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Abstract

This thesis includes two related but independent subjects. In Part I we consider
the problem of finding an optimal dynamic priority sequencing policy to maximize
the mean throughput rate in a multistation, multiclass closed queueing network with
general service time distributions and a general routing structure. Under balanced
heavy loading conditions, this scheduling problem can be approximated by a control
problem involving Brownian motion. Although a unique, closed form solution to
the Brownian control problem is not derived, an analysis of the problem leads to
an effective static sequencing policy, and to an approximate means of comparing the
reiative performance of arbitrary static policies. Several examples are provided that
illustrate the effectiveness of our procedure.

In part 1I we consider two interrelated decisions concerning inspection in a circuit
board assembly plant. The inspection allocaticen policy determines at which stage(s)
to inspect a board. Af stages where inspection is performed, the testing policy decides
how to accept or reject. a board based on the test measurements that are subject to
some noise. The objective is to minimize the total expected cost of quality, which
includes the inspection cost and the cost of defectives shipped to the customer. A
case study is presented that reveals various implementation and data gathering issues.

This study shows that our proposed policies offer significant cost savings over current

industrial practice.
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Part I : Scheduling Networks of Queues:
Heavy Traffic Analysis of a
Multistation Closed Network

1. Introduction

Multiclass closed queueing networks are important models for computer, commu-
nication, and manufacturing systems, and the descriptive theory of these networks is
well developed (see Baskett et al. 1975 and Kelly 1979). However, no exact results
exist for optimal priority sequencing in such systems, and the only approximate anal-
ysis is Harrison and Wein (1990), who obtain an effective priority sequencing policy
for maximizing the throughput of a two-station, well balanced, heavily loaded net-
work. This policy, called a workload balancing sequencing policy, is a static (that is,
not state-dependent) policy that outperformed conventional sequencing policies in a
simulation study in Harrison and Wein (1990). This result was obtained by analyzing
a Brownian system model (developed by Harrison 1988) that approxunates & multi-
class queueing network with dynamic scheduling capability. Under balanced heavy
loading conditions, this model allows a queueing network scheduling problem to be
approximated by a control problem involving Brownian motion. The workload bal-
ancing sequencing policy was derived by reformulating the Brownian control problem
in terms of workload imbalances, solving the workload imbalance formulation, and
interpreting the solution in terms of the original queueing system.

In this paper, we attempt to generalize the results of Harrison and Wein (1990)
from the setting of a th-station network to a network with any finite number of

stations. In order to describe our results, it is easiest to first review the results of
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Harrison and Wein (1990). They define a one-dimensional workload imbalance pro-
cess, which measures how imbalanced the total network workload is between the two
stations at each point in time, and discover an intricate relationship between workload
imbalance, server idleness, and the lowest priority customer classes. In particular, in
the idealized Brownian limit, server idleness is only incurred at times when the work-
load imbalance process is on the boundary of a workload imbalance polytope, which
is a closed interval on the real line, and the two extreme points of the polytope cor-
respond to the two customer classes, one from each station, that are awarded lowest
priority at their respective stations. These two bottom priority classes, which are
referred to as extremal classes, lead directly to the workload balancing sequencing
policy. Furthermore, this relationship allows for an analytic comparison between the
workload balancing policy and any other static policy, such as the shortest expected
processing time rule (SEPT), where priority is given ‘o the class with the shortest
expected processing time for its upcoming operation, and the shortest expected re-
maining processing time rule (SERPT), where priority is given to the class with the

least expected amount of work remaining before exiting the network.

For the general multistation problem considered here, the Brownian control prob-
lem can again be reformulated in terms of workload imbalances, but a unique, closed
form solution to the workload imbalance formulation is not obtained. However, the
corresponding relationship between workload imbalance, server idleness, and the low-
est priority classes is retained in the multistation setting. In particular, when there
are I stations in the network, an (I — 1)—dimensional workload imbalance process
is defined that stays in a workload imbalance polytope in R'-!. Also, server idle-
ness is incurred only when the workload imbalance process is at the boundary of the
workload imbalance polytope. Each extreme point of the polytope corresponds to

a particular customer class, and these extremal classes are the only classes in the
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network that are ever given bottom priority at their respective stations. Unlike the

two-station case, there will in general be more extremal classes than stations.

The insight gained from the previous paragraph allows us to identify an effective
static sequencing policy for maximizing the throughput of a multistation, multiclass
closed queueing network under balanced heavy loading conditions, and to approxi-
mately compare the performance of this policy to conventional static policies, such as
the SEPT and SERPT rules. A simulation study analyzing five examples (two three-
station networks and three four-station networks) is carried out that demonstrates
the power of the simple procedure of identifying the workload imbalance polytope
and the corresponding extremal classes. In particular, for each example, the pro-
posed policy outperforms (at times, dramatically) four conventional policies, and the
analysis roughly predicts the relative performance of the proposed policy, the SEPT
rule, and the SERPT rule, Also, system performance is greatly influenced by the
particular static policy in use.

Perhaps the most interesting conclusion of our study is the effectiveness of static
policies for maximizing the throughput in multistation closed queueing networks. In
contrast, when analyzing perhaps the siraplest interesting open queueing network
scheduling problem, Harrison and Wein (1989) found that no static policy was effec-
tive, and a dynamic (that is, state-dependent) policy was required to offer significant
improvement over the first-come first-served (FCFS) policy. We believe this is due to
the fundamental tradeoff that exists in all open queueing networks. This tradeoff is
between the short run aim of reducing the number of customers in the system, and
the longer run aim of avoiding server idleness. On the other hand, in a single-station
queue, no such tradeoff exists, and the only concern is with reducing the number of
customers in the system. Therefore, it is not surprising that a sir;'xple static policy

(the so-called cu—rule; see Klimov 1974, for example) is able to achieve this goal.
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Similarly, no tradeoff exists in a closed network setting, where server utilization is the
sole concern, and so a static policy again appears to be effective, although obviously
not optimal. In summary, it appears that the basic tradeoff that exists in sequencing
open networks makes these systems more difficult to analyze and to sequence than
closed networks or single-station systems.

The balanced heavy loading conditions imply that any stations in the original
network that are not among the most heavily loaded will vanish in our idealized
Brownian model. Thus, the proposed sequencing policy can be applied to any closed
queueing network by restricting attention to the subnetwork of bottleneck stations.
Although our procedure works very well on the bottleneck subnetwork and appears
to be quite robust with respect to the magnitude and balance of the network load
(see, in'pa.rticular, example 5 of Section 7), further study is required to assess the
effectiw;eﬁess of this procedure for scheduling an entire network consisting of bottleneck
and nonbottleneck stations. However, the bottleneck stations are precisely where most
of the congesticn occurs, and where scheduling will have its biggest impact. Thus,
we believe these results have the potential to enhance system performance in actual
closed network settings.

This paper is organized as follows. In Section 2, the queueing network scheduling
problem is described, and the workload imbalance formulation of the approximating
Brownian control problem is given in Section 3. The workload imbalance polytope
is defined in Section 4, where the relationship between server idleness, workload im-
balance, and extremal classes is described. A static sequencing »policy is proposed in
Section 5, which also contains an approximate analytic comparison between the pro-
posed policy and any other static policy. An alternative workload imbalance formu-
lation is described in Section 6, which can be omitted by readers interested primarily

in the nonmathematical aspects of the paper. Five examples are contained in Section
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7, along with simulation results.
2. The Queueing Network Scheduling Problem

Consider a queueing network consisting of I single server stations, and popu-
lated by a variety of different customer types, where each type has its own arbitrary,
deterministic route through the network. As in Kelly (1979) and Harrison (1988),
we define a different customer class for each stage along each customer type’s route.
Each customer class k = 1, ..., K requires service at a particular station, and has its
own general service time distribution with finite mean and variance. Thus, individual

customers change class deterministically as they proceed through the network.

Whenever a customer completes the last stage of its route, it exits the network,
and a new customer immediately enters, so as to keep the population size fixed at N
customers. The entering customer will be of class k with probability gk, independent
of all previous history. Of course, g, > 0 only for classes that correspond to the first

stage along some customer type’s route.

Notice that this is a single chain network, where the entering mix of the various
customer types is fixed, as opposed to a multichain network where the population level
of the various customer types is fixed. The single chain network is appropriate for a
manufacturing setting, which is our primary interest. In a job shop, the product mix
is typically specified by customer demand, and the most direct way to satisfy this mix
in a closed network setting is to release new customers according to the appropriate
entering class mix ¢ = (g¢). Our analysis allows the class of entering customer to
be chosen in a deterministic (rather than Markovian) fashion according to the vector
g, in which case the proposed policy remains unchanged. Also, customer routes are

assumed to be deterministic for ease of presentation; probabilistic events that occur
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in a manufacturing setting, such as rework, scrapping, and server breakdown and

repair, can be easily incorporated into the model (see Harrison 1988 for details).

The scheduling problem is to dynamically decide which class of customers to
serve next at every station in the network. These decisions will be referred to as
sequencing decisions. The objective of the scheduling problem is to maximize the
long run expected average throughput rate of the network, wkich is the number of
customer departures per unit of time. Since the customer population level is fixed,
Little’s formula (Little 1961) implies that this objective will also minimize the long run
expected average sojourn time of customers, which is the amount of time a customer
spends in the network. Since the entering class mix, customer routes, and mean
service times are all fixed, maximizing the long run expected average throughput
rate is equivalent to minimizing the long run expected average idleness rate for any

arbitrary server, which is the fraction of time the server is idle.
3. The Workload Imbalance Formulation

Harrison (1988) has shown how to approximate the closed queueing network
scheduling problem described in Section 2 by a Brownian control problem. In Section
2 of Harrison and Wein (1990), an equivalent formulation of this problem is derived
for the two-station case. The new formulation is called a workload formulation be-
cause the state of the queueing system is described in terms of a two-dimensional
workload process, rather than the K —dimensional queue length process. In Section 3
of Harrison and Wein (1990), the workload formulation is easily re-expressed in terms
of a workload imbalance formulation (see equations (38)-(44) of that paper), where
the state of the network is a‘one-dimensional workload imbalance process, which mea-

sures how imbalanced the workload of the first station is relative to the second station.
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Readers are also referred to Wein (1991) for a similar muitidimensional workload im-
balance formulation. We will go directly to the workload imbalance formulation of
the problem in order to avoid much unnecessary notation. As in Harrison and Wein
(1990), the proposed sequencing policy depends only on the solution to the worklcad
imbalance formulation.

Let Qi(t) be the number of class k customers in the network at time ¢, and let
I;(t) be the cumulative idleness incurred by server i in the time interval [0,¢]. The
Brownian approximation is obtained by rescaling these two basic processes in terms

of the total population size N. In particular, define the scaled queue length process

Z = {Zk(t),t >0} by

2
Zk(t) = Q—k%v—tl, t>0 and k=1,..., K, (1)

and the scaled cumulative idleness process U; = {U;(t),t > 0} by

L(N?%)
N

Ui(t) = ,t20 and :=1,...,I. (2)

Notice that Zi(t) is interpreted as the fraction of customers in the network at time
t who are of class k. The vector processes Z = (Z;) and U = (U;) are the control
processes in the workload imbalance formulation of the Brownian control problem, and
these scaled processes will be referred to simply as the queue length and cumulative
idleness processes, respectively. Since we will be dealing exclusively with the Brownian
model in the next two sections, this should cause no confusion.

Let us define M to be the expected remaining processing time at station ¢ for a
class k customer until that customer exits the network. The I x K workload profile
matrix M = (Mj;) depends on the mean processing time of each customer class and
the detailed route of each customer type. Readers may refer to Table I and equation

(24) in Section 7, where the entries of this matrix are displayed for a concrete example.



16 Part I : Scheduling Networks of Queues

As mentioned in Section 2, newly injected customers are of class k with probability
k. For i =1,...,I, define v; = =K.| M;iqx, so that v; is the expected total time over
the long run that server : devotes to each newly arriving customer. Recall that in
closed queueing networks, the vector of traffic intensities can only be determined up
to a scale constant. As in Harrison and Wein (1990), the relative traffic intensitites
p = (pi) will be scaled so that max{i<i<ry pi = 1. By Proposition 2 of Harrison and
Wein (1990), it follows that p; = v;/maxu<j<nyvj, for ¢ = 1,...,1. The balanced
heavy loading conditions for the closed network assume the existence of a sufficiently
large integer NV such that the total population size is N and N|1 — p;| is of moderate
sizeforallz=1,...,I.

Define the (I —1) x K workload imbalance profile matrix M = (M;;) by
My = ptMiy — piMye fori=1,..,J -1 and k=1,..., K. (3)

As in Harrison and Wein (1990), and Wein (1990b,1991), this matrix contains all
the necessary information about each customer class to schedule the network under
balanced heavy loading conditions.

Let X be a K—dimensional Brownian motion process with drift vector § and
covariance matrix X, which are defined in equations (13)-(14) of Harrison and Wein
(1990) in terms of the first and second moments of the service time distributions
of the different customer classes, the routes of the various customer types, and the

entering class mix. Also, let B = (B;) be defined by B = TM X, where the (I —1) x I

matrix T is given by

(pr 0 0 0 —p
0 PI 0 . . —p2
e I ()
0 0 0 pr 0 —pr
\0 0 0 0 pr —pr-1/
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so that B is an (I — 1)—dimensional Brownian motion process with drift u = TMé
and covariance I' = TMIMTTT, Our proposed policy does not depend on the
parameter values of the two Brownian motion processes (as mentioned earlier, the
policy depends only on the matrix M in (3)), and hence applies equally well if the
class of entering customer is chosen in a deterministic or Markovian manner, since
the Brownian models arising from these two release mechanisms differ only in their
covariance matrix. It is worth noting that the components of the drift vector u are
pi = N(p; — pr) for i = 1,..,I — 1, by Proposition 3 of Harrison and Wein (1990),
and thus the Brownian motion is driftless when the queueing network is perfectly
balanced.

The approximating Brownian control problem is obtained by letting the customer
population size N — oo. By Propositions 2 and 7 of Harrison and Wein (1990),
the workload imbalance formulation of the Brownian control problem is to choose a
K —dimensional process Z and an I—dimensional process U, both of which are RCLL

(right continuous with left limits), to

1
minimize lim sup ?E[Ul(t)] (5)
t—oo
subject to Z and U are nonanticipating with respect to X, (6)

K
Z M;ka(t) = Bg(t) + pIU;(t) - p,'UI(t) for :=1,..,] —1landt > (x)
k=1

U is nondecreasing with U(0) = 0, (8)
K

> Zi(t)=1 forallt >0, and (9)
k=1

Z(t) > 0 forallt >0. (10)

We conclude this section with several comments on the workload imbalance for-
mulation, w hich gets its name because the basic system state equation (7) is in terms

of the (I — 1)—dimensional workload imbalance process, which measures the total
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amcunt of work anywhere in the network for stations 1,...,J — 1 at time ¢ rela.-
tive to the amount of work in the network at station I at time ¢. Notice that we
have arbitrarily chosen to minimize the long run expected average idleness rate of
server 1. Although Z and U are required to be nonanticipating with respect to the
K —dimensional Brownian motion X, it turns out that the optimal processes will
only depend on the (I — 1)-dimensional Brownian motion B. Constraints (8)-(10)
are straightforward , since the cumulative idleness process must be nondecreasing,
the customer population size is fixed, and the queue length process must be non-
negative. Finally, there is not a unique way to transform the workload formulation

into a workload imbalance formulation, and in Section 6 we discuss an alternative

transformation.
4. The Workload Imbalance Polytope and Extremal Classes

For the two-station case, Harrison and Wein (1990) found an optimal solution
(Z*,U") to the workload imbalance formulation (5)-(10), and interpreted this solution
in terms of the original queueing system in order to find an effective sequencing policy.
Unfortunately, we have been unable to find a closed form solution to (5)-(10) when
I > 2. Instead, we will be satisfied with gaining a deep enough understanding of the
problem so that an effective sequencing policy can be found.

We begin this section by verbally describing problem (5)-(10). Define the (I —1)-

dimensional workload imbalance process W = (W;) by
K
Wi(t) =Y MyZi(t) fori=1,..,I -1, and ¢t > 0. (11)
k=1
It is clear from equations (9)-(11) that the workload imbalance process must reside

within the workload imbalance polytope defined by

K K
{(W1,y ey p-) : 5 = Z Myz,i=1,..,1-1; sz =12 20,k=1,..,K}. (12)
k=1 =1
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This polytope is the convex hull of the K columns of the workload imbalance profile
matrix M, where the k** column of M quantifies the workload imbalance of a class k

customer.

By equations (7) and (11), it follows that
Wi(t) = Bi(t) + p1Ui(t) — piUr(t) fori=1,..,]—1and t >0. (13)

Thus, the workload imbalance formulation can be analyzed in a two-step procedure.
The first problem is to find an optimal control U* (that is nonanticipating with respect
to B) to minimize (5) subject to constraints (8) and (13), and subject to the workload
imbalance process W residing in the workload imbalance polytope defined in (12).
The solution U* to the first problem will lead to an optimal workload imbalance
process W* via equation (13) with U* replacing U. The second problem is to choose
an optimal process Z* that is nonanticipating with respect to B and satisfies equations
(9)-(11), with W* replacing W in (11). We will now discuss the two problems in turn.

The first problem is a multidimensional ergodic singular Brownian control prob-
lem. The controller observes the (I —1)—dimensional Brownian motion B, exerts the
nondecreasing controls Uy, ..., Ur, and the resulting process is the (I —1)—dimensional
workload imbalance process given in (13). The objective is to exert as little of the
controls as possible (recall that we arbitrarily chose to minimize U;) subject to keep-
ing the controlled process inside the workload imbalance polytope (12). The control
problem is described as singular because the state of the controlled process can be
instantaneously changed by the controller and, as a result, the optimal control process
U is continuous but singular (that is, the set of time points at which U increases has
measure 2ero).

When I = 2 (see Harrison and Wein 1990), the workload imbalance polytope is

a closed interval on the real line, which will be denoted by [a, ], the optimal control
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processes U and U are proportional to the local times at the respective boundaries,
and thus the workload imbalance process is a one-dimensional regulated or reflected
Brownian motinn (abbreviated hereafter by RBM; see Harrison 1985 for a complete
treatment) on the interval [a,b]. Since our objective function is to exert the control
U as little as possible subject to keeping W in [a, b}, it is not surprising that the
control U is exerted only when the process W reaches the two endpoints of the closed

interval.

Unfortunately, closed form solutions to ergodic singular control problems have
been restricted to one-dimensional problems (see, for example, Karatzas 1983, Tak-
sar 1985, and Wein 1990a). When I > 2, the optimal control U will again only be
exerted when the (I — 1)—dimensional workload imbalance process W reaches the
boundary of the polytope defined in (12). However, the problem is greatly compli-
cated by the fact that the optimal angle of reflection (exerting different combinations
of the components of U yields 2/ possible angles of reflection; see Wein 1991 for
details) off the faces of the polytope must be found. Kushner (1977,1990) has de-
veloped a numerical procedure (called the finite difference approximation method in
Kushner 1977, and called the Markov chain approximation method in Kushner and
Martins 1990) for solving a wide variety of control problems, including multidimen-
sional ergodic singular control problems. By discretizing the state space and time,
this technique allows one to approximate our ergodic singular control problem by
a finite state Markov chain control problem with a long run average cost criterion,
which in turn can be solved numerically using standard techniques. Kushner and
Martins (1990) (and references therein) have developed weak convergence methods to
prove that, as the discretization of time and space gets finer, the optimally controlled
Markov chain (suitably interpolated) converges to the optimally controlled diffusion,

and the optimal cost of the controlled Markov chain converges to the optimal cost
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of the singular control problem. This procedure was used in Wein (1991) to numeri-
cally solve a more difficult constrained ergodic singular control problem arising from
a queueing network scheduling problem with controllable inputs. Although we have
successfully employed this technique to find numerical solutions to the three-station
examples in Section 5, the optimal angles of reflection are not reported here for rea-
sons that will become clear below. However, it is interesting to note that the solution

does not appear to be of a simple form, in that the angles of reflection are not constant

on each face of the polytope.

We now turn to the second problem in the two step procedure to solve (5)-
(10). Given an optimal workload imbalance process W* (via equation (13)) from
step one, choose a queue length process Z* that satisfies constraints (9)-(11), with
W* replacing W on the left side of equation (11). Let us again begin with the
two-station problem considered in Harrison and Wein (1990). In this case, the one-
dimensional workload imbalance process W is a RBM on the interval [a, ], and Misa
K —dimensional vector, where M is the workload imbalance for class k. Furthermore,
min{1<k<K} Mk = a and max{1<r<K} Mk = b, and suppose without loss of generality
that M; = b and M, = a, where class 1 is served at station 1 and class 2 is served
at station 2. In order to allow the workload imbalance process to evolve in the
entire workload imbalance polytope, only the customer classes that correspond to the
extreme points of the polytope must have a positive queue length (i-e., Zp(t) > 0);
the other classes may have a zero queue length for all times ¢. The customer classes
that correspond to the extreme points of the polytope will be called extremal classes.
In the two-station case, the extreme points of the polytope are a and b, and M =a
and M, = b, and thus there are exactly two extremal classes, class 1 and class
9. If we force the other K — 2 customer classes to have zero queue length (i.e.,

Z(t) =0fort >0 and k =3, ..., K), then Z3(t) = 7(t) and Z3(t) = 1 —y(t), where
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~(t) = (W*(t) — a)/(b — a) is the unique solution to equations (9)-(11).

Before we turn to the case where I > 2, let us interpret the optimal solution
(Z*,U") to the two-station case. The workload imbalance process is a RBM on
[a,d], and the server idleness is only incurred when the workload imbalance process
equals a or b. Furthermore, only two customer classes, denoted by classes 1 and 2,
ever have a positive queue length. Under heavy traffic conditions, it is well-known
(see Whitt 1971, Harrison 1973, Reiman 1983, Johnson 1983, Peterson 1991, and
Chen and Mandelbaum 1989 for various queueing systems) that if a static priority
discipline is used among the customer classes visiting a particular queue, only the
lowest priority customer class will have a positive scaled queue length under heavy
traffic conditions. The other customer classes will not see the system in heavy traffic,
and thus their queue lengths will be negligible compared to the bottom priority class.
Therefore, the solution is interpreted to mean that customers of class 1 (respectively,
class 2) are served at station 1 (respectively, station 2) only when there are no other
customers present there. Although some ambiguity remains in specifying the entire
sequencing policy, the value of M offers a natural index with which to prioritize the
remaining classes. In particular, the proposed workload balancing policy is to award
higher priority at station 1 (respectively, station 2) to the classes with the smaller
(respectively, larger) values of the index M.

Returning to the case where I > 2, in general there may be more extremal classes
than stations. Moreover, there will be at least one extremal class at each station.
This second observation is most easily seen if we assume the network is perfectly
balanced (that is, p; = 1 for i = 1,...,1). In this case, M. = My, — My, and any
class that achieves either the minimum or maximum value over classes k = 1,..., K
of M for some i = 1,...,] — 1 will be an extremal class. For i = 1,...,] — 1, one of

the classes that achieves max;<k<k M. must be served at station i because the value
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of M. is reduced when a customer leaves station i, is increased when a customer
leaves station I, and remains unchanged when a customer leaves any other station.
By similar reasoning, one of the classes that achieves min;<x<x M. must be secved
at station I, for: =1,...,I —1.

Thus, unlike the two-station case, there is not a unique combination of the ex-
tremal queue lengths Z,:(t‘) that is consistent (in the sense of equation (11)) with
the workload imbalance process when it is in the interior of the workload imbalance
polytope. Therefore, although the extremal classes can be readily identified, there
appear to be many possible solutions Z* that will allow the workload imbalance pro-
cess to evolve in the entire workload imbalance polytope. Moreover, since there are
more extremal classes than stations and since a static priority ranking of the cus-
tomer classes would lead to only one class per station with a i)ositive queue length,
it appears that a dynamic sequencing policy is required, rather than a static policy,
as in the two-station case.

To summarize this section, problem (5)-(10) has been decorhposed into two prob-
lems. The first problem is a multidimensional ergodic singuia.r control problem that
does not appear to have a closed form solution. However, it is clear that the the
controller exerts the cumulative idleness process U* only when the workload imbal-
ance process W* reaches the boundary of the workload imbalance polytope. Also, an
approximate numerical solution that specifies the optimal angles of reflection off the
polytope boundary can be obtained using the Markov chain approximation technique
"described in Kushner and Martins (1990). The second problem involves finding an
optimal queue length process Z* that is consistent with the optimal workload im-
balance process W* derived from the first problem. Although there is not a unique
solution to this problem, the extremal classes, which are the only classes that receive

lowest priority at their respective stations, can be identified.
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Because of the nonuniqueness of the solution to the second problem, much ambi-
guity remains in interpreting the solution to (5)-(10) in terms of the queueing system
in order to obtain an effective dynamic sequencing policy. Moreover, it is not clear to
us how to use the optimal angles of reflection to identify an effective sequencing pol-
icy. Thus, in the remainder of this paper, we will focus on static sequencing policies,

and will only briefly discuss possible dynamic policies.
5. Static Sequencing Policies

A static sequencing policy uses a fixed priority ranking of the different customer
classes at each server in the network. Perhaps the two most commonly studied static
policies are the SEPT and SERPT rules. Under a static policy, only one class will
have lowest priority at each server, and hence only I customer classes will have a
nonzero queue length in the approximating Brownian model. Thus, the workload
imbalance process W will reside inside the (I — 1)—dimensional simplex defined by
the I columns of the workload imbalance profile matrix M corresponding to the
lowest priority classes. This simplex will be contained within the workload imbalance
polytope defined in (12).

For any arbitrary static policy, suppose class ¢ is awarded lowest priority at station
i, for it = 1,...,I, and thus classes I + 1,...,  are not bottom priority classes. Then
for any value W(t) of the workload imbalance process in the (I — 1)—dimensional

simplex, there exists a unique nonnegative solution Z*(¢) to the system of equations

wi(t) = ZIZ M Z(2), (14)

k=1
I
> Zu(t) = 1. (15)
k=1
Moreover, since idleness would only be incurced at each station when no customers

are present there, the control U7 (%) in the idealized Brownian model is only exerted
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at times ¢ when Z;(t) = 0. Thus, by equations (13)-(15), the workload imbalance
process would behave as a RBM on the simplex generated by the I lowest priority
classes. Also, the angles of reflection off each face would be constant; see Chen (1987)
for a definition of RBM on a simplex. Readers are referred to Figure 3 of Section 7,
where two-dimensional simplices are shown for the SEPT and SERPT policies for a
specific three-station example.

Recall that the primary performance measure for closed queueing networks is
the mean throughput rate, which can be calculated from the mean idleness rates
at the various stations. There are several numerical techniques (Harrison, Landau,
and Shepp 1981 and Trefethen and Williams 1983 use conformal mapping for the
two-dimensional case where the underlying Brownian motion précess has zero drift,
and the Markov chain approximation method of Kushner and Martins 1990 can be
used for the general case) available for determining the steady state distribution of
a RBM on a simplex and the mean rate of pushing off the boundaries, and the
latter measure leads directly to an estimate of the mean idleness rate. Thus, we can
approximately analyze the performance of any arbitrary static policy, such as SEPT
and SERPT. However, these techniques require a substantial effort, perhaps more
than many analysts would be willing to undertake in order to just compare different
static policies.

As an alternative, we propose a very simple measure to crudely' compare various
static policies. To motivate our measure, consider the Brownian model of the perfectly
balanced two-station closed network. In this case, the drift of the underlying one-
dimensional Brownian motion B is zero, and the steady state distribution of the RBM
is uniformly distributed over the simplex, which in this case is the closed interval
[a,b]. Moreover, the average idleness rate (or the average pushing off the two interval

endpoints) is the same for each station, and is inversely proportional to b — a, the
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length of the interval (see Harrison and Wein 1990 for a closed form expression).

Now consider the general multistation case. If the RBM is uniformly distributed
over the simplex, then a relative measure of the average idleness rate (or pushing off
the boundaries) is the surface of the simplex divided by its volume. For example,
in a three-station network, this measure is the perimeter of a triangle divided by its
area. This ratio is easy to compute in general, since the volume and the surface of
each face can be computed from a determinant. Although our relative measure is
correct for the perfectly balanced two-station network, it is a very crude estimate for
a multidimensional RBM, since the steady state distribution is not uniform, and the
drift, covariance, and angles of reflection of the RBM are being ignored. However,
the goal is to develop a very simple measure that hopefully captures the first-order
effect that one would observe from a visual inspection of the simplices. Moreover,
this approach to performance analysis also extends to a possibly optimal policy, since
the numerical solution (via the Markov chain approximation method) to the singular
control problem yields the average idleness rate, and a crude estimate of the average
idleness rate is just the surface of the workload imbalance polytope divided by its
volume. Although we have been unable to identify an optimal policy, one could use
this technioue to approximately compare the performance of an optimal policy to an
arbitrary static policy.

Now that the performance of arbitrary static policies has been discussed, we are
now ready to propose an effective static policy. The first step is to find the class from
each of the I stations so that the simplex generated by these classes (via the columns
of the workload imbalance profile matrix M) has the minimal ratio of surface-to-
volume. For ease of presentation, let us denote these classes by 1,...,I, where class
i is served at station i. By the above discussion, it is clear that our crude measure

of performance would predict that a sequencing policy awarding lowest priority to
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class 7 at station ¢, for ¢ = 1,...,{, would achieve minimal mean idleness, and hence
maximal mean throughput, among the class of static policies.

A simple extension to this idea will be used to prioritize classes I +1, ..., K at their
various stations, and hence to complete the specification of the sequencing policy. In
order to prioritize the remaining customers at station 7, let us suppose for the moment
that class ¢, the lowest priority class at station ¢, did not exist. Then for each of the
remaining classes at station i, which are indexed by n = 1,...,;, we would compute
the surface-to-volume ratio R, for the simplex generated by class n and the remaining
I — 1 bottom priority classes. Since the class with the smallest value of R, would
receive lowest priority at station i if class ¢ did not exist, our proposed sequencing
policy awards higher priority at station ¢ to the classes with the larger values of Rn.

Although one could obtain a more reliable proposed policy by calculating the
mean idleness rate using the sophisticated numerical techniques described earlier in
place of our crude surface-to-volume measure, much more computation would be
required. Furthermcre, as will be seen in the next section, our crude relative idleness
measure appears to be accurate enough to distinguish between the various static
policies.

We have been unable to identify a simple static or dynamic policy that signifi-
cantly outperforms the static policy described above. In the simulation experiment of
Section 7, we also tested an alternative static policy that serves all extremal classes
on a first-come first-served basis at their respective stations, and then prioritizes the
non-extremal classes in the same order as they were served in the proposed static
policy. The hope was that by allowing all extremal classes to have a positive queue
length, the workload imbalance process would be allowed to move throughout the en-
tire workload imbalance polytope, as opposed to only moving throughout the simplex

of minimal surface-to-volume ratio. However, this policy did not perform significantly
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better than the proposed static policy, and thus the simulation results for this policy

are not reported here.

We have had several ideas for dynamic policies. One policy employs dynamic re-
duced costs (as in Wein 1991) derived from the mathematical program of maximizing
the minimum amount of work queued at any given station, subject to constraints
(14)-(15) and (10), for any given value of W(t). A second policy would, given the
value of W (t) at time ¢, derive the simplex of minimal surface-to-volume ratio (with
one extreme point per station) containing W(t), and would award the lowest prior-
ity at time ¢ to the classes corresponding to the extreme points of the simplex. The
rema’ning classes would be prioritized at time ¢ as in the proposed static policy. How-
ever, these two policies were not pursued because they would be extremely tedious

to implement in a real time setting. Our goal instead is to find a simple and effective

sequencing policy.
6. An Alternative Workload Imbalance Formulation

By equation (23) and Propositions 2 and 7 of Harrison and Wein (1990), the key
to transforming the workload formulation of an J—station closed network into a cor-
responding workload imbalance formulation is to identify a projection matrix P that
satisfies Pp = 0, where p is the traffic intensity vector. This projection matrix yields
the workload imbalance profile matrix M = (M), which is defined by M = PM.
That is, the matrix P projects class k’s workload profile vector M. = (Mg, ..., Mp)T
in the direction that is parallel to the vector of relative traffic intensities and onto an

(I — 1)—dimensional hyperplane.

Notice that there is no restriction on the choice of hyperplane onto which the

workload profile vector is projected. We chose to employ the particular projection
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stated in (4) because of its relative simplicity and to maintain consistency with Har-
rison and Wein (1990) and Wein (1990a,b,1991). In these previous studies, a solution
was found to the workload formulation and hence the particular transformation used
in obtaining the workload imbalance formulation was irrelevant. However, in the
present study, an explicit solution to the work-.ad formulation is not obtained, and
the proposed scheduling policy can depend on the particular transformation that is
used. In particular, the transformation defined in {4) causes the workload imbal-
ance process to measure the imbalance of the first J — 1 stations relative to station
I. Station I was arbitrarily chosen as the reference station, and if we had chosen
a different reference station, the set of extremal classes would not change, but the
proposed scheduling policy could be different. Also, the transformation in (4) leads
to an asymmetry in (13), in that the control U; affects only W, fori=1,..1-1,

whereas U; affects the entire process w.

A natural choice for thc hyperplane onto which the workload profile is to be
projected is the hyperplane perpendicular to the projection direction. This is also the
only choice that will guarantee that the policy obtained is independent of the order
of the stations. This choice has an intuitive interpretation. To find the workicad
imbalance vector of a customer class, we decompose its workload vector into two
orthogonal components. One component is proportional to the vector of relative
traffic intensites, and its orthogonal complement is defined as the workload imbalance
vector of that customer class. The first component represents a redistribution of the
total workload in the network proportional to the traffic intensity vector. The second
component is the workload imbalance vector that is the difference between the actual
workload and an equivalent balanced load. Figure 1 illustrates how the workload

imbalance vector is determined for the 2-dimensional case (I = 2).
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C

onal to the
c intensities vector.

Orthogonal plane
to the traffic
intensity vector.

Figure 1 : The workload imbalance vector for a two station network.

In matrix form, the workload imbalance profile matrix M can then computed as
M = PM
Where P is the orthogonal projection matrix given by
T
pp
P=(1-= 16
-2, (10

where 1 denotes the I x I identity matrix, and p = (p1,p2,...,p1)1. Then the
workload imbalance profile matrix M= (M,-,,), which is of dimension I x K rather
than (I — 1) x K, is defined by M = PM, yielding
My = My, - ( ) (Z p; ,,,) for i=1,..,] and k=1,.,K. (17)
21_1 PJ j=1
By (16), the matrix P projects the workload profile vector M.y = (M, ..., M )T of
each class onto the (I —1)-dimensional plane that is orthogonal to the traffic intensity

vector and passes through the origin. Thus, the I--dimensional workload imbalance
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process W, which equals {M Z(t),t 2 0}, actually resides in a polytope of dimension
I — 1. Therefore, by considering the workload imbalance polytope generated by the
K points (Myx, ..., Mii)T, k = 1,..., K, in the (I — 1)—dimensional plane orthogonal
to the traffic intensity vector, we can use the sirface-to-volume algorithm described
in the last section to obtain a proposed scheduling policy that is independent of a

fixed reference station.

We tested both projections (that is, the transformations based on the matrix T
in (4) and the matrix P in (16)) on the five numerical examples considered in the
next section. The proposed scheduling policies under the two transformations were
identical for the two three-station examples, and were nearly identical for the three
four-station examples (for example, classes C3 and B4 were interthanged in Table
IX). Also, neither policy dominated in terms of predicting the relative performance

of static policies via the surface-to-volume ratio.

7. Examples

In this section, simulation results are reported for three networks, including two
three-station networks and a four-station network. Although we believe this procedure
remains effective for any number of stations, few factories have more than three or four
bottleneck stations, and hence we did not examine larger networks. Five examples
are treated in all; the three networks are studied under conditions of perfect balance
(that is, the traffic intensity is the same for each station in the network), and then

the four-station network is studied under two imbalanced scenarios.

There are two objectives in this simulation study: to assess the effectiveness of the

proposed static sequencing policy described in Section 5, and to assess the accuracy
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of the surface-to-volume ratio in predicting the relative performance of various static
policies. To achieve the first goal, five sequencing policies are tested for each example:
the proposed static policy (denoted by BROWNIAN in the tables below), the first-
come first-served (FCFS) policy, the SEPT rule, the SERPT rule, and the least work
next queue (LWNQ) rule. This last rule, which gives dynamic priority at each station
to the class whose next station has the least amount of work in it, appears to be a
reasonable candidate for a closed network setting, where the sole issue is to avoid
server idleness.

Recall that the objective of the scheduling problem is to maximize the mean
throughput rate for a fixed population level N. In the simulation results below, the
population size N for each policy is set (via a one-dimensional search using simulation)
so as to achieve a fixed mean throughput rate, and we will instead record the mean
sojourn times. As mentioned earlier, minimization of mean sojourn time is equivalent
to maximization of mean throughput rate in a closed network. We compare mean
sojourn time at a specified throughput rate because this is how factories are generally
run: they attempt to choose their customer population level to meet the specified
exogenous demand rate, and smaller mean sojourn times imply better performance.
For each policy, ten independent runs are made, each consisting of 10,000 customer
completions and no initialization periods.

In order to assess the effectiveness of the surface-to-volume ratio in predicting the
relative performance of static policies, the SEPT policy, the SERPT policy, and the
proposed static policy are tested at constant population levels, and the mean idleness
rate at each station is observed; notice that these measurements are more in line
with the original problem statement of minimizing the idleness rate (or, equivalently,
maximizing the throughput rate) for a fixed population level. For examples 1-3, the

idleness rate for a particular scheduling policy is defined as the average of the mean
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idleness rates at each station in the network. For examples 4 and 5, the idleness
rate is defined as the mean idleness rate at station 1, which as the heaviest loaded
station. The normalized idleness rate of each policy, which is the idleness rate of the
policy divided by the idleness rate of the proposed static policy, is then compared to
the corresponding normalized surface-to-volume ratio, which is the surface-to-volume
ratio of the policy divided by the surface-to-volume ratio of the proposed policy.
Example 1. The first network is populated by three types of customers, denoted by
A, B, and C, and the specified mix employs equal quantities of all three types; that is,
whenever a customer exits the network, the newly injected customer is of type A, B,
or C with probability one-third. Table I describes the deterministic route of each cus-
tomer type, and gives the mean service time for each stage of service. All service time
distributions in this section are assumed to be exponential, although our results hold
for any general service time distributions. Since each customer class corresponds to
a combination of customer type and stage of completion, the twelve customer classes

are designated (and ordered from k = 1,...,12) by (A1,A2,A3,B1,...,B5,C1,...,C4).

From Table I, we find that the 3 x 12 workload profile matrix M is given by
4 4 0 10 2 2 2 0 4 4 4 0
M=|11113 137774 0 00}, (24)
6 00 1 1 10 0 11 11 2 2

where M;, is the expected remaining processing time at station ¢ for a class k customer
until that customer exits the network. Since g = (20020000 300 0)7, we have

v, = vy = v3 = 6, implying py = pp = p3 = 1.

Using the projection 7', the 2 x 12 workload imbalance profile matrix M is given

. (-2 409 1120 -T -1 2 -2
( 112 12 6 7 7 -7 -11 -2 —2)' (25)



34 Part I : SchéJuling Networks of Queues

MEAN
CUSTOMER SERVICE
IYPE ROUTE TIMES
A 3—=1—2 6.0 4.0 1.0
B 122—=3—21—2 8.0 6.0 1.0 2.0 7.0
C 293213 4.0 9.0 4.0 2.0
Table I. Description of example 1.
The projection matrix P is given by
(2/3 -1/3 —1/3)
P=|-1/3 2/3 -1/3],
-1/3 -1/3 2/3
and workload imbalance profile matrix MP is given by
Py P FaFF
R e I P A T e
I IR R

The twelve points (Mm, Mzk) are plotted in Figure 2, where the workload imbal-
' ance polytope, which is the convex hull of these points, is also displayed. Figure 3
| displa.ys the twelve points (MF,, ME, ME) in the plane orthogonal to the traffic in-
tensity vector. In both cases six of the twelve classes are extremal classes, and the
number beside each extremal point is the station that serves the corresponding ex-
tremal class. Recall that the static priority policy finds the simplex (generated by
exactly one class from each station) of minimal surface-to-volume ratio, and awards
lowest priority to these three classes at their respective station. Readers can easily see
that in both Figures the two highest points and the lowest point, which correspond
to class Bl at ?tation 1, class B2 at station 2, and class C2 at station 3, generate

the simplex of largest volume, and it turns out that this simplex also has minimal
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surface-to-volume ratio. Thus, these three classes receive lowest priority at their re-
spective stations under the BROWNIAN policy. A complete specification of the three
static policies is exhibited in Table II, where the parenthesis denotes a tie between
two classes; in this case, the customers of the two classes are grouped together and
served on a FCFS basis. In this example the policy derived by our heuristic was
identical for projection methods. Figures 4 and 5 show the simplices for the SEPT,
SERPT, and BROWNIAN policies under the projection T and P respectively. A
visual inspection reveals that we would expect the SEPT policy to outperform the

SERPT policy, since its simplex has a significantly larger volume.

W2(t)-W3(t){

R / Wi(t)-W3(t)

3

Figure 2 : The workload imbalance polytope under projection T for example 1.

Simulation results for this example are reported in Tables III and IV. In Table III,
the population size, mean sojourn time, and mean throughput rate, along with appro-
priate 95% confidence intervals, are reported for each of the five sequencing policies,
where the throughput rate §f 0.149 customers per unit time corresponds to a server
utilization of 89.4%. It can be seen that the proposed static policy easily outper-

forms the other four policies, offering a 43.8% reduction in mean sojourn time versus



36 Part I : Scheduling Networks of Queues

2 1

Figure 3 : The workload imbalance polytope under projection P for example 1.
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Figure 4 : The workload imbalance simplices under projection T
for the BROWNIAN, SEPT, and SERPT policies.

FCFS. Notice that the LWNQ policy does not offer much improvement over FCFS
~ and, as expected, SEPT outperforms SERPT. The results for FCFS and SERPT do

- not match the corresponding simulation results in Section 10 of Wein (1991) because
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BROWNIAN
SEPT

. SERPT

Figure 5 : The workload imbalance simplices under projection P
for the BROWNIAN, SEPT, and SERPT policies.

our study chooses the entering customer type in a Markovian manner, whereas the

other study chooses the entering type in a deterministic manner.

EOLICY - STATION 1 STATION 2 STATION 3

BROWNIAN B4C3A2B1  A3Cl1B5B2 B3 C4 Al C2
SEPT B4 (A2,C3) BI A3C1B2B5 B3 C4 Al C2
SERPT A2 C3 B4 B1 A3B5B2Cl1  C4B3A1C2

Table II. Static sequencing policies for example 1.

In Table IV, the three static policies are compared at three different population

levels, and the observed idleness rates, normalized so that the idleness rate of the
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SEQUENCING  POPULATION MEAN MEAN
POLICY SIZE SOJOURN TIME THROUGHPUT
BROWNIAN 14 93.8 (0.57) 0.149 (+.0008)
SEPT 20 134 (0.66) 0.149 (£.0007)
LWNQ 24 161 (1.05) 0.149 (+.0010)
FCFS 25 167 (£1.05) 0.149 (+.0010)
SERPT 30 201 (+1.20) 0.149 (+.0009)

Table ITII. Comparison of mean sojourn times for example 1.

proposed policy is one, are compared to the normalized versions of the estimated
idleness rates (via the surface-to-volume ratios). If the surface-to-volume ratio was
accurate, we would expect to see the simulated normalized idleness rates approach
the estimated idleness rates as the population size increases. For example, we predict
that the SERPT rule will have 2.7 times as much idleness as the BROWNIAN policy
when the population size is very large. When the population size is 45, the SERPT
rule actually incurs 2.6 times as much idleness as the BROWNIAN policy, and thus
the surface-to-volume ratio is quite accurate in this case. Although the ratio is not
as accurate a predictor in the SEPT case, the measure correctly predicts the relative
performance of the three policies. The surface to ratio figures in this and the following
tables are those obtained using the P projection, the figures obtained using the the

T projection are very close and are reported in Chevalier and Wein (1992).

Before turning to example 2, we want to mention that the workload imbalance
polytope can be helpful in developing a fast heuristic solution to a related scheduling
problem considered in Wein (1991). This study develops a customer release and pri-

ority sequencing policy to minimize mean sojourn time subject to a minimum mean
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STATIC NORMALIZED  NORMALIZED
SEQUENCING  POPULATION IDLENESS SURFACE-TO-

POLICY SIZE RATE YOLUME RATIO
BROWNIAN 15 1.00 1.00
SEPT 15 1.39 1.32
SERPT 15 1.68 2.53
BROWNIAN 30 1.00 1.00
SEPT 30 1.60 1.32
SERPT 30 2.30 2.53
BROWNIAN 45 1.00 1.00
SEPT 45 1.77 1.32
SERPT 45 2.60 2.53

Table IV. Actual and predicted normalized idleness rates for example 1.

throughput rate constraint. The resulting constrained singular ergodic Brownian con-
trol problem is to find a region in R’? in which to reflect the workload imbalance
process. When there is perfect balance between the stations in the two-station case,
it turns out that the region derived in the controllable inputs problem is homothetic
(that is, of similar shape) to the workload imbalance polytope of the correspond-
ing closed network probiem. Moreover, this relationship appears to roughly hold in
the multistation case; readers may compare the similarity in shapes of the workload
imbalance polytope in Figure 1 with the optimal reflecting boundary in Figure 5 of
Wein (1991), which also considered the network described in Table I. This is sig-
nificant because the identification of the workload imbalance polytope is much less

computationally burdensome than the derivation of the optimal reflecting boundary.
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Example 2. This example is also a three-station network visited by three customer
types. The customer routes and mean service times are given in Table V, and the mix
of customer types is again (1/3,1/3,1/3). Readers may verify that p; = p; = p3 =1,
and the workload imbalance profile matrices for both projection are given by

- -1 -2 4 4 -1 -4 -4 2 -3 -3
M‘(-l 150 2 2 —4 -1 -1 -3 ) (27)

-1/3 0 2 -4/3 5/3 8/3 —4/3 -4/3 1/3 -l

2/3 1 -3 —4/3 -1/3 2/3 8/3 -—1/3 4/3 1
(28)

(—1/3 -1 1 8/3 -4/3 -10/3 -4/3 5/3 —5/3 —1)
MP = .
Although we do not exhibit the simplices for the static policies here, a visual inspec-
tion of these simplices suggests that the BROWNIAN policy should ocutperform the
SEPT policy, which in turn should outperform the SERPT policy. In this case again

the policy found by our heuristic is identical for both projections.

MEAN
CUSTOMER SERVICE
TYPE ROUTE TIMES
A 123221 1.0 6.0 5.0 4.0
B 1-2-3 3.0 6.0 4.0
C 1-2-3 5.0 2.0 3.0

Table V. Description of example 2.

Simulation results for Example 2 are found in Tables VI and VII. The mean
throughput rate of 0.210 in Table VI corresponds to a mean server utilization of
91.0%. Once again, the BROWNIAN policy outperforms the other four policies, and
offers a 32.2% reduction in mean sojourn time versus FCFS. The LWNQ policy did
not perform as well as FCFS and, as predicted, SEPT outperformed SERPT. The
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normalized ratios clearly overestimate the normalized idleness rates in Table VII.
However, the relative values of the three normalized idleness rates were predicted
reasonably accurately when N = 45, since (2.95-1.00)/(7.64-1.00)=.294, and (1.67-
1.00)/(2.93-1.00)=.347.

SEQUENCING  POPULATION MEAN MEAN
POLICY SIZE SOJOURN TIME THROUGHPUT
BROWNIAN 17 80.7 (£0.37) 0.210 (£.0009)
SEPT 22 105 (+0.62) 0.210 (£.0013)
FCFS 25 119 (40.55) 0.210 (£.0010)
LWNQ 29 138 (0.75) 0.210 (£.0011)
SERPT 45 213 (£1.44) 0.210 (+.0014)

Table VI. Comparison of mean sojourn times for example 2.

Example 3. This four-station network, which is descriBed in Table VIII, contains
four customer types and a total of twenty customer classes. A newly injected customer
is of each type with probability 0.25, and thus the network is again perfectly balanced
(pi = 1 for ¢ = 1,...,4). The scheduling policy obtained from the P projection is
provided in Table IX. The policy obtained from the T projection is identical unless

that the priorities of the customer classes B4 and C3 are reversed at station 3.

The simulation results for example 3 are displayed in Tables X and XI (because
the results are identical for the policies derived from both projections, only one set of
results is displayed). As can be seen from Table XI, the normalized surface-to-volume
ratio for the SEPT polit‘:y is only 1.28 in this case, and so we would predict that the
difference in performance between the BROWNIAN and SEPT policies would be less
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STATIC
SEQUENCING POPULATION

POLICY SIZE
BROWNIAN 15
SEPT 15
SERPT 15
BROWNIAN 30
SEPT 30
SERPT 30
BROWNIAN 45
SEPT A 45
SERPT 45

NORMALIZED NORMALIZED

IDLENESS SURFACE-TO-
RATE YOLUME RATIO
1.00 1.00
1.21 2.95
1.74 7.64
1.00 1.00
1.27 2.95
2.40 7.64
1.00 1.00
1.67 2.95
2.93 7.64

Table VII. Actual and predicted normalized idleness rates for example 2.

CUSTOMER
IYPE ROUTE
A 122234
B 42422123221
C 2—41933—4-23-2
D 244213

MEAN
SERVICE

TIMES
2.0 40 3.0 7.0

3.0 5.0 2.0 4.0 1.0 6.0
2.0 8.0 2.0 9.0 5.0 6.0
2.0 1.0 2.0 6.0

Table VIII. Description of example 3.

in this example than in the previous two examples. This prediction is verified in

Table IX, where the desired throughput rate is 0.165, which corresponds to a server
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POLICIES: BROWNIAN SEPT SERPT

STATION 1 Al D3 C2 B3 B6 (A1,B3,D3) B6 C2 B6 D3 B3 Al C2
STATION 2 B5 D1 C1 A2B2C6 B5 (C1,D1) A2B2C6 €6 B5 D1 A2 B2 C1
STATION 3 A3 B4 C3 C5 D4 C3 A3 B4 C5 D4 D4 A3 (B4,C5) C3
STATION 4 D2 B1 C4 A4 D2 Bl A4 C4 A4 D2 C4 Bl

Table IX. Static sequencing policies for example 1.
utlization rate of only 82.5%. Since the SEPT policy was unable to achieve this rate
exactly, we have included two rows in Table X for this policy, where each row uses a
different population size.

Once again, the BROWNIAN policy offers a significant reduction (38.0%) in
mean sojourn time versus FCFS. There is a very wide range of performance among
the policies, with the SERPT policy possessing a mean sojourn time that is 7.6 times
larger than that of the BROWNIAN policy. In this example, the normalized surface-
to-volume ratios uncerestimated the normalized idleness rates at N = 45, although
the relative values of the three normalized idleness rates were accurately predicted,

since (1.27-1.00)/(4.79-1.00)=.071, and (1.44-1.00)/(7.00-1.00)=.073.

Example 4. The purpose of examples 4 and 5 is to investigate the robustness of
our approximation procedure with respect to the balance of the workload across the
network. These two examples use the same customer routes and entering type mix as
in example 3, but the processing times are altered to achieve an imbalanced workload.
For this example, the processing times of all customer classes processed at station 2
(station 3 and 4, respectively) are multiplied by 0.95 (0.90 and 0.85, respectively).
The resulting vector of relative traffic intensities is p = (1.0,0.95,0.90,0.85)7, and

since the throughput of 0.165 corresponds to an 82.5% server utilization in example
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SEQUENCING  POPULATION MEAN MEAN
POLICY SIZE SOJOURN TIME THROQUGHPUT
BROWNIAN 13 78.8 (40.37) 0.165 (+.0010)
SEPT 13 79.4 (30.50) 0.164 (+.0010)
SEPT 14 84.4 (+0.43) 0.166 (.0008)
FCFS 21 127 (£0.73) 0.165 (+.0014)
LWNQ 55 332 (£2.42) 0.165 (+.0012)
SERPT 100 601 (+6.34) 0.165 (+.0017)

Table X. Comparison of mean sojourn times for example 3.

3, the server utilizations for the four stations are (82.5%,78.4%,74.2%,70.9%).

Because the network structure has remained unchanged, the BROWNIAN policy
is very similar for examples 3, 4, and 5; the policies are identical for all three examples
under the P projection, and under the T projection for example 3 and 4, and the
policy for example 5 for the projection T differs only in that classes C3 and B4 are
interchanged at station 3. Due to the low population levels employed in examples 4
and 5, only one population level for each policy achieved a throughput rate within
0.003 of the desired throughput rate of 0.165. However, all policies did have one
population level that achieved a throughput between 0.164 and 0.166, and only these
results are reported in Tables XII and XIV.

Also, when the population size is 60, the mean idleness rate for station 1 under the
BROWNIAN policy is zero under the three digit precision of the computer simulation
package SIMAN. Thus, we could not compute valid normalized idleness rates at this
population level in Table XIII. This phenomenon also occured under the population

levels of 40 and 60 in Example 5, and thus Table XV reports results only for a
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STATIC NORMALIZED NORMALIZED
SEQUENCING POPULATION IDLENESS SURFACE-TO-

POLICY SIZE RATE YOLUME RATIO
BROWNIAN 20 1.00 1.00
SEPT 20 1.09 1.27
SERPT 20 237 4.79
BROWNIAN 40 1.00 1.00
SEPT 40 1.29 1.27
SERPT 40 4.58 4.79
BROWNIAN 60 1.00 1.00
SEPT 60 1.44 1.27
SERPT 60 7.00 4.79

Table XI. Actual and predicted normalized idleness rates for example 3.

population size of 20.

The results presented in Tables X1 and XIII suggest that the BROWNIAN
scheduling rule performs roughly as well in this case as in the previous example.
Although the peréentage reductions in mean sojourn time achieved by the BROWN-
IAN policy are smaller in Table XII than in Table X, the normalized idleness rates
are higher in Table XIII than Table XI.

Example 5. Here, we alter example 3 by multiplying the processing times at stations
2, 3, and 4 by 0.9, 0.8, and 0.7, respectively. At a throughput rate of 0.165, the
server utilization levels for the four stations are (82.5%,74.2%,66.0%,57.8%). The
BROWNIAN policy requires only eight customers to achieve the desired throughput
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SEQUENCING  POPULATION MEAN MEAN
POLICY SIZE SOJOURN TIME THROUGHPUT
BROWNIAN 10 60.2 (0.22) 0.166 (.0006)
SEPT 10 60.7 (£0.32) 0.165 (.0009)
FCFS 14 84.9 (+0.53) 0.165 (+.0010)
LWNQ 18 109 (40.59) 0.165 (£.0009)
SERPT 19 115 (+0.68) 0.165 (.0010)

Table XII. Comparison of mean sojourn times for example 4.

STATIC NORMALIZED  NORMALIZED
SEQUENCING  POPULATION IDLENESS SURFACE-TO-
POLICY SIZE RATE YOLUME RATIO
BROWNIAN 20 1.00 1.00
SEPT 20 1.25 1.27
SERPT 20 3.33 4.90
BROWNIAN 40 1.00 1.00
SEPT 40 2.00 1.27
SERPT 40 16.5 4.90

Table XIII. Actual and predicted normalized idleness rates for example 4.
rate, and hence the load on this network is neither heavy nor balanced.

Nonetheless, the results in Tables XIV and XV are very encouraging. Although
SEPT performs slightly better than the BROWNIAN policy in Table XIV, the BROW-|
NIAN policy still offers a significant improvement over FCFS. Moreover, under the

fixed population level of twenty customers, the normalized idleness rate of SEPT
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and SERPT are higher in Table XV than in Table XIII; thus, at a fixed population
size, the effectiveness of the BROWNIAN policy relative to these two static policies

appears to be increasing as the network load becomes more imbalanced.

SEQUENCING  POPULATION MEAN MEAN
POLICY SIZE SOJOURN TIME THROUGHPUT
SEPT 8 48.2 (£0.22) 0.166 (£.0008)
BROWNIAN 8 48.6 (£0.25) 0.165 (£.0009)
FCFS 10 60.9 (0.38) 0.164 (£.0010)
LWNQ 11 66.2 (£0.29) 0.166 (£.0007)
SERPT 14 84.6 (0.36) 0.165 (+.0007)

Table XIV. Comparison of mean sojourn times for example 5.

STATIC NORMALIZED - NORMALIZED
SEQUENCING POPULATION IDLENESS SURFACE-TO-

POLICY SIZE RATE VOLUME RATIO
BROWNIAN 20 1.00 1.00
SEPT 20 1.35 1.27
SERPT 20 6.80 5.01

Table XV. Actual and predicted normalized idleness rates for example 5.
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8. Conclusions

We should note that although the SEPT policy outperformed the SERPT policy
in all five examples, counterexamples to this phenomenon can be easily constructed.
Readers are referred to the two-station closed network example in Harrison and Wein
(1990), where the SEPT policy is easily outperformed by SERPT. However, the Brow-
nian analysis does explain why the SERPT policy will often perform poorly in a closed
network under balanced heavy loading conditions. The lowest pricrity class at each
station under SERPT is the class with the maximum value of 30, M, and these
classes usually correspond to early stages on the customers’ routes. Since Mgq is pro-
portional to the vector p of traffic intensities (whose components are close to each
other in value by the balanced heavy loading conditions), these classes will not often
be extremal classes of the workload imbalance polytope, unless there are significant
differences in workload imbalance across entering customer types.

It is interesting to note that in Tables IV, VII, XI, and XIII, the normalized
idleness rates of SEPT and SERPT increase as the population size increases, and
thus the BROWNIAN policy’s relative performance is better at higher population
levels. This may be due in part because the policy is derived under balanced heavy
loading conditions, and in part because, as in open networks, the improvements from
scheduling may increase as network congestion increases. Thus, the similarity in
performance between the BROWNIAN and SEPT policies in Tables X, XII, and XIV
may be partly attributed to the relatively low population sizes considered.

In none of our examples did the choice of a projection matrix make a significant
difference. Nevertheless, as the size of the network increases, the dimension of the
projection space will increase. As a result the possible distortion due to the choice of a
particular projection augments too. The orthogonal projection P, although requiring

a little more computation, has the advantage of having a certain flavor of ‘objectivity’
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that would probably make it a more robust choice.

In closing, we comment on the range of applicability of the proposed scheduling
policy with respect to the balanced heavy loading conditions, which require a large
population size N and a well balanced set of relative traffic intensities p = (p;). Our
numerical experience has suggested that a good indicator of the magnitude of the load
on a closed queueing network is the population size divided by the number of stations
(that is, N/I). In Tables XII and XIV, N/I equals 2.5 and 2.0, respectively, under
the BROWNIAN policy, and this policy is more effective than FCFS and comparable
to SEPT. Similarly, in Section 4 of Wein and Ou (1991), this policy’s performance
is better than FCFS and comparable to SEPT in a two-station example where N/I
varies between 1.5 and 2.5. Thus, we suspect that the BROWNIAN policy can be
safely applied whenever N/I is greater than three, although we have not tested the
policy on networks with more than four stations. The policy’s insensitivity to the
magnitude of the load is not very surprising, since one would expect that a policy
effective at reducing server idleness in a balanced closed network with many customers

would remain so in the same network with less customers.

The last two examples show that the policy appears to be surprisingly robust
with respect to the imbalance of the network’s load, at least when the ratio of the
smallest to the largest traffic intensity in the network is greater than or equal to 0.7.
In fact, comparing Tables XI, XIII, and XV, the relative effectiveness (as measured
by the normalized idleness rates) of the BROWNIAN policy at a fixed population
level appears to increase as the imbalance of the the workload increases. Finally, as
mentioned in the Introduction, further study is required to assess the effectiveness
of the BROWNIAN procedure for scheduling a large network with many bottleneck
and nonbottleneck stations. However, the simulation results in this section suggest

that the simple procedure of using the proposed algorithm on the entire network
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(that is, if the actual network has I stations, then employ the (I — 1)~dimensional
workload imbalance polytope, regardless of whether or not the balanced heavy loading
conditions hold) is worthy of further investigation.

In summary, we have analyzed a Brownian approximation to the scheduling prob-
lem of maximizing the mean throughput rate of a general multistation, multiclass
closed queueing network. The insights gained from this analysis have led to an iden-
tification of an effective static policy, and to a crude but robust procedure for pre-
dicting the performance of an arbitrary static sequencing policy. We believe the most
interesting aspect of this study is the dramatic impact that different static policies

can have on system performance.
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Part II : Inspection for
Circuit Board Assembly

1. Introduction

This part considers the problem of inspection in a circuit board assembly plant.
With the increasing sophistication of manufacturing technology, boards of increasing
complexity are being produced, which make testing an increasingly complex process.
Currently, inspection costs can account for over half of the total manufacturing cost,

and hence optimizing the utilization of inspection resources is a crucial task.

The assembly of circuit boards is performed in a single manufacturing stage, which
is followed by several successive inspection stages. Assembled circuit boards have to
be inspected for manufacturing defects as well as for defective components. The
inspection process at each stage includes three different activities: testing, diagnosis
and repair. Testing involves deciding whether to accept or reject a board; diagnosis
is finding the defect on a rejected board; and repair consists of correcting that defect.
Diagnosis is often the most difficult and time consuming task and the degree of
difficulty depends on the board type and the type of test that is performed; The
main focus of this paper is on testing, and henceforth repair refers to diagnosis as
well as repair.

The attractiveness of a test depends on the test’s cost, diagnostic power, coverage
and measurement errors. The cost for performing a test on a particular board depends
on the type of that board. The diagnostic power of a test is the amount of information

that a test provides for diagnosis, and it strongly influences the time required and
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the cost for a repair. The coverage of a test is the extent to which defect can be
detected. The error in the measurements on which the decision to accept or reject a
board is based determines the prevalence of type I (false rejects) and type II (false
accepts) errors. Defects are considered to be of different types, and the diagnostic
power, coverage, and measurement errors of a test can be different for each type of
defects. For example, if we look at Figure 2 we see that defect types linked to defective
assembly (such as opens and shorts) are very well covered at the first inspection stage,
whereas defective components are much harder to detect and some defects of this type
can only be detected at the last inspection stage.

We consider two interrelated decisions. The first decision is to decide at which
stage(s) to inspect a board; this problem is known in the literature as the inspection
allocation problem. At the stages where inspection occurs, the testing policy decides
whether to accept cr reject each board based on the noisy measurements obtained
from the test. The objective is to minimize the total expected cost of quality, which
includes cost for testing, repair and defective items shipped to a customer. Since we
assume that every defective board is repaired, no scrapping cost is included.

We first show that the determination of an optimal testing policy can be reduced
to the problem of finding a point on the optimal tradeoff curve between type I and
type II errors. The problem of finding an effective policy jointly for the allocation
of inspection and for testing is then solved numerically. Two by-products of our
analysis are of significant practical value. First, we can determine the cost reduction
that would be achieved by reducing the measurement noise of the test equipment.
This quantity can help circuit board manufacturers evaluate new test equipment,
and can assist test equipment manufacturers focus their R&D efforts and market
their equipment. Although inspection is necessary in the context of circuit board

assembly, quality improvement efforts are also vital to the success of the company.
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We can also derive the marginal benefit from reducing various types of defects. These
quantities can be used to focus quality improvement efforts in an economic fashion.

This problem came to our attention while working with a Hewlett-Packard circuit
board assembly facility. We include a case study of this facility, where our model is
being applied. The case study includes a description of the facility, the methodology
for gathering the data, which has been disguised, and the proposed policy. Our
numerical results suggest that a 10-20% cost reduction can be achieved relative to
this facility’s current inspection policy by optimizing the allocation of inspection
alone. Tke full model was not applied because we could not build estimates that
were accurate enough to ensure a robust solution, but the insights gained from the
model enable us to propose a testing policy that is robust and good. We are beginning
to implement our policies and are not in a position to report on the cost reduction
realized by the facility.

Many papers have been published on the optimal allocation of inspection in mul-
tistage serial systems. Early work on this problem (see for example Lindsay and
Bishop [4], White [7]) assumed perfect inspection (i.e., no type I or type II errors).
Later work allowed for imperfect inspection (Eppen and Hurst [2], Yum and McDow-
ell [8] and Garcia-Diaz et al. [3]), where one determines the number of times that
a test should be repeated. A survey of work published on inspection allocation can
be found in Raz [5]. Recently, Villalobos et al. [6] studied a dynamic version of the
same problem, where inspection of an item at a particular stage can depend on the
result of the inspection of that item at previous stages. The existing literature on this
topic has not addressed the presence of distinct defect types, the joint optimization
of inspection allocation and testing or the application of such type of model to an
industrial facility.

Section 2 presents a detailed formulation of the problem, which is then analyzed
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in Section 3. A case study is presented in Section 4, and conclusions are drawn in

Section 5.

2. Problem Formulation

A typical flow chart of the assembly of circuit boards is presented in Figure 1. The
main manufacturing stage is the circuit board assembly, where all the components are
soldered onte the printed circuit boards. At the system assembly, the different boards
are plugged into the final product. The in circuit test takes a measurement for each
of the individual components soldered on the board. The functional test assesses the
response of a board to simulated working conditions. At the system test, each board
is tested as part of a complete system. Many variants of the configuration displayed
in Figure 1 are possible. For example, there could be multiple levels of each test, or
the system assembly step could be performed in several stages, and a test could be

performed on each subassembly. On the other hand, some tests might not be present.

Circuit Board In Clrcult Functional
Printed Clrcuit Assembly Tost Test

Components

Figure 1 : Flow Chart of Circuit Board Assembly.

As mentioned earlier, an important characteristic of each test is its coverage. We

will assume that for each type of defect, the successive tests that are performed on the
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circuit boards have an increasing coverage. Figure 2 illustrates this property, which
we call hierarchical test coverage, for the example introduced above. Since they cover
more defect types, successive tests tend to be more complex and more expensive to
perform. However, as the complexity of the test increases, the precision of the in-
formation provided for diagnosis decreases. Consequently, diagnosis takes longer and
has to be performed by more qualified personnel. The hierarchical assumption in test
coverage holds for the circuit board assembly systems we have encountered. This as-
sumption will also hold in manufacturing settings where additional work is performed

between successive tests, and each test measures the cumulative functionality of the

manufactured item.

Inspection Hierarchy

Main Defect type Inspection Stage
Captured at inspection

- Defective Assembly

In Circuit Test

- Defective Component

- Defective Component Functional Test

- Incompatible Component Sytem Test

Figure 2 : Hierarchical test coverage.

In this section we will fromulate the problem for a single board in isolation from
the other boards in the system. In the Subsection 3.3 we will discuss how this formu-

lation can be used to solve the problem taking into account the dependencies between

different board types.
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A test consists of a series of upto a few thousand measurements. These measure-
ments can relate to different components on a board, or to different aspects of the
overall functional performance of a board. Most of these measurements are subject to
some noise, and the measurement error can be separated into two parts: predictable
error and random error. The predictable error is caused by the particular board type
configuration. This error will not vary across boards of the same type, and can be
predicted using historical data about past measurements. The random error is due
to general environmental conditions and the precision limitation of the measurement
device. The distribution of this error will depend on the type of measurement being
taken, but is otherwise completely random. The utilization of statistical analysis to
estimate the predictable error can be very useful; we encountered many cases (pre-
viously unbeknownst to the facility managers) where the predictable error was an
order of magnitude higher than the random error. However, statistical analysis has
to be performed on a continual basis; even small changes in the design or in the
manufacturing process can drastically change the systematic error of a measurement.

The testing policy T, at stage n specifies an interval for each measurement such
that a board will be accepted if every measurement lies inside its interval and rejected
otherwise. Because of the random error, it is impossible to completely eliminate type I
and type II errors. Larger intervals will lead to the acceptance of more boards, which
will reduce the number of good boards falsely rejected (type I errors) but increase
the number of defective boards falsely accepted (type II errors). Similarly, smaller
intervals will have the opposite effect.

For tests that have binary results, only one testing policy is possible. Examples
of such situations are systemwide functional tests and tests for opens and shorts. For
the purpose of generality, we will allow the model to have a choice of testing policies at

each stage. However, the model easily accomodates the case where the set of possible
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testing policies at one or more stages is reduced to a single policy.
We assume there are I different types of defects, but each measurement can detect
only one type of defect. The number of measurements taken at stage n that detect
type i defects is K;,. Let v, be the value obtained from the k** measurement for

type i defects at stage n. We assume that

m __ ¢ .
vl'n* - v!'np, + Cings

where v!, is the true value of the component being measured;

ink

€in, i8 the measurement noise, we assume that this noise is independent from

v}, » and that the measurement errors are independent across different measurements.
These assumption seems to be quite reasonable in practice.

Let pin,(z) be the probability that the true value vf,, is inside Gi,,, the inter-

val in which the true value should be for the proper funciioning of the board. In

mathematical terms p;,,(z) is defined as
p‘"k (x) = Pr[v:uk € Gi.ﬂh ' v::g = x]’

We can express the function p;,, () in terms of the inputs of the problem, namely
the tolerance interval Gy, , the density function £;,,(z) of the distribution of the true
values of the quantity measured, and the density function ein, () of the distribution

of the measurement error. It followé that

, (:L') = fG‘"k Einy (:B - y)fim.(y) dy
P21~ J32 einy(z — y)in(¥) dy

Let us assume that we will accept (that is decide that no defect was detected)

(1)

the k*h measurement for type i defects at stage n if it lies inside [L,U]. We define
Ctin, (L, U) to be the probability that the measurement is outside the interval (L, U]

(i.e. the measurement is rejected) although the true value of the component is good
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(i.e. inside Gin, ). Similarly we define Bini(L, U) as the probability that the measure-
ment was accepted while the true value of the component is bad (i.e. outside Giy, ).
Formally, we write

Qin, = Pr [vf,u € Gin, and v}y, €[L, U]]

Bin, = Pr [vf,, & Gin, and o7, € [L,U]].

Let an(T}) be the expected number of false defects of type ¢ per board at stage

n, and let B;,(T,) be the expected number of defects of type i present on a board at

stage n that are not detected at that stage. We can write
Kin
au'u(Tn) = Z ac'ng(Lt'm,’ Ul'n‘,)»

P, (2)

Bin(Tn) = D Bink (Lings Uink )
k=1
with T, = {(Liﬂk’Uink) It =1,...,I;and k=1,..., K;, }
If we let fin,(z) be the density function of the measured values, the probability
@in, (L, U) can be expressed as
L 00
Sina(LrU) = [ pins(@)fins(2) 2 + [~ Piny (2) finy () d2
) U
= [ pin(@fin (@) dz = [ pins(@) fins(2) da 3)
d Y d
= [ m(@)dz = [ pin(@)fin (<) d,
where Il is the proportion. of good boards being tested.
Similarly, B is
U
Bina(L,0) = [ (1 = Piny (2))finy(2) d
v v
= [ fm(@)dz = [ pin () fina(2) do @
v
= /L fin;.(z) dz + al'n),(L’ U) - L fii.g(z) dz.

Puting together equations (2), (3) and (4) we get
Kin

) = 35| [ p(@ (b4 [ @bz (5
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and
Kin

: Uing
BinlT) = 3, [ (1 = Pins (@) fins(2) d, (6)
k=1 "y
For technical reasons that will become apparent later, we also assume that p;,,(z)
and fi,, (z) are continuous unimodal functions for all ¢, n and k.

The objective is to minimize the total expected cost of quality, which includes
the costs of testing, repair and defects leaving the plant. We consider a per unit
testing cost ¢, at stage n, which typically includes operator time, test engineering,
equipment cost and various overhead costs. No fixed cost is included in the model.
The repair cost i, is the total cost incurred to diagnose and repair a defect of type
i on board at stage n. The same repair cost is incufred, whether the defect is a real
defect or a false defect. We assume that all defective boards are repaired. The cost
f of a defect on a board that leaves the plant includes the cost of a field repair, the
cost of the analysis and repair of the defective boards that come back to the plant,
and a cost measuring the customer’s loss of goodwill. The cost is per defect and not
per defective system because if there are two or more defects on a system it is likely
that those defects would appear to the customer at different moments and as a result
each defect generates the same cost. This assumption also simplifies the model, and
the results obtained would be very similar if a cost was incurred per defective system
because of the very low number of defects leaving the plant make the appearance of
multiple defects on the same system very unlikely.

As a consequence of the hierarchical test coverage assumption, more defects he-
come detectable at each in;pection stage. We will model this as if, on average, din
new defects of type i appeared on the board at stage n. Let the average number of
defects of type i per board that leave stage n be denoted &;,. Note that §;, depends
on the inspection policy at all earlier stages. Note also that d;, and &;, are expected

values. The distribution of the random variables from which those expected values
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come does not matter because all the costs in the model are linear and we do not
consider dynamic policies (i.e. policies where the decision to inspect depends upon
what was observed earlier from the board). If inspection is performed at stage n then

the expected cost of testing and repair at that stage is

t“ + é((&',n—l + dc'n - ﬁin(Tn))rin + al'n(Tn)rin) ’ (7)

=1

if T, is the testing policy used, and the expected number of defects of type i per
board leaving stage n
bin = Bin.

On the other hand, if no inspection is performed at stage n, then no cost is
incurred at that stage. The expected number of type ¢ defects leaving stage n in this
case is

bin = (8in-1 + din)-

As a result, the problem is to decide whether to inspect at each stage and if so

what testing policy T, to use - if such a choice exists —; such as to minimize the total

inspection cost (including the cost of defects leaving the plant).

3. Analysis

In this section, we solve the problem formulated in Section 2. In the Subsec-
tion 3.1, the testing problem is reduced to finding a point on the optimal tradeoff
curve between type I and type II errors. In the Subsection 3.2, the problem itself is

numerically solved. Different extensions of the basic problem are described in the last

three subsections.

3.1. The Testing Problem

The purpose of this subsection is to find a set of testing policies that are optimal

with respect to the tradeoff between type I and type II errors in the sense of Pareto
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optimality (i.e., it is impossible to reduce one type of error without increasing the
other type of error). This will enable us to restrict our attention to policies in that

set when searching for an optimal testing policy.

The minimization of the inspection cost in expression (7) car be written as a
dynamic programming equation

Jn(Pl7P27 oo ,Pl) = Mm[ Ju+l(Pl.n—l + dlm Pan-1+ dZm ceeyPIn-1t dIn)’

tn +mm[z: (Binor + din = Bin(Ta))Fim + in(Ta)rin)  (8)

=1
+ Jn+l (ﬂln(Tn)a ﬁ2n(Tn)y L ] ﬂln(Tn))]] ’
where Jo(61n, 620, - .- ,0Ia) is the total inspection cost from stage n until exiting the

plant.

We can rewrite the second minimization in equation (8) in a more concise manner

as follows
min{ hn (@1n(Tn), €za(Ta)s - - - e1a(Tn)) + g (Bin(Tn), Bon(Tn)s - -, Bin(Tn)) }  (9)

where h,(z1, 23, ... ,Z1) =.E.!=1 ZTiTin
and gn(21,23, - -+ 1Z1) = Jnt1((Z1, T2, -+ ,Z1) + Tica (inm1 + din — Zi)Tin-

If a;n(T},) and Bin(T,) in expression (9) are replaced with the expressions obtained
in equations (5)—(6), then the derivative of this function with respect to the upper
acceptance limit Usy, is

Ohy

- —a-—(alm (s 7 S ,atn)Pm,,(Ulm. ) fins (U“‘k)
ag“ (ﬁlm ﬁ2m vo nBIn) (1 = Piny (Uiﬂk)) f‘."* (U'."")’

where in order to simplify notation a;, stands for as(Ts) and B, stands for Gin(T5).

This expression will be equal to zero if

, , #(plm ﬂZM ces 1ﬂln)
PralUien) = " Ba(ay,, g, - ,azn)+3gl(ﬂ1,.,ﬂg,., B (10)
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The second derivative of the objective function (9) will be positive if f},, (Ux) < 0 and
Pin, (Ux) < 0. This is what one would expect, since the upper limit is at a point where
the frequency of measurement decreases as well as the probability that a measurement
corresponds to a valid board.

The same argument can be used to show that the optimal lower acceptance limit
is such that

%%(ﬂln’ ﬁ?'u e 1ﬂIn)
%L:::?'(alua Q2py 20 ,aln) + %%?‘(ﬂ]n,ﬂgn, .o 1ﬂln) )

/

The second derivative of the objective function (9) will be positive if f}, (Lx) > 0

(11)

pink (Ll'ﬂg ) =

and p!, (Lt) > 0. Again, this is consistent with our intuition, since the lower limit is
at a point where the frequency of measurements increases, as well as the probability
that a measurement corresponds to a valid component.

From the definition of A, and g,, we find that %’:—;:(am,agn, «v+ yQIn) = Tin and
%ﬁ-(ﬂl",ﬂzn, ceeyBm) = %fl(ﬂlmﬂg,., <+« yBm) — rin. Equations (8) and (9) now

become

pe(Li) = pr(Ui) = -%‘,f’-(ﬂm,;:, A (12)

This expression has an intuitive meaning : the probability that a component is good
at the acceptance and rejection cutoff points should be equal to the marginal cost of
a false defect divided by the marginal cost of a false accept. Notice that the right
hand side is a constant fori =1, ... ,J and k=1, ... ,K;,, which we denote by C.

The existence of lower and upper limits L; and Uy satisfying the condition (12) is
guaranteed by the assumption stated in Section 2 about the continuity and unimodal-
ity of fi(z) and pi(z). We will not pursue weaker necessary and sufficient conditions
for the existence of these optimal upper and lower bounds, since in our case study

these functions will be approximated by Gaussian density functions that satisfy the

necessary conditions.
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If tests at previous stages attempt to find the same type of defects as the k'
measurement, then it is likely that the distribution of the quantity measured, £, will
depend on the inspection policy followed at previous stages. Consequently, pi(z) and
hence the set of Pareto optimal testing policies will depend on the inspection policy
at the previous stages.

If pin, () is independent of the inspection policy at previous s ages, equations
(5), (6) and (12) can then be used to compute in advance all possible optimal testing
policies and build the functions a;s(C) and Bin(C). As a result, the minimization in
the dynamic programming recursion does not have to explicitly consider all possible
testing policies, but only these two functions. Figure 3 shows the tradeoff curve of
type I errors (cin(C)) versus type II errcrs (Bin(C)) obtained by letting C vary, for a

particular defect type encountered in our case study.

|Optima| Testing Policies Tradeoff Curvel
0.05
0.04
0.03
-~ 8
0.02-
0.01 -
0
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
s 2

Figure 3 : a;,(C) versus §3;,(C).

If the measurement noise and the value of the component being measured are



768 Part II : Optimal Inspection for Circuit Board Assembly
both normally distributed, then pi(z) has a relatively simple form (all subscripts i,
are being dropped for better readability)

plz) =
(et (G teloe t (Gt b= 2oty oy (Gi o £ (Git e = sty

2 0.0¢\[2(03 + o}) T.0¢y\/ 2(o2 + 03)
(13)

where:
pe and o, are the expected value and the standard deviation, respectively, of the
measurement noise;
pe and o¢ are the expected value and the standard deviation, respectively, of
the true values of the component being measured; we will also refer to ¢ as the
nominal value of the component;
G and G, are the lower and upper limits respectively of the interval G such that
the measured compdnent is good if its true value lies inside it;
erf is the error function, erf(z) = 7’; JE e~ dt, a plot of this function appears in

Figure 4.

-1

Figure 4 : the error function.
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Moreover, if the interval [Gj,G,] can be written as [ge — s,p¢ + 8], in other
words the interval is centered around the nominal value, then the expression for p(z)

becomes

2 — 7)o? —sg? — g —2)o?
p(z) = _l_(erf(sae + (”C + fhe + 3 2)0'6) _ erf( so; + (I“E + fhe — 8 z)a'e))
2 0.0¢,/2(02 + 0F) 0.0¢\/2(02% + o)

In this case, if we let z = p¢ + p. + 2 we have

p(te + e +2) = %(e,f(fit(f:_")i) _ erf(.w)),

0.0¢\/2(0? + 07) 0.0¢\/2(0? + 0})

because erf(—z) = —erf(z) we have that

—s02 4+ (—s+ z)ag) erf( so? + (s + z)o} ))

1
Fuetz)= —(—erf S0 TS T 2%
Plue + e +2) 2 ( 0.0, /2(02 + o?) 0.0¢y/2(0? + o?)

= p(pe + pe — 2)-
This implies that if the measurement noise and component values are normally dis-
tributed, and the tolerance interval for good components is centered around the nom-
inal value, then the lower and upper limits to accept the -component should be cen-
tered at the nominal value plus the expected value of the r%neasurement noise. The
expected value of the measurement noise is what was referred to earlier as the pre-
dictable component of the measurement noise. Hence, if we know the expected value
of the measurement error, then we can immediately derive the entire set of Pareto
optimal testing policies (as long as we assume normality and a centered tolerance
interval, which hold in most practical cases). As will be seen in the case study, the
possibility to identify a priori the set of optimal testing policies can be very useful,

especially when some data cannot be estimated with accuracy.

3.2. Finding a Global Inspection Policy
The problem is difficult because the optimal testing policy at any stage will depend

on the inspection policy at all the previous stages as well as on the inspection policy
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at all the subsequent stages. The optimal testing policy depends on the inspection
policy at subsequent stages because the marginal cost of a defect leaving the current
stage depends on it. The optimai testing pclicy depends on the inspection policy
at previous stages because the distribution of true values of the components being
measured depends on it. Two types of solution techniques can be applied - either a
backward method such as the classic dynamic programming algorithm, or a forward
method such as an exhaustive search. Finding the optimal policy using either of these
two techniques would be prohibitively tedious, consequently we are going to develop
a procedure to find a good solution without any guarantee of optimaiity.

In order to apply dynamic programming we could assume that the dependency of
the functions px(z) on the inspection policies at the previous stages can be captured
entirely by the vector §,.; of defects leaving the previous stage. This assumption
would enable us to build a model that would be a close representation of the real
situation. In this case, one possible way to find an optimal solution is to num;zrically
solve the dynamic programming equation (5). This, however, would require a dis-
cretization of the I-dimensional state space of incoming defects, which involves a lot
of computations.

Hence, the solution technique proposed here is based on exhaustive search, and
the utilizétion of equation ‘(12) to fine-tune the testing policy. The typical size of
type of problem considered here is not likely to be very large and consequently an
exhaustive search can be performed very quickly. Also, this technique can easily take
advantage of the fact that not all defect types are influenced by the testing policies.

The exhaustive search

Let 7, represent the inspection policy at stage n, and let II,, = (m1,72,...,7m)
denote the inspection policy for the line up to stage m. The policy 7, either states
that no inspection is performed or else it specifies the testing policy at that stage.
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Of course, Iy is a complete inspection policy for the entire line. The cost cfy,, of

inspection policy II,, = (71,...,®m-1,7m) can be calculated from the cost ¢y,,_, of

inspection policy II;n—1 = (m1,...,Tm-1) as follows

I
_ )y Tt Z[ai.rm + (difiny + im — ,Bi,x,,.)] Tim if T, = inspection;
m i=1
cn,,_, if 7 = no inspection.
The number of defects of type i, din,,, that leave stage m under policy II, is then

Bixm if Tm = inspection;
din, = for all z.
din,._, + 6im if Tm = no inspection.

The procedure will end by choosing the policy Il that minimizes the total inspection

cost over the entire line that is given by ey, + f S5, diny -

Fine-tuning the testing policy

- Oncethe inspection allocation policy is fixed, it"is possible to use equation (12) -

to find the optimal testing policy at each stage. In particular, if the inspection policy
for all stages following n is fixed, then the derivative of Jn41 with respect to its ith
argument is a constant for each i. This constant is the expected cost of having one
more defect of type i leaving stage n and will be calculated below. Let ¢;, be the
probability that a defect of type i arriving at stage m is detected at stage m. If we

assume that all defects of type i reaching stage m are equally likely to be detected,

then
_ bim-1t dim — bim
i T it + dim

The probability that a defect of type ¢ leaving stage n is repaired at stage m > n is

(‘"ﬁl qa)(l - Gim ),

=n+1

As a result, the expected cost that this defect will create for the system is

3Jn+1(.) = i [( "ﬁl qa)(l —qc'm)r.-m] + ( ﬁ qﬂ)f- (14)

6Pi m=n+1"* M=n+1 l=n+1
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Here again the fine tuning can be performed in a forward manner to try to use the
most accurate estimates of a;, and f;, at each stage, or ina backward manner to try

to use the most accurate estimates of J,,; at each stage.

Discussion

Since this procedure works in a ‘forward’ mode, that is, from stage 1 to N, it
can be carried out without making any assumptions about the dependence of the
functions px on the inspection strategy at previous stages. Nevertheless, if there are
many tests for which this dependency occurs, it will be time consuming to generate a
different set of testing policies for each scenario. Note that the dynamic programming
approach would probably require even more testing policies to be generated during
the optimization process over the entire discretized space. The author could not find

any way to overcome thls potentlal problern

In the exhaustlve search we will only con81der a small subset (about 5 policies
per test) of the continuous range of Pareto optimal testing policies. Many tests in
circuit board assembly are non-parametric, and hence only a small fraction of the total
number of tests will have their testing policies restricted to a subset. Furthermore,
the Pareto optimal curve for each parametric test (see Figure 3) is smooth and can be
quite accurately represented by a small set of points. As a result, the cost reduction
achieved by fine-tuning the testing policy is likely to be at least an order of magnitude
lower than the cost reduction obtained from the optimal allocation policy with the
reduced set of testing policies. Therefore, the two step procedure will yield the optimal
policy or at least a policy very close to optimality. The fine-tuning also has another
use. As the fabrication process evolves and the defect rates change, the testing policy
could be easily changed, whereas a change in the inspection allocation would be quite
disruptive. As a result, it makes sense to try to adjust the testing policies relatively

frequently to get the best out of the allocation policy that will remain fixed over
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longer periods of time.

It must be noted thé.t this fine-tuning procedure does not guarantee an optiinal
overall policy. The only way to find a solution that is guaranteed to be very :lose
to the optimal solution would be to perform an exhaustive search with a large s=t of
testing policies for each stage that has a continuous set of testing policies. Uafortu-
nately quickly becomes computationally intractable as the number of testing policies
considered increases. Nevertheless, it is likely that the two step approach will give a
near optimal solution, when the conditions mentioned earlier are met. One must also

keep in mind that it is fruitless to seek a solution whose precision is greater than that

of the data that can be gathered.

3.3 Dependencies Between Different Board Types

Until now, we have been considering only one type of circuit board. If different
boards were completely independent then all of our results would carry over. How-
ever, some tests actually measure several boards together, in which case either all
the boards are tested or none are tested. Thus, the inspection allocation decisions
taken independently might yield an infeasible solution.For shared tests that are non-
parametric, this can be dealt with by employing a Lagrangian relaxation approach,
where the total cost of the test is split among the different boards such that the so-
lutions found independently coincide. To illustrate this, let us suppose the total cost
of a test that covers two boards is t. We run the model for the boards independently
with the cost ¢ split between the two boards arbitrarily. For example the cost can
be split proportionally to the comlexity of the two boards. Then, if the decisions for
the two boards agree we have a feasible and optimal solution. If the solution do not
agree, we modify the allocation of ¢ between the two boards such as to increase the

part that is allocated to the board for which the solution includes the shared test and
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consequently decrease the part that is allocated to for which the solution does not
include the shared test. For example the solution for board 1 uses the test but the
solution for board two does not, to board 1 and decrease the part that is allocated
to board 2. The problem is then solved again for both boards. And if the solutions
still do not agree we iterate with the cost reallocation procedure. Many choices are
possible to search for an allocation of costs. Since by lack of data this procedure could
not be applied in our case study we are not in a position to report on the efficiency of
any particular algorithm. Note that this approach becomes almost impossible to use
with a parametrical test. In the plant studied in the case study, the tests that were
measuring more than one board were the more comprehensive system tests which are
non-parametric tests.

Another cause of dependencies across boards is congestion. If too many boards
are to be tested at the same stage, then the testing load may be undesirably high at
that stage. Moreover, if many of these boards are not tested at the previous stages,
then many repairs will be required at that stage, which leads to additional work. A
Lagrangian relaxation method, where the price of inspection at the congested stages
would be increased untill the load of the congested state reaches a more desirable level,
could be used to solve the problem. Moreover, the price attributed to a congested

stage by the Lagrangian routine could be used for inspection capacity decisions.

3.4. Improved Testing Equipment

Our model explicitly takes into account the effect of measurement noise, which
enables us to determine the value of testing equipment with lower measurement noise.
This question is very important, since testing equipment is extremely expensive and
it is not clear, a priori, how a reduction in the measurement errors will affect the

overall cost of inspection.
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To evaluate the value of improved testing equipment in the context of onr model,
the type I versus type II tradeoff curve for the new equipment is computed, and
subsequently the two step algorithm outlined in Subsection 3.2 is carried out using
this new curve. The optimal total quality cost for the new equipment can then be
compared with the corresponding value for the old equipment.

An experiment was performed in order to illustrate the magnitude of the savings
achievable with more precise equipment. We assumed that a hypothetical new tester
would have a measurement noise whose standard deviation was half of that of the
current tester. Figure 5 shows the tradeoff curve for the new and original test equip-
ment. This figure shows that both types of errors could simultaneously be divided by
at least two using the new equipment. If we assume similar error reductions for all

components on the board, then the reduction in total quality cost is on the order of

5 percent.
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Figure 5 : Improvement of testing errors.
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3.5. Allocation of Quality Improvement Efforts

Engineering resources to work on quality improvements are limited, and conse-
quently it is important to dedicate resources to projects where an improvement would
have the maximum impact. In a slightly different context, Albin and Friedman [1]
show that the choice of lthe most valuable project is not always straightforward. In
particular, their paper shows that the traditional Pareto chart is not an adequate tool
when defects are clustered. In the problem considered here, it is also possible that a
Pareto Chart would be misleading because different types of defects are detected in
different proportions at different stages and thus the cost of different types of defects
can be very different. |

Equation (14) gives the expected cost that a defect of type ¢ will generate for the
system if it becomes detectable at stage n. Recall that this qua.ntity is a constant
under any fixed inspection vpolicy. Hence, the total system cost due to typé i defects

on a given board type is
N

aJﬂ+1
o= 3 it g 15).
o= %) (19
By summing the cost of a particular defect type for each board type we can com-
pute the overall effect of each defect type. Equation (15) can also be used to assess

incremental defect reduction,
qi
Zn:] dt'ﬂ
is the marginal cost reduction obtained from reducing type ¢ defects. The marginal

cost reduction obtained from reducing type ¢ defects at stage n is

94 _ Jnt1 0
adin - apt
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4. Case Study

We now describe how the model was applied at the Hewlett Packard facility. This
plant has three inspection stages as shown in Figure 1. Approximately 50 different
board types are manufactured at this facility, and these boards go into various mod-
els of a single line of final products. The number of boards of each type produced is
relatively low, ranging from 1,000 to 10,000 per year. Hence, tests must be flexible in
order to accommodate many different board types. The nature of the final product
requires very strict tolerances on the circuit boards and on their components, which
partially explains why this facility currently tests all boards at all stages. Figure 2
illustrates roughly the structure of the tests performed. There is currently no sys-
tematic procedure for determining testing policies at this facility, the testing policy
is highly dependent on the particular engineer in charge of it. It is also estimated
that at this facility the total cost of inspection represents about half of the total
manufacturing cost.

The first part of this section explains how the relevant data was collected and the

second part describes our results.

4.1. Data collection

Three different types of data have to be gathered in order to use this model. The
first type of data concerns the cost parameters of the model. The second concerns
the occurrence of defects, and the coverage and reliability of each inspection stage.
The last and perhaps most difficult type of data to gather pertains to the testing
process. We gouped the many different categories of defect that are used internally
into 7 broader types. This grouping was done such as to put together the categories
that are similar for testing purposes, they might differ for diagnosis purposes.

Testing and repair are two activities that are closely linked, since they are per-
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formed by the same people in the same work area. Their cost includes technician
time, floor space, equipment and overhead for management time. To allocate cost
between these two activities, we used estimates of the time that different engineers
and technicians spend on each of these activities. Both of these costs vary for each
board type; in particular, they will depend on the complexity and the design of a
board. These costs are proportional to the overall volume of inspection that takes
place at a stage, and therefore these costs are proportional to the number of boards
processed.

In the case study the procedure to estimate these cost parameters varied depend-
ing on how detailed the a.va;,ila.ble data was. For some stages we could get estimates
of the each of the different overhead costs (engineering, equipment, floor space, etc.)
individually. In these cases we split each of these costs according to how much could
~be allocated cither to testing (and testing maintenance) or repair (and diagnosis).
The total cost for each of these activities was then divided by the total time the
boards underwent testing and repair respectively. This gives a rate of cost for each
activity. Multiplying the average time it took to test or repair a particular board
type gives the estimate for the corresponding cost. In the cases where we could not
obtain detailed overhead costs we multiplied the average time to test and repair a
particular board type by a flat overhead rate that includes all the above costs to
obtain estimates of the test and repair costs repespectively. In the case study the
repair cost was considered to be identical for each type of defect type for a particular
board type. This is an approximation of reality, but we did not have the means to
gather enough data to estimate these costs for each individual defect type. The test
ard repair cost did however vary widely across board types.

The cost of a defect on a board leaving the plant includes the cost of an on

site repair, analysis and repair of the defective board at the plant and the quality
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department’s estimate of the cost of lost goodwill. This goodwill cost is a direct
function of the competitive environment in which the company is operating. In a
very competitive market a cnstomer is much more likely to switch to another vendor
if he is even slightly disappointed with the product. On the other hand if the product
enjoys some kind of monopoly (or partial monopoly), then the customer will probably
be more willing to tolerate small deficiencies of the product. In the case study we tried
to estimate the expected number of lost sales that a defective unit might induce. The
selling price of a unit times this number of lost sales was then used as the goodwill'
cost.

To derive estimates for the occurrence of defects and the coverage and reliability
of each inspection stage, we used historical data about the total number of defects

per board of each type detected at the different stages of inspection, ¢;,. Then the

englneers in cha.rge of each test were asked to estimate the proportlon a;, of defects

of each type that they felt their test should detect, and the proportion b;, of defects
of each type detected by the test that were actually good boards (false defects).
Some of these estimates were based on experiments, whereas other were based on the
experience of the engineers with the process.
The proportion of false defects together with the observed number of defects
enabled us to compute the number of real defects of each type detected at each stage
2 = ¢inbin. The probability of type I errors (false rejects) at any stage is then
2 = Pin — Yin. From the total number of real defects of each type present on a
board and the proportion of those defects that should be detected at each stage, we

found the number of defects per board that become detectable at each stage n,

N n-1
= Z¢im+m— zd.-mfori=l,... J;andn=1,... ,N,
m=1 m=1

where 7; is the number of failures per board that occured during the waranty period
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of the equipment (a failure during the waranty period was considered to be caused
by an undetected defect). Finally, the probability of type II errors at each stage
was derived by comparing this last quantity with the actual number of real defects
detected at each stage Bin = Yin — din-

In order to derive an optimal testing policy, we also need the input data G, e(z)
and ¢(z) for each quantity measured at each stage. Recall that G is the interval in
which the true value of the quantity measured should be. It is often very hard to kanow
what the exact limit values are on a component that will ensure the proper functioning
of the board. This problem was avoided here by using the specifications to which the
component was bought. The justification for this is that even if a component is
bought with tighter specifications than actually needed, a component that does not
meet these specifications signals some kind of abnormality, such as physical damage
'~ or a poor soldering, that may cause a real defect after the equipment has been utilized
for some time.

To estimate the distribution of the measurement noise e(z) and the distribution
of the true value of the quantity measured £(z), we only have the distribution of
the measured values at our disposal. This measured value, which is recorded by the
testing device, is the sum of the true value of the component and the measurement
noise. Unfortunately, neither of these two quantities can be estimated independently.
The true values are almost impossible to measure, since most components used at
this facility are surface mount components, which are extremely small and fragile.
Estimating the measurement noise is also a delicate task since the distribution of
this noise will depend on many things, such as the type of component that is being

measured, how the measurement is guarded} and the topology of the board. As

t Guarding is the technique used to try to isolate a component from the rest of the

circuit board.
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a result, the measurement noise can only be determined via experiments for each
different board type.

A preliminary experiment was run to study the different sources of measurement
noise at the in circuit test level. At the facility studied several in circuit testers, also
called testheads were used in parallel. The boards are tested on the first available
testhead. Consequently, we also wanted to find out what part of the measurement
noise was attributable to variations between different testheads. The experiment that
was performed repeated each measurement (there were 79 different measurement)
K = 10 times consecutively on H = 3 different testheads for B = 10 different boards.
This constitates a little bit less than 24,000 data points. The measurement noise was

modeled by expressing the measurements ysx as
ybhk=p+n+0h+'¢'bh+€bhk b=1,...,B h=1,...,H k=1,...,1{; (16)

where:
u is the reference value for the component being measured;
7, is the average deviation of the measurements taken on the b** board, aand has
zero mean and standard deviation o;
6y, is the average devia.tioﬁ of measurements taken on the A'" head, and has zero
mean and standard deviation oy;
Pys is the average deviation of measurements taken on the h® head and the b* board,
and has zero mean and standard deviation oy;
€pnk 18 the residual variation of a measurement that cannot be explained by either the
testhead or the board or the interaction between the testhead and the board, €snx
has zero mean and standard deviation &.
Note that by using this model we make the implicit assumption that the resid-

ual noise € has the same variance on all testheads. The data indicated that this
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assumption did not hold for all components in practice, which suggests that the three
testheads were not equally calibrated, when the data was gathered. Without this
assumption, the estimation of the model parameters would have been greatly com-
plicated. Moreover, by only gathering data from three testheads, a good estimation
of the distribution of the variance of the residual noise across different testheads was
not possible.

We estimate p by §, which is the average of all measurements taken.

‘The variance of ¢ is estimated by

5% = i1 Thet Shca (wsnk — Jion)?
BH(K —-1)
This is the variance of successive measurements of the very same component on the
same testhead, and represents the precision limitation of the tester for the component.
The variance of 3 is estimated by
2

Tt T (Fon — Jo — T — §) _ a?
(B-1)(H -1) K’

Az—
v =

and the variance of 8 is estimated by

ry

Z,{Ll(ﬁh-ﬁ)z __o'_i__i
H-1 B BK

2 _
=

These two variances represent the amount of variation that is linked to the varia-
tions between testheads. One might think that a fixed effects model would be more
appropriate for the testheads, since the facility uses only a fixed number of different
testheads. But the variation between testheads is evolving over time as a result of
usage, maintenance, calibration, etc. Consequently, the variation between testheads
is a continuous random variable and the random effects model is apl;ropriate.

The average of all measurements taken on the b*® board equals u + 7, and 7,

can be considered to be the variation in the measured values associated with the
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individual components on the b*® board. The variance of 7 can be estimated by

2

ORI ¢ S ) O Bl
v B-1 H HK

Using the estimated parameters from the statistical model in equation (16), the
parameters of the distributions of the measurement noise and the component values

can be estimated. We assume that p¢, the nominal value of the component is known.

Then we have

fre =Y — pe
53 = 6% + 67, + &, (17)
52 =47

Appendix A contains tables and figures for each type of component (resistors,
capacitors, transistors, diodes and inductors) with the estimates that were derived
from this experiment. We see that for all the inductors in this sample the estimated
variance of the measurement noise was higher than the estimated variance of the
true values of these components. This implies that the measurements taken cannot
distinguish good and defective components. For all the other components we distin-
guish a clear pattern where most of the components have an estimated noise variance
much smaller than the estimated variance of their true values. Those components
can tested with good accuracy. A small minority of components fall into the opposite
category, their estimated measurement noise is almost as large or larger than the
estimated variance of their true values, in which case the test is not reliable. This
has important practical implications, it means that some components should not be
tested (or alternatively a new test should be devised for them).

An important question for the design of future experiments is whether the variance
of the noise associated with the different testheads can be predicted. It is much easier
to run experiments on a single testhead than on several testheads, because in the

latter case, experiments would be much more difficult to schedule in a production
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procéss. To address this question, a regression was run to try to predict o, from o
and the absolute‘value of p.. The coefficients of correlation were consistently high,
for example, r? = 0.92 for the resistors and r? = 0.98 for the capacitors .

To check whether this is also valid for other boards, data was collected from an-
other board during production. For that board, all measured values of all components
on approximately 80 boards were recorded. This data enabled us to estimate the total
variation of the measurements o, + 0¢. Appendix B shows charts of the distribution
of the total variance for the different components of each type on the board. We
wanted to know if this distribution was consistent with what was observed on the
experimental board. It can be éeen, by comparing the graphs of Appendix B with
those of Appendix A, that fhe results are indeed consistent. For example, most resis-
tors have a total standard deviation around 0.3% in both Appendix A and B; most
capacitors have a total standard deviation between 2 and 4% in both cases. These
results are very encouraging, but a more thorough inyestigation of this issue is still
needed. A complete experiment similar to the one run on the first board should be
repeated on some other boards before reaching a definitive conclusion on this pcint.

If we assume that the distributions of the measurement noise and of the values of
the true component values are Gaussian, then the estimates from (17) enable us to
compute the tradeoff curve between type I and type II errors for each component. On
the other hand, a typical board has several hundred components, and consequently it
would be very time consuming to compute this curve for each individual component.
A possible approach is to group components in subsets that are assumed to have
very similar properties (i.e. the standard deviation of the measurement noise and the
standard deviation of the component values represent nearly the same percentage
of the nominal value of the component). Another important reason for grouping

the observations of different components together is to increase the precision of the
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estimate of ¢ and o.. The confidence intervals on the estimates for each individual
component are quite large, and it is not economically feasible to run an experiment

of this size on a large population of boards,.

4.2. Results

We first used the model presented here to find the optimal inspection allocation
policy while keeping the testing policies fixed. For this purpose, three circuit boards
were chosen that were representative of the variety of boards manufactured. These
boards were produced in volumes that represent the average for the facility, and their
yield ranged from relatively low to relatively high. One board contains mostly digital
components, another has mostly analog components and the third one is mixed.
. Indeed the digital or analog nature of a board is a major factor in how each test is
applied. Also, these three boards did not share any test and thus can be considered
independently. It turned out that when we applied the optimization of the testing
policies the optimal policy was extremely sensitive to the estimates of o¢ and o,

hence we used a different approach to derive a robust testing policy.

Optimal allocation policy

There were important variations across boards in the number of defects present
and in the effectiveness of the different stages of inspection. Figure 6 displays the
frequency of the different defect types detected at each stage for the three boards
under consideration. Each defect type is represented by the same pattern on all three
charts. The values on each chart are arbitrary in order to disguise the data, but the
relative values across the three charts are approximately correct. These graphs show
that the number of defects and the predominant types of defects, vary significantly
across the different boards. For example, type 3 boards have roughly three times as

many defects as type 1 board types, and the medium gray defect type is predominant
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on type 1 boards but hardly present on type 2 boards.

Y
L4
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4

BOARD 1 BOARD 2 BOARD 3
Figure 6 : Frequency of defects detected at each stage for each board.

Consequently, it is not surprising to see in Table I that the optimal policy varies
for the different boards. Since the total inspection cost represents about half of the
total manufacturing cost, the savings realized by the optimal policy in the different
cases are significant. This study was performed with fixed testing policies because
of our inability to build sufficiently accurate estimates of the measurement errors.
Hence, the probability of type I and type II errors of the current testing policy were

used.

TABLE I : Optimal policies and savings.

Current Optimal Saving
Inspection Policy Inspection Policy
Board 1 1-2-3 1-3 20%
Board 2 1-2-3 2 23%
Board 3 1-2-3 2-3 6.5%

Application of the full model
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Our intent was to apply the optimization of the testing policy at the in circuit
testing stage. Based on the experiment described in the previous subsection, we ob-
tained estimates of the standard deviation of the measurement noise and the true
component values. Because individual components are very reliable (the failure rate
is typically less than 1 in 10,000), the optimal testing policy is extremely sensitive to
these parameters. Even estimates that could be obtained from a large experiment (re-
call that this plant produces boards in relatively low volumes) would not be accurate
enough to ensure that a robust testing policy would result from the optimization.
Nevertheless, the insight gained from the model can be used to improve the current

testing policv. Figure 7 shows the form of the function p(z) in a typical case where

Gy — Gi| > 60¢, | (18)

oe > 3o.. (19)

The inequality (18) says that the parts are very reliable, in particular it says that
the machine capability index is greater than 1. The inequality (19) says that the
measurement noise is sufficiently low to have an accurate test.

In the case of normally distributed measurement noise and component values,
equation (13) we see that in this case p(z) is the difference of two error functions. If
conditions (18)-(19) are also satisfied, then as the value of one of the error functions
goes from -1 to 1, the other error function will hold constant at 1. Recall that
from equation (12) we know that the optimal policy will have cutoff points such
p(L) = p(U) equal the marginal cost of a false accept over the marginal cost of a
false defect. This ratio will be strictly between 0 and 1. This means that the optimal
cutoff points will most probably be located in the steep parts of the curve in Figure 7.

The middle points of the ascent and descend are the points at which the argument of
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Figure 7 : The function p(z).

either error function equals 0. These points can be found from equation (13) to be

o} +o?
o1 = pe + pe + (G1 — pe)( eag ),
and
o} + a?
Tu = pg + pe + (Gu — pe)( eag )-

This expression has an intuitive meaning : the acceptance interval should be shifted
from the tolerance interval by the expected value of the measurement noise; the
tolerance on both sides should be multiplied by a factor that is the ratio between the
sum of variance of the true values of the component and the measurement noise over
the variance of the true values of the component. This ratio shows very clearly how
the acceptance interval is affected by the measurement noise.

Moreover, conditions (18)-(19) imply that one term of the right hand side of
equation (13) will always be equal to 1 or -1. This in turn implies that p(L) = p(U)

for any L and U such that

L=pe+pet+(Gri—pe)z and U= pe+ pe+ (Gu — )z,
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for any z > 0. Note that u¢ and p. are expected values that are much easier to
estimate with accuracy than variances.

As a result, we can use z; and z, as target values for the lower and upper limits.
Even if the estimates ¢ and &, are inaccurate, we will still have a pareto optimal
policy.

It has been observed that currently about 55% of the rejected components at
this test are good components. To illustrate how this would compare with the our
proposed policy, Figure 8 shows the same tradeoff curve as Figure 3, but with a
straight line that represents the policies such that 55% of the rejected components
are good components. The point labeled a represents the point for which L = z
and U = z,, and hence if the actual policy used is on the tradeoff curve in the
neighborhood of a, then a significant improvement over the current policy even if the

estimates 6; and G, are inaccurate.

IOptimaI Testing Policies Tradeoff Curvel
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a

Figure 8 : The current testing policy and the optimal tradeoff curve.
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Finally, it is interesting to note that for other types of tests that have lower yields
(for example, tests that are more comprehensive), it is possible to estimate o¢ and o,
with greater accuracy. In general it is possible to optimize the testing policy in high

volume and/or low yield situations.

5. Conclusions

The model presented here is built on two key features: hierarchical test coverage
and measurement errors in the testing process. Although this model was developed in
the framework of circuit board assembly, these features are present in many other sit-
uations. Indeed, hierarchical test coverage is a very natural property when inspection
is done at different stages in a manufacturing process; the increasing test coverage
is then a direct consequence of the fact that potential defects are added between in-
spection sta.ées by the manufacturing operations taking place at that time. It is also
very common for test measurements to be subject to some noise, particularly in the
manufacturing of high precision products.

The case study reveals that important savings (on the order of 10 to 20%) can
be achieved by choosing the optimal inspection allocation policy. Since the cost of
inspection represents about half of the total direct manufacturing cost, these cost
savings are significant. The discussion regarding the gathering of the necessary data
shows that the inspection allocation portion of the model is not very difficult to
implement in an industrial setting. The optimization of the testing policy is harder
to implement because of the difficulty in estimating the necessary parameters. It is
nevertheless possible to use the insight gained from the model to find a good testing
policy thé,t is robust with respect to the errors in parameter estimation. In the case
study, we see that this policy significantly outperforms the policy that is currently in

use.
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In this part, we started from a real-life problem and built a model to solve this
problem. The model is still relatively crude and we were unable to find a procedure
that could solve the problem efficiently. Nevertheless, it is hoped that this work
will help future researchers find better models for the large number of problems of
this nature that are beginning to emerge. Indeed, with the increasing performance
that are sought from manufactured products it seems very likely that inspection will
become a more and more important aspect of production management.
Several issues are not addressed in this thesis that would require further research.
In particular the effects of the inspection policy ..a the learning curve of a product
have not been modeled, queueing effects were not included, no precise model was build
to determine the influence of the choice of a testing strategy upon the subsequent

inspection stages.
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Resistors
Component Nominal Bias Meas. noise Comp. value
value Stdev. Stdev.
) £ (%) (%)

R158 10 1.6580 07778 0.3208
R160 215 0.7194 0.0224 0.2938
R102 316 03621 0.0655 02384
R168 100 -0.0983 0.0370 0.2835
R105 215 Q1170 00157 0.1758
R106 1000 0.0142 00118 02279
RN 1000 0.0530 0.0421 02449
R113 1000 0.0965 00177 0.2088
R120 1000 0.1492 00118 0.1502
R162 1000 0.1059 0.0120 0.1192
R210 1000 0.0582 00116 0.1718
211 1000 0.0280 00112 0.3055
R213 1000 0.0896 0.0125 0.2082
R214 1000 0.0408 0.0126 02850
R215 1000 -0.0084 0.0130 0.2286
R132 1780 1.9721 0.0700 02187
R117 2150 00126 0.0123 0.1623
R301 4640 -0.0987 00101 0.1435
R322 5110 -0.4706 0.0792 02541
R310 8250 <0.1981 0.0400 0.1090
R303 10000 -0.1581 00111 0.1422
R316 14700 -0.1642 0.0313 03167
R170 17800 -2.2224 02614 0.4085
R302 21500 -5.1729 02507 1.6664
R110 31600 0.0407 00162 0.1472
R321 68100 02850 0.0608 02262
R133 121000 -0.1053 0.0269 02252
R317 464000 0.0122 0.1526 0.2318

% of Nominal

Standard Deviation of Meas. Noise vs Comp. Values
Resistors
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Capacitors
Component Nominal Bies Maas. noice  Comp. value
value Stdev. Stdev,
(uF) (%) (%) (%)
ci28 0.01 -2.2309 0.9593 1.3864
c125 0.1 2.9324 0.3602 1.8012
Cc201 0.1 1.3018 0.3156 5.2466
Cc202 0.1 1.0444 0.3189 46113
Cc203 0.1 2.5904 0.2824 3.5374
Cc204 0.1 -0.3741 0.3247 42337
C205 0.1 2.5666 0.3238 3.0688
c308 0.1 2.8296 0.4630 42328
C30s 0.3 1.9978 5.9763 2.8549
C301 0.4 -2.8866 1.2112 2.3799
Cl14 047} -12.5308 1.4739 6.3439
C126 0.47 0.8126 0.4203 2.2399
Cci29 0.47 -0.2691 0.2845 17317
C130 047 0.7670 0.3225 1.4685
C309 0.47 -0.3155 0.1996 1.8899
C310 1 -7.6399 0.1894 0.5920
(o g 6.8 -1.5503 0.1315 1.6210
c107 6.9 2.3444 0.2334 1.9289
Cc118 6.9 -2.1074 0.1436 1.1643
C120 7.2 -0.1760 0.1595 1.4322
C101 33 0.1986 0.5414 1.9831
C131 33 -0.0072 0.2814 2.6723

[Standard Deviation of Meas. Noise vs Comp. Valuesl

C128 €201 C203 C205 C305 C114 C129 C309 Cl127 C118 cCl01
C125 C202 C204 C308 C301 C126 C130 C310 C107 C120 C131

IV I Measurement noise Stdev. = Component Values Stdev. l
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Inductors
Component Nominal Blas Meas. noiss Comp. value
value Stdev. Stdev.
Wwh (%) (%) (%)
L101 1 37.5506 6.3128 1.1392
L102 1 46.9465 3.7830 1.8730
L103 1 45.8132 3.6897 1.7435
L104 1 37.0869 9.6679 0.2264

% of Nominal

Standard Deviation of Meas. Noise vs Comp. Values |
inductors :

L102

L103

L104

. Measuremem Noisa Stdev. — Component Values Stdev.
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Diodes
Component Nominal Blas Meas. noise Comp. vaiue
value Stdev. Stdev.
(\ (%) (%) (%)
CR103 1.622672 N/A 0.0890 0.1148
CR104 0.70446 N/A 0.1272 0.1220
CR10S 0.724097 N/A 0.1102 0.0556
CR106 0.726004 N/A 0.1210 0.1145
CR107 0.72484 N/A 0.1269 0.0821
CR108 0.723124 N/A 0.1144 0.0904
CR109 0.723348 N/A 01136 0.0695
RN 2.168599 N/A 0.1133 02104
CR301 0.717516 N/A 0113 0.2404
CR302 0.590526 N/A 0.1536 0.2206
CR303 0.59102 N/A 0.1833 0.1520
CR304 0.595119 N/A 0.1643 0.1513
CR305 0,597192 N/A 0.1566 01970

| Standard Deviation of Meas. Noise vs Comp. Values |

Diodes
N\
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B Measurement Noise Stdev. — Component Values Stdev.
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Standard Deviation Distribution |
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Transistors
Component Nominal Blas Meas. ncise Comp. value
value Stdev. Stdev.
(V) (%) (%) (%)
Q104 50.1388 N/A 0.3870 0.7738
Q105 59.753133 N/A 9.6449 4.3180
Q108 92.116 N/A 0.4122 2.2315
Q109 37.7534 N/A 0.3575 0.9633
Q110 28.299333 N/A 0.5867 5.4653
Q113 28.703943 N/A 0.5877 2.2126
Q114 36.0998 N/A 0.2703 8.3509
Q118 36.404233 N/A 0.3368 5.5723
Q119 37.419267 N/A 0.2479 1.6809
Q120 34.036667 N/A 0.6842 15.5969
Q122 48.807333 N/A 0.3554 1.9639
Q124 75.055467 N/A 1.5632 0.4967

% of Nominal

Standard Deviation of Meas. Noise vs Comp. Values |

p—y
(3]

ey
o

o~




Appendiz B

,Standard Deviation Distribution I
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