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Abstract 

Biopharmaceutical companies are increasingly exploring cutting-edge novel gene therapies (GTs) in an 
effort to cure rare diseases. This capstone develops and tests a practical forecasting framework for sharing 
capacity across Roche’s evolving GT portfolio and driving strategic global supply chain network design. 
Our problem is challenging, even by the highly regulated pharmaceutical industry standards, with: (1) 
substantial R&D and mergers and acquisitions investments, (2) some of the world’s smallest disease 
populations, (3) one-time patients, (4) lacking commercial infrastructure, and (5) scarce historical or long-
term pipeline data. We created three forecast types based on the target disease state knowledge available 
to predict an asset’s prevalence and incidence patient adoption curves. The resulting asset forecasts are 
also aggregated into a comprehensive portfolio dashboard. Our user-friendly point model enables 
stakeholders to market size the prospective current pipeline and risk pool portfolio capacity by clinical 
phase. We then applied simulations to illustrate long-term product launch scenarios. These tools cater to 
various stakeholders helping address the key GT production planning and asset targeting problems. Roche 
has already began utilizing our capstone to methodically consider unknown future assets, with unknown 
orphan disease severity or populations, in their strategic make vs. buy GT network design decisions.   
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1 Introduction 
 

1.1 Problem Background 
Gene therapies (GTs) are cutting-edge treatments forming the next generation of biopharmaceuticals. 
These assets utilize innovative technology to manipulate the human genome in a revolutionary effort to 
be a single time use cure for diseases. Ongoing clinical trials continue to grow the potential disease use 
cases for GTs. Rare diseases present some of the most exceptional application opportunities for GTs, 
many which do not have a single approved medical treatment available (Dunbar et al., 2018). 
Unfortunately for supply chain experts in this field, there are many challenges with GTs. Five key 
features make our capstone problem unique: (1) small patient populations, (2) single-dose nature of 
GTs, (3) theorized unique adoption curves, (4) level of investment in GTs, and (5) lack of current 
commercial manufacturing footprint. This capstone explores how pharmaceutical companies developing 
GTs can forecast individual assets, and then leverage a portfolio approach to better estimate the volume 
that their supply chain networks will need to serve. 

 

1.1.1 Demand: Novel Treatments for Rare Genetic Diseases 

Genetic diseases are caused by gene mutations. Rare diseases can stem from the abnormality of a single 
gene (monogenic) or a set of abnormalities in several genes (polygenic). Given the relationship between 
genes and rare diseases, it is clear how GTs seem to target rare disease treatment needs. What may not 
be as immediately apparent is the breadth of potential GT impact on rare disease patients: over 80% of 
all rare diseases have been traced back to only one causal gene (TRND, 2017). The criteria for classifying 
a disease as “rare” differs by country. Rare diseases have been defined as disorders affecting fewer than 
200,000 patients in the United States (US) since the Orphan Drug Act of 1983, a US government-
supported initiative aimed at encouraging rare disease drug development with incentive programs 
(GARD, 2021). The European Union quantifies conditions as rare diseases when fewer than 1 in 2,000 
individuals are affected (GARD, 2021). Gene therapies help fill a service gap for these smaller, and 
historically disproportionately underserved, patient populations.  

Gene therapy has been the “next big thing” for nearly half a century. In the 1960s, Dr. Lorraine Kraus 
was the first scientist to place functioning DNA in a mammalian cell. Interest in developing innovative 
genetic medical treatments drastically increased in the 1980s. Gene therapy and cell therapy (CT) 
research continued to gain momentum into the next decade. US federal regulators reacted to these 
significant treatment development efforts with a regulatory notice, recognizing a need to provide 
scientists statutory guidance for the promising future GT and CT products (FDA Federal Register Part II, 
53248, 1993).  

Traditional drugs typically focus on symptom management over a patient’s lifespan. More advanced 
drugs can proactively slow the onset or reduce the severity of rare disease symptoms, but still often 
require long-term treatment without curing the root cause. Gene therapies instead focus on attempting 
to cure chronic conditions by treating the mutated genetic source with one dose (TRND, 2017).   
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Relating GTs and CTs to common traditional medicines, both treatments use genetic material as the 
“active ingredient” to combat rare gene abnormalities (NHLBI, 2018). Research over the past several 
decades has spanned ex vivo and in vivo therapies. CTs frequently target oncologic conditions by using a 
patient’s own somatic cells. These selected cells are extracted to create personalized vectors that are 
introduced outside of the human body in an ex vivo therapy method before ultimately delivering to 
patients in vitro. In contrast, general GTs deliver in vivo vectors of general genetic material per disease 
state to treat conditions. Figure 1.1 details adenovirus vector components in a visual overview of how 
gene therapies deliver specific DNA to patient cells. Although technological advances have enabled viral 
vectors to package genetic material, these delivery vehicles also bring use and cost implications.   

 

Figure 1.1  
 
An Illustration of How Gene Therapy Works 

 

From U.S. National Library of Medicine (NLM). (2020, September 17). How does gene therapy work?: 
MedlinePlus Genetics. Medlineplus.Gov; National Institutes of Health (NIH). 
https://medlineplus.gov/genetics/understanding/therapy/procedures/ 

 

A key ramification of using viral vectors is the inability to administer more doses. After exposure to a 
viral vector, an immune system develops an immunogenic response to further doses (Sack & Herzog, 
2009). Henceforth, patients who have been administered a gene therapy are unable to receive the 
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treatment again. Superior treatment efficacy is critical to establishing the value of expensive GTs for 
eligible patients (Science Direct, 2018) with current technology limitations for one-time administration. 
Most rare diseases do not have existing treatment options (TRND, 2017) that risk dampening gene 
therapy adoption curves. For example, Luxturna has been able to maximize eligible inherited retinal 
diseases (IRDs) market access with no viable competing treatment value propositions. Luxturna has 
been able to capitalize on offering not only superior efficacy between absent medicinal alternatives, but 
also has driven user adoption by providing better efficacy than currently offered by the standard of care 
(Science Direct, 2018). While continued gene therapy research progress supports efforts to make these 
breakthrough treatments part of the future standard of care (Dunbar et al., 2018), we anticipated gene 
therapy adoption rates to be higher among individuals affected by the minority of rare diseases with 
traditional symptom management treatments (TRND, 2017) and the greater rare disease population 
without specific orphan treatments available.  

 

1.1.2 Commercialization Risk: Gene Therapy Clinical Trials 

Clinical trials traditionally consist of three distinct phases: I, II, and III. During each clinical phase, 
clinicians, researchers, and regulatory agencies attempt to discern different aspects of the drug. In 
Phase I, a small trial of healthy individuals is used to evaluate and confirm how a drug works in the 
human body, confirm the safety of the drug, and understand dosage impact. During Phase II clinical 
trials, researchers identify any side effects and potential efficacy of the drug on patients that have the 
disease. Phase III is a large-scale trial to look for any additional adverse reactions to the drug and 
confirm efficacy endpoints (Commissioner, 2020). GTs are but a subset of products in the larger 
biopharmaceutical industry. Safety of a new drug, efficacy, investment costs, approval lead time, and 
patient population sizes are barriers to the general biopharmaceutical drug commercialization process. 
Aside from the average commercialization success rate for any new clinical asset of ~12%, Figure 1.2 
further quantifies these challenges are further quantified by the average investment $2.6 billion for 
research and development (R&D) costs, over 10 years pursuing U.S. Food & Drug Administration (FDA) 
approval, and difficulties of recruiting trial volunteers. (PhRMA, 2015, pp. 13, 19). Figure 1.2 depicts the 
substantial difficulty of securing FDA approval to commercialize any biopharmaceutical drug. 
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Figure 1.2  
 
Biopharmaceutical Clinical Development Process 

  

Note. The narrowing white area representing potential new biopharmaceuticals, such as GTs, shows 
how these assets are continuously removed from the pipeline throughout the clinical trials process. 
From PhRMA. (2015). Biopharmaceutical Research & Development: The Process Behind New Medicines. 
PhRMA. 

 

At the conclusion of each phase, researchers and regulatory agencies work together to identify if an 
asset is ready to move forward and when. Regulatory agencies are often very concerned about the 
safety profile of the drug, whereas pharmaceutical manufacturers are additionally concerned about the 
efficacy. Clinical trials come with a hefty price tag, with ranges by therapeutic area of $1.4M - $6.6M for 
Phase I to $11.5M - $52.9M for Phase III (Sertkaya et al., 2016). In addition to the safety and efficacy 
outcomes, the high cost of clinical trials force companies to evaluate the business case throughout the 
process, as they look at the competitive landscape. Clinical trials typically require a considerable time 
investment, as well. Zivin (2000) estimates an average of seven years for a product, frequently referred 
to as an “asset” in the pharmaceutical industry, to conclude the clinical trials process. Once, and if, a 
new medicine has concluded the three phases, each local regulatory agency, such as the FDA or 
European Medicines Agency (EMA), makes independent reviews and approvals for new medicine (Gene 
Therapy Net & Bleijs, n.d.). Therefore, it is often the case where a new drug is being commercialized in 
one country but has yet to reach commercial status in another country.  

Gene therapies do not always follow the traditional clinical trials process. First, considering the scope of 
rare diseases, accumulating hundreds to thousands of patients ranges from incredibly challenging to 
impossible (PhRMA, 2015, p. 13). Drug intensity and administration also affect the ability to run the 
industry standard randomized clinical trial. For example, Luxturna is delivered to the patient as an 
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injection to the back of the eyeball (Dunbar et al., 2018). Administering a control group in the trial can 
be considered both unethical and dangerous (PhRMA, 2015, pp. 11-13). Therefore, GTs do not always 
follow the standard Phase I, Phase II, Phase III clinical trial process. Per the American Society of Gene 
and Cell Therapy (ASGCT) as of October 2020, nearly a quarter of the ongoing USA Phase I, Phase II, or 
Phase I/II clinical trials (215/876) are in combined Phase I/II trials, rather than in either of the two 
independent stages.  

 

1.1.3 Supply Chain Network Planning: Uncertain New Product Manufacturing 
and Distribution 

To understand the quandary supply chain networks face trying to deliver gene therapies to commercial 
orphan disease patients, it is important to define pharmaceutical companies’ current business model. 
The commercialization of large molecule assets, such as new oncology medication, have rarely caught 
pharmaceutical companies flat-footed. Molecules in the pipeline are known and understood by 
scientists and regulatory bodies alike (FDA, 2020), creating a solid understanding of what is needed to 
get the asset to market. With this understanding and history of similar assets, companies have been able 
to create models predicting the likelihood of commercialization of an asset by clinical trial stage. Such 
models enable epidemiologists and demand planning teams to obtain solid understanding of patient 
eligibility by molecule. Additionally, current assets often target diseases with the large affected 
populations. Lastly, product demand deterioration is controlled by either competitor entry or end of a 
patent life. The defined time horizon of patents and publicly available FDA clinical trial status 
information provides an outlook on the competitive landscape for advanced commercial demand 
forecasting. Pharmaceutical companies can project and adjust the long-term need of manufacturing 
plants using a combination of the main current business model factors. These factors culminate to 
enable pharmaceutical companies to have confidence in strategic decisions for capacity of drug 
substance, drug product, packaging, and distribution around the globe.  

In contrast, GTs that target rare diseases challenge the underlying assumptions of the typical network 
design strategy. While any new-to-world offering requires some level of network design decisions, the 
profoundly unique GT treatments require at least some new network development. These costly 
network development decisions cannot currently be reliably supported by probability of 
commercialization, which is not fully understood for GTs. Although over many GT treatment clinical 
trials have been started, only three gene therapy products have been approved by a regulatory agency. 
More stringent regulations on GT treatment development understandably increase the difficulty to 
obtain regulatory approval. Layering in the small sample sizes available for targeted rare diseases, 
standard clinical trial study participant guidelines are further complicated. Supply chain, finance, and 
other key organizational stakeholders are ultimately left with little historical data to estimate the mere 
likelihood of a rare disease GT asset entering the market. 

Nearly a thousand companies are developing cell and gene therapies (Deloitte et al., 2020). The market 
continues to grow as the immature GT space evolves, although few firms are financially or physically 
capable of commercializing products. However, the GT main players have emerged mostly via 
acquisition of small biotechnology companies or licensing agreements to distribute individual assets. 
Even by pharmaceutical industry standards, this space is incredibly expensive to operate in and highly 
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regulated across different federal bodies. Large pharmaceutical companies with global means, such as 
Roche, Novartis, and Pfizer, have progressively been adding cell and gene therapies (CGTs) to their 
pipelines. Figure 1.3 shows the increasing consolidation of cell and gene therapy producers over the past 
five years via M&A, despite the growing number of entering competitors. 

 

Figure 1.3  
 
Pharmaceutical Industry Mergers and Acquisitions for CGTs (2015-2019) 

 

From Deloitte, Mooraj, H., Kawalekar, O., Gupta, L., & Shah, S. (2020, April 17). Cell and gene therapies: 
Delivering scientific innovation requires operating model innovation. Deloitte Insights. 
https://www2.deloitte.com/us/en/insights/industry/life-sciences/operating-models-for-gene-cell-
therapy-manufacturing-process.html 
 

Pharmaceutical companies brave and resourceful enough to enter the precarious GT space are forced 
into a difficult position, considering future scalability and financial value when investing in their new 
operations. The ability to leverage current biotechnology manufacturing equipment or processes varies 
by GT treatment type. For instance, different viral vectors require different manufacturing methods. In 
addition, large pharmaceutical companies focused on global production can struggle to adapt to the 
substantially smaller batch sizes. The long-term decision factors for GT manufacturing are further 
exacerbated when serving globally disparate, finite rare disease patient populations.  

Few pharmaceutical companies have full-scale GT production. This high-stakes example of a classic 
“make versus buy” supply chain scenario necessitates substantial investment for any of the primary 
options: (1) create in-house manufacturing capabilities, (2) contract with one of the select existing GT 
manufacturers, or (3) acquire a GT manufacturing facility. The latter two options are inorganic growth 
approaches used more frequently by larger pharmaceutical companies, but they often lead to an 
unclear understanding of nuanced rare disease GT assets in an already sophisticated pipeline.  



14 
 

 

1.2 Motivation and Impact on Partner 
Our partner for this capstone, Hoffmann-La Roche (Roche), has recently made acquisitions and licensing 
deals for assets in the rare disease GT space. Currently, some medicine is being manufactured by a 
selection of vendors. Roche has limited internal capacity to produce drug substance, drug product, or 
packaging and labeling related to gene therapies, so they are looking to identify the next steps in the 
future of manufacturing within this space. Due to the unique nature of gene therapies, the approach to 
network design of gene therapies cannot be based on the commercial success of a single asset. 
Manufacturers must consider how and whether pipeline assets combine to create an economy of scale.  

 

1.3 Problem Statement 
A functional model framework to forecast demand of rare diseases is needed to support network design 
decisions for manufacturing Roche’s growing GT asset portfolio. The diverse set of disease states, 
existing relevant data, molecules, asset stages, and regional market access determinants require a 
scalable model that can also be focused, or “sliced”, as it is applied to each progressing asset.  

The quantity and positions of competitors vary vastly by disease state in the emerging GT “curative” 
treatment market. Differences between GT assets for each disease state and the respective impact on 
patient eligibility are uncertain. Several disease states have more than one GT asset in the Roche 
pipeline alone. However, distinct features or market availability of non-Roche potential GT treatments 
can threaten competitive advantage. Roche’s current GT assets span across the entire pipeline, from 
preclinical to a single commercial asset. The vast majority of pipeline assets are precommercial.  

Which variables and assumptions should be included in this rare disease forecasting model. 
Furthermore, some attributes that help determine finished good market size and manufacturing 
requirements are also unknown, such as the treatment drug substance volume, patient eligibility, and 
insurance/financial coverage per asset. The disparities in epidemiology of each disease state by region 
are imperative to consider in our model for target market insights. Ultimately, we aim to answer the 
question: Can a forecasting model support strategic network development for sharing capacity across 
the evolving CGT portfolio? 

To answer this question, this capstone walks through three key steps: asset level forecasting, portfolio 
aggregation, and scenario planning. First, we developed a novel way to forecast assets. Second, we used 
these forecasts to estimate the current production planning problem based on Roche’s portfolio. Finally, 
we created a simulation to project the needed volume for several key scenarios. These three scalable 
tools provide visibility into the short-term commercial capacity needs for Roche’s current pipeline, as 
well as asset selection guidance based on the projected actualization of different annual product launch 
targets.  

  



15 
 

2 Literature Review 
This capstone explores how pharmaceutical companies developing novel GTs can move from modeling 
individual assets to the entire product portfolios their supply chain networks will need to serve. To 
support a multi-asset model, two key aspects of the portfolio breadth must be evaluated: forecasting 
demand and the likelihood of each asset being FDA-approved. First, research on new product 
forecasting will be presented. Then, this chapter will consider how to model clinical assets as they move 
through the portfolio. The niche gene therapy space offers limited commercial market data across 3 
total gene therapies approved by either the FDA or the EMA. Model complexity is increased by the 
problem statement’s narrower focus on rare disease gene therapies. Broader biopharmaceutical and 
supply chain research will also be assessed for consideration of future portfolio network design 
decisions.  

 

2.1 New Product Forecasting 
When forecasting a new product, company launch team stakeholders have two primary considerations: 
1) identification of potential market size and 2) projected customer adoption rate of the product. The 
difficulty of quantifying these considerations varies by industry. Nuanced prescription pharmaceutical 
markets pose regulatory and patient (customer) eligibility challenges that are largely not applicable to 
average consumer goods. In market sizing, companies are unable to build new markets. Instead, 
products are developed to meet a clinically diagnosed patient population (Deloitte et al., 2020). 
Companies have little to no influence on creating or enabling more potential patients. 

Forecasting new categories requires merging the forecasts of each individual product. With product 
lifecycle closely related to patent lifespan, aggregate multi-product pharmaceutical forecasts are 
especially sensitive to the model time periods and interrelated variables (Merkuryevaa, Valbergab, 
Smirnov, 2018). Cook (2006) approaches new pharmaceutical product forecasting with disease state 
market modeling. This methodology suggests a decision-based approach to define the market and 
simplified and intently select underlying data attributes (Cook, 2006). Even after defining a market size 
forecasting algorithm, pharmaceutical product potential markets are subject to direct and indirect 
dynamic adjustments (Cook, 2006).  

Switching to new product adoption curves, the three currently approved gene therapy products (FDA, 
2020, EMA 2019) provide little data on actual GT demand observations and commercial production. 
Quinn et al. (2019), Touchot and Flume (2015), and Mullin (2017) all recognize the GT pricing anomalies 
for particular disease states with limited populations. Domestic and global healthcare policy pose 
significant adoption rate implications, such as affecting market access, within the problem scope. 
Furthermore, there is a lack of clarity around current commercial processes. Before 1985, companies 
often published peak sales forecasts for individual molecules. However, due to a plethora of erroneous 
forecasts, companies no longer publish asset level projections (Cook, 2006). This review will start by 
looking at market sizing of new pharmaceutical products that will enable shaping of the new product 
adoption curves.  
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2.1.1 Market Sizing New Pharmaceuticals 

Pharmaceutical companies employ qualitative and quantitative forecasting methods to build dynamic 
new product forecasts for the nuanced commercial gene therapy market sizes. This capstone will consider 
the merits of two key market sizing strategies highlighted by Cook (2006): patient models and prescription 
models. As shown in Figure 2.1, patient models start with a top-down approach. Pharmaceutical 
forecasting teams incorporate various data input on incidence, prevalence, diagnosis, market access, and 
patient eligibility (e.g. label indication for patients older than 18) to identify the maximum potential 
population. Such top-down approaches are more consistently used in rare genetic applications than the 
prescription-based approaches.   

 

Figure 2.1  
 
Top-Down Forecasting Funnel Process 

 

Note. The above market sizing model depicts Cook’s (2006) process to develop patient-based algorithms 
for determining the total potential market of new pharmaceutical assets. From Cook, A. G. (2006, p.38). 
Forecasting for the Pharmaceutical Industry: Models for New Product and In-market Forecasting and 
how to Use Them. Gower. https://books.google.com/books?id=5IaddXKSNTkC 

 
As an alternative to patient models based on epidemiology, companies can consider utilizing a 
prescription model. Prescription models leverage data surrounding the volume of written and filled 
prescriptions for a disease state. Grabowski et al. (2007) use a prescription model to estimate the 
market share of generic biologics market entry. Prescription model methodology relies on a medication 
available in the market, which data can be used as the basis for generating new pharmaceutical product 
forecasts. This model does not align with the realities of the rare disease gene therapies market, where 
therapies are sparse. Pursuing a patient-based algorithm is more suitable for this capstone because it 
will enable us to capitalize on the limited patient data available for each disease state.  
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2.1.2 Gene Therapy Adoption Curves 

Once a total market size has been identified, companies must evaluate how much market share a 
medicine can obtain along with the product life cycle. This capstone will investigate models that project 
market share along with estimated cumulative time to peak demand. Pausing for a second, let us define 
two key epidemiological terms: prevalence and incidence. Prevalence is the is a population that 
currently has the disease (e.g., 1 in 10,000 people). Alternatively, incidence is the rate at which people 
are diagnosed with the disease in question (e.g., 1 in 10,000 births, 1 in 100,000 people per year). 

Teixeira et al. (2019), along with our host company, theorize that rare disease gene therapies will have 
intense adoption rates, with steep curves after the prevalence population has been addressed. Quinn et 
al. (2019) share this belief, expecting 70% prevalence adoption two years after a market launch. Product 
demand will then be mainly driven by incidence rate after the peak patient adoption is actualized. As 
indicated by Vakratsas and Kolsarici (2008) and Quinn et al. (2019), effective models need to separate 
the rates of prevalence adoption (previously diagnosed patients) and incidence adoption (newly 
diagnosed patients). This approach seems particularly logical when the medicine is either substantially 
more efficacious than the standard of care or the medicine is new-to-world for treating a certain disease 
state. The latter is expected for many gene therapies. Although individual rare diseases populations are 
small, prevalence population is limited to under ~200,000 people in the US and ~246,000 people in the 
EU (Puiu & Dan, 2010), less than 13% of rare diseases in the US have FDA-approved drugs or biologics 
(Hahn & Abernethy, 2020).  

In contrast to more subjective market share and time to peak models, we will explore objective 
mathematical adoption modeling options. Vakratsas and Kolsarici (2008) propose a two-phase 
generalized diffusion model. The authors recognize that innovative products will launch with 
accumulated patient demand waiting as untreated members of the prevalence population. One of the 
most defining features of this capstone is that rare disease states have finite patient populations at any 
given time, unlike long-term infectious diseases such as HIV/AIDS. After treating most of the cumulative 
prevalence population, the incidence population subset will drive demand as onset occurs and patients 
qualify for treatment. This fraction of the total population will represent most future market share and 
merits an independent incidence adoption curve. Vakratsas and Kolsarici (2008) have success 
forecasting spectrum diseases (e.g., depression) but not in dichotomy (e.g., HIV). Ding and Eliashberg 
(2008) approach new product forecasting via a Markov model. Additionally, although they address two 
of the three key decision makers (patient, payer, provider) by including important clinical and patient 
decision variables, Ding and Eliashberg (2008) fail to address the power that insures have in 
pharmaceutical uptake. Conversely, diffusion modeling is not well suitable for branded pharmaceuticals. 
Unlike standard consumer goods, pharmaceuticals must prevail through multiple stakeholder decision 
points to be filled for patient consumption. Cook (2006) suggests that the combination of three key 
decision makers creates a difficult modeling environment.   

 

2.2 Commercialization Likelihood 
Introducing a new medicine to market for commercial availability is a long, structured process. Once 
discovered, pre commercial medicines are segmented into two phases: preclinical assets and clinical 
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trials. Given the problem scope, this capstone will largely focus on the process and strategy to model 
gene therapies through the arduous clinical trial Phases I-III.  

Assets are scrutinized for efficacy and safety by each clinical trial phase before receiving FDA approval, 
as introduced in the Introduction chapter. The corresponding probability that a gene therapy will 
successfully obtain approval for serving the commercial patient population is partially determined by its 
clinical stage. To address commercialization likelihood, Quinn et al. created a segmentation of four 
categories to forecast success based on historic clinical trial performance. The authors combine this 
approach with a Monte Carlo simulation to arrive at a probabilistic number of launches products (2019). 
Alternatively in a thesis focusing on early state portfolio, Heyman (2010) leverages company information 
around duration within each step. This data is used to develop a Beta distribution to project success 
likelihood paired with a Monte Carlo simulation to estimate the total output. Key assumption to both 
simulations is using historic performance as an indication of future success. 

Additional complexities exist when considering the relative lack of commercial success GTs have had 
throughout their history. It was not until 2017 that the FDA approved the first commercial GT for the US, 
Kymriah (FDA, 2017). This creates a fundamental disconnect, as little data is available to predict the 
future likelihood of an asset making it through the clinical trial process. Nearly 60 years of research have 
led to numerous molecules that fail to accomplish what was expected during the clinical trials process. 
To overcome this, one might assume in their model that historic developed technology platform (i.e., 
small molecule) data will be reflective of future GTs success. Whereas that might be a fair assumption, 
biostatisticians disagree on the likelihood of pipeline assets advancing through each phase. Wong et al. 
(2019) compares different literature and gives likelihoods of success by clinical phase for various factors 
(e.g., indication, biomarker utilization).   

 

2.3 Summary 
Selecting the methodology for demand forecasting the rare disease gene therapy asset portfolio entails 
two primary potential modeling frameworks: eligible patient sizing and quantifying adoption curves. This 
capstone will first work via a top-down forecasting approach to identify the eligible patient pool who will 
become consumers of our asset. We will then work to quantify the shape of the adoption curve driven 
by various disease state inputs.  This capstone ultimately combines these frameworks in a single model 
to provide a basis for supporting supply chain network design decisions. Researchers have been able to 
successfully develop such comprehensive new product demand forecasts in various industries. However, 
pharmaceutical new product forecasting proves to be distinctly challenging due to the industry’s 
renowned high level of complexity. Pharmaceutical supply chain researchers caution that this 
complexity is not only a performance barrier for manufacturing and distribution, but also impacts crucial 
new product forecasting accuracy upstream (Merkuryevaa, Valbergab, Smirnov, 2018, p.4). The core 
framework should forecast an individual asset’s lifecycle over time and then combine these assets to 
arrive at a gene therapy portfolio forecast.  

Developing the forecasting model for this capstone requires methodology that carefully evaluates a 
greater margin of error risk, driven by the substantial uncertainty around likelihood of 
commercialization and competition for each asset. While it would be useful to develop a robust 
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simulation for more targeted stage-gate probabilities of commercial success, focusing on maximizing 
robustness of our market sizing and adoption curve forecasting with accepted success probability 
assumptions will deliver the most value to the capstone host company.  
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3 Methodology 
Our capstone models the potential demand forecasts for a pharmaceutical company’s GT asset 
portfolio. These GT assets can be in any clinical trials phase described in section 1.1.2, or even in an 
approved state. This process is broken into two distinct steps: asset level forecasting and portfolio 
analysis. 

Starting with asset level forecasting, we have developed a forecasting methodology that considers two 
key challenges: varying extent of knowledge and various clinical stages of assets. It is difficult to assess 
historic performance with just three approved in-vivo GTs, the first of which was approved in December 
2017 (FDA 2020). We instead concentrated on making the point model robust for future adaptability, 
which will provide the most realistic value long-term. Additionally, we recognize that not all assets in a 
portfolio will achieve clinical success, therefore the model enables volume discounting based on a 
success likelihood.  The model was built for our corporate partner to incorporate new data as their niche 
GT portfolio and the overall market simultaneously mature. The forecasting model can then be used to 
either project current pipeline volume, or to design and run potential scenarios considering the number 
of assets to be commercialized.  

 

3.1 Comparing Asset and Portfolio Level Views 
To match the uniqueness of each disease state and asset that comprise a portfolio at any given time, our 
methodology enables assets to be evaluated individually and then combined. Figure 3.1 illustrates the 
top-down methodology we created by adopting elements of Cook’s (2006) patient-based algorithms 
described in section 2.1.1. The methods used to forecast assets are dependent on the current 
knowledge level of an asset’s targeted disease state. With this in mind, we grouped assets into the 
following categories, in descending order: specific knowledge (Type 1), moderate knowledge (Type 2), 
and minimal knowledge (Type 3). The different asset forecast types allowed us to vary the key input 
variables based on what information is available for the targeted disease state. The five Type 2 assets 
currently in pipeline served as the basis for developing our initial framework and then adjustments 
made to the other forecast types for our model.  
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Figure 3.1  
 
Asset Level to Portfolio Modeling 

 

 

At an asset level, the model first seeks to evaluate the asset’s targeted disease state. Disease state 
attributes were used to model the prevalence (previously diagnosed) and incidence (newly diagnosed) 
populations. Once combined, the model can risk-adjust the projected volume based on the likelihood 
that the asset is commercialized. The output forecasts patient demand over time, which directly related 
to the number of doses that must be produced to serve.  

Once per-patient volumes are finalized, our partner can use either total volume or risk adjusted volume 
to create various scenarios to predict commercial manufacturing production. Taking a holistic approach, 
the model can help support strategic long-term manufacturing and distribution decisions to serve the 
projected addressable market size. The above process will need to be repeated for a variety of assets 
within a portfolio, at which time we can summarize the entire addressable pipeline to project a total 
volume number. Each asset level forecast has unique intricacies that complicate forecasting. 

 

3.1.1 Forecast Types 

Every asset forecast is unique. Pharmaceutical companies have dedicated forecasting teams for 
effectively sizing the market and launching new product. Additionally, large pharmaceutical companies 
have many assets in their pipeline, with assets constantly coming in and dropping out. With the 
intention of not investing time, effort and money on assets that might not make it to market, companies 
spend the majority of their forecasting knowledge on assets that are either launched or very close to 
market launch. Given that many of the assets we are considering are prelaunch, this creates an issue. 
We grouped assets based on the general current knowledge level for developing the following three 
forecast types (compared in Table 1) to address the varying levels of public data, variables, and 
assumptions:   

Type 1: Specific knowledge asset forecasts, where our partner company forecasting team has data on 
the specific disease state and volume projections for the asset. Most of these specific knowledge assets 
are closer to market, currently moving through Phase II or III clinical trials.  
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Type 2: Moderate knowledge asset forecasts, where it is known which disease state the asset was 
developed to treat. Publicly available resources can be used for epidemiological inputs. Most of these 
moderate knowledge assets have the potential to go to market within the next10years and are currently 
moving through Phase I or II clinical trials. 

Type 3: Minimal knowledge asset forecasts, where the future asset’s disease state is unknown. These 
are forecasts for potential preclinical research or M&A deals. Publicly available resources must be used 
for epidemiological inputs of various disease states.  

 

Table 1  
 
Forecast Types 

Type Asset 
Knowledge 

Target Disease 
State 

Epidemiology and 
Market Data 

Typical Clinical 
State 

Typical Launch 
Range 

1 Specific Confirmed Internal and public 
specific data on the 
disease state  

Phase II/III 0-3 years 

2 Moderate Confirmed Public general data on 
the disease state 

Phase I/II 3-5 years 

3 Minimal Unknown Public data on types of 
rare diseases 

Any 0-15 years 

 

3.2 Base Use Case: Forecasting a Type 2 Asset 
To demonstrate how the forecast methodology works, we will first walk through a Type 2 forecast. Once 
we have walked through this foundational use case, we will compare the different variable input options 
and assumptions made to develop the Type 1 and Type 3 forecasts of model. Within the Type 2 forecast, 
we expect that our partner will have sufficient knowledge of the asset for entering needed inputs. 
Otherwise, the forecast should be modeled as a Type 3. Table 2 shows all the needed inputs that are 
used within the model and if it requires a user input.  
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Table 2  
 
Type 2 Model Input Variables 

Type 2 Forecast Variable Input Method Values 
𝑝ℎ: Clinical phase of asset  User PI, PII, PIII 

𝑟!"#$%"&: Baseline point prevalence rate User Percent 

𝑟'()
%"&,+,!#: Annual incidence rate and type User Percent 

𝑠ℎ𝑎𝑟𝑒)-.//%"& : Class share of therapeutic User Percent 

𝑠ℎ𝑎𝑟𝑒!"#$%"& : Prevalence market share User Percent 

𝑠ℎ𝑎𝑟𝑒'()%"&: Incidence market share User Percent 

𝑒𝑙𝑔: Estimated eligibility User Percent 

𝑠𝑒𝑣: Severity User High, Medium, Low 

𝑒𝑎: Early Adopter window User Integer 

𝑜𝑤𝑛%"&: Applicable regional market  User Yes/No 

𝑦𝑟%"&: Launch year of regional market  User Year 

𝑦𝑟!):  Patient cliff year Calculated Year 

𝑝𝑜𝑝%"&: Population in a region Systematic Integer 

𝑏𝑟𝑡ℎ%"&: Annual births in a region Systematic  Integer 

 

Figure 3.2 shows an input dashboard for Europe Type 2 forecast. The pink tinted cells show key inputs 
that we will walk through to estimate Europe’s volume for this asset. We then combine the various 
global markets to arrive at an asset level volume that will be risk adjusted for capacity planning.  

 

Figure 3.2  
 
Type 2 Market Level Forecast Example 
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3.2.1 Epidemiology Data (Prevalence and Incidence) 

In order to forecast how many does will be administered to patients, we need to understand how many 
people have a disease in a given geographical area. The model utilizes publicly available population and 
birthrate data at a country level to help solve this problem. For simplicity, the model will take inputs at 
the market level rather than the country level modeling. Our partner has classified 129 marketed 
countries into seven distinct regions, shown in Table 3.  

 

Table 3  
 
Market Classifications 

Market Label Regions 
Europe Western Europe 
APAC  Asia Pacific 
LATAM Latin and South America 
CEETRIS Central & Eastern Europe, Turkey, Russia, and India 
ME Middle East 
Africa Africa 
N America  US and Canada 

 

With markets now defined, the model needs to understand how large the potential population in a 
market a disease. There are two main subsets of a disease state’s patient population: 

1. Prevalence (𝑟!"#$%"&): Pool of existing population of individuals who have the disease when the asset is 
commercialized in a certain market  

2. Incidence (𝑟'()
%"&,+,!#): Rate at which individuals are diagnosed with the disease, who can potentially 

become new addressable GT patients after the asset is commercialized (newly diagnosed) 

Prevalence concerns the current population with a disease. The model will use this proportion as the 
percent total population of the region that has a disease. In contrast to prevalence, there is incidence 
rate. Here we look to estimate how many new patients are diagnosed (or born) with a disease. An input 
is required for Type 2 forecast for annual incidence for every geography, but we do allow incidences 
rates to be measured in two ways: population based 𝑟'()

%"&,!0! or birthrates 𝑟'()
%"&,1"+2, where  𝑖𝑛𝑐%"&in 

Equation 3.7 would take the form of 𝑝𝑜𝑝%"& and 𝑏𝑟𝑡ℎ%"&, respectively. The model uses birthrates by 
region within the birthrate incidence to estimate the new patients born with a disease or a diagnosis 
rate to understand how many new patients are diagnosed each year. Matching inputs for each region, a 
calculation can project the current population within each region and the annual population that are 
diagnosed for a specific disease. 
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3.2.2 Eligibility and Class Share 

Not everyone who has a disease will be prescribed a potential treatment and, although far less common 
in the rare disease space, not every disease will have only one available treatment option. The first two 
adjustments made to the population set are: (1) which patients are eligible to be addressed by the 
treatment and (2) the likelihood that a gene therapy will be the selected treatment modality.   

Investigating patient eligibility, two major points arise. First, a significant portion of the rare diseases 
that gene therapies address onset in adolescence (shown in Appendix A). In turn, these disease 
treatments are developed for adolescent patients. FDA clinical trials have additional restrictions for 
testing medicines on children (FDA, 2015). Therefore, as an asset comes to market, the label claim age 
range might not be exhaustive of the potential patients. Age-driven eligibility restrictions are common 
even with over-the-counter pharmaceuticals, such as with Ibuprofen and other nonsteroidal anti-
inflammatory drug (NSAID) capsules/tablets that are not suggested for children under seven years old 
(NHS, 2019). In addition to age, certain underlying conditions or comorbidities may make patients within 
the qualifying age range ineligible for receiving the gene therapy, thus, preventing therapeutic adoption. 
Revisiting the NSAID capsules/tablets example, packaging labels clarify eligibility restrictions to advise 
against adults who have uncontrolled high blood pressure or are pregnant from taking the product 
(NHS, 2018). This reasoning contributes to why the model requires a user input for the eligibility (𝑒𝑙𝑔) 
that will be used in owned markets. 

Class share is another significant cut to the potential addressable population set. Again, this variable can 
be impacted by two key factors. If a disease state has a new gene therapy which must compete for 
patients against a non-gene therapy, it is highly likely that there will be differences in safety profiles and 
efficacy (Dunbar et al., 2018). This exact situation is unfolding today between three Spinal Muscular 
Atrophy therapies (Spinraza, Zolgensma, and Evrysdi) (Talbot & Tizzano, 2017, p. 529–533). 
Alternatively, a GT asset might have to compete not against other potential therapeutic classes, but 
palliative care. The most economical gene therapy treatment currently available in the US costs 
$425,000 (Jackson et al., 2020). Due to economic hurdles in various counties, it is likely that gene 
therapies are either not likely to be launched into the commercial market or have significantly smaller 
addressable commercial market populations. Thus, our model requires the user to input class share for 
each global market (𝑠ℎ𝑎𝑟𝑒)-.//%"& ) to combat the challenges outlined.  

These two key variables, eligibility and class share, are essential to help narrow down the total 
population that has a disease to the potential patient set. From here, the model will consider how 
effectively our partner will be able to convert potential patients to patients.  

 

3.2.3 Market Share 

The last numerical input the Type 2 forecast needs as an input to model an asset’s population size is the 
projected conversion rate for patients who will undergo this GT to treat their disease. Building on the 
total disease population split between prevalence and incidence patients described in section 2.1.2, we 
theorized that the willingness or desire to receive a therapy will be different for each population subset. 
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Therefore, the model user must project both a market’s prevalence conversation rate (𝑠ℎ𝑎𝑟𝑒!"#$%"& ) and 
incidence conversation rate (𝑠ℎ𝑎𝑟𝑒'()%"&).  

In contrast, the incidence population uptake rate is a single direct input. This conversion rate of the 
ongoing newly diagnosed patients then becomes a multiplier to systematically dampen the annual 
incidence population for addressable GT volume.  

Our model separates the prevalence and incidence uptake user inputs to enable different population 
conversion rates. Furthermore, patient populations vary globally. To account for variability across 
applicable global markets, both population type uptake inputs are built into the model at the market 
level.  

 

3.2.4 Prevalence Patient Population and Adoption Curve  

Building our model with a top-down approach, it now has all the inputs and assumptions needed to 
identify the patient population. Equation 3.1 lays out how we use these variables to identify the total 
prevalence population that will become gene therapy patients.  

 𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝑠!"#$%"& =	𝑝𝑜𝑝%"& ∗ 𝑟!"#$%"& ∗ 	𝑒𝑙𝑔 ∗ 𝑠ℎ𝑎𝑟𝑒)-.//%"& 	 ∗ 𝑠ℎ𝑎𝑟𝑒!"#$%"&  (3.1) 
 
Whereas the calculation is rather straightforward, the complexity arises when considering the timeline 
on which this patient set will convert from potential patients to GT asset patients. After discussions with 
our corporate partner, we created a disease state “severity” variable (𝑠𝑒𝑣). We classified disease states 
into high, medium, and low severity based on the level of impact on a patient’s quality of life. We will 
use this severity score to separate our prevalence population into two categories:  

• Early adopter patients  
• Non-early adoption patients 

Every prevalence patient must be either an early adopter or not. We must assess how much of the 
prevalence population will rush to become patients. Our high, medium, and low severity classifications 
result in three allowable values for severity, or percent of patients as early adopters: 100%, 50%, and 
0%, respectively. Conversely, that means that the non-early adopter population will either be 0%, 50%, 
or 100% of the prevalence population for the high, medium, and low severity scores.  

Elaborating on the extremes, considering other industries, it might be naive to think that 100% of 
potential customers would rush to become adopters; however, considering the healthcare industry, for 
long-underserved rare disease populations facing a lack of alternatives and terminal diagnosis, 100% is 
not an unrealistic assumption for patients fighting for their lives. At the other extreme, assuming 0% of 
early adopters may be too low. Thinking about adulthood-onset diseases that are not life-threatening, 
patients could conceivably lack an early adopter mindset to attack less severe diagnoses with highly 
invasive, expensive, and relatively new gene therapies. With an understanding of how model will break 
the patient population into these segments, additional insights are to be gained with estimating how 
quickly the early adoption population will be serviced. The model accepts “early adopter timeline” 
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(𝑒𝑎	%"&) as a variable input for the number of years until the early adopters are served, shown in 
Equation 3.2. 

 𝑦𝑟#.%"& =	𝑦𝑟-.3()2 + 𝑒𝑎	%"& (3.2) 
 
For simplicity, we will cover only the uniform distribution assumption here. The normal distribution 
option will be addressed in 3.2.6, as our model theorizes that the conversation rate of early adopters 
will follow a uniform distribution.  

 
𝑓(𝑡)3%"& = 9

1
𝑦𝑟#.%"& − 𝑦𝑟-.3()2

, 𝑦𝑟-.3()2 ≤ 𝑡 ≤ 𝑦𝑟#.

0														, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(3.3) 
 
Equation 3.3 shows probability of conversion from potential patient to patient for year t for market mrk 
following the uniform (u) distribution. 

If a patient is not going to be an early adopter, he or she will fall into the “normal adopter” category. In 
order to consider how these patients are going to be spread out, we must consider patent cliffs in 
pharmaceuticals. Two assumptions are built into the next steps here. First, the model assumes that 
these gene therapy assets are subject to an intense patent cliff. Second, as shown in Equation 3.4, the 
model assumes the patent cliff to be 10 years globally.   

 	𝑦𝑟!) =	𝑦𝑟-.3()2 + 9 
 (3.4) 

 

With a patent cliff understood, the model theorizes that “normal adopters” are uniformly distributed 
between the market launch year and the asset’s patent cliff, as in Equation 3.5. 

 
	𝑔(𝑡) = 9

1
𝑦𝑟!) − 𝑦𝑟-.3()2 + 1

, 𝑦𝑟-.3()2 ≤ 𝑡 ≤ 𝑦𝑟!)

0														, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(3.5) 
 

Once the patient population is appropriately separated, the model can now estimate the total 
prevalence population in Equation 3.6. 

 	𝑝𝑟𝑒𝑣(𝑡)%"& =	𝑓(𝑡)3%"& ∗ 𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝑠!"#$%"& ∗ 𝑠𝑒𝑣 + 𝑔(𝑡) ∗ 𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝑠!"#$%"& ∗ (1 − 𝑠𝑒𝑣) 
 (3.6) 

 

3.2.5 Incidence Patient Population and Adoption Curve 

When considering the incidence rate adoption curve, the model makes no assumption in the ability to 
influence any of the user entered rates over time. Therefore, a top-down calculation of the incidence 
rate, incidence rate driver, eligibility, class share, and incidence rate uptake can project the annual 
incidence rate population. This annual number is expected to run from launch to expected patent cliff. 
Equation 3.7 shows the expected incidence population in year x.  
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 		𝑖𝑛𝑐(𝑡)!"# = )𝑖𝑛𝑐
!"# ∗ 𝑟$%&

!"#,()*+ ∗ 	𝑒𝑙𝑔 ∗ 𝑠ℎ𝑎𝑟𝑒&,-..!"# 	 ∗ 𝑠ℎ𝑎𝑟𝑒$%&!"# , 𝑦𝑟,-/%&0 ≤ 𝑡 ≤ 𝑦𝑟*&
0																																																																			, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 (3.7) 
 

Recalling from section 3.2.1, incidence rate driver in a unique variable. It can either take the form of a 
regions annual birth rate or population, based on “type” input on variable  𝑟$%&

!"#,()*+.	 

 

3.2.6 Market Ownership and Summation 

Most of these breakthrough drugs will have demand in several global markets. Compiling across regions, 
we must understand how launch years come into the model. Assets neither simultaneously nor equally 
become commercially available in all global markets. Therefore, we modeled the asset adoption curves 
specifically to the applicable markets where they are intended to launch. The regional market adoption 
curves are summed to provide the asset’s global demand forecast over time. 

Methodology steps described in sections 3.2.2-3.2.5 are each repeated for the markets noted by the 
capstone partner. All user input variables can be specified at the market level, except for disease 
severity. Before adjusting the available variables for individual markets, the user must first confirm the 
applicable regions and commercialization timing. 

 

Figure 3.3  
 
Market Ownership and Launch Table from Model 

 

 

Shown in Figure 3.3., a binary yes/no (mathematically 1,0), variable exists for each region to select 
where Roche will have market ownership. The launch year of the commercialized asset in each market 
region then must be identified. This open input variable enables the model to forecast assets over the 
full time horizon, regardless commercialization is spaced equally across market regions or if an asset is 
launched simultaneously in multiple markets.  

The model can use this variable in equation 3.7 to calculate the total volume for a year, in a market.  

 𝑣𝑜𝑙(𝑡)!"# =	𝑜𝑤𝑛!"#(	𝑖𝑛𝑐(𝑡)!"# + 𝑝𝑟𝑒𝑣(𝑡)𝑚𝑟𝑘) (3.7) 
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3.2.7 Normal Distribution Option  

The Type 2 forecast model has two adoption distribution types available for user selection. In addition to 
the uniform distribution discussed in section 3.2.6, users can alternatively choose to model the early 
adopter uptake following a normal distribution. Here, we theorize that the time at which the eligible 
early adopter population will convert to GT asset patients following a normal distribution between the 
launch year and the early adoption year cutoff. Equation 3.9 notes the distribution and how the model 
estimates the year when an early adopter will convert to a patient. 

 	𝑌𝑒𝑎𝑟	)0($#"/'0(	~𝑁(	
𝑦𝑟-.3()2 + 𝑦𝑟#.

2
, 1) (3.9) 

 

Slight adjustments must be made in practical use to the left tail of this adoption curve. When used 
within the model, it does not allow for an early adopter to become a patient before an asset launches. 
Therefore, values of the distribution prior to the launch year assumes that these affected prevalence 
population members will become patients during the launch year. 

 
	𝑓(𝑡)(%"& = 9

0, 𝑡 < 𝑦𝑟-.3()2
1
√2𝜋

𝑒7
8
9(;7

,"!"#$%&<,"'"()*

9 ), 𝑡 ≥ 𝑦𝑟-.3()2
 

(3.10) 
 

We expect no other changes for equation 3.11 when calculating the market prevalence for year x 
besides substituting the 𝑓(𝑥)( for 𝑓(𝑥)3 equations (3.10 for 3.3).  

 	𝑝𝑟𝑒𝑣(𝑡)%"& =	𝑓(𝑡)(%"& ∗ 𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝑠!"#$%"& ∗ 𝑠𝑒𝑣 + 𝑔(𝑡) ∗ 𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝑠!"#$%"& ∗ (1 − 𝑠𝑒𝑣) (3.11) 
 

3.3 Differences for Type 3 Forecast 
With a firm understanding of the build-up on a Type 2 forecast, let us consider what assumptions and 
changes must be made for a Type 3 forecast. Unlike the vast amount of information needed for Type 2, 
Type 3 forecast will require users to input only five key pieces of information: disease prevalence range, 
disease severity, first launch year, market ownership, and clinical state. In this section we will walk 
through the underlying assumptions built and methodology used to build up forecast unknown asset 
portfolio. We start by showing in Figure 3.4 the input dashboard for a Type 3 asset. Comparing to Figure 
3.2 and 3.4, there are significantly less possible inputs.  
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Figure 3.4  
 
Type 3 Forecast Dashboard for an Asset 

 
 
 

3.3.1 Underlying Assumptions 

A few assumptions were made to simplify the Type 3 forecast. These assumptions primarily center on 
market launch year sequence, market class share, and eligibility. Table 4 shows the sequence at which 
Type 3 forecasts are assumed to launch in various markets around the world. Additionally, it shows the 
estimated class share of these assets and eligibility rates within a market. Class share estimates primarily 
focus on a market’s willingness to adopt and pay for GT technology. Eligibility has been held constant 
across all markets, driven by the assumption that label claims will be nearly identical.  

 

Table 4  
 
Type 3 Forecast Market Launch Sequence 

Market Launch Sequence Class Share Eligibility 
Europe n+1 40% 30% 
APAC n+1 2% 30% 
LATAM n+2 4% 30% 
CEETRIS n+2 4% 30% 
ME n+2 4% 30% 
Africa n+3 2% 30% 
N America n 50% 30% 
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3.3.2 Epidemiology Adjustments 

When modeling an asset when the diseases state is uncertain, it makes it impossible to research the 
epidemiology. To give a better frame, global point prevalence is broken down into six categories shown 
in Table 5. This information derives from Orphanet (2021) classification of global point prevalence.  

 

Table 5  
 
Disease State Population Inputs by Orphanet Point Prevalence Classification 

Point Prevalence Prevalence Used Incidence Used 
<1 in 1,000,000 1 in 1,000,000 1 in 30,000,000 
1-9 in 1,000,000 5 in 1,000,000 1 in 6,000,000 
1-9 in 100,000 5 in 100,000 1 in 600,000 
1-5 in 10,000 2.5 in 10,000 1 in 120,000 
6-9 in 10,000 7.5 in 10,000 1 in 40,000 
>1 in 1,000 1 in 1,000 1 in 30,000 

 

These same inputs were used to enable inputs for a disease point prevalence. Turing to incidence rate, 
there is a more simplified approach to estimating patients. Type 3 forecasts derive prevalence by 
acknowledging most of the patients with these diseases do not have standard lifespans. Therefore, 
prevalence is found by dividing incidence by 30 and the incidence rate driver is population.   

 

3.3.3 Adoption Curve and Uptake Estimate 

Similar to Type 2 forecasts, Type 3 forecasts have a severity impact within our model. Unlike before, 
Type 3 forecast will use this variable to drive give different inputs to the mathematical formulation. As 
seen in Table 6 the severity impact ratings control the early adopted impact for the prevalence 
population. We will expect 100% of the prevalence population addressed in four years for “High” 
severity disease state products. We expect half of the prevalence population to rush for “Medium” 
disease states, with the remaining 50% evenly spread over the 10-year patent life. A “Low” severity 
input will have uniform prevalence adoption throughout the 10-year patent life. We will use this variable 
to also address uptake rates.  

High, medium and low severity disease states will respectively have 75%, 50% and 25% incidence uptake 
rates. For the prevalence population uptake, the adoption will be 60%, 40%, and 20% for high, medium, 
and low severity disease states. We believe the assumed uptake rate by population type to be 
reasonable, considering our knowledge and research on the various disease severity levels. These 
assumptions are detailed in Table 6. Disease states that are likely to have a rush of prevalence 
population are also much more likely to have higher uptakes. 
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Table 6  
 
Type 3 Forecast Disease Severity Mode Impact 

Severity Impact Rating High Medium Low 
Early Adopter Population Impact 100% 50% None 

Prevalence Uptake 60% 40% 20% 
Incidence Uptake 75% 50% 25% 

Early Adopter Time 4 4 10 
Adoption Curve Normal Normal Uniform 

 

3.3.4 Asset Forecasting  

With the adjustments to the Type 3 model inputs defined, the model can use the same mathematical 
formulas used in Type 2. 𝑝𝑟𝑒𝑣(𝑡)%"& , 𝑖𝑛𝑐(𝑡)%"&do not vary mathematically between the two models. 
The above assumptions and variables defined in 3.3 create all needed inputs to use the same formulas.  

 

3.4 Adjustments for Type 1 Forecast 
Roche has a team of market access, epidemiology, and forecasting experts. It would be naive for our 
model to make assumptions to build a forecast when it is more appropriate to include their team's 
forecast. Therefore, our model allows our partner to drop in the forecast from their internal team.  

 

3.5 Combining Assets to Build a Portfolio  
Let us now look at all these difference assets together. We will bring the assets together in two different 
ways. First, we will walk through an unadjusted volume, or the projected volume in all assets in the 
portfolio make it to market. Then we will consider the risk adjusted volume. The risk adjustment volume 
discounts the total volume by a probability of success, or better named the expected total volume. Table 
7 show the definitions and use cases for each of these scenarios. 
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Table 7  
 
Forecasted Demand Volumes and Uses 

Demand Volumes Forecast Output (# Treatments) Business Application 
Unadjusted Potential total commercial volume Market sizing supply chain needs for the 

asset if successfully commercialized 
Risk Adjusted  Manufacturing volume based on an 

asset’s current pipeline state  
Risk Adjusted = P(Success)* Unadjusted 

Planning future supply chain capacity for 
only the volume currently likely to be 
commercialized – this creates an 
expected value of volume in a year 

 

3.5.1 Total Volume Projection  

Looking at the total volume for any year, the total volume can be calculated by summing all assets and 
markets from Equation 3.7, to create Equation 3.12.  

 
𝑣𝑜𝑙(𝑡) = 	 : :𝑣𝑜𝑙(𝑡)-..+(,!"#

1

!"#-..+(

 
(3.12) 

 

3.5.2 Risk Adjusted Volume 

Alternatively, to considering the total volume, the model can calculate the risk adjusted volume for a 
year. As noted, the risk adjustment considers that an asset in the pipeline is not certain to make it to 
market. Therefore, to estimate the value of 𝑟𝑎.//#+, Table 8 shows how we arrive at the various values.  

  

Table 8  
 
Risk Adjustment by Clinical State 

Clinical Phase Input 𝒓𝒂𝒂𝒔𝒔𝒆𝒕 Value 

PI 13.6% 
PII 23.8% 
PIII 66.3% 

 

The model can use the values to arrive at the total risk adjusted volume for any year, as shown in 
Equation 3.13. 

 
𝑟𝑖𝑠𝑘_𝑎𝑑𝑗(𝑡) = 	 : :𝑟𝑎-..+( ∗ 	𝑣𝑜𝑙(𝑡)-..+(,!"#

1

!"#-..+(

 
(3.13) 
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With a complete understanding of how this forecasting model works, let us move to potential 
applications of the model. 
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4 Results and Discussion 
Our methodology represents a novel way to rapidly forecast rare diseases demand for GTs. For results, 
we will demonstrate and evaluate various use cases for forecasting these assets. The results section will 
walk through a model of a single assets, a known asset problem, and then a scenario planning problem. 
These three demonstrations will help show the usefulness of this forecasting model for our partner 
company. 

 

4.1 Single Asset Forecast 
Section 4.1 will focus on results from a single asset forecast for both Type 2 and Type 3 assets. Recall 
from 3.1.1 that Type 2 are moderate knowledge forecasts where a significant number of inputs are 
required, and Type 3 require significantly fewer model inputs. Type 1 assets will not be covered, as they 
are already forecasted by a team at Roche and simply used to enable a portfolio level view within the 
model.  

 

4.1.1 Type 2 Asset 

Let us start results by evaluating the output of a single Type 2 forecast. We created inputs for a normal 
adoption curve, birth-driven Phase III asset. Table 9 also details the other model inputs for an example 
Type 2 asset with anticipated ownership of all regional markets.  

 

Table 9  
 
Single Asset Model Inputs by Market 

 Europe APAC LATAM CEETRIS ME Africa NA 
Ownership Y Y Y Y Y Y Y 
Launch Year  2025 2025 2026 2026 2026 2027 2024 
Prevalence  .0028% .0028% .0028% .0028% .0028% .0028% .0028% 
Incidence .021% .021% .021% .021% .021% .021% .021% 
Eligibility 30% 2% 10% 4% 4% 2% 50% 
Class Share 40% 40% 40% 40% 40% 40% 40% 
Prev. Mrk. Share 60% 60% 60% 60% 60% 60% 60% 
Inc. Mrk. Share 75% 75% 75% 75% 75% 75% 75% 
Early Adopter Time 4 4 4 4 4 4 4 

 

With all inputs defined, Figure 4.1 shows our results for the example asset by year and market level, 
both in unadjusted and risk adjusted volumes. Additionally, the rightmost column the figure allows us to 
see the total number of patients that this asset will serve over a 15-year horizon.  
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Figure 4.1  
 
Results Table Output for a Single Asset 

 

 

One key observation from reviewing Figure 4.1 is the lack of regional volume minimums. The model is 
concerned with the ability to commercialize in a region, not the desire. The results for the Middle East 
(ME), where the maximum commercial demand population in a year is 53 patients, warrants discussion 
if a company would view the volume as an attractive enough market to pursue regional regulatory 
approval. Another interesting point to review when forecasting at this level is regional mixes.  Currently, 
this current forecast has 55% of the volume coming from Europe and North America. This might be a 
little light considering the historic breakdown of regional volumes and should be further evaluated. This 
demonstrates how the inputs required for Type 2 requires a few iterations.  

 

4.1.2 Type 3 Asset 

Evaluating the different potential results for Type 3 forecast is very important to understanding future 
application of the model. Rather than reflecting on a single example result, we present all potential 
results of the Type 3 forecasts. Shown in Table 10, you can see the output for all 18 combinations of 
prevalence and severity, assuming an asset is commercialized globally.  
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Table 10  
 
Total Volume Outputs from Type 3 Forecasts 

 

 

Evaluating the results, a key insight is the volume breath of a patient population. The difference is four 
orders of magnitude from the highest to the lowest volume forecasts. This is an incredible variation in 
the number of patients served for a single disease. Additionally, Table 10 shows how the severity input 
impacts the early adopter population. We can see in the table that high severity peaks three to four 
years postlaunch with a significant drop year-over-year postpeak. Alternatively, the forecasts for 
medium severity target disease states do not have nearly as significant of a drop postpeak. The low 
severity forecasts hit peak volume on year four, postlaunch, but then maintains this volume through 
year 10. Figure 4.2 compares the projected commercial patient volumes between the three severity 
factors. Our plotted outputs show the percent of total demand by severity input.  
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Figure 4.2  
 
Percent of Total Volume over Time by Severity 

 

 

When considering network design, it is incredibly helpful to understand the nature of the demand curve 
over time. Effectively, these three underlying adoption curves will be scaled based on the prevalence 
selected. These different curves will have a significant impact on needed capacity and flexibility of 
capacity. Companies will need to employ unique strategies to serve these various distributions.  

 

4.2 Modeling Known Portfolio of Assets 
Now that we have evaluated the results from a single asset, we can consider more complicated portfolio 
level evaluations. One of the key use cases for the model will be to build a portfolio of the current 
pipeline assets for our partner company. For this evaluation, we have created a model looking at five 
known assets. We will walk through how we designed these scenarios, the results, and a discussion 
around the results.   

 

4.2.1 Portfolio Design 

To build a portfolio, we must forecast various individual assets. For the portfolio design results we have 
created five unique assets using public data to project forecasts for their diseases. These diseases are 
similar but do not mirror out partner’s pipeline, here we will call them Disease A, Disease B, Disease C, 
Disease D, and Disease E. Figure 4.3 displays the input dashboard for the portfolio we will evaluate.  
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Figure 4.3  
 
Type 2 Asset Forecasts for Portfolio Model 

 

 

Pausing here for a second, let us elaborate on the use case of a model like this. Roche’s currently has a 
few GT assets within its pipeline, and one commercialized. As with any company developing a new 
technology, Roche needs to make decisions years in advance how the estimated capacity need for its 
manufacturing, packaging, and distribution networks for these products. Modeling the current known 
state and help Roche understand the volume commitments based on their portfolio. We can further 
include an array of Type 3 assets to help fill in gaps for preclinical assets. Alternatively, unless assets are 
added via M&A, this result would help our partner project volume needs over the next eight to10years.  

 

4.2.2 Results and Discussion  

After all assets are forecasted, the model compiled the forecasts to help allow analysis in a few different 
ways. The compilation of these volumes might be useful at a regional level or by asset. Additionally, 
there are different use cases for wanting to understand the total portfolio volume forecast or the risk 
adjusted forecast. Figures 4.4 and 4.5 below show some example outputs from portfolio planning.  

 

Figure 4.4  
 
Unadjusted Portfolio Volume by Market Region 

 

Sample Capacity 
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In Figure 4.4 the unadjusted volume by region is shown. Our partner can use these regional outputs to 
help set direction on the final labeling or distribution capacity for a certain geography. Additionally, 
Figure 4.4 is the unadjusted volume, indicating this is the point forecast for this portfolio assuming all 
assets are successfully commercialized. Considering implications of this, a sample capacity line has been 
placed on Figures 4.4 at fixed capacity line severing a certain number of patients. If capacity is fixed, our 
partner will have to figure how to address excess demand from 2027-2032, and how to fill the idle 
capacity before and afterwards.  

 

Figure 4.5  
 
Risk Adjusted Portfolio Level Volume by Asset 

 

 

In Figure 4.5. we see the same portfolio, but the risk adjusted volume projected identified by asset. A 
major takeaway here is recognizing how sensitive the risk adjustment volume is to clinical state. 
Considering the capacity limitation introduced with Figure 4.4, Figure 4.5 shows that when these current 
assets are adjusted for the probability to make it to market, utilization never exceeds 60%. This 
highlights that use case for both risk adjusted and unadjusted volume. Risk adjusted volume shows you 
a probabilistic output, but biopharmaceutical companies cannot be caught short capacity. This helps us 
understand the range from expected to high for the short-term capacity planning.  

Additionally, Figure 4.5 shows the impact that advancing through clinical states can have. Shown in 
Table 11, Disease B and Disease E have relatively similar total patient volume projections (24,894 to 
17,756), but when adjusted you see Disease B is significantly more than Disease E (16,505 to 2,415). 
That is due to Phase III vs. Phase I clinical states create inputs significantly impacted the risk adjusted 
volume outcomes.  

 

Sample Capacity 
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Table 11  
 
Unadjusted and Risk Adjusted Volume for Portfolio 

 Risk Adjusted Volume Unadjusted Volume 
Year Disease 

A 
Disease 

B 
Disease 

C 
Disease 

D 
Disease 

E 
Disease 

A 
Disease 

B 
Disease 

C 
Disease 

D 
Disease 

E 
2024 - 490 - - - - 739 - - - 
2025 - 1,203 19 - - - 1,814 79 - - 
2026 - 2,037 152 10 - - 3,073 638 72 - 
2027 7 2,100 470 65 - 51 3,168 1,977 481 - 
2028 50 1,768 629 190 98 370 2,667 2,643 1,400 721 
2029 126 1,501 244 291 291 925 2,264 1,027 2,137 2,136 
2030 143 1,440 47 244 379 1,053 2,172 199 1,793 2,786 
2031 86 1,436 23 126 424 631 2,165 99 928 3,115 
2032 33 1,436 23 50 424 244 2,165 95 365 3,115 
2033 14 1,436  23 27 340 100 2,165 95 196 2,499 
2034 11 990 23 24 174 83 1,492 95 176 1,282 
2035 11 577 18 24 98 82 870 75 176 717 
2036 11 92 5 19 59 82 139 22 143 436 
2037 9 - - 9 59 67 - - 65 436 
2038 4 - - 2 45 30 - - 15 331 
2039 1 - - - 18 7 - - - 133 
2040 - - - - 6 - - - - 48 
2041 - - - - - - - - - - 
Total 507 16,505 1,676 1,081 2,415 3,725 24,894 7,043 7,947 17,756 

 

This aligns to the design, and logic, that the expected volume is higher as an asset progress through the 
clinical stages but calls for caution as out probability of success could be under or overstated to Roche’s 
expectations. Also, the results of modeling the current portfolio show a significant volume drop in mid 
2030s. That aligns to a usage of the portfolio model, allowing our partner to project needs from first 
commercialization for the current known assets. Here we show how we have used our rough forecasting 
methodology to enable our partner to make more robust capacity planning decisions. Future use of the 
model to include various Type 3 assets if desired to show volume needs beyond 2030s, or inclusion of 
earlier Type 3 via M&A. Due to the model complexity of considering what this might look like, instead of 
using expected volumes within the current portfolio model, we built scenarios to consider longer term 
planning.  

 

4.3 Portfolio Scenarios  
An alternative way to use the model is to consider the long-term projection of how different expected 
launch scenarios will impact total need over time. This adaptable and interactive model enables users to 
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enter or adjust various inputs for the evolving gene therapy pipeline. Let us consider a real-life 
application of the model to the current Roche portfolio – Roche has five different Type 2 assets, but this 
likely just a starting point to their future in GTs. A key point to this problem is trying to understand how 
both the current known assets and the unknown assets will combine to arrive at total commercial 
demand over a long-range time horizon. We used the forecasting model to create 96 different scenarios 
that illustrate potential commercial demand from randomly generated combinations of currently known 
and future unknown assets. The design and results of our scenarios are detailed below for evaluating 
our model.  

 

4.3.1 Scenario Design 

To get a better sense of the use of the model use case, we created a wide variety of scenarios 
attempting to see how the model is useful in supporting commercial volume decisions. We utilized the 
model to project the volume of the five known assets, along with 55 potential Type 3 assets, for a total 
of sixty potential assets launched over a 20-year time horizon. 

To assess these different situations, we first considered how the current five Type 2 assets might be 
successful. There are 32 combinations (2>) of which Type 2 assets might make it to market creating 
unique total volume scenarios. Like the questions for actualizing current Type 2 assets, we do not know 
what potential Type 3 assets will be successful and at what projected market demand. Our partner 
company did not share or have a forecast the number of expected gene therapies they expect to be 
approved.   To consider the extremes that may exist, we developed a three-tiered scenario approach for 
the number of expected launches per year. The scenario groups are shown in Table 12 and described 
further below. 
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Table 12  
 
Definition of 3 Scenario Groupings 

Throughput Scenario A B C 

Asset Launch Target 3 launches / yr. 1 launch / yr. 1 launch / 3 yrs. 
E(Type 2 Launches) 2.5 2.5 2.5 
E(Type 3 Launches) 55 17.5 4.17 
E(Total Launches) 57.5 20 6.67 

 

At one extreme is a high-volume approach where Roche is launching approximately three assets per 
year from 2025-2044. At the other extreme, we project volume if Roche is launching only one asset 
every three years. We also consider a more middle ground: one asset per year. This helps decision 
makers determine the robustness of their manufacturing strategy. 

Finally, we paired the 32 different potential outcomes from the Type 2 forecasts with the three larger 
buckets of total volume describe in Table 12. This resulted in a total of 96 difference scenarios: 32 Type 
2 forecasts paired with Scenario A, 32 Type 2 forecasts paired with Scenario B, and 32 Type 2 forecasts 
paired with Scenario C. To bring these volume scenarios to fruition, we must define the inputs to the 55 
Type 3 forecasts. 

 

4.3.2 Estimating Type 3 Inputs 

Considering that the pharmaceutical pipelines are dynamic, nearly all assets of the clinical pipelines will 
be comprised of Type 3 assets over next 20 years. 55 potential Type 3 assets were randomly selected to 
illustrate the range of extreme asset throughput rate scenarios based on the estimated probability 
distribution of a disease’s known prevalence class and severity.  

In our first estimate of these inputs, we utilized Orphanet (2021) epidemiology and patient age data. For 
prevalence, we used Orphanet’s epidemiology database. Our analysis found worldwide point prevalence 
for 3,378 diseases. To estimate severity, Orphanet’s patient age data set was used. 2,851 had 
information populated to enable us to classified diseases into traditionally child onset or traditionally 
terminal. Details of this classification and analysis can be found in Appendix A. We classified diseases as 
both child onset and terminal as high severity, if a disease was either child onset or terminal as medium, 
and if it was neither as low. Lastly, for mathematical simplicity, we assumed that onset age, terminal, 
and prevalence are all independent variables.  Combining these aspects together we arrived at column 
WW Unadjusted Table 13. Upon review of the initial data, three items warranted further investigation. 
When evaluating worldwide point prevalence, we found a significantly different distribution for diseases 
with US and EU prevalence noted. Diseases with confirmed point prevalence for the US and/or Europe 
were not as skewed towards the lowest prevenances. Additionally, we considered that companies might 
have a selection bias to pursue more prevalent diseases. We found a sampling of clinical assets reported 
by Curran (2021) (noted in Appendix A) and classified them into point prevalence categories. Lastly, as 
noted in section 4.1.2, a few of these assets have volume too small to be economical to pursue. As a 
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result, we adjusted the Type 3 asset probabilities to 0% for four disease states. The excluded disease 
state classes are those in the two lowest prevalence classes (1-9 / 1,000,000 and <1 / 1,000,000) when 
paired with a medium or low severity factor. A summary of this analysis can be found in Table 13.  

 

Table 13  
 
Scaling Type 3 Asset Probability by Point Prevalence and Severity Factor  

Severity 
Factor 

Known Point 
Prevalence 

WW 
Unscaled 

US+EU 
Unscaled 

Commercial 
Unscaled Included? 

High >1 / 1,000 0.0% 0.0% 0.0% Y 

High 6-9 / 10,000 0.0% 0.1% 0.0% Y 

High 1-5 / 10,000 0.3% 5.3% 3.1% Y 

High 1-9 / 100,000 0.6% 8.7% 12.3% Y 

High 1-9 / 1,000,000 0.3% 5.1% 5.4% Y 

High <1 / 1,000,000 23.3% 5.2% 3.8% Y 

Medium >1 / 1,000 0.0% 0.1% 0.0% Y 

Medium 6-9 / 10,000 0.0% 0.3% 0.0% Y 

Medium 1-5 / 10,000 0.6% 12.9% 7.5% Y 

Medium 1-9 / 100,000 1.6% 21.3% 29.9% Y 

Medium 1-9 / 1,000,000 0.7% 12.6% 13.1% N 

Medium <1 / 1,000,000 57.0% 12.7% 9.4% N 

Low >1 / 1,000 0.0% 0.0% 0.0% Y 

Low 6-9 / 10,000 0.0% 0.1% 0.0% Y 

Low 1-5 / 10,000 0.2% 3.4% 2.0% Y 

Low 1-9 / 100,000 0.4% 5.6% 7.8% Y 

Low 1-9 / 1,000,000 0.2% 3.3% 3.4% N 

Low <1 / 1,000,000 14.8% 3.3% 2.4% N 
 

Once the is scaled due to removing the excluded disease sates as noted above, the final distributions are 
listed in Table 14.  
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Table 14  
 
Evaluation of Type 3 Asset Distribution  

Severity Factor Known Point Prevalence WW Scaled US+EU Scaled Commercial Scaled 
High >1 / 1,000 0.0% 0.1% 0.0% 

High 6-9 / 10,000 0.0% 0.2% 0.0% 

High 1-5 / 10,000 1.0% 7.8% 4.3% 

High 1-9 / 100,000 2.3% 12.8% 17.1% 

High 1-9 / 1,000,000 1.0% 7.5% 7.5% 

High <1 / 1,000,000 85.4% 7.6% 5.3% 

Medium >1 / 1,000 0.0% 0.2% 0.0% 

Medium 6-9 / 10,000 0.1% 0.4% 0.0% 

Medium 1-5 / 10,000 2.3% 19.0% 10.4% 

Medium 1-9 / 100,000 5.7% 31.3% 41.8% 

Medium 1-9 / 1,000,000 0.0% 0.0% 0.0% 

Medium <1 / 1,000,000 0.0% 0.0% 0.0% 

Low >1 / 1,000 0.0% 0.0% 0.0% 

Low 6-9 / 10,000 0.0% 0.1% 0.0% 

Low 1-5 / 10,000 0.6% 4.9% 2.7% 

Low 1-9 / 100,000 1.5% 8.2% 10.9% 

Low 1-9 / 1,000,000 0.0% 0.0% 0.0% 

Low <1 / 1,000,000 0.0% 0.0% 0.0% 
 

Reviewing the table, it is worth noting that there is an 85% that a disease picked from the WW Scaled 
distribution has a severity of high and a prevalence of less than 1 in 1,000,000. Rather than trying to 
reconcile abnormalities and combine these distributions, we will use all three as potential distributions 
of diseases for our scenarios and evaluate any key differences.   

 

4.3.3 Scenario Planning Results  

For results, we will evalute the output from the 96 scenarios itterated 175 times. This rendered 5,600 
data points for each of 9 result situations (3 asset distributions x 3 throughput scenarios). We have 
found that both of these factors signifcantly contribute to the total number of patients served. 
Displayed in Table 15, we looked at the total number of patients served over the 20 year horizon first. 
We evaluated the data ranges for each quartile of the 9 results drive. The results show that launch 
scenario A (3 assets/year) drives the most commercial volume than its corresponding quartiles, whereas 
B (1 asset/year) enables the second highest, and C (1 asset/3 years) has the fewest. Additionally, Table 
15 shows that the US/EU Scaled adoption curve nearly always has the higest volume, Corporate Scaled 
distribution as the second highest, and the Worldwide Scaled coming having the least volume.   
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Table 15  
 
Type 3 Results by Total Patients Served (Volume as Multiples of Lowest Value) 

 

 

Additional apparent in the data the percent difference in launch rate lessens in each scenario as you 
move up quartiles. The percentage difference between A, B, and C for each distribution curve are larger 
in the lower percentiles (0% and 25%) than those in the higher percentiles. Figure 4.6 further illustrates 
how the distribution curves affect the level of seperability, or differences, between the expected launch 
rates. 
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Figure 4.6  
 
Total Patients Served by Launch Rate and Adoption Curve Boxplots 

 

 

When looking at the worldwide scaled distribution of launch scenarios, there is signifcant overlap 
between the three launch rates. The US/EU scaled distribtuion have ranges that appear more distinct 
between the launch rates. Looking at the differerenece between the data, we can see that the WW 
scaled results is significantly different than the results from the other two options. The launch rate B 
median for WW scales is less than a third of the US/EU scaled curve B median value. When consdering 
how the launch rate interacts with the different adoption curves, the results show that as you move up 
the increasing adoption curves, the impact of launch rate increases.  

Where understanding the total patients served is essential, we additionaly evaluated the maximum 
patients served in a single year in Table 16. Although we shift the perspective from Table 15’s 
cumulative sum of all addressable patients to the maximum servable patients in each scenario here, the 
same trends persist from the above. Volume increases as you move up the number as asset launch 
options (A, B, C), but at a smaller magnitude than the increase of the number of assets launched. WW 
Scaled again is significantly different than the other two results.  
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Table 16  
 
Type 3 Results by Maximum Patients Served in a Year (Data is Multiples of Lowest Value) 

 

 

Diving into a median value from Table 16, Figure 4.7 shows the median values for the US/EU Scales asset 
target with B launch rate (334x). What the figure shows is that there are 3 adoption curves that all had 
the median value and their volume over time. Even though all three of these adoption curves have the 
same peak, the occur at different times and rather different overall adoption curves.   

 

Figure 4.7  
 
Portfolio Need of Peak Demand US/EU Scaled B Median Values 

 

 

The results of the differences in asset targets, launch rates, and forecast of the median values all have 
significant impact on the design of this network.  
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4.3.4 Scenario Planning Discussion 

Reviewing the results from the different outcomes of the scenario planning exercise, a few things 
become very interesting. First, let us consider the difference between the various adoption curves. The 
worldwide adoption curve is significantly lower than the other two adoption curves. The values for 
launch rate B are on average 610% lower than the highest value adoption curve, US/EU. Alternatively, 
corporate distribution is only 36% lower than the US/EU curve on average. This suggests that companies 
might be targeting rare disease that match the type of disease states that move heavily affect the US 
and EU, versus the rest of the world. Given the disproportionate amount of revenue that the US/EU 
represent for pharmaceutical companies, this conclusion is unsurprising. As mentioned in the results, 
fine tuning the distribution curve between US/EU and Corporate does not lead to much of a difference. 
For the best practical application here, we would need to understand the expected launch rate 
throughputs, as they have a larger impact on the US/EU and Corporate distribution curves.  

The same trends persist for the maximum patients served that were true for total patients served. As 
shown in Figure 4.7, the interesting feature of the scenario planning is the various demand curves for 
similar peak values. This result drives home the need that in order to be able to meet the demand for 
these products at a portfolio level, the network must remain flexible. Even if we are able to accurately 
project what the various disease state Roche with target and how successful clinical trials will be – 
demand could vary widely. Figure 4.7 shows that in 2039, when one of the median results hits the peak, 
another scenario has volume below 33% of peak patients served. Success in the GT space will depend on 
flexibility in network design.  

 

4.4 Managerial Implications 
Recalling Roche’s motivation (Section 1.2) to build one of the first gene therapy global supply chain 
networks, this capstone helps Roche stakeholders make strategic business decisions for their new 
infrastructure. Existing supply chain design exists from a recent acquisition (F. Hoffmann-La Roche Ltd, 
2019). However, Roche is actively trying to expand their commercial gene therapy portfolio with various 
assets (Types 1 and 2) currently moving through the clinical pipeline. In addition to the risk that these 
known pipeline assets are not successfully commercialized, unknown future assets (Type 3) also need to 
be considered to serve the broader scope of long-term demand. Our point model and scenario planning 
tools provide current-state insights, as well as adaptable frameworks, for the regional commercial 
demand. Roche has already begun utilizing the work from this capstone to make decisions around 
development of the following primary supply chain infrastructure areas illustrated in Figure 4.8:  

1. Global viral vector (VV) manufacturing  
2. Regional drug product (DP) production and ultra-cold storage  
3. Market level patient packing, labeling, and distribution  
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Figure 4.8  
 
Key Gene Therapy Portfolio Network Design Decisions Scope 

 

 

The Type 1 and 2 assets are closest to commercialization, and therefore, are essential for making 
immediate network decisions. With asset launches expected in early 2020s, it is most cost-effective, 
convenient, and fastest to leverage any open capacity of the current supply chain network. Roche plans 
to continue manufacturing drug substance and products in the US facility as known assets are approved 
to grow the commercial gene therapy portfolio. The current downstream network will also serve the 
portfolio’s global affiliates (patient treatment centers, such as hospitals). Knowing that the breadth and 
demand volume of gene therapies are increasing, the existing network constraints create two key 
questions: (1) Which current supply chain operations need to be expanded for serving new commercial 
demand? (2) At what point will Roche’s commercial gene therapy portfolio demand exceed the 
maximum supply chain capabilities? Roche’s long-term strategy is dependent on these misleadingly 
straightforward questions.  

All of the primary network elements listed above are directly impacted by the commercial portfolio 
demand but are constrained to finite operational capacities. The point model provides a comprehensive 
and adaptable view of both these supply chain factors. First, the unadjusted volume forecasts 
commercial demand by region to understand overall annual needs where Roche has market ownership. 
More specifically for estimating the existing network utilization, our risk adjusted volume indicates what 
supply chain capacity we believe Roche should plan to allocate for the current clinical stage asset. The 
US manufacturing facility (primary infrastructure area #1) is expected to be most sensitive to the 
capacity constraints. To determine the long-term manufacturing levels and capacity inflection point, we 
value each asset’s capacity as the portion of its forecasted commercial volume likely to go to market 
today (probability of commercial success described in Section 3.5.2). While the risk adjusted Type 1 and 
2 asset volumes represent a large amount of Roche's supply chain capacity needs over the next five 
years, most of the long-term gene therapy portfolio will consist of future unknown Type 3 assets.   
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Roche stakeholders can use the user-friendly model to decide which Type 3 forecasts they want to 
consider as part of their current portfolio view. The majority of these forecasts are higher-risk Preclinical 
or Phase I assets that are essential to realize risk pooling value across the product portfolio. Beyond 
selecting the number of Type 3 assets and market launch years of interest, the color-coded user inputs 
enable Type 3 asset variables to be specified for any internal R&D or external M&A efforts. This allows 
decisionmakers to account for prospective unknown types of assets beyond those early in the 
development and approval lifecycle. From an asset planning perspective, the point model Type 3 asset 
forecasts and target throughput scenarios are particularly helpful.  

Similar to the objective of consumer products in other industries, the overarching gene therapy portfolio 
strategy effectively outlines Roche’s product line commercialization targets. The three-target 
throughput scenario planning groups (A, B, C) more clearly illustrate implications for overarching 
strategy decisions. Higher-level stakeholders can compare the simulated commercial volumes between 
the target product launch extremes detailed in Section 4.3.1. Additionally, the strategy for selecting 
future the Type 3 assets, which mainly differentiate the scenarios, can be aligned to the disease state 
prevalence and severity classifications of the combined US and EU driven market, worldwide 
epidemiology, or current commercial pipeline pursuits. Type 3 assets will surely cause the global 
portfolio demand to outgrow the current supply chain infrastructure and partner capabilities.  

Roche faces the classic make versus buy supply chain problem for developing the commercial gene 
therapy portfolio supply chain network. Market and quality regulations drive some of the requirements 
for new manufacturing, distribution, or local storage facilities. We have been able to see the practical 
application of this capstone as Roche evaluates their pressing viral vector manufacturing decisions.  

  

4.5 Model Limitations and Improvements 
Considering potential improvement and limits to our work, we will separate comments into the point 
model and the scenario planning. Before exploring them, there a few overarching limitations. First, to 
maximize user access and compatibility for the future application, our functioning model and scenarios 
were built in Excel. The capstone deliverable tools are inherently limited by Excel’s processing 
constraints. Also, given the quantity of inputs, limited time was spent working on data validation. The 
entire model could be improved by improving the user interface and utilization of defensive programing 
techniques.  

 

4.5.1 Point Model Methodology 

When evaluating limitation and potential improvements to the point model forecast, there are three 
main items that appear as potential shortcomings: clinical probability, commercialization desire, and 
Type 3 assumptions. 

In order to reach a risk adjusted volume, we utilized a research evaluating historical clinical trial success 
for non-oncologic orphan drugs. This is an overarching set of the diseases that this tool will model, but 
there are many items other items that impact the probability of commercialization that we did not allow 
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variation. Complexity of primary endpoints, current standard of care, modality, and company experience 
all play a role in this probability that were not considered. There is a potentially justification that 
probability of success should have been an input and not derived from historical performance.  

As noted in 4.1.1, another shortcoming is the realization that not every asset is commercialized in every 
country. Our model assumes that as long our partner has rights to commercialize in a market, they will. 
This is not accurate. Companies are expected to have minimum volume thresholds to warrant 
commercialization.  

There is an array of shortcomings built into the Type 3 forecasts. Below are three key areas identified as 
improvement areas or current limitation: 

Prevalence Range Mean: The model uses the mean of the prevalence range, or the exact value for the 
endpoints of the ranges (i.e., >1 in 10,000 and <1 in 1,000,000). There is a significant opportunity to 
increase the complexity of forecast by identifying the distribution of diseases within the range and 
selecting from that distribution for forecasting. 

Market Access Limits: Impacts of substantial biopharmaceutical commercial product pricing is not 
thoroughly addressed in our model. Reimbursement is a large factor for pharmaceutical treatments. 
Especially given the significantly high cost of gene therapies, starting at $425,000 per single eye 
treatment in the USA (Jackson et al., 2020), the viable payment models will likely have a large impact on 
the projected patient adoption. The lack of approved gene therapy products, and corresponding 
historical data, to properly estimate reimbursement for any given asset within each regional market. 
Our model makes some small adjustments at the class share level for the model’s regions, but limited 
due diligence was completed to arrive at these numbers. 

Prevalence to Incidence Lifespan: We assume a thirty-year lifespan for all diseases with connecting 
prevalence to incidence. There is an opportunity to connect the thirty-year assumption to severity.  

Where improvement to any, or all, of these limitations provide opportunity to enhance the model we 
feel that the justification and assumptions are current appropriate.   

 

4.5.2 Scenario Planning Design 

There are two sections of limitations and improvements that need to be addressed for the scenario 
planning portion of the project: Type 3 inputs and model design. 

When considering the Type 3 inputs, we heavily relied on Orphanet (2021) for disease state 
epidemiological and patient data. Utilizing a single data source is inherently a limitation. Any data 
quality issues, including missing/unknown, inaccurate, or inconsistent data, from the Orphanet database 
were carried over to our research. For instance, not all rare diseases identified by Orphanet have known 
point prevalence. Aside from data sources, the disease states themselves pose limitations to our 
research. Not all disease states are potentially treatable using the gene therapy technology currently 
available. Today’s GTs are primarily limited to monogenic diseases (Kirschner & Cathomen, 2020). 
Additionally, the model does not account for potential future multi-disease use cases, where an asset 
may be able to treat more than one target disease state. Lastly on the Type 3 inputs, in order to use the 
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data above we heavily relied on assuming independence. In order to calculate our forecast types, our 
inputs assumed that if a condition is terminal, average age of onset, and point prevalence are not 
dependent on one another. This is not true. Easiest to see if that if a disease is terminal and child onset, 
that significantly impacts that global point prevalence of the disease. We view this as an opportunity 
point for improvement with more robust epidemiological research.  

The major limitation to the scenario planning model and work is excel design. Putting aside the current 
require processing time of to run the model, row limits forced all scenario planning to remove the ability 
to isolate market demand. In the current design, there is no way to identify the total volume for a single 
market. There exists a large opportunity to move this work into a simulation software for processing. 
Future work in this space also exists to identify the most likely adoption curve. This might be by using 
statistics software to evaluate simulation outputs and identify the most likely annual volume.  
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5 Conclusion 
Pharmaceutical companies are facing new challenges when trying to commercialize novel gene 
therapies. Each asset is unique, from molecule research and development to the one-time patient 
administration. Not only are such companies assuming great risk to grow their portfolios, but they are 
shaping an emerging biotechnology market. Three approved gene therapies provide little historical data, 
which is often the backbone of new product forecasting. These features of the gene therapy market 
create a complex challenge when considering demand. This capstone project supports both immediate 
and long-term global gene therapy supply chain network development decisions with several adaptable 
tools.  

First, we created foundational asset level forecasts of the commercial demand and supply chain capacity 
volumes for a given gene therapy. These assets are segmented based on the existing available rare 
disease state knowledge to narrow and enable customization of inputs. The disease-specific forecasts of 
current mid-to-late-stage assets can be adjusted as more epidemiology or market data become 
available. The underling framework itself can be applied to forecast future secured assets with 
confirmed disease states. Our model also serves the need to forecast unknown potential assets, which 
comprises either preclinical assets or future acquisitions.  

The known and unknown asset forecasts include both the total commercial and risk adjusted demand 
volumes based on an asset’s current likelihood of success according to its current clinical stage. 
Individual asset forecasts are then combined in a portfolio level model. Users are able to choose assets 
and customize select variables to provide a dashboard of aggregate insights over a 20-year time horizon. 
The comprehensive supply chain capacity volume forecast allows Roche to project drug substance, drug 
product, packaging, and distribution across their evolving portfolio for anticipated regional markets.  

Beyond the prospective current portfolio addressed in our point model, scenarios support long-term 
decisions. Three throughput scenarios of three assets per year, one asset per year, and one asset per 
three years practically apply the model to illustrate the range of commercial demand for target product 
launch extremes. A simulation was used to randomly generate 96 scenario outcomes across a 20-year 
time horizon. With only five Type 2 assets currently in the clinical pipeline, future assets targeting 
unknown disease states will comprise most of Roche’s commercial gene therapy portfolio. We analyzed 
the known epidemiological and average patient age data to create a probability distribution for 
potentially treatable rare diseases according to the primary US and EU markets point prevalence, 
worldwide point prevalence, and ongoing pharmaceutical commercial portfolio assets. The variety of 
scenarios will help higher level Roche stakeholders strategize a supply chain network that can 
commercialize an expected target number of unknown disease state assets. While all deliverable tools 
are constrained by Excel’s processing capabilities, we suggest that future work focus on improving 
robustness of the model and building additional scenario simulation iterations.  

This capstone presents an adaptable and scalable framework to drive robust decision-making with what 
limited information is available on the rapidly growing and highly competitive gene therapy global 
market. Our portfolio model and scenario planning tools will enable Roche strategically make the best 
decisions for their gene therapy portfolio supply chain network design.  
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Appendix A: Severity and Epidemiology Probability 
As we started working with the data, we first needed to classify what we determined as terminal based 
on the average age of death from the data set in Table A1.  

 

Table A1  
 
Terminal Disease Criteria 

Average Age of Death Terminal (T) 

Adolescent Yes 
Early Childhood Yes 
Infantile Yes 
Late Childhood Yes 
Young Adult Yes 
Normal Life Expectancy No 
Any Age No 
Adult No 
Elderly No 

% Terminal Orphanet Diseases 71.83% 

% Non-Terminal Orphanet Diseases 28.17% 

 

In Table A2 we also had to classify what counted as child onset.  
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Table A2  
 
Child/Minor Disease Onset Criteria 

Average Age of Onset Child/Minor (C) 
Adolescent Yes 
Antenatal Yes 
Childhood Yes 
Infancy Yes 
Neonatal Yes 
All Ages No 
Adult No 
Elderly No 

% Child/Minor Onset Orphanet 
Diseases 

77.11% 

% Non-Child/Minor Onset 
Orphanet Diseases 

22.89% 

 

Table A3 shows the probability that a disease is either both terminal and child onset, exclusively either 
terminal and child onset, or neither. In order to arrive at Table B.3 we assumed that the probabilities of 
these events are independent.  

 

Table A3  
 
Severity Classification Probabilities 

Severity Classification Conditions Probability 
High 𝑇 ∩ 𝐶 55.39% 
Med 𝑇 ⊕ 𝐶	 38.16% 
Low 𝑇′ ∩ 	𝐶′ 6.45% 

 

Table A4 additionally shows the point prevalence classification from various data sources for orphan 
diseases.  
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Table A4  
 
Point Prevalence Classifications and Evaluation of Frequency 

Class #  Known Point Prevalence US+EU Share WW Share Commercial Share 
1 >1 / 1,000 0.18% 0.00% 0.00% 
2 6-9 / 10,000 0.46% 0.03% 0.00% 
3 1-5 / 10,000 21.61% 1.07% 12.50% 

4 1-9 / 100,000 35.64% 2.61% 50.00% 

5 1-9 / 1,000,000 20.96% 1.16% 21.88% 

6 <1 / 1,000,000 21.15% 95.12% 15.63% 
  

Table A5 is the data used and the classification used for the to arrive at the “Commercial Share” column 
in Table A4. 

 

Table A5  
 
Classification of Disease Pursed by Companies (Curran 2021) 

Disease Gene of interest Company  Prevalence 
AADC deficiency (CNS) AADC PTC Therapeutics (GT-

AADC) 
<1 / 1 000 000 

ADA-SCID adenosine deaminase Orchard Therapeutics 
(Strimvelis, EMA 
approved) 

1-9 / 1 000 000 

Alpha-1 antitrypsin 
deficiency 

A1AT Adverum 1-5 / 10 000 

β-Thalassemia (severe 
sickle cell) 

Hemoglobin (β-chain) Bluebird Bio (Zynteglo, 
EMA approved) 

1-9 / 100 000 

Cerebral ALD ABCD1 Bluebird Bio (Lenti-D) 1-9 / 100 000 
Choroideremia CHM Biogen/Nightstar, Spark 1-9 / 100 000 

Congestive heart 
failure 

Adenyl cyclase 6 Renova (RT-100) <1 / 1 000 000 

Cystic Fibrosis CTFR Vertex, Boehringer 
Ingelheim 

1-9 / 100 000 

Duchenne muscular 
dystrophy (DMD) 

Dystrophin Sarepta, Pfizer, 
Audentes, Solid 

1-9 / 100 000 

Fabry disease alpha-galactosidase A UniQure, Sangamo 1-5 / 10 000 
Glaucoma BDNF pathway Astellas 1-9 / 100 000 
Hemophilia A Factor VIII BioMarin, Spark, Shire, 

Sangamo, UniQure 
1-9 / 100 000 
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Disease Gene of interest Company  Prevalence 
Hemophilia B Factor IX Spark/Pfizer, UniQure, 

Sangamo, Freeline 
1-9 / 100 000 

HIV CCR5 negative CD4 
cells 

American Gene 
Technology 

1-5 / 10 000 

HoFH 
(hypercholesterolemia) 

LDLR RegenxBio 1-9 / 1 000 000 

Huntington’s Disease huntingtin UniQure 1-9 / 100 000 
Lipoprotein lipase 
deficiency 

Lipoprotein lipase UniQure (Glybera, EMA 
approval) 

1-9 / 1 000 000 

Leber’s hereditary optic 
neuropathy (LHON) 

ND4 GenSight Biologics 1-9 / 100 000 

Leber’s congenital 
amaurosis (LCA) 

CEP290 ProQR 1-9 / 100 000 

Metachromatic 
leukodystrophy 

ARSA Orchard 1-9 / 100 000 

MPS I (Hurler 
syndrome) 

IDUA Sangamo* RegenxBio 1-9 / 1 000 000 

MPS II (Hunter’s 
syndrome) 

IDS Sangamo*, RegenexBio 1-9 / 100 000 

MPS III (Sanfilippo 
Syndrome) 

SGSH Abeona 1-9 / 1 000 000 

Parkinson’s disease AADC Voyager <1 / 1 000 000 
Pompe Disease acid alpha-glucosidase Sarepta, Audentes 1-9 / 1 000 000 
Recessive Dystrophic 
Epidermolysis Bullosa 

Colagen C7 Abeona (EB-101) <1 / 1 000 000 

RPE65 deficiency 
(vision loss) 

RPE65 Spark (Luxturna, FDA 
approved) 

1-5 / 10 000 

Spinal Muscular 
Atrophy (SMA I) 

SMN1 Novartis (Zolgensma, 
FDA approved) 

1-9 / 100 000 

Wiskott Aldrich 
syndrome (WAS) 

WAS Orchard 1-9 / 1 000 000 

X-linked myotubular 
myopathy 

MTM1 Audentes 1-9 / 1 000 000 

X-linked retinitis 
pigmentosa 

RPGR Biogen/Nightstar <1 / 1 000 000 

X-linked SCID IL2RG Mustang Bio 1-9 / 100 000 
 


