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Understanding the way individuals are interconnected in social networks is of prime significance to predict their collective
outcomes. Leveraging a large-scale dataset from a knowledge-sharing website, this paper presents an exploratory investigation of
the way to depict structural diversity in directed networks and how it can be utilized to predict one’s online social reputation.
To capture the structural diversity of an individual, we first consider the number of weakly and strongly connected components
in one’s contact neighborhood and further take the coexposure network of social neighbors into consideration. We show
empirical evidence that the structural diversity of an individual is able to provide valuable insights to predict personal online
social reputation, and the inclusion of a coexposure network provides an additional ingredient to achieve that goal. After
synthetically controlling several possible confounding factors through matching experiments, structural diversity still plays a
nonnegligible role in the prediction of personal online social reputation. Our work constitutes one of the first attempts to
empirically study structural diversity in directed networks and has practical implications for a range of domains, such as social
influence and collective intelligence studies.

1. Introduction

Recent years have witnessed the emergence and rapid prolif-
eration of many social applications and media platforms. As
the backbone of so many online social systems, network
structure is becoming a complex and subtle force that drives
the dynamics of a wide variety of social processes. In some
cases, we seek to leverage social networks to maintain social
capital, encourage the adoption of new products, or promote
positive behaviors like cooperation and physical exercise
[1–10], while in others to eliminate the spread of infectious
diseases and fake news or change negative behaviors like con-
flict and unhealthy eating [11–15].

A wealth of studies suggests that the socioeconomic char-
acteristics of individuals or communities are closely related to
their network locations [16–23]. As evidenced in the litera-
ture, connected individuals generally show similar patterns
in terms of diverse social interests and activities [24–28].

However, the information redundancy and prevalence of
similarity in one’s social realm may limit his/her potential
of exposure to diverse information and interaction with
people from different backgrounds, thereby reducing the effi-
ciency of social networks, preventing the diffusion of innova-
tive ideas, weakening the power of social influence and
undermining the wisdom of crowds [29–33].

The recent availability of vast and fine-grained data of
human activities in online social networks provides an
unprecedented opportunity to investigate the nuanced or
subtle social effects induced by social context diversity.
Structural diversity, which is aimed at quantifying the
diversity of one’s social context from the view of compo-
nent count among social neighbors, has been shown useful
in predicting specific social processes in undirected net-
works [2, 6], while for directed networks, the strength of
structural diversity still remains an open question [34].
In directed networks, the network connectivity patterns
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become more complicated, and network ties may function
quite differently according to the direction [28, 35]. More-
over, exposure to similar users could have a better chance
to result in the similarity between two individuals even
without an explicit social tie between them [36], which is
largely overlooked by previous studies on structural
diversity.

Online social reputation is the consensus public opin-
ion of an individual or entity based on the ratings from
members in a social network [37–39]. It helps to foster
trust among online users and is one of the most valuable
assets in our online social lives [40, 41]. Using data from
an online knowledge-sharing platform, this paper
addresses the problem of how to quantify the structural
diversity of an individual in directed networks and the
role of it in empirically predicting personal social reputa-
tion. We first consider the weak and strong connectivity
patterns among one’s social contacts and find that per-
sonal social reputation is positively correlated with the
number of weakly or strongly connected components in
one’s contact neighborhood. Conditional on how many
followers one has, individuals whose followers come from
more diverse social backgrounds tend to have higher
social reputations on the platform. Regression analysis
indicates that structural diversity measures via weak and
strong connectivity among one’s neighbors yield better
predictions of personal social reputation than the number
of followers one has. We further take the coexposure net-
work of one’s social neighbors into consideration, which
goes beyond the sheer number of social contacts or con-
nected social components in one’s contact neighborhood
and provides an additional ingredient to predict personal
social reputation.

To eliminate the effects of confounders from structural
diversity in the prediction of personal social reputation, we
conduct a series of matching experiments. After synthetically
controlling possible confounding factors, we present compel-
ling evidence that for individuals with an equal number of
followers, same gender, and similar activity-related patterns,
those whose followers come from more diverse social back-
grounds (measured by structural diversity) are more likely
to have higher social reputations. Our work presents one of
the first attempts to empirically study structural diversity in
directed networks and demonstrates the potential utility of
structural diversity in predicting personal social outcomes
and could also shed significant insights into the study of a
range of social processes such as the diffusion of innovations,
the spread of infectious diseases, and the influence maximi-
zation problem.

2. Results

2.1. Network Data and Social Reputation Index. We collect
data from Zhihu, a Chinese knowledge-sharing website
which claims to have more than 200 million registered users.
On this platform, social ties are created when users choose to
follow other accounts. Starting from a randomly selected
user, we collect follower and followee lists of 234,834 users
in a snowball sampling manner. These 234,834 users are

hereafter referred to as ego users since we know their com-
plete followers and followees. In addition, we also collect
the followee lists of the ego users’ followers (user accounts
two hops away from the ego users). The whole social network
is then constructed based on the explicit social ties between
user accounts. In total, the constructed network covers more
than 10 million user accounts and 300 million directed social
ties. For these ~230,000 ego users, we further collect their
popularity data, including how many upvotes, thanks, and
favorites they have received, which indicate their social repu-
tations on the platform. Other kinds of informative data are
also collected, such as how many questions they have asked
and answered, self-reported gender, followed topics, and
questions. Note that all the collected data are based on public
information on the platform and do not include any users
with privacy restrictions.

The distributions of the number of received upvotes,
thanks, and favorites are illustrated in Figure 1, where each
point in the panel indicates the fraction or relative frequency
PðkÞ of users with a specific quantity which equals k. The
dashed grey line in each panel shows the power-law fitting
[42, 43] for each distribution, where the power-law expo-
nents are 1.342, 1.473, and 1.400, respectively. As the distri-
butions span several orders of magnitude, the inequality of
personal popularity is very striking. Considering the fact that
these three popularity measures are highly correlated and
very sparse, we adopt nonnegative matrix factorization
(NMF) [44–47]—a widely used dimensionality reduction
technique—to collapse them into a single measure which
we term the social reputation index (see Methods for details
on the construction of the social reputation index).

2.2. Weak and Strong Connectivity. To quantify the structural
diversity of a given node in directed networks, we first con-
sider the weak and strong connectivity between the neighbor-
ing nodes. Note that for any two nodes u and v in a directed
network, u and v are said to be weakly connected as long as
there is a path linking u and v regardless of the direction of
the path and strongly connected if and only if there is at least
a directed path from u to v as well as a directed path from v to
u. Therefore, according to the weak or strong connectivity
patterns between nodes, a directed network can be decom-
posed into several social components.

There may exist multiple approaches to quantify the
structural diversity of individuals, but the most simple and
straightforward way would be the number of connected
social components in one’s contact neighborhood [2, 34].
Taking networks with three nodes as examples, Figure 2(a)
shows how directed networks are projected into different
numbers of social components based on the weak or strong
connectivity patterns. For a constructed ego network with
the ego node/user (we use the terms node and user inter-
changeably throughout the paper) located at the hub of the
wheel, Figure 2(b) further illustrates how the corresponding
structural diversity measures are computed compared with
indegree (number of followers). For the given ego user in
Figure 2(b), (i) indegree is equal to the number of followers,
which is 9 in the given example; (ii) weak diversity measure
is equal to the number of weakly connected components in
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the contact neighborhood of the ego user, which is 4 in the
given example; and (iii) strong diversity measure is equal to
the number of strongly connected components in the contact
neighborhood, which is 6 in the given example. In fact, we
have the property that weak diversity measure ≤ strong
diversity measure ≤ indegree for any given ego user. For these
~230,000 ego users, more than 91% of them have less than 20
followers, and only 1,442 of them have more than 1,000 fol-
lowers (Figure 2(c), c1). As shown in Figure 2(c), the distri-
butions of their weak and strong diversity measures are also
very highly skewed. The dashed grey line in each panel shows
the power-law fitting [42, 43] for each distribution, where the
power-law exponents are 1.641, 1.690, and 1.659, respec-
tively. As expected, the social reputation index increases with
all three metrics, with Spearman’s rank correlation coeffi-
cients as 0.646 for indegree (p < 0:001), 0.648 for weak diver-
sity measure (p < 0:001), and 0.647 for strong diversity
measure (p < 0:001).

With a closer look at individuals with an equal number of
followers (indegree), we find that the social reputation index
generally grows monotonically with the increase of weak and
strong diversity measures (Figure 3). In other words, for indi-
viduals with the same number of followers, those whose fol-
lowers come from more diverse social backgrounds
(measured by weak or strong diversity measure) are likely
to have higher social reputations. Figure 4(a) summarises
the prediction accuracy (R2) of social reputation by indegree,
weak diversity measure, and strong diversity measure
through three separate ordinary least square (OLS) regres-
sions. In each regression, the social reputation index is set
as the dependent variable and each measure (log-trans-
formed) is set as the sole independent variable. As shown in
the figure, structural diversity measures yield better predic-
tions of online social reputation than indegree with R2 values
equal to 0.691, 0.699, and 0.698 for indegree, weak diversity
measure, and strong diversity measure, respectively.

To directly compare these measures, we further adopt L1
-regularized linear regression, which is also called least abso-
lute shrinkage and selection operator (LASSO) regression.
LASSO regression is a standard model in sparse regression
and has been widely used for simultaneous estimation and

variable selection [48–52] (see Methods for more informa-
tion on LASSO regression). Note that, with the increase of
the regularization level, LASSO would continuously shrink
the coefficients of less important features to be zero [49,
50]. Figure 4(b) shows the regularization path obtained from
LASSO regression where indegree, weak diversity measure,
and strong diversity measure (log-transformed) are set as
predictors in the prediction of social reputation. With the
decrease of the regularization level, weak and strong diversity
measures are first selected before indegree, which may imply
that it is not howmany followers one has but rather the struc-
tural diversity of one’s followers that matters in capturing
one’s social reputation.

2.3. Social Bridges. To quantify one’s social context diversity
from the view of component count, previous studies have
focused exclusively on explicit and direct social ties in one’s
contact neighborhood. However, as social neighbors provide
a reliable way to infer personal characteristics [24, 27, 28, 53–
55], it is reasonable to speculate that two individuals who are
exposed to a similar set of users will tend to be similar with
each other, even without a direct social tie between them.
Therefore, the common followees between them could act
as social bridges that implicitly “link” two unconnected indi-
viduals or social components in the network [36].

Figure 5(a) illustrates the process of how we apply social
bridges to capture the implicit structural diversity of ego
nodes. Figure 5(b) gives another example with all the fol-
lowers (denoted by black circles) isolated (i.e., no direct social
ties between the followers). However, after social bridges are
taken into consideration, user a and user b are likely to form
one connected component (see Figures S3 and S4 of the
Supplementary Materials for more examples). Specifically,
for two followers i and j of an ego user, we adopt Jaccard
similarity of their followee sets to determine whether there
is a “bridged connection” between them: JaccardSimði, jÞ = j
Fi ∩ Fjj/jFi ∪ Fjj, where Fi and Fj denote the followee sets
of i and j, respectively; ∩ and ∪ denote the intersection
and union operators of two sets, respectively; and j·j
denotes the size of a given set. A bridged connection exists
between i and j when JaccardSimði, jÞ is larger than a given
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Figure 1: Distributions of the number of received upvotes, thanks, and favorites. For ease of visualization, quantities of zeros are not shown.
The dashed grey line in each panel shows the power-law fitting for each distribution.
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Figure 2: Weak and strong connectivity. (a) Projecting three-node directed networks into the number of weakly or strongly connected
components depending on the connectivity patterns between nodes. The first, second, and third rows correspond to situations where the
number of weakly or strongly connected components is exactly one, two, and three, respectively. (b) Illustration of how the structural
diversity measures are quantified compared with indegree. (b1) For the given ego network, the ego user and his/her followers are shown in
grey and black dots, respectively, and the incoming links of the ego user are shown in dashed lines while the links among followers are
faded in grey. (b2, b3) Illustration of how weak and strong diversity measures are computed, with the informative links highlighted in
black and weakly or strongly connected social components shown in shaded areas. For the given example, the indegree of the ego user is 9
as he/she has 9 followers; the weak diversity measure is 4 since there are only 4 weakly connected components formed by these 9
followers; and the strong diversity measure is 6 since there are 6 strongly connected components formed by these 9 followers. (c)
Distributions of indegree, weak diversity measure, and strong diversity measure. For ease of visualization, quantities of zeros are not
shown. The dashed grey line in each panel shows the power-law fitting for each distribution.
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threshold. A small threshold indicates that a bridged
connection exists between two individuals as long as they
share a small fraction of followees, while a large threshold
requires two individuals sharing a large proportion of
followees to determine the existence of a bridged connection.

Note that the bridged connection meets the requirement
of strong connectivity between two nodes. Therefore, if two
nodes share a bridged connection, they are also weakly and
strongly connected. After social bridges are considered, the
number of weakly and strongly connected components is
termed the enhanced diversity measures via social bridges,
denoted as “Weak connectivity+social bridges” and “Strong
connectivity+social bridges” respectively. For ease of compu-
tation, ego users with more than 30,000 followers (i.e., 88 out
of 234,834 ego users) are omitted in the analysis. Figure 5(c)
shows the prediction accuracy (R2) of social reputation by
diversity measures via social bridges with the change of the
Jaccard similarity threshold. Note that each R2 value is
obtained via OLS regression with the social reputation index
set as the dependent variable and diversity measure (log-
transformed) under each condition set as the sole indepen-
dent variable. For weak connectivity, a threshold around
0.25 achieves the best performance; for strong connectivity,
a threshold around 0.2 achieves the best performance.

In Figure 5(d), we summarise the best prediction accu-
racy (R2) achieved by each diversity measure via different
approaches, including two approaches that are proposed for
undirected networks—k-core decomposition and k-brace
decomposition [2]. Similar to the above, to facilitate the com-
putation and make these diversity measures comparable,
only ego users with no more than 30,000 followers are
included in the analysis. We also make some slight changes
to make k-core and k-brace decomposition applicable in

directed networks (see Methods for details). Specifically, k
-core decomposition and k-brace decomposition achieve
the best prediction accuracy (R2) when k is set to be 2 and
1, respectively. As we can see from Figure 5(d), social bridges
provide the most additional ingredient to predict personal
online social reputation, and diversity measure via weak con-
nectivity and social bridges yields the best prediction perfor-
mance. Furthermore, Figure 5(e) shows the regularization
path of the L1-regularized linear regression (LASSO regres-
sion) model with several diversity measures (log-trans-
formed) set as predictors. As shown in the figure, with the
decrease of the regularization level, diversity measures via
social bridges are selected before other diversity measures,
which further suggest the effectiveness of social bridges in
the prediction of online social reputation.

2.4. Robustness Analysis. In the previous sections, we have
shown that individuals with higher levels of structural
diversity tend to have higher online social reputations.
However, the positive correlation between structural diver-
sity and online social reputation may be biased by other
factors. For example, as shown in Figure 6(a), the answer
count is also positively correlated with online social repu-
tation (Spearman’s rs = 0:858, p < 0:001). In other words,
the more answers a user has contributed to the
knowledge-sharing community, the higher the social repu-
tations he/she tends to have on the platform. Therefore,
personal online social reputation may also be induced by
contributed answers rather than merely the structural
diversity of individuals. We also find that gender could
be another potentially confounding factor, as male users
tend to receive higher social reputations than female users
and users of unknown gender on the platform (one-way
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ANOVA, Fð2, 234831Þ = 6636:8, p < 0:001) (Figure 6(b)).
Combining with several other activity-related factors, such
as question count and article count, a series of matching
experiments are then conducted to distinguish the effects
of structural diversity from these possible confounding fac-
tors in capturing personal social reputation.

Propensity score matching (PSM) is a widely used
method for matching experiments in the literature [25, 56–
61]. The key intuition of PSM is to match the treatment
group with a control group whose members do not receive
the treatment but are statistically indistinguishable or at least
only marginally different (within a reasonable limit) from the
treatment group on all observable covariates. We use the
quantified diversity measure via weak connectivity and social
bridges to depict the structural diversity of users in the net-
work. Here, in our setting, a user is said to be treated (treat-
ment group) if his/her diversity measure is larger than or
equal to m (m is a given integer), otherwise untreated (con-
trol group). We do exact matching on indegree and gender
(i.e., matched pairs have equal indegree and the same gender)
and propensity score matching on other covariates (see
Table S6 of the Supplementary Materials for detailed

covariates controlled in the matching experiments). The
difference of social reputation index in each matched pair
(treatment-control) indicates the relative social reputation
induced by the increase of structural diversity.

After matching, we obtain a well-balanced dataset with
all standardized mean differences between the treated and
untreated groups being less than 0.25. Figure 6(c) shows the
differences of social reputation index between matched pairs
(for space constraint and simplicity, we only present results
when m is set to be in the range ½2, 10$). As shown in the fig-
ure, after ruling out several potentially confounding factors,
users with higher levels of structural diversity (assigned as
treated users in the matching experiments) would still tend
to have higher online social reputations (paired t-test, p <
0:001 for all matching experiments). Taken together, after
rigorously controlling possible confounders, matching exper-
iments provide compelling evidence for the role of structural
diversity in elevating personal online social reputation.

3. Discussion

The advent of social networking sites and knowledge-sharing
platforms has radically shifted the way we consume informa-
tion, acquire knowledge, and exchange ideas. As social ties
among individuals provide the primary pathways along
which interactions occur, the way we are connected and
embedded in social networks is thought to affect various per-
sonal social outcomes, ranging from personal health to socio-
economic characteristics.

Taking advantage of network data which cover more
than 10 million users (including more than 230,000 ego
users) from an online knowledge-sharing platform, our study
highlights the importance of structural diversity in online
social networks and suggests an alternate perspective for peo-
ple to accumulate their social capital, for policy makers to
make appropriate interventions and for market operators to
set up effective campaigns. Our findings are also of prime sig-
nificance to understand why network structure matters in a
range of social and economic domains. For example, individ-
uals who are located in a diversified social context are gener-
ally accessible to novel information and ideas, which has
important implications for viral marketing and fake news
research. Moreover, as we live in such a connected world of
overloaded information, how we aggregate opinions around
us (e.g., adopt information from diverse backgrounds) to
arrive at a reliable and accurate estimation is not only crucial
to make better decisions but also important to improve the
collective intelligence.

Our work is subject to a number of limitations. Our
results are the product of one study based on the collected
data from an online knowledge-sharing platform. Therefore,
additional studies are needed to validate our findings in other
kinds of social applications or domains. In this paper, we use
snowball sampling during the data collection, but this
approach may over- or undersample some data and induce
bias to the results. To quantify the structural diversity of indi-
viduals, this work mainly considers the number of connected
social components in one’s social realm, but other network
factors, such as the weight of ties and other structural
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properties, may help to achieve that goal and are also worth
exploring in future works. Although social bridges help to
capture the implicit structural diversity of individuals, the
computation will require a large amount of computing time
and memory resources, especially for users with a large num-
ber of followers. In our study, the matching experiments have
already accounted for several observed characteristics of
users, but due to the limitation of data availability, the esti-

mation results may still be biased without properly control-
ling those unobserved or unmeasured confounding factors.
We emphasize that our results are built upon correlation
analysis on observational data, thus not implying causality
sufficiently. The current study mainly considers social ties
induced by following relationships, but social connections
induced by behavioral changes, such as comment or retweet,
may provide another way to infer the interrelationships
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between individuals and thus are worth exploring in future
studies.

4. Methods

4.1. Construction of Social Reputation Index. The current
study adopts nonnegative matrix factorization (NMF) to
construct the social reputation index from the original data.
NMF is an unsupervised approach for dimensionality reduc-
tion with the constraints that the input and output matrices
do not contain any negative elements [44–47]. Specifically,
for a given nonnegative data matrix V , NMF attempts to find
an approximate factorization: V ≈W ·H such that the origi-
nal matrix V can be decomposed into two nonnegative sub-
matrices W and H, with the goal of minimizing the
reconstruction error between V and W ·H.

In our setting, the decomposition of an original matrix
with n users and m dimensions of features can be decoded
as Vn×m ≈Wn×r ·Hr×m, where r is a given parameter prior
to the matrix decomposition and indicates the expected
dimension after NMF. Here in our study, Vn×m is the original
data matrix while n equals 234,834 (i.e., the number of ego
users in the sample) and m equals 3 as there are three types
of popularity measures (i.e., number of received upvotes,
thanks, and favorites), whereas r is set to be 1 as we aim to
obtain a single measure of social reputation. After NMF,
the reduced submatrix Wn×r is denoted as the social reputa-
tion index.

In practice, these three popularity measures are first log-
transformed by log10ðx + 1Þ and then fed into NMF simulta-
neously. Once the social reputation index (the first submatrix
W after NMF decomposition) is obtained, we normalize it to
the range [0, 100] as follows: given a vectorW indicating the
social reputation index, every element ofW is normalized as
Wi = 100 × ðWi −WminÞ/ðWmax −WminÞ, where Wmax and
Wmin are the maximum and minimum values of W,
respectively.

4.2. LASSO Regression. Generally speaking, OLS regression
yields nonzero estimates to the coefficients of all the features.
But LASSO adds the L1 penalty of the coefficients (i.e., the

sum of the absolute value of the estimated coefficients) as
the regularization term to the loss function of OLS regression
(see Refs. [49–51] for further technical details). Therefore,
when the regularization level is set to be zero, LASSO regres-
sion is equivalent to OLS regression. With the increase of the
regularization level, LASSO would gradually force the coeffi-
cients of less important features to be zero.When the regular-
ization level becomes sufficiently large, all the estimated
coefficients will be zero.

4.3. k-Core and k-Brace Decomposition. k-Core decomposi-
tion and k-brace decomposition have been shown useful in
depicting structural diversity in undirected networks [2].
Considering the fact that users with completely isolated fol-
lowers tend to have higher social reputations than their coun-
terparts, node removal in k-core and k-brace decomposition
would not work here. In this regard, we make some slight
changes to make k-core and k-brace decomposition applicable
in the current scenario. In the contact neighborhood formed
by the followers of an ego user, only edges that are affiliated
to specific nodes are removed (instead of node removal). For
k-core decomposition, we use the degree (i.e., indegree+outde-
gree) of nodes to do the decomposition process: edges that are
affiliated with nodes whose degrees are less than k are repeat-
edly removed. For k-brace decomposition, we transform the
directed networks to undirected ones and then implement
the decomposition process: edges whose two endpoints share
less than k neighbors are repeatedly removed. After decompo-
sition, the number of (weakly) connected components in the
decomposed contact neighborhood is named the diversity
measure via k-core or k-brace decomposition.
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