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Abstract

This thesic consists of four essays in game theory. The first two chapters are con-
cerned with games involving large numbers of players. The first chapter discusses the
dynamic implications of learning in a large population coordination game, focusing
on the structure of the matching process which describes how players mecet. The
combination of experiimentation and the myopic attempts of players to coordinate
with those around them creates evolutionary forces which lead players to coordinate
on the risk-dominant equilibrium. To understand play in reasonable finite horizons it
is necessary to analyze not only the limits of the dynamic systems but also the rates
at which they converge. Populations in which players interact with small stable sets
of neighbors are far more amenable to rapid change and hence more likely to reflect
evolutionary forces than are populations with more uniform matching.

The second chapter ceusiders the repeated prisoner’s dilemma in a large popula-
tion random matching setting where players are unable to recognize their opponents.
Despite the informational restrictions cooperation is still a perfect equilibrium sup-
ported by “contagious” punishments. The equilibrium does not require excessive
patience, and contrary to previous thought need not be extraordinarily fragile. It
is robust to the introduction of small amounts of noise and remains nearly efficient.
Extensions are discussed to models with heterogeneous rates of time preference and
without public randomizations.

The final two chapters discuss empirical tests of theoretical models of collusion
under uncertainty. The third chapier discusses the implications of the Green and
Porter (1984) and Rotemberg and Saloner (1986) theories for the pattern of price
wars in Joint Executive Committee, an 1880’s railroad cartel. A switching regressions
model with Markov transitions is used to analyze the causes of the price wars. The
results provide some support for the predictions of the first theory.

The fourth chapter further explores the behavior of the Joint Executive Comumil.-
tee. The interpretation of switching regressions models is discussed, and it is argued
that to some extent the price wars may reflect cheating by the firms rather than an
optimal cartel design.
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Introduction

Game theory has been widely applied in economics to describe the behavior of in-
teracting agents, for example, of competing firms. The game-iheoretic approach is
distinguished by the assumption that the optimal behavior of each agent is influenced
by the behavior of the others. The essays which constitute this thesis focus on two
particular issues within a broad field. The first two chapters address problems which
arise in the attempt to apply game-thecretic models to large populations. The sccond
two chapters discuss empirical tests of game-theoretic models with uncertainty.

The first two chapters of this thesis discuss models of strategic play in large pop-
ulations. The idea of discussing play in large populations is not to simply restate
theorems for NV players instead of two, but rather to model formally a host of con-
cerns which take on increased iraportance in large populations. For example, the
first essay uses a network to model the structure of friendships and business contacts
which govern association and asks how the network structure affects the behavior
we observe. The second essay explores informational restrictions motivated by the
fact that members of large societies will not always know who their trading partners
are, how they have behaved in the past, etc. In each case I allow for heterogeneity
among the players and for the uncertainty which inevitably arises from mistaken and
misinterpreted actions.

The first essay addresses a very basic problem in game theory. How should we
expect people to play in models which have multiple equilibria? The question is ad-
dressed in the simplest framework available, coordination games where the players
have common interests. These games have several equilibria corresponding to coordi-

nation on each of the available actions, so standard Nash equilibrium analysis gives us



no guidance as to which equilibrinm we should expect to see. Nonetheless, it is often
argued that some outcomes are more likely to be observed than others. For example,
we might expect that players should coordinate on the choice they most prefer.

The first essay examines the choice of equilibrium in a dynamic model which in-
corporates a notion of bounded rationality. As the players attempt to learn how their
opponents will play the popularity of the various actions changes. The rather sur-
prising conclusion of previous work is that for a variety of specifications, the learning
process leads players to play one particular equilibrium. The principal result of the
first chapter is that the pattern of play is also greatly influenced by the structure of
the interactions in the population. When players care mostly about the actions of
a few close friends or colleagues, “evolutionary forces” are powerful and lead players
to coordinate on what is known as the “risk-dominant” equilibrium. On the other
hand, when interactions are largely impersonal no equilibrium selection takes place
within a reasonable time period and we should expect instead to see an historically
determined outcome repeated over and over again.

The second essay explores another very basic problem in game theory, namely
whether it is possible for players who interact repeatedly to achieve cooperative out-
comes. When two players meet repeatedly to play the Prisoner’s dilemma, it is a
standard result that cooperative equilibria exist. Despite a short-run incentive to
cheat each other, the players cooperate in order to avoid being punished in the fu-
ture. To apply similar reputation-based punishishments in a large society, however,
requires that somehow cheaters must be identified and honest players must be kept
informed of everyone’s reputation.

The second chapter explores whether large populations may achieve cooperation
despite the inherent difficulties in observing and communicating reputations. Specif-
ically, the possibility of cooperation is discussed given an informational extreme — an
anonymous random matching model where it is impossible for players to either rec-
ognize cheaters or to communicate with others. There are two main motivations for
this study. First, the theorems are extensions of familiar Folk theorem results. In this

context, it is interesting to note how “contagious” punishments can be used to over-
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come the informational limitations which have been imposed. The impact of trembles
and public randomizations may also be compared with previous studies. Second, the
results can be viewed as a comment on recent work in the study of institutions. If we
wish to view the development of institutions as a response to the problems of larger
societies, we must understand the types of behavior which are possible without any
institutions.

The final two chapters present an approach to the empirical testing of game-
theoretic hypotheses. In particular, both essays discuss the application of theories
of collusion under uncertainly to the experience of the Joint Executive Committee,
a railroad cartel which controlled grain shipments between Chicago and the Eastern
seaboard in the 1880’s. When firms’ actions are observable, a cartel can collude
effectively by punishing any firm which deviates from the agreement. When demand
is uncertain and firms may offer secret price cuts, however, the problem of detecting
cheating is much more difficult. Nonetheless, some degree of collusion is possible
and theory predicts that interesting patterns of behavior will emerge. The first such
result, due to Green and Porter, held that even in the optimal equilibrium we should
expect to see price wars. More controversially, Rotemberg and Saloner have discussed
the consequences of cyclical demand and argued that price wars are more likely to
occur in good times than in bad times.

The third chapter of this thesis begins with an informal discussion of the ways in
which these theories must be adapted to conform to the historical situation of the Joint
Executive Committee. In the case of the Green and Porter theory, it is argued that
many nearly efficient cartel mechanisms are possible and empirical analysis should
focus on detecting whether any of these are present. It is also argued that we should
not necessarily expect to see price wars occurring during good times although there
may be cyclical patterns in price wars within each year. To test these predictions,
a Markov model is proposed. The idea is that we wish to estimate two things: the
structure of supply and demand in the industry, and the strategies of the firms. Each
state of the Markov process represents a week of operation of the cartel during which

the firms’ actions are fixed, and from which we estimate supply and demand. A model
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of probabilistic transitions between states is used to infer the firms’ strategies, i.e. to
determine why firms decide to begin a price war.

The data clearly indicate that price wars were present in the Joint Executive
Commitee. Further, the results of the third chapter provide some support for the
hypothesis that a Green-Porter style cartel design was used. However, clear evidence
is not found for a mechanism strong enough to support collusion. Certainly this
could reflect simply the limited data which is available. No evidence is found for the
commonly discussed price wars during booms effect.

The fourth chapter tries to resolve some of this uncertainty in exploring further
whether the Green-Porter theory adequately describes the structure of the Joint Ex-
ecutive Committee. In particular, the results of the third chapter might also be
interpreted as indicating that the firms erred in their cartel design so that it indeed
was in each firm’s private interest to cheat. The chapter therefore investigates the
extent to which firms may have deviated from their agreements. It begins with a
discussion of the interpretation of models with hidden regimes. The esimation fol-
lows a two step approach where several models are first estimated to identify whether
significant unobserved variables are omitted from the models of the previous chapter.
Most of the discussion is then devoted to the attempt to determine whether secret
price cuts might account for the results. While the analysis is largely speculative, it

is argued that cheating may have been common.
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Chapter 1

Learning, Local Interaction, and

Coordination

1.1 Introduction

Even the simplest game theoretic models all too often have multiple equilibria. A
typical example is the coordination game which arises when two players must work
together in order to achieve a comonly desired ontcome, but in which neither player
will benefit from his efforts if his partner does not do his part. In this case, we regard
the players working together as the “good” equilibrium and speak of coordination
failure if it does not occur. In other coordination games, like that of two cars ap-
proaching each other on a highway, we may not care which equilibrium (both keeping
to the right or both keeping to the left) occurs, but it remains very important that
the players somehow have common beliefs so that an equilibrium is played. In trying
to understand play in these games we are led to ask why we should expect players
to coordinate on an equilibrium and whether there is any reason to believe that one
equilibrium is more likely than the other.

Recently, models of iearning have been used to explore these and other funda-
mental questicns of game theory. These models typically investigate whether we can
predict behavior in a game by examining the disequilibrium process by which players

learn their opponents’ play and adjust their strategies over time. In their analysis of
p 4
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coordination games in large populations, Kandori, Mailath, and Rob (KXMR) (1991)
derive surprisingly strong predictions from such an approach. They show that the
simple combination of random experimentation and the myopic attempts of players
to coordinate with those around them creates powerful dynamic forces which influ-
ence the evolution of play over time. In analyzing the long-run limit of this dynamic
process, they are able to show not only that players will achieve coordination on an
equilibrium, but that one partict!ar equilibrium, the “risk-dominant equilibrium” will
be selected.

In this paper, I adopt a similar {framework to examine the play of coordination
games in large populations. In each period of a dynamic model the players are
randomly matched and each pair plays a 2x 2 coordination game. Players do not know
who their opponents will be until after they have chosen their actions. The behavioral
assumptions incorporating noise and myopic responses by boundedly rational players
are also borrowed from KMR.

The model is intended not only as an abstract demonstration of how coordination
might arise, but also as a practical model which may help us understand why some
populations are more susceptible to coordination failure. For this reason, I discuss
not only the limit of each dynamic process, but also whether the limit reflects forces
which would be felt within an economically reasonable time frame. If, as will be the
case for one model, a dynamic system takes 10'° periods to approach its limit, we
cannot say that the limit is a good prediction for what we will see when the game is
repeated a few hundred times. While it is very hard to draw a dividing line and say
exactly how fast a system must converge for the limit to be relevant, the models of
this paper exhibit such extreme centrasts that meaningful conclusions are possible.
When a system adjusts very slowly, I shall conclude that whatever historical factors
determine the initial play will continue to determine play long into the future so that,
for example, even Pareto-superior alternatives will not be adopted. On the other
hand, when a system approaches its limit quickly, I shall conclude that dynamic
forces do lead us to expect to see the limiting behavior.

The model itself departs from that of KMR in that it allows for different matching

13



processes within the population.! The conclusion of this paper is that the nature of
the matching process is crucial to a determination of whether historical factors or risk
dominance will determine play. I focus on two extremes among the possible matching
rules, which I shall describe as uniform and local.

The uniforn matching rule is that used in KMR. Players are equally likely to
be matched with any member of the large population and therefore place only small
weight on coordinating with any particular individual. I argue that in such popula-
tions any evolution in play is unlikely to occur within a reasonable period of time, and
hence, that historical factors will determine play. In contrast, I shall describe as local
a matching rule in which players interact with a small group of close friends, neigh-
bors, or colleagues. In such situations, I argue that rapid changes in play are indeed

possible and we may expect to see coordination on the risk-dominant equilibrium.

To provide a clearer picture of the types of questions that can be addressed within
this framework, I now begin with a lengthy discussion of several examples. Consider
first the choice of location of a trade fair. In medieval England, a large portion of
trade took place at annual trade fairs, of which the largest was the Sturbridge Fair.?
The Sturbridge Fair was chartered in 1211, and by the 14th century it had grown
to a sufficient size that people traveled hundreds of miles to attend and buy a year’s
provisions. When Daniel Defoe visited Sturbridge in 1723, he described a half mile
square fairground with such a tremendous variety of commerce that he was convinced

[{3

(probably without any point of comparison) the Fair was “... not only the greatest

in the whole nation, but in the world;”® On one street, for example, he notes that

Scarce any trades are omitted, goldsmiths, toyshops, traziers, turners,
miliiners, haberdashers, hatters, mercers, drapers, pewterers, china-warehouses,
and in a word all the trades that can be named in London; with coffee-

houses, taverns, brandy-shops, and eating-houses, innumerable, ...

1In independent work, Blume (1991) discusses a related continuous time model in which players
are spaiially distributed and interr.ct with a finite set of neighbors.

2The description below is based on that of Walford (1883).

3Defoe (1986), p. 102

Abid. p. 102
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The fair contained not merely retail businesses but also extensive wholesale trade
with, for example, woolen manufactures in tents, “as vast ware-houses piled up with
goods to the top.” ©

The question I address here is why this trade was centered in Sturbridge of all
places for about eight centuries. Sturbridge was not the most efficient location. To
the contrary, the Sturbridge Fair (located just outside Cambridge) had two clear
drawbacks. First, the town was too small to support such an event. Second, and
perhaps more importantly, the interior location necessitated the rather cumbersoine
transport of goods down the Ouse and Cam rivers from the port of King’s Lynn.
Observing the volume of hops traded, this glaring ineffiency puzzled Defoe, and led

him to ask

. why this fair should be thus, of all other places in England, the centre
of that trade; and so great a quantity of so bulky a commodity be carried

thither so far:®

In this paper, I argue that we can understand the location of the Sturbridge Fair
by modeling the location choice as the outcome of a coordination game played by
the attending merchants. Each year, the merchants independently choose actions in
deciding to travel to one of several possible locations. Payoffs are determined by a
random matching process insofar as we can view each pair as having a mutually ad-
vantageous trade vith some probability. The matching process may be approximated
as uniform to the extent that the merchants do not know each other or have no way
of knowing in advance who will have the goods they need. The payoffs are those of a
coordination game because each pair of merchants meets and has the opportunity to
realize gains from trade only if both have chosen to attend the same location. The
outcome of this coordination game appears to have been determined by historical
circumstances relevant only at the start of the game.

The basic framework of this paper is applicable to a variety of modern settings as

well. I will briefly sketch two such examples in which players tend to interact with

5 Ibid. p. 103
8Ibid. p.104
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friends or colleagues and hence in which local matching rules may be appropriate.
First, consider the attendance of a periodic convention or reunion. Ilere, the players
are the potential attendees who must decide whether to go. If players attend, their
payoffs reflect the useful information they exchange, the contacts they make, or simply
pleasurable conversations they have with other players. The game is a coordination
game with two equilibria if the players would like to attend if everyone else were to
do so, but would prefer to stay home if the convention will be poorly attended. In
the case of conventions, a local matching rule may describe players’ expectations over
who is likely to have the information they desire.

For a more economically significant exaimnple, consider the adoption of new tech-
nologies when network externalities are present. While the new technology may
be superior, network externalities will initially favor the old established standard.
Whether the new technology is adopted depends on the outcome of a game played
by the firms or individuals who must choose a technological standard for each new
project they undertake. For example, we might imagine a group of electronics man-
ufacturers deciding which of several possible standards a new product will adhere to,
or applied economists deciding which of several possible software packages to use for
a new project. In the latter example, network externalities arise when an economist
knows that at some point during the project he is likely to want to borrow programs
from a colleague, which will only be easy to do only if the programs are written in the
same language that he is using. When network externalities are strong enough to out-
weigh individual preferences, the payoffs are those of a coordination game. Wiether
a new superior technology is likely to become predominant or whether the network
externalities will allow the incumbent technology to endure is an equilibrium selection
problem in this coordination game.

The paper is structured as follows. The model is described in Section 2. Section
3 contains some simple examples of the dynamics of the learning model. Section 4
contains the main theoretical results on both limiting distributions of play and rates of
convergence. Section 5 discusses the results of numerical simulations which illustrate

both the speed of convergence for reasonable parameter values and the importance
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of the various assumptions.

1.2 The Model

1.2.1 Coordination Games with Bounded Rationality

The model described here can be thought of as having two classes of assumptions:
those concerning the nature of the game being played and those describing the par-
ticular behavioral rules which players follow.

The basic model is of a repeated game played in periods t =1, 2, 3,.... There is
a large population of N players (perhaps a few hundred for typical applications). In
each period, player i chooses one of two possible actions a; € {A, B}. The payoff to
player i is given by

u,-(a,-,, a_.'t) = Z Pijg(“-iu a‘ﬂ)
J#i

where the payoffs g are those of the 2 x 2 coordination game pictured below. F ormally,
it is required that a > d and b > c so that (A, A) and (B, B) are both Nash equilibria.
In addition, I assume that (A, A) is the “risk-dominant” equilibrium as defined in
Harsanyi and Selten (1988). In a symmetric 2 x 2 game, (A, A) is risk dominant if
and only if (e —d) > (b—c). Note that when the strategies have equal security levels

(c = d), (A, A) is also the Pareto optimum.

A B
A a,a c, d
B d.c b, b

In many applications, we can envision the players to be playing a random matching

17



game in which case the weights p;; will represent the probability that players i and j
are matched in period t, and g(a;,a;) gives the payoft to player i when he is matched

with player j.

Rather than assuming complete rationality, I instead simply specify behavioral
rules which the players follow. The rules are intended to capture the intuitive rotion
of reactive players. The players will myopically maximize their short-run payoffs in
each period, and in addition will be unsophisticated in not realizing how play will

change over time. In particular, I assume that in period t player i chooses
a;; € arg max u;(a;,a_i¢—1)

with probability 1 — 2¢, and with probability 2¢ he chooses an action at random with
50-50 probability.

Several remarks are called for. First, note that the choice of strategy requires
that player i observe the period ¢t — 1 play of all other players with whom he may
be matched in the future, not just the players with whom he was matched in period
t — 1. The reasonableness of this assumption varies with the application, e.g., in
the case of an annual reunion it requires that all invitees be sent a list of those
attending after the reunion is over. Second, the 2¢ probability randomizations are
meant to represent the cumulative effect of noise introduced into the system through
deliberate experimentation, trembles in strategy choices, and the play of new players
unfamiliar with the history of the game. Which of these is most reasonable again
depends on the particular application intended. Finally, I should emphasize that this
is best thought of as a specification of bounded rationality, not as a form of rationality
with impatient players. In period t, each player is reacting to the play in period ¢ — 1,
not to a prediction of how his opponents will play in period t. There are several
possible justifications for this assumption. Perhaps it is not possible for the players
to extrapolate and predict the future play of their opponents because they either do
not know the decision rules followed by their opponents or can not observe the play

of their opponents’ opponents. Alternatively, players might simply be stupid.
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If we do wish to regard the players as rationally responding to incorrect beliefs,
we must take the period ¢ — 1 actions to be the period t beliefs. This approach leads
to two problems. First, particularly in models with local matching, the beliefs may
be excessively naive as there may be cycles in play that we would expect “rational”
players to recognize. Second, once we introduce rational players we must justify the
assumption that players choose myopic best responses. It is often argued that in large
populations strategic play is unlikely. What is really important, however, is not the
size of the population but rather how rapidly a player’s actions affect the distribution
of play. In models which allow only very slow evolution, myopic responses are probably
reasonable. When evolution is more rapid though, strategic play is possible even in
large populations, and to ignore it requires the additional assumption that players
are impatient. The presence of a few patient strategic players, however, would likely
strengthen the conclusions of this paper as strategic players tend to spur evolution
when evolution will be fast anyway and do not try to affect future play when there is

great inertia.

1.2.2 Local and Uniform Matching Rules

Within the basic framework described above, I contrast two extreme specifications of
the matching process. I term the two types of matching rules uniform and local. The

uniform matching rule is given by

Pii = 1 Vj # 1.

With this rule, player i will choose his period t strategy censidering only the fraction
of the population playing each strategy at time ¢ — 1, not the identities of the players
using each strategy.

Such a rule seems appropriate in the example of the medieval trade fair mentioned
above. We can model the location decision as a process in which each trader decides
each year whether to travel to Sturbridge at a cost of c or to travel to a more conve-

nient port instead at a cost of 0. When any pair of traders meet, assume that with
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probability « they are able to complete a trade which increases each player’s utility
by one unit. If we assume that a player mects all other traders who attend the same

fair we can write the payoffs as

1
N -1

u.—(a.-,a_,-) = (N - l)z g(a,-,a,j),

J#
where g is given by the matrix below. The assumption of uniform matching expresses
the idea that each trader has no information whatsoever about with whom he is likely

to be able to complete a trade until after he has arrived at the fair he has chosen to

attend and can observe the goods offered for sale.

Port Sturbridge
Port a. a 0, —x<
Sturbridge -0 |la-g -3

In contrast, I shall use the term local matching as an informal description of several
matching rules in which each player is likely to be matched only with a small fixed
subset of the population. For simplicity, I will usually envision the players as being
spatially distributed around a circle. In the most extreme local matching rule, each

player is only ever matched with one of his two immediate neighbors, i.c.,
ifi—j=+41 (mod N)

Pij = )
otherwise.

S N

20



Similarly, for any k > 1 we can define a rule where each player has 2k neighbors by

st ifi—j=41,42,... +k (mod N)
pi; =
’ 0 otherwise.
For a less extreme example, we might assign positive probability to any pair of players

being matched, but construct the probabilities so that most of the time players are

matched with those nearby, e.g. for N even

pis = ST for k = min{|i — j|, N — |i — ]} #£ g (L.1)
s for i —j| = 4.

Local matching rules are appropriate to describe situations where players interact.
not with the population as a whole, but rather with a few close friends or colleagues.
Consider, for example, the group of economists choosing software packages. While
there are thousands of economists in the country, each will be able to identify, upon
beginning a project, a small group of collerues with whom he or she is likely to want
to share programs or data. Hence, he or she will only consider the software choices
of that small group when making a decision.

Before moving on, I would like to emphasize three essential features of the local
matching rules described above. First, each player assigns a large weight to a small
subset of the population. Second, the locations of the players are fixed over time
so that each player’s likely opponents remain constant over time. Third, there is
considerable overlap in the groups of neighbors so that a player’s neighbors’ neighbors
are likely to be his neighbors as well. It is the combination of all these features which
allow for the existence of small clusters within the population each member of which
is matched with another member with probability at least 1. It is the possibility
of a new strategy gaining a foothold within one of these clusters which allows the

relatively rapid transition to the risk-dominant equilibrium in these populations.
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1.3 Model Dynamics

For the remainder of this paper, I discuss the dynamic pattern of play in the model
described above. The approach of the paper is as follows. I assume that at some
point in the past, arbitrary historical factors determined the initial strategies of the
players. The behavioral rules then generate a dynamic system which describes the
evolution of players’ strategy choices over time. 1 formally discuss both the limit of
this system and the rates at which the limit is approached. First though, I describe
the dynamic evolution of play in a few simple cases in order to motivate subsequent

results.

The dynamics of the model with uniform matching are virtually identical to those
described in KMR. Let g; be the fraction of player i’s opponents who played A in
period ¢t — 1. Note that

ui(4,a_it1) > wi(Bya_is1) = qa+ (1 —q)e> qd + (1 - qi)b
b—c

I P e e ik

. (1.2)

Hence, player i will play A in period t if and only if ¢ > ¢° (assuming player i
chooses A when he is indifferent). The assumption that (A, A) is the risk-dominant
equilibrium implies that ¢* < 3+ I will frequently discuss the behavior of the model
with payoffs e = 2,5 =1, and ¢ = d = 0 so that ¢* = % and player i will play A if at
least 1 of his opponents did so.

At time t, we describe the state of the system by s, € S¥ = {0,1,..., N}, with
3¢ indicating the total number of players playing A. The dynamics of the model with

no noise are straightforward:

If se < [¢"(N —1)], then ¢; < ¢* for all i so all players play B in period
t+1 and s;4q = 0.

If s; > [¢*(N — 1)], then ¢; > ¢* for all i so all players play A in period
t+1 and 844, = N.
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If s, = [¢°(N —1)], we have a knife edge case where ¢; < ¢* if player i
played A in period t, and ¢; > ¢* if player i played B in period {. The
result is that s,;, = N — [¢°(/V — 1)] as only those players who played B
in period t play A in period t+1.

The last transition results from the assuinption that each player reacts to the play of
his possible opponents and that this group does not include himsel{. While unsightly,
this transition does not play a significant role in the subsequent analysis so the reader
should not be too troubled by it.

The important thing to note is that the model with uniform matching and no noise
has two steady states 0 and N corresponding to the Nash equilibria where all players
coordinate on one of the two possible strategies. Note that each steady state has a
large basin of attraction. When play starts close to either steady state it immediately
jumps to that equilibrium. Once noise is introduced, the transitions are governed by
a Markov process which assigns positive probability to any transition. Nonetheless,
when play is near one equilibrium it will likely remain near that equilibrium for a
long period of time.

Suppose that most players played B in period t so that s, < [¢*(N — 1)]. Each
player will then play B in period ¢ + 1 with probability 1 — €. All of these random-
izations are independent, so with large populations it is extremely likely that the
fraction of players who play A will be close to . We will gererally envision € to be
much smaller that ¢*. In this case we will very likely have 5,47 < [¢*(N — 1)] so that
the same reasoning again applies to describe the period t + 2 play. The important
thing to note is that no gradual change is possible. The only mechanism for a shift
from one equilibrium to the other is the sudden jump which results when at least
[¢°(N —1)] e-probability events occur simultaneously. This coincidence occurs only
very infrequently. Hence, the players’ strategies will likely resemble those determined

by the initial conditions for a long period of time.

In models of local interaction, we denote the possible states by N-tuples (a1, a,,...,an) €

St = {A, B}V, in order to keep track of the locations of the players using each strat-
p g
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egy in addition to the aggregate frequencies. To illustrate the dynamics of such
models, I discuss a typical setup where N players are arranged uniformly around a
circle and each places equal weight on being matched with his eight closest neighbors.

Let the payoffs be given by

A B
A 2,2 0,0
B 0,0 1,1

so that each player has A as his best response whenever at least three of his eight
neighbors play A.

Once again, I begin by describing the dynamics in the model with no noise. Clearly
there are at least two steady states, A = (A,A,...,A)and B = (B, B,..., B). Each
of these steady states has a non-trivial basin of attraction. Suppose that all but
one or two of the players are playing B at timne t. Then, each player has at least
six neighbors playing B so all will play B in period t + 1. We may write two such

transitions as

(A,B,B,...,B) — B
(A,A,B,...,B) — B.

Similarly, for period ¢ states sufficiently close to A we will get an immediate jump to
Ain period ¢ + 1.

An important feature of the dynamics is that the basin of attraction of B is
relatively small. In particular, the existence of a small cluster of players playing A is
sufficient to ensure that the dynamic process will eventually lead all players to play
A. Suppose the period t state is (A, A, A, A, B,..., B) so that players 1 through 4
played A. It is =asy to see that players 1 through 6 and players N and N — 1 all have
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at least three neighbors playing A. Those eight players will play A in period ¢ + 1.
In period t + 2, players N — 2, N — 3, 7, and 8 will switch to playing A. The cluster
of players playing A will grow until eventually the state A is reached.

In contrast, any relatively small cluster of players playing B will disappear over

time. It is easy to verify that

-

(B,B,B,B,AAA,....,.A) — A
(B,B,B,B,B,B,B,A,...,A) — (A,A,B,B,B,A,...,A) — A.

The basin of attraction of 4 is much larger than that of B.

It is the differing sizes of these basins of attraction which causes the relatively
rapid convergence of play to a limit concentrated around A once noise is introduced.
From the dynamics above, it should be clear that we usually only need to wait for
four well placed randomizations to create a cluster of players playing A and lead us
away from an initial condition where everyone is playing B. When the number of
players is large, seeing four adjacent randomizations is far more likely than seeing the
[53‘—1] simultaneous randomizations required to shift play in the model with uniform

matching.

The extreme local matching rule in which each player has only two neighbors
is neither an apt description of any of the examples I have given, nor does it have
particularly compelling dynamic behavior. Nonetheless, it is the easiest model of
local interaction to analyze, and hence will reappear throughout this paper. For this
reason, I briefly discuss its dynamics here.

First, note that regardless of the payoffs, the assumption that (A, A) is the risk-
dominant equilibrium entails that each player will have A as his best response when-
ever at least one of his two neighbors plays A. In a model with no noise, we again

have two steady states, A and B. There is also one stable cycle when N is even,

(A,B,A,B,...,A,B) — (B,A,B,A,...,B,A) — (A, B, A,B, ..., A,B),
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whose existence is an urnfortunate but not particularly significant byproduct of the
assumption that players in period t myopically respond to their opponents play in
period ¢ — 1, not to a forecast of their period t play. I shall write AB as a shorthand
for the state (4, B, A, B,..., A, B) and BA for the state (B, 4, B, 4,..., B, A). The
most important aspect of the dynamics to note is that the steady state B now has
no other states in its basin of attraction. If at least one player plays A in period
t, then at least two players (his neighbors) will play A in period ¢ + 1. In contrast,
any state which contains a cluster of two adjacent players playing A lies in the basin
of attraction of A. Once noise is introduced, we will see that this leads to rapid

convergence to a steady state concentrated around A

1.4 Limits and Rates of Convergence

In this section, I discuss the principal theoretical results cf the paper. As mentioned
above, the motivation for the analysis here is the assumption that at some point
the initial actions of the players were determined by historical factors and that for
some subsequent period of time play has evolved according to the behavioral rules
specified above. The fundamental problem is then to determine how historical and
evolutionary forces combine to determine the play we observe. To this end, I first
discuss the limiting behavior of these systems as the number of periods of evolution
grows to infinity. Subsequently, I discuss the rates at which the limits are approached
in order to assess whether the limits are meaningful given that the economic systems
modeled involve only some reasonable finite repetition of play.

In this section, I contrast the behavior of the model under the extreme assumptions
of uniform and two neighbor matching. I make this choice for analytic tractability
and will use numerical simulations to discuss the behavior of models with alternate
specifications of the matching process in the next section.

As noted above, we may view the time t strategy profiles as the states s, of a
Markov process. In the case of uniform matching, s, € {0,1,..., N} indicates the

number of players playing A. At times, I shall write A for state N and B for the
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state 0. We may represent the time t probability distribution over the states by an
(N+1)x1 vector v,. For example, v, = (0.5,0.5,0,...,0)' represents a system which
is equally likely to be in state 0 and state 1. The evolution of the process is governed
by

veg1 = PY(€)v,

where P%(e) is the transition matrix whose elements are given by

p:s(e) = Prob {8¢+1 = i|3t = J}

For example, we have

p5() = ()e(1 - 9=

whenever ;7 < [¢*(N — 1)] as each player’s best response is B so state i can arise
only when exactly i e-probability randomizations occur. Note that P*(¢) is strictly
positive for ¢ > 0 so by standard results on Markov processes there is an unique

steady-state distribution p“(€) such that

n'(e) = P*(e)p"(e).

For any initial probability distribution p, the distribution of period t play is given by
Pu(e)tp. It is also standard that positive finite-state Markov processes are ergodic,
i.e.

P*()'p — p*(c)

as £t — 0o so that the steady-state distribution represents the distribution of play
after infinitely many periods of transitions. I shal! write p¥(e) for the probability
assigned to state s by the steady-state distribution p*(e).

We may define P!(¢) and pu‘(e) analagously for the model with two neighbor
matching. It is harder, however, to visualize the structure of the transition matrix
in this case as P!(¢) now acts on 2V dimensional vectors and there is no intuitively

appealing ordering of the states.
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The first result compares the steady state distributions of the uniform and two
neighbor models. KMR have shown that the evolutionary forces in a model virtually
identical to the uniform model yield a steady state limit in which the risk-dominant
equilibrium (A, 4) is played with very high probability. The statement that pu%(e) — 1
and pf(e) — 1 verifies that the steady state also exhibits play concentrated around the
risk-dominant equilibrium both in the uniform model I have defined and in the model
with two neighbor matching. The second part of the theorem compares the steady
state probabilities with which the entire population coordinates on the equilibrium
(B, B). For sufficiently small ¢, the theorein tells us that this equilibrium is even less
common in the model with two neighbor matching than it is under uniform matching

(although it is extremely rare in both models).

Theorem 1 Let p*(¢) and p'(€) be the steady state distributions of the general model

of Section 2 under the uniform and two neighbor matching rules, respectively. Let q*
be as defined in (1.2) with [¢*(N — 1)] < N/2. Then,
(a)

Lime o pl(e) = 1

lim._o pf‘(c) = 1
(b)

pale) = O(N-Aw-nin,

. { O(eV-%)  for N even
rale) =
O(eV-')  for N odd

Prooi

Both the statement and the proofs of the results for the uniform model are virtually
identical to those given in KMR, and hence I omit the proofs. The proof for the two
reighbor model relies on the following characterization of the steady state cited in
KMR. The reader may refer to that paper or to Freidlin and Wentzel (1984) for an

exposition of the background material. An z-tree t on S is a functiont : S — §
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such that {(z) = z and such that for all s # z there exists m with tm(s) = z. We
may think of an z-tree as a set of arrows connecting elements of S in which every
element has an unique successor and all paths eventually lead to x. The steady state

distribution ‘() can be characterized by

pe(e) = c(e) E HPtl(.').'(f)
teH, iftc

where H, is the set of z-trees on S¢. Note that pli(¢€) is a polynomial in € whose
constant term is non-zero if and only if the transition i — j occurs in the model
with no noise (¢ = 0). For any state z, the expression above allows us to express the
quantity p’(e)/u%(¢) as a ratio of polynomials in e. The order of this ratio can then
be discerned by looking at the smallest order z- and A-trees. I go through the details
of this for N even.

An A-tree s with I],.#A.pf(..)‘.(e) = O(€?) is given by

t(B) = (A,B,B,...,B)
HAB) = (B,A,A,A,B,A,...,B,A)

with all other states mapped to their successors in the no noise model. Clearly there
are no O(e) A-trees. To prove (a) we need only show that an z-tree for any other =
is of strictly higher order so that 1i(€)/pb(e) — 0. We can prove this by considering
three cases.

For z ¢ {B, AB, BA} an z-tree is of order at least €? as at least one e-probability
transition is necessary to break out of each steady state or cycle. For z = B, a B-tree

t with [..5{;); = O(V) is given by

t(A) = AB
t(AB) = B
with all other states again mapped to their successors in the no noise model. Clearly

there are no B-trees of lower order as there must be a path from A to B in any
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B-tree. A transition on such a path requires at least k e~probability events whenever
the number of players playing A decreases by k as the number of players playing A
never decreases in the model with no noise. Finally, for ¢ = AB or B:cl, a similar
arguments shows that the minimum order z-tree has order e"¥/2+!. As N > 2, this
concludes the proof of (a).

Combining the characterization of the A-trees and B-trees gives (b). QED.

The theorem above implies that if the coordination games we have described are
repeated enough times, play will eventually become concentrated around the risk-
dominant equilibrium (A4, A). It remains to be seen, however, whether this ‘eventually’
is relevant. Large annual trade fairs in medieval England continued for perhaps eight
centuries. For modern economic applications, we shall want to discuss annual events
repeated far fewer times. Even for weekly interactions over several decades we will
be limited to a few thousand repetitions. To discuss play in these finite games, we
must then ask whether such nun.bers of repetitions are sufficiently large for play late
in the game to resemble the steady-state limit.

I now begin a discussion of this problem with some theoretical results on the rates
of convergence of the uniform and two neighbor models. For very small probabilities
¢ of randomization, I find a striking contrast between the two models, with far slower
convergence in the uniform model. This suggests that observed play is far less likely
to resemble the steady state in the model with uniform matching than it is with local
matching.

To discuss #iie problem formally, let A be the set of probability distributions on

S. For any two distibutions p, v € A define
lle = vl = max|p, — v,

If P is a Markov transition matrix with steady state distribution g, || P*p—p|| measures
how far from the steady state the system is t periods after we begin with initial
distribution p. When this distance is small, the steady state is a good predictor for

period t play. When the distance is large, it is not. It is well known that finite state
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Markov processes converge at an exponential rate. Informally, we may think of this
as saying that || P(€)'p - p{€)|| ~ cor® for some r < 1. While exponential convergence
is usually thought of as a rapid theoretical standard, convergence may in fact be quite
slow for practical applications. If, for example, r = 0.9999999, then r!:000.000 ~ (.9 50
that after one million periods only 10% of the distance between the initial distribution
and the steady state will have been eliminated.

The following theorem characterizes the rates of convergence for the uniform and

two neighbor models.

Theorem 2 Let P¥(¢) and P(¢) be the transition matrices for the uniform and two
neighbor models and let p*(e) and p%(.) be the associated steady state distributions.

Assume [q*(N —1)] -. N/2. For A the set of probability distributions on S define

r“(e) = sup limsup ||P*(¢)'p — p*(e)||""

pEAY t—oco
() = sup limsup ||P(e)'p — p'(e)||!
pEALt t—o0
Then,
1—r%) = O(efr"V-10)
1-7) = O(e)
Proof

To simplify the right hand side of the expressions defining r*(¢) and r‘(e) we make use
of two results from the Frobenius Theory of positive matrices.” Let P be any strictly
positive transition matrix and let i be its unique steady state. The first result is that
if we order the eigenvalues of P so that |A;| > |A;] > .-+ > |An]|, then A, = 1 and

[A2] < 1. From this follows a result directly applicable to our problem, namely that

sup lim sup || Ptp — u||'/t = | Mz
pEA

t—oo

’See Karlin and Taylor (1975) pp. 542 - 551.
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A formal proof is given in Karlin and Taylor (1975). In the special case of P diagonal-

izable, we can obtain the second cesult from the first by exploiting the diagonalization

P = ®AY v =6
r
MO e 0]
A (.) A.z (.]
Note that for any fixed p,
Plp = dA'Tp.
Hence,
10 0 0 ¢ 0
00 ---0 0 X ... 0
Po-2) . |¥=2% " ¥
(00 .- 0 [0 0 - 2y

The right hand side of this expression converges to zero. Writing E;; for the matrix
whose ijt* element is 1 and with all other elements equal to zero, we have from the

uniqueness of the steady state that
QEll‘I’p =H
for all distributions p. Hence,

suplimsup || P'p — p||'/* = suplimsup||P'p — ®Ey, ¥p|/t
ped

t— oo pEA t—oo

t_
= suplimsup ||[N,® (A——ﬂ) Wpl|M/t

pEA t—oo Atz

= |Az|suplimsup ||® Ez,¥p||'/*
pEA t—oo
= |2z

We also see from this calculation that the supremum is in fact achieved for any p such
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that ®E,,%p # 0.

Given this result, the problem of finding r“(¢) and r(¢) is reduced to the problem
of finding the second largest eigenvalues of the matrices P%(¢) and P%(¢). The re-
mainder of the proof is the rather lengthy solution to this problem and can be found

in the appendix. QED.

The force of Theorem 2 is that when ¢ is small, convergence will be much slower in
the model with uniform matching than it is in the model with two neighbor matching.
The simplest way to see this is to take a numerical example. Suppose there are 100
players with payoffs « = 2,b = 1,c = d = 0 so that [¢*(N — 1)] = 33. As a thought
experiment, suppose we start with a fairly small randomization probability ¢ and
consider the effect of reducing € to ¢/2. In the two neighbor model, the result is that
the model takes about twice as long to converge. The model with uniform matching,
however, exhibits more extreme behavior. Theorem 2 tells us that 1 — r¥( 3) =

2-93(1 — r%(¢)). If 1 — r¥(¢) is small we have the first order approximation

233

r"(;-)zn ~ (1 - 1;2::@) ~ T9(e).

Hence, convergence to within a given tolerance in the uniform model will now take
not twice as many periods but rather 2% or over 8 billion times as many. Clearly, one
does not have to divide ¢ by two very many times before the powers of 8 billion far
outweigh any other factors. The theorem is then describing a vast difference in rates
of convergence for ¢ small.

It is also not hard to understand why something like Theorem 2 must be true.
As described in Section 3, the only mechanism for change in the uniform model is
the simultaneous randomization by at least [¢*(N — 1)] players. When N is large, ¢
small and ¢* — € non-trivial, the law of large numbers tells us that we are depending
on an extremely unlikely event. In particular, as ¢ — 0 the probability of this event
is O(el*"(N-11), For very small values of ¢ the very slow convergence reflects our

intuition that in large populations this simultaneous randomization is not a plausible
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mechanism for change. In contrast, regardless of the population size, only two ran-
domizations are necessary to begin a -hift from B to A in the two neighbor model.
This provides the relatively rapid convergence.

I now address two further questions in order to provide & more complete under-
standing of the behavior of the models. First, note that so far I have principally
commented on the relative speeds of convergence of the two models. Presumably, it
could still be the case that both modeis converge very slowly or that both converge
very quickly (although the latter seems unlikely). Second, one should not overem-
phasize limiting behavior. In the examples discussed, it seems reasonable that the
players do make mistakes or adopt strategies in what can be viewed as a random
manner a non-trivial fraction of the time. In order to comment on the applications,
we must be sure that the results given reflect the behavior of the model not just for
infinitesimal ¢ but for values of ¢ like 0.1 as well.

To see that convergence in the uniform model is indeed very slow it will suffice
to comput. the rate of convergence r*(¢). Table 1.1 gives the value of 1 — r*(¢) for
various population sizes N and randomization probabilities €. In each case the payofis

are fixed with ¢* = 1 and *(¢) was obtained by solving (1.4).

Table 1.1: Rates of Convergence for the Uniform Model

1 —7%(e)
e=005 - €=0.1
N=10 1.15 x 10~* 7.02 x 10~2
N =100 1.23 x 1018 3.23 x 10-1°
N = 1000 5.11 x 1017 2.24 x 109

It is clear from Table 1.1 that for the larger population sizes 1 — r*(¢€) is both
very close to zero and decreasing very rapidly as ¢ ic reduced. If we choose an initial

distribution p which differs from p*(€) in the direction of the eigenvector associated
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with r¥(e) (a vector largely adding weight on B relative to A) then

IP*(e)'p — ()l = r(€)'llp — r*(e)|

If, for example, we have N = 1000 and ¢ = 0.1 then r%(¢) = 1 — 2.24 x 10*® and
rU(€)'%* x 0.998. Hence, after 10° periods of play the distance between the initial
distribution of play and the steady state has only been reduced by less than one
quarter of one percent. For a game with one hundred players, a cimilar comment
applies to the cumulative evolutione .y force of 10 million periods of play.

Kandori, Mailath and Rob discuss an alternate, and perhaps more intuitive, mea-
sure of the rate of convergence, the expected number of periods necessary for the
system to first enter the basin of attraction of A given that play starts with everyone
playing B. From the limited number of values in their table, it is not clear how rapidly
the wait increases as ¢ becomes small and N large. When e is small, the waiting times
are very closely approximated by 1/(1 — r%(¢)). Table 1.2 gives the expected waiting
time for two different sets of payoffs: the first a = 2,b = 1,c = d = 0 as before and
the second a more extreme case a = 5,b = 1,c = d = 0 where the payoff to (A4, A)is

far greater than the payoff to (B, B). The expected waiting time is computed as

(1 + ¢2) + (1 — (g1 + ¢2))
(g1 + q2)P2 + P12

with p;, p2, q1, and ¢ as in (1.3).

For the population of only ten players, these waiting times are not unreasonable,
and we thus might expect to see movement to the risk-dominant equilibrium. For
a population of fifty or one hundred, though, we would expect to see evolution take
place only in the case when the payoft to (A4, A) is much greater than the payoff to
(B, B), and a large fraction of the population randomizes in each period. Even when
the payoff to (A, A) is five times the payoff to (B,.3), it must be conceivable that
one sixth of the entire population will switch to A randomly in the same period. For
reasonably small randomization probabilities and large population sizes, this is very

unlikely. Hence, the waiting times are too long for us to expect to see such a transition
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Table 1.2: Expected Waiting Times with Uniform Matching

“Expected Wait (a = 2)
¢ =0.025 €=0.05 e=0.1

N=10 609 87 14

N =50 3.83 x 10" 6.54 x 10°  2.63 x 10°
N =100 1.30 x 1027  8.13 x 10'"  3.09 x 10°
N = 1000 1.09 x 10%%  1.96 x 10'™® 4.46 x 10°%

~ Expected Wait (a = 5)
e = 0.025 e =0.05 e=0.1

N=10 41 12 4
N =50 2.65 x 10° 1323 17
N =100 1.86 x 10°  1.06 x 105 49
N = 1000 1.61 x 10%2  1.82 x 10  2.16 x 10'°
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in practice. If we believe that the model with uniform random matching describes the
behavior of any large population, we will conclude that the dynamics will produce
a pattern of play exhibiting great inertia. Over an economically reasonable time
period we should expect players to continue to play whatever equilibrium first arises,
regardless of considerations of Pareto optimality or risk dominance.

In comparison, let us now return to the model with two neighbor matching. While
it ie difficult to compute the eigenvalues or waiting times analytically, it is fairly easy
to estimate the waiting times via numerical simulations. Table 1.3 reports Monte
Carlo estimates of the expected waiting time until more than 75% of the players play
A in the same time period. The simulations were designed so that each estimate has
a standard error of 0.1 or less. The parameters N and e reported are the same as in

the table above. (The waiting time is now independent of ¢* for any ¢* € (0, .

Table 1.3: Expected Waiting Times with Two Neighbor Matching

Randomization Probability ¢
€=0.025 €=0.05 e¢=0.1

N=10 14.5 9.0 6.2
N =50 11.0 8.1 6.3
N =100 11.1 8.2 6.4
N =1000 11.0 8.1 6.2

The most striking result in Table 1.3 is that the waiting times are not only small
relative to those of the uniform model but in fact are very short. For each of the
parameter values, the expected wait is less than twelve periods. If we believed that
the two neighbor model on a circle were an apt description of reality, we would
conclude that powerful evolutionary forces will cause the risk-dominant equilibrium
to arise fairly soon after the start of the game. We cculd easily imagine, however,
that for more reasonable matching rules convergence will be significantly slower. The
next section examines some aspects of this problem. For now, I will conclude only

that with local matching the observed play need not reflect the initial conditions and
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that the learning process may lead to play concentrated around the risk-dominant

equilibrium.

1.5 Simulation Results

The theorems of the previous section show that the evolution of play will be very slow
in the model with uniform matching. In contrast, under the extreme assumption of
two neighbor matching, convergence will be very fast. In this section, I use numerical
simulations to investigate the extent to which this result carries over to specifications
of the model which can be more reasonably applied to the economic examples of local
matching mentioned in the introduction. To this end, I analyze the importance of

the various assumptions I have made and digcuss extensions.

1.5.1 Matching Rules

The most obvious shortcoming of Section 4 for practical applications is the limitation
of the discussion to the two neighbor matching rule. In practice, the interactions
within a population will never be this simple. The question I address here is whether
this is likely to affect the conclusions drawn from the model.

Before presenting any simulation results it is important to recall the pattern of
evolution with local matching described in Section 3. The shift to the risk-dominant
equilibrium will usually begin when a small cluster of adjacent players switch to
this new strategy. This small community must be sufficiently inward looking for its
members to be satisfied playing the new strategy regardless of the play of the rest of
the population. I have earlier noted that the existence of such clusters depends on
three features of the model. First, each player must place a large weight on matching
with a few close neighbors. Second, there must be a large degree of overlap among
the groups of neighbors. Finally, the structure of the matching rule must be stable
over time. Let me now examine each of these assumptions in a little more detail.

In each of the examples of local matching I have discussed, it is clear that each

player will usually be matched with one of a few close friends or colleagues. While an
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economist, for example, would probably have more than two colleagues with whom he
frequently shares software, the correct number is almost surely no larger than ten or
twenty. As in this example, we will typically have only a rough idea of the matching
rule involved. We would hope then that the predictions of the model would be fairly
robust to the particular specification chosen. Recall that with two neighbor matching
we have seen that play shifts very quickly to the risk-dominant equilibrium. Table
1.4 investigates the extent to which this remains true for less concentrated matching
rules. The table gives Monte Carlo estimates of the expected waiting time until more
than 75% of the population shifts from playing B to playing the risk-dominant A. In
each case, a population of 100 players and payoffs with ¢* = 1/3 (e.g. a = 2, b = 1,
¢ =0, d = 0) are assumed. The matching rules labelled & neighbors place equal
weight on a player’s k closest neighbors on a circle. The rule labelled 1/2l°-3! js that

given in (1.1).

Table 1.4: Expected Waiting Times with Various Matching Rules*

Randomization Probability ¢

€e=0.025 €=0.05 ¢=0.1

2 Neighbors 11.0 8.2 6.4
(0.1) (0.1) (0.1)

4 Neighbors 41.9 22.7 12.3
(1.2) (0.4) (0.2)

8 Neighbors 98.2 25.4 10.7
(7.5) (0.8) (0.2)

12 Neighbors 460.4 46.7 11.3
(42.7)  (34)  (0.3)

1/21i-4l 39.5 20.0 10.3
(1.2) (0.5) (0.2

* Standard Errors in Parentheses

Note that the effect of the matching rule varies with the frequency of the random-
izations. For the smallest value of ¢ shown, waiting times increase significantly when

players have more neighbors. In this case, evolution is only likely to be seen when
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the matching rule is concentrated on a very few neighbors. For the larger values of ¢,
tne waiting times are shorter and less dependent or: the particular matching rule. Of
course, whether we consider something like fifty periods to be a short time or a long
time depends on the time frame of the particular application. I would nonetheless
conclude that for a variety of local matching rules dynamic forces may lead players

to coordinate on the risk-dominant equilibzium within a reasonable period of time.

The matching rules which I have discussed so far are far from general. Note in
particular that I have maintained the assumption that the players are arranged around
a circle.® Inherent in this assumption is a great overlap of the groups of neighbors so
that 2 player’s neighbors’ neighbors are likely to be his neighbors as well. This clearly
facilitates the formation of stable clusters playing the risk-dominant equilibrium. The
true geometry of social interactions will surely be more complex with less overlap of
the neighborhoods. In the economist example, a player’s neighbors will likely consist
of some colleagues within her own department, colleagues at other schools with similar
research interests and perhaps a cadre of older friends from graduate school. While
a friend from graduate school would likely list the cadre of graduate school friends
among his potential co-workers as well, he would likely have very little interaction
with the other two groups. We would, therefore, like for our results to be robust to
changes in the structure of the matching rule.

Rather than trying to propose a reasonable geometry for the interactions within
a particular population, I simply examine a few alternate specifications which entail
less overlap between groups of neighbors. Instead of envisioning a population of 400
players as arranged around a circle, for example, we can imagine them as arranged
at the vertices of a 20 x 20 lattice on the surface of a torus. Figure 1-1 pictures part

of such a lattice and the sets of neiglibors which would give four and eight neighbor

®Bleme (1991) discusses the effects of the lattice used to represent the matching process in a
similar model and shows that different lattices can lead to strikingly different theoretical properties.
Most significantly, for certain matching rules the Markov process may be ergodic for a countable
population arranged along a line, but nonergodic when the population is arranged on a higher
dimensional lattice. In our finite population framework, the analog of nonergodic behavior is very
long waiting times for large populations.
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matching rules. Note that with the eight neighbor matching rule moving from one
to two dimensions has reduced the overlap of groups of neighbors to the point that
no {wo players have more than four neighbors in common. If we move to a four

dimensional lattice, no two players have more than two neighbors in common.

Figure 1-1: Four and Eight Neighbor Matching in Two Dimensions

Table 1.5 again gives estimates of the expected waiting time until 75% of the
population shifts to the risk-dominant equilibrium in a population of 400 players
with payoffs such that ¢* = 1/3. The table compares the waiting times when players
are arranged on three different lattices: a circle (labelled 400 x 1), a 20 x 20 lattice
on the surface of a torus, and a four dimensional 4 x 4 x 5 x 5 lattice. For most of the
parameter values shown, the expected waiting times are not greatly increased as we
reduce the overlap of the neighbor groups by moving to higher dimensional lattjces.
However, the increased waiting times in the eight. neighbor model for ¢ = 0.025 are a
reminder that the structure of the matching rule has the potential to greatly aflect
the behavior of the model.

So far, I have considered two aspects of the matching rule, the number of neighliors
or likely opponents each player has and the structure of the interconnections among
the players. For most applications, we will have only a rough knowledge of these
aspects of the model and hence would hope that the predictions of the model are

similar over a range of reasonable parameter values. Fortunately, this does <eem
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Table 1.5: Expected Waiting Times for Different Geometries*

Four Neighbor Matching
Lattice €=0.025 €¢=0.05 e¢=0.1
400 x 1 45.8 23.3 124
(0.8) (0.3) (0.1)

20 x 20 43.0 21.3 115
(12)  (0.4) (0.1)

Eight Neighbor Matching
Lattice €=0.025 ¢=005 e=0.1
400 x 1 69.5 27.5 1i.1
(2.0) (0.5) (0.1)

20 x 20 121.7 21.0 8.9
(147)  (0.5)  (0.1)

4 x4xHx5H 1739.5 31.9 8.4
(382.6)  (L7)  (0.1)

* Standard Errors in Parentheses
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to be the case. There are, however, many details in the model which do affect the
rate at which play evolves toward the risk-dominant equilibrium. Particularly when
randomizations are infrequent, there are reasonable models in which play converges
fairly slowly. As a result, we cannot predict that the risk-dominant equilibrium will
arise in these models as confidently as we were able to predict that historical factors

are likely to determine play in the model with uniform matching.

At this point, I discuss one more aspect of the matching process, the assumption
that the matching rule remains constant over time. For some populations, this is
reasonable. For example, when someone is deciding whether to attend a college
reunion he will want to base his decision on whether the people who were his close
friends when he was in college are attending. This group should not change greatly
as the years pass.

At the other extreme, we can envision populations where there is constant change
in the group of likely opponents. One example might be a population of antique
traders who meet at weekend antique fairs. We can envision them as playing a
matching game in the context of our model as follows. At the start of each week,
each trader acquires an antique for which he has no use, but which he may be able to
sell to one of the five or ten other traders who collect such jtems. Like our medieval
traders, he must then decide independently which of two possible fairs to attend.
After arriving at the fair, he tries to sell the antique and in doing so receives a larger
expected payoff when more of the interested collectors have chosen to attend the same
fair. This situation is similar to our local matching rules in that once the antique has
been acquired, a trader cares only about the locational chojces of the few potential
buyers he can identify. The crucial difference, however, is that this group of neighbors
changes each period when a new antique is to be sold.

The stability of groups of neighbors over time is necessary for the types of evo-
lutionary patterns described in Section 3. Look, for example, at the eight neighbor
matching rule with all players initially playing B. With stable groups of neighbors

a cluster of four adjacent players playing A will soon arise and expand until nearly
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everyone plays A. In contrast, we can model constantly changing groups of neigh-
bors like those in the antiques example by envisioning the players as being randomly
relocated around the circle at the start of each period. In this case, small clusters of
adjacent players no longer provide stable inward looking communities where playing
A can gain a foothold. At the start of each period, those players playing A are ran-
domly scattered. As a result, any clusters which have formed will usually be broken
up and subsequently disappear.

Table 1.6 compares the behavior of our standard model with a fixed local matching
rule to the behavior of a similar model in which the players’ locations on the circle
are chosen randomly at the start of each period. Each simulation was run for a model
with eight neighbor matching and with payoffs which imply ¢* = 1/3. The time until
75% of the population first plays A is recorded. For very small populations, e.g.
10 players, the assumption of fixed sets of neighbors is not very important as there
is only limited room for clusters to be broken up. In larger populations, however,
most clusters will be broken up and hence the assumption of fixed neighbors is very
important, particularly when randomizations are rare so that new clusters do nrot
often arise. At the extreme of constantly changing sets of neighbors, evolution may
be very slow in large populations.

For most applications, the reasonable matching rule will fall somewhere between
the two extremes. In a population of economists, for example, there is clearly some
change in the sets of co-werkers over time, but the truth is probably much closer to
the assumption of stable relationships than it is to the other extreme. In this case, we

would still expect to see fairly rapid convergence to the risk-dominant equilibrium.

1.56.2 Population Sizes

In each of the applications mentioned in the introduction, there are a large number of
players. Whether this means fifty players or several hundred players, though, is not
certain. If we intend for the theory to capture what we think are characteristics of
play common to all large populations, we should hope again that the predictions of

the model are also fairly consistent over a range of reasonable population sizes. This
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Table 1.6: Effect of Changing Locations over Time*

10 Players
Matching Rule €e=0025 €=0.05 ¢=0.1
Fixed 726.6 97.3 16.0

(105.3)  (14.7)  (1.6)

Random Locations 721.9 87.4 15.7
(95.0) (12.1) (1.7)

50 Players
Matching Rule €=10.025 ¢=0.05 ¢=0.1
Fixed 150.1 32.2 10.6

(17.2)  (3.3)  (0.5)

Random Locations 5020.0 108.0 9.5
(567.5) (13.2) (0.6)

* Standard Errors in Parentheses

is the case for the models of local matching discussed above. Figure 1-2 illustrates the
relationship between the size of the population and the expected waiting time until
75% of the population has switched from playing B to playing A for three different
matching rules. The waiting times pictured are estimates for ¢ = 0.05 and payoffs
such that ¢* = 1/3.

The behavior illustrated above is quite different from that in the uniform model.
For very small populations, the waiting times may be fairly long. Waiting times are
usually decreasing in population size, however, and appear to be remarkably constant
for all population sizes above about 100. Intuitively, what ic happening is that there
is little change in play until the first sufficiently large cluster of neighbors playing A
forms. When the population is larger, there are more possible locations and therefore
more chances for such a cluster to occur randomly. Hence, the wait until the first
cluster appears is shorter. Eventually though, further increases in the population
size can no longer greatly speed evolution. Whether a typical individual will have
switched to playing A within the first, say, 40 periods depends not on whether a

cluster has formed anywhere in the population but rather on whether a cluster has
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Figure 1-2: Estimated Waiting Times for Various Population Sizes
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formed sufficiently close to him so that it can grow and reach him within 40 periods.
The important conclusion is that the results on the rates of convergence of models

with local matching are applicable for a wide range of large population sizes.

1.5.3 Heterogeneity

When modeling large populations it is unrealistic to assume that all players are iden-
tical. In the example of economists choosing computer packages clearly some will like
each package more than others depending on their knowledge of the package, and on
how well its features are suited to their work and thejr personal tastes. Obviously, if
the players’ preferences are sufficiently strong, players will completely ignore network
externalities and no evolution will occur. What I show here, however, is that the
addition of a small degree of heterogeneity actually speeds up convergence toward
the risk-dominant equilibrium.

Before discussing heterogeneity, let us quickly look at the effect of simply increas-
ing the payoff to (A, A) relative to that of (B, B). Recall that in the model with
eight neighbor matching on a circle and with our standard payoffsofa = 2,6 = 1,¢ =

0,d = 0, ¢* = 1/3 so that each player would like to play A if three of his eight
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neighbors play A. The behavior of the model will be identical for any other payofts
with ¢* € (1/4,3/8). Suppose now that we either increase the payoff to (A, A) or
decrease the payoff to (B, B) so that ¢* < 1/4. Each player will now prefer to play
A if only two of his neighbors play A. With no noise, a cluster of only two adjacent
players playing A will be sufficient to guarantee that all players will eventually switch
to A. The result is that convergence is much faster. Figure 1-3 graphs the estimated
expected waiting time until 75% of the population has switched from B to A for three

different ranges of ¢* for various randomization probabilities.

Figure 1-3: Estimated Waiting Times for Various Payoffs
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To model a limited degree of heterogeneity within the population, we might sup-
pose that payoffs vary within the population. Perhaps the simplest assumption to
make is that before the game begins each player is randomly endowed with preferences
over the two equilibria. Rather than assuming that u;(A4, A) = 2 and w(B,B) =1
for all i we can assume instead that for each player the two payoffs are determined by
independent draws from separate distributions on (0, 0c), the first with mean 2 and
the second with mean 1. Player i’s behavior will then be determined by the fraction
¢ = ui(A,A)/(ui(A, A) + wi(B, B)) of his neighbors who must play A in order to
make A his best response. In such a population, there will likely be a few players

who will play A if only a few of their neighbors have done so. In the vicinity of these
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players, smaller stable clusters of players playing A are possible and hence it will be
far easier for stable clusters of players playing A4 to form. Once these clusters begin
to expand, the fact that a few players prefer (B, B) will do little to slow their spread.
The result is that we will see more rapid convergence.

Table 1.7 examines the eflect of a small degree of heterogeneity on the expected
waiting times. In each case, a population of 100 players is assumed. The first line
gives the waiting time for any population in which all players have ¢* € (1/4,3/8).
Thie includes our familiar assumption of a homogeneous population with ¢* = 1/3.
Rather than adding noise explicitly to the payoffs, I simply assume that somehow
players have payoffs which result in the specified distribution of values of ¢.° The
second line records the behavior of a population where twenty players have ¢! €
(1/8,1/4), sixty have ¢! € (1/4,3/8), and twenty have ¢! € (3/8,1/2). The third line
adds more heterogeneity with five players having ¢! € (0,1/8) and five having ¢ €
(1/2,5/8), so that there are players who in fact prefer to play B when both strategies
are equally common among their neighbors. When e is large so that evolution is rapid
for a homogeneous population, heterogeneity has only a limited effect. What is more
surprising, though, is that for ¢ small, the heterogeneity dramatically increases the
rate at which play converges to the risk dominant A. This suggests that heterogeneity
may play an important role in allowing rapid convergence for an even wider range of

matching rules and parameter values than has already been identified.

®Virtually identical results can be obtained by assuming for example that the distribution of

ui(A, A) and u;(B, B) is that of independent draws from lognormal distributions with u;(A, A) 2
2.2u(B, B). (When u;(A,A) = 2.2 and u(B,B) = 1, ¢; = 5/16 is in the center of the interval
(1/4,3/8).)
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Table 1.7: Effect of Limited Heterogeneity*

Randomization Probability

Distribution of Payoffs €=0.025 €=0.05 e¢=0.1
a'€(5)3) 98.2 25.4 10.7
(7.5) (0.8) (0.2)

20 g7€(3,3) 60 ¢f€(5,2) 20 g7e(3,1) 40.4 17.7 9.4
(20)  (05) (0.2)

5 gr€(0,3) 20 gPe(3,3) 50 gre(4,3) 20 gre(2,1) 5 gre(L,§) 21.9 13.1 8.0
06)  (0.3) (0.2)
—_—— — m—m m e

¢ Standard Errors in Parentheses
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1.6 Conclusion

In this paper I have discussed a class of coordination gamet in order to examine the
implications of a learning process among a large population of boundedly rational
players. Kandori, Mailath and Rob (1991) introduced such a model and showed how
the players’ myopic adjustments create evolutionary forces which may select among
the equilibria.

The analysis presented here yields two main conclusions. First, understanding the
implications of dynamic models of learning requires that the rates of convergence be
considered as well as the asymptotic distribution. Second, the nature of the matching
rule which describes the interactions among the players can greatly affect the behavior
we will observe. When each individual is equally likely to be matched with a great
many opponents, play will exhibit great inertia. The play initially determined by
arbitrary historical factors will persist for a long perod of time regardless of whether
a Pareto-superior or risk-dominant alternative is available. On the other hand, in
communities in which players are only likely to be matched with a few close friends
or colleagues, we have seen that the learning process not only leads to a shift in play
toward the risk-dominant equilibrium, but also that the shift is rapid enough that it
may very well be seen early in the game. This conclusion appears to be fairly robust

to many aspects of the specification of the model.
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Appendix

Proof of Theorem 2
I first consider P¥(¢). Note that P(e) = Pj(¢) if states j and j' have the same

successor in the model with no noise. Hence, we may write

P“(¢) = R(6)Q

where
11 100 -« --. @
Q=00 ... ... 010 --- ... 0
00 001 ... ... 1

groups the states into three classes, the precursors of 0, [¢*(N - 1)], and the precursors
of N, and R(e) is an N +1 x 3 matrix which gives the probability of each state arising

given the class of the previous state. For example,

Ril(e) = P:;(G) VJ € {O'p L..., fQ'(N - 1)] - 1}°

From this decomposition, it is clear that P¥(¢) has exactly three non-zero eigenvalues.

Let C(e) = QR(¢). C(e)is a 3 x 3 matrix which can be regarded as giving the
transitions between the three classes of states. Note that P“(e)" = R(¢)C( )" 1Q.
Let v be an eigenvector of P“(e) with eigenvalue A > 0. We have Qv # 0 and
C(e)Quv = QR(€)Qv = AQv so Qu is an eigenvector of C(¢) with eigenvalue ). As C(e)
has rank 3, this gives a one to one correspondence between the non-zero eigenvalues
of P¥(¢) and the non-zero eigenvalues of C(e).

We can write

1—(p1+p2) T m
C(e) = » 1—(q1+q2) T2 (1.3)
P2 q2 1—(ry +7,)

where, for example, p, gives the probability of a transition from any precursor of 0
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to the state [¢*(N —1)],

N

P= [q*(N — 1)] Yl N=11(1 — )N=Ta (V=101

Look at the characteristic polynomial of C(¢) as a polynomial in z = 1 — X\. We find
that
Det(C(€) — M) = z(z* — a3z + ap) (1.4)

with

¢ = p1+p2rt+ i t+q+ritr2

a0 = (p1+p2)(@1r+ @) + (01 + @2)(r1 +712) + (71 + m2)(p1 + P2) — G272 — prqa — parr.

The root z = 0 corresponds to the eigenvalue A = 1. Let z;(¢) > z,(¢) be the

other two roots of this equation. As ¢ — 0,
z1(€) + z2(e) — 1

because ¢;(¢) — 1 when N — [¢*(N —1)] > [¢*(N — 1)] and all other terms in the

expression for a; converge to zero. We also have
z1(€)zz(e) = O(el(N-1)

as gz(€)p1(€) = O(e/”"(N-11) and all other terms in the expression for ay are of strictly
higher order. Hence, we must have zi(e) — 1 and z(¢) = O(el"V-11), Clearly,
1—z;5(€) is the second largest eigenvalue in absolute value for sufficiently small € so the

desired result for the uniform model follows fromr our characterization 7%(¢) = 1—z,(¢).

Now consider the model with two neighbor matching. In the argument that fol-
lows I shall use S to denote the set of states {4, B} and s € § to denote a mem-
ber of that set. As before, I use A, B, AB, and BA as shorthand for the states
(A,A,...,A),(B,B,...,B), etc. Throughout the proof I assume that N is even; a
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subset of this proof handles the case of N odd which is far simpler because the cycle
AB — BA — AB does not exist. For v a probability distribution on S y v, will denote
the probability assigned to state s. It will often be convenient to write v as a 2¥-tuple

ordered as
(v‘;, vAP,vH-A,vE, .. )

80 that, for example, (0,0, 0, L,0,...,0) represents a distribution which assigns prob-
ability 1 to all players playing B. (In writing this vector, some ordering is understood
for the 2V — 4 states I have not specially named. Each of these states will be as.
signed probability zero in the 2V -tuples which appear below.) Note that P{(¢) can
be considered to act on all 2V x 1 vectors v, not just on probability distributions.

Let C Ppe()(z) be the characteristic polynomial of P<(e). C Ppe(y and C Ppe(o) are
polynomials of the same degree whose coefficients converge as € — 0 so the set of roots
of C Ppy,) converges to the set of rcots of C Ppe(oy (with multiplicity). If we write the
eigenvalues of P(¢) with multiplicity as 1 = A(€) > |Aa(€)] > [Aa(e)] > ... > [Aan(e)
this implies

Defe)l — A0,

P%(0) has a three dimensional space of eigenvectors of eigenvalue 1 spanned by
11 ,
(1,0,0,0,0,...,0), (0, 5 -5,0,0, +++,0), and (0,0,0,1,0,...,0).

The first and third eigenvectors correspond to the steady states where all players
coordinate on 4 and B respectively. The second eigenvector corresponds to a 50-50
probability of being at each state of the AB — BA - AB cycle. PY(0) also has an

eigenvector of eigenvalue —1,
(0,1,-1,0,0,...,0).
From this we know that
Pa(e)l = 1, [As(e)] = 1, |Ag(e)] — 1,
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and all other eigenvectors have absolute value bounded away from 1.

I will now show that (1 — |A;(€)|)/€ is bounded away from 0 and oo as e — 0.
If not, we can find a sequence {¢;} converging to zero for which (1 — |X;(€;)|)/€; is
not bounded. Choosing an appropriate subsequence we may assume both that Ay(e;)
converges and that the corresponding eigenvectors v(¢;) converge to a nonzero limit
v.

Note that

P{(0)w = Lim P(&)v(e) = lim Az(e)v(e) = 2o

go that v is an eigenvector of P¢(0) with eigenvalue £1. After a further normalization
we must have either v = (0,1,-1,0,0,....0) or v = (a,¢,c,d,0,...,0) with a + 2¢ +
d = 0. (P%(¢;) is a transition matrix so the sum of the elements of P¢(¢;)v(e;) is equal
to the sum of the elements of v(e;). Az2(€;) < 1 then implies that the sum is zero.)

I now derive the contradiction that (1 — |A2(¢;)|)/¢; is in fact bounded by consid-
ering two cases for v.

Case 1. v = (a,¢,c¢,d,0,...,0) d#0

Here, we have );(¢;) — 1. We can write the eigenvalue as

A(e) = 2 os€S I:i'((;i))v‘(ei)
Loz8 Pj,(€)v,(€:)
vﬂ(fi) :

= Pgg(e) +

Note that
Pig(e) = (1 - Nei + O(el))

For s # B, the successor of s in the model with no noise has at least two players

playing A, so a transition from s to B requires at least two e-probability events.
We then have that P (e;) = O(eF) for some k > 2, and v,(¢;) is bounded. Hence,
P, (€:)v,(€:) = o(e;) and

Az(ég) = 1- NG,‘ + 0(6,’)
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as desired.
Case 2. v =(0,1,-1,0,0,...,0) or v = (-2,1,1,0,0,...,0)
The proof for this case is somewhat longer. To make things clearer, let me hegin by

simply stating a pair of intermediate results I will prove later. The first is that we

may assume without loss of generality that
vap(€:) = vau(e) = 1

in the case Ay(¢;) — 1 and

vae(€) = —vgu(e) =1

in the case Ay(¢;) — —1. The second is that for S the set of immediate predecessors
of AB (other than B_:A) in the model with no noise (e.g. (B, B, B, A, B, A, ..., B,
A)andse $

i + ;) ifsh Y¥i1pl layi B
Aa(es)oa(es) = { € +o(¢;) if s has 5 4 1 players playing (1.5)

o(e€;) otherwise

Given these results, write

A2(e) = Taes Piwa(€)vo(ei)

‘UAb(Et)
= Plygle ):::2:)*2 G ) ( +ZP§M( )l.:;:;;))

The first term in this sum is equal to +(1 — Ne; + o(e;)). There are ¥ states s in
$ with v,(€&) = t€; + o(e;) (for N > 4) and PL.(€) = 1 — O(g;) for all such states
so the second term is equal to :i:%e,- + o(e;). Finally, the third term is o(e;) as for
s € {4, AB}, P4, (&) is O("?) and O(eN) respectively, while for all other s, P4 (&)

is O(ef) for some k > 1 and v,(¢;) is o(1).
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Summing the three terms we find that
N
Aa2(e) = (1 - Cha + o(ei)),

Thus, as in the previous case, we have the contradiction that (1 — |X;(¢)|)/€ is
bounded. (In fact, the existence of an eigenvalue with A\(¢) — —1 guarantees that
(1= Pa(e))/e — &)

To complete the proof, I now return to the two details I omitted earlier. First,
let v(e;) be any eigenvector of P%(¢;) with eigenvalue A;(¢;). Define v(e;)™ to be the
vector with

v,(€&)" = v,r(€;)

where s" is the reverse of the state s, i.e.
(al,az, e ,aN)' = (aN,aN_l, . e ,a,l).

As P(¢;) is symmetric, v(e;)" is also an eigenvector with eigenvalue \,(¢;) as are
v(&;) + v(e)” and v(e;) — v(e:)". Replacing v(e;) by v{e;) + v(e;)™ in the Ay(e) — 1
case, and by v(e;) — v(e;)" in the A\; — —1 case allows us to assume v p(¢;) = vga(€)
and v,p(€;) = —vgu(€) respectively.

For the second result, let R denote the set of all states in the basin of attraction
of AB — BA cycle in the model with no noise, and let Ty, C R be those states for
which AB is reached before BA. Note that T,» is naturaily viewed as an ADB-tree
with an arrow leading from each element to its immediate successor in the no noise
model. For any s € T,y we may define the height h(s) to be the length of the path
from s to AB in this tree.

By induction, we first show that v,(¢;) = o(e;) for h(s) > 2. Consider first all

elements s with h(s) = max,ier h(s') = § — 1 if & — 1 > 2). We can write

Az(€)v(e) = Y Plu(e)va(e:) (1.6)

s'eS
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For s' & {A, AB, BA}, v (&) = o(1) as v(e;) — v and P, (&) = O(e¥) for some k > 1
as s has no predecessors in the model with no noise. For s’ € {A, AB, BA}, at least
% — 1 e-probability events are required for a transition from s’ to s so P%,(€;)v.(e;)
is o(¢;) if h(s) > 2. Once the result has been established for all s with h(s) = k > 2,
the result for h(s) = k — 1 again follows from the relation (1.6) with only the added
calculation that for s’ an immediate predecessor of s, P.,(€;)vy(¢€;) is again o(e;) as
v,(€;) is o(¢;) by the inductive hypothesis.

To get the desired result (1.5) take any s € Ty, with h(s) = 1 and use (1.6). For
s' = AB, v4(€) =1 and

€ + o(¢;) if s has ’—;’- + 1 players playing B, and

P, (€)=
“» { o(¢;) otherwise.

For any &' € Ty with h(s') = 2, v,(&) = o(e;). For ' € {A, BA}, PL. (<) is at
least O(eg *1) and O(2M*) respectively. Finally, for any other s', v,/(¢&;) = o(1) and
PE.(&) = O(€¥) for some k > 1. Adding all the terms gives (1.5) as desired.
QED.
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Chapter 2

Cooperation in the Prisoner’s
Dilemma with Anonymous

Random Matching

2.1 Introduction

Ever since the earliest work on the Folk Theorem, it has been well known that when
two players face each other in a repeated prisoner’s dilemma the “cooperative” out-
come can be sustained as a perfect equilibrium (Friedman, 1971; Aumann and Shap-
ley, 1976). A variety of extensions are possible. Given additional assumptions, the
Folk Theorem has been shown to apply to N player games, finite horizon games
of incomplete information, and games with imperfect observations (Fudenberg and
Maskin, 1986; Fudenberg, Levine, and Maskin, 1991). Recently, Kandori (1989) and
Okuno and Postlewaite (1990) have discussed extensions of the Folk Theorem in a
different .direction, loosening informational requirements which may be unreasonable
for matching games played by large populations of players. In this paper I continue in
this direction, looking not at the Folk Theorem for general games, but simply at the
prisoner’s dilemma in a random matching setting under the most extreme informa-
tional assumptions—that players not only do not observe the outcomes of games in

which they are not involved, but also are completely anonymous in that they cannot
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recognize or commuricate the identities of any of their past opponents. The fairly
robust conclusion that players can still cooperate has implications for both applied
and game theoretic uses of random matching models.

Recent papers by Greif (1989) and Milgrom et. al. (1990) have used random
matching models to discuss characteristics of Medieval trade. Greif discusses the
Maghribi traders, a group of North African Jews who conducted trade in many
Mediterranean countries in the 11** century. Milgrom et. al. discuss trade in cities
end fairs in Medieval Europe. In each case, the underlying model is one of a large
number of traders who in each period are randomly paired with a trading pariner.
Each pair is presumed to play a game like the prisoner’s dilemma with each party
having both the opportunity and a private incentive to cheat the other by under-
reporting sales on consignment, reneging on promises to make future payments or
deliveries, supplying goods of inferior quality, etc.

Standard Folk Theorem results imply that we can construci an equilibrium under
full information where all traders will have an incentive to cooperate. The standard
equilibrium involves a punishment phase directed at any player who cheats followed
by a subsequent reward for players who carried out the punishment. In the random
matching environment, this equilibrium makes considerable informational demands
on the players. Not only must players be able to recognize a cheater whenever they
meet him again, but somehow his identity must also be communicated to all the other
players as well. Greif argues that the closeness of the Maghribi community allowed
them to maintain cooperation. He cites evidence that many traders maintained ties to
traders in other cities. Via this network of relationships they would quickly learn the
identity of any cheaters, allowing the offending parties to be punished. Milgrom et.
al. argue that such closeness no longer existed with the development of larger towns
and trade fairs where keeping up with the reputation of every individual would be
unreasonably demanding. They argue that this informational problem was resolved
by the development of the Law Merchant, a private legal code whereby disputes could
be tried before a judge who often lacked the power of enforcement. Nonetheless, this

system could sustain cooperation if all traders consulted the judges’ lists of cheaters
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and refused any dealings with them. Maintaining this system is clearly costly, but
Milgrom et. al. claim that the system seems well designed to keep costs as small as
possible.

Random matching models have also been viewed as a possible metliod of reducing
the multiplicity of equilibria in repeated games. Rosenthal (1979) discusses “rational
Markovian hypotheses” in which all players react to steady state conjectures based
only on their current opponent’s play in the previous period, not on any further
history. In the case of the prisoner’s dilemma, both players cheating in every period
is the only such equilibrium (except in one special case). Similarly, Milgrom et. al.
(1990) note that with an infinite population and an extreme matching rule where no
player can affect his future opponents’ play in any way, cheating is the only Nash
equilibrium outcome. While this is clearly an extreme case, it might be thought that
in large finite populations individuals can have only a small impact on the future,
and hence that there should be little difference.

In this paper, I discuss a random matching model similar to all those discussed
above. There is a large finite population of players who are randomly paired to play
the prisoner’s dilemma in each period. The important informational assumption is
that of anonymous interactions. In each period players only observe the outcome
of the game in which they participate. They do not observe the identity of their
opponent, nor do they observe the outcome of any of the games played by other pairs
of players. The one informational convenience I do allow myself through most of the
paper is to assume that some publicly observable random variable allows the players
to coordinate their actions. For example, all traders at a fair might be able to observe
the weather or hear official announcements. I later discuss how many of the results
of the paper can be obtained without public randomizations.

Because of the assumption of completely anonymous interactions, the standard
Folk Theorem does not apply. Nonetheless, Kandori (1989) shows that sometimes it
may be possible to sustain cooperation. He defines “contagious” punishments where
when one player cheats in period t, his period t opponent cheats from period t+1 on,

infecting another player whe cheats from period t+2 on, etc. For a fixed population
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size, he shows that we can define payofts for the prisoner’s dilemma which allow
cooperation in a perfect equilibrium. However, when the population is large the
argument applies only to games with extreme payoffs.

In this paper, I adapt Kandori’s arguments to study two main problems. First, for
general payoffs in the prisoner’s dilemma, does a cooperative equilibrium exist? I find
that the answer is yes for sufficiently patient players. The basic idea of the equilib-
rium is to use contagious punishments which lead to a breakdown of cooperation after
a single deviation. The public randomizations allow the severity of the punishments
to be chosen so that the players fear a breakdown enough that they will not deviate
first and destroy cooperation, but do not fear the breakdown so much that they are
unwilling to contribute to its spread once it has begun. At several points I empha-
size that this cooperation does not require unduly patient players. This result has
implications for each of the applications of matching games mentioned above. In the
models of trade, it suggests that while the institutions discussed may have facilitated
cooperation in practice, they are by no means necessary or the least costly option
in the abstract model. With regard to matching games as a device for reducing the
equilibrium set, the results suggest that for the prisoner’s dilemma it is the particular
assurmptions about the matching rule or the players’ reactions which drive the results.

The second problem is a study of the stability and efficiency of the equilibrium in
a world with noise. Kandori observes that in the equilibrium he constructs a single
deviation causes a permanent end to cooperation and comments that this fragility
may make the equilibrium inappropriate as a model for trade. His observation reflects
two quite distinct concerns. The first is a modelling issue I shall refer to as “stability”.
If we intend the equilibrium to model cooperation in actual social settings and believe
that in the real world punishments never last infinitely long we would like to construct
an equilibrium with this property. Given public randomizations, this is not difficult.
The second is a desire for a model which retains its efficiency in a world with noise.
If we introduce noise by assuming that players either tremble and accidentally play
the wrong strategy or misinterpret the actions of others, the equilibrium Kandori

gives will be inefficient. Because cooperation eventually breaks down, the expected
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payoff to very patient players will be near the non-cooperative level. In the standard
repeated prisoner’s dilemma with noise, the resuits of Fudenberg, Levine and Maskin
(1991) imply that this inefficiency can be avoided. In the random matching model I
am able to show that for sufficiently small probabilities of mistakes being made there
is a perfect equilibrium in which players need not change their strategies in response
to the presence of mistakes, and in which the inefficiency is small. We can conclude
that the cooperative equilibrium with anonymous matching need not be as fragile as
it has been portrayed.

The paper is organized as follows. Section 2 describes the model more precisely
and exhibits a perfect equilibrium which sustains cooperation. Section 3 discusses the
problem of stability and also shows that after introducing noise into the model we
can still construct an equilibrium whose payoff approaches the efficient level as the
amount of noise tends to zero, even for very patient players. Section 4 discusses the
extension of the results to a model without public randomizations. While I believe
that the public randomizations are appropriate for many applications, it is in the
spirit of this paper to make due with as little information as possible. I show that
we can in fact construct a cooperative equilibrium without public randomizations.
Interestingly, this equilibrium remains nearly efficient in a model with noise even

though it is no longer stable.

2.2 The Random Matching Model

For the remainder of this paper, I analyze the model described below. The game has
M players indexed by ¢ € {1,2,..., M} where M > 4 is an even number. In each
time period ¢ € {1,2,3,...}, the players are randomly matched into pairs with player
i facing player o0;(¢). It is assumed that the pairings are independent over time and
uniform so that

1

PIOb{O{(t) = jlht—l} = M———l V] 94 )

for all possible histories h,_,. At time t, each pair of players plays the prisoner’s

dilemma as shown below. The payoff g is taken to be positive with ¢ non-negative so
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that each player has D as a dominant strategy in the stage game. All players have
discount factor § € (0,1) and their payoffs are the discounted sum of the payoffs in
each stage game. At the end of period t, each player observes only the outcome of
the prisoner’s dilemma he and his opponent played. He does not observe the identity
0i(t) of his opponent and does not observe the outcome of any of the games played

by other pairs of players.

C 1,1 —{, 144

D 14+g, —¢ 0,0

In addition, I assume in this section and in the one which follows that before
players choose their actions in period t, they observe a public random variable g: which
is drawn independently from a uniform distribution on [0,1]. In some situations, it
seems reasonable to assume that such a randomization is available. For example,
all traders at a market may have access to the same newspaper or hear the same
government announcements. In any case, the use of public randormizations simplifies
the exposition below. I later discuss how many of the same results can be obtained
without public randomizations.

The first thing to note about this model js that we can not implement the types
of strategies usually used to prove the Folk Theorem. For example, when a player
is the first to deviate, there is no way of identifying him, so it will he impossible to
punish one player more severely and reward others for carrying out the punishment.
Also, there is no obvious way to convey any information about the precise time of the
deviation so that players could coordinate on something like T-period punishments.

Kandori (1989) shows that contagious punishments can be used to sustain colly.

sion in some circumstances. Specifically, he shows that for any population size M, we
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can choose the payoff £ so that cooperation is a perfect equilibrium for sufficiently
patient players. The choice of £ is used to give players an incentive to carry out the
punishment which follows a deviation. Unfortunateiy, the value of ¢ Kandori uses
grows without bound as M increases and may be unreasonable for moderate values
of M.

The main result of this section is that cooperation is indeed a perfect equilibrium
of the random matching game for any payoffs g and £. The equilibrium is supported
by strategies like Kandori’s which rely on contagious punishments. All subsequent

results will rely on similar strategies. The following proposition gives the basic result.

Proposition 1 Consider the random matching model with public randomizations de-
scribed above where M > j players play the prisoner’s dilemma with g > 0, € > 0.
Then, 36 < 1 such that V& € (8,1) there is a perfect equilibrium s*(8) of the repeated
game in which all playere play C in every period.

Before giving a formal proof, I first discuss the strategies which s*(§) which will
support the equilibrium. The strategies described below employ a contagious process
by which a deviation in period t will usually lead to two players playing D in period
t+1, then four players playing D in period t+2, etc. The result is a breakdown of
social cooperation which punishes all players after one deviates. Given a function
q(8) to be defined below, the strategies are as follows.

In period 1, all players begin play according to phase I.
Phase I. Play C in period t.

If (C, C) is the outcome for matched players i and j, both play
according to phase I in period t+1.
If (C, D), (D, C), or (D, D) results in the game between players
i and j, then at time t+1 both play according to phase II if
ge+1 < q(8) and according to phase I if g4 > q(6).

Phase II. Play D in period t.
In period t+1 play according to phase I if ¢,; > ¢(6) and
according to phase Il if ¢4, < ¢(§).
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The public randomizations are used to adjust the severity of the punishment
phase so that it lasts 1/(1 — g(§)) periods on average. The basic idea of the proof is
this. In a perfect equilibrium the continuation payoffs of the players must satisfy two
constraints. First, players must not want to deviate and play D in phase I. When
punishments are of infinite duration (i.e. for ¢(§) = 1), sufficiently patient players
will not want to cause a breakdown of cooperation in phase I so this constraint is
satisfied. Second, we must recognize that in phase Il players might deviate and play
C in hopes of slowing the spread of the contagious punishment. When punishments
never occur (i.e. for g(§) = 0) there is no possible gain to deviating in phase II so
this constraint will be satisfied. |

To prove the theorem, I show that there exists at least one value ¢(6) which is both
large enough to prevent deviations in phase I and small enough to prevent deviations
in phase II. The intuitive reason why this can be done is simple. In either phase
I or phase II player i gets the same short term gain of g from playing D when his
opponent cooperates. However, starting a punishment by playing D in phase I causes
a greater loss in continuation payoff than does spreading a punishment by playing D
in phase II. Once play is in phase II, cooperation is breaking down anyway so one
extrs deviation has limited impact. Choosing an appropriate purishment severity,
the loss from starting a punishment deters playing D in phase I, but the loss from
spreading a punishment does not deter playing D in phase II.

To formalize this argument let k be the number of players who are playing ac-
cording to phase II at the start of period t. Define f(k,$§,q) be player i’s (per period)
continuation payoff from period t on when all players are playing the strategies above,
and playeri and k — 1 others are playing according to phase II. If player i deviates and
plays D in phase I in period t, he gains g in period t but will have a lower continuation
payoff from period t+1 on. To show that no deviation is profitable in phase I we must

show that

(1) (1-48)a < 6‘1(6)(1 — £(2,6,4(8)))-
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We can also derive a similar sufficient condition for there to be no profitable
deviation in phase II. If player i deviates and plays C in phase II at timc t we have
one of two possibilities. First, he could be matched with someone else who is playing
according to phase II. In this case, the result in period t is (C, D) instead of (D, D),
and continuation payoffs are unaffected. Clearly, player i is not better off because
£ > 0. Second, player i might be matched with someone who is playing according
to phase I. The period t outcome is then (C, C) instead of (D, C) so player i loses
g in period t. In the continuation game, however, one fewer player will be playing

according to phase II. The deviation is not profitable if

(1 —8)g > 6q(8) E; [(f(3,6,q(8)) — f(7 +1,6,4(8))]

where the expectation reflects the fact that player i does not know how many other
players will play according to phase Il at time t+1. To show that this relation holds for
all possible beliefs of player i, a sufficient condition is to show that it holds pointwise,

t.e.

(2) (1—8)g > 6q(8) (f(4,6,9(8)) — f(5 +1,8,4(6)))  Vj=3.

When (1) and (2) hold, we have a perfect equilibrium. In establishing these relations,
both the result and the intermediate calculations of the following lemma will prove

useful.

Lemma 1 f(k,$,q) is convez in k for k > 1, i.e.

f(k,8,q) — f(k+1,6,q4) > f(k +3,6,9)— f(k+3s+1,6,9)
for all s > 1.

The lemma simply states that the loss in continuation payoff from having one
extra player infected declines as the number of infected players grows. This is to

be expected as when many players are infected, the one extra player not infected
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in period t is likely to become infected in period t+1 anyway and thus never have
3 chance to affect player i's payoff. The proof is straightforward once I introduce
enough notation.
Proof of Lemma 1
Note that
f(k,6,9) = E, g(k, 6, q,w),

where w is the random variable whose realization is a pairing of all the players in each
period, and the function g gives player 1’s continuation payoff for a given matching
when he and players 2,...,k are playing according to phase II. For expositional
convenience I define h(k,§,q,w) to be player i’s continuation payoff when he and

players 2,...,k and player M are playing according to phase II. Clearly

E, g(k + 1:61‘1’“’) = E, h(k"s’ q,w).

I show that

Ewlg(k’sﬂb“’) - h("? ‘quyw)] 2 E.,[g(k +8,0,q,w) — h(k + s, 61‘11“’)]

by showing that the inequality holds for every realization of w.
Define the set C(t,k,w) by

C0,k,w) = {k+1,k+2,...,M}
C(t+1,kw) = {i€C(tk,w)|ot,w) € C(t,k,w)}.

C(t,k,w) will be the set of players still playing according to phase I in period t when
¢, < g for all s <t and players 1,2,...,k begin in phase II in period 9.
Define the set D(t,w) by

D(0,w) = {M}
D(t+1,w) = D(t,w)U {iloi(t,w) € D(t,w)}.
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D(¢,w) gives the set of all players who will be playing according to Phase II in period
t if player M begins in phase II in period 0.

Note that the payoff to player 1 in period t differs between the situations of
9(k,6,q,w) and h(k,é,q,w) only if g, < q for all s < ¢ and only if his opponent
01(t,w) plays C when players 1,2,...,k start in phase II but plays D when players
1,2,...,k, and player M start in phase II. Thus,

(3) g(k’ 8’ Q1w) - h("; 69 qvw) = Z(l - 6)‘1‘6‘(1 +g)I{01(t,w) € C(ta k’w) n D(t’w)}'
t=0
The definition of C clearly implies that
C(t,k+ s,w) C C(t,k,w)

80

C(t,k+ s,w) N D(t,w) C C(t, k,w) N D(t,w)

and the expansion (3) gives the desired result. QED

We are now in a position to give

Proof of Proposition 1

Let 5*(6) be the strategy profile given above. It suffices to demonstrate the existence
of a § < 1 such that (1) and (2) hold for all § € [§,1). To establish the relation (1),
we will simply define § and ¢(6) on [§,1) so that (1) holds with equality. To see that

this is possible, note that for ¢(§) = 1, punishments are infinite so
f(27 6: 1) = 2: 6tat
t=0

where a, is the expected payoff in the ¢*h period after phase II play begins. With
probability 1 all players will eventually be infected and start playing D so that a, — 0.
We then have

) 6
Bim -—= (1= f(2,6,1)) = oo
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]
—3(1 - f(2,6,1)) = 0.

fim T

By continuity we can choose § € (0,1) so that

&
i—_—z(l - f(2).é,1)) =g.

Note that when (1) holds with equality, a player in phase I is exactly indiffer-

ent between playing C and D. The payoff to a player who plays D in period 1 is
f(1,8,49(8)). Thus, (1) holds with equality only if

@) 290) (£(1,8,9(8)) ~ $(2.6,a(6)) = 5.

The converse is also true. When (4) holds, a player in phase I is exactly indifferent
between playing D in period t (and following the equilibrium strategies thereafter)
and playing C in period t then deviating and playing D in period t+1. Applying
the same indifference again, he is also indifferent between deviating in period t and
playing C in periods t and t+1 and then deviating in period t+2. Repeating this
process, he is indifferent between deviating in period t and cooperating in all future
periods. This implies that (1) holds with equality.

From expansion (3) we have

(5)
éq_s (f(kas’ q) - f(k + 1167 q)) = Z(sq)t+l(l+g)l)r°b{ol(t’w) € C(t’ k’w)ﬂD(t’w)}'

As the right hand side depends only on the product éq, we simply define
q(8) = §/6.

Then, for any § € [§,1), 6g(6) = & and

29) (51,6, 4(8)) ~ £(2.5,a(8)) = 9
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a8 desired.
The result of the lemma now immediately implies (2) and hence completes the

procf. QED

In a full information model, the “grim” strategies immediately punish a player
wko has cheated once. In contrast, the contagious punishment takes time to spread
throughout the population so that a player may be able to cheat several opponents
before he begins to suffer from the punishment phase he has brought on. This ob-
servation leads us to ask whether the equilibrium described in Proposition 1 requires
undue patience ou the part of the players.

Table 2.1 gives the mininum value of § which can sustain cooperation for several
population sizes M and for several values of the gain g to deviation. The discount
factor for M = 2 is the discount factor necessary for the standard “grim” equilib-
rium in a two player game. While the contagious equilibrium requires more patient
players as the population size grows, we certainly can not say that the increase in
patience is so dramatic as to render the cooperative equilibrium impractical for large
populations. If players discount the future at a rate of 5% per year, a discount
factor of 0.996 is appropriate for monthly interactions. From the table, it is clear
that in a model with frequent interactions like weekly or monthly trade at a market,
contagious punishments will support cooperation for a broad range of payoffs and
population sizes. Even if we wish to model annual interactions so that § — 0.95 is
reasonable, cooperation is possible provided that the gain from cheating is not too
large. While contagious punishments are less potent than the full information “grim”
strategies, they are still sufficiently powerful to sustain cooperation with anonymous
interactions for very reasonable discount factors.

To better appreciate the power of the contagious punishments in large populations,
it is instructive to compare the discount factors of Table 2.1 to those necessary for an-
other large population equilibrium. While we have focussed on completely anonymous
matching, it should be noted that for many applications it may be reasonable tc make

the less stringent assumption that identities can be observed but not communicated,
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perhaps because you recognize someone who cheated you but can not communicate
an adequate verbal description of the person’s appearance. In this model, we could
sustain cooperation through personal retaliation with strategies where a deviation
by player i in period t causes his period t opponent 0;(t) to play D whenever they
are matched in the future. Note that this equilibrium requires frequent individuel
interactions, and thus requires far more patient players than does the equilibrium
with contagious punishments. If player i cheats in period t, he gains g in period t
and loses 1 in each future period in which he is again matched with 0;(t). This gives

a cooperative equilibrium only if

o 1 g(M —1)
&t > = 6> —— 7
,);; M-1-7Y 1+g(M—1)
For ¢ = 1 and M = 500, for example, this requires § = 0.958, whereas § = 0.92 is

sufficient for the equilibrium with contagious punishments.

2.3 Stability and Efficiency with Noise

The cooperative equilibrium described in section 2 exhibits the desirable property of
global stability described by Kandori (1989). That is, after any finite history, the
continuation payoffs of the players eventually return to the cooperative level (with
probability 1). Obviously, this is a result of the introduction of public randomizations.
The stability does suggest, though, that robustness in this sense is not a big problem
for this model.

A more interesting question is whether we can still sustain a nearly eflicient out-
come in a model with noise. Suppose we really believed that the model of section
2 with its completely rational players and perfect observations were an accurate de-
piction of reality. Even if players follow the strategies of an equilibrium with infinite
punishments, in equilibrium tke punishment never begins, so we have no reason to
care about the behavior of the continuation payoffs after a deviation. On the other

hand, suppose that there is noise in the model, as players either act irrationally some
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fraction of the time, or try to cooperate but make mistakes and play the wrong strat-
egy or misinterpret their opponent’s action. Again, I would argue that whether an
equilibrium is stable is not the appropriate question to ask. If we have a globally
stable equilibrium in which the continuation payoffs return to the cooperative level so
slowly so that with noise the equilibrium has an expected payoff near zero, stability
is uot comforting. Suppose we have two different equilibria which have the same loss
of efficiency after any deviation. Should we care if one equilibrium has all the inef-
ficiency right away and then returns to cooperation while the other spreads out the
same inefficiency over an infinite time period? The answer, I think, is that all that
matters is the degree of efficiency the equilibrium attains in a model with the noise
explicitly modeled.

In the two player repeated prisoner’s dilemma complete efficiency can be attained
in the limit § — 1 (Fudenberg, Levine, and Maskin, 1991). I now introduce noise into

the model of section 2 by assuming that all players are constrained to play D with

probability at least ¢ > 0 at every possible history. In the trade example, this could ™ T

correspond to players trying to supply a high quality good but accidentally supplying
one which proves defective. A similar result could be obtained if we assumed instead
that there was only noise in observing opponents’ actions. While the equilibrium
of section 2 is not robust to this noise (because of the exact indifference during
phase I play), the proposition below shows that for a slightly longer punishment
length we do in fact have an equilibrium robust to this noise. While the existence
of a fully efficient equilibrium is still an open question, the equilibrium described is

approximately efficient in the sense that it approaches efficiency as ¢ — 0.

Proposition 2 Under the assumptions of Proposition 1, there ezists § <1anda
set of strategy profiles s*(§) for & € [&',1) of the random matching game with the
Jollowing three properties:

1. In the game with discount factor &, s*(8) is a perfect equilibrium with all players
playing C on the path in every period.

2 Define s*(6,¢) to be the st ategy which at each history assigns probability e to D and
probability 1 — € to the action given by s*(8). Then, there ezists € > 0 such that Ve < &
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s*(8,¢) is a perfect equilibrium of a perturbed game where all players are required to
play D with probability at least ¢ at each history.
3. For u; defined to be player i’s expected per period payoff,

P—I.% }1_1}} u; (8°(8,¢)) = 1.

Qutline of Proof
We will show that s*(§) can be taken to have the same form as the strategy profile in
the proof of Proposition 1, but with a slightly larger probability ¢'(§) of continuing in
a punishment phase. The proof requires attention to some tedious details, so I only
outline the proof here and leave the rest to the appendix.

To begin, I give a slight extension of Lemma 1, showing that the continuation
payoft function f is strictly convex. The strict convexity allows us to choose a slightly
larger ¢'(6) so that the two inequalities which describe a player’s loss from deviating

in phase I or phase II of the model with no noise hold strictly. Formally, the appendix

shows that we can choose 7 > 0 (independent of §) for which

Q 20 (£(0,8,4(8) - F2,6,46)) > g +1
and
M 2 (000 - Skt L8O <g-n  WE22

This immediately gives property 1.

To show that these strategies give an equilibrium for all sufficiently small € requires
two further steps. First, it must be shown that the left hand side of each equation is
uniformly continuous in € so that for small enough ¢ the inequalities above still kold
but with 7 replaced by 7/2. For f(k,$é,q,¢) defined to be the continuation payoff of

the strategies 3°(6, ¢) the appendix demonstrates the existence of an & > 0 such that
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for any € < &

(8 2@ (1,646, ) — £(2,5,4/6),€)) > g+ /2

and

@ T (f(k 8,00 - Sk + 16,00 ) <g-n/2  VE2 2,

Second, we have a new complication in that when a player is playing according to
phase I, he can no longer believe with probability 1 that all other players are doing
so. Again though, as ¢ — 0, this uncertainty also has an effect which vanishes so that
the incentives to cooperate are maintained for sufficiently small e. This completes the
proof of 2.

Finally, the proof that we get efficiency in the limit is easy. The basic idea is that
the punishment phases have a finite expected length bounded above by a constant
independent of § for & close to 1. As ¢ -+ 0 a vanishing fraction of the p-riods is spent
in & punishment phase, so the expected payoff tends to the efficient level. Again the
details are in the appendix. QED

The results of Proposition 2 indicate that the perfect equilibrium I have described
is far less fragile than it might appear at first. The same strategies yield an equilibrium
for all sufficiently small amounts of noise, so players can cooperate even if they do
not know the precise frequency with which other players make mistakes. Further,
the strategies are truly supporting cooperation in the sense of having nearly efficient

payofts with noise.

In applying this conclusion to models of trade, however, some caution is called for.
If we think that mistakes are common enough that say one player in the population
makes a mistake in each period, the strategies given clearly will not support a nearly
efficient equilibrium. The set up of Milgrom et. al. (1990) suggests one possible way

of ameliorating the problem. Suppose we modify the stage game so that a player
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who accidentaliy cheats has the opportunity to give back his excess payoff after a
trial and avoid the start of a punishment phase. With this stage game, if we assume
that mistakes are the result of independent trembles at each information set, a player
would have to tremble twice in a row to start a breakdown. For a given probability
of trembling, accidental punishments are far less common so we may have a far more
efficient equilibrium. The Law Merchant could then serve a different but still very
useful purpose in the equilibrium I have given by reducing the frequency with which
breakdowns of cooperation occur.

The fact that each action in our equilibrium with contagious punishments is a
strict best response also allows the further extension that follows. In a large popula-
tion (like a group of medieval traders), we may want to allow for heterogeneity among
the players. In particular, it is probably reasonable to assume that the players have
different rates of time preference. In each of the first two propositions, the equilibrium
strategy profile s*(8) is a function of the discount factor. For each discount factor 6,
the equilibrium involves a different probability q(8) of continuing within the punish-
ment phase. Hence, the strategies are only appropriate for a population of players all
of whom share a common discount factor. As long as all of the players are sufficiently
patient, however, we can eliminate this restriction. The proposition below guarantees
the existence of a perfect equilibrium strategy profile s* which is not a function of &.
This profile will then sustain cooperation regardless of whether the population shares
a common discount factor. For convenience, I shall discuss only a model without
noise although the arguments clearly extend to the results of Proposition 2 as well.

The proof is similar to that of Proposition 2, but is less involved.

Proposition 8 Under the assumptions of Proposition 1 , there ezists a strategy profile
s* and a constant §" < 1 such that V6 € [§",1), s* is a perfect equilibrium of the

repeated matching game and all players play C in every period on the path of s*.

Proof

Once again, let s* be a strategy profile like the one described in the proof of Proposi-

tion 1, but this time use the punishment probability ¢” = lims_1q'(8) = &', a constant
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independent of §. An intuitive argument for the rest of the proof is that for § close to
1, ¢" is close to ¢'(8) so the strategy profile s* is very close to the 3*(8) of Proposition
2. Because s*(8) is a strict equilibrium, this should suffice.

Completing the outline above involves some tedious calculations so I give a simpler
constructive argumen? instead. Let §" = §/§', where § is as defined in Proposition 1.

For any 6 € [§,1), we have §¢” < ¢" = §'. Hence, from (5) and (7) we know that

T A - 6,0 < 1f—g(f(2,é',1)—f(3,é’,1))

< g-—n1.

We also have 6¢” > §. Hence, (5) and the definition of § gives

"

L (L,6,0) ~ F2,8,0) 2 i (£(1L8,1) - £(2,6,1)

1 -

As in Proposition 1, these two conditions are sufficient to show that we have a perfect

equilibrium. QED

A potentially disturbing aspect of the preceding proof is that because it involves
another limit as § — 1, the equilibrium with heterogeneous discount factors might
require far more patient players than was previously necessary. From Table 2.1 we
know that Propositions 1 and 2 do not require unreasonably patient players. Cer-
tainly, the equilibrium described in Proposition 3 will sometimes require more patient
players. This is particularly true when the gain g from deviation is small so that it is
hard to get players to carry out punishments. For example, for a population of 100
players, if we take g to be 0.01 the the equilibrium as constructed requires § = 0.96.
Usually, though, we will think of g as being much larger. In the trade example, the
payoff of 1 represents the profit or consumer surplus from an honest transaction. The
gain of g from cheating might represent the additional cost savings from either failing

to deliver the good or producing a good of inferior quality. These potential gains are
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liable to be at least as large the profits from honest trade, so it is more appropriate
to assume that g is near 1 than 0.01.

For such parameter values, equilibrium with heterogeneity does not require unduly
patient players. In fact, it often requires that players be no more patient than in the
model with homogeneous players. When the constraint that players be willing to
carry out punishments is sufficiently far from binding, we can simply use infinite
punishments for all § € [§,1) to get an equilibrium. Numerical calculations show this

to be the case for each of the population sizes given in Table 2.1 for g=1or g=10.

2.4 Cooperation without Public Randomizations

Throughout this paper, I have assumed that a public randomizing device is available.
For many applications, including trade at a market, the assumption seems reasonable.
Whenever all the players are present at the same physical location it seems likely
that if the players looked hard enough they could find some random factor like the
weather which everyone could observe and hence use to coordinate. Nonetheless, the
focus of this paper is to describe how cooperation can be maintained with very little
information available to the players. In this spirit then, I discuss what can be done
without public randomizations.

In Fudenberg and Maskin’s (1986) proof of the perfect Folk Theorem, public ran-
domizations played a crucial role in allowing the adjustment of players continuation
payoffs necessary for maintaining exact indifference. Fudenberg and Maskin (1991)
show that public randomizations are, in fact, not necessary for this purpose. The
crucial insight is that payoffs in the convex hull of the set of feasible payoffs can be
obtained instead from a deterministic sequence of play.

In this paper, public randomizations are playing two quite distinct roles. First,
they are used as a coordinating device so that all players can simultaneously return
to cooperation at the end of a punishment phase. The simultaneity is important
because all players only slightly prefer cooperating when all others are doing so. If

the probability that everyone else returns to cooperation in period t is not very close
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to one, no one will be willing to try returning to cooperative play. Coordination then
allows the construction of a globally stable equilibriumm. Whether global stability is
possible without the public randomizations is unknown.

The second role of the public randomizations in this paper is to adjust the expected
duration, and hence the severity of the punishments. This is the property which
enabled us to construct strategies where punishments deter cheating, but are not so
severe that individuals would be unwilling to carry them out. In the argument below,
I show that for large enough discout factors it is possible to adjust the severity of
the punishments in a completely different way — spreading out the punishments over
time. This will allow us to establish the most important results of the paper even
without the availability of public randomizations.

The ability to soften punishments by delaying them is at the heart of the following
lemma. The lemma guarantees that any game which has a cooperative equilibrium for
some interval of discount factors has a cooperative equilibrium for all discount factors
near one as well. I hope that the very simple proof makes the lemma interesting in

its own right.

Lemma 2 Let G(8) be any repeated game of complete information, and suppose that
there is a non-empty interval (60y61) such that G(8) has a perfect equilibrium s*(8)
with outcome a for all § € (80,61). Then, there ezists d < 1 such that V6 ¢ [6,1)
we can also define a strategy profile s**(8) which is a perfect equilibrium of G(§ ) with

outcome a.

Proof

The key observation here is that for § close enough to 1, we can simulate the situation

of smaller discount factors by using slower responses.

Take § = 6o/6:. For any 6 € [6,1) there exists an integer N(§) for which
§V) € (8, 61).

When there is more than one such integer take N(6) to be as large as possible. Now,

have the players treat the game G(8) as if it were N(8) separate games, the first
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taking place in periods

1, N(6)+1, 2N(8) + 1, 3N(8) + 1,...,
the second in periods

2, N(6)+2, 2N(6)+2, 3N(8) +2,...,

etc. Just as is the case in finding Markov equilibria, if for some set T all other players
Play strategies in period t which do not depend on the outcomes in all periods #' € T,
then the best response for player i can be taken to be independent of the outcomes
in all periods t' € T as well. Hence, to show that we have an equilibrium s**(§) for

G(8) it suffices to show:

1. The strategies s**(§) give play in period aN + b which does not depend
on play in period c¢N + d if (b — d) is not a multiple of N.

2. Restricting consideration to each “component” game played in periods
b, N(8) +b, 2N(8) + b, 3N(8) +5,...,

the restriction of the strategy profile s*“(4) gives a perfect equilibrium.

The obvious choice of 5**(§) is to play the equilibrium 8*(8V®) in each of the N(§)
component games described above. In our prisoner’s dilemma example, this would
mean that if player i or his opponent plays D in period a N(§ ) + b, player i plays D in
periods

(a +1)N(6) +b, (a+2)N(6)+5,...,

but does not change his planned play in any other period. Within these component
games, players have discount factor §¥(®), so s*(§V(9)) satisfies the second condition.

Clearly, we have a perfect equilibrium. QED
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Note that when ¢'(§) = 1, the strategies described in the proof of Proposition 2
prescribe infinite punishments, and hence do not require public randomizations. In
particular, §' was defined so that taking ¢ = 1 gives a perfect eqnilibrium. In order
to apply Lemma 2, we need only show that infinite punishments also yield a perfect
equilibrium for a small interval of discount factors around §’. This result is not hard.
It is simply another application of the fact that each action is a strict best response.
The resulting equilibrium of the game has a peculiar appearance with punishments
being softened by being delayed into the future, spread among intervening periods
of cooperation. In the trade example, this might mean that if a single deviation
occurs on a Friday, eventually we will see all players cheating on every third Friday
but cooperating on all other days. The punishments are of infinite duration so with
noise, eventually all players will cheat in all periods. Despite this, the punishments
are st'll no more severe than the punishments of the previous section. As players
become more patient, the punishment periods become correspondingly further apart.
The somewhat surprising result is that in the limit as the amount of noise vanishes,

the equilibrium approaches efficiency. These results are summarized below.

Proposition 4 The results of Proposition 2 still hold in a model where no public

randomzizations are available.

Proof
In order to establish the first two results of Proposition 2, that there is a perfect
equilibrium which remains an equilibrium for sufficiently small amounts € of noise, it
will suffice to show that for a fixed range of discount factors the standard strategies
with ¢ = 1 give a perfect equilibrium. Just as in Proposition 3, we apply continuity of
the payoff functions to show that a strict equilibrium for one discount factor implies
that nearby discount factors also give an equilibrium.

Recall that in the proof of Proposition 2, §' was defined so that the contagious
strategies with parameter ¢'(§') = 1 give a perfect equilibrium. An important inter-

mediate step in the proof was to establish the existence of an & such that (8) and (9)
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held for all € < & and all § € [§',1). Substituting §' into these equations gives

(10) 20,81, - £2.8,1,0) > g+ 172
and
(11) %ﬁ(f(k’f’lae) - f(k+1,8,1,¢)) <g—n/2 Vk > 2.

Restricting attention to values § € [&, 1-;3'-], we once again can easily establish
bounds on the derivatives of the left hand sides of the equations (10) and (11). For

example, using expression (A3) from the proof of Proposition 2 we get

5"’5 (T'f_i (f(k,5,1,€) — f(k+ 1,6,1,6)))

= 3(t+ 1)8(1 + g)Probai(t) € C(t,k) 1 D(t) N E(D))
1+g

= T-ep
4(1+g)

- a-or

Hence, we can find a value §; such that for all § € [§',6,] and all € < & we have

(12) o (A(L81,0) ~ £(2,6,1,6)) > g + /4
and
(13) (k8 1,0~ f(k+1,6,1,) <g-n/t  VE>2.

From here, the same steps as in the proof of Proposition 2 but with 7/2 in place of
7 show that for sufficiently small ¢, the strategies with ¢ = 1 give an equilibrium for
all § € [§',6,]. Now, the construction in Lemma 2 gives us an =quilibrium without

public randomizations for all § € [§'/6,,1).
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A further consequence of Lemma 2 is that the per period payoff to a player with
discount factor § of the no randomization equilibrium s**(6,¢) is ezactly equal to
the per period payoff that the strategies with ¢ = 1 give a player with discount
factor §V(), £(0,6V),1,¢). The function f is continuous in its second argument and
N6 5 § as § — 1, so for v; being player i’s expected utility in the game with
discount factor §,

lim lim u;(s**(6,¢)) = lim £(0,8,1,¢).

e—0§-1

This, however, is merely the limit of the expected payoff for a fized discount factor
as € — 0 so efficiency in the limit is easy. For any v > 0, we can simply choose T so
that (1-&")(1+8 +...+87T) > 1 — /2 then pick € small enough so that with very
high probability there are no e-probability events in the first T periods, hence giving
an expected payoff of at least 1 — v in the game with ¢ noise. QED

If we had not worried about noise in this section, we could have found a perfect

equilibrium without public randomizations whenever § [8,6:) where § is defined by
é(l - f(27é’ 1)) = (1 —9d)g

and 4, is defined either by

51(f(3,61’1) - f(476171)) = (1 - 61).9

or by §; = 1 if the equation above has no solution. Table 2.2 gives 8, 6; and §/6,
for a range of values of g and M. For § > § a cooperative perfect equilibrium exists
with public randomizations, and for § > §/6, a perfect equilibrium exists without
them. Note that for many of the parameter values, 8, is in fact equal to one. In this
case, eliminating public randomizations does not require any additional patience on
the part of the players. When g = 0.01, the difficulty in getting the players to carry
out punishments results in much more patient play being necessary to support the

equilibrium I have given.
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Table 2.1: Discount factor sufficient to maintain cooperation

g=001 g=1 g=10
0.01  0.50 0.91
0.03 0.68 0.95
0 008 0.79 0.97
00 035 0.89 0.985
00 054 0.92 0.989

22z <E
I
&

Table 2.2: Discount factors with and without public randomizations

g=001 g=1 g=10

é 0.03 0.68 0.95

M=4 6 0.03 1.00 1.06
8/6 0.96 0.68 0.95

) 0.08 0.79 0.97

M=10 & 0.08 1.00 1.00
/6 096 0.79 0.97

] 0.35 0.89 0.985

M =100 & 0.36 1.00 1.00
8/6, 0.96 0.89 0.985

é 0.52 092 0.989

M =500 6§, 0.54 1.00 1.00
8/6, 0.96 0.92 0.989
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2.5 Conclusion

In all of the results above, cooperation has been sustained in equilibrium by the use of

“contagious” punishments which lead eventually to a breakdown of cooperation after

The great advantage of contagious punishments, though, is not their power but
rather their informational simplicity. In models of trade in large populations, we can
support cooperation even in the extreme case of completely anonymous interactions.
I have probably overemphasized how reasonable the discount factors are, but it s
important to make the point that in models of trade, for example, contagious punish-
ments could support cooperation. While equilibria based on contagious punishments
may not correspond to what was observed in particular historical situations, they at
least were feasible, suggesting that reputation-based institutions were not the only

possible solution.

equilibrium is quite robust, Whether or not full eﬁiciency can be achieved for a small
fixed amount of noise is still open. Of course, near efliciency is achieved only in the
limit, and for an economically reasonable frequency of mistakes the equilibrium may
not be particularly close to eflicient. It is probably robustness in this sense, not in the

limit, which is most relevant when considering the possibility of applying contagious
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punishments to models of trade. Hence, I am unable to say whether concerns about

robustness prevent that application.
Finally, I should note that I have also left one major question of game-theoretic
interest unanswered. The results of this paper rely heavily on the fact that the

prisoner’s dilemma has a dominant strategy equilibrium. In light of Kandori’s Folk

Theorem for games with a more corr -'ex information structure, it would be interesting .

to know whether the results of this paper extend to a more general class of games.

If so, we would have a much more general Folk Theorem. If not, we would have a

sharper picture of the type of information transmission which is necessary to maintain -

cooperation. i
-
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Appendix

Proof of Proposition 2

I begin by establishing equations (6) and (7) which are analagous to eqnations (1)
and (2) from the proof of Proposition 1. I shall write f(k,8,q,€) for the per period
continuation payoff of pPlayer i when at the start of period t, k players (including
player i if k > 0) are Playing according to phase II of the strategies described in the
proof of Proposition 1. I wish to show that there exists 8" <1, > 0 and a function
q':[8',1) - [0,1] such that (6) and (7) hold for all § ¢ [&,1).

Note first that because I have ot yet introduced noise, f(0, 8,¢'(6),0) = 1. 1
begin by establishing a degree of strict convexity of f. From equation (3) in the proof

of Lemma 1 we know that

((f(1,6a970) - f(2’61430)) - (f(2767 9’0) - f(3’6,9:0)))

o

=FE, [}:(1 — 8)¢'6(1 +9) (0y(t,w) € (C(t1,w) - C(t,2,w))N D(t,w))} .

t=

The second term of this sum 1is
(A1) (1 - 8)g8(1 + g)Prob {oi(t,w) € (C(1, l,w) - C(1,2,w)) N D(1,w)}.

If player 2 is matched with player M in period 0 under w we have

2 € C(1,1,w) M e C(1,1,w)
2 ¢ C(1,2,0) M ¢ C(1,2w)
D(1,w) = {2, M}

Together, these imply
(C(1,1,w) — C(1,2,w0)) N D(1,w) = {2, M}.

From this, we know that the probability term in (A1) is at least the probability that
players 2 and M are matched in period 0 and that player 1 subsequently is matched
against one of 2 or M in period 1. Tijs probability is 2/(M — 1)2.
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Hence, for § as defined in Proposition 1, we have for any § > §

(A2) l_fﬁ ((f(1?8’ 1,0) - f(2767 1’0)) - (f(2a 67 1,0) - f(31 6s 1» 0)))

26%(1 + g)
- (M- 1)
= v

From equaticn (4) we know that

i_f“(f(l’é,l,ﬂ) - (2,6,1,0) = g.

From expansion {5) in ‘ne proof of Proposition 1 it is immediate that
i}
'55 (f(ly&y 1’0) - .f(216a 1,0)) Ig > 0.

Thus for some 7 < /2 we can choose §' € (§,1) so that

!

1%‘5: (f(1,8,1,0) - £(2,8',1,0)) = g + 7.

By (A2) we know

6 ’ [
ﬁ(f(21é7170) - f(37.é ’ 110)) <g-—-n.
Now, we simply set

q(8)=4/6
and note from (5) that V6 € [§',1)

270 (F(k, 8,406, 0) - k +1,6,6),0)) = —2 (F(k,£,1,0)  f(k +1,8,1,0)).
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As ¢'(8) > q(6), players will not deviate in phase I of a model with no roise so

f(O, 6, ql(‘g)t 0) > f(1,8, q’(&),())_

This establishes (6) and (7) as desired.

The next major step in the proof is to establish that the similar inequalities (8)
and (9) hold for a model with sufficiently little noise. To do this, I extend expansion
(3) to a model with noise. Note that

(A43) flk,6,q,€)— f(k+1,8,q,¢)

=E, i(l — 8)¢'8*(1 + g)I{o:(t,w) € C(t,k,w) N D(t,w) N E(t,w)}

where a realization of w rnow includes also the set of players whe “tremble” and play
D accidentally in each period and E(t, w) is defined to be the set of players affected
by an e-probability tremble up to and including time t. If T(t, w) is the set of players
who tremble at time t for a realization of w, E(t, w) can be formally defined by

E(),w) = T(0w)
Et+1,w) = E(t,w)UT(t+1,w)U {i|oi(t,w) € E(t,w)}

Using the expansions (3) and (A3) we get

(A4)
64'(8)

1—-6 ((f(k,8,4'(6),0) — f(k+1,6, q'(6),0)) ~ (f(k,6,4'(6),€) — f(k + 1,6,9'(8),¢€)))

= E, i q'(a)H.l&H-l(l + g)I{ol(taw) € C(t') k,w) N D(t’w) N E(t’w)}

t=0

< B [fj (1 + g)I{or(t,) € E(t,w)}

t=0
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Given 1 > 0 as defined above, we can choose T such that

é,T < 1 .
1-8 " 4(1+g)

Next, choose &; sufficiently small such that

]
Prob { E(T,w) # 0} < .
41+g)(14...+67)
Now, for any 6 € [§',1) and any € < &, the right hand side of equation (A4) is bounded
above by 5/2. This and equations (6) and (7) gives

29O ((1,8,4(6).) - £(2,8,4(6),€) > g+ 172

and

2T (12,6, 46),€) - 3,8,8(8),)) < g — /2.

The first equation is (8). Using the expansion (A3) in place of (3) it is easy tc see that
the result fo Lemma 1 carries over to the model with ¢ noise. This and the second
equation above gives us (9).

Now that (8) and (9) have been established, I proceed to show that there are no
profitable deviations from either phase I or phase II play in the e-constrained game.
The phase IX case is easier so I'll start with that. Note that we can rewrite (9) to give

Ve< &,6 € [¢,1), and k > 2,

6q'(6) (.f(k7 67 q'(6)7€) - f(k + 11 6: q'(6)1 6)) < (1 - 6)9

As in the proof of Proposition 1, the right hand side of this expression is the short term
loss when a player plays C instead of D in phase II and is matched with someone who
plays C. The expectation over k of the left side is the expected future gain. Clearly,
the future gain is too small to make a deviation profitable.

The discussion of phase I play is more complicated than before because a player

in phase I must assign probability r. > 0 to the event that unbeknownst to him, k
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other players are already playing according to phase II or will tremble and play D in
the current period. Keep in mind that 7, is a function both of € and of the history
of the game. I show, however, that for ¢ sufficiently small this uncertainty is small
regardless of the history of the game.

To show tha¢ player 1’s best response whenever he is in phase I in period t is to
play C, I will not show directly that his expected payoff from playing C in period t
and then following his equilibrium strategy is better that his expected payoff from
playing D in period t then following his equilibriumn strategy. Instead, I compare the
payoff from playing C in period t then switching to phase II play in period t+1 to
the payoff from playing D in perind t and continuing according to phase II. Player
1’s period t action has no affect on play after any period t+s in which ¢y, > ¢'(6).
We have already seen that playing D in phase II is a best response so that the latter
strategy gives the greates possible expected payoff to a player who plays D in period
t. If the former is greater, the best response must involve playing C in period t.

To compare the payoffs of the two strategies, look first at the period t outcome.
If player 1 plays D in period t he gains g whenever o,(t) plays C and avoids a loss of

£ whenever o0,(t) plays D. Hence the short term gain is

*{ilr M—k-1 N k_,
a™\TM-1 TTM-1)"

In the future, a player who plays D in period t can never be better off because both

strategies prescribe the same play from period t+1 on and there are always either the
same number o, more players in phase II in period i+1. When k=0 and there are
also no e-probability trembles in period t+1, the player who plays D in period t is
worse off, obtaining a continuation payoff of f(2,6,4'(é),¢) instead of f(1,6,q'(é),¢).
The discounted expected loss is then at least

rol1 = 1 5LC) (11,6, 4/(6),€) - £(2,6,4/(6),€)).

To show that playing C is better in period t it thus suffices to show that this loss
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outweighs the short term gain. Using (8), it will suffice to show

ro(1 — )M=Y (g + 1/2) > rog + (1 — ro) max(g, ¢).

We can choose &, such that

(1— )™ (g +n/2) 2 g +n/4
for all € < €,. It then only remains to establish
(A5) ron/4 2 (1 — ro) max(g, ¢)

for ¢ sufficiently small.

At first look one might think that if the game has been going on long enough,
then player 1 will be fairly sure that someone must have trembled. This reasoning
suggests that the ro term might not dominate in (A5). However, it is important to
keep in mind that ro is not an unconditional probability, but rather the conditional
probability that no one has trembled since the last time s that ¢, > ¢'(8) occurred
given that no opponent of player 1 has played D since that time. To show in fact that

take any ( > 0. We can choose T; so that
Prob {Player 1 is still in phase I|Some player was in phase II T, periods ago} < (/2

Next choose €; so that

(1—&)M>1-¢/2

Then for any € < &3, the probability that there has been a tremble in the last T;
periods given that none has been observed is less than (/2. Hence, ro > 1 — (

regardless of the number of periods that have elapsed since the last time ¢, > ¢'(6)
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occurred. This implies (A6), and hence choosing € smaller than €, &, and & we get
the sufficient condition (A5) for no deviations in phase 1. This concludes the proof
that s*(8, €) is a perfect equilibrium of the ¢-constrained game.

Finally, the proof of 3., that we get efficiency in the limit, is relatively easy.
Consider the largest possible effect that a single tremble by player j in period t can
have on player i’s total payoff anywhere on the path of the equilibrium with noise.
This tremble can only affect player i’s payoff in period t and in any future period
until the first time ¢, > ¢'(8). Thus, the expected loss caused by this single tremble

is at most
8(1 - 96)

6‘2(1 §)6'd'(8)’(1+g+0)=0(1 +g+c)—l_—6,—.

=0
Player i’s expected per period payoff is equal to 1 minus the expected loss from each

possible tremble times the probability of that tremble occurring. This gives

t

fO.6,4(6)) 2 1-(1-8)3 0 +g+ 0 me
_ 1_(1+9:3)Me )
1-¢
Clearly
lim Lim £(0,6,4/(8),¢) = 1.
QED
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Chapter 3

Markov Models of Price Wars in

the Joint Executive Committee

3.1 Introduction

The “Joint Executive Committee” (JEC) was a railroad cartel organized in 1879 to
set prices for transport between Chicago and the East Coast. The detailed records
it kept have already been the basis for several insightful studies of cartel structure.
Several theoretical papers discuss the problem of cartel stability in a repeated game
framework (Green and Porter, (1984); Rotemberg and Saloner, (1986); Abreu et. al.,
(1986)). While these models are all based on the idea that the threat of a price war
can enforce cartel discipline, each leads naturally to different conclusions about the
apparent causes of price wars. In this paper, I focus on these dynamic predictions in
order to assess the applicability of the .aeory to the experience of the JEC.

The first section of this paper briefly reviews the historical background of the
JEC. Next, I review two main theories of cartel stability and discuss the modifications
necessary to apply each to the situation of the JEC. The first theory, due to Green
and Porter (1984), views price wars as necessary to maintain incentives with imperfect
information. The second, due to Rotemberg and Saloner (1986), suggests that price
wars may result when the gains to deviation become large and is associated with

the view that price wars are likely to break out during booms. Proponents of both
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theories have cited the JEC as providing empirical support for their views (Lee and
Porter, 1984; Porter, 1983; Porter, 1985; Rotemberg and Saloner, 1986).

The econometric approach of this study is to apply a switching regressions model
in which the shifts in regimes follow a Markov process. (Coslett and Lee (1985)
introduced such a model to test whether the regimes were independent, and Haji-
vassiliou (1989) has recently discussed extensions similar to those of this paper.) I
further allow the transition probabilities for the regime shifts to be influenced by
predetermined variables in a way which allows us to test whether the pattern of price
wars is consistent with the predictions of each theory. In contrast with the two step
approach of Porter (1985), where each we=k’s behavior is first classified as collusive
or non-collusive based on structural variables alone, I sitnultaneously estimate both
the structural parameters of supply and demand and the dynamics of regime shifts.
In the final section of this paper, I discuss the estimates of several related Markov
models which yield reasonable estimates of the structural parameters and exhibit the
expected patiern of long collusive periods separated by occasional price wars. Gener-
ally, the empirical evidence supports the existence of a Green-Porter type mechanism
with unusual demand patterns triggering price wars. Some results are also consistent

with the Rotemberg-Saloner model, although the evidence here is not strong.

3.2 History

MacAvoy (1965) and Ulen (1978) have given thorough descriptions of the “Joint
Executive Committee” and its attempts to control prices for grain transport between
Chicago and the Eastern seaboard, so I shall only give a brief overview of the time
period including a few facts relevant to arguments made later in this paper.

In the 1870’s, railroads began to carry grain and other goods from Chicago to
the Eastern seaboard. Larger quantities of grain were shipped by steamer over the
Great Lakes during the summer months. In 1874, the Baltimore and Ohio railroad
extended its lines into Chicago and began competing with the New York Central

and Pennsylvania railroads. After several unsuccessful attempts to control prices, the
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railroads agreed in April of 1879 on a mechanism for cariel control. The newly formed
“Joint Executive Committee” was given the authority to esiablish a uniform set of
rates for all three railroads, and an administrative structure was set up to handle
any disputes. Throughout the period analyzed in this paper, 1880-1886, the JEC
continued to establish both official rates and market share allotments for traffic out
of Chicago. At times, the cartel successfully maintained rates as high as 40 ¢/100 Ibs.
In parts of 1881, 1884, and 1885, the cartel officially endorsed price wars, and prices
dropped as low as 12.5 ¢/100 lbs.!

The JEC collected and disseminated the data which we analyze here. The nature
of those data is important to arguments made later in this paper. The JEC polled
the member firms to produce an index of prices, and collected data on weekly grain
shipments by each firm out of Chicago. While the reported prices probably do not
reflect secret price cuts, we do have reason to believe that the quantities are reliable.?
We know that in 1882, the cartel agreement was modified to require cash payments
by any firms exceeding their assigned market shares. As the cartel evidently lacked
the power to collect these payments, this plan proved unsuccessful.® However, that
the JEC would agree to rely on its market share data for cash payments indicates
that they had sufficient auditing capability to ensure that firms could not underreport

shipments.

3.3 Theory

The switches between collusive and noncooperative behavior in the JEC were asso-
ciated with dramatically different pricing strategies and will allow us to study the
regime shifts econometrically. The theoretical models which have been developed to

describe pricing in optimal cartels have implications for the nature of regime shifts. I

!For example, MacAvoy cites an 1885 report that “All official rute—setting procedures were sus-
pended and all roads authorized to meet any cut rates.” MacAvoy, 1465, p. 102

2The contemporary trade press contains many reports of secret price cutting. See the Daily
Commercial Bulletin of June 16, 1881, September 15, 1884, and February 2, 1886 for examples.

3MacAvoy reports that the Grand Trunk railway failed to make any payments in 1884, and left
the cartel in 1885 owing over $100,000. MacAvoy, 1965, p. 190
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review two main lines of thought and discuss some specific considerations necessary
to apply these models to the JEC.

Porter (1983b) formulated his original paper on the JEC as a test of the Green-
Porter (1984) model. The original Green-Porter m:odel considers the case of repeated
Cournot competition between identical firms. Production levels are unobservable, and
there is noise in demand; therefore firms can only observe an imperfect signal of their
competitors’ behavior. Green and Porter consider whether collusion can be sustained
by trigger strategies which involve switches between collusive states and price wars. In
a price war the firms produce at the Cournot level, the unique equilibrium of a single
stage game. In a collusive state the firms produce at a point between the Cournot
and monopoly levels. Because of the noise in demand, low prices ir a collusive state
can result either from low demand or from cheating on the production limits. The
optimal equilibrium in trigger strategies has firms produce at the collusive level until
the market price falls below a specified level at which point a T period price war
begins. In equilibrium, no firm deviates from the collusive production levels, hut
there are occasional price wars due to demand shocks.

Abreu, Pearce, and Stachetti (1986) extend the Green-Porter model to more gen-
eral games and characterize the optimal equilibrium among all strongly symmetric
strategies, not just trigger strategies. They find a similar pattern, but with the
switches between the collusive and price war states following a first order Markov
process involving only two states rather than usirg T-period punishments (which
require T + 1 states).

Several modifications are necessary to apply this theory to the JEC. It is certainly
more reasonable to think of the railroads not as setting quantities but rather as setting
prices with reputations for quality of service and differing route structures creating
differentiated demands. As a rough approximation, we can think of price wars as in-
volving marginal cost pricing, although with increasing costs and differentiated goods
the optimal equilibrium could very well involve either higher or lower prices in a price

war. In collusive states prices increase to a point closer to the monopoly level. What

4Strategies are strongly symmetric if all players take the same action after any history.
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is and is not observable also changes. With secret price cuts and no single market
price, price is not observable. As noted earlier, firm-specific quantities presumably
are observable. Also unlike the standard theory, we do not have a perfectly symmet.-
ric model. Observed market shares would allow the JEC to infer which firms may
have cheated so the cptimal equilibrium would involve punishing deviating firms more
severely, not using symmetric price wars.® However, I have only limited data with
which to test dynamic predictions and strongly symmetric strategies do appear to
have been used, so I shall stick with the simplest cartel structures.

Because a variety of trigger mechanisms can be used to sustain a nearly optimal
cartel, it may be uninformative to focus too sharply on testing whether the optimal
equilibrium is used. Instead, I attempt to test whether an equilibrium similar to that
of Green and Porter (1984) is played. In such an equilibrium, we would expect to see
price wars triggered by one of several possible signals of cheating. The best signal
with observable market shares would probably be some pattern of a high market
share for one firm and lower market shares for all the rest. A second possible signal
is high aggregate demand, as when one or more firms lower prices, there is not only
a transfer of market shares, but also an expansion of demand. Finally, a firm could
use its own sales or market share as a signal because unusually low sales may result
from cheating by another firm.

A different perspective on cartel stability is found in Rotemberg and Saloner
(1986). They look at firms competing in prices, and consider the possible equilibria
that can be supported by reversion to the Bertrand outcome. While demand is subject.
to i.i.d. random shocks, the random component of demand is observable in advance
of each period so there is no problem in detecting collusion. They note that monopoly
pricing may not always be sustainable if potential punishments are short or firms have
small discount factors. In this case, the discounted value of future losses may not be
sufficient to outweigh the short term gains from deviation. In particular, when the

random component of demand is large, short term gains are larger, but future losses

5The results of Fudenberg, Levine, and Maskin (1991) imply that for sufficiently patient players,
we can achieve the fully coliusive outcome.
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are unchanged. In order to lessen the incentive to deviate, the optimal cartel must
lower prices when the random component of demand is high.

In order to apply rigorously the ideas of Rotemberg and Saloner to the situation
of the JEC, it would be necessary to add time varying demand to a Green-Porter
style model with unobservable prices. Certainly, it must be true that firms will find it
harder to collude when demand is expected to decline. However, in adapting a cartel
design to a situation of declining demand a variety of changes are possible. Prices
in each phase may be raised or lowered, price wars may be lengthened or shortened,
and the sensitivity of the triggers may be adjusted. Price wars will be more common
during booms than at other times only if the optimal adjustment makes triggers
more sensitive. In the absence of a formal model, it is possible to reason by analogy
regarding the problem of booms as similar to a lowering of firmns’ discount factors. The
results of Porter(1983a) then suggest that price wars might be more likely to occur
during booms, but that any results to this effect will be sensitive to assumptions on
the distribution of the error terms.

We can hope to test empirically whether price wars in the JEC tended to occur
when the incentives to deviate were unusually high. The incentive to deviate will
be high whenever high current demand is expected to be followed by lower future
demand. In studying the nature of the railroad industry, we can identify two factors
which create such a situation. First, we have the seasonal pattern of demand influ-
enced by the closing and opening of the Great Lakes. When the lakes were closed,
the JEC received both higher demand and higher prices. Near the end of the winter,
the short term gain to deviation is high, but future losses decline as part of these
losses would take place after the lakes have melted and prices and output would have
been lower anyway. Second, under the specific assumptions made ahout the nature
of the random demand shocks, booms die ont slowly over time and a large random
component of demand today increases the present gains to deviation with a less than
proportional increase in future losses. This prediction is similar to the commonly
discussed interpretation of the Rotemberg-Saloner model as predicting price wars

during booms. However, with increasing costs, slow changes in demand, and short
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price wars, this effect may not be large.

3.4 Econometric Model

The models of this paper are based on that of Porter (1983b). The primary difference
is that where Porter assumes that each period’s regime is independent of hoth past and
future regimes, I impose a Markov structure on the regime switches and maximize the
joint likelihood of both the observed prices and quantities and of the inferred regime
transitions. The estimation of models with different variables influencing transition
probabilities allows us to test predictions of the theories above.

To facilitate comparisons, I follow Porter’s specification of the model closely. The

demand for grain shipments in week ¢ is assumed to be given by
(1) log Q¢ = ao + aylog P, + a; Lakes; + az 14 Seaszx, + Uy,

where Lakes; and Seaszz, are intended to capture seasonal variation in demand (see
section 6). In a departure from Porter’s model, I usually assume that U}, follows an

AR(1) process,
(2) Ure = pUre1 + Vi lp| < 1.

The price elasticity of demand is a;. We expect that a; will be negative to reflect
the diversion of shipments when the lakes are open.

Porter and others have noted that if N identical oligopolists with costs

C(Q) = a@®

face isoelastic demand as above, their pricing behavior is summarized by

P(1+0/c;) = abQi!
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with @ equal to 1 with monopoly pricing, 1/N with Cournot competition, and 0
with marginal cost pricing. Qur estimates suggest that & is greater than one so that
marginal costs are increasing and an exogenous increase in demand leads to price
increases.

In our standard model of the cartel, we {hus assume the supply equation to have

the form

(3) log P, = fo + P1log Q¢ + B; I + Bae DM, + Uz

where I, is an indicator of collusion, and the DMz are four dummy variables for
changes in the cartel composition. The errors Vie and Uy are assumed to have a
multivariate normal distribution. While the possibility of secret price cuts makes P,
unobservable, we do have available the official prices firms were supposed to have
charged. While using this series may introduce an errors-in-variables problem, the
optimal cartel theory predicts that firms should in fact never deviate from the official
prices, so we can hope that these errors are small.

I assume that there are two possible behavioral states in each time period indexed
by I,. I =1 indicates a more collusive state, and I, = 0 indicates a state of lesser
collusion which I shall describe interchangably as a noncooperative or price-war state.
If the values of  in the two states, 61 and 8, are both unknown, estimation of the

supply equation yields
_(a 6o)

Thus, we can only estimate a nonlinear function of the two fs. Note that
01 — 00 = —01(1 —_ e‘ﬁ’) — 00(1 - e“ﬁ’)

When price wars involve marginal cost pricing 0 is zero. Hence, to approximate the

difference between 8, and 6o I follow Porter in using

(4) 0= —01(1 — 8—’3’)
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as a rough measure of the differing degrees of collusion between the two states.
The standard model of this paper assumes that the cartel adopts a behavior which
involves unchserved transitions between two states. (Given the state I,, we assume

that price and quantity are determined by (1) and (3). Writing the model as

YB=XI'+SA4+V

Y, = (log Q. log F.)

X: = (1 Lakes; DMz, Seaszx; Uy, 1)
Se = (01,

Vi = (Vi Uz)

with B, I'; and A defined appropriately, the likelihood function for log Q. and log P,
(I shall write Y; for (log Q. log P;) to save space) given that state I, arises and given

all predetermined variables Z, is
f(Ye|It, ) = Elgldet(E)rﬂ det(,B)le‘%V‘E_"’«'_

To determine the log likelihood of the entire sample, we assume the regime switches
follow a Markov process as shown in Figure 3-1.

Within each time period, there are two possible states, the upper state labelled
collusive (I; = 1} and the lower state labelled price war (I; = 0). Within each
state, P, and @, will be generated randomly according to (1), (2), and (3). At the
end of each time period, a probabilistic transition determines the state I, of the
following period. While the optimal cartel would likely have discontinuous transition
probabilities based on cutoff values for observed variables, [ assume that the likelihood

of the transition is given by a logit model

Wt
(7) Prob{l,;, = 1|I;,Z,} = (Tﬁ{ﬁ?)'
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]

¢ Collusion _ Collusion —_—_— Collusion

I = 0 Price War  — Price War —_— Price War

timet- 1 time t timet+ 1

Figure 3-1: Regime Transitions

Taking W, to be a constant independent of I, gives a standard model with independent
regime switches as in Porter (1983b). Allowing W, to contain I, adds a Markov
structure to the price wars as in Coslett and Lee (1985) so that a noncooperative
state today can be likely to lead to another noncooperative state next week. I also
include several other variables in W, to test the predictions of the (ireen-Porter and
Rotemberg-Saloner models that certain factors should trigger price wars.

The likelihood of the sequence (Y7, Y;41,...,Y7) is given by the the sum of the joint
likelihoods of (Y;, Y;41,...,Y7) and (I, I141, . . ., IT) over all possible paths (I, Io41, ..., I7).
As described in Coslett and Lee (1985), the first order nature of the Markov process
allows a simple calculation using a recurrence relation. Att = 1, the firins are assumed

to be in a collusive state so that

f(Yl,ll-_—llRl) = f(Yl|11=lel)
f(Y1,I, =0|Ry) = 0

(with R, the set of exogenous variables known at time < t). At t > 1, the joint

likelihood is obtained by summing the likelihood given the two possible transitions
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from the state I,_;:
1
f(M, . YL LR = Y {f(Yilly, 20) x Prob(Ly|1,_y = 1,2, 1, Y 1)x
i—0

f(},l’ RN ] },t—l,It—l = 7‘|Rt)}

Maximum likelihood estimates of the parameters were computed by an iterative al-
gorithm from this equation. Numerical derivatives were used to compute standard
errors for all estimates.

In interpreting the results of the models, it is useful to be able to examine the
classification of the sample into collusive and price-war states. Unlike the indepen-
dent switching regression model, the likelihood of I, given that I,_; is not observed
depends not only on past values but also on future values of P, and Q,. The maximum

likelihood classification is computed by Bayes rule as

f(L|Yr, Zr) = f(Le|Vs, Ze)f (Yarss . .., Yol Loy Zeyr, Re)/ Ko
The first term on the right size is computed by Bayes rule from the values
f(Yl, Ty Yta Itht)'

The second term is computed iteratively working backwards from the end of the data
by
1
f()’g, ey YTII;_.], Zt, RT) = Z PT‘Ob(If = il.[g_], Zg_l, }rt_] ) X

1=0

f(},t”t = i) Zt) X f(Yl.H-h- . 'a}fTIItaZH-lv RT)

The constant K, makes the probabilities sum to 1.

3.5 Previous Results

The data of this chapter have been analyzed several times in the past. Before pro-

ceeding with the promised results of the models above, I discuss the nature and
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conclusions of some prior works.

Porter’s (1983b) original paper on the subject developed the structural supply
and demand framework given above, and investigated the appropriateness of regime
switching models. He estimates the model by maximum likelihood assuming indepen-
dent regime determination. (This is extended by Lee and Porter (1984) to consider
the probabilistic information provided by a series of reported regime shifts as well.)
The main thrust of Porter is then simply to establish that switches between “collu-
sive” and “non-cooperative” regimes did occur, and to examine the eflect on prices.
Porter’s model yields reasonabie parameter estimates. Most importantly, the value of
the collusion dummy in the supply equation is 0.545 indicating that there were large
price changes associated with the regime shifts. The measure € of collusion js only
0.336 indicating that the changes in behavior were far smaller in magnitude than a
switch fromm monopolistic to marginal cost pricing. One puzzling finding is that the
price elasticity of demand is only -0.800. Lee and Porter (1984, p. 412) propose that
this could result from a cartel unable to raise prices to fully collusive levels because
of incentive problems.

The papers above discuss the causes of cartel breakdown only briefly. In a later
Paper, Porter (1985) focuses on the causes and durations of price wars The estimation
method is a two stage process. First, he computes the maximum likelihood regime
classification, I,, as in the Lee-Porter model. Then, to examine the causes of price
wars, he runs a probit regression of I; on several explanatory variables over a sample
of points where I,_, = 1. The coefficient on the previous period’s demand, Q,_;, is
negative and significant. He finds this curious because he expects price wars to be
triggered by low market shares, not high aggregate demand. A variable intended
to measure deviations in market share has the right sign, but is only marginally
significant.

Several papers have added some structure to the price wars. Berry and Briggs
(1988) compare simple frequency counts for the same I, series and show that the
regime of the previous week is important in determining collusion, but are unable to

prove the importance of any further history. Coslett and Lee (1985) had previously
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discussed the estimation of a model like ours with first order Markov transitions,
and found that the regimes are not independently determined. While 77% of the
periods exhibit cooperation, a cooperative state occures with probakility 0.96 after
a cooperative state, but with probability only 0.12 after a price-war state. However,
in allowing for serial correlation in the pricing equation without correcting for the
discreteness of prices, they produced a model with many unreasonable parameter
values. Like Berry and Briggs, they are also concerned only with independence and
do not discuss the causes of price wars.

Finally, Hajivassiliou (1989) has independently dctailed the estimution of a so-
phisticated model which is quite similar to the one used here in that it allews for
a Markov structure on the transition probabilities influenced by predetermined vari-
ables, and which further allows for several forms of measurement error I have not
included. Hajivassiliou focuses on the econometric issues and is not as successful in
applying his methodology to testing theories of cartel stability. To test the Abreu
et. al. model, he again verifies that his model indicates a Markov structure on the
transition probabilities, but does not look any further to identify what strategies are
being used to trigger the price wars. When he does include explanatory variables on
the transition probabilities in an attempt to test the Rotemberg and Saloner theory
two difficulties arise. First, because the variables are modeled as equally affecting
the probababilites of both entering and remaining within a price war, it is hard to
interpret the estimates as identifying causes of price wars. Second, recall that the
Rotemberg and Saloner theory predicts that collusion is more difficult if high current
demand is likely to be followed by reduced demand throughout the duration of the
ensuing price war (here about 15 weeks). It seems unlikely that the measure of Mid-
west grain productior he includes will indicate high demand for shipments one week
followed by greatly reduced demand in the next few weeks.

Rotemberg and Saloner (1986) themselves cite the JEC as providing evidence
that price wars tend to occur in years of high demand. However, their analysis is
based only on annual averages and hence does not necessarily reflect any relationship

between the onset of price wars and the demand conditions prevailing in those weeks.
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3.6 Data

Thanks to the data collection efforts of the JEC, weekly data on prices and firm
specific shipments are available on a week by week basis for a 328 week period from
the first week of 1880 to 1886. The data in this paper were originally compiled by Ulen
(1978) and have been used in all the papers cited above. Table 3.1 gives summary

statistics for all of the variables.

Table 3.1: Summary Statistics

Variable Mean Std. Dev. Minimum Maximum
Quantity 25384. 11632. 4810. 76407.
Price 0.2465 0.0665 0.125 0.400
Lakes 0.5732 0.4954 0 1
DM1 0.4238 0.4949 0 1
DM?2 0.0457 0.2092 0 1
DM3 0.4329 0.4962 0 1
DM4 0.0152 0.1227 0 1

RS _Seasonal 1.0153 0.2416 0.6707 1.5223
BigSharel 1.0908 0.5690 0.0397 2.9711
Bigshare2 1.2409 0.7102 0.1849 4.2345
BigshareQ 1.1744 0.5162 0.1578 2.9728
SmallShare 1.2303 0.7373 0.1161 5.7565

Quantity gives the total eastbound grain shipments of the railroads in the JEC in
tons per week. Price is given in dollars per 100 lbs. of grain. Note also that except for
a brief price of 12.5 cents/100 Ibs., the price was always set at a multiple of 5 cents/100
lbs. The Lakes variable is a dummy variable set to one when the Great Lakes were
navigable and steamers could compete with the railroads. We expect lower prices and
quantities when the lakes are open. The four structural dummies DM1-DM4 are
taken directly from Porter {1983b) and mark significant changes in the membership
of the cartel. These changes could affect both the cost structure of the cartel and the
degree of sustainable collusion, but are included in the model simply as shifts in the
supply equation. Seasonal dummy variables labelled SEAS1-SEAS12 are used for

the first twelve four-week periods of each year. All of these variables are exactly as
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in Porter (1983b).

In addition, five more complicated variables were created to test the Green-Porter
and Rotemberg-Saloner models. In the case of the Green-Porter model, the variables
are not guided by a definitive theory, but rather are a rough attempt to capture a
few of the possible workings of a class of cartels. The variable BigSharel is intended
to be a plausible trigger in a cartel which switches to a price war when one firm
obtains a suspiciously high market share. The measure is based on deviations in
log ;¢ rather that g, to try to provide incentives which are roughly independent of
firm size. Recognizing that the measure is arbitrary, it seemed prudent to construct
two variants on the theme, BigShare2 and BigShareQ. Each of the variables is the
largest amount by which the strength s;; of any firm’s demand exceeds 1ts predicted
value 3;, (after normalizing by the sample standard deviation), i.e. each is of the form
max;(si—3i)/0i. In the case of BigSharel and BigShareQ, s;; = log ;. — 1 3, log q;
is used to represent the strength of firm i’s demand. In the case of BigShare2,
the ordinary market share is used. The predicted values 3; used in constructing
BigSharel and BigShare2 are taken to be the average of the same measure for the
previous 12 weeks. The predicted value for BigShareQ is computed from the assigned
quoia. While the use of quotas as expectations initially seems appealing, in practice
the quotas were often set unrealistically and did not reflect the market shares that
would result from adherence to a uniform price.® Adjustnients to the predictions had
to be made at the start of the series and as the cartel structure shifted. A fourth
variable, SmallSharel, is intended to be a plausible trigger for a cartel in which price
wars are triggered by an unusually small market share for one firm. Using the same
measures as in BigSharel, it is the largest amount by which the strength of any
firm’s demand falls short of its predicted value.

The final variable, RS_Seasonal, is created to test the Rotemberg-Saloner theory.
It is designed to capture the seasonal variation in the ratio of current demand to the

average level of demand which will prevail throughout the duration of an ensuing

8For example, MacAvoy (1965, p. 88) reports that the Chicago and Grand Trunk Railway was
admitted with a 10% quota while receiving only a 2-7% share at the cartel price.
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price war. The measure is

%y Lak 3_145 €a ST
RS_Seasonal, = K X —3 exp(dyLakes; + d314Seasy)

et (Pw,ts — Petss) €xp(caLakessy, + Q3-145€a8TTrys)

The term used for aiscounting, (Pu,+s — Derrs)s 1S the extra probability that the
system will be in a price war at time t+s if a price war is begun at time t. Coeflicient
estimates from the standard model in Table 3.2 are used for both these probabilities

and the &;.

3.7 Results

We are now finally in a position to examine the results of the models described above.
First, I present the results of a «standard” Markov model, and discuss the departures
from previous models. The incorporation of an autoregressive error term yields a
larger estimate of the degree of collusion. Next, I comment on the support the model
provides for a Markov process of state transitions and examine the extent to which the
Markov structure leads to changes in classification of the time period into collusive
and noncooperative regimes. Looking at a number of different models, I then discuss
the causes of price wars and whether the data support the predictions of the Green:
Porter and Rotemberg-Saloner theories of cartel stability. Finally, it will certainly
have occurred to the reader that the models employed here could be quite sensitive
to functional form specifications, so I present some results on the robustness of the

estimates.

3.7.1 The “standard” model

The results of what I shall call the “standard” Markov model are given in the first
column of Table 3.2. The model differs from those of Porter (1983h) and Lee and
Porter (1984) in two ways. First, I allow for serial correlation in the error term of
the demand equation. Table 3.2 compares the results of the standard model to one

without the pUy,_; term in the demand cquation. Note that the coefficient on Uy, 15
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highly significant, and several other coefficients change as well. The most substantive
is that the estimated price elasticity increases from 0.84 to 1.80 indicating that the
JEC did indeed face an elastic demand curve. As a consequence, the estimated
measure of collusion increases from 0.40 to 0.85, an indication that the JEC was
more aggressive in its pursuit of the potential gains of collusion than is reported in
Porter (1983b). While the Lakes effect seems to disappear, its place has heen tuken
over by the dummy variables for the warm weather months. '

The other change incorporated into the standard model is the Markov nature of
the regime shifts. As in Coslett and Lee (1985), we find that the regimes are not
independently determined. The estimated probability of collusion in the standard
model of Table 3.2 is 0.975 (€>57/(1 + ¢*67)) after a collusive state and 0.067 alter
a price-war state. The expected duration of a price war is a reasonable 15 weeks.
The primary effect of the change from independent to Markov regime shifts is on
the classification of the states into collusive and non-cooperative regimes. When
one is trying to determine the immediate causes of price wars and has only six to
ten price wars to work with, the results can be very sensitive to changes in regime
classifications. Table 3.3 gives three different series for the timing of the price wars
in the JEC. The first is the maximum likelihood classification hased on the standard
Markov model. The second is from a model with identical structural parameters
and independent regime shifts. (For this model, only the regime shift parameter
was estimated because the maximum likelihood estimation algorithm on the full set
of coefficients did not converge.) The third is that compiled by Ulen (1965) from
contemporary reports in the Railway Review. The three series show six, nine, and
eleven price wars. The timing of a given price war often differs. Note also that the
timing may change again as we add parameters to model the causes of the price wars.

This flexibility may allow the detection of causal connections which might bhe missed

7Unlike Coslett and Lee (1985), I do not allow for serial correlation in the residunls of the
pricing equation. Such a specification seems unreasonahle for a meadel of eartel behavior, Tle serial
correlation they find reflects in part the discreteness of the JECs price choices, not an AR(1) crror
process. When Coslett and Lee allow /3 to follow an AR(1) process, thev obtain a coetlicient near
unity on 73,_; and most of the explanatory variahles hecome insignificant. Such a morlel is unlikely
to shed light on the issues I address.



Table 3.2: The “Standard” Model

"Demand:
log Q¢ = ap + a;log P, + a3 Lakes, + a3_14 Seaszzx, + Uy,
Price:
log P, = o+ B1log Qi + B2 I, + Ba-6e DMz, + Uy,
Regimes:
Prob{l,;, = 1|1}, Z,} = (1;;;!:73
“Standard” Model No Setial Correlation

Variable Estimate Std. Error Estimate Std. Error

Demand:
Constant 7.677 1.882 9.019 0.361
log P -1.802 1.287 -0.843 0.193
Lakes -0.009 0.112 -0.460 0.348
Seasl -0.103 0.086 -0.117 0.157
Seas2 0.146 0.145 0.167 0.180
Seas3 0.147 0.138 0.149 0.166
Seasd -0.011 0.157 0.145 0.242
Seash -0.315 0.165 0.062 0.164
Seas6 -0.550 0.179 0.077 0.170
SeasT -0.446 0.198 0.081 0.176
Seas8 -0.504 0.194 -1.116 0.374
Seas9 -0.395 0.165 0.048 0.185
Seasl0 -0.545 0.164 0.102 0.191
Seasll -0.521 0.180 0.085 0.304
Seasl2 -0.397 0.173 0.183 0.241

Supply:
Constant -4.764 1.863 -5.649 9.461
log @ 0.306 0.178 0.398 0.928
DM1 -0.154 0.075 -0.211 0.124
DM2 -0.246 0.064 -0.283 0.160
DM3 -0.317 0.076 -0.373 0.242
DM4 -0.198 0.119 -0.4i9 0.422
I, 0.637 0.104 0.660 0.406

Regimes:
Const.(I, = 1) 3.675 0.474 3.661 0.513
Const.(I, = 0) -2.641 0.404 -2.620 0.476

Other:

oy 0.290 0.061 0.396 0.029
012 -0.007 0.004 -0.045 0.142
oy 0.160 0.045 0.191 0.313
Uie-1 0.832 0.085
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in a two stage estimation process if the first stage classification is incorrect.

Table 3.3: Timing of Price Wars

Predicted from Predicted from A:reported in
Markov Model Switching Model Railway Review
1. 1881:10 1. 1881:10-1881:17

1. 1881:27-1882:10 2. 1881:26-1881:45 2. 1881:24-1882:4
3. 1881:47-1882:9

3. 1883:8

4. 1883:17-1883:18

5. 1883:36-1883:37
2. 1884:13-1884:27 4. 1884:13-1884:27 6. 1884:7-1884:25
3. 1884:36-1884:41 5. 1884:36-1884:41 7. 1884:31-1884:40

8. 1884:46
4. 1885:5-1885:6 6. 1885:4-1885:6 9. 1885:3-1885:5
5. 1885:12-1885:30 7. 1885:12-1885:18

8. 1885:20-1885:30 10. 1885:11-1885:47

6. 1885:34-1885:42 9. 1885:34-1885:41

11. 1886:3-1886:11

3.7.2 The Green-Porter and Rotemberg-Saloner models

At this point, we are prepared to discuss whether econometric models within the
framework of Section 4 can provide empirical support for the theoretical models dis-
cussed in Section 3. This is a much more difficult problem, for while there are 328
weeks of data in the sample, there are only between six and eleven price wars. In a
sense, there is really far less information on the causes of price wars, and we cannot
expect to see the same significance levels as above.

Table 3.4 summarizes the results of seven models designed to test the predictions of
the Green-Porter and Rotemberg-Saloner models. Each is a Markov model containing
all of the variables of the “standard” Markov model. In addition, it is assumed that the
probability of a transition from a collusive to a price-war state is not a constant, but
rather is given by 2'1'+T1~'WT)' where we use seven different sets of explanatory variables
for W,, and v is a vector of unknown coefficients. The explanatory variables have

been defined so that in each case a larger value is predicted by the theory to be more

114



likely to lead to a breakdown of collusion. The coeflicient estimates then are expected

to be negative.

Table 3.4: Causes of Price Wars*

PR

Regimes: Prob{l,4, = 1|I, =1,2,} = La)
Model
Parameter 1 2 3 4 5 6 7
Constant 6.33 4.63 5.56 5.61 6.43 4.37 4.93
(1.95) (0.79) (2.02) (1.85) (2.03) (0.95) (2.29)
BigSharel -0.75 -0.78
(0.48) (0.49)
BigShare2 -0.34
(0.39)
BigShareQ -0.14
(1.06)
Vie -4.27 -5.09
(2.70)  (3.70)
SmallShare 0.86
(0.82)
RS_Seasonal -1.60 -1.29 -1.65 -1.79 -2.05
(1.80) (1.83) (1.79) (1.76) (1.59)
U, 0.12 1.22
(2.09) (1.13)

* Estimated standard errors in parentheses.

As described ecarlier, we examine the ‘3reen-Porter model by testing whether the

price wars are preceded by one of several possible triggers for a cartel with imperfect

information. The first four models in the table focus on what should be the the

strongest signal, that of one firm obtaining an unusually high demand relative to the

others. The first two include the BigSharel variable created to test this mechanism.

The two coefficient estimates are each negative as predicted, although each falls just

short of being significant at the 5% level in a one tailed test. The next two columns

of Table 3.4 give estimates of models with the two other variants on this variable,

BigShare2 and BigShare(). The estimates are again negative, but are smaller and

less significant.

An instructive question to ask is whether the observed effect is of a magni-
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tude capable of supporting the collusive outcome. Absent cost data and a model
of firm level demand, I give a back-of-the-envelope calculation. Suppose that there
is very little differentiation so that firm i is able to lower its price by a negligible
amount in period t and thereby increase its demand by 1%. The measure of demand,
maxy(log gue — = 30, 10g q;¢) / o, might then be expected to be increased by log(1.01)/0;
whenever firm i would otherwise have had the highest market share. A simple com-
puter simulation with reasonable parameter values gives the probability of a price
war increasing by about 0.0001. If the losses from a price war are a little less than 15
times the per period profits, the future loss is about 0.1% or 0.2%of current profits.
The estimated effect then is about an order of magnitude too weak to support collu-
sion. Of course, if the firms had information not contained in our data, and/or the
true trigger for price wars is only imperfectly correlated with BigSharel, the actual
incentives would likely be much stronger than the effects we have identified. On the
whole, the results resemble the predictions of the theory, but do not clearly establish
the existence of a mechanism capable of sustaining collusion.

With differentiated demands and price as the strategic variable, secret price cuts
cause not only a redistribution of market shares but also an increase in total sales.
Hence, unexpectedly high demand could also be used as a trigger in a Green-Porter
type cartel. Such a trigger might be particularly appealing if firms were concerned
with preventing simultaneous deviations by more than one firm. The fifth and sixth
models in Table 3.4 test whether large residuals V;, in the aggregate demand equation
trigger price wars. The coefficient estimates are large and negative as the theory
predicts and again fall just short of significance at the 5% level.

I should note that there is also a potential difficulty in interpreting the results.
We are faced with the same informational limitation as the JEC in that we do not
know whether secret price cuts were given. Thus, the result may indicate not a
Green-Porter mechanism with a price war triggered by a large random shock, but
instead widespread price cutting by many firms (an undeclared price war) before the
new lower price is officially acknowledged. I have already noted that there is ample

anecdotal evidence of cheating in the JEC. The fourth chapter of this thesis applies
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a more complicated hidden regime model and argues that price cutting may have
been quite common. However, that conclusion is far from definitive, and is only likely
to account for the large values of V;, which precede price wars if in addition firms
increased the size of their price cuts immediately before the price wars. In any case,
we should keep in mind that errors in the timing of price wars are possible and may
make it harder to interpret estimates of the immediate causes of price wars.

The final model in the Table 3.4 includes the SmallShare variable to test whether
price wars are triggered by an unusually small demand for one firm. The coefficient

estimate has the wrong sign and is not significant.

As described in section 3, the Rotemberg-Saloner theory predicts that the likeli-
hood of a price war increases when current demand is high relative to expected future
demand. I have already mentioned that we can identify two periods of increased
incentives to deviate. First, the RS_Seasonal variable is used to test whether price
wars reflect the seasonal incentive to deviate. The coefficient estimate is negative in
each model although the results are not significant. While this provides little support
for the Rotemberg-Saloner theory, an examination of Table 3.3 shows that in each of
the last two years of the cartel price wars (those numbered 2. and 5. in the first col-
umn) did break out when the seasonal incentive was at its peak prior to the opening
of the Great Lakes.

Second, given the observed serial correlation of the random component of demand,
when Uy, is large, firms will expect demand to slowly decline over time. This again
leads to an increased incentive to deviate. The coefficient estimates reported in models
2 and 6 in the table provide no evidence that these incentives are related to the onset
of price wars in the JEC. I would like to emphasize that noise in the demand equation
may lead to price wars via two distinct mechanisms. The Green-Porter theory holds
that unanticipated increases, i.e. large values of V},, may be mistaken for secret price
cuts. The Rotemberg-Saloner theory holds that price wars are more likely whenever
demand is likely to decline in the future, and hence likely when U, is large. The
results of model 6, which includes both V;, and Uy, as explanatory variables, point to

the presence only of the first effect. The absence of an effect here runs contrary te
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the observations Rotemberg and Saloner make on the JEC.

3.7.3 Sensitivity of the results to functional form assump-

tions

As always, one wonders how the character of the results depends on the functjonal
form assumptions. Compelling arguments can be made for many minor changes in
the structural equations. Rather than discuss the results of several such changes,
I examine one extreme change in the model and regard results which CArry over as
being fairly robust. The obvious choice is to estimate a model with linear demand.
Porter (1983b) mentions ihat he performed this test and obtained reasonable results.

I assume that demand has the linear form
Q:=ap+ P, + oz Lakes, + a3 14Seaszz, + aisLakes, P, + U,

A monopolist with constant marginal cost ¢ would respond by setting

1
Po=c—-—-Q, - (——__
‘ 0¢1Qt (al+015

1

— —)QtLakest
ay

Hence, I estimate a model with demand as above and with supply

P = fo+ P Q.1 + P2Q: Lakes, I, + BaeDMz, + U,,

where I, is an indicator of collusion and the error structure is as before. The results
of the model (with @ measured in 10000 tons) are presented in Table 3.5. Most of
the coefficients have the expected sign. The Price term in the demand equation is
negative and significant as are many of the dummy variables for the warmer months.
The collusion term is positive and significant, and collusjon has less of an eflect on
the price when the lakes are open.

Table 3.6 compares the standard Markov model to the linear model of Table 3.5. It

is intended to give a rough idea of the eflect of the change in specification on estimates
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Table 3.5: The Linear Specification

Demand:
Q¢ = oo + oy P, + azLakes, + a3 y4S€aszx, + aysLakes, P, + Uy,
Price:

Pt = ﬂo + ﬂ1QtI¢ + ﬂzQ,Laketh + ﬂ3_6D1"IiB¢ + llzf_
Regimes:

Prob{l,y1 = 11, 2} = o

Variable Estimate Std. Error
Deimand:
Constant 5.932 1.789
Price -11.133 7.012
Lakes -0.363 1.048
Seasl -0.182 0.218
Seas2 0.086 0.305
Seas3 0.088 0.330
Seasd 0.058 0.401
Seasd -0.649 0.372
Seas6 -1.178 0.415
SeasT -0.864 0.491
Seas8 -1.150 0.434
Seas9 -1.005 0.407
Seasl0 -1.201 0.450
Seasll -1.060 0.427
Seasl?2 -0.821 0.420
Lakes P 0.807 3.859
Supply:
Constant 0.227 0.021
QI 0.022 0.009
QI Lakes -0.008 0.006
DM1 -0.044 0.020
DM?2 -0.063 0.018
DM3 -0.066 0.019
DM4 0.062 0.030
Regimes:
Const.(I; = 1) 3.542 0.427
Const.(I, = 0) -3.041 0.447
Other:
o 0.651 0.053
012 -0.002 0.002
o, 0.033 0.004
Uie-1 0.789 0.049
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of the price elasticity and the degree of collusion. The price elasticity for the linear
model is computed with Q@ and P set to their mean values. It is somewhat lower
than the elasticity from the standard model. The “increase in price from collusion”
is the increase in the predicted price of each model when all of the Lakes, Seaszz,
and DMz dummy variables are set to 0 and I, switches from 0 to 1. It shows smaller
price increases for the linear model. The linear model also gives a lower estimate of

the measure # of collusion (here defined as —a; B1).

Table 3.6: Functional Form Comparison

“Standard” Model Linear Model

Price Elasticity -1.802 -1.081
of Demand
Increase in Price 50.7% 26.2%

from Collusion

Measure 0 of 0.849 0.242
Collusion

The most relevant issue for out purposes is whether changes in the functional
form of the model affect our conclusions on the causes of price wars. Conceivably,
small changes in the structural model could change the classification of the price wars
and thereby greatly alter our conclusions.® Fortunately, this is not the case. Table
3.7 gives estimates of the logit parameters for regime transitions from models similar
to those in Table 3.4, but with linear supply and demand equations. The results
are very close to those in Table 3.4. We have roughly the same overall probability
of collusion, and 19 of the 21 coefficients reported have the same sign under both
specifications. The BigSharel variable loses some significance although the estimates

do not change greatly. The V;, variable becomes even more significant, while its overall

8As a separate test of the robustness of the results to errors in the timing of price wars, the
logit models for the transition probabilities were estimated assuming Ulen’s (1978) contemporarily
reported classification J; to be correct (as in Porter (1985)). The results are given in Table 3.8 and
are surprisingly consistent with the results presented earlier in this paper.
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effect declines slightly. The other variables used to test the Green-Porter theory
remain insignificant. Meanwhile, the primary variable used to test the Rotemberg-
Saloner theory, RS_Seasonal, increases in both magnitude and significance under the

linear specification.

Table 3.7: Price War Causes in the Linear Model*

e _™—EEEShnmwmymwwmwanimme
Q_-T"l

Regimes: PTOb{IH.l = llIt = ].,Zt} = m;w.—)

Model
Parameter 1 2 3 4 5 6 7
Constant 7.68 5.04 6.97 6.18 7.02 3.95 6.84

(2.64) (1.17) (2.34) (2.28) (2.19) (0.56) (2.33)
BigSharel -0.69 -1.03
(0.61) (0.64)

BigShare2 -0.14
(0.43)
BigShareQ 0.75
(0.89)
Vie -1.19 -1.72
(0.55) (0.61)
SmallShare 0.07
(0.37)
RS_Seasonal -2.94 -2.90  -3.11  -2.77 -3.04
(1.90) (1.75) (1.78) (1.83) (1.76)
U -0.66 0.47
(0.64) (0.41)

* Estimated standard errors in parentheses.

Overall, the change in specification seems to lessen the estimated extent of col-
lusion, while leaving the structure of the price wars largely unchanged. It provides
reassuring evidence of the robustness of our results, slightly bolstering the Rotemberg-

Saloner theory.

3.8 Conclusion

In this paper, I have exainined the structure of price wars in the Joint Executive

Committee by estimating simultaneously the structural model of competition and a
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Table 3.8: Price War Causes using Reported Regimes*

—Regimes: Prob{Jy4s = 1|J; = 1,2,} = %ﬁ
Model
Parameter 1 2 3 4
Constant 520 462 4.79 4.46

(1.57) (1.38) (1.37) (1.43)
BigSharel -0.68

(0.48)
BigShare2 -0.40
(0.44)
BigShare@ -0.29
(0.46)
SmallShare 0.06
(0.39)
RS_Seasonal -1.47 -1.17 -1.52 -1.60

(1.31) (1.42) (1.28)  (1.24)

* Estimated standard errors in parentheses.

dynamic model of behavioral regimes. The structural estimates are similar to those in
previous papers, although I find a greater degree of collusion than is usually reported.
The estimation of a dynamic model of behavior is made difficult by the small number
of price wars we have to work with. Nonetheless, it is possible to formulate tests of
the Green-Porter and Rotemberg-Saloner theories of price wars.

The Markov model yields reasonable transition probabilities and should have some
flexibility in classification to help identify the causes of price wars. Models designed
to test the Green-Porter theory are compatible with a Green-Porter type mechanism
being used to sustain collusion. We find that two possible triggers for such a cartel,
unusual market share patterns and unusually high aggregate demand, tend to precede
price wars. Two caveats are, however, necessary. First, we have not identified a regime
transition rule which is strong enough to enforce cartel discipline. Second, it is hard
to tell whether we are observing a Green-Porter type mechanism or whether we are
simply observing cheating by the firms. More reliable price data would clearly help
answer this question.

The Rotemberg-Saloner view that price wars may result from unusually high short
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term gains from cheating should be easier to investigate. Both seasonal patterns
and the serial correlation of demand residuals create identifiable periods of increased
incentives to deviate. The observed price wars are consistent with the prediction
based on the seasonality of demand, although the results are not. significant. We find
no evidence for the more widely discussed implication that price wars are likely to
occur during booms.

While the structural model involves a strong functional form assumption, the
results on the causes of price wars are robust to a major change in the structural

model.
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Chapter 4

What Does Not Seeing Something
Look Like? Secret Price Cuts in

the Joint Executive Committee

4.1 Introduction

The previous chapter argued that in some ways the Joint Executive Committee (JEC)
resembles an optimally designed cartel. However, the conclusions were mixed in that
the firms’ responses did not appear to generate incentives strong enough to support
a cooperative equilibrium. It is this mixed result which motivates the investigations
of this essay. Certainly, the evidence of the previous chapter is not incompatible with
the operation of an optimal cartel. For example, if the Joint Executive Committee
relied on both price data and industrial espionage to determine whether to begin
a price war, then the model of the previous chapter is misspecified. In analyzing
triggers only weakly correlated with the true triggers, we would then expect to find a
weak effect. On the other hand, it might also be that the Joint Executive Committee
was not an example of an optimal cartel. In that case, firms may in fact have had an
incentive to deviate from the agreements.

In an optimal Green-Porter cartel, no firm will deviate and price wars result only

from random demand shocks. It is the fact that no firins should deviate which justifies
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the use of list prices in previous analyses. On the other hand, if the carte! did not
provide firms with sufficient incentives to cooperate, it is reasonable to suppose that
some firms would have taken advantage of the mistake and offered secret price cuts.
We would therefore like to know if such price cuts were offered. What would & secret
price cut look like? If such a secret price cut were offered only once for one week,
an econometrician, like the JEC members, would have no chance of finding it. On
the other hand, if both periods of price cutting and periods of strict adherence to
official prices were common, there is hope. When secret price cuts are given, demand
will appear to be unusually high relative to the official prices. Models with hidden
regimes might then be able to identify secret price cuts through periods of unusually
high demand. The use of hidden regimes to identify periods of secret price cuts relies
on heroic functional form and distributional assumptions. For this reason, I feel it
necessary to devote a considerable part of this paper to discussing the properties of
the regimes I estimate in order to say whether they can truly be described as periods
of secret price cutting.

The first section of this paper discusses generally the use of models with hidden
regimes. [ argue that the interpretation of the results deserves more attention than it
often receives and outline the types of descriptive evidence which are often available.
The second section begins with the estimation of models of hidden regimes with
Markov state transitions which show to a high degree of significance that demand is
sometimes high and sometimes low. It continues with a discussion of the available
descriptive evidence, and I conclude that one of the models may provide an estimate
of the degree of price cutting, but that the results are not nearly as conclusive as they

first appear.

4.2 Models of Unobserved Regimes

Rather than beginning right away with a discussion of secret price cuts, I first discuss
the general problem of interpreting the results of models with unobserved regimes.

Suppose we have hypothesized that a particular unobserved variable is an important
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determinant of an economic system. An econometric study of the problem must
address two problems. First, do models of hidden regimes identify an unobserved
factor as being important? Second, if our estimes do show an unobserved factor to be
significant, can we justifiably say that it is the particular factor we were looking for?
Both questions must be answered affirmatively before we can claim io have found
empirical support for our theory. I shall now discuss each question in a little more
detail.

Certainly, an affirmative response to the first question is necessary. If we find
no evidence of any hidden regimes, we cannot conclude that a particular unobserved

factor is important. Suppose we believe the true model to be
Y=8X4+79Z +¢

where X is a vector of observed exogenous variables, and Z is a vector of unobserved
exogenous variables. If Z and ¢ have a multivariate normal distribution, there is no
hope of identifying the effect of the unobserved variables. If we make other distribu-
tional assumptions, however, we may be able to estimate 4. For example, we may
believe that ¢ is normally distributed but that Z is a discrete variable. This is the
case in Porter’s (1983) study of the JEC, where Z is an indicator for collusive or
competitive pricing on the part of the firms. Of course, it is certainly possible that a
cartel would choose a pricing strategy with more than two states. When we have no
clear prediction for the distribution of Z, (as is the case for secret price cuts) we may
nonetheless wish to try models which assume that Z may take on several discrete
values in hopes that we will find values around which Z is concentrated.

An inherent danger in these models is that the models are identified by both
functional form and distributional assumptions. If we assume normal errors, but the
true model features non-normal errors we can find significant evidence for unobserved
regimes when none actually exist. While this is obvious for a bimodal error distri-
bution, it can also easily result if the distribution is uniform or has thick tails. In

the data of this paper, the official prices set by the JEC are in fact discrete, so the
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price equation clearly will not have normal errors. What appears to be an unobserved
regime could easily be a reflection either of this non-normality or of other misspecifi-
cations. False results can also arise if there is simply a significant unobserved variable
which we had not anticipated. In studying demand shifts in the JEC, many factors
other than price cui: could be responsible. Among these are heavy snowstorins, me-
chanical problems, strikes, unusually fierce or light competition from steamships, and
irregular departure schedules. There are simply too many alternative explanations
for hidden regimes for us to talk of having identified a particular unobserved factor
without giving corroborating evidence.

This leads us to the second question: how can we be sure that the unobserved
factor we have found is the particular one we were looking for? While there has
been little explicit discussion of this problem, most of the studies I cite have in
fact dealt with this question fairly well. Given the unknown character of alternative
explanations, answering this question is not usually just a process of testing competing
theories. In building a description of the effect we have found, no single piece of
evidence will be available to establish that we have found the effect we were looking
for. On the other hand, many tests can prove that the effect we have found looks very
different from and hence is probably not the one we were looking for. I try below to
group the commonly used forms of evidence into three broad classes.

The first and most commonly used class of descriptive evidence is a simple com-
parison of the sign and magnitude of the parameter estimates to theoretical or other
predictions. This, for example, is the main justification on which Dickens and Lang
(1985) rely in their test of dual labor market theory. They first show that two wage
equations fit better than one, then conclude that one equation represents the sec-
ondary sector because it applies to a small segment of the market in which wages
are low and do not increase with education and experience. I would like to suggest
though that with unobserved regimes such comparisons often are not very powerful.
One common problem is the lack sharp predictions for the effects of variables we
do not ohserve. In Porter’s (1983) estimate of the degree of collusion in the JEC,

any pricing regimes between which prices differ by less than the difference between
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monopolistic and competitive prices could be attributed to collusion. In a model of
secret price cuts, the sign of the coefficient for demand shifts can even be useless if we
have no a priori idea of whether price cuts or strict adherence is more common. Fur-
ther, such a comparison only increases our faith that we have found the effect we were
looking for if the coefficient estimate we find is more probable for that effect than
for alternative unobserved effects. Any coefficient attributable to secret price cuts
might just as easily be attributed to effects of the weather. Of course, a completely
unreasonable parameter estimate could tell us that we are not seeing the effects of
secret price cuts.

A second main class of descriptive evidence consists of relationships between the
estimated regime classification and other observed variables. Often, we have available
fragmentary evidence related to the unobservable effect we have proposed.! Eberly
(1990) gives a justification of this type in her study of automobile purchases. In argu-
ing that credit constraints are responsible for the differences in behavior between the
two groups she identifies she notes that those who are classified as credit constrained
are far more likely to report having been denied credit and aze less likely to obtain a
car loan. If this were not true, we would hesitate to call the people credit constrained.
Porter (1983) similarly notes a high correlation between his estimated regime clas-
sification and a series of contemporary reports of price wars. While contemporary
commentary assists our attempt to name the unobserved regimes, we must recognize
that the lay use of terms may not match the economic use. If a reporter, for example,
simply writes that a price war is occurring whenever prices are low, he is providing
us with no new information on the behavior of the firms. Ideally, we should hope
for fragmentary evidence which is correlated with the proposed unobserved factor but
uncorrelated with the observed variables which have been used to estimate the model.

A third class of descriptive evidence consists of the dynamic properties of the es-
timated regime classification series. Often, theory predicts that the regime changes

due to a particular unobserved variable will follow a known dynamic pattern. For ex-

!Lee and Porter (1984) discuss how such evidence can be directly incorporated into the model
estimation.
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ample, the Green-Porter theory predicts that the price wars in Porter’s model should
follow a pattern which looks like reasonably long price wars triggered by demand con-
ditions which signal possible cheating by the firms. Note again that a single negative
result here would make us doubt that the regimes represented price wars. If the model
of the previous chapter had indicated that the low price regime prevailed in isolated
randomly scattered weeks, we could not regard it to be the price wars predicted by
Green and Porter (1984). When one is most interested in evidence for a particular
unobserved factor, it seems prudent to use a two-step approach where the model is
first estimated without dynamic restrictions and the resulting classification is then
examined. If the dynamic properties of the hidden regimes are incorporated as in
the previous chapter, the same parameters explain both the non-normalities in the
residuals and the dynamic structure of the regime shifts. Interpretation is therefore
more difficult.

The reasoning above serves as an outline for the following section in which I first
try to identify a possible regime of secret price cuts and then examine descriptive

evidence of each of the three types discussed above.

4.3 Secret Price Cuts in the JEC

Between 1880 and 1886, the JEC operated as a cartel te control rail rates between
Chicago and the East Coast. Thorough descriptions can be found in MacAvoy (1965)
and Ulen (1978). In this section, I ask whether firms secretly offered cut rates below
the offical rates for grain transport from Chicago to New York. That secret price
cutting was possible and that some such price cuts were actually given is not really
in doubt. The contemporary trade press contains many reports of such price cuts.’
What I hope to add are estimates of both the frequency and the magnitude of the

secret price cuts.

3The Daily Commercial Bulletin of June 16, 1881 contains a typical report, “Some agents claim
to insist on 20c Grain to New York, while others state that 16¢ lias no doubt been accepted.” An
article from February 2, 1886 expresses more confidence, “There is little doubt but rates are being
cut on shipments of Grain to the East by one or two lines, ...”
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4.3.1 Looking for Price cuts via hidden regimes

As I mentioned in the introduction, when secret price cuts are given demand will
Appear unusually high relative to the official prices. As the theoretical model of
Green and Porter (1984) predicts that no such price cuts should occur, we do not
have a precise idea of what we are looking for. While price cuts could potentially
be continuously distributed over a wide range, I look for the easiest thing to find,
occasional price cuts all of the same magnitude. Such price cuts would give two

demand regimes, with the demand curve shifted upward whey secret price cuts are

The previous chapter discusses a model of the JEC based on that of Porter (1983).

It assumes that weekly demand is of the form
(1) log Q, = aq + ailog P, + a, Lakes, + a,_,, Seaszz, + U7,

with Lakes an indicator for whether the Great Lakes are navigable by the competing
steamships and the Seqszz a set of monthly dummy variables. The cartel’s pricing

decision is assumed to generate the supply curve

(2) log P, = Bo + By log Q, +06: I, + B3¢ DMz, + U,

with the DMz dummy variables for changes in the cartel composition and I ap

indicator for collusjve pricing. It is assumed that Uy follows an AR(1) process,
(3) U = pUyy_y + Vie o] < 1.

and that V;, and Ui have a multivariate normal distribution.
I begin by motivating the search for secret price cuts with a simple illustration
drawn from the mode] above. Taking the parameter estimates reported in the previous

chapter, I construct the sequence of demand residuals Vie. Under correct specification,
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the V;, should be normally distributed. The density estimate shown in Figure 4-1 was
obtained from the residuals by kernel density estimation. I think the reader will agree
that this picture strongly suggests that the residuals are not normally distributed and
that there may be two or three distinct demand regimes each of which yields residuals
centered near one of the peaks seen in the figure. The small peak on the right side of
the figure seems like the best candidate to represent occasional periods of increased

demand from unobserved price cuts.
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Figure 4-1: Estimated Density of Demand Residuals

To formally explore the possibility of multiple demand regimes, [ apply a moael
of hidden regimes with Markov transitions which is more complicated and somewhat
more farfetched than that of the previous chapter. Essentially, I add indicator vari-
ables for one or two additional demand regimes to the demand relation (1). The model

I refer to as Model 2 allows for two demand regimes so that the demand equation is

(4) log Q= aop+ ajlog P. + a; Lakes; + az_14 Seasxry + ay5 Regimel, + Uy,.
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I intend Regimel to be an indicator for periods of price cuts, so I assume that this
high demand state occurs with probability p, whenever firms are trying to collude,
but never occurs during price wars when firms are already presumably pricing at
marginal cost. I do not add any additional dynamic structure so that the demand
regime which prevails at time t does not affect the likelihood of a price war at time
t+1. Iignore this possibility for now in order to be sure that regime estimates reflect
only unexplained shifts in demand, and not dynamic features like causes of price wars.
Model 3 allows for three demand regimes so that the demand equation becomes
()
log Q: = ag+a; log P+ asLakes,+ az 14Seaszz, + s Regimel, + ayg Regime2, + Uy,.

Again I am envisioning that Regimel will be an indicator for a high demand regime
due to secret price cuts. The lowest demand regime might represent a period of
unusually low demand due to severe weather, labor problems, unusually low steamship
rates, etc. As it is not crucial to the problem at hand, I do not try to provide an
interpretation for this regime. In a collusive state, I assume that the high demand
Regimel arises with probability p;, the medium demand Regime2 with probability
P2, and the third regime with probability 1 — (p, + p;). I again assume that Regimel
never arises during a price war and that the other two regimes occur with the same
relative probabilities under collusive and price-war pricing.

Figures 4-2 and 4-3 illustrate the structure of regime transitions in Model 2 and
Model 3. The large boxes represent the different regimes possible at time t. In Model
2, there are two regimes with collusive prices (the two possible demand regimes) and
one with competitive prices. The arrows indicate probabilistic transitions and are
labeled with the probabilities with which they are taken. For example, at the end
of period t-1, we have a probabilistic transition which determines whether period t
behavior will be described by one of the upper collusive states or by the lower price-
war state. The transition to collusive pricing occurs with probability q,, after either
collusive state and with probability go after a price-war state. The probability ¢,
will be large and go will be small. Within period t, another probabilistic transition
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determines which of the collusive demand states arises. The high demand Regimel
occurs with probability p,, and the low demand Regime2 occurs with probability
1 — p,. Within each of the regimes, prices and quantities are determined by the
supply and demand relations (2) and (4), with the appropriate values of the regime
dummies, e.g. with Regimel, = 1 and I; = 1 within the uppermost period-t state in
the figure. The diagram for Model 3 is similar, but with the five states representing the
three possible demand regimes under collusive pricing and the two possible demand

regimes in a price war.
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—¥
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time t-1 time t time t+1

Figure 4-2: Regimes in Model 2

Table 4.1 gives the maximmum likelihood coeflicient estimates for Models 2 and
3. Most coefficient estimates are reasonable and quite similar to those reported in
the previous chapter. Many of the key parameters, including the price elasticity
of demand and the effect of collusion on prices are more significant, particularly in
Model 3. Perhaps the only troubling change is that the estimated serial correlation
of demand becomes quite close to one in Model 3. The most striking results is the
extremely high degree of significance of the dummy variables Regimel for the hidden

demand regimes we were looking for. The t-statistics on the Regimel parameter
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Figure 4-3: Regimes in Model 3

estimates, 12.1 and 26.7 for Models 2 and 3 recpectively, are almost unreasonably
high given a sample size of 328 weeks. In Model 2, the high demand Regimel has
demand increased by about 55%. In Model 3, the high demand Reginiel has demand
41% above the level of the medium demand Regime2, while the low demand regime
has demand 32% below that of Regime2. From the standard errors of the parameter
estimates, one is tempted to claim that each model has provided conclusive evidence
for the existence of secret price cuts. Note, however, that the frequency p, with which
the high demand regime occurs differs greatly hetween the two models. In Model 2,
the main central peak of Figure 4-1 is seen as the result of the high demand regime. In
Model 3, the smaller rightost peak of Figure 4-1 becomes the high demand regime.
If the reader was not already convinced, I hope that the contrast hetween the two
models highlights the danger of jumping to the conclusion that a significant estimate
for a hidden regime means that we have found the effect we were looking for. We
must look far more closely at the available descriptive evidence before we can say
whether the unobserved high demand regimes of either model can be said to have

resulted from secret price cuts.
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Table 4.1: Estimates of Hidden Regimes

"Demand:
log Q, = ap + a; log P, + a; Lakes; + a3 14 Seaszz, + a5 Regimel, + a1 Regime2, + 1/,
Price:
log P, = Bo+ Prlog Q¢ + B2 I + 36 DMz, + Uy,

Model 2 Model 3
Variable Estimate Std. Error Estimate Std. Error
Demand:
Constant 8.147 0.879 7.651 0.176
log P -1.354 0.711 -1.587 0.092
Lakes -0.222 0.073 -0.229 0.092
Seasl -0.046 0.122 -0.114 0.087
Seas2 0.166 0.147 0.163 0.095
Seas3 0.016 0.115 0.106 0.108
Seasd 0.056 0.137 -0.041 0.122
Seasd -0.225 0.169 -0.321 0.127
Seas6 -0.271 0.158 -0.374 0.162
SeasT -0.163 0.194 -0.139 0.159
Seas8 -0.350 0.205 -0.332 0.157
Seas9 -0.179 0.182 -0.184 0.167
Seasl0 -0.215 0.122 -0.219 0.148
Seasll -0.194 0.121 -0.089 0.128
Seasl?2 -0.216 0.083 -0.091 0.114
Regimel 0.439 0.036 0.728 0.027
Regime2 0.384 0.022
Supply:
Constant -3.861 1.577 -4.101 0.412
log @ 0.220 0.153 0.242 0.038
DM1 -0.165 0.069 -0.162 0.072
DM?2 -0.244 0.062 -0.239 0.068
DM3 -0.331 0.069 -0.323 0.063
DM4 -0.228 0.082 -0.198 0.119
I, 0.595 0.079 0.608 0.047
Transition Probabilities:
Q123 0.979 0.012 0.976 0.037
9o 0.061 0.028 0.070 0.076
P 0.650 0.071 0.256 0.083
P2 0.519 0.086
Other:
o, 0.121 0.015 0.089 0.006
012 -0.001 0.001 -0.0002 0.0007
0, 0.097 0.021 0.099 0.011
Ui 0.888 0.031 0.947 0.018
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4.3.2 Do the estimated regimes look like secret price cuts?

In the following discussion, I apply each of the types of descriptive evidence mentioned
in Section 2 to the problem of determining whether secret price cuts are responsible
for the regimes estimated above. I begin simply by looking at the parameter estimates
themselves, which suggest that we should focus our attention on the high demand
regime of Model 3. A difficulty here is that we do not have sharp predictions for
the magnitude and frequency of price cuts that may have been given. The Green-
Porter theory which has guided the analysis so far predicts that there should be no
price cuts. Perhaps the best estimates for the magnitude of potential price cuts are
contemporary reports which indicate that a reasonable size might be between 10%
and 25% of the official prices.> The frequency of price cuts is harder to predict. While
anecdotal evidence indicates that some price cuts were given, the fact that the cartel
went as long as two years without a price war suggests that price cuts were not too
common.

In Model 2, the high demand Regimel occurs with estimated probability 5, = 0.65
when firms are colluding. Given the estimated price elasticity of 1.35, a regime shift
of the indicated magnitude would result from price cuts of between 25% and 30%. It
seems unlikely that price cuts of this size could have occurred so often without clear
historical evidence and more frequent price wars. The parameters estimated seem
more likely to reflect instead occasional periods of low demand caused by some other
unobserved variable. I think that the estimates themselves are sufficient evidence
to conclude that the high demand regime of Model 2 does not reflect secret price
cutting. Nonetheless, I continue to present evidence on Model 2 in the tables so
that the reader may compare the descriptions of Regimel in the two models. Such a
comparison suggests that the evidence I present is of some use in determining whether
secret price cuts are indicated.

In Model 3, the high demand Regimel occurs with estimated probability 5, =

0.26. Given the estimated price elasticity of 1.59, the increase in demand from

3Scme such reports appear in the Daily Commercial Bulletin of June 16, 1881, September 25,
1884, and January 22, 1885.
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Regime2 to Regimel would require a price cut of about 20%. This certainly seems
like a reasonable size and frequency for price cuts, although given our lack of precise
predictions about price cutting and alternative explanations, we cannot say that the
magnitude of the estimates makes us much more confident that we have found the
effect of price cuts.

The second main class of evidence I mentioned in Section 2 is the relationship be-
tween the estimated regime classification and available evidence about the proposed
explanation, secret price cuts. The Chicago Board of Trade’s Daily Commercial Bul-
letin published market reports which contained both price quotations for rail freight
transportation and occasional reports of rumored price cuts. A new price series Py
was constructed by averaging the daily prices listed there. When a range of prices
were quoted or a rumored price cut specified, the lowest figure was used. Prices
were assumed to be unchanged from the previous day on any day for which no quote
appears. The variable P,y has a correlation of 0.95 with the official price P, being
higher in 31 and lower in 50 of the 328 weeks. To identify periods of significant price
cutting, the indicator variable CutListed was set to one whenever the quoted price
P, was at least three cents below the official price. A second indicator variable,
Cut Reported, was set to one for any week in which an article stated that secret price
cuts (often below the level reflected in P, ) were rumored to be given. Table 4.2 gives
summary statistics for these variables. Keep in mind that we have ample reason to
expect that each indicator only imperfectly indicates periods of price cutting. When
only some shippers are being secret price cuts, the shippers may want to keep the
price cuts secret in order to maintain a competitive advantage, so the press may have
no reliable source of information.? At other times, shippers might find it desirable to
start rumors of price cutting when none is actually taking place in hopes of triggering
a price war. While these indicators are only imperfectly correlated with price cutting,
we have no reason to believe that hidden regimes attributable to other factors like

the weather would be at all correlated with these indicators.

4Though not directly in connection to the JEC, Brown (1925, p. 176) discusses the “underhanded
and evasive ways” in which price cuts could be given.
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Table 4.2: Summary Statistjcs

Variable Mean Std. Dev. Minimum Maxinium
Py, 0.2462 0.0674 0.0983 0.4000
P— P 0.0003 0.0212 -0.1000 0.1083
CutListed 0.0549 0.2277 0 1
CutReported 0.0366 0.1877 0 1

differences also are not statistically significant. The fragmentary evidence supports

only very weakly that Regimel of Model 3 may be measuring secret price cuts,

Table 4.3: Historical Evidence

Conditional Expectation E(- | Regime)

Regime CutListed CutReported # obs
Model 2 ™ Regimel 0.050 0.031 (n=161)
Regime2 0.024 0.060 (n=83)

Model 3 Regimel 0.048 0.063 (n=63)
Regime2 0.040 0.024 (n=125)

Regime3 0.036 0.036 (n=56)

The final class of evidence I consider consists of the dynamic properties of the
estimated regimes. The most obvious dynamic property of price cuts is that they

should tend to cause price wars. We know that the JEC specifically empowered jts
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commissioner to declare price wars when price cutting occured.® To test whether any
of the regimes we have found tend to cause price wars, I estimate two new models
which I shall refer to as Model 2A and Model 3A. These models are identical to
Models 2 and 3, except that I exploit more fully the possibility of Markov transition
probabilities between the states. The probability of a price war at time t+1 is now
allowed to depend on the demand regime which prevailed at time t. Secret price cuts
should make price wars more likely. On the other hand, any shifts in the demand
curve due to variables unknown to us but understood and observed by the JEC should
not cause price wars. (Irregularities in shipping schedules might be one such factor.)
Hence, this test should allow us te distinguish between price cuts and at least some
alternate explanations for the high demand regimes.

Figures 4-4 and 4-5 illustrate the structure of the transition probabilities in the
new models. The difference compared to Figures 4-2 and 4-3 is that the probability
that a state with collusive pricing occurs at timne t+1 is now ¢, after Regimel prevails
at time t, q; after Regime2, and ¢, after Regime3. If the high demand Regimel of
either model reflects a period of price cutting, we would expect ¢; to be smaller than
either ¢; or gs.

To examine the properties of the previously identified regimes, only the transition
probabilities g, ¢z, g3, and go are estimated with all other parameters held fixed at
the values shown in Table 4.1. Table 4.4 gives the maximum likelihood parameter
estimates for Models 2A and 3A. The estimates of Model 3A show that ‘collusion
follows the high demand Regimel with probability 1 — §; = 0.064 compared with
0.015 after Regime2 and 0.00 after Regime3. This is not as strong an effect as we
might have liked, but again is statistically significant and is consistent with the idea
that the high demand Regimel of Model 3 is reflecting at least partially the effect of
secret price cuts.

Dynamic evidence can also be usefully applied to look for properties we do not

expect to find if the high demand regime reflects secret price cuts. One potential

$Daggett (1908, p. 6) states “By agreement of March 11, 1881, the chairman of the JEC, Mr.
Fink, was given authority to proclaim a general reduction in published rates when it should be
shown that any pool line had been accepting traffic at less than the regular rate.”
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Table 4.4: Dynamic Properties of Hidden Regimes

Probability of collusion following each regime

Model 2A Model 3A
Variable Estimate Std. Error Estimate Std. Error
h 0.968 0.015 0.936 0.032
. 1.000 — 0.985 0.011
g 1.000 —
9o 0.061 0.007 0.070 0.027

alternate explanation for the demand regimes is that they might reflect seasonal
variation in demand not captured by the monthly dummy variables I have used. If no
seasonal pattern is apparent in the regime classification this competing explanation
is discredited. (Many findings might be consistent with secret price cuts. A seasonal
pattern could result from the seasonal incentives to cheat discussed in chapter 3.)
Table 4.5 examines a very simple indicator for seasonal patterns, the relationship
between the demand regiines in weeks which are exactly one year apart. For each
possible demand regime at time t, the table gives the frequency with which Regimel
occurs at time t+52 in the estimated regime classification series. Only periods for
which both t and t+52 involve collusive pricing are included in the calculation. The
estimates for Model 3 show all probabilities to be fairly close, and we can not reject
that all probabilities are equal. By ruling out one alternative explanation, this result

again increases our confidence that the regime reflects secret price cuts.

Table 4.5: Seasonal Pattern of the Estimated Regimes

Frequency of Regimel at time t

Model 2 Model 3
Regime;_s; E(Regimel,) # obs E(Regimel,) # obs
Regimel 0.705 (n=105) 0.326 (n=43)
Regime2 0.533 (n=45) 0.324 (u=T4)
Regime3 0.242 (n=25)
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4.4 Conclusion

In this chapter, I have applied models of hidden regimes to look for periods of unusu-
ally high demand, hoping that these regimes might reflect and hence provide estimates
of the degree of secret price cutting in the JEC. I find that hidden demand regimes
are very strongly indicated. However, it is much harder to determine whether the hid-
den regimes which have been identified can properly be attributed to the proposed
explanation, secret price cutting. The results are not nearly as clear cut as the first
t-statistics suggest.

One of the models identifies a high demand regime which fails to exhibit any
properties which might convince us that it represents periods of price cutting. A
second high demand regime tends to lead to price wars, and may be correlated with
the historical evidence on price cutting. Given these properties, I very tentatively
conclude that this regime estimate reflects at least in part the effects of secret price
cuts. If so, price cuts of about 20% were occasionally given by the JEC. It is harder to
be confident about the frequency of price cuts, because I certainly cannot rule out the
possibility that other unobserved factors are also causing similar demand increases
and might be contributing to the estimated frequency of the high demand regime.
Nonetheless, the estimated frequency of this regime, 26% of the collusive periods, is
at least an upper bound on the frequency of secret price cutting if not a tentative
estimate.

The previous chapter indicated that the apparent causes of price wars in the JEC
were fairly consistent with the predictions of the Green-Porter theory. The theory
further predicts that firms do not offer secret price cuts. To the extent that this
prediction is not supported by the historical data, the JEC may be an example of a
cartel whose design failed to provide firms with the incentives necessary to guarantee

cooperation.
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