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Abstract: The fraction of absorbed photosynthetically active radiation (fAPAR) is a key parameter for
estimating the gross primary production (GPP) of trees. For continuous, dense forest canopies, fAPAR,
is often equated with the intercepted fraction, fIPAR. This assumption is not valid for individual trees
in urban environments or parkland settings where the canopy is sparse and there are well-defined
tree crown boundaries. Here, the distinction between fAPAR and fIPAR can be strongly influenced by
the background and large illumination variations due to multi-scattering and shadows of buildings.
This study investigates the radiative budget of PAR bands using a coupled leaf-canopy radiative
transfer model (PROSPECT-DART), considering a suite of tropical tree species over a wide range of
assumed leaf chlorophyll contents. The analyses simulate hyperspectral images (5 nm bandwidth) of
individual tree crowns for the selected background (concrete vs. grass) and illumination conditions.
We then use an artificial neural network-based method to partition sunlit vs. shaded leaves within
each crown, as the latter have lower fAPAR and fIPAR values. Our results show fAPAR of sunlit
leaves decreases with the ratio of diffuse to direct scene irradiance (SKYL), while SKYL has minimal
influence for shaded leaves. Both fAPAR and fIPAR decrease at more oblique solar zenith angles
(SZA). Higher values of fAPAR and fIPAR occur with concrete backgrounds and the influence of the
background is larger at higher diffuse ratio and solar zenith angles. The results show that fIPAR is
typically 6–9% higher than fAPAR, and up to 14% higher for sunlit leaves with a concrete background
at SKYL = 0. The differences between the fIPAR and fAPAR also depend on the health condition of the
leaves, such as chlorophyll content. This study can improve the understanding of urban individual
trees fAPAR/fIPAR and facilitate the development of protocols for fAPAR field measurements.

Keywords: fIPAR; fAPAR; urban individual tree; discrete anisotropic radiative transfer model
(DART); illumination; urban background

1. Introduction

Trees play an important role in the urban ecosystem by reducing noise and air pol-
lution, promoting urban biodiversity, and supporting storm water management [1,2].
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Furthermore, urban green spaces improve the physical and mental well-being of citizens
and ameliorate urban climate issues resulting from climate change [3]. They play a crucial
role in the sustainable development of cities and cooling effect in dense, tropical cities [3,4].
An important input variable for urban climate, especially in the context of urban green
spaces, is the amount of photosynthetically active radiation (PAR), and its fraction absorbed
by green elements of healthy vegetation (fAPAR) [5]. It is an important factor in the estima-
tion of vegetation health and plays an essential role in assessing the primary productivity
of canopies, the associated fixation of atmospheric CO2 and the energy balance of the sur-
face [6], and hence fAPAR is recognized as an essential variable that affects climate [7]. It is
used in remote sensing techniques to assess gross primary productivity (GPP). An accurate
estimation of photosynthetically active radiation is important for improving the design of
urban green spaces [3] and is crucial for the effective implementation of ecophysiological
models [8]. However, some of the methods and models used to measure fAPAR, are best
suited for large, uniform canopies such as crops or forests, and might be less reliable when
implemented in urban ecosystems.

A vast majority of existing fAPAR research concerns crops and forests and relatively
few studies focus on urban trees. Urban trees are usually either free-standing or distributed
discontinuously (roadside and parkland scenes, potentially in proximity to buildings)
with a relatively open, complex canopy structure. In such a setting, the characteristic of
fAPAR of individual trees can differ significantly from that of vegetation which forms more
uniform, continuous canopies due to the different environment. Urban trees often grow
with a concrete background which exhibits much stronger reflectance than grass and soil.
In addition, the illumination in urban areas is much more volatile and complex because
of the built environment. It was demonstrated that shade cast by high-density high-rise
build environment in Singapore might reduce daily PAR by nearly 50% [9]. Previous study
demonstrate the effect of background and illumination conditions can introduce significant
influence in the estimation of fAPAR for crops and forest [10–12]. However, how these
factors influence urban individual tree fAPAR is still unknow.

The distribution of sunlit and shaded leaves also influences the fAPAR of individual
trees. At the leaf scale, the biochemistry of the photosynthetic response to solar radiation is
well-understood and can be reliably modelled [13] or even measured in real-time [14,15].
However, at the scale of vegetation canopies the effect of solar radiation on photosynthesis
is more complex due to the differences in irradiance between direct and diffused solar
radiation [16], and between sunlit and shaded regions across the entire canopy [17]. In
addition, the illumination conditions can affect the distribution of sunlit and shaded leaves
within individual trees, making its estimation particularly difficult [18]. In general, leaves in
the shade suffer from lower exposure to incoming radiation, while those in direct sunlight
are often saturated and can have relatively low light use efficiency. Under scattered light
conditions the irradiance of the canopy is more uniform, resulting in higher light-use
efficiency compared to direct sunlight [19]. Results of several studies have indicated
that photosynthesis is more efficient under diffused radiation conditions [16,20,21]. The
amount and type of solar radiation incident on a canopy or individual crown are important
factors in the assessment of fAPAR since an overabundance of light might trigger a photo-
protective reaction of the plant, reducing its gross primary production [22]. In scenarios
with high vegetation heterogeneity, the effect of illumination conditions on sunlit and
shaded parts of an individual tree is no longer negligible and should be considered when
assessing the applicability of a particular model.

The fraction of intercepted photosynthetically active radiation (fIPAR) has been taken
as a good approximation of fAPAR [23,24]. Due to the difficulty of accurately measuring
the flux in different directions for fAPAR estimation, fIPAR has been regularly acquired
at many flux tower sites and long-term validation sites for remote sensing of fAPAR
products, e.g., [25,26]. The fIPAR measured by the optical field instruments, such as
digital hemispherical photography (DHP), tracking radiation and architecture of canopies
(TRAC) [27], and LAI-2200 (LI-COR Inc., Lincoln, Nebraska, USA) has been widely used in
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fAPAR studies as ground truth. However, the above methods are based on the assumption
that fIPAR and fAPAR are equivalent. This assumption has been shown to hold for crops
using field measurements [28] and forests using simulations [23]. Unlike continuous (or
closed), homogeneous crop or forest canopies, urban individual trees have distribution
patterns of low plant cover and bright backgrounds. Whether the fIPAR can be used
to approximate fAPAR for the urban individual trees remains unknown. Considering
the growing awareness of the significance of trees in urban ecosystems, in situ fAPAR
measurements will be increasingly needed. Thus, it is important to carefully examine the
uncertainty of using the above efficient approach in fIPAR measurement to approximates
fAPAR for trees in complex urban environments.

Considering the difficulty of acquiring true values of fAPAR of trees, simulation
methods are a good approach for its evaluation. Goel and Qin [29] were among the
first to demonstrate that fPAR of inhomogeneous canopies can be reliably assessed using
computer-generated 3D models of vegetation to evaluate the effect of factors such as
background reflectance, optical properties of canopy elements, or solar view geometries.
In 1996, Gastellu-Etchegorry et al. developed the discrete anisotropic radiative transfer
(DART) model which enables detailed simulations of radiative transfer in heterogeneous
3d scenes which comprise features such as leaves, grass, trunks, etc. [30]. DART is aimed
at high accuracy, and so the radiative budget is simulated with high accuracy for all sun
directions and atmospheric conditions [31]. It has been validated against results of field
measurements and compared with other radiation transfer models, performing favorably
in heterogeneous scenes [32,33]. The capability of the DART model to accurately assess
the radiative budget of vegetation can be further enhanced by combining it with the
PROSPECT radiative transfer model which accounts for the optical properties of plant
leaves such as spectral refractive index [34]. Absorption is modelled using, among other
input variables, the concentration of chlorophyll a and b and carotenoids. The coupling
of both models (PROSPECT-DART) enables a comprehensive assessment of the radiative
budget considering the health of vegetation. It was successfully used, e.g., to simulate the
leaf pigment content in heterogeneous conifer forests [35], to retrieve spruce chlorophyll
content from airborne images [36], and to simulate reflectance spectra and LiDAR data for
tree canopies [37–39]. In addition, radiative budget (absorbed, scattered, and intercepted
radiation) produced using the PROSPECT-DART model which has been demonstrated to
be well-suited to simulating urban landscapes [40].

The two main goals of this study were 1) to explore the influences of background and
illumination conditions on fAPAR and fIPAR for individual trees in the context of urban
greenery, and 2) to evaluate the differences between fAPAR and fIPAR and corresponding
factors that influence such scenarios. For this purpose, we used radiative budget products
of PAR bands coupled with the PROSPECT-DART leaf-canopy radiative transfer model
for individual tree fAPAR/fIPAR analysis. To identify fAPAR and fIPAR on sunlit and
shaded leaves, machine learning, and pattern recognition algorithms were applied to the
simulated individual trees.

2. Materials and Methods
2.1. Simulation of Hyperspectral Images and Radiative Budget Products of Individual Trees

We used ensemble-based simulations of hyperspectral images (HSI) and radiative
budget products for model trees using the coupled PROSPECT-DART leaf-canopy radiative
transfer model [40]. Here the DART scenes were generated with a single, centered three-
dimension (3D) tree model. The current simulations were conducted for ten species of
trees, Table 1, that are common in tropical urban environments and represent a wide range
of canopy structures. We consider illumination conditions corresponding to 6 diffuse
ratios (SKYL) and two solar zenith angles (SZA = 0, 45◦). In order to explore the effect
of the background, the DART scenes were composed with two contrasting backgrounds,
grass, and concrete. The grass leaf scale spectral and the concrete spectral were randomly
selected from the DART database (Figure A1), and the corresponding spectral data were
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downloaded from the Ecological Spectral Information System [41,42]. The leaf area index
(LAI = 0–2) was randomly assigned to the grass background for the reflectance of grass
background simulation in DART. No grass was distributed on the concrete background
(LAI = 0). The resulting average PAR band albedo was approximately 0.08 for the grass
background and approx. 0.24 for concrete.

Table 1. List of parameters used in PROSPECT-DART simulations.

Parameter Range

Tree Species
Adenanthera pavonina L., Khaya senegalensis A.Juss., Tabebuia rosea DC., Albizia saman (Jacq.) Merr, Peltophorum

pterocarpum (DC.) K.Heyne, Terminalia catappa L., Bauhinia x blakeana Dunn.,
Schefflera actinophylla (Endl.) Harms, Delonix regia (Boj. ex Hook.) Raf., Syzygium grande (Wight) Walp

Leaf pigments

Chlorophyll, Cab = 10–100 µg/cm2 in 10 µg/cm2 increments
Carpotenoid, Cxc = 0.25Cab µg/cm2

Anthocyanin, Canth = 0 µg/cm2

Brown pigment = 0 µg/cm2

Leaf properties

Equivalent water thickness, EWT = 0.015 cm
Leaf mass per area, LMA = 0.01 g/cm2

Mesophyll leaf structure parameter, N = 1.9
Leaf Area Index, LAI = 0.0–2.0

Background Grass, Concrete

Illumination Ratio of direct to diffuse scene irradiance, SKYL = 0%, 20%, 40%, 60%, 80%, 100%
Solar zenith angle, SZA = 0◦, 45◦

The optical properties of leaves were simulated using the PROSPECT model [34,43],
Table 1. We vary the assumed chlorophyll contents from Cab = 10 µg/cm2 to 100 µg/cm2,
while carotenoids were set to Cxc = 0.25Cab with random white noise (pers. comm. J-B
Féret). The resulting reflectance of healthy leaves and the trunk was approximately 0.06
and 0.1, respectively.

A total of 4800 HSI images and radiative budget products with 0.5 m spatial resolution
and 40 m×40 m size were generated (10 tree species with 2 leaves densities, 2 different
backgrounds, at 2 SZA, 6 SKYL values and 10 chlorophyll (Cab) content levels). Each
simulated HSI is comprised of 50 spectral bands (spanning wavelengths between 0.4 µm
and 1.0 µm) with 5 nm bandwidth. In order to more closely emulate the real conditions, the
radiative budget products, namely the intercepted PAR, absorbed PAR and incident PAR,
were based here on fluxes from all directions, rather than only on vertical fluxes. In addition,
intercepted and absorbed PAR simulated here includes both direct and diffuse light. During
the DART simulation, the direct illumination and interception and scattering of previously
scattered radiation are simulated iteratively. Considering that multi-scattering radiation
contributes to both the absorption and interception process by the trees, 5th iteration PAR
radiation scattering was used for absorbed PAR and intercepted PAR simulation. In each
iteration, every time a radiation interception occurs, scattering within each of the cells
constituting the scene is computed and accounted for in subsequent iterations [40].

2.2. Automatic Classification of Hyperspectral Images

In order to investigate the differences in FPAR of sunlit and shaded leaves, 150 HSI
were manually classified based on composite images (wavelengths 0.605 µm, 0.850 µm,
and 0.860 µm assigned to R, G, and B, respectively, for visual identification). The manual
multispectral object-based classification was performed using the ECognition v. 9.0.1
software [44]. The composite images were used to visually classify sunlit and shaded leaf
areas which were then used as target variables when training the machine learning model,
using the entire 50-band spectrum as inputs.

The manually classified HSI were converted into 2D arrays, with each band treated as
a separate variable in the subsequent steps. For the purpose of validation, 75% of the HSI
chosen randomly were used for training, and the remaining 25% were used for testing the
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classification algorithm. The HSI in the training dataset were then appended with the target
classes from the corresponding manually classified images based on the SKYL value. Since
the Cab value has no impact on whether a given area of the tree is sunlit or shaded, the same
target classes were assigned to HSI differing in Cab, thus increasing the training dataset
and reducing the risk of overfitting of the model. Since the variables are hyperspectral
bands, with values within the same order of magnitude, it was not necessary to perform
data normalization. The ReliefF algorithm [45] and an ensemble of decision trees (Random
Forest [46]) were used to assess the feature importance in regard to data classification [47],
and principal component analysis (PCA) was used to assess the possibility to reduce
the dimensionality of the dataset. Machine learning was based on an artificial neural
network (ANN) model from the SciKit Learn Python package (the Multi-layer Perceptron
classifier v. 0.18 [48]). Rectified linear unit function (ReLu) was used for activation, and the
weights were optimized using the stochastic gradient-based optimizer (Adam) [49]. The
regularization term was set to 0.001. The network consisted of an input layer with 50 nodes,
three hidden layers each with 32 nodes, and an output layer with a single node. The overall
performance of the model was assessed based on 10-fold stratified cross-validation. In order
to tentatively evaluate the classification algorithm and to check for methodological errors
the entire procedure was tested on the Indian Pine HSI dataset acquired by the AVIRIS
sensor in Indiana in June 1992 [50]. This dataset contains a multiband hyperspectral image
of an area with each pixel classified into one of several categories (type of crop/vegetation)
which makes it a good test case for the application described herein. When the Indian Pines
dataset was used as input, the model produced an overall classification accuracy of 96%
based on 10-fold stratified cross-validation which is consistent with the results of earlier
studies in which ANNs were used to classify hyperspectral images [51,52].

The pixel-wise approach to spectral information in this particular classification task is
valid due to the limited number of discrete categories and the use of ANNs, as outlined by
Li et al. [51]. The trained model was then used to automatically classify the HSI from the
testing dataset and to generate corresponding images.

2.3. Estimation of fAPAR/fIPAR

In this study estimation of fAPAR and fIPAR is based on the radiative budget (ab-
sorbed, scattered and intercepted radiation) produced by the PROSPECT-DART simulation.
Values of fAPAR and fIPAR are defined by

fAPAR =
absorbed PAR
incident PAR

(1)

fIPAR =
intercepted PAR

incident PAR
(2)

The fAPAR / FIPAR calculated here account not only for the single scattering radiation
of the leaves but also for radiation scattered and reflected by the background, leaves, tree
trunks, and other elements of the scene over multiple iterations. This is also consistent
with the field-measured fAPAR/fIPAR from the above-mentioned optical instruments
which measure the total absorbed/intercepted radiation and account for the contribution
of multiple scattering.

The radiative budget product was simulated along with the hyperspectral images
for each scene (tree) using the amount of incident, intercepted and absorbed radiation
with respect to the leaves in a three-dimensional grid. Five iterations were performed for
each scene. The wavelength range of PAR is 0.4–0.7 µm. Three band intervals (0.4–0.5 µm,
0.5–0.6 µm, and 0.6–0.7 µm) were simulated separately to increase the simulation accuracy
and were subsequently integrated into a single PAR band. The results of simulations
performed using the DART model were averaged for each scene, except when the effect
of the SZA on the proportion of sunlit and shaded leaves was investigated, in which case
the pixel-wise average of the entire dataset comprised of all the scenes was considered. In
the case of the diffuse ratio, the results were binned into discrete categories corresponding
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to each of six input SKYL values in the DART model. Figure 1 illustrates a typical HSI
image converted to an RGB image for classification and the corresponding outputs of
the ANN-based classification sunlit vs. shaded leaves and ground. The flowchart of the
simulation and data processing in this study is illustrated in Figure 2.
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2.4. The Analysis of Differences between fAPAR and fIPAR

The differences between fAPAR and fIPAR were investigated by juxtaposing the
results obtained at the different background and illumination conditions. The values were
compared both on the pixel-wise and tree-wise basis. The effects of background, SKYL,
SZA, and chlorophyll content (Cab) were investigated separately for fAPAR and fIPAR.
Additionally, the overall effect of the sunlit and shaded areas of the individual tree HSI
were also evaluated. The pixel-wise distribution was illustrated in the form of density
distribution biplots, with color gradients indicating the density.
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3. Results
3.1. Automatic Classification of Hyperspectral Images Using Artificial Neural Networks

The overall classification accuracy of the HSI of trees was 92.2% based on 10-fold
stratified cross-validation, and 90.0% when the model was tested on the test dataset which
was not used for training. The classification accuracy of the model decreased with more
diffuse illumination conditions ranging from 96.1% at SKYL = 0%, to 88.0% at SKYL = 100%.
There is a similar trend in classification accuracy for the shaded leaves (85.2% to 76.2% for
SKYL = 1%, 100%, respectively) while the classification accuracy for the “sunlit leaves”
increased from 70.1% to 81.0% in the same range of diffuse ratio. This result is likely due to
the sharper differences between sunlit and shaded areas under less diffuse illumination
conditions, making it easier to partition these regions during manual classification.

Examples of low classification accuracy of the “sunlit” and “shaded” leaf classes are
shown in Figure 3a,b, respectively. It should be noted that these do not necessarily reflect
the discrepancies between the manually and automatically classified images. Firstly, the
manual classification was based on three bands (605 nm, 850 nm, and 860 nm) of the
hyperspectral image, while the automatic classification is based on a much broader range
of data (i.e., all 50 bands) and the associated detailed texture and structure information,
especially in the case of individual trees [53]. Furthermore, since the manual classification
is based on the subjective decision of the operator, there is some room for human error
and inconsistency. These errors might be inherited by the model since the manually
classified images were used as targets in the training. However, due to the number of
individual HSI used (n = 150), it is likely that the inconsistencies caused by human error
were mostly averaged out. Therefore, upon visual inspection, many of the automatically
classified images bear a closer resemblance to the original HSI than their manually classified
counterparts, as shown in Figure 3c.

In a few instances, especially at higher SKYL values, the model misclassified the
“shaded ground” as “sunlit ground” as shown in Figure 3d. In other rare cases, also at
higher SKYL values, areas belonging to the sunlit ground class were classified as shaded
ground producing artefacts (see Figure 3e). However, since only shaded and sunlit leaves
areas are considered in comparing fAPAR and fIPAR in this work, these artefacts did not
affect the overall outcome.

3.2. Impact of Illumination and Background on Individual Tree fAPAR/fIPAR

Both fIPAR and fAPAR are affected by illumination conditions and sunlit/shaded
leaves distributions, as shown in Figure 4. Sunlit leaves show higher levels of fAPAR and
fIPAR than shaded leaves. Both fAPAR and fIPAR are more dispersed at lower SKYL, likely
due to radiance heterogeneity at direct illumination. Conversely, they are less dispersed at
higher SKYL, as PAR tends to be more homogenous with the increase of SKYL (as shown
in Figure 4b,d). Similar results were observed for the concrete background (not shown here
for the sake of brevity).

Table 2 summarizes the effects of illumination and background conditions on tree-wise
average fractions of absorbed and intercepted PAR for sunlit and shaded leaf partitions.
The values of fAPAR and fIPAR for sunlit leaves decreased with the level of diffuse
illumination (SKYL) for both grass and concrete backgrounds but remain relatively stable
for shaded leaves for all illumination conditions. The degree to which the sunlit/shaded
leaves distribution affected both fAPAR and fIPAR was influenced by both SZA and SKYL.
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Table 2. Averages of fAPAR and fIPAR depending on the background and illumination conditions.

SKYL
Grass Concrete

fAPAR fIPAR fAPAR fIPAR
sunlit shaded sunlit shaded sunlit shaded sunlit shaded

0% 0.672 0.434 0.777 0.502 0.682 0.448 0.789 0.518
20% 0.608 0.404 0.700 0.466 0.626 0.424 0.722 0.488
40% 0.575 0.398 0.664 0.459 0.595 0.418 0.687 0.483
60% 0.558 0.397 0.644 0.459 0.576 0.416 0.666 0.480
80% 0.542 0.402 0.627 0.464 0.561 0.420 0.649 0.486

100% 0.516 0.396 0.596 0.458 0.534 0.413 0.615 0.477
SZA sunlit shaded sunlit shaded sunlit shaded sunlit shaded

0◦ 0.620 0.437 0.717 0.505 0.636 0.450 0.735 0.520
45◦ 0.537 0.374 0.620 0.432 0.556 0.397 0.641 0.458

Figure 5a,b compare the impacts of the background (concrete vs. grass) on estimations
of fAPAR and fIPAR for sunlit leaves, respectively. Higher values of both parameters for
the concrete background were probably due to the stronger multiple scattering compared
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to grass (Figure 5). The background had a larger impact on fIPAR, with an overall relative
difference between the grass and concrete background of approximately 2%. The effect of
background on fAPAR/fIPAR increased with the increase of SKYL (Table 2).
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3.3. The Impact of Illumination and Background on Differences between fAPAR and fIPAR

By comparing the fAPAR and fIPAR values obtained with different backgrounds and
at different illumination conditions, Figure 6, it can be observed that while the two fractions
are closely correlated, they are far from equivalent. The fIPAR values are noticeably higher
than fAPAR values. The average overall relative difference between fAPAR and fIPAR
exceeded 9%, and it was around 14% in certain cases, e.g., when considering sunlit leaves
with a concrete background and at SKYL = 0% (Table 2).

The differences between fAPAR and fIPAR were further studied for different leaf
chlorophyll contents. Figure 7 compares results for very low and high leaf chlorophyll
contents (Cab = 10 vs. 100 µg/cm2, respectively) for sunlit and shaded leaves. At high
chlorophyll levels, there are small differences between fIPAR and fAPAR (typically less
than 5–10%) for all background and illumination conditions considered, due to the high
amount of foliar absorption. In comparison, fIPAR can be up to 20–25% higher than fAPAR
for leaves with low chlorophyll content. The results also show that the highest fractions of
absorbed and intercepted PAR occur during direct illumination (SKYL = 0%, SZA = 0◦) of
sunlit leaves, Figure 7c.

Finally, differences between the effect of grass and concrete backgrounds on fAPAR
and fIPAR are greatly influenced by the distributions of sunlit and shaded leaves, SKYL,
and SZA. Figure 8 shows that the relative difference in absorbed and intercepted PAR
fractions between the grass and concrete backgrounds is most pronounced for shaded
leaves, especially for SKYL ≥ 20%, at the higher solar zenith angle, SZA = 45◦. It follows
that the background influence on both fAPAR and fIPAR will be enhanced by the diffuse
illumination and oblique SZA.
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4. Discussion
4.1. Individual Tree fAPAR/fIPAR and Influencing Factors

Most previous fAPAR/fIPAR studies were focused on continuous vegetation such
as crops and forests [11]. To our best knowledge, this is the first study focused on the
urban individual trees. Individual trees have a more complex apparent structure and
external environment including illumination and background. This study shows all the
above factors would influence the fAPAR/fIPAR. As to the background influence on
fAPAR/fIPAR, a previous study shows it is stronger for a clear day (small SKYL) than
for a cloudy day (large SKYL) [11]. Similarly, the current study shows that the difference
between grass background fAPAR/fIPAR and concrete background fAPAR /fIPAR is
smaller with the increase of SKYL (Figure 6). However, this effect can only be clearly
observed for nadir solar angle (SZA = 0◦) while it is not obvious for oblique solar angle
(SZA = 45◦).

Considering the influence of illumination, both fAPAR and fIPAR tend to be more
stable with the increase of the diffuse ratio (Figure 3), which is consistent with the results
of a previous study which indicated that total diffusion shall reduce sample error in open
forests [54]. In addition, this current study shows the fAPAR/fIPAR decrease with the
diffuse ratio for both sunlit leaves and shaded leaves for the urban trees (Figure 3 and
Table 2). This finding is different from the measurements in rice [28] which indicated that
fAPAR and fIPAR under white sky conditions (SKYL = 1) are higher than under black sky
(SKYL = 0). The differences might be caused by the condition of the leaves and the multi-
scattering of the trunk and branches. Previous study shows that low chlorophyll content
leads to a higher fAPAR under direct sunlight conditions and conversely higher chlorophyll
content leads to a higher fAPAR under diffuse conditions [12]. This current study finds
that the oblique solar illuminations can increase both fAPAR and fIPAR, especially for the
shaded leaves (Figure 7). That is probably because the oblique illumination can increase
the length of the path to penetrate the canopy which shall increase the chance of the PAR
to be intercepted and absorbed.

As to the tree structure influence, the distribution of trunk and branches, which are
usually characterized by strong reflectance, can decrease fAPAR. At the same time, the
multi-scattering caused by the trunk and branch will increase fIPAR. The current study
also explores the chlorophyll content influence on the fAPAR and fIPAR (Figure 6). The
senescent leaves (Cab = 10) with small chlorophyll content demonstrate lower fAPAR and
higher fIPAR. The complexity of the structure shall also determine the sunlit and shaded
leaves distribution, which makes the illumination influence even more complex. Thanks
to the high resolution of the studied scenes, it was possible to show that the distribution
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of sunlit and shaded leaves within the crown of the tree has a significant impact on both
PAR indices. In the investigated scenarios with free-standing trees, sunlit leaves intercept
and absorb more PAR than shaded leaves (Figure 3). Consequently, even though sunlit
leaves have lower light use efficiency, they may produce more GPP with larger fPAR [55].
Furthermore, the effect of background reflectance is more pronounced in the case of shaded
leaves. This is perhaps less significant in scenarios with dense, continuous canopies,
but might contribute to accurate estimation of PAR availability in the built environment,
where sections of the crown might be predictably shaded by the surrounding structures at
different times of the day. While in the present study the shade was cast by elements of
the crown, the proposed approach to identifying sunlit and shaded areas with the aid of a
machine learning model can be easily implemented in simulations of PAR availability in
high-density urban areas at the spatial resolution of clumps of leaves within the crown of a
single tree. In this case, the advantage of machine learning-based classification models is
that once the model is trained, its implementation does not incur a high computational cost.

4.2. The Uncertainty of Using fIPAR as a Proxy for fAPAR

In order to simplify the measurement requirements in terms of hardware, cost, and
time, fIPAR has been used as a proxy for fAPAR. Widlowski compared five different fAPAR
estimation schemes in open-canopy forest in order to assess the uncertainty which such
approximation entails [54]. All these schemes are essentially reduced forms of the energy
conservation equation. He concluded that out of the assessed approaches the 2-flux fAPAR
(fIPAR) estimator performs best which suggests that fIPAR is a good approximation of
fAPAR for open forests. However, in the case of urban individual trees, fIPAR overestimates
fAPAR by approximately 10% (Figure 5). In addition, the overall relative differences
between fAPAR and fIPAR obtained in this study were almost twice as high as the ones
reported in earlier studies in the case of full plant cover, which were generally no greater
than 5% [56,57]. Such a difference would be non-negligible when considering, e.g., the GPP
of urban greenery.

Similar to the previous study [54], the current study shows that the differences be-
tween fIPAR and fAPAR also depend on the illumination condition, foliage colour and
background (Figures 5 and 6). While the increase in the simulated difference between the
two indices resulting from increased background reflectance (in this case grass and concrete
backgrounds, with background reflectance of approximately 0.06 and 0.25, respectively)
is consistent with the results of fAPAR estimations for sparse vegetation based on remote
sensing data [23], in our case the fIPAR value is higher than fAPAR. This is likely due to
the fact, that in the present study the leaves are not assumed to be completely absorbing.
Instead, the leaves are assigned Cab values ranging from 10 to 100, which includes green
and brown leaves. Previous study as well as the optical field instrument DHP and LAI2200
would assume the leaves complete black when they take fIPAR as a proxy of fAPAR. The
assumption is true for green, healthy leaves, while in reality, the concentration of pigments
varies depending on the health of the tree and the season. Newly-grown leaves, mature
leaves, and senescent leaves have different absorption ability in the PAR band. Previous
study show that the presence of yellow leaves leads to an overestimation when using fIPAR
to approximate fAPAR because yellow leaves are characterized by a higher brightness than
green leaves [54,58,59].

Furthermore, the high spatial resolution of the simulated images makes the scattering
effect of the non-photosynthetically active material such as the trunk or the branches non-
negligible. Thus, although the background reflected radiance can increase the fAPAR, the
radiance scattered from the trunk and leaves which is intercepted, but not absorbed is the
main reason for the bias towards fIPAR. This supports the results of field measurements
using DHP, AccuPAR and LAI-2200 reported by Li et al. [28]. Another factor that might
influence the differences between fIPAR and fAPAR is plant leaf density. Nouvellon found
fAPAR to be significantly higher than fIPAR for low LAI, while lower than fIPAR for
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high LAI [11]. Urban trees tend to have a denser distribution of leaves than grass in the
referenced study which might result in fIPAR being larger than fAPAR.

3D radiative transferer models play an important role in assessing the uncertainty of
field measurement methods [60] and were even believed to be the only means to find the
proper measurement strategy for field-based validation campaigns [54]. The five fAPAR
estimation schemes explored by Widlowski using the 3D radiative transfer model were
only based on vertical flux [54]. Gobron et al. compared the differences between fAPAR
and fIPAR using 3D radiative transfer simulation [23]. However, their comparison was
based on a single scattering regime under direct illumination. They concluded that the
differences between the two indices were minute for forests with vegetation understory.
In order to more closely approximate the results of field measurements which are mostly
conducted under the blue sky with both direct and diffuse illumination and are influenced
by multi-scattering, the simulations in the current study account for the direct and diffuse
radiation and multi-scattering. The multi-scattering effect explains why fIPAR would
be influenced by the background as the radiance reflected from the background can be
intercepted again by the canopy. The brighter concrete background will produce a stronger
multi-scatter and increase the intercepted and absorbed PAR, leading to larger fIPAR and
fAPAR (Figure 5).

5. Conclusions

The fraction of absorbed photosynthetically active radiation (fAPAR) is an important
parameter in analysing the gross primary productivity of plants at the canopy level and
is often equated with the fraction of intercepted PAR, fIPAR. In the case of individual
trees found in urban scenes, factors such as the illumination conditions, distributions of
sunlit and shaded leaves, and background have a pronounced impact on estimations of
fAPAR and fIPAR. In this study, the effect of the above factors on the fAPAR and fIPAR of
individual trees were investigated. fAPAR and fIPAR were estimated separately for sunlit
and shaded leaves. The sunlit and shaded leaves were automatically classified using an
artificial neural network-based model.

The results indicate that the illumination conditions and background have a strong
effect on the urban individual tree fAPAR, especially when considering the differences
between sunlit and shaded leaves separately. The shaded fAPAR was relatively stable with
varying diffuse ratio, while sunlit fAPAR decreased with the increase of the proportion of
diffuse radiation. fAPAR was also affected by the solar zenith angle, with lower values
obtained at an oblique angle. The results also indicate that fAPAR and fIPAR produce
different results in an urban setting with individual trees; although, they were considered
equivalent when applied to homogenous vegetation and continuous canopies. The differ-
ences can be greater than 14% in certain scenarios. Furthermore, both fAPAR and fIPAR
are affected by different backgrounds by between 1.5% and 5%, depending on illumination
conditions. The differences between these two parameters were influenced by the condition
of the leaves (Cab content) as well as by the urban setting. The reported results can deepen
the understanding of fAPAR/fIPAR of urban individual trees. They also might facilitate
the formulation of guidelines for the estimation of fAPAR during field measurement using
traditional portable instruments in an urban setting. In addition, the approach to assessing
the radiative budget of individual trees proposed in this work can be a benchmark for
evaluating in situ fAPAR measurement techniques.
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