larly calm days by a small amount, potentially due to the convergence of the optimization

algorithm being sensitive to the input Rrs.

Algorithm-based glint correction approaches like SOSC and MASC can improve WQP

estimation accuracy from spectral radiometry, but this study indicates that a polarizer-

based glint correction approach could be a viable alternative, at least for the radiometric
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retrieval of chlorophyll concentration (Figs. 2-10 and 2-11, Table 2.3). The relatively mi-

nor improvement seen in bbp650 when using a polarizer could represent an artifact of our

analysis given that the comparison in situ measurements were unpolarized and thus any

potential variation over time in the polarization state of the backscattered light would not

be captured in the in situ measurements. The observed lower accuracy in bbp650 could

also be due to the lower SNR of the polarizer-corrected data compared to the uncorrected

data in the red and NIR (Fig. 2-6), which would result from the lower spectral efficiency

of the polarizer in this region of the spectrum. Despite these nuances, a vertical polarizer

may still be a viable alternative to algorithm-based glint correction approaches for removing

skylight variations, to enable increased accuracy in chlorophyll estimates without requiring

the additional wavelengths necessary for glint correction. This equivalent accuracy of a po-

larizer is particularly noteworthy for researchers who only want to investigate chlorophyll

using a single algorithm, because similar accuracy may be achieved by using a less expensive

multispectral camera with a polarizer, instead of a hyperspectral imaging spectrometer and

software glint correction.

2.5.2 Implications of view angle on glint correction

The observed view angle dependence of the quality assurance (QA) of the Rrs’s and the

accuracy of the WQP estimates derived from those Rrs’s agreed with high negative corre-

lation and generally followed expectations from the literature for each of the software glint

correction approaches. Absent glint correction, a poorer Rrs QA and less accurate estimates

of chlorophyll were seen at higher view angles (Fig. 2-10), which can be explained by the

increasing contribution of the reflected sky radiance with view angle [Mobley, 1999]. Simi-

larly, the two algorithm-based glint removal approaches also exhibited a decrease in the Rrs

QA and an increase in the WQP MAPEs with view angle, likely for the same reason. These

two algorithm-based approaches had the highest accuracy estimates and Rrs QAs near to

40∘, where the contribution of the reflected sky radiance is minimized. Optimal estimation

of bbp650 from uncorrected data was seen at ~45∘ (Table 2.3), but oddly the MAPE slightly

decreased with view angle in this case (Fig. 2-10). Overall, when using no glint correction or

software glint correction, the 40∘ view angle seems to still be optimal for Rrs measurement

and WQP estimation.

As expected due to the polarization state of the surface reflected light, when using
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a polarizer to correct for glint there was a general decrease in the MAPE of the WQP

estimates, and a general increase in the QA of the Rrs’s, with view angle. However, the

accuracy benefit plateaued near 44∘ when estimating both WQPs, which was unexpected

due to the increase in the horizontal polarization of the reflected sky-light from a planar

surface when approaching Brewster’s angle [Fougnie et al., 1999; Zhou et al., 2013]. At angles

ranging from 44-53∘ the surface-reflected light of a flat surface is only partially horizontally

polarized, so these angles should not be able to achieve the same WQP estimation accuracy,

or QA, as Brewster’s angle. It is possible that capillary waves or other environmental

factors limited the potential accuracy gains of using a polarizer within the 44-53∘ view angle

range. In summary, when using a polarizer to correct for glint, above a 44∘ view angle and

approaching Brewster’s angle remains optimal.

An added complication related to view angle may be expected in ship- or drone-based

imager deployments, which may suffer from significant pitch or roll. Interestingly all three

glint correction approaches provided lower MAPE chlorophyll estimates, and higher Rrs

QA, over the entire 40-53∘ view angle range than seen in the uncorrected data, despite

the sky radiometer only measuring the downwelling skylight centered around a single angle

at 45∘ from zenith and the lower view angles only providing partially-polarized surface-

reflected light for the polarizer-based glint correction approach. The ability of the glint

correction techniques to correct for sky glint in these off-angle situations suggests that these

approaches could potentially tolerate significant pitch and roll in aerial drone applications

and still outperform results made with uncorrected data. One caveat is that our research

trained the empirical algorithms [Eqns. 2.4 and 2.5] at each view angle, and so any algorithm

calculated at a single view angle may be more sensitive to shifts in observational view angle.

2.5.3 Practical factors for glint removal from mobile platforms

Although the precision of the recovered water-leaving radiance signal and the accuracy of

the WQP estimates are important factors for determining between the glint correction ap-

proaches, practical considerations for implementing each approach must also be noted. The

software-based sky glint correction approaches require a sky-looking radiometer, which in-

creases payload weight and thus may reduce deployment range or duration from a mobile

platform. These two approaches also require spectral data at additional wavelengths beyond

those for computing the WQPs themselves: multiple bands spanning the visible to NIR for
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the SOSC, and a single band in the NIR for the MASC, which may require more complex

imagers. The polarizer-based approach requires no additional wavelengths or a sky radiome-

ter, but it does impose additional limitations on the imager including the need to image near

to Brewster’s angle and perform a new radiometric correction that includes the polarizer

in the optical train. Moreover the imager must be sensitive to vertically polarized light,

which can be an issue for some grating-based hyperspectral imagers. The above practical

limitations require a user to provide forethought about which constraints can be tolerated

when choosing a glint correction approach.

Researchers must proceed with care when extrapolating these results for use on low-

altitude mobile platforms such as ships or drones, as the spatial resolution will vary due to

spatial smearing from the platforms movement. The minimum and maximum exposure times

from our uncorrected data set ranged from 3.8 ms to 87 ms. In bright conditions (~3.8 ms

exposure times), the platform could move at 4.5 m/s to maintain the ~2 cm resolution of this

study, but on dark days the mobile platform would have to move at <1 m/s. Alternatively

the exposure time, and therefore captured electrons and SNR, would need to decrease to

cover more area. Using a drone with a forward speed of the maximum of 160 km/h set

by the FAA [Federal Aviation Administration (FAA), 2016b], the motion-induced spatial

smear under comparable conditions would vary from 0.2 to 4 m, which is much coarser than

the resolution used in this paper. The spatial averaging will likely reduce the impact that

capillary waves have on changing the surface-reflected light, but the SOSC approach would

likely still be optimal at courser resolutions as well, as it has been seen to work well on

course resolution radiometer data [Lee et al., 2010; Shang et al., 2017].

The results contained within this paper suggest that the available off-the-shelf imaging

spectrometers have considerable promise for optical remote sensing of natural water bodies

on fine-scales, but it is important to not extrapolate these findings unduly. This study ex-

amined only one candidate imaging spectrometer (a Resonon Pika-L), on two specific WQPs

([chl] and bbp650), using two empirically trained multispectral ocean color algorithms, in one

region of the coastal ocean, at a single height above the ocean surface on an ideal fixed plat-

form. Deploying such a line scan imaging spectrometer on a moving platform is necessary

to generate spatial maps of WQPs, but motion introduces a number of complications not

encountered in this study. The auto-exposure algorithm used in our study to maintain the

signal level of our imager while imaging homogeneous waters will likely work less well over
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heterogeneous regions such as the coastal ocean, where images may contain land or ships

in addition to water. Also, the view angle of the imager was relatively small, which will

limit the area that can be mapped by a mobile platform (although the field of view could be

increased with a different choice of objective lens). In addition, the long in situ time series

allowed for the determination of accurate empirical coefficients which may not be achievable

in most field studies. Finally, since only a single radiometric image was used to calibrate the

imaging spectrometer, the WQP MAPE is likely higher than would be achievable with per-

fect radiometric correction. However, the impact of this single radiometric image correction

is analogous to vicariously calibrating an imaging spectrometer deployed from a fixed-wing

drone platform, where it may only be possible to capture a single image of a calibration

target on the ground. In summary, the fixed-tower platform provided a useful test site to

collect a range of in situ data to be able to compare between the glint correction techniques

at very fine spatial scales, but care should be taken when extrapolating these findings to

sensing from mobile platforms as there are many complicating factors.

2.6 Conclusions

This study presents a comparison of three glint correction approaches that can be applied

to lightweight, low-power imaging spectrometers for fine-scale spatial mapping applications

of water quality properties such as [chl] and bbp650. Overall, despite the low spectral SNR of

lightweight low-power imaging spectrometers and the fine-scale variations in the ocean sur-

face’s reflection coefficient, these currently available imagers appear adequate for providing

general fine-scale [chl] estimates over natural water bodies when glint correction approaches

are applied. However, when estimating bbp650, the accuracy of the imaging spectrometer

seemed to be limited by either the scale of the measurements or the low SNR of the imager

when using glint correction approaches. Of the three approaches examined here, a spectral

optimization glint correction algorithm both had the highest quality assurance Rrs’s and

led to the best estimates of both WQPs on centimeter-scale spatial resolutions when ap-

plying standard, but empirically trained, ocean color algorithms. We bounded this spectral

optimization approach to provide more accurate glint correction results for our dataset. A

simple hardware-based polarizer solution provided similar accuracy as the computationally

complex spectral optimization approach for recovering [chl] on these fine scales, but was less
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effective with estimates of bbp650. The results of this paper provide a quantitative basis for

selection and deployment of the currently available glint correction approaches for fine-scale

WQP estimation from an imaging spectrometer.

Tower-, ship-, or drone-based applications of small, lightweight imaging spectrometers

in aquatic remote sensing have considerable promise to fill an operational niche between

in situ sampling, aircraft-based studies, and satellite ocean color monitoring, by providing

fine temporal and spatial resolution data with minimal operational constraints [Klemas,

2015]. Low-altitude platforms have an advantage over aircrafts and satellites because they

can operate underneath cloud cover, an important consideration in typically cloudy and

spatially dynamic ocean regions such as coastal waters [Cao et al., 2018; Feng et al., 2017]

and the marginal ice zone [Engelsen et al., 2002]. This study demonstrated that a currently

available imaging spectrometer was able to recover WQPs from a fixed-platform on very fine

spatial scales, on the order of centimeters, despite the low signal-to-noise ratio measurements

from the imaging spectrometer and the complications arising from applying glint correction

approaches to waters with fine-scale changes in their surface reflectance characteristics.
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Chapter 3

A simulation framework for evaluating lightweight

spectral cameras in drone-based aquatic sensing

applications

This chapter was published in the Optical Society of America’s Journal of Applied Optics

[O’Shea and Laney, 2020] and a revised version is reproduced here.

Abstract

Optical remote sensing of aquatic environments using aerial drones is becoming more feasible
as lightweight, low-power, multi- and hyperspectral cameras increase in availability. Use
of these cameras in such applications involves complex trade-offs in optical design and in
deployment strategies, and simulations provide a means to examine this multidimensional
design space to identify specific limitations on performance for a given measurement scenario.
In this paper, such a simulation framework is developed and its use in two realistic aquatic
remote sensing scenarios is explored. Such a framework can provide insight not only into
uses of existing camera systems, but also aspects of optical design or hardware that would
lead to improved accuracy when using such cameras aerially over natural water bodies.

3.1 Introduction

Modern multi- and hyperspectral cameras now provide environmental researchers with imag-

ing technologies that may have considerable potential for remote sensing applications using

small aerial drones [Sigernes et al., 2018]. A number of terrestrial remote sensing applica-

tions have been examined to date, and cameras that are lightweight, low-power, and have

low signal-to-noise ratios (SNR) may also be suited for fine-scale, drone-based aerial assess-

ment of natural water bodies. At present only a few commercially available multispectral
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cameras have been examined for their potential to remotely recover information on opti-

cally active constituents (OACs) from natural water bodies [Su, 2017; Su and Chou, 2015;

Totsuka et al., 2019]. Examples of common OACs include suspended or dissolved organic

matter, sediment, algae, or pollutants [Brando et al., 2012]. In principle, any material that

affects the remote sensing reflectance of a water body can be examined on very fine spatial

scales using aerial drones. In practice, however, the optical design and characteristics of

these cameras set fundamental limitations on the accuracy and precision of such remotely

sensed optical measurements. These limitations in turn set further operational constraints

on how such cameras can be used effectively on small aerial drones in real-world scenarios

to map and monitor natural water bodies.

Accurately measuring the remote sensing reflectance of natural water bodies is chal-

lenging because of the interplay between environmental sources of optical noise, such as

surface-reflected light (glint) and path radiance, and the optical and electronic design of the

particular camera being used [Moses et al., 2012a]. In such applications, critical camera

properties include radiometric resolution, spectral efficiency, dark noise, full-well capacity,

and read noise. All of these will affect the accuracy and precision of measured remote sensing

reflectances and thus any derived environmental parameter that can be computed using these

measured reflectances (Table 3.1) [Moses et al., 2012a]. Exploratory, real-world assessments

have been used to identify the effect of individual parameters for satellite-based sensors

(such as digitization noise, e.g. Hu et al. [Hu et al., 2001]), but comparable trial-and-error

assessment of an individual camera’s optical and electronic characteristics influence on the

accuracy and precision of all OAC estimates is effectively intractable. With satellite-based

aquatic optical remote sensing the resources are available to perform extensive assessments

and analyses to gauge the impact of the optical design on the accuracy and precision of

OACs of interest (e.g. HICO [Moses et al., 2012a, 2015], SeaWiFS [Hu et al., 2001]). Such

extensive validation efforts are impractical for assessing large numbers of drone-deployable

hyperspectral camera and sensing scenario combinations, because each individual combina-

tion will likely only be used by, at most, a few researchers. However, user run simulations

can provide much of the information needed to evaluate whether a given camera is suitable

for a specific drone-based application.
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Described in this paper is a computational framework that allows designers to simulate

how differences in single or multiple camera parameters affect final parameter estimates

for a particular remote sensing scenario in aquatic systems. Of the range of key camera

parameters listed in Table 3.1, this paper explored how the simulation framework could be

used to assess potential changes in four of these camera parameters, and their impact in

two realistic aquatic remote sensing scenarios (bold text, indicating subsequent sections).

Finally, how those results could feed back into camera selection, adaptation, and deployment

for each scenario is discussed.

3.2 Overview of Key Camera Parameters and Environmental

Considerations

Before outlining a simulation framework for using hyperspectral cameras for aquatic applica-

tions, it is first necessary to overview the fundamental sources of noise in camera systems as

well as other operational factors related to their use in drone-based scenarios, which together

dictate the overall accuracy and precision for radiometrically estimating OACs of interest in

natural water bodies.

Multi- and hyperspectral cameras suffer from a range of noise sources inherent to their

electronics and optics, each of which reduces the on-board spectral signal-to-noise ratio

(SNR) (Table 3.1). Assuming a high intensity signal measured with a short exposure time,

these noise sources could be ranked from least to most substantial: dark noise, read noise,

quantization noise (as set by the radiometric resolution), and photon-shot noise (which

is limited by the full-well capacity). The contribution of dark noise increases both with

exposure time and with temperature [Gow et al., 2007; Farrell et al., 2012], and dominates

at long exposure times. Read noise occurs during the electronic readout of the electrons

contained in each pixels full-well [Chen et al., 2009]. Both dark noise and read noise exhibit

the largest impact on the SNR when the measured signals are of low intensity. Quantization

noise is uniformly distributed and is the result of round-off error from the digitization of the

number of electrons [Boncelet, 2005]. Since quantization noise is low in magnitude and not

time varying, it also has a more prominent effect on low intensity signals. Shot-noise is the

only source of noise that is dependant on signal magnitude and typically dominates the noise

at high intensity levels. Due to the discrete nature of electrons and photons, shot-noise has
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a Poisson distribution. The relative effects of optical and electronic sources of noise change

as a function of the intensity of the measured signal, which within a hyperspectral image of

a natural water body can vary significantly.

The optical and electronics noise sources directly affect the estimated water-leaving ra-

diance, the noise can then propagate through software algorithms to produce imprecise

estimates of OACs and inaccurate correction of surface reflected light (glint) [Levin et al.,

2005; Levin and Levina, 2007]. OAC algorithms typically utilize band ratios of the remote

sensing reflectance, which is the camera measured radiance divided by the irradiometer

measured irradiance. It is through this pathway that the noise on the water-leaving radi-

ance signal measured on the camera could lead to imprecise and inaccurate measurements

of OACs. Software glint correction approaches also rely on measurements of the remote

sensing reflectance, typically in the low signal-to-noise ratio NIR bands, so they too could

theoretically suffer from imprecision and inaccuracy of the camera measured water-leaving

radiance signal. Overall, the inherent noise sources in the camera system can be accentu-

ated, depending on the camera measured signal, and propagated through to estimates of the

OACs.

The ability to deploy drones in a variety of environmental conditions and above waters

containing unique optically active constituent combinations results in a wide range of shapes

and intensities of the measured spectral water-leaving radiance signal. From an environmen-

tal standpoint sunny and cloudy conditions heavily impact the downwelling radiance, and

therefore the upwelling water-leaving radiance intensity and spectra. Higher concentrations

of suspended particulate matter (SPM) increase the reflectance across the spectrum [Kirk,

1994], notably in the NIR. Increases in the chlorophyll (chl) concentration typically reduce

the spectra in the blue and increase the reflectance in the green and near-infrared (NIR)

[Clarke et al., 1970; Morel and Prieur, 1977]. An increased contribution of colored dissolved

organic matter (CDOM) increases the absorbance in the blue and green [Morel and Prieur,

1977; Gholizadeh et al., 2016], which decreases the water-leaving radiance in this part of the

spectrum. The combined environmental conditions and OAC concentration ranges result

in unique water-leaving radiance spectra and, in extension, unique sensor requirements for

each ocean color scenario.

The wide range of water-leaving radiance signals and remote estimation tasks results in

unique impacts of the selectable camera parameters on the remote sensing products (e.g.,
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Table 3.1). For example, harmful algal blooms (HABs) in reservoirs can produce a wide

dynamic range of reflectances in the spatial domain, due to a wide range of algal concen-

trations on fine-scales. Therefore, they will require high full-well capacities to accurately

estimate OAC concentrations from the lowest reflectances. If a user instead wanted to sense

chlorophyll in the marginal ice zone, by measuring from the oceanic signal emanating from

between sea ice leads, the spatial resolution (and therefore exposure time and F-number)

would become much more important than the dynamic range. The finer spatial resolu-

tion would allow for the selection of many more ice-free pixels, which is useful as ice has a

much higher reflectance than the dark ocean waters. For another remote estimation task,

phytoplankton functional type identification (PFT ID), spectral resolution becomes the key

parameter, as increasing the spectral resolution, up to a point, provides additional infor-

mation that enables separation of the absorption spectra of the different functional types

[Aiken et al., 2014]. Finally, for measuring the low intensity chlorophyll fluorescence signal,

the radiometric resolution may become the limiting factor, as it is required to differentiate

between small changes in the chlorophyll fluorescence signal. Although it is possible to

discuss qualitatively how the individual parameters may effect a range of sensing scenarios

without using simulation, a simulation framework is required to assess how any individual

parameter would quantitatively impact the remote estimation accuracy in a specific region,

and thereby inform the user on how to select and deploy a commercially available spectral

camera system.

3.3 Representing Drone-based Hyperspectral Remote Sensing

Scenarios in A Simulation Framework

The overall process for how light radiating from a water body is ultimately used to compute

any given OAC can be represented graphically (Fig. 3-1, top), from which a simulation

framework can be developed (Fig. 3-1, bottom). With the former, the influences of indi-

vidual camera parameters can be clearly identified, as can the points at which individual

sources of noise are added to the signal. These can then be mapped directly to steps within

the simulation framework. The framework used here is adapted from Moses et al. [Moses

et al., 2012a] (their Fig. 1), by considering a drone just below 100 m altitude where path

radiance does not need to be corrected [Mueller and Austin, 1995], as its contribution to the
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total radiance is significantly reduced. Not every real-world consideration has been included

in the simulation framework described here, and deviations are identified below. Although

the simulation framework could in principle be implemented in any language, MATLAB was

the programming environment chosen to implement the below steps.

3.3.1 Ocean color formation

The first step of the optical pipeline in the top of Figure 3-1 is the propagation of the

irradiance (Ed), which downwells and interacts with the OACs and reflects off of them

to form the water-leaving radiance (Lw). Surface-reflected light (glint) is added to the

water-leaving radiance, as it leaves the ocean and enters the atmosphere, to form the total

water-leaving radiance (Lt).

The simulation framework accepts simulated or measured ocean color data as inputs.

Both are useful in their own way. Hydrolight simulated datasets allow for estimation of the

light levels in regions where no ocean color data is at hand. Real-world ocean color data

collected at high SNR provide more accurate quantitative assessment of the relative impacts

of the camera parameters, but require field tests for accurate collection.

In this paper, two different ocean color scenarios are assessed using Hydrolight simulated

ocean color data, as they provide simultaneous acquisition of all ocean color data, and in-situ

‘truth’ values without errors due to environmental fluctuations. Table 3.2 shows the ranges

of optically active constituents simulated for each dataset in Hydrolight. The first dataset

uses concentration ranges which correspond to realistic values from Case II waters, where

chlorophyll, suspended particulate matter, and colored dissolved organic matter can vary

significantly [Morel and Prieur, 1977]. In the second dataset, high algal biomass waters with

chlorophyll concentration ranging from 0.05-20 ug/l imitate that of a chlorophyll bloom seen

in the West Antarctic Peninsula [Massom et al., 2006]. This second dataset is simulated for

overcast conditions with a solar elevation angle of 30∘, representative of conditions in austral

summer near the West Antarctic Peninsula. These two simulated ocean color datasets can

then be propagated through the optical pipeline.
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Table 3.2: Hydrolight Simulated OAC Concentration ranges. The ‘Case II’ entry simulates a
Case II region, where light absorption cannot be ascribed primarily to chlorophyll-containing
organisms. ‘Antarctic bloom’ indicates a dataset simulating chlorophyll concentrations span-
ning the range observed during a 2001-2002 phytoplankton bloom in the West Antarctic
Peninsula [Massom et al., 2006]. In the ‘Antarctic bloom’ dataset, CDOM varies propor-
tionally with the chlorophyll concentration (∝ chl).

Chl (𝜇g/l) SPM (gm-3) CDOM (m-1)
Case II 0.3-13.6 0-4.9 0-0.2

Antarctic bloom 0.05-20 [Massom et al., 2006] 0 ∝ chl

3.3.2 Optical propagation through the atmosphere into a camera system

at altitude

In the real-world scenario, once exiting the ocean-atmosphere interface, the water-leaving

radiance propagates through a path length of atmosphere where it is imaged by the drone-

mounted camera. Path radiance, which is a function of the drone’s altitude, is added to

the total water-leaving radiance signal and transmission loss due to traveling through the

atmosphere occurs before being measured by the camera.

The power measured on the camera’s detector is a function of the area of the ocean’s

surface being imaged. To determine the amount of photons incident on the camera’s detector,

first the total water-leaving radiance is converted to power on the detector [Eq. 3.1] [Mobley

et al., 2016a].

𝑃𝑑𝑒𝑡𝑒𝑐𝑡𝑜𝑟 = 𝐿𝑇 * 𝜋 * (𝑟𝑎𝑝𝑒𝑟𝑡𝑢𝑟𝑒)
2

(𝑠𝑙𝑎𝑛𝑡 𝑟𝑎𝑛𝑔𝑒)2
*𝐴𝑠𝑢𝑟𝑓𝑎𝑐𝑒 * 𝑐𝑜𝑠(𝜃v) *𝑂𝐸 * ∆𝜆 (3.1)

Here 𝑃 detector is the power captured on the whole detector, 𝐿T is the total spectral water-

leaving radiance, 𝜋 times the radius of the aperture (𝑟aperture) divided by the slant range is

the solid angle of the sensor. The slant range is the distance from the camera to the imaged

water. 𝐴surface is the surface area of the water, 𝜃v is the view-angle, cos(𝜃v) corrects for the

off-angle measurement of the area, OE is the optical efficiency of the camera systems optical

components for the specific wavelength, and ∆𝜆 is the spectral bandwidth captured by this

detector. The power per pixel (𝑃 pixel) is derived by dividing 𝑃 detector by the total number

of pixels.

One difference between the conceptualized optical model (Fig. 3-1, top) and its repre-

sentation in the computational simulation (bottom) is that path radiance is not added to the
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Figure 3-1: Top: the optical propagation of water-leaving radiance through a drone-based
hyperspectral imaging system. The water-leaving radiance (A) first propagates through
a short path within the atmosphere (~100 m) and then passes into the imaging optics
of an airborne sensor at a given altitude (B). This radiance is then transmitted through
the imaging optics of the camera system (C) and imaged by the focal plane array (FPA),
which adds optical and electronic noise to the signal (D). If desired, an algorithm can
be applied to correct for glint artifacts before computing the measured, noisy, total water-
leaving radiances at different wavelengths (E). These are then used in ocean color algorithms
to compute any given OAC of interest (F). The overall effect of the camera system noise
can be determined by comparing these remote sensing estimates to the ‘truth’ values used
to initiate this simulation (G), which are derived either from in-situ measurements or input
data from aquatic optical modeling tools such as Hydrolight (Sequoia Scientific [Mobley and
Sundman, 2008]). Bottom: the mapping of this physical description onto the simulation
framework. Grey text indicates selectable parameters of camera systems that affect each
step.

total water-leaving radiance signal. Another difference is that transmission losses are not

subtracted from the total water-leaving radiance. This can be justified because the allowable

altitudes of small drones is typically low, such as the maximum 400 feet (roughly 122 m)
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set by the Federal Aviation Administration (FAA) in the United States [Federal Aviation

Administration (FAA), 2016a]. Over such distances the atmospheric transmittance and path

radiance contributions will be relatively minimal, though Mueller and Austin [Mueller and

Austin, 1995] do mandate correcting for both when slant ranges exceed 100 meters (which

in the example use cases covered in this paper are slightly exceeded due to the off-nadir

view-angle). If the transmission and path radiance effects were not ignored, the main effect

they would have would be on slightly changing the exposure time required to saturate the

full-well capacity. If required for any future simulation, this minimal path radiance can be

corrected for using one of a variety of atmospheric compensation models [Griffin et al., 2003].

For the use cases examined here, path radiance will be ignored as a source of error although

it could, in principle, be added to 𝐿t and propagated through the simulation framework if

desired.

3.3.3 Transmission through an optical train

The power incident on the detector is then propagated through the camera’s spectral ef-

ficiency and imaged by an individual pixel on the camera’s focal plane array (FPA). The

number of electrons imaged in each pixel is a function of the exposure time and quantum

efficiency [Eq. 3.2].

𝑁𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑠 = 𝑃𝑝𝑖𝑥𝑒𝑙 * 𝑡 *
𝜆

ℎ * 𝑐
*𝑄𝐸 (3.2)

The power of a given pixel (𝑃 pixel) is converted to energy by multiplying by time (𝑡), then

converted to number of photons by multiplying by wavelength (𝜆) and dividing by Plank’s

constant (ℎ) and the speed of light (𝑐) [Mobley et al., 2016a]. Finally, the number of electrons

is computed through multiplication with the spectral quantum efficiency (QE) for a given

camera’s imaging sensor.

In the example use cases covered in this paper, light is simulated passing through an

idealized camera system with characteristics roughly comparable in performance to a com-

mercially available hyperspectral line-scan unit (Resonon Pika L). The simulated camera

system has 2 nm spectral resolution, hardware spatial and spectral binning capabilities, an

f-number of 2.4, an instantaneous field of view (IFOV) of 0.71 mrads, a full-well capacity

of 35,000, and a focal length of 17 mm. The spectral efficiencies of the optical components

(which comprise the OE) are estimated from analogous components available from commer-
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cial optics suppliers (e.g. Thorlabs Inc., New Jersey USA). The QE is set following the

spectral efficiency of the camera’s focal plane array (FPA).

3.3.4 Application of noise

After the input radiance is propagated through the simulated camera system and onto the

focal plane array, simulated noise is applied to the signal. As stated, these simulated noise

sources include dark noise, read noise, shot-noise, and quantization noise. In the simulations

used in this paper, the read noise (Noiseread) [Eq. 3.3] was modeled as a Gaussian-distributed

random value with a mean of 0 and RMSE as provided by a manufacturer [Vliet et al., 1998].

𝑁𝑜𝑖𝑠𝑒𝑟𝑒𝑎𝑑 = 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(0, 𝑅𝑀𝑆𝐸) (3.3)

Within the simulation the read noise can readily be modified to include an offset value or

employ a different statistical distribution if desired, such as Poisson [Boncelet, 2005]. Dark

current shot noise dependent on exposure time is also added, following a Poisson distribution

[Eq. 3.4].

𝑁𝑜𝑖𝑠𝑒𝑑𝑎𝑟𝑘 = 𝑃𝑜𝑖𝑠𝑠𝑜𝑛((𝐸𝐶 * 𝐸𝑇 ).5) (3.4)

Here, Noisedark is the dark noise, EC is the electron current, and ET is the exposure time.

Values for EC can be obtained for actual cameras, from manufacturer’s data or calculated

through in-lab tests. As with the read noise, users can simulate dark noise with different

statistical distributions if desired, such as a Gaussian [Boncelet, 2005]. Next, Poisson-

distributed shot-noise is added [Eq. 3.5].

𝑁𝑜𝑖𝑠𝑒𝑠ℎ𝑜𝑡 = 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑁𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑠) (3.5)

Here, Noiseshot is the resultant signal with shot-noise and 𝑁 electrons is the number of electrons

measured on the sensor before shot-noise was added. It is important to take into account

that the noise is Poisson distributed, instead of the typically assumed Gaussian distributed.

In aquatic remote sensing the measured water-leaving radiances can be quite low in certain

parts of the spectrum (e.g., below 1000 electrons on the camera), where differences between

these two distributions can become significant.

Finally, quantization noise (Noisequantization), which arises due to quantization of the
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electrons into bits, is added. The theoretical quantization noise can be modeled as being

uniformly distributed [Boncelet, 2005]. Therefore, the variance has a value which depends

upon the full-well capacity (FC) and radiometric resolution (RR) [Eq. 3.6].

𝑁𝑜𝑖𝑠𝑒2quantization = (𝐹𝐶/2RR)2/12 (3.6)

In this simulation framework, quantization noise is not strictly implemented according to

Eq. 3.6 [Gow et al., 2007]. After applying these first three noise sources, the electrons

are converted to bits by first dividing the number of electrons by the camera’s full-well

capacity (FC), next multiplying by the maximum representable value by the analog-to-

digital converter (2RR), and finally rounding the result to the nearest integer [Eq. 3.7].

𝑆𝑖𝑔𝑛𝑎𝑙𝑞𝑢𝑎𝑛𝑡𝑖𝑧𝑒𝑑 = 𝑟𝑜𝑢𝑛𝑑(2RR * (𝑁𝑜𝑖𝑠𝑒𝑠ℎ𝑜𝑡 + 𝑁𝑜𝑖𝑠𝑒𝑑𝑎𝑟𝑘 + 𝑁𝑜𝑖𝑠𝑒𝑟𝑒𝑎𝑑)/𝐹𝐶) (3.7)

This implementation is more realistic than the theoretical approximation presented in Eq.

3.6, as the impact of quantization varies for each simulated measurement.

In the simulation, since the quantum efficiency of the camera system and transmission ef-

ficiency of the optical elements is known, the resulting ‘noisy’ measured signal (Signalquantized

in Eq. 3.7), expressed in bits, can be used to solve for the LT as measured by the noisy

and quantized camera system. In other words, a radiometric calibration can be applied to

estimate the radiance from the noisy signal.

3.3.5 Implementation of glint correction algorithms

After solving for the noisy, measured total water-leaving radiance (LT), the surface-reflected

light (glint) must be removed to recover the water-leaving radiance (Lw). A variety of

glint removal algorithms exist and each has it’s own assumptions and requirements for use.

One example algorithm is a NIR subtraction algorithm originally developed by Mueller

and Austin [Mueller and Austin, 1995; Mobley, 1999]. This method assumes a reflectance

coefficient based on the view angle of the instrument and it also assumes that the radiance at

750 nm is solely due to glint. To implement the algorithm, measurements of the downwelling

sky radiance and the water leaving radiance at 750 nm are required.

For the simulation, the Mueller and Austin glint removal approach [Mueller and Austin,

1995] was implemented as in Mobley [Mobley, 1999].

116



3.3.6 Estimation of OAC concentrations

Numerous algorithms have been developed to interpret spectral differences in a remotely

sensed reflectance signal to estimate OACs of interest. In aquatic studies a commonly

measured OAC is the concentration of suspended chlorophyll, which is an estimator for

the biomass of phytoplankton in a water body. A representative algorithm for chlorophyll is

‘Ocean Color 4’ (OC4), developed for use with satellite-sensed ocean spectral remote sensing

reflectance data. This algorithm exploits the increase in the remote sensing reflectance seen

in the green (560 nm) relative to the blue (443, 490, 510 nm) with increasing concentrations

of chlorophyll, by utilizing a maximum band ratio (MBR) approach [Eq. 3.8].

𝑀𝐵𝑅 =

(︂
𝑚𝑎𝑥(𝑅rs(443), 𝑅rs(490), 𝑅rs(510))

𝑅rs(560)

)︂
(3.8)

Here, 𝑅rs is the remote sensing reflectance at specific wavelengths (expressed in nm). A

log-space relationship between the MBR and chlorophyll concentration can be obtained by

utilizing fit coefficients (𝐶n) [Eq. 3.9].

log 10([𝑐ℎ𝑙]) = 𝐶4 log 10
4 (𝑀𝐵𝑅) + 𝐶3 log 10

3 (𝑀𝐵𝑅) +

𝐶2 log 10
2 (𝑀𝐵𝑅) + 𝐶1 log 10 (𝑀𝐵𝑅) + 𝐶0 (3.9)

These coefficients are typically determined empirically.

Another OAC of interest is the chlorophyll fluorescence line height (FLH), which involves

not the absorption properties of this pigment but its spectrofluorescence. In two example

use cases for how such hyperspectral cameras can be used to measure FLH (Section 3.4),

the fluorescence line height algorithm of Abbott and Letelier [Abbott and Letelier] was used

[Eq. 3.10].

𝐹𝐿𝐻 = 𝐿676 − (𝐿746 + (𝐿656 − 𝐿746) * (746 − 676)

(746 − 665)
) (3.10)

Here L is the normalized water-leaving radiance at specific wavelengths in nm [Gordon and

Voss, 2004]. The output of this algorithm (the FLH) is then typically used to estimate

chlorophyll fluorescence efficiency and primary productivity.
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3.3.7 Comparing simulated to known OAC concentrations: statistics

Simulated estimates for OACs are compared to any known in-situ (‘truth’ or actual) values

by computing the median absolute percent difference (MAPD) [Eq. 3.11] [Cui et al., 2013].

𝑀𝐴𝑃𝐷 = 100% * 𝑒𝑥𝑝[𝑚𝑒𝑑𝑖𝑎𝑛|𝑙𝑛(𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑/𝐴𝑐𝑡𝑢𝑎𝑙)|] − 1 (3.11)

The MAPD error metric equally weights errors relative to the actual value, which is necessary

for comparing estimation accuracy over large dynamic ranges. This metric can also be

computed between a high SNR sensor and the low SNR sensor to determine how large of an

effect the low SNR has on the derived remote sensing product.

3.4 Example Use Cases

In this section, several qualitatively impactful parameters (bold check marks in Table 3.1)

were quantitatively evaluated, to demonstrate the utility of the framework for selecting com-

mercially available cameras for specific remote sensing tasks. These test cases reveal how

the simulation framework can be used for specific remote sensing scenarios to determine the

impact of a single parameter on the remote sensing product, select between different camera

systems, estimate the optimal operational parameter (e.g., exposure time) before deploy-

ing the system, and reveal camera parameter imposed limitations on the remote sensing

accuracy.

3.4.1 Modeling the required radiometric resolution of cameras to re-

motely estimate chlorophyll FLH

Estimation of chlorophyll FLH requires wavebands in the red section of the spectrum [Eq.

3.10], which in real-world aquatic systems typically have a lower magnitude than the blue

and green sections of the spectrum. Since the FLH depends on the low magnitude red

measurements, it will be more susceptible to quantization noise, which is inversely propor-

tional to the radiometric resolution [Eq. 3.7] and independent of the signal level. Since

the radiometric resolution could theoretically limit the accuracy of the FLH estimates, it is

worth investigating the quantitative impact of the radiometric resolution using the simula-

tion framework before selecting a camera system for FLH measurement.
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To determine the quantitative impact of the radiometric resolution on the estimated FLH,

Hydrolight simulated ocean color data were passed through the optical simulation framework

and evaluated a simulated cameras FLH estimation accuracy. The Hydrolight simulated

water-leaving radiances have OAC concentrations as defined in the first dataset, ‘Case II’,

in Table 3.2. These OAC concentrations mimic a Case II scenario, with a wide range

of chlorophyll, suspended particulate matter, and colored dissolved organic matter values.

The simulated water-leaving radiance is propagated through the simulation framework as

in the bottom of Figure 3-1, with the camera system that approximates the characteristics

of a representative hyperspectral line-scan camera (similar to the Resonon Pika L, section

3.3.2). Using the same camera system for each run, the radiometric resolution was varied

to determine its impact on the FLH measurement accuracy. The exposure time was set to

fill the full-well to roughly one half its max value, to stay away from the saturation region

and allow for a wider range of environmental fluctuations without saturation. The MAPD

is used as a metric to evaluate the accuracy of the simulated camera’s measured FLH, it is

calculated between the FLH measured from the optically noiseless (i.e., ideal case) and the

FLH estimated from the optically noisy (including shot-noise, read noise, quantization noise,

etc.) Mueller and Austin corrected radiance data. The standard deviation of the MAPD

is also calculated on 30 individual runs, each with its own random noise sources. The

MAPD and standard deviation quantitatively represent the error induced by the combined

electronics and optics noise sources, and illustrate how the radiometric resolution limits the

estimated FLH accuracy.

Results from this simulation (Fig. 3-2, VIS-blazed) inform users about how a single

camera parameter, in this case radiometric resolution, affects the accuracy of a given remote

sensing product of interest, in this case chlorophyll FLH. In these simulated results, a radio-

metric resolution below 10 bits degrades accuracy in FLH estimates (Fig. 3-2, VIS-blazed)

and above 10 bits MAPD plateaus at ~9%, suggesting that above 10 bits the radiomet-

ric resolution is negligible in comparison to the other noise sources (e.g., shot-noise, read

noise, dark noise). Below 10 bits the noise increases exponentially. In this particular OAC

remote sensing scenario, radiometric resolution does not limit the accuracy at 10 bits and

above, as other noise sources dominate the error. Such quantitative information regarding

radiometric resolution could be important if camera data storage or data transfer speeds are

near-limiting in a given camera field application.
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Figure 3-2: The median median absolute percent difference (MAPD) between the optically
noisy and noiseless fluorescence line height (FLH) estimate is shown as a function of the
radiometric resolution (bit count) and grating blaze type. The VIS-blazed line shows the
MAPD when using a visible blazed grating, and the NIR-blazed line shows the MAPD when
using a NIR blazed grating instead.

3.4.2 Determining if a NIR-blazed grating reduces the minimum achiev-

able MAPD for measuring chlorophyll FLH

As noted above, for this particular remote sensing scenario FLH estimates from this sim-

ulated camera system are shot-noise limited to ~9% accuracy as long as the radiometric

resolution is 10 bits or higher. Although this error may appear minimal it can compound to

further increase inaccuracies in the estimated primary productivity, since the relationship

between the FLH and chlorophyll can vary by a factor of 8 [Abbott and Letelier]. Therefore,

it may be ideal to further reduce the error by reducing the shot-noise. By increasing the

efficiency in the NIR, the intensity of the captured signal is also increased, thereby reduc-

ing the shot-noise limited MAPD. Increasing the efficiency can be achieved by utilizing a

NIR-blazed grating optimized for this part of the spectrum. Interestingly, by increasing

the intensity of the measured signal, the impact of the quantization noise as a function of

radiometric resolution may be reduced in addition to the reduction in the minimum MAPD.

Indeed in this complex camera parameter design space changes in multiple parameters

alter the impact that each parameter has on the estimated MAPD. Increasing the efficiency
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in the NIR not only reduces the minimum MAPD to ~7.4% (Fig. 3-2, NIR-blazed), but also

reduces the effective impact of the radiometric resolution (Fig. 3-2). When a NIR blazed

grating is used instead of a visible grating, an 8 bit ADC achieves a similar error as a 12

bit ADC on the visible-blazed grating (Fig. 3-2). This simulation outcome demonstrates

that changing multiple camera parameters can result in otherwise unforeseeable effects on

the overall accuracy for a specific remote sensing product.

3.4.3 Evaluating the trade-off between spatial resolution and accuracy

for the remote estimation of pelagic chlorophyll between spatially

heterogeneous Antarctic sea ice floes

Drone-based ocean color remote sensing tasks in spatially heterogeneous regions (e.g., marginal

ice zone, kelp farms, interface of 2 distinct water bodies) sometimes requires both fine spatial

resolution data and a large area of coverage. These two requirements are at odds since flight

speed is inversely proportional to the spatial resolution (limited by smearing) but directly

proportional to the spatial coverage. To maximize area of coverage while achieving the re-

quired spatial resolution, users will need to minimize the camera’s exposure time. However,

if the intensity of the camera’s signal is too low, the remote sensing estimation accuracy

may be negatively effected. In this scenario, simulation can be useful to estimate the re-

quired exposure time to maintain a pre-defined accuracy for the remote estimation task,

while simultaneously capturing fine spatial resolution data over a large spatial extent.

One example spatially heterogeneous remote sensing task that simultaneously requires

coverage over a large spatial extent and fine spatial resolution is estimating the environmen-

tal effects on the primary production in high sea ice cover in the Southern Ocean. A recent

remote sensing based study utilizing SeaWiFS ocean color data showed that the phytoplank-

ton blooms in the marginal ice zone have a strong relationship with wind speed [Fitch and

Moore, 2007]. Their study was limited by the spatial and temporal resolution, at 1 km and

30 days respectively, of the SeaWiFS satellite sensor. A drone based survey could deter-

mine at what sea ice cover percentage the relationship stopped holding and could achieve

finer temporal resolution data (since it would fly underneath cloud cover). Additionally, the

drone platform could provide finer spectral resolution data, which could enable comparison

of the phytoplankton community structure and how that changes with wind speed. Clearly,

the higher temporal, spatial, and spectral resolution data provided from a drone-borne hy-
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perspectral camera could substantially increase the efficacy of studies focused on primary

producers in the Southern Ocean.

To determine a first order estimate of the spatial resolution required to identify algae

in open water within an area of high sea ice concentrations, image processing techniques

were applied to a set of images of Antarctic sea ice taken with an RGB camera (raw data

provided by Steer et al. [Steer et al., 2008]). In an example image (Fig. 3-3) areas within

the sea ice itself can be seen to contain green color, indicative of the presence of ice algae

(panel A). As well, areas of open water between ice floes may also contain some biomass of

chlorophyll containing phytoplankton (panel B). To determine the spatial resolution required

to distinguish the open water pixels in each image, the image was first thresholded using both

the red section of the spectrum and the ratio of blue to red light. Then on the thresholded

image, the fraction of water pixels that could be imaged without sea ice contributions at a

variety of spatial resolutions were calculated. This process was repeated for 250 images with

high sea ice cover in the Weddell Sea, and the fractional non-ice (open water) areas were

sorted by sea ice concentration within each image (Fig. 3-4). In areas with high fractional

sea ice cover, this analysis suggests that the total areal fraction of open water that can be

imaged is significantly reduced as spatial resolution coarsens.

To estimate the effect of exposure time on both the fraction of water that can be imaged

and the accuracy of the chlorophyll estimates, a 12 bit instantiation of the hyperspectral

camera from the first example use case (4.3.4.1.) was used to image Hydrolight simulated

ocean color radiances at a variety of exposure times. The simulated ocean color data was

made using concentration ranges from the Weddell Sea dataset (Tab. 3.2). The simulated

camera’s exposure time varied from 40 ms, where it nearly saturated the full-well capacity,

down to 1 ms. The exposure time is proportional to the signal-to-noise ratio and inversely

proportional to the spatial resolution (limited by spatial smearing). A 3rd order polynomial

relating the Fluorescence Line Height (FLH) to the [chl] is trained on the noiseless FLH and

the actual [chl], and then applied to the noisy data to estimate the [chl]. The simulation

revealed that the MAPD between the simulated values and the truth values decreased expo-

nentially with exposure time (spatial resolution) (Fig. 3-5). Achieving the highest MAPD

requires the longest exposure time, but that requires sacrificing significant portions of the

water in images with the highest sea ice cover percentage (Fig. 3-4). If researchers were

interested in estimating the pelagic chlorophyll in regions with 99% concentrations of sea
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Figure 3-3: An example RGB image of sea ice in the Weddell Sea (panel A), with dimensions
of 127 m by 82 m (plotted from raw data provided by Steer et al. [Steer et al., 2008]).
Pixels representing open water (panel B, black points within red circle) were identified by
thresholding the red intensity and blue to red ratio. Additional thresholding can identify
areas of algal presence within the sea ice itself (panel C) through the ratio of blue to red
light.

ice, they could gain 6% of fractional area covered by increasing the spatial resolution from

1.6 to 0.8 m (Fig. 3-4, black dot and dark grey dot). The lower exposure time (spatial

resolution) would increase the MAPD in these regions, by 8.9% (Fig. 3-5, from black dot to

dark grey dot). Depending on the application, this trade-off may be worthwhile.

3.4.4 Estimating the full-well capacity imposed limitations on remotely

estimating algal biomass in Antarctic waters

The previous example focused on estimating chlorophyll in the water column, but up to

50% of the primary productivity in certain polar regions can occur within the sea ice itself

[Gosselin et al., 1997; McMinn et al., 2010]. A further 50 % of the sea ice primary production

typically occurs within 5 m of the ice edge, and therefore requires high spatial resolution

[Grose and McMinn, 2003]. Unfortunately, the reflectivity of sea ice with algal contributions

can be much higher than the water column, due to contributions from the highly reflective

sea ice. Therefore, capturing all of the primary productivity by simultaneously imaging both

the pelagic and sea ice primary production in this region will require a high dynamic range

(full-well capacity).
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Figure 3-4: The median filtered fraction of the the total water that is imaged without ice
contributions as a function of sea ice concentration and spatial resolution for 250 images
in high sea ice cover [Steer et al., 2008]. The dark grey and black dots correspond to 0.8
meter and 1.6 meter resolutions, the chlorophyll estimation accuracy at these resolutions is
estimated in Fig. 3-5.

The processed red, green, and blue (RGB) image in Figure 3-3 can provide a first order

estimate to the dynamic range required to simultaneously image both the pelagic and sea

ice algae (Fig. 3-3, B & C respectively). To compare the intensities of the sea ice and sea

ice algae, only the green component of each pixel was compared. This color was chosen

because it has the highest intensity in images of sea ice algae, which will limit the saturation

of the detector. The 99th percentile green intensity of sea ice algae pixels (Fig. 3-3, C,

greenish-yellow pixels) is 83.58. Assuming the sea ice has a reflectance of roughly 80%

[Malinka et al., 2016], and the median green intensity of the sea ice pixels is 134.4, then the

99th percentile brightest green sea ice algae is roughly 49.75% reflective. This reflectance is

calculated by dividing the sea ice reflectance (80%) by the median intensity of the sea ice

in the green (134.4) and finally multiplying by the 99th percentile green intensity of the sea

ice algae (83.58). The simulated waters used to produce Figure 3-4 had a max reflectance

of roughly 2%. Since the final point in Fig. 3-4 uses an exposure time that saturates the

full-well to ~90% of its capacity, this wide range could not be captured without saturation

of the full-well capacity. Therefore, to not saturate when capturing images of the sea ice
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Figure 3-5: The median MAPD and standard deviation (error bars) from the Mueller and
Austin [Mueller and Austin, 1995] corrected data are plotted versus the along-track spatial
resolution (a function of exposure time) of a drone flying at 100 MPH, the maximum FAA
limited speed [Federal Aviation Administration (FAA), 2016a]. The dark grey and black dots
correspond to the spatial resolutions selected in Fig. 3-4, and show a trade-off in fraction
of water area represented and MAPD. The light grey dot shows the high error imaging the
sea ice algae imposes on the pelagic chlorophyll estimates. The ordinate axis uses log-space
to increase visual clarity by separating the error bars at the lowest spatial resolutions.

algae, a decrease in the exposure time (proportional to spatial resolution in Fig. 3-4) of

a factor of at least 25 (~49.75%/2%) is required. With no changes in the camera system,

this would limit the estimation accuracy of pelagic primary production to ~114% MAPD

(Fig. 3-5, light grey dot). Therefore, the camera system requires re-engineering to be able

to simultaneously estimate primary production in both the ocean and the sea ice.

3.5 Discussion

Extensive guidelines for SNR requirements have been developed for aquatic remote sensing

using satellites [Mueller et al., 2003; Lucke et al., 2011], but these will likely be difficult to

apply for drone-based use of hyperspectral cameras for similar applications. Recent work

has examined SNR characteristics of drone-compatible hyperspectral cameras using field

observations in the context of estimating chlorophyll biomass and particulate backscatter
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[O’Shea et al., 2020]. Such field-oriented research suggests that computational simulation

frameworks, like the one presented here, can play a valuable role in quantitatively assessing

the effect of low SNR in specific wavelengths, on a specific remotely sensed environmen-

tal variable of interest. The example use cases presented in this study demonstrate how

specific individual camera parameters can be isolated and examined via simulation to deter-

mine their influence on these intended remote sensing products. The same approach may be

valuable for weighing a candidate spectral camera system with respect to its performance pa-

rameters, for choosing between multiple commercially available cameras, for setting camera

operational parameters, and for uncovering potential engineering limitations in drone-based

spectroradiometric imaging of natural water bodies.

In the first use case, this simulation framework was used to investigate the impact of

radiometric resolution, a single performance characteristic, in an application to measure the

very low intensity chlorophyll fluorescence emission of natural waters. Since quantization

noise decreases exponentially with increasing radiometric resolution [Eq. 3.6], an exponen-

tially decreasing impact on the FLH estimates was expected. The simulation demonstrated

how this effect can be specifically quantified in terms of MAPD given user choices in camera

radiometric resolution (Fig. 3-2). For this use case, choosing cameras with radiometric res-

olutions greater than 10 bits will provide no additional improvement in MAPD, and error

in this range becomes dominated by other sources of noise, e.g. shot-noise. Without such

a simulation, the threshold at which increased radiometric resolution improves MAPD for

this specific task would be very time consuming to determine experimentally. This exam-

ple quantifies exactly how extra precision in digitizing is effectively lost in the electronics

and shot-noise. In such a scenario a camera system design that optionally allows greater

bit-resolution may be instead operated at a lower resolution, e.g. to store more data during

a drone survey without loss of ultimate accuracy in estimated FLH. Similarly, lower radio-

metric resolution data can be downloaded off the camera more rapidly during flight, thus

enabling faster imaging speeds again with no loss of accuracy in FLH. From the perspective

of accuracy in the intended remotely sensed OAC (here, FLH), this analysis may provide

the designer insight into the expected accuracies in drone-estimated FLH, which with for

example 10-bit resolution may be unnecessarily precise given known environmental variabil-

ity in this signal [Abbott and Letelier]. In such cases 8-bit resolution may be sufficient, for

example. Such considerations would be challenging to examine comprehensively through
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empirical field studies, but are reasonably tractable through simulation.

The second use case also addressed an inherent aspect of hyperspectral cameras - the

choice of grating - that could in principle be altered to potentially improve accuracy of a

remotely sensed environmental parameter, here again FLH. The simulation was modified to

mimic a camera incorporating a NIR-blazed grating, as opposed to the visible-wavelength

grating that is customarily expected. Simulation results (Fig. 3-2) reveal what trade-offs

arise for drone-based measurement of FLH when selecting between a 12-bit camera with

a grating blazed for the visible spectrum, and an 8-bit camera with a grating blazed for

the NIR spectrum. Here the simulation reveals that error in the FLH estimates will be

similar between an 8-bit NIR-blazed camera system and a 12 bit VIS-blazed camera system,

but otherwise this may be unclear from purely empirical observations. Such a simulation

approach becomes even more valuable when a larger number of possible choices in camera

parameters must be weighed.

The third use case examined choices in operational parameters, such as exposure time,

that can have important consequences when imaging water-leaving radiances with small

aerial drones over natural water bodies. Drones are especially valuable for studying aquatic

systems that exhibit substantial heterogeneity on fine spatial scales, such as the marginal

ice zone in polar oceans, aquaculture farms in coastal systems, and river outflow regions in

estuaries. In such scenarios it may be desirable to cover a large area at the finest possible

spatial resolution, which would require a low exposure time and a drone flying at maximum

velocity. A user in this case will need to know the minimum exposure time required to

obtain a desired accuracy in a given OAC of interest. This simulation tool explored this

class of problem in the context of ocean areas covered with interspersed sea ice, quantifying

the limitations on spatial resolution set by the actual spatial heterogeneity in the image

(Fig. 3-4) as well as trade-offs between effective spatial resolution and accuracy in any given

remotely sensed variable of interest (Fig. 3-5). From this analysis, a researcher desiring to

image phytoplankton chlorophyll in the open water among 99% sea ice concentration would

opt to reduce the target spatial resolution from 1.6 m to 0.8 m to be able to capture the

6% increase in the fractional area of the water, sacrificing accuracy in MAPD only by 8.9%.

This would represent a strategy to improve mapping for the presence of phytoplankton

between floes at the expense of accuracy in estimates of phytoplankton biomass inferred

from remotely sensed chlorophyll. Such insight is valuable to have before conducting an
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actual aerial camera deployment in the field.

The fourth use case examined an under-explored use of aerial hyperspectral cameras

that may have significant applications in aquatic remote sensing. The simulation examined

how the dynamic range (full-well capacity) of currently available spectral cameras limits the

estimation accuracy for chlorophyll between ice floes in the earlier case of intermittent sea

ice cover (Fig. 3-4). By quantifying this problem through simulation, optical designers can

better develop engineering solution to this dynamic range limitation. The solution explored

here leverages the phenomenon of multiple orders produced by the gratings that are often

used to provide dispersion in line-scan cameras [Sigernes et al., 2018]. Gratings split light into

multiple orders with different efficiencies and spectral resolutions, and generally the lower

efficiency higher orders are engineered out of the final measurement, effectively discarded

as wasted photons. The second order spectrum, which has lower efficiency, could be used

to image the much brighter sea ice algae, while the higher efficiency first order spectrum

could image the chlorophyll in phytoplankton between floes. With this approach the overall

camera exposure time could be increased to optimize estimation accuracy of phytoplankton

chlorophyll, leveraging the first order spectrum where the sea ice algal signature saturates,

while retaining the second order spectrum to estimate sea ice algal chlorophyll without

saturation. Similar situations with high dynamic ranges can reasonably be expected in

many other drone-based aquatic imaging scenarios such as in surface-ocean kelp farms or in

complex river outflows.

This framework is not comprehensive for all potential aspects of hyperspectral imaging,

and camera artifacts not examined here include keystone [Mouroulis and Green, 2018], smile,

stray light, and environmental fluctuations due to variability in insolation. Keystone and

smile introduce distortions that can presumably be corrected for via calibration, but stray

light is a potentially deleterious issue in scenarios where radiances are dramatically different

between adjacent pixels, as would be seen from aquatic bodies with substantial surface glint

on nearby wave facets. Here, stray light from glint pixels could be incident on adjacent pixels

on the camera’s FPA, requiring correction. Surface glint of reflected sunlight or skylight is

a real-world source of ‘noise’. Another aspect of these simulations that merits mention is

the use of radiative transfer models (e.g., Hydrolight) to generate synthetic spectra for the

different use cases. This can be valuable when no real-world observations are available,

but synthetic radiance data may be incomplete as in the case of Hydrolight runs using the
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provided absorption curves, which stop at 700 nm and are interpolated into the NIR. In

these four exploratory use cases this limitation was not a concern, but it may be important

in scenarios where OACs of interest require exact measurement of the NIR [O’Shea et al.,

2020].

3.6 Conclusion

A simulation framework can provide valuable information for exploring quantitative rela-

tionships between hardware properties, deployment options, and OACs of interest in drone-

based aerial monitoring of aquatic systems. Although it is examined here in the context of

an idealized hyperspectral camera, this framework can be readily extended to assessment of

multispectral camera systems after slight modifications [O’Shea, 2020]. The use cases pre-

sented here involved assessments of a) existing camera systems with predetermined choices

in particular parameters, b) potential modifications to existing camera designs, and c) po-

tential new uses of existing hyperspectral camera systems. All three modes of application

can advance the use of spectral imaging of natural water bodies for research and monitoring

purposes.
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Chapter 4

Spectral super-resolution via spectral shift in

spatially oversampled images: Considerations for

sub-meter ocean color remote sensing

Abstract

Achieving a fine spatial resolution over the dark ocean comes at the cost of spectral resolution
to maintain the required signal-to-noise ratio for ocean color remote sensing applications.
Homogeneous oceanic regions oversampled by grating-based imaging spectrometers contain
non-redundant spectral information, due to a spectral shift along the spatial axis, which can
be leveraged to increase accuracy of the spectral frequency representation at values higher
than the pixel-limited Nyquist frequency. Specifically, we demonstrate that an imager with
1.8 nm of spectral shift, 1.7 nm of spectral blur, and a 2.1 nm pixel sampling interval can
estimate the spectral content produced by a point spectrometer with 0.2 nm pixel sam-
pling interval and 0.7 nm of spectral blur with 5.3% error, as opposed to 34.8% without
spectral shift, by using support vector regressions (SVRs). When properly trained, this
technique even provides increased spectral resolution on data suffering from high Gaussian
and non-Gaussian noise sources typical of ocean color scenarios. Finally, the super-resolution
technique does not require the full image width, and can provide a significant accuracy in-
crease even if only half of the spatial data is input into the SVR. While this technique
increases the accuracy of frequency content slightly beyond the Nyquist on laboratory gen-
erated ocean color signals, further research must be conducted to increase generalizability
of the technique.

4.1 Introduction

Certain ocean color remote sensing applications, such as imaging the interface between a

river out-flowing into the coastal ocean, require a sub-meter spatial resolution to separate the

spectral content at discrete interfaces. However, the sub-meter spatial resolution required
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to separate the distinct regions will spatially over-sample in homogeneous regions, such as

the distinct water bodies on either side of the interface. In ocean color remote sensing these

over-sampled regions are typically binned for km scale measurements from satellites [Carder

et al., 1993; Hu et al., 2012; Davis et al., 2002], to increase the signal-to-noise ratio (SNR)

to sufficient levels for the specific task, or spatially filtered for sub-meter applications from

drones [Totsuka et al., 2019; Kwon et al., 2020], to reduce the impact of fluctuations in the

surface reflected light. An alternative image processing approach could leverage sub-pixel

shifts in the measured spectrum within the homogeneous regions, to increase the spectral

resolution in post-processing. This additional spectral information could then be used for

spectral inversion tasks whose accuracy is dependent upon the number of input wavelengths,

such as phytoplankton functional type identification [Aiken et al., 2014; Lubac et al., 2008],

or tasks that require spectral resolutions beyond the commercially available values, such as

satellite ocean color validation [Zibordi et al., 2017]. The sub-pixel shifts typical in grating

based imaging spectrometer data are the result of optical aberrations, such as the spectral

curvature effect (‘smile’) [Mouroulis et al., 2000; Fisher and Antomades, 1998; Davis et al.,

2002] or focal plane array misalignment [Meola, 2018; D’Odorico et al., 2010]. No matter

the source, machine learning algorithms may be able to leverage the non-redundant spectral

information contained within the sub-pixel spectral shifts to increase the spectral resolution

beyond the hardware limit. While applying the machine learning algorithm to terrestrial or

industrial remote sensing tasks would be relatively straightforward due to their low noise and

high intensity, ocean color remote sensing requires further introspection as the low signal-to-

noise ratio (SNR) and high levels of environmental noise (e.g., surface reflected light) may

limit the efficacy of such an algorithm [O’Shea et al., 2020; O’Shea and Laney, 2020].

This paper demonstrates the use of support vector regressions (SVRs) to leverage the

sub-pixel shifts in homogeneous data to achieve spectral super-resolution beyond the pixel-

limited Nyquist frequency. The paper then addresses the potential limitations of applying

this spectral super-resolution technique for sub-meter ocean color data, due to its low optical

SNR, high environmental noise, limited spatial range, and specific spectral content.
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4.2 State-of-the-art spectral super-resolution techniques

Broadly, spatial super-resolution (SR) aims to use additional information captured within

low resolution images to increase the spatial resolution beyond the nominal system limits

set by either the pixel-limited sampling interval or point spread function (PSF) [Yang and

Huang, 2018]. The additional, non-redundant, information can be from sub-pixel shifts

between multiple low-resolution (LR) images of the same scene (which vary temporally or

spatially) [Carles et al., 2014; Tsai and Huang, 1984; Kim et al., 1990], a priori statistical

information (i.e., via learned dictionaries) for single image super-resolution [Yang and Huang,

2018], or knowledge of the systems physics. The initial theoretical considerations of using

additional images to increase the spatial resolution occurred in 1984 [Tsai and Huang, 1984].

Since this seminal paper, significant work has been done to achieve spatial super-resolution

through a variety of different methodologies for numerous applications ranging from medical

to industrial applications [Abd El-Samie et al., 2012; Yang and Huang, 2018].

Within the spectral remote sensing domain, SR techniques have mainly been used to

increase the spatial resolution of the spectral images. Two of the main categories of super-

resolution techniques that have been used include: single image SR leveraging dictionary-

based learning, which learns correlations between low resolution and high resolution data

[Liebel and Körner, 2016], and sensor fusion between a low spatial but high spectral resolu-

tion imager and a high spatial but low spectral resolution imager [Abd El-Samie et al., 2012;

Pan and Shen, 2019; Fang et al., 2018; Ma et al., 2014]. In the dictionary-based learning

technique, correlations between the low spatial resolution data and the high spatial resolu-

tion data are learned from a prior dataset. A main limitation of this approach is that the

correlations must stay the same in any future images (i.e., the technique will not provide

high accuracy if the subject of the images departs from the learned statistics). In the sensor

fusion technique, correlations between the low spectral resolution and high spectral reso-

lution data are made, assuming sparsity, to achieve a high spectral resolution and spatial

resolution output [Abd El-Samie et al., 2012]. In one example, the spectral information from

a multispectral camera was fused with a high spatial resolution RGB camera, to achieve a

high spatial and spectral resolution image [Pan and Shen, 2019]. While increasing the spatial

resolution is useful in heterogeneous regions, these techniques would not provide meaningful

information in sub-meter sampled ocean color scenarios where the spatial resolution is only
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required to separate distinct regions.

Researchers have focused significantly less on spectral super-resolution, which overcomes

the spectral resolution limits of the available hardware by leveraging non-redundant spectral

information contained within the images. Again a large focus of single image spectral SR

has been on dictionary-based techniques. Just like in the spatial resolution case, in coupled

dictionary learning correlations between the low spectral resolution data and high spectral

resolution data are learned from a sample dataset, and then applied to the low spectral

resolution data to achieve high spectral resolution estimates. A coupled dictionary learning

approach was successfully applied to terrestrial remote sensing data by learning correlations

between satellite sensors with different spectral resolutions [Fotiadou et al., 2019]. In addi-

tion to being proven on terrestrial targets, dictionary based-learning has also been applied

to ocean color remote sensing, where the spectral resolution was increased by assuming

sparsity of the components [Charles et al., 2014]. While most research has focused on us-

ing dictionary-based learning to increase the spectral resolution of preexisting sensors, the

methods can also be used to optimize the bands required for future design, to obtain the

best estimates of the hyperspectral data [Gewali et al., 2019]. A large limitation of these

spectral correlation approaches is that they rely on pre-learned information, and may not

transfer well to novel datasets.

A promising new area of spectral SR leverages optical information contained within

each image due to the imagers design, instead of relying on correlations learned from prior

datasets; thus enabling generalization to a broader range of input signals outside of the

training sets statistics. A widely utilized technique in this domain is the introduction of a

coded aperture to introduce sparsity into the imaging system, which can then be leveraged to

increase the spectral resolution [Galvis et al., 2015]. Another spectral SR technique overcame

the pixel-limited Nyquist frequency by leveraging the Moiré effect; and ended up increasing

the spectral resolution by a factor of 10 [Konishi et al., 2016]. In yet another technique,

the spectral resolution achievable by a Fourier imaging spectrometer overcame the Nyquist-

limited value by tilting the axis relative to the imaged interferogram on the focal plane

array, so that the imaged fringe’s were slightly offset on a pixel-by-pixel basis [Watanabe

and Furukawa, 2018], thus introducing sub-pixel shift. This same idea of shifting the focal-

plane array was also applied to a grating based imaging spectrometer to increase the spectral

resolution beyond the hardware limit in a seminal study by Kitano et al. [Kitano et al.,
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2020]. Overall, these techniques that leverage non-redundant information within the image

can theoretically generalize to a broader range of input signals as they increase the fidelity

of the data by leveraging information added by the optical system, instead of correlations

learned from prior data.

4.3 Application to Sub-meter Ocean Color Remote Sensing:

Motivation And Limitations

Specific regions of the ocean require sub-meter spatial resolution to sense ocean color fea-

tures, but end up oversampling homogeneous sections of the ocean. Example regions include

sensing between cracks in the sea ice [O’Shea and Laney, 2020], mapping algal mats, or imag-

ing the interface between water bodies, such as a river out-flowing into the coastal ocean

(Fig. 4-1). In this last example, the interface requires sub-meter data to separate distinct

regions and potentially resolve mixing, but either side of the interface may be over-sampled.

As previously mentioned, the pixels comprising the over-sampled regions are typically either

binned to increase the signal-to-noise ratio for sensitive ocean color tasks [Carder et al.,

1993; Hu et al., 2012; Davis et al., 2002] or spatially filtered to reduce the impact of fluc-

tuations in surface reflected light [Totsuka et al., 2019; Kwon et al., 2020]. However, these

additional filtering steps do not substantially increase the fidelity of the data if the SNR

is non-limiting and glint has already been spectrally corrected [O’Shea et al., 2020]. These

additional spatial measurements could instead be used to increase the spectral resolution for

specific tasks which are either ill-posed, such as phytoplankton species identification (phyto-

plankton functional type identification), or have high spectral resolution requirements, such

as satellite ocean color validation [Zibordi et al., 2017].

Unfortunately, there are a few optical characteristic of sub-meter ocean color data which

may limit the efficacy of a spectral super-resolution algorithm. First, hyperspectral mea-

surements of the coastal ocean can have low signal-to-noise ratios, ranging from 10-70 in

near ideal conditions [O’Shea et al., 2020; Honkavaara et al., 2013], but require high SNRs

for high accuracy. The variations in the SNR could lead to poor performance of the SR

approach, as increased noise can non-linearly effect the accuracy of spectral SR techniques

[Sezer and Altunbasak, 2018]. Second, light reflected off the surface of the ocean on ei-

ther side of the interface breaks the homogeneous assumption required for the proposed

135



algorithm. Capillary waves induce cm scale fluctuation in the reflection coefficient, which

can vary by 35% to 100% depending on wind and viewing conditions [Carrizo et al., 2019].

While these fluctuations are largely corrected by spectral algorithms, there still exist slight

offsets due to imperfect correction of the surface reflected light [O’Shea et al., 2020]. These

imperfections may limit the homogeneity assumptions of the radiance from each side of the

interface. These two characteristics of ocean color data, the low signal-to-noise ratio and

the imperfect glint correction, limit the homogeneity assumption and therefore the efficacy

of spectral super-resolution approaches, if the SR techniques are not appropriately trained

on data containing these optical characteristics.

Figure 4-1: The interface between a river with high colored dissolved organic matter
(CDOM) and the coastal ocean, dominantly containing green algae, in northern Alaska.
High spatial resolution images are required to sense the interface (grey bar), while the ho-
mogeneous waters in the high CDOM river (brown bar, left) and coastal ocean waters (green
bar, right) are over-sampled. Photo credit: Luka Ćatipović.

4.4 Methods

4.4.1 Sources of Sub-Pixel Spectral Shift in Grating Based Imaging Spec-

trometers

As previously mentioned, sub-pixel spectral shift can occur in images taken by grating-based

imaging spectrometers from either optical misalignment [Meola, 2018; D’Odorico et al.,

2010], for example a tilted focal plane array relative to the optical axis of the system, or the

spectral curvature effect (‘smile’) [Mouroulis et al., 2000]. An ideal imaging system without

optical aberrations imaging a homogeneous target will produce monochromatic images of

the slit that maintain the same vertical position as a function of the spatial domain (Fig.

4-2, A). If the focal plane array is tilted relative to the optical axis, then each spatial pixel

within a given row will have slightly different spectral composition due to spectral shift

along the spatial axis (Fig. 4-2, B). In a non-ideal imager which suffers from the spectral
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curvature effect, the monochromatic image of the slit produced at each wavelength varies

as a function of the spatial axis (Fig. 4-2, C) [Mouroulis et al., 2000]. When sampled by an

on-axis (or even off-axis) focal plane array (Fig. 4-2, D) the spectral content of the pixels in

each row then contains sub-pixel spectral shifts across the spatial axis. No matter the cause

of spectral shift, when imaging a homogeneous target these sub-pixel shifts theoretically

provide the non-redundant information required for spectral super-resolution.

Figure 4-2: In an ideal image of a homogeneous target made from a imaging spectrometer,
the vertical position of any individual spectra does not vary as a function of spatial location
(A). The sub-pixel spectral shift required for super-resolution can be induced in ideal imagers
by tilting the focal plane array (FPA) relative to the optical axis (B, red box), or can occur
in non-ideal imagers suffering from the spectral curvature effect (‘smile’, C) when measured
by an on-axis FPA (D, red box).

4.4.2 Dataset collection: Images with sub-pixel shift and associated truth

spectra

Training a machine learning approach for spectral super-resolution from homogeneous im-

ages suffering from a wide array of noise sources requires a large dataset of coarse spectral

resolution images with sub-pixel spectral shift and ‘truth’ spectra measured at a finer spec-

tral resolutions. The optical setup to collect such a dataset requires a tunable spectral

output that can be simultaneously imaged by the truth and test instruments (Fig. 4-3).

The setup begins with a 20 W tungsten halogen light that provides a broad spectrum as

input to a digital monochromator (Fig. 4-3). The digital monochromator rotates through

a variety of wavelength passbands for random (uncorrelated) amounts of time to generate

the test spectra. The wavelength spacing between stopping points is 1 nm, plus or minus a

random (uncorrelated) amount (max of 0.625 nm) at each central wavelength. The output

spectra propagates through a Thorlabs 50 um bifurcated fiber, which is a fiber with a sin-

gle SMA connector with two 50 um fibers that splits into two SMA connectors each with
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their own output. The bifurcated fiber allows nearly identical light to be output to two

different instruments. The two instruments include the ‘truth’ Ocean Optics Spectrometer,

which has a 0.2 nm sampling interval and 0.7 nm of spectral blur [full-width half-maximum

(FWHM)], and the ‘test’ Resonon Pika L imaging spectrometer (detailed below). These two

instruments are hardware triggered so that they measure the same input signal.

Figure 4-3: A 20 Watt Tungsten Halogen source provides white light as input to a digital
monochromator. The monochromator shifts wavelengths after random amounts of time, to
generate a randomly generated spectral output. The light passes through a 50 micrometer
bifurcated fiber, which allows the same input light to pass through a ‘truth’ spectrometer
with fine spectral resolution (0.7 nm FWHM of spectral blur, 0.2 nm sampling) and a
’test’ imaging spectrometer with coarse (1.7 nm FWHM of spectral blur, 2.1 nm sampling)
spectral resolution. The instruments are hardware triggered so that the measure the same
input signal.

The Resonon Pika L imaging spectrometer was chosen as the test instrument as it has

already been proven for ocean color measurement [O’Shea et al., 2020]. The imaging spec-

trometer’s spectral resolution is limited by the slit-width, which imposes 1.7 nm (FWHM) of

spectral blur, and by the sampling pixels to 1.05 nm, though this increases to 2.1 nm when

binned by 2. The spectrometer contains 1.7 spectral pixels (corresponding to roughly 1.8

nm of spectral shift) along the spatial axis (Fig. 4-4). The spectral shift was estimated by

fitting a Gaussian at each spatial location to the spectral output from the monochromator

when it passes a single wavelength (repeated for 25 iterations). Then the mean spectral pixel

of the Gaussian fit can be plotted as a function of the spatial pixels, to determine the shape

of the spectral shift. This method produces a slightly quadratic shape, characteristic of

smile, with a linear trend, characteristic of an offset focal plane array relative to the optical
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axis. Overall, it is clear that there is a shift in the spectral pixel that measures any given

wavelength across the focal plane array, which can provide the non-redundant information

necessary for spectral super-resolution.

The total training and testing dataset consists of 977 images (from the ‘test’ imaging

spectrometer) with matching ‘truth’ spectra (from the ‘truth’ spectrometer). two third’s

(651) of this dataset is used for training, one sixth (163) for validation, and one sixth (163)

is left for testing. To compare between images with spectral shift (henceforth referred to

as SS), and without spectral shift (i.e., no spectral shift, NSS), a small subset (11) of the

pixels in a local region are used as data without sub-pixel spectral shift. The same machine

learning techniques applied to images containing sub-pixel spectral shift can be applied to

these images lacking spectral shift, so that the benefit of the machine learning algorithms

can be compared with and without sub-pixel spectral shift.

Three testing sets were generated to test the ability of the super-resolution technique to

generalize to images with statistics outside of the training sets. The first set was laboratory-

generated band-pass/band-stop signals, the second was laboratory-generated ocean color

measurements, and the third consisted of two separate real-world filters. Twenty eight band-

pass/band-stop signals were generated, they were comprised of four sets with ~1, 2, 3, and

4 nm FWHM’s and each set has 7 different relative intensity levels in the pass/stop bands

( ~+/- 0,25,50,75 %). Although intended to have those specific intensities, the spectral

generation hardware and optics limited the exact intensity reached in each case. For the

ocean color dataset, data from the Marine Optical Buoy (MOBY) was used [Clark et al.,

2003]. MOBY was chosen as it was of the only instruments that had readily available ocean

color data with sufficient spectral resolution (<1 nm) for testing the proposed spectral

super-resolution algorithm on the available imaging spectrometer. Four of the sharpest

spectral features were chosen from two different MOBY datasets, one typical of the nearby

oligotrophic (very low algal content) waters (2020061823D) and one with higher intensity

greens characteristic of low to medium algal content (2002101920D) [Flora]. For the real-

world filter measurements, two different Thorlabs Filters were used for their relatively high

spectral variations in the red, a 950 nm cut-off short pass filter (FES0950), and a 1000 nm

cut-off short pass filter (FES1000). Each filter was measured twice, first straight on and then

at a slight angle, as the spectral transmission efficiency changes as a function of view-angle.

Overall, the combination of these testing sets allow for testing on a wide range of input
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Figure 4-4: The spectral pixel that measures a monochromatic light source (e.g. 702.2 nm,
top curve) is plotted for each spatial location, for 25 different central wavelengths. The
spatial dependence, which is similar in shape to a quadratic characteristic of smile and
a linear trend from a shifted focal plane array, holds across the wavelength range. The
technique fails at low SNRs, which occur above spatial pixel 700 (right side). The median
change between the highest spectral wavelength and the lowest spectral wavelength (from
spatial pixel 1-700) is 1.7 pixels, which corresponds to ~1.8 nm of spectral change in the
reported wavelength over the spatial domain.
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signals outside of the training statistics.

All of the truth OOS measurements, including the training, validation, testing, and the

three out-of-training testing sets were normalized by the median of 37 constant sweeps of

the monochromator made in-between measurements of the three out-of-training testing sets.

The spectral content of the tungsten halogen source varies as a function of temperature, so

these normalizing values will not perfectly normalize the training dataset. This normaliza-

tion factor is intended to remove changes in the spectral efficiency of the optical system, so

that the SVR does not learn that constant high frequency spectral content. Theoretically,

a machine learning approach could learn the normalizing factor through training.

4.4.3 Machine Learning Optimization

A support vector regression (SVR) is trained for each spectral output in the same manner.

Five-fold cross-validation is used to determine the best hyperparameters (box constraint,

kernel scale, and epsilon) for training. The same training set used during cross-validation

is then trained with the optimized hyperparameters. The testing error is reported for the

iteration with the lowest validation error. Median absolute percent difference (MAPD) is

the error metric used to compare between the estimated value, produced by the SVR using

the course resolution imaging spectrometer data, and ‘truth’ value measured by the Ocean

Optics spectrometer [Eq. 4.1], as it is insensitive to outliers [Cui et al., 2013].

𝑀𝐴𝑃𝐷 = 100% * (𝑒𝑥𝑝[𝑚𝑒𝑑𝑖𝑎𝑛|𝑙𝑛(𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑/𝑡𝑟𝑢𝑡ℎ)|] − 1) (4.1)

4.4.4 Setting the Signal-to-Noise Ratio with Gaussian Noise

The signal-to-noise ratio in red sections of ocean color data can be on the order of 10 [O’Shea

et al., 2020], or even lower if the spatial and or spectral resolution limits of the imager are

pushed. Gaussian noise is added to the images to reduce the SNR to 10, to determine

how the accurately the SVRs can recover the super-resolved signal despite the low SNR.

The SNR is reduced based on assuming the underlying signal is shot-noise limited (which

is not a perfect assumption as the amplifier stage, which applies an analog gain of 16, adds

amplifier noise). The equation used to set the standard deviation of the Gaussian noise (SD)
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that is added on top of the signal is:

𝑆𝐷 =

(︂
𝐸𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑠2

𝑆𝑁𝑅desired2 − 𝐸𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑠

)︂
0.5 (4.2)

Where Electrons is the number of electrons at each pixel and SNRdesired is the desired

signal-to-noise ratio. The electrons are calculated by multiplying the digital numbers by

their normal conversion factor of 7.8942 [O’Shea et al., 2020] and then dividing that by 6.3

(to represent the impact of the gain of 16 applied to the input signal). This equation enables

the entire image to have the same SNR by compensating for variations in the inherent noise

introduced due to a lower intensity on the edges of the image from vignetting.

4.4.5 Simulating Residual Glint on the Laboratory Collected Dataset

The imperfect glint removal of sub-meter data results in offsets (Fig. 4-5, top) that can be

assumed to be spectrally flat in a local (~20 nm) region. While the distribution of these

offsets are sometimes near Gaussian, they are more often tailed due to over- and under-

correction of sections containing capillary wave induced fluctuations in the surface reflected

light (Fig. 4-5, bottom). The skewness and kurtosis of these distributions were only weakly

correlated with wind-speed and direction measured from a mast 3 km away. While these

measurements show that the distributions have a generally weak correlation with average

wind-speed, the imperfect spatial and temporal alignment with the measured distributions

does not provide accurate estimation of the correlation with local gusts of wind.

The tailed Gaussian distribution may hinder the glint correction process, as the distribu-

tion inherently breaks the required heterogeneity assumption. Distributions of the residual

glint offsets were created by taking the median value at a high SNR wavelength (505 nm),

subtracting it from each image, and then calculating the percent offset of each spatial pixel.

These distributions are then sampled, with a random +/-<10% offset applied to keep the

algorithm from learning the exact underlying distribution, and applied to the collected

training data. Of the ~350 images collected during the deployment, the distributions are

sub-sampled with 4/6 used for training, 1/6 for validation, and 1/6 for testing. Keeping the

distributions separate for the training, validation, and testing sets determines if the spectral

SR algorithm will generalize to new residual glint offset distributions. While the sub-meter

ocean color data often has more spatial form, this would only be additional information for

142



the machine learning algorithm to obtain. In other words, the error produced by these flat

offsets serves as an upper bound to the error that would be expected in the real-world glint

corrected data.

Figure 4-5: An example cm scale hyperspectral image of homogeneous oceanic waters suffer-
ing from residual glint correction errors (top, spectrally flat offsets near 43 and 51 degrees)
[O’Shea et al., 2020]. The distribution of radiance at 505 nm normalized by the median
value is non-Gaussian and includes significant offsets (bottom).
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4.5 Results

4.5.1 Leveraging sub-pixel spectral shift in homogeneous images for in-

creased spectral resolution

As previously noted, two sets of SVRs are trained on different course spectral resolution

imaging spectrometer datasets, one with spectral shift (SS) and one without spectral shift

(NSS), to predict the fine spectral resolution output by an Ocean Optics point spectrometer.

The first dataset is full spatial dimension hyperspectral images of homogeneous targets,

which have 1.8 nm of spectral shift (Fig. 4-4). The comparison dataset consists of only 11

local spectra from within the original image, and so does not have significant spectral shift.

The SS SVRs achieve much higher training and validation accuracy than the NSS SVRs.

An example training curve for a single spectral output trained on data with SS (solid black

line, Fig. 4-6), converges within 15,000 iterations and generalizes well on the validation set

(solid red line, Fig. 4-6), though there is significant overfitting on the training data. The

validation set for data with SS (solid red line, Fig. 4-6) is able to achieve much lower error

than even the training data without spectral shift (black dashed curve, Fig. 4-6). Similar

results hold for all 53 of the output spectra, which makeup the output vector. Overall, the

dataset which includes spectral shift is able to clearly increase the estimation accuracy of

the intensity measured by a separate instrument at resolutions beneath the pixel limited

resolutions on data with similar statistics.

Visually, example output vectorized training and testing data demonstrate the increased

accuracy of SS SVRs relative to NSS SVRs (Fig. 4-7). The output vectors produced by the

SS SVRs (Fig. 4-7, red line) match the Ocean Optics spectrometer ‘truth’ (Fig. 4-7, black

line) in both the training and testing subsets. The SS SVRs predicted spectrum matches

both the training and testing data across a wide range of frequencies. Visually, the NSS

SVRs (Fig. 4-7, teal line) are able to match the low and mid frequency fluctuations in

both the training and testing data, but don’t match the intensity of the truth data (Fig.

4-7, black line). Both the SS and NSS better represent the medium frequency fluctuations

than the median of the NSS camera measurements that have been re-scaled (RS) to match

the normalized intensity measurements and spline interpolated between pixels (Fig. 4-7,

blue line, asterisks are pixel centers). While the RS data accurately captures low frequency

fluctuations, it severely underestimates the high frequency portions of the ‘truth’ signal.
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Figure 4-6: Example training and validation MAPD between the spectrometer measured
intensity and the SVR estimated intensity from homogeneous images with 1.8 nm of spectral
shift (SS) and on a SVR trained on data without spectral shift (NSS) for one spectral output.
Both SS and NSS SVRs converge within 15,000 iterations. The SS SVR achieves a much
higher validation accuracy (~4%) than the NSS SVR (~33%).

Overall, visually the predicted spectral output by the SS SVRs matches both low and high

frequency data in these two example training and testing images better than the NSS SVRs

or RS camera measurements.

The visual analysis of the relative frequency dependent accuracy of the different predic-

tion methods for these two examples (Fig. 4-7) are supported by a more rigorous Fourier

analysis of the output spectra of the testing subset (Fig. 4-8). For an example testing

spectra, the SS SVRs best match the frequency content of the testing data until about 1

nm-1, which is past the pixel-limited Nyquist frequency (4.2-1 nm-1, for a 2.1 nm bandwidth

pixel, Fig. 4-8, top). The NSS SVRs are able to match the frequency content until just

before the Nyquist (Fig. 4-8, top, teal curve), and then do not match the spectral content

again until 1 nm-1, which is approaching the 1st standard deviation of the spectral PSF of

the spectrometer (Fig. 4-8, top, light grey dot dashed line). Spectral frequencies beyond

this limit would be heavily attenuated in the imaging spectrometer images. The re-scaled

Pika L measurements (Fig. 4-8, blue) only represent the lowest frequency data well. More

generally, by taking the median absolute percent difference between the single sided power

spectrum of the OOS Truth and the SS, NSS, and RS predictions over all of the test spectra
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Figure 4-7: Example predictions for training and testing datasets. The SVRs trained on
data including spectral shift (SS) match the low and high frequency fluctuations in the
normalized intensity measurements from the Ocean Optics spectrometer (OOS Truth) values
(black) better than either the SVRs trained on data without spectral shift (NSS, teal) or
the median of the NSS data re-scaled to the normalized intensity values (RS, blue, asterisks
are pixel center wavelengths).

shows that the SS SVRs actually achieves higher accuracy across the entire spectral domain

(0-2.5 nm-1) (Fig. 4-8, bottom panel). Overall, the SS SVRs provide the most accurate

frequency representation across the spectral domain on testing data with similar statistics

as the training data.

4.5.2 Generalization of SVRs for spectral super-resolution: ocean color

signal, band-pass/band-stop, and real world signals

Visually, the SS SVRs match low and mid frequency content in the laboratory simulated

band-pass/band-stop signals (BP/BS, Fig. 4-9, A-D) and ocean color data (OC, Fig. 4-9,

E-J), which have different statistics than the training and testing data. The SS SVRs better

represent the location and intensity of the peak band-pass (BP) and band-stop (BS) signals

(Fig. 4-9, A-D). However, the SS SVR predicted spectra suffers from significantly more high

frequency noise than the re-scaled (RS) camera measurements. The RS measurements are

unable to match the intensity of the peaks or troughs, since they have sampling intervals

that are wider than the underlying signal’s fluctuations. The NSS SVR reconstruction does

a very poor job recovering the Ocean Optics spectrometer ‘truth’ signal, even at relatively
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Figure 4-8: The single sided power spectrum of a prediction from the testing set using the SS
SVRs (red, top panel) matches the truth data (black) across the spatial frequency domain,
even past the pixel limited Nyquist frequency (NF, dark grey bars). The NSS SVRs (teal)
match the frequency content until just before the Nyquist frequency, while the re-scaled (RS)
raw pixel data (blue) only matches the spectral content at the lowest spatial frequencies.
The median absolute percent difference between spectral content of the SS, NSS, and RS
predictions and the OOS Truth values over the entire testing set demonstrate the benefit of
the SS at all spectral frequencies (bottom panel).
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low frequencies. The same frequency dependence holds for the SS SVR predictions on the

laboratory generated ocean color (OC) data as well. In most of the ocean color data with

higher intensity drops (Fig. 4-9, E, F, G, H, J, K, and L) the highest intensity feature is

well represented. However, in the data with lower intensity offsets (Fig. 4-9, I) the feature

of interest is poorly captured. The benefits are particularly notable when the RS camera

measurements almost completely miss the underlying feature (Fig. 4-9, K, 691-693 nm).

The same technique failed to produce realistic mid to high frequency representation in all 4

real-world filter measurements (Fig. 4-9, M-P, where M and N are the FES0950 and O and

P are the FES1000), the reconstructions were particularly bad when the filter was angled

relative to the optical axis (Fig. 4-9, N and P). Overall, the SS SVR predicted spectra

visually match low and medium frequency fluctuations in BP and OC data with higher

accuracy than the NSS or RS techniques, but at the cost of significant high frequency noise.

Figure 4-9: Example spectra produced from testing data with a variety of different statistics
including laboratory generated band-stop (BS), band-pass (BP), and ocean color (OC) and
two short-pass transmission filter’s (Filter) straight on (Straight) and at an angle (Angled).
Generally, the SS SVRs can capture medium frequency spectral features in these signals at
the cost of noise in the higher frequencies.
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The spectral frequency data supports the visual analysis (Fig. 4-10). The single sided

amplitude frequency of a single predicted test spectra (Fig. 4-9, F) from the SS SVR (Fig.

4-10, SS, red, top panel) matches the truth data (OOS Truth, black, top panel) just before

and after the Nyquist. However, the SS SVRs poorly represent higher frequency components

of the ‘truth’ measurements of the laboratory generated ocean color dataset, overrepresent-

ing medium-high frequency content. The re-scaled camera measurements achieve slightly

higher accuracy at the lowest frequencies (Fig. 4-10, SS, blue, bottom panel), while severely

under-representing the higher frequencies (Fig. 4-10, RS, blue, top panel). The NSS dataset

performs the worst across almost the entire frequency range (teal), overestimating the spec-

tral content across the entire spectral range. All 3 perform poorly after a spectral frequency

of about 1 nm-1 (Fig. 4-10, bottom panel). Overall, the SS SVR predicted data provide a

benefit on the entire ocean color dataset until about 0.5 nm -1 (Fig. 4-10, SS, red, bottom

panel), which is beyond the Nyquist, after which the SS SVRs poorly represent the spectral

frequency content in the simulated ocean color datasets.

The SS SVR predicted spectra have the highest correlation (Table 4.1, row 1 labeled

‘Original’) and lowest median MAPD (Table 4.2, row 1 labeled ‘Original’) when compared

to the truth values measured by the Ocean Optics spectrometer on the training and testing

subsets. For the ocean color subset, the SS SVR predicted spectra have slightly poorer

correlation and MAPD relative to the RS spectra, likely due to the higher noise in the

medium-high frequencies. For the band-pass/band-stop (BP/BS) subset, the correlation

is actually higher despite the MAPD being lower. Finally, for the real-world filter subset

all three perform poorly in terms of both correlation and MAPD. Overall, on the original,

unaltered, dataset the SS SVRs perform best when used on unseen data with the same

statistics as the training data, but generally not as well on data with different statistics,

seemingly because of the poor representation of the medium-high frequency spectral content.

4.5.3 Impact of noise on super-resolution: Generalization of noisy SVRs

to laboratory generated ocean color, band-pass/band-stop, and real-

world signals

The SS SVRs provide significant benefit to predicting spectra within the testing subset,

despite a range of noise sources characteristic of ocean color measurement (Table 4.1 &

4.2, rows 2-4, columns 4-6). When residual glint (Glint), Gaussian shot-noise (SNR10), or
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Figure 4-10: The single sided power spectrum of the prediction produced from the SS SVRs
(red, top panel) on an example laboratory generated ocean color signal (Fig. 4-9, F) matches
the truth spectrum (black) at low frequencies, even slightly past the pixel limited Nyquist
frequency (dark grey dot dashed line), but poorly represents higher frequency content, over-
estimating at medium-high frequencies. The NSS SVRs (teal) match the frequency content
until ~half of the Nyquist frequency, while the re-scaled raw pixel data (blue) only matches
the spectral content at the lowest spatial frequencies and underestimates higher spectral
frequencies. The median absolute percent difference (MAPD) calculated between the OOS
Truth measurements spectral content and the spectral content of the SS, NSS, and RS pre-
dictions for all of the generated ocean color signals demonstrates the benefit of the SS SVRs
at accurately representing the low spectral frequencies surrounding the Nyquist (bottom
panel).
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a combination of glint and Gaussian shot-noise (Glint + SNR10) is added to the signal,

the SS SVRs still provide the highest accuracy and correlation of the 3 techniques on the

testing data. However, when the SS SVR technique is used to predict laboratory generated

ocean color or band-pass/band-stop signals with different statistics than the training data,

or used to estimate the spectral transmission efficeincy of a real-world filter, the SS SVRs no

longer provide the lowest MAPD (except in one case), though they do provide slightly higher

correlation on the BP/BS data (Table 4.1 & 4.2, rows 2-4, columns 7-12). In summary, the

SS SVRs provide high accuracy metrics on the testing subset, which has similar statistics as

the training dataset, but not on laboratory generated or real-world data-sets with different

statistics.

Table 4.1: Pearson’s correlation coefficient (r) calculated between the ‘truth’ values and
the predicted spectral data for each subset from the SVRs trained with spectral shift (SS),
the SVRs trained without spectral shift (NSS), and re-scaled spline interpolated camera
measurements (RS). Clearly the SS SVRs achieve very high correlation with the testing
sets for the original dataset, data with simulated residual glint (Glint), data with a reduced
signal-to-noise ratio of 10 (SNR10). This benefit even holds when just using the right half
of the images (Half Image), even with added residual glint and an SNR of 10 (Half Image
+ Glint +SNR10). Some of the accuracy benefit holds for the laboratory generated band-
pass/band-stop data, but the benefit does not hold for laboratory generated ocean color
data or real world filter data.
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Table 4.2: The median of the MAPD calculated for each of the 53 output spectra from
the SVRs trained with spectral shift (SS), the SVRs without spectral shift (NSS), and the
re-scaled spline interpolated camera measurements (RS), calculated on the different data
subsets (topmost column labels). Clearly the SS SVRs predicted spectra achieved much
lower error on the testing dataset, but these accuracy benefits do not hold for the laboratory
ocean color, band-pass/band-stop (BP/BS) data, or real-world filter measurements (right
three columns).
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4.5.4 Spatial subsets for spectral super-resolution

To use the SS SVRs for the example task of increasing the spectral resolution in images of

the interface between two water bodies, half of the image would need to be used for each

section. When only half of the image is input into the SVRs, the SS SVRs still provide the

highest accuracy on the testing dataset, and only loses minimal accuracy while maintaining

a very similar correlation relative to using the entire spatial domain (Table 4.1 & 4.2, rows 1

and 5, column 4). Unfortunately, the half-image input still fails to generalize to laboratory

generated or real-world datasets with different statistics (Table 4.1 & 4.2, row 5, column

7-15). Interestingly, when noise characteristic to ocean color measurements is applied to

the half image, including both simulated glint and high Gaussian shot-noise, the testing

error is still highest for the SS SVRs predictions and similar to that when using the full

input image width (Table 4.1 & 4.2, rows 4 and 6, column 4), however again this set fails

to generalize to datasets with different statistics (Table 4.1 & 4.2, row 6, column 7-15).

Overall, using just half the spatial image still provides a significant accuracy increase over

the other prediction methods, but this benefit does not persist for subsets with different

statistics from the training dataset.

4.6 Discussion

To our knowledge, this study is the first use of machine learning to leverage spectral shift in

images captured by an imaging spectrometer to increase the spectral resolution of beyond

its nominal pixel limited resolution. Leveraging the spectral shift for increased spectral

resolution was previously proposed by Watanabe et al. [Watanabe and Furukawa, 2018] and

explored in Kitano et al. [Kitano et al., 2020], but not rigorously tested under a wide range

of sources of contamination characteristic of ocean color signals. The results of our study

focused on one of the most difficult applications for this technique, data with similar noise

and statistics as real-world ocean color measurements, but the lessons learned from these

results could easily be applied to real-world terrestrial remote sensing or industrial line-scan

applications which do not suffer from these limiting noise sources.
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4.6.1 Sub-pixel spectral shift enables spectral super-resolution on datasets

with similar statistics

The higher predictive accuracy of the SS SVRs over the NSS SVRs and RS prediction

method in the training and testing subsets in the original dataset (Table 4.2, row 1, columns

1-6) is the result of the spectral shift, not an increase in the shot-noise limited SNR or

other optical effects. The SNR of just the NSS spatial section over the entire training, val-

idation, and testing subsets is ~23 (calculated by taking the spatial mean divided by the

standard deviation of this subset, and taking the median over all the spectra), and so would

only have an error of at most ~5%. While there are other optical effects on the imager,

such as keystone, stray light, and vignetting, the additional information required to increase

the accuracy needs to come from a sub-pixel shift in the spectral content at each pixel, so

theoretically none of these optical effects would provide the required non-redundant informa-

tion. Finally, if the accuracy gain came strictly from learning dictionary-based correlation

between the course spectral resolution measurements from the imaging spectrometer and

the high spectral resolution measurements from the Ocean Optics spectrometer, the NSS

SVRs would have been able to match the accuracy of the SS SVRs. Therefore, the increase

in the accuracy when using the entire spatial domain must come from the spectral shift (Fig.

4-4), and not from another optical effect. In summary, the cause of the increased accuracy

at finer spectral resolutions is not the result of increased SNR, other optical aberrations, or

just a dictionary-based learning of the underlying dataset, but instead a learned relationship

between the spatial pixels and the spectral shift.

4.6.2 SVRs can be trained to be insensitive to environmental and optical

noise typical of sub-meter ocean color images

Two difficulties in ocean color remote sensing are the low SNRs available in the near-infrared

(NIR) and the residual offsets remaining after correcting the ocean color data for glint

[O’Shea et al., 2020]. Both of these offsets can be included during training to force the

SVR to be robust to these types of noise sources. Although noise sources can decrease the

effectiveness of spectral super-resolution non-linearly [Sezer and Altunbasak, 2018], the SS

SVRs were still able accurately recover testing data at the SNR limit of ocean color data

(Table 4.2 & 4.1, rows 2-4, columns 4-6). An SNR of 10 was chosen as it is the the minimum
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value typically seen in ocean color measurements captured by imaging spectrometers [O’Shea

et al., 2020]. By demonstrating that the SS SVRs can be trained to be insensitive to the

lowest and highest available SNRs, we demonstrate that this technique could provide benefit

across the entire range of typically observed SNRs. While some of the accuracy gains (~5%)

could be due to an increased SNR in the full spatial resolution dataset relative to the

local region representing data without spectral shift, they cannot explain the nearly 25%

accuracy gain on the testing set relative to the NSS or RS data (Table 4.2, rows 2-4, columns

4-6). The second difficulty with using ocean color data is the non-Gaussian residual noise

from imperfect glint correction. While the SS SVRs were retrained with non-Gaussian

residual glint using histograms to match the ocean color data, the actual under- and over-

shooting of the glint correction algorithms may have more spatial correlations than our

simulated method [Mobley, 2016], since the under- and over-corrections are often adjacent.

The adjacency is due to the shape of capillary waves changing the reflection coefficient on fine

spatial scales. In essence, that means that the reported MAPE and correlation coefficient is a

lower bound (i.e., worst case scenario) as the simulated glint has reduced information content

relative to the real-world glint. Since the SS SVRs reduce the predicted error by nearly a

factor of 2, the fact that the real-world measurements of the spatial structure could further

increase the accuracy is quite promising. Real-world truth and training measurements will

need to be collected to implement this technique on sub-meter ocean color data collected in

the field. Overall, the accuracy of the SS SVR predictions was significantly hindered by the

combination of Glint and SNR, but the technique still provided an accuracy benefit even at

the lowest typical SNRs of ocean color data while experiencing previously unseen residual

glint distributions.

4.6.3 SS SVRs weakly generalize to datasets with different statistics

The attempt to force generalization of the SVRs by providing training data that was ran-

dom and uncorrelated in both spectral intensity and location was only partially successful.

The SS SVRs better represented the frequency content at and above the Nyquist on ocean

color data, but at the cost of increased noise at higher spectral frequencies (Fig. 4-10).

Despite the better representation of frequencies surrounding the Nyquist, the general error

metrics, including the correlation coefficient and MAPD, performed worse than the simple

RS prediction method (Table 4.1 and 4.2, columns 7-12), due to the higher frequency noise.
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However, despite the medium-high frequency noise, the SS SVRs did beat or match the

correlation coefficient for predicting band-pass and band-stop spectra using the RS and NSS

methods (Table 4.1, columns 10-12). The poor generalization of the SS SVRs to the ocean

color dataset and BP/BS dataset could be due to a variety of factors including the SS SVRs

attempting to learn high frequency components using the statistics of the training dataset,

the SS SVRs identifying the spectral locations used when constructing the training spectra,

or the shape of the input spectrum being limited by the spectrometers spectral blur function.

While the super-resolution techniques did not generalize well to ocean color data, all three

techniques poorly recovered the filters transmission spectra (Table 4.1 and 4.2, columns

10-12). The poor recovery from the camera could be due to differences in the efficiency of

the polarization states induced by the filter, which may change when angled relative to the

optical axis, which would change the intensity measured by the imaging spectrometer and

Ocean Optics spectrometer in different ways. Overall, the SS SVR technique provides better

representation of low frequencies, but at the cost of medium-high frequency noise.

A combination of training sets with higher frequency spectral content and an unknown set

identification layer could be used to provide additional accuracy and confidence in applying

the spectral super-resolution technique to ocean color data. One approach could use a

new training dataset with random and uncorrelated spectral features, containing higher

spectral frequencies, and a wider variety of statistics. Another training approach could

instead attempt to train using data with similar statistics as the target ocean color data, by

utilizing simulated high (< 1 nm) spectral resolution ocean color data to train the SS SVRs.

Unfortunately, this would require collection of higher spectral resolution ocean color data in

a variety of ocean color scenarios to get a broad enough representation, as the only available

dataset with sufficient spectral resolution is in a oligotrophic region that exhibits little variety

in its ocean color signal. After retraining the SS SVRS on one of these new datasets, an

OpenMax layer could be added to the pipeline to identify if previously unseen images fit

within the in-training set images [Bendale and Boult, 2015], and therefore the SS SVR would

produce accurate spectral super-resolution predictions, or if they fell into an ‘unknown’ class

with different statistics, and would therefore produce inaccurate spectral super-resolution

estimates. Through a combination of retraining on broader more representative datasets

and filtering the input data, the spectral super-resolution results from this approach could

be more widely accepted for ocean color remote sensing.
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4.6.4 Comparison to alternative spectral super-resolution approaches

The spectral content is better represented by the SS SVRs than other predictive techniques

until atleast 4 times the Nyquist frequency in the testing subset (Fig. 4-8), but only a

factor of 2 in the Ocean Color dataset (Fig. 4-10). While not a direct comparison due to the

differences in the instruments spectral imaging techniques, the focal plane array shift applied

to a Fourier transform spectrometer by Watanabe et al. [Watanabe and Furukawa, 2018]

provided a spectral increase of nearly a factor of roughly 2.5. Other spectral super-resolution

techniques which add optical aberrations to the system can increase spectral resolution by

more than a factor of 10 [Konishi et al., 2016], but they come at the cost of needing to

modify the optical system. Future research should compare our results to those of Kitano

et al. [Kitano et al., 2020], when their quantitative results become available, as they use the

most similar optical setup with different computational approaches. Overall, the SS SVRs

provide similar spectral resolution benefits to a grating based imaging spectrometer as they

did to a Fourier transform imaging spectrometer on commercially available spectrometers,

without needing to modify the optical system.

4.6.5 Implications for adaptive sensing of the ocean’s color

The investigated SR technique will allow for new adaptive sensing capabilities, once the

technique is proven to generalize in real-world ocean color scenarios. Specifically, the altitude

of a drone imaging a specific water body could be varied, to provide a homogeneous image

of a particular region of interest. In ocean color remote sensing this would translate to

reducing the altitude so a target of interest, such as a patch of algae on the surface of the

ocean, fills the entire view angle of the imager and provides the full benefit of the spectral

SR algorithm. In this way users can cover large areas at the base spectral resolution of

the imager, but when they find particular regions of interest they can reduce the altitude

to capture at the highest possible spectral resolution by leveraging the spectral shift in the

imager. The proposed mapping method allows users to collect both high spatial and spectral

resolution data.
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4.6.6 Limitations of the laboratory based study and future work

The laboratory-based study is limited by multiple factors which prevent directly applying

this technique to real-world data captured by an imaging spectrometer deployed from a

drone. First, training images collected by the current optical setup use a fiber optic cable as

input to the imaging spectrometer, so the learned relationships may not translate to images

collected without the fiber optic cable as input. An alternative optical setup, consisting of a

brighter source with an acousto-optic tunable filter going into an integrating sphere, could

enable the simultaneous acquisition of high enough intensity signals to train the system

without a fiber optic input to the imager. Second, due to the low signal emanating from

the monochromator, the camera system must be trained with a high gain which is typically

not used in real world measurement, as it can lead to higher noise from the amplifier. The

previously mentioned optical setup could potentially eliminate the need to use such a high

gain. Third, the exact spectral shift learned in the lab could be sensitive to changes in

the FPA due to temperature, and mechanical misalignment [D’Odorico et al., 2010], which

could occur during flight of a drone and decrease the benefit of the technique. Fourth, the

technique may provide lower accuracy gains when binning the pixels in the spatial dimensions

or further binning the spectral dimension. Binning in the spatial dimension would reduce

the measured changes in the spectral shift, and inherently limit the achievable accuracy.

Binning the pixels in the spectral dimension would reduce the relative size of the spectral

shift (relative to the spectral signal covered by an individual pixel). Future research should

focus on training the system without fiber optic input to the system, testing the technique

from a drone at altitude, and determining how binning in the spatial and spectral dimensions

limits the accuracy benefit.

4.7 Conclusion

The sub-pixel spectral shift contained within an example commercially available imaging

spectrometer provided sufficient non-redundant information for SVRs to better represent

spectral frequencies up to four times the Nyquist, in datasets with similar statistics as the

training dataset. While the same SVRs increased the visibility of spectral features in lab-

oratory generated ocean color signals specifically selected for their spectral variability, and

increased the accuracy of frequency representation beyond the Nyquist, they added signifi-
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cant noise at higher frequencies that decreased the overall accuracy. The SVRs were tolerant

of high noise and simulated non-Gaussian residual glint characteristic of sub-meter ocean

color measurements, however again they were unable to generalize to datasets with different

statistics. Finally, SVRs leveraging spectral shift continued to provide high accuracy when

only half of spatial locations in each image were used, even with high noise sources. Overall,

the results are promising for increasing the accuracy on datasets with similar statistics as

the training dataset, but more research is required to create training datasets that force the

spectral super-resolution technique to generalize to datasets with similar statistics as the

target ocean color data.
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Chapter 5

Conclusion

5.1 Dissertation’s Contributions to Sub-meter Ocean Color

Remote Sensing

This dissertation redesigned the three steps within the satellite ocean color remote sensing

pipeline which benefited the most from adaptation to sub-meter scales. The specific steps

included the removal of surface-reflected light despite capillary wave induced fluctuations,

the design of the optics and electronics considering the increased opto-electronic noise, and

the post-processing of over-sampled ocean color images in spite of environmental and optical

noise. When the individual steps are combined, to form the sub-meter ocean color remote

sensing paradigm, they build upon one another to enable a range of more advanced sub-meter

ocean color research opportunities in remote heterogeneous regions. First, the individual

contributions are summarized below, then an essential sub-meter ocean color application

enabled by the combination of the chapters is presented, and finally future work to further

advance the sub-meter paradigm is proposed.

5.1.1 Chapter 2 Contributions

Of the three traditional glint correction approaches tested in Chapter 2, the Lee et al. [Lee

et al., 2010] optimization method worked best for sub-meter ocean color optical constituent

retrieval, despite fluctuations in the surface reflectance induced by capillary waves. This

chapter also identified that a polarization filter achieved similar accuracy as the optimiza-

tion method for chlorophyll concentration estimation, which is useful for multispectral im-

agers with limited spectral content. The long-term deployment demonstrates that the glint
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correction processes function in a wide range of environmental conditions. These spectral

glint correction techniques provide an alternative to the spatial filtering approaches typi-

cally applied to sub-meter ocean color data. Since the spectral corrections maintain the full

spatial resolution, they can leverage information contained within these images for further

post-processing (e.g., the spectral super-resolution technique investigated in Chapter 4)

5.1.2 Chapter 3 Contributions

The simulation framework presented in Chapter 3 provides users with the ability to identify

potential opto-electronic induced engineering constraints, and solutions, prior to deployment.

The framework identified that the opto-electronic noise and limited dynamic range of the

available imager would limit the accuracy of mapping algal biomass simultaneously from the

ocean and sea ice in the marginal ice zone. With this knowledge, researchers determined a

potential solution, using the lower efficiency second order measurements for mapping algae

within the brighter sea ice, prior to deployment to this remote region. Per the identified

hardware limitations and solutions of this example, the framework is particularly useful in

oceanographic settings where the instruments cannot be tested ahead of time (i.e., in regions

where month long cruises may be the only means of assessing instruments in certain regions).

5.1.3 Chapter 4 Contributions

The machine learning based spectral super-resolution (SR) technique presented in Chapter

4 leveraged sub-pixel spectral shift within images of homogeneous targets to increase the

predictive accuracy of spectral frequencies beyond the Nyquist. This SR technique serves

as an alternative to binning for spatially homogeneous regions, providing increased spectral

resolution instead of increased SNR. Additionally, the SR technique was trained to be in-

sensitive to additive Gaussian and non-Gaussian noise sources characteristic of sub-meter

ocean color remote sensing on images with similar statistics as the training dataset. The

benefits of this SR technique also persist when using subsets of the spatial domain, such as

the right half of the image, which is useful for specific ocean color applications (e.g., imaging

interfaces). While this chapter focused on noise sources and image subsets characteristic

of one of the hardest applications, ocean color remote sensing, this technique is broadly

applicable to a wide range of other industrial and agricultural remote sensing tasks.
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5.1.4 A New Paradigm for Sub-Meter Ocean Color Mapping in Spatially

Heterogeneous Regions

By combining the results of these chapters into the sub-meter ocean color remote sensing

paradigm, researchers can fully leverage information contained within homogeneous sub-

sections of remote heterogeneous regions (Fig. 5-1). The accuracy benefits of each step

within the sub-meter ocean color paradigm are enhanced by the successful implementation

of previous steps. The basic framework for applying these chapters to a unique ocean color

sensing scenario starts with seeding the simulation framework using satellite, aircraft, or

simulated measurements from the region. With the results from the simulation framework,

a researcher can then optimize the optics, detection algorithms, and engineering design,

which is necessary to collect high quality data. The selected camera system can then be

deployed to the region with the designated operational parameters and view-angle, where it

will collect high fidelity data that isn’t limited by saturation or high opto-electronic noise.

The high fidelity remote sensing measurements collected from the deployment can then more

accurately estimate and remove glint, as the high fidelity remote sensing measurements will

better match the simulated ocean color values in the optimization-based glint correction

approach and more accurately represent the NIR signal. Finally, by reducing glint induced

heterogeneity, the spectral SR technique can provide more accurate results. Clearly the

successful implementation of each step in the sub-meter paradigm benefits successive steps

by providing higher fidelity data.

Many potential sub-meter ocean color research opportunities are enabled by the combi-

nation of these research chapters, but not every opportunity requires each chapter (Table

5.1). Chapter 2, which focused on glint removal at sub-meter scales, is broadly applicable to

all ocean color applications, ranging from measuring sediment plumes from dredging using

drones to mapping glacial outflow from an Aerostat. However, the contents of this chapter

are not useful for measuring elements on the surface of the ocean, such as surface algal

blooms or algae within sea ice, as they do not suffer from glint. Chapter 3, which dealt

with simulating the impacts of opto-electronic noise on specific dynamic regions, is partic-

ularly useful for applications with unique ocean color signals in difficult to reach locations.

Examples include measuring phytoplankton community structure and concentration in the

marginal ice zone or measuring the CDOM composition at an Arctic river delta (Table 5.1,
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Figure 5-1: The individual chapters combine to increase the fidelity of the measurements at
successive steps. To apply this framework to unique ocean color scenarios, one starts with a
satellite estimate, passes it through the simulation framework to identify potential engineer-
ing constraints. The researcher then deploys the system with the pre-selected parameters,
applies the selected glint algorithm to reduce heterogeneity, and finally applies the spectral
SR technique to increase the spectral resolution in homogeneous regions within each image.
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rows 6 and 7). This chapter is less essential for local or well characterized regions (e.g., Table

5.1, row 5, mapping sediment plumes from dredging), as the instruments can easily be tested

in these regions. Chapter 4, which enables the trade between spatial and spectral resolution

during post-processing, will be beneficial for regions that require high spatial resolution for

separation of distinct regions that are spatially homogeneous, but require high spectral res-

olution (e.g., Table 5.1, rows 6 , measuring phytoplankton composition and concentration

in the marginal ice zone). Even though each chapter is not necessary for each application,

the combination of the chapters enable a wide range of potential sub-meter ocean color

applications from different platforms in remote regions.

The full benefits of the sub-meter paradigm are most obvious from a scientifically impor-

tant example application, such as mapping algal community structure and biomass within

the sea ice and ocean during spring melts in the marginal ice zone. The first step of mapping

algal biomass was already presented in Chapter 3, where Aircraft images and Hydrolight

generated data were used to seed the simulation framework and determine the limitations

induced by the wide dynamic range when simultaneously imaging oceanic and sea ice algae

in this remote region. The simulation framework identified the wide dynamic range limita-

tion, and researchers developed the potential engineering solution of using the second order

to simultaneously to collect high fidelity remote sensing measurements from the ocean and

sea ice. With the view-angle set by the selected glint correction process, researchers could

proceed with deployment and collect remote sensing data without saturating the sea ice

signal or limiting opto-electronic noise in the oceanic signal. The researchers would then

apply glint correction approaches to remove surface reflected sky light, reducing heterogene-

ity imposed by changes in the Fresnel reflectance induced by surface waves in the oceanic

signal. Finally, after collecting high SNR unsaturated data by using the simulation frame-

work and then glint correcting that data, the images with reduced glint fluctuations can be

post-processed to trade the spatially over-sampled ocean color within cracks in the sea ice

for spectral resolution. The additional spectral resolution provides additional information

for the ill-posed problem of phytoplankton functional type identification. Overall, it is clear

that this paradigm is useful for collecting high quality data in remote and unique ocean color

scenarios. In fact, applying this paradigm to a single real-world contribution would merit

multiple years of research, adapting and refining the individual steps within the sub-meter

ocean color remote sensing paradigm, to refine the full process for real-world applications.
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Table 5.1: Example sub-meter ocean color remote sensing applications (first column) that
leverage a range of deployment platforms to meet specific scientific and societal needs (second
column). The chapters of the dissertation (right three columns) that benefit each application
are denoted with check marks.
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5.2 Future Work in Sub-Meter Ocean Color Remote Sensing

The contents of this dissertation introduced the preliminary sub-meter ocean color paradigm,

but each step within the sub-meter paradigm could be further advanced to provide higher

fidelity data.

A critical metric required by researchers to choose between spatial resolution and spectral

glint correction approaches is the relative accuracy of both for estimating individual opti-

cal constituents (e.g., chlorophyll concentration). Preliminary results suggest that the glint

correction techniques provide much higher accuracy than two standard spatial filtering tech-

niques modified for hyperspectral line-scan data from an imaging spectrometer (Fig. 5-2)

[Totsuka et al., 2019; Kwon et al., 2020]. In this preliminary comparison with spatial filtering

techniques, the first technique (Median Filtered) applied a moving median filter on the un-

corrected spatial data to remove fine-scale fluctuations. The non-local mean filter applied in

Totsuka et al. [Totsuka et al., 2019] was not applied, as the non-local mean filter relies upon

the self-similarity within single-band 2D spatial images [Zhuang and Bioucas-Dias, 2018],

which is not present in the 1D spatial images produced by imaging spectrometers. Addition-

ally, standard regressions were used instead of fuzzy regressions, to simplify comparison with

the other glint correction approaches. The second approach uses Savitzky-Golay filtering on

the input Rrs spectrum, with a frame-length equal to 1 degree (17 pixels ~35 cm) and an

order of 3. The output concentration map is also Wiener filtered with the same frame-length

[Kwon et al., 2020]. While the spatial correction methods increase the accuracy beyond the

uncorrected data, the spectral-glint correction techniques provide higher accuracy across

the view-angle range, without requiring sacrificing spatial resolution. The poor benefit of

the spatial algorithms relative to the spectral algorithms is likely due to the fact that the

spatial filtering algorithms are not removing the surface reflected light, just fluctuations in

the surface reflected light induced by capillary waves on fine scales.

Two more involved future research directions for Chapter 2 could further reduce the

impact of capillary wave induced surface-reflected light fluctuations in spatially over-sampled

regions. First, the spectral glint correction techniques could be applied to the spatially

filtered datasets to reduce the prediction error to beneath the accuracy achieved by just

the spectral glint correction techniques. The spatial filtering would provide a better average

estimate of the light in these regions. A second glint removal technique that could be explored
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Figure 5-2: The spatial filtering techniques provide a slight reduction in the median absolute
percent difference in the estimated chlorophyll concentrations relative to the uncorrected
dataset, but sacrifice significant spatial resolution (from ~2 cm to ~35 cm resolution) to do
so. The spatial correction techniques perform worse than all of the spectral glint correction
techniques across the entire view angle range. The results show slightly different values than
previously presented view-angle dependent results (Fig. 2-10), as MAPD is used instead of
MAPE, and the error estimate was performed on a slightly different testing dataset.

in over-sampled spatially homogeneous regions could focus on leveraging the spatial shape of

capillary waves to better estimate the Fresnel reflectance and surface-reflected light [Gilerson

et al., 2018]. The better estimate of the Fresnel reflectance could seed the optimization-based

glint correction process and potentially reduce errors in the residual glint from the spectral

glint correction processes [O’Shea et al., 2020]. In summary, future work could leverage

the information contained within spatially over-sampled ocean color images to increase the

accuracy of spectral glint correction approaches.

The first advancement for the simulation framework from Chapter 3 must be a demon-

stration and refinement of the framework for a real-world application. Specifically, the

simulation framework’s results for a specific scenario should be directly compared to results

captured by an imaging spectrometer with sub-optimal operational parameters (e.g., full-

well depth or ADC resolution). An initial test could be done using data captured from the

the deployment covered in O’Shea et al. [O’Shea et al., 2020] and re-sampling the data by

168



reducing the ADC’s bit-depth or increasing the shot-noise in post-processing. However, the

results would be more convincing when applied to a remote real-world dataset with opto-

electronic limitations that are not simulated, and with associated in-situ radiometric and

WQP estimates. With in-situ radiometric measurements the error’s resulting from glint,

the estimation algorithm, and the opto-electronics noise can be separated in the real-world

dataset, and compared to the simulation results individually. After refining the framework

for real-world applications, further advancements should be made for the next generation of

spectral imaging technologies. The simulation framework currently only provides the ability

to simulate a grating based imaging spectrometer, but snap-shot hyperspectral imagers are

the future of sub-meter drone-based ocean color remote sensing, as they provide 2D spatial

information without requiring platform movement. Snap-shot hyperspectral imagers are

already being tested for ocean color imaging on fine scales [Carrizo et al., 2018; Gilerson

et al., 2018], but they may suffer from different opto-electronic induced limitations in unique

ocean color scenarios. Therefore, the ability to simulate snap-shot hyperspectral cameras is

necessary for imaging in remote heterogeneous oceanic regions. Overall, by advancing the

real-world requirements and future needs of the simulation framework, it will stay relevant

for the next generation of drone-based ocean color imagers.

Chapter 4 introduced a spectral super-resolution technique which requires advancement

in specific areas before it can be applied on real-world ocean color data. Obviously the first

step to applying this technique to ocean color remote sensing data is to force the technique to

better generalize to unseen ocean color datasets. Better predictive results for unseen ocean

color datasets could be accomplished by training the algorithm on data with similar statistics

as the target ocean color data. Unfortunately, only a single ocean color dataset collected by

an instrument in a typically oligotrophic region (the Marine Optical Buoy in Hawaii [Clark

et al., 2003]) provides sufficient spectral resolution for training. Therefore, a new dataset

with sub-nm spectral resolution covering a wide range of ocean color scenarios is required

to train the SVRs to match the variety of ocean color statistics expected in the global

oceans. Another problem with application of this technique to real-world ocean color data

is that it will be difficult to determine where mixing in heterogeneous environments ends.

Therefore, an important research step for this chapter would be to identify regions within

heterogeneous images that were spectrally similar, using algorithms specifically designed for

hyperspectral similarity [Wang et al., 2015], so that only those pixels would be used in the
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spectral super-resolution algorithm. It is likely that the selected homogeneous regions will

have mild residual heterogeneity, so a final addition to this chapter would be to train the

machine learning techniques to be insensitive to mild heterogeneity, as it is unlikely that

waters will be perfectly mixed on these scales. This would be best accomplished by a field

study, similar to Chapter 2 but with in-situ radiometric measurements, where heterogeneity

was included in the real-world measurements. Overall, by refining these specific steps the

spectral super-resolution algorithm would be applicable to real-world ocean color data from

heterogeneous regions.

5.3 Applications of Dissertation Research Beyond Ocean Color

Remote Sensing

The new sub-meter imaging paradigm for water bodies enables a wide range of novel appli-

cations outside of standard ocean color remote sensing tasks. Example non-traditional tasks

that would benefit from the chapters include water quality monitoring of remote desert

springs to replace in-situ monitoring, regulation of cruise ship effluent discharge in areas

exhibiting weak tidal exchange [Meams et al., 2003], and monitoring microplastics across

river outflow to identify their source (Table 5.1). In each case, glint correction is critical

for accurately recovering the radiance. The simulation framework is essential for selecting

the optimal commercially available imaging spectrometer for detecting microplastics, as the

spectral signature of microplastics often occurs in the NIR [Garaba and Dierssen, 2020],

where the SNR of the commercially available imaging spectrometers are the lowest [O’Shea

et al., 2020]. The increased spectral resolution from the spectral SR technique could, with

additional training, be used to provide additional information for identifying algal species

within desert springs, which can vary substantially [Shaaban et al., 2015]. Overall, the

sub-meter ocean color remote sensing paradigm generates higher quality remote sensing

data that is useful for all aquatic applications leveraging imaging spectrometers, not just

standard ocean color remote sensing tasks.

The glint correction and simulation framework of Chapters 2 and 3 were necessarily

focused on the narrow field of ocean color remote sensing, however the spectral super-

resolution technique developed in Chapter 4 would also be beneficial within industrial and

agricultural applications. One specific example application would be to use these techniques
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on coarse resolution imaging spectrometers for sorting polymers using their NIR and short-

wave infrared (SWIR) spectra [Moroni et al., 2015; Huth-Fehre et al., 1998; Mauruschat

et al., 2016]. The technique could be used to reduce the spectral resolution required, and

therefore the cost of the imaging spectrometer, by spatially over-sampling the targets on

the conveyor belt. Similarly, this technique could be applied for agricultural sorting of

bruised apples, which require between 9 and 18 nm spectral resolution [Lu, 2003], to reduce

spectral resolution (and therefore cost) of the imaging spectrometer. While only two specific

examples are presented, the potential applications are wide ranging.
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Appendix A

Determining the analog-to-digital conversion factor

The spectral signal-to-noise ratio can be calculated theoretically from the number of elec-

trons captured on an imager’s focal plane array. The analog-to-digital conversion factor (𝑔)

converts the imager-measured digital numbers to electrons. Eq. A1, which holds after cor-

recting for camera noise and pixel-to-pixel variability [Newberry; Janesick, 2007], calculates

the analog to digital conversion factor (𝑔) from images of a flat field.

𝑁2
imager,C

= (1/𝑔)𝑆𝐶 (A1)

Therefore, by calculating the mean (𝑆) and standard deviation (𝑁) of the imager measured

counts from a flat field image, it is possible to compute the conversion factor (𝑔).

A correction procedure for bias follows that of Newberry [Newberry]. First, two images

are taken of a flat field target at identical exposure times. Each spectral row of the first

image is then mean-scaled to match the spectral row mean of the second image, to account

for illumination fluctuations between the two images. The first image is then subtracted

from the second. From the difference is calculated the standard deviation of the spatial data

and the square of that value. The square of the standard deviation of the difference image

is twice the single image variance. When the single image variance is plotted against the

mean value for each spectra, the inverse of the slope of the line of best fit is equivalent to

analog-to-digital conversion factor (𝑔) [Meola et al., 2011; Janesick, 2007]. This conversion

factor can then be used to convert the digital number to the number of electrons, so that

the theoretical SNR can be calculated.

From this approach a conversion factor of 7.8942 electrons per digital number was ob-
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tained. This value is nearly identical to the conversion factor which covers the full dynamic

range of the full well (~32,700 electrons) using the imager’s maximum radiometric resolu-

tion of 4096 bits (7.9365 electrons per digital number). Given the agreement between these

two estimates, the conversion factor of 7.8942 electrons per digital number was used in the

theoretical signal-to-noise ratio calculations within this paper.
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Appendix B

Comparing theoretically and spatially derived SNRs

A theoretical derivation for SNR was described previously in Introduction subsection 2.1.3.

A separate metric of the SNR can also be estimated using a second method based on spatial

statistics, referred to hereafter as the spatially-derived SNR. The signal is the mean of the

intensity over a range of spatial pixels, and the noise is the standard deviation calculated

from the same range [Eq. B1].

𝑁𝑗 spatially-derived =

⎯⎸⎸⎸⎷ 𝑗+25∑︀
𝑖=𝑗−24

(𝑥𝑖 − 𝑥)2

50
(B1)

Here, Nj spatially-derived is the spatially-derived noise at the j-th pixel (calculated from the

50 surrounding pixels), x is the signal at the i-th pixel, and x is the mean signal of the 50

surrounding pixels. When assuming a homogeneous signal without environmental factors,

this estimate of SNR derived from spatial statistics is identical to that derived theoretically.

To explore the limitations of the single image radiometric correction we compared the

spatial SNR of the radiometrically-corrected imaging spectrometer images to their theoret-

ical shot noise limited precision. One limitation of the radiometric correction approach we

used here, which is performed post-deployment, is that the corrected images rely on only

a single radiometric image of an integrating sphere. This approach does in fact correct for

a significant amount of pixel-to-pixel variability but it is still subject to shot noise errors

that may be present in the single image of the integrating sphere (Fig. B-1, Spa. 1). Con-

sequently the spatial SNR from a single image correction (Spa. 1) does not approach shot

noise limited accuracy of the original image (Theo.). To approach the shot noise limit a
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larger number of correction images are needed in order to remove the random fluctuations

induced by shot noise (Fig. B-1, Spa. 100). The radiometrically-corrected single image

SNR curve can be approximated by solving for the variance and mean of the single-image

corrected test image (CT) [Eqs. B2 and B3]

𝜎CT
2 = 𝐸[(1/𝐶)2] * 𝐸[𝑇 2] − 𝐸[(1/𝐶)]2 * 𝐸[𝑇 ]2 (B2)

where 𝐶 is a pixel from the correction image, 𝑇 is the corresponding pixel from the test

image, 𝜎CT
2 is the variance of the single image corrected test pixel, and 𝐸 is the expected

value. We assume that 𝐶 and 𝑇 are shot noise limited so that in turn we can assume they

exhibit a Poisson distribution.

𝑆𝑁𝑅Theo. CT1 = 𝐸[𝑇 ]/(𝐸[𝐶] * (𝜎ct)) (B3)

Here, SNRTheo. CT1 denotes the estimated theoretical SNR limit due to the single image

correction process. Within this paper, the SNR was calculated in the same manner as

SNRTheo. CT1, the radiometric correction limited value. The difference between theoretical

SNR limit and the SNRTheo. CT1 limit induced by photon shot noise in the correction image

may not be wholly negligible and will depend on the level of environmental noise in the

actual observational measurements.
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Figure B-1: When no radiometric correction technique is applied (Spa. 0), the pixel-to-pixel
variations limit the spatial SNR below the theoretical limit (Theo.). When we radiometri-
cally correct using 100 images, the spatially-derived SNR (Spa. 100) and the theoretically
derived SNR (Theo.) match. Only one radiometric correction image is used to correct our
observational data set. The spatially-derived SNR using 1 correction image (Spa. 1) can be
approximated by the theoretical limit due to a single correction image (Theo. CT1) [Eqs.
(B2) and (B3)].
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Appendix C

Spectral Optimization Software Correction:

modifications

The original Lee et al. [Lee et al., 2010] glint correction approach used an optimization al-

gorithm with only lower bounds that sometimes converged to physically unrealizable remote

sensing reflectances. When used with our data set this implementation of the optimiza-

tion algorithm led to a > 100% increase in the remote sensing reflectance at 550 nm for

48.7% of our hyperspectral imager data [Lee et al., 2010]. We explored the use of a more

robust bounded optimization algorithm that would ideally retain a greater amount of our

observational data when applying the Lee et al. [Lee et al., 2010] SOSC approach. When

applying a lower and upper bounded optimization algorithm with a realistic initialization

point, we obtained convergence of the SOSC to physically realistic radiances in 99.84% of

our observations. We constrained the algorithm’s offset value so that it could not increase

the Rrs beyond the measured value, and so that it could not force red wavelengths at 650 nm

negative. We empirically derived the lower and upper bounds for the SOSC parameters P,

G, and X to be [0.003 1], [0.001 1], and [0.0001 0.5] respectively. These values were derived

by running the optimization algorithm on individual pixels from a variety of images in the

time series and identifying P, G, and X values that corresponded with the optimizer not

converging to the measured Rrs. This empirical derivation of the lower and upper bounds

could be done on any remote sensing reflectance dataset to reduce errors in the optimizer.

In addition to unrealistic P, G, X, and offset values, we also observed issues with negative

estimates of Rrs that suggested undefined initialization points. To remedy this problem, for

negative first guesses of remote sensing reflectance spectrum at 440 nm, 555 nm, or 550 nm
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we forced the initialization values using the total Rrs less the Fresnel reflectance multiplied

by the sky remote sensing reflectance. The initial guess Rrs was the total remote sensing

reflectance, less the Fresnel reflectance multiplied by the sky remote sensing reflectance,

less the mean of that signal from 750-800 nm. If those values were still negative, the

total remote sensing reflectance was used to set the initialization values. After running the

bounded optimization with real initialization points using two different algorithms, interior

point and active set, the solution with the lowest error was taken as the final SOSC remote

sensing reflectance spectrum.
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