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2D-DEFOCUSING NONLINEAR SCHRÖDINGER EQUATION WITH
RANDOM DATA ON IRRATIONAL TORI

CHENJIE FAN1, YUMENG OU2, GIGLIOLA STAFFILANI3, AND HONG WANG4

Abstract. We revisit the work of Bourgain on the invariance of the Gibbs measure for the cubic, defocusing
nonlinear Schrödinger equation in 2D on a square torus, and we prove the equivalent result on any tori.

1. introduction

The purpose of this work is to revisit the famous work of Bourgain on the invariance of the Gibbs measure
for the 2D defocusing cubic nonlinear Schrödinger equation (NLS) on a square torus T2, [4], and extend his
proof to any torus. Since later we often use the definition of rational or irrational torus, we readily give it
here. Assume that a 2D torus T2 has periods T1 and T2. If T1/T2 is rational we call T2 a rational torus,
otherwise irrational. As one can see from the proof for Strichartz estimates on rational tori [2], Bourgain
uses a fundamental property of the linear solution of the Schrödinger equation defined on a rational torus,
the fact that the solution is also periodic in time. In the proof this fact is used in reducing the Strichartz
inequality to estimating the cardinality of a set of lattice points (x, y) ∈ Z2 that satisfy a quadratic equation
x2 + ay2 = R2, where a,R are natural numbers. Then an well known theorem from number theory is
invoked to give a sharp bound in terms of R, see [1], see also (2.43), page 117 in [2]. If one wants to repeat
Bourgain’s proof for generic tori one has to obtain the same sharp bound when counting the lattice points
in a region such as {(x, y) / x2 + αy2 ≤ R2 + O(1)}, where now γ,R2 > 0. In general, this number of
lattice points is larger than the sharp bound above. Intuitively though the same type of Strichartz estimates
available for rational tori should be available for irrational one. In fact one expects even better ones since the
irrationality of the torus should translate into fewer interactions among linear Schrödinger solutions. After
almost two decades the full range of Strichartz estimates on any torus were proved by Bourgain and Demeter
[5], who obtained them as a corollary of their proof of the l2 decoupling conjecture, hence without invoking
any number theory. Shortly later Deng, Germain and Guth [7] proved that indeed Strichartz estimates on a
generic irrational torus are better, in the sense that they live for a longer interval of time.

Let us now go back to Bourgain’s work on the invariance of the Gibbs measure in [4]. If one considers
the nonlinear Schrödinger equation with solution u and Hamiltonian H(u) in the frequency space instead
of the physical space, then it can be recast as an infinite dimensional Hamiltonian system with variables
(qn(t), pn(t)) such that û(t, n) = qn(t) + ipn(t) for frequencies n ∈ Z2. For this infinite dimensional system
one can define a Gibbs measure that formally can be written as dµ = 1/ZeH(u)du, where Z is a normalizing
factor to make it a probability measure, and its support lives in Hs(T2), s < 0, see [10, 9]. Bourgain had
already proved [3] that for the 1D quintic NLS, where a similar measure can be defined with support in
Hs(T), s < 1/2 [10], the Schrödinger flow indeed leaves the measure invariant, meaning for any set A in
the support of the measure, its evolution with respect to the Schrödinger flow at any later times has the
same measure as A itself. Moreover using this invariance he proved that the flow can be defined globally
almost surely. Clearly such a question could have been asked in 2D for the cubic defocusing NLS1 as well.
The issue that Bourgain faced was that while in the 1D case the flow was (deterministically) defined, at
least locally, for any data in Hs(T), s > 0, and hence on the whole support of the Gibbs measure, which
as recalled is in Hs, s < 1/2, for the cubic 2D case also the flow was only known to be defined for data in
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2 Y.O. is funded in part by NSF DMS-1854148.
3 G.S. is funded in part by NSF DMS-1462401 and DMS-1764403, and the Simons Foundation.
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1It is known that while for the 1D quintic focusing NLS the Gibbs measure can be defined as long as the L2 norm is smaller

than a certain absolute constant, in 2D no Gibbs measure can be defined for the focusing case [10].
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Hs(T2), s > 0, hence missing the support of the Gibbs measure, which is in Hs, s < 0. To overcome this,
and other serious analytic obstacles along the way, Bourgain used probabilistic tools, such as Wick ordering
and large deviation estimates, combined with more deterministic ones, such as Strichartz type estimates and
counting lemmata similar to the ones recalled above. This brings us to the motivation of our paper. Indeed
here we prove new counting lemmata, see Section 4, that hold more generally for any torus, and we rework
the local almost sure well-posedness in details2 to show that the bounds obtained in the counting lemmata,
although weaker than the ones in [4] still are enough to conclude the proof. Although our paper follows the
scheme of Bourgain’s proof, we decided to add full details for the convenience of the reader and because
along the way we could point out with remarks where special care needed to be put in place in order to treat
the general case and rationality cannot be invoked.

Finally, we recently learned that Deng, Nahmod and Yue [8] have extended Bourgain’s result in [4] for
any nonlinearity 2r+1, where r ∈ N. This is a remarkable feat since the high order of nonlinear interactions
was previously considered an almost insurmountable obstacle in obtaining an almost sure local flow in the
support of the Gibbs measure.

1.1. Statement of main result. In this paper, we study the 2D cubic Wick ordered NLS equation on
irrational or rational tori. We will pose the NLS on a rectangular torus and rescale the ∆. Let γ ∈ (1, 2) be
any real number (possibly irrational) that determines on T2 = [0, 2π]2 the operator

∆γ := ∂2
x +

1
γ
∂2

y .

The free solution to the linear Schrödinger initial value problem{
iut − ∆γu = 0,
u0 =

∑
n∈Z2 ane

in·x (1.1)

is of the form
S(t)u0 ≡ eit∆γu0 ≡

∑

n∈Z2

ane
in·xein2t,

where we let
n2 := n · n = 〈n, n〉γ = n2

1 + γn2
2.

Following the set up of Bourgain [4] we revisit the Wick ordered truncated NLS with random initial data
{
i∂tuN − ∆γuN = −P≤N [(|uN |2 −MN)uN ],
u0,N =

∑
|n|≤N

gn(ω)
|n| ein·x, x ∈ T2,

(1.2)

where {gn(ω) : n ∈ Z2} are independent L2-normalized complex Gaussians and

MN := 2
ˆ

T2
|uN(t, x)|2 dx = 2

ˆ

T2
|u0,N |2.

The operator P≤N here denotes the projection onto frequencies |n| ≤ N . By definition of MN , one may
rewrite (1.2) as {

i∂tuN − ∆γuN = −P≤NN (uN ),
u0,N =

∑
|n|≤N

gn(ω)
|n| ein·x, x ∈ T2 (1.3)

by defining the Wick ordered nonlinearity

N (f, g, h)(x) =
∑

ni∈Z2, n2 6=n1,n3

f̂(n1)ĝ(n2)ĥ(n3)ei〈n1−n2+n3,x〉 −
∑

n∈Z2

f̂(n)ĝ(n)ĥ(n)ein·x

=: N1(f, g, h) + N2(f, g, h),
(1.4)

and we write N (f) := N (f, f, f), similarly for Ni, i = 1, 2.
One may also study the formal limit equation of (1.3)

{
i∂tu− ∆γu = −N (u),
u0 =

∑
n

gn(ω)
|n| ein·x, x ∈ T2.

(1.5)

2Here we will not repeat the argument that upgrades the local well-posedness to the global since the rationality or not of
the torus plays no role.
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For every ω and every N fixed, equation (1.3) is finite dimensional and thus an ODE. It hence has a local
solution, and in fact also a global solution due to the mass conservation law. Therefore, one is mainly
interested in a local theory for (1.3) that is independent of N . More precisely, the main result of the paper
is the following

Theorem 1.1. Let uω
N be the solution to (1.3),

uω
N (t, x) = eit∆γu0,N − i

ˆ t

0
ei(t−s)∆γP≤NN (uN ) ds, ∀0 ≤ t < tω. (1.6)

There exists s0 > 0, ǫ0 > 0, so that for almost every ω ∈ Ω, there exists a tω independent of N , such that

‖uω
N(t, x) − eit∆γu0,N‖

Xs0, 1
2+ǫ0

. 1. (1.7)

Moreover, for any 0 < s′ < s0, wω
N := uω

N (t, x)−eit∆γu0,N converges strongly in Xs′, 1
2+ǫ0 [0, tω] to some limit

w. Furthermore, the limit uω := w+ ei∆tu0 (called the solution to the Wick ordered NLS (1.5)) satisfies the
Duhamel formula

uω(t, x) = eit∆γu0 − i

ˆ t

0
ei(t−s)∆γ N (uω) ds, ∀0 ≤ t < tω. (1.8)

We refer the reader to Subsection 3.1 for the definition of the Xs,b space and its related properties. In
the following, when the dependence on the parameter ω ∈ Ω is clear from the context, we sometimes will
drop the superscript in uω and write u for short.

Theorem 1.1 follows from the following quantitative version (independent of N) of the main result.

Theorem 1.2. Let uω
N be as in Theorem 1.1, there exists s0 > 0, ǫ0, α0, t0 > 0 so that for every t < t0, up

to a set of probability measure e−t−α0 , one has that wN := uN − eit∆u0,N satisfies ‖wN‖
Xs0, 1

2+ǫ0 [0,t]
. 1.

Furthermore, for all 0 < s′ < s0, wN converges to some limit w in Xs′, 1
2+ǫ0 and u = w + eit∆γu0 solves the

wick ordered NLS in the sense that Duhamel formula (1.8) is satisfied.

1.2. Duhamel formula, Picard iteration and main propositions. The proof follows from a Picard
iteration scheme. One would like to write (1.3) into its Duhamel form, (1.6). It is convenient to introduce
an extra time cut off φδ(t) = φ(t/δ), where φ ∈ C∞

0 (R) is equal to 1 on [−1/2, 1/2] and 0 outside [−1, 1],
and consider instead the following slightly modified version of (1.6):

u′
N(t, x) = φδ(t)eit∆γu0,N − iφδ(t)

ˆ t

0
ei(t−s)∆γ (P≤NN (φ(t)u′

N ) ds. (1.9)

Note that when t < δ/2, u′
N is no different from uN . In what follows, for convenience we will not distinguish

uN and u′
N . Let

ΓN,δu = −iφδ(t)
ˆ t

0
ei(t−s)∆γP≤NN (φδ(t)u) ds, (1.10)

and consider its formal limit as N → ∞:

Γδu = iφδ(t)
ˆ t

0
ei(t−s)∆γ N (φδ(t)u) ds. (1.11)

From the perturbative viewpoint, let

uN = φδ(t)eit∆γu0,N + wN (x, t). (1.12)

Then (1.9) is equivalent to
wN (x, t) = ΓN,δ(φδ(t)eit∆γu0,N + wN (x, t)), (1.13)

which reduces Theorem 1.2 to the following three propositions,

Proposition 1.3. There exists a sufficiently small δ0 > 0 and s0 ≫ ǫ0 > 0, and some α0 > 0, such that for
every 0 < δ < δ0, up to a set of measure e−δ−α0 for some α0 depending on ǫ0, the map

w 7→ ΓN,δ(φδ(t)eit∆γu0,N + w(x, t)) (1.14)

is a contraction map on the space
{w : ‖w‖Xs0,b0 ≤ 1} for all N. (1.15)

where b0 = 1/2 + ǫ0.
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Proposition 1.4. There exists a sufficiently small δ0 > 0 and s0 ≫ ǫ0 > 0, and α0 > 0 s.t. for every
0 < δ < δ0, up to a set of measure e−δ−α0 for some α0 depending on ǫ0, the map

w 7→ Γδ(φδ(t)eit∆γu0 + w(x, t)) (1.16)

is a contraction map on the space
{w : ‖w‖Xs0,b0 ≤ 1}, (1.17)

where b0 = 1/2 + ǫ0.

Proposition 1.5. Let δ0, s0, ǫ0 be as in Proposition 1.3 and 1.4. Let wN be the unique function (fixed
point) in {w : ‖w‖Xs0,b0 ≤ 1} such that

wN = ΓN,δ(φδ(t)eit∆γu0,N + wN (x, t)), (1.18)

and let w∗ be the unique function (fixed point) in {w : ‖w‖Xs0,b0 ≤ 1} such that

w∗ = Γδ(φδ(t)eit∆γu0,N + w∗(x, t)). (1.19)

Then one has for all s′ < s0 and as N → ∞ that

wN → w∗ in Xs′, 1
2+ǫ0 . (1.20)

Remark 1.6. Note that Proposition 1.3 is stated uniformly over all N > 0. In particular, it can be seen
from the proof that, the exceptional set, does not depend on N . We are following [4] here, see also discussions
in [8],[13]. Thus to prove Proposition 1.3 is equivalent to prove Proposition 1.4. For those who are familiar
with the Picard iteration scheme, Proposition 1.5 is a stability argument that is essentially equivalent to the
local existence argument giving Proposition 1.3 and 1.4. However, to take into account the difference between
P≤NN (uN ) and N (uN ), one will need to use extra derivative, which is the reason why the convergence in
Proposition 1.5 only holds for s′ < s0. One may also see [8],

We will focus on the proof of Proposition 1.4, which is the same as the one for Proposition 1.3, then
Proposition 1.5 follows by using the same argument as in Section 5 of [4]. One may also use the invariance
of the Gibbs measure to upgrade the local well-posedness to a global one as in [4].

2. Proof of Proposition 1.4: initial reduction and structure of the proof

In this section, we outline the proof of Proposition 1.4. To begin with, fix w, one has by definition that

Γδ(φδ(t)eit∆γu0 + w) = iφδ(t)
ˆ t

0
ei(t−s)∆γ N (φ(t)eit∆γu0 + φ(t)w) ds =: A+B, (2.1)

where, according with (1.4), A corresponds to N1 and B to N2 respectively. We also use φ(t)φ(t/δ) = φ(t).
The estimate for part B follows from standard Xs,b space estimates, which we present in the end of Section
3.2 for the sake of completeness. In order to study part A, we consider the Wick ordered nonlinearity N1 as
a trilinear expression, replacing the w above by three functions w1, w2, w3.

Using Xs,b smoothing (3.8) and duality, Proposition 1.4 will follow from

Proposition 2.1. There exist δ, δ0, α0, ǫ0, b as in Proposition 1.4 satisfying ǫ0 ≪ ǫ1 ≪ s0, so that for any
h(x, t) with ‖h‖X0,1−b0 ≤ 1, h0(x, t) := φ(t/δ)h(x, t), one has estimate

∣∣∣∣
ˆ

R×T2
< D >s0 (N1(u1, u2, u3))h0 dxdt

∣∣∣∣ . δǫ1 , (2.2)

∣∣∣∣
ˆ

R×T2
< D >s0 (N2(u1, u2, u3))h0 dxdt

∣∣∣∣ . δǫ1 , (2.3)

where ui is either φδ(t)eit∆γu0 or wi.

Here < · > is the Japanese bracket, < D >:=
√

1 − ∆.

Remark 2.2. We will neglect any loss of δ−Cǫ0 throughout the proof, since eventually all such loss will be
compensated by the gain of δǫ1 . In particular, one should not be concerned about the loss in Xs,b localization
by multiplying φ(t/δ).
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In the two estimates above, (2.3) follows easily from deterministic estimates, whose proof will be given at
the end of Section 3.2. The majority of the rest of the paper is devoted to proving (2.2).

More precisely, the proof of (2.2) splits into eight different cases depending on whether the input functions
ui are of the regular (in the space Xs0,b0) or probabilisitic forms. In addition, we further decompose each
ui into pieces corresponding to different spatial Fourier frequencies (i.e. replacing ui with PNiui for some
dyadic numbers Ni), then the desired result follows from a case by case study depending on the relative sizes
of the spatial frequencies N1, N2, N3. Note that the roles of N1 and N3 are completely symmetric as shown
in the definition of N , so without loss of generality we may assume N1 ≥ N3 throughout. There are thus
two main cases: N2 ≥ N1 ≥ N3 and N1 ≥ N2.

The first case N2 ≥ N1 ≥ N3 turns out to be easier, which we treat in Section 5. The second case needs
to be further decomposed depending on the relative sizes of N2, N3 and where the random terms appear.
Following Bourgain’s notation, we will use II to denote the regular case (i.e. ui = wi) and I to denote the
probabilistic case (i.e. ui is the cutoff of the free solution with random initial data u0). In Section 6 and 7,
we will first estimate two typical cases: N1(II) ≥ N2(I) ≥ N3(II) (corresponding to “case (a)” of [4]) and
N1(I) ≥ N2(II) ≥ N3(II) (corresponding to “case (c)” of [4]). These two cases are typical in the sense that
all essential elements of the proof and ideas will be displayed in the study of these two cases. Essentially
this is because in the two cases, the random term appears in relatively higher frequencies hence there is less
decay in terms of N1 that one would expect; there is also no additional random term present which prevents
one to fully exploit the cancellation brought by randomization. Note that these two sections are the main
part of our proof. We will discuss the treatment of other cases in Section 8.

2.1. A list of cases. Following Bourgain, we need to study
• Case (0): N2 ≫ N1;
• Case (a): N1(II) ≥ N2(I) ≥ N3(II);
• Case (b): N1(II) ≥ N3(I) ≥ N2(II);
• Case (c): N1(I) ≥ N2(II) ≥ N3(II);
• Case (d): N1(I) ≥ N3(II) ≥ N2(II);
• Case (e): N1(II) ≥ N2(I) ≥ N3(I);
• Case (f): N1(II) ≥ N3(I) ≥ N2(I);
• Case (g): N1(I) ≥ N2(I) ≥ N3(II);
• Case (h): N1(I) ≥ N3(I) ≥ N2(II);
• Case (i): N1(I) ≥ N2(II) ≥ N3(I);
• Case (j): N1(I) ≥ N3(I) ≥ N2(II);
• Case (k): N1(I) ≥ N2(I) ≥ N3(I);
• Case (l): N1(I) ≥ N3(I) ≥ N2(I).

Remark 2.3. Strictly speaking, one will need to study, for example in case (a), N2 . N1, N2 ≥ N3. The
analysis will be the same as for N1 ≥ N2 ≥ N3, we neglect this issue.

2.2. Notation. For the sake of notational convenience, we will denote 〈, 〉γ by 〈, 〉 in short. We use PN , P≤N

to denote Littlewood Paley projections in the physical space (x variable), as mentioned above. We will use
P|τ |<M as Littlewood Paley projections in the time space (t variable). We will also use P|τ−n2|<M to denote
space time Littlewood Paley projections with respect to paraboloids.

For the sake of convenience, we sometimes abuse notation by identifying P 2
N = PN , φ(t)2 = φ(t). Through-

out the paper, we use several parameters, and we always require

1 ≥ s0 ≫ s1 ≥ ǫ1 ≫ ǫ0 > 0. (2.4)

3. Preliminaries

3.1. The Xs,b space. In this subsection, we recall the definition of the Xs,b space and summarize some
classical estimates that will be used in the proof. One may refer to [2], [6], [5] for more details.

Let v(t, x) be a function on R × T2. Let v̂ be the Fourier transform of v, i.e.

v(t, x) =
ˆ

R

∑

n∈Z2

v̂(n, τ)ein·xeiτt dτ,
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and the Xs,b norm can be defined as

‖v‖2
Xs,b :=

ˆ

R

∑

n∈Z2

< n >2s< τ − n2 >2b |v̂(n, τ)|2 dτ, (3.1)

where < n >:=
√

1 + n2 is the Japanese bracket.
Note that another convenient way to define the Xs,b norm is via the ansatz

v(t, x) =
ˆ

R

∑

n∈Z2

a(n, λ)ein·xein2teiλt dλ, (3.2)

which gives

‖v‖2
Xs,b =

ˆ

R

∑

n∈Z2

|a(n, λ)|2 < n >2s< λ >2b dλ. (3.3)

The Xs,b space is very useful in dispersive PDE for at least two reasons: first, it inherits the Strichartz
estimates enjoyed by free solutions of the Schrödinger equation; second, it exploits the smoothing effect of
the Duhamel formula.

We now recall the Strichartz estimates on tori, rational or irrational, [2],[5],

‖eit∆γ (PBf)‖L4
t,x([0,1]×T2) .ǫ N

ǫ‖f‖L2
x
, (3.4)

where PB is the Littlewood-Paley projection onto the spatial frequency ball B of radius N (not necessarily
centered at the origin).

By the Minkowski inequality and Cauchy-Schwarz, this implies that

Lemma 3.1. For any u ∈ X0, 1
2+ǫ′

, there holds

‖PBu‖L4
t,x([0,1]×T2) .ǫ,ǫ′ N ǫ‖u‖

X0, 1
2+ǫ′ . (3.5)

Via an interpolation with the Hausdorff-Young inequality, the estimate above can be upgraded to

‖PBu‖L4
t,x([0,1]×T2) .ǫ N

ǫ‖u‖
X0,12 − ǫ

4
. (3.6)

We also record another estimate, which follows immediately by interpolating (3.5) with the trivial bound

‖u‖L2
t,x([0,1]×T2) . ‖u‖X0,0 .

Lemma 3.2. For any u ∈ X0, 1
3 , there holds

‖PBu‖L3
t,x([0,1]×T2) .ǫ N

ǫ‖u‖
X0, 1

3
. (3.7)

As mentioned earlier, the Xs,b space also exploits the smoothing effect of the Duhamel formula, which
can be made precise by the following estimate.

Lemma 3.3. For all s ≥ 0, b > 1
2 and time cut-off function φ as above, there holds
∥∥∥∥φ(t)

ˆ t

0
ei(t−s)∆γv(s) ds

∥∥∥∥
Xs,b

. ‖v‖Xs,(b−1) . (3.8)

Before ending this subsection, we also record the following localization properties of the Xs,b space:

Lemma 3.4. Let u ∈ Xs,b, then

‖φδ(t)u‖Xs,b .b

{
‖u‖Xs,b, 0 < b < 1

2 ,

δ
1
2 −b‖u‖Xs,b, 1

2 < b < 1.
(3.9)

Moreover, for all 0 ≤ b′ ≤ b < 1/2, there holds

‖φδ(t)u‖Xs,b′ .ǫ δ
b−b′−ǫ‖u‖Xs,b. (3.10)
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3.2. Deterministic Estimates. In this subsection, we collect several by now standard deterministic esti-
mates. All of them were introduced when studying standard local theory of deterministic NLS on tori. We
start with an estimate that exploits the time localization. One may refer to [2], [6] for proof. We provide a
brief sketch of proof of the lemma in Appendix A for the convenience of the reader.

Lemma 3.5. Let PB be the Littlewood-Paley projection onto the spatial frequency ball B of radius N and
0 < s ≪ 1. Then one has for all ǫ ≪ s that

‖φ(t)PBu‖L4
t,x

.ǫ N
Cǫ‖u‖X0,1/2−ǫ , (3.11)

‖φδ(t)(PBu)‖L4
t,x

.ǫ N
s+Cǫ‖u‖

X0, 1
2 −ǫδ

s
8 . (3.12)

The number 1/8 is not meant to be sharp, one can for example upgrade it to 1/4−.
Throughout the rest of the section, we write

fi(x, t) =
∑

n∈Z2

fi(n, t)ein·x, i = 1, 2, 3, (3.13)

i.e. fi(n, t) is the space Fourier transform of fi. For the sake of brevity, we abbreviate fi(n, t) as fi(n).
We summarize below several standard estimates that will be frequently used in the proofs that will come

later. One may refer to [4, 2, 6]. We will also sketch them in Appendix B for the convenience of the reader.

Lemma 3.6. Let N1 & N2, N3, 1 ≫ s1 ≫ ǫ0, and ψ(t) be a Schwartz function. Decompose PN1 =
∑

J∈J PJ ,
where J ∈ J are finitely overlapping balls in the region |n| ∼ N1 with radius ∼ max(N2, N3). then one has

∣∣∣∣
ˆ

ψ(t)h̄PN1f1PN2f2PN3f3

∣∣∣∣ . (max(N2, N3))Cǫ0‖h‖X0,1−b0

∏

i

‖PNifi‖X0,b0 , (3.14)

∣∣∣∣
ˆ

ψ(t)h̄N1(PN1f1, PN2f2, PN3f3)
∣∣∣∣ . (max(N2, N3))Cǫ0‖h‖X0,1−b0

∏

i

‖PNifi‖X0,b0 , (3.15)

∣∣∣∣
ˆ

ψ(t/δ)h̄PN1f1PN2f2PN3f3

∣∣∣∣ . δs1/8(max(N2, N3))s1+Cǫ0‖h‖X0,1−b0

∏

i

‖PNifi‖X0,b0 , (3.16)

∣∣∣∣
ˆ

ψ(t/δ)h̄N1(PN1f1, PN2f2, PN3f3)
∣∣∣∣ . δs1/8(max(N2, N3))s1+Cǫ0‖h‖X0,1−b0

∏

i

‖PNifi‖X0,b0 , (3.17)

∣∣∣∣
ˆ

ψ(t)h̄N1(PN1f1, PN2f2, PN3f3)
∣∣∣∣

.(max(N2, N3))Cǫ0‖h‖X0,1/3‖‖f2‖X0,1/3‖f3‖X0,1/3 sup
J

‖PJf1‖L∞
t,x

+1N1∼N2‖PN1f1‖X0,b0 ‖PN1f2‖X0,1/3‖PN3f3‖X0,1/3‖PN3h‖X0,1/3

+1N2∼N3‖PN1f1‖X0,b0 ‖PN2f2‖X0,1/3‖PN2f3‖X0,1/3‖PN1h‖X0,1/3

+1N1∼N2∼N3 min
i


‖PN1h‖X0,1−b0 ‖fi‖X0,b0 sup

|n|∼N1

∏

j 6=i

‖fj(n)ein·x‖X0,b0


 ,

(3.18)

∣∣∣∣
ˆ

ψ(t)h̄N1(PN1f1, PN2f2, PN3f3)
∣∣∣∣

.NCǫ0
1 ‖h‖X0,1/3‖PN1f1‖L∞

t,x
‖f2‖X0,1/3‖f3‖X0,1/3

+1N1∼N2‖PN1f1‖X0,b0 ‖PN1f2‖X0,1/3‖PN3f3‖X0,1/3‖PN3h‖X0,1/3

+1N2∼N3‖PN1f1‖X0,b0 ‖PN2f2‖X0,1/3‖PN2f3‖X0,1/3‖PN1h‖X0,1/3

+1N1∼N2∼N3 min
i


‖PN1h‖X0,1−b0 ‖fi‖X0,b0 sup

|n|∼N1

∏

j 6=i

‖fj(n)ein·x‖X0,b0


 ,

(3.19)
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∣∣∣∣
ˆ

ψ(t)h̄N1(PN1f1, PN2f2, PN3f3)
∣∣∣∣

.(max(N2, N3))Cǫ0‖h‖X0,1/3‖PN2f2‖L∞
t,x

‖PN1f1‖X0,1/3‖PN3f3‖X0,1/3

+1N1∼N2‖PN1f1‖X0,1/3‖PN1f2‖X0,b0 ‖PN3f3‖X0,1/3‖PN3h‖X0,1/3

+1N2∼N3‖PN1f‖X0,1/3‖PN2f2‖X0,b0 ‖PN2f3‖X0,1/3‖PN1h‖X0,1/3

+1N1∼N2∼N3 min
i


‖PN1h‖X0,1−b0 ‖fi‖X0,b0 sup

|n|∼N1

∏

j 6=i

‖fj(n)ein·x‖X0,b0


 ,

(3.20)

∣∣∣∣
ˆ

ψ(t)h̄N1(PN1f1, PN2f2, PN3f3)
∣∣∣∣

.(max(N2, N3))Cǫ0‖h‖X0,1/3‖PN2f2‖X0,1/3‖PN1f1‖X0,1/3‖PN3f3‖L∞
t,x

+1N1∼N2‖PN1f1‖X0,1/3‖PN1f2‖X0,1/3‖PN3f3‖X0,b0 ‖PN3h‖X0,1/3

+1N2∼N3‖PN1f‖X0,1/3‖PN2f2‖X0,1/3‖PN2f3‖X0,b0 ‖PN1h‖X0,1/3

+1N1∼N2∼N3 min
i


‖PN1h‖X0,1−b0 ‖fi‖X0,b0 sup

|n|∼N1

∏

j 6=i

‖fj(n)ein·x‖X0,b0


 ,

(3.21)

where with 1Ni∼Nj we denote the indicator 1Ni∼Nj = 1 if Ni ∼ Nj, 0 otherwise. Moreover, estimate (3.18),
(3.19), (3.20), (3.21) are also valid if one replaces N1(PN1f1, PN2f2, PN3f3) by PN1f1PN2f2PN3f3.

Similarly, one also has

Lemma 3.7. If N2 & N1 ≥ N3, one has∣∣∣∣
ˆ

φ(t/δ)h̄PN1f1PN2f2PN3f3

∣∣∣∣ . δs1/8Ns1
1 NCǫ0

1 ‖h‖X0,1−b0

∏

i

‖PNifi‖X0,b0 , (3.22)

∣∣∣∣
ˆ

φ(t)h̄PN1f1PN2f2PN3f3

∣∣∣∣ . NCǫ0
1 ‖h‖X0,1/3‖PNifi‖L∞

t,x

∏

j 6=i

‖PNifi‖X0,1/3 , i = 1, 2, 3. (3.23)

We also record the following deterministic estimate which will (almost directly) handle the N2 part in the
Wick ordered nonlinearity.

Lemma 3.8. Let b0 = 1
2 + ǫ0, then

∣∣∣∣
ˆ

φ(t/δ)h̄N2(PN1f1, PN1f2, PN1f3)
∣∣∣∣ . min

i


δ1/4‖PN1h‖X0,1−b0 ‖fi‖X0,b0 sup

|n|∼N1

∏

j 6=i

‖fj(n)ein·x‖X0,b0


 .

(3.24)

We sketch the proofs of Lemma 3.6, 3.7 and 3.8 in Appendix B for the convenience of the reader. In the
following, we provide a proof of the easier estimate in our main result Proposition 2.1.

Proof of (2.3) of Proposition 2.1. We choose N0 large, up to dropping a set of probability e−N
cs1
0 , we have

{
|gn(ω)| ≤ Ns1

0 , |n| ≤ N0,

|gn(ω)| ≤ |n|s1 , |n| ≥ N0.
(3.25)

And in particular, no matter whether ui = wi such that ‖wi‖Xs0,b0 . 1 or ui = φ(t)
∑

|n|∼Ni

gn(ω)
|n| ein2teinx,

we always have {
‖PNui|X0,b0 . Ns1

0 , N ≤ N0,

‖PNui‖X0,b0 . Ns1 , |N | ≥ N0,
(3.26)

Observe that
ˆ

φ(t/δ)h̄N2(u1, u2, u3) =
∑

N

ˆ

φ(t/δ)PN h̄N2(PNu1, PNu2, PNu3) (3.27)

Let δ = N−100
0 , applying estimate (3.24), we have
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• N ≤ N0
ˆ

φ(t/δ)PN h̄N2(PNu1, PNu2, PNu3) . δ1/4NCs1 , (3.28)

• N ≥ N0,
ˆ

φ(t/δ)PN h̄N2(PNu1, PNu2, PNu3) . NCs1N−2, (3.29)

Sum all N , (when s0 small enough), and desired estimate follow. �

3.3. Probabilistic estimates. We collect the elementary but crucial probabilistic estimates here.

Lemma 3.9. Let {gn(ω)} be i.i.d complex Gaussian on the probability space Ω, and {cn1,...,nk
} be a sequence

of complex numbers for some integer k ≥ 1. Define

Fk(ω) =
∑

n1, ..., nk

cn1,...,nk
gn1gn2 · · · gnk

.

Then one has for all 1 < p < ∞

‖Fk‖Lp(Ω) .
√
k + 1(p− 1)k/2‖Fk‖L2(Ω). (3.30)

Moreover, there holds the associated large deviation type estimate

P{|Fk| > λ} ≤ exp


 −Cλ2/k

‖Fk‖2/k
L2(Ω)


 , ∀λ > 0. (3.31)

In the lemma above, it is very important that {cn1,...,nk
} are numbers instead of random variables. One

may refer to [11], [12].
The following lemma will also be frequently used.

Lemma 3.10. Let {gn(ω)} be i.i.d complex Gaussian on the probability space Ω, and assume that
∑

n∈Z2

|an|2 . 1.

Then, for any integer N > 0, up to a set of probability measure e−Nα

for some α > 0 depending on ǫ, there
holds ∥∥∥∥∥∥

∑

n∈Z2,|n|≤N

angn(ω)ein·x

∥∥∥∥∥∥
L∞(T2)

. N ǫ, ∀ǫ > 0. (3.32)

Proof. It is easy to see that for any fixed x, the function is bounded as desired outside a small exceptional
set, so the key point is to show that the exceptional set can be made independent of x. To do this, given
ǫ > 0, first note that T2 can be covered by a mesh of size 1/NM × 1/NM centered at ∼ N2M lattice points
for a large number M to be determined later. We first bound the function at the lattice points, which is easy
as the function at each lattice point has size . N ǫ0 (for some ǫ0 < ǫ) up to probability e−Nα(ǫ0)

according to
Lemma 3.9, and there are only N2M many points. Therefore, one has that the function satisfies the desired
bound outside an exceptional set of measure up to ∼ e−Nα−

.
To pass from here to the bound of the function on the entire T2, it suffices to obtain a uniform control of

the derivative of the function (independent of x):

N
∑

|n|≤N

|an||gn(ω)| . N2 sup
n

|gn(ω)|. (3.33)

The probability of the derivative being larger thanN4 is smaller than e−N2
N2, as the probability of |gn(ω)| >

N2 for each n is controlled by e−N2
. Hence, by removing this additional exceptional set and recalling that

every point x lies within the distance of 1/NM from some lattice point, one has that the function at x is
bounded by N ǫ0 +N4 · 1/NM . N ǫ as long as M is chosen sufficiently large. �
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4. Counting lemma

One of the key ingredients in the proof of our main theorem is an extension of the lattice counting
argument of Bourgain, [4] to the irrational setting. We present them in this section. We start with two
auxiliary lemmata. The first has a geometric flavor, while the second is an elementary number theoretical
result.

Lemma 4.1. Let A be the O( 1
N )-neighborhood of a circle of radius ∼ N , and Λ = Z × γZ for some real

number γ ∈ (1, 2). Suppose A1 ⊂ A is the O( 1
N ) neighborhood of an arc of the circle of length N2 ≤ N .

Then, A1 contains at most max
(

N2
N1/3 , 1

)
points of Λ.

Proof. Let C ⊂ A be the O( 1
N )-neighborhood of any arc of the circle of angular size θ = 1

1000N
−2/3, then it

suffices to show that C contains at most O(1) points from Λ. Indeed, if N2 > N1/3, A1 corresponds to an
arc of angular size N2

N , which can be decomposed into ∼ N2
N1/3 smaller arcs each of which containing at most

O(1) points from Λ.
Denote B1 the circular sector bounded by the outer arc of C, and B2 the triangle with vertices being

the center of the circle and the two endpoints of the inner arc of C. Observe that any triangle P1P2P3 with
Pi ∈ Λ ∩C must be contained in the region B1 −B2. Moreover, it is easy to see that annulus A can contain
straight line of length at most O(1). Therefore, suppose C contains more than O(1) points from Λ, then
there must exist three points P1, P2, P3 ∈ Λ ∩ C that formulate a non-degenerate triangle. By definition of
Λ, the area of the triangle is at least 1

2 , hence the area of B1 −B2 needs to be at least 1
2 as well.

On the other hand, via Taylor expansion, the area of B1 −B2 is bounded by 1
2N

2(θ− sin θ)+O( 1
N )Nθ .

N2θ3 + θ ≤ 1
10 , which is a contradiction. Therefore, C must contain at most O(1) points from Λ and the

proof is complete. �
Lemma 4.2. Given an integer M 6= 0, then

#{(a, b) ∈ Z × Z : ab = M} ≤ Cǫ|M |ǫ, ∀ǫ > 0.

Proof. Without loss of generality we assume that M > 0. As an integer, M has an unique representation by
its prime factors:

M = pr1
1 p

r2
2 · · · prℓ

ℓ , p1 < p2 < · · · < pℓ, ri > 0, ∀i.
Then, the total number of pairs of integers whose product is M is bounded by

∏ℓ
i=1(ri + 1). For any fixed

ǫ > 0, there exists a smallest integer N such that N ǫ > 2. Let pj be the first factor that is larger than N ,
then there holds

ℓ∏

i=j

(ri + 1) ≤
ℓ∏

i=j

2ri <

ℓ∏

i=j

priǫ
i < M ǫ.

On the other hand, there are only Oǫ(1) many pi that are smaller than N . Therefore, write M = em, one
has

j−1∏

i=1

(ri + 1) ≤ (logM)Oǫ(1) = mOǫ(1).

There exists a large number M0 = M0(ǫ) so that mOǫ(1) ≤ eǫm whenever M = em > M0, hence the desired
estimate follows if M >M0. If M ≤ M0, one can simply take Cǫ = M2

0 . The proof is complete. �
We now fix µ and N1, N2, N3 ≥ 0, and we let

S := {(n1, n2, n3) : |ni| ∼ Ni, n2 6= n1, n3, and 〈n2 − n1, n2 − n3〉 = µ+O(1)}.
We observe here that in the rational case S is a curve while in the general case, since +O(1) appears the set
is thick.

Define
S(n1) = {(n2, n3) : (n1, n2, n3) ∈ S},

and similarly for other S(ni), if ni is fixed and S(ni, nj), if ni, nj are fixed. We have the following counting
lemmata regarding the size of these sets. In the following, we sometimes use N1, N2, N3 to denote N1, N2, N3
rearranged in the non-increasing order and assume µ = O(N1).

Lemma 4.3. #S(n1, n2) . N3 and #S(n2, n3) . N1.



Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2020 Springer Science+Business Media, LLC, part of Springer Nature.

RANDOM DATA 11

Compared to the rational case studied by Bourgain, this estimate is equally good, since ultimately it is a
linear estimate.

Proof. We will only prove the first estimate, as the second one follows from the same argument. Fixing
n1 6= n2, one has from

〈n2 − n1, n2 − n3〉 = µ+O(1)
that n3 lies in an O( 1

|n1−n2| ) ≤ O(1) neighborhood of a straight line. Since |n3| ∼ N3, there are at most
∼ N3 choices of n3. �

It is in the next lemmata that one sees a difference with respect to the estimates of Bourgain that are
generated by the possible irrationality of the torus.

Lemma 4.4. Assume N1 ≥ N2, N3. Then,

#S(n1, n3) .
{
N

2/3
2 , if N1 ∼ N3 ≫ N2,

max( N2
(N1)1/3 , 1), otherwise.

Proof. From the definition of the set S, with n1, n3 fixed, n2 must lie in an annulus given by the formula
∣∣∣∣n2 − n1 + n3

2

∣∣∣∣
2

=
|n1 − n3|2

4
+ µ+O(1).

Denote the inner and outer radius of the annulus by R1, R2 respectively and recall that µ . N1.
Therefore, when N1 ≫ N3, both the inner and outer radius are roughly ∼

√
(N1)2 + µ ∼ N1. In order

to determine the thickness of the annulus, one observes from R2
1 − R2

2 = O(1) and R1, R2 ∼ N1 that there
holds R1 −R2 ≤ O( 1

N1
), hence the thickness is bounded by O( 1

N1
). Then, the desired estimate max( N2

N
1/3
1
, 1)

follows immediately from |n2| ∼ N2 ≤ N1 and Lemma 4.1 above.
When N1 ∼ N3, assume that the inner and outer radius are roughly ∼ R ≫ 1 (if R ≤ O(1), the estimate

is trivial). Note that R . N1. Then n2 lies inside an annulus of radius ∼ R and thickness bounded by O( 1
R ).

Suppose N1 ∼ N2 ∼ N3, then again by Lemma 4.1 above, the total number of n2 is bounded by

max
(

R

R1/3 , 1
)

= max(R2/3, 1) . max(N2/3
1 , 1) ∼ max

(
N2

N
1/3
1

, 1

)
.

On the other hand, if N1 ∼ N3 ≫ N2, still denoting R as roughly the inner and outer radius of the
annulus, one has

#S(n1, n3) . max
(

min(N2, R)
R1/3 , 1

)
. N

2/3
2 .

�
Lemma 4.4 above can be extended to estimate other sets of similar type. For example, let n := n1−n2+n3

and suppose that N1 = N1. Then for any fixed n2 and n, via a similar argument, one has the following
estimate:

#{n1 : |ni| ∼ Ni, n2 6= n1, n3, and 〈n1 − n, n2 − n1〉 = µ+O(1)} . N
2/3
1 .

Indeed, suppose N1 ≫ N2, then n1 in the above lies in an annulus of radius ∼ N1 and thickness ∼ O( 1
N1

).

Hence by Lemma 4.1, the total number is at most max( N1

N
1/3
1
, 1) = N

2/3
1 . Otherwise, if N1 ∼ N2, one

has R, the radius of the annulus, is bounded by N1. Hence, the total possible number of n1 is at most
. R2/3 . N

2/3
1 .

Similarly, when N1 ≫ N2, one also has the following counting

#{n3 : 〈n3 − n2, n3 − n〉 = µ+O(1)} . max(
N3

N
1/3
1

, 1).

Moreover, from the two lemmata above, one can already obtain some estimate for sets S(ni). For instance,
by first fixing n2 and applying Lemma 4.3, one can show that #S(n1) . N2

2N3. Depending on the relative
sizes the Ni, sometimes such estimates are already good enough. However, in some other cases one needs to
use a more sophisticated argument, and this is the contents of the following counting lemma.

Lemma 4.5. #S(n1) . (N1)ǫN2N3, #S(n2) . (N1)ǫN1N3, and #S(n3) . (N1)ǫN1N2.
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Proof. We only prove the estimate of #S(n1) as the other two can be treated very similarly. Write n2 −n1 =
r(a, γb), where r ∈ N, a, b ∈ Z and (a, b) = 1. Decompose all choices of n2 into dyadic scales. In other
words, at each scale, we have dyadic number A,B ∈ Z fixed such that |a| ∼ A, |b| ∼ B, and there holds
A,B . max(N1, N2). We also write n2 − n3 = (x, γy), x, y ∈ Z.

Assume a, b 6= 0 and fix A,B, r. We want to count the number of (a, b, x, y) satisfying

r(ax+ γ2by) = µ+O(1), and |a| ∼ A, |b| ∼ B.

Note that r 6= 0 because n1 6= n2, and x, y cannot both be zero as n2 6= n3. Without loss of generality,
suppose y 6= 0, then the equality above can be rewritten as

ax

by
+ γ2 =

µ

byr
+O(

1
|byr| ).

Since a, b, x, y ∈ Z, for any fixed value H = by, the value of ax is inside an O(1)-neighborhood of an integer
G = G(H).

Moreover, observe that the number of possible values of H is bounded by ∼ BN3, as for each fixed b
(hence the second coordinate of n2 is fixed) there are ∼ N3 many choices of y. Then, by a simple number
theory observation (Lemma 4.2 below) one has for any ǫ > 0 that

#(a, b, x, y) . #{H}·|H |ǫ·|G|ǫ . BN3(Bmax(N2, N3))ǫ(Amax(N2, N3))ǫ . max(A,B)1+ǫN3 max(N2, N3)ǫ.

It is thus left to sum over r and then A,B. Note that for fixed A,B,

#r . N2

max(A,B)
,

therefore, one has in this case that

#S(n1) .
∑

A,B

N2

max(A,B)
max(A,B)1+ǫN3 max(N2, N3)ǫ . log(N1)2(N1)ǫN2N3 . (N1)ǫN2N3.

Assume now that a = 0 (then b 6= 0 as n2 6= n1). This means n1, n2 have the same first coordinate, hence
the total number of choices of n2 is bounded by N2. Moreover, one has that the first coordinate of n3 is free
and its second coordinate is determined by

〈n2 − n1, n2 − n3〉 = µ+O(1),

hence is inside an O(1)-neighborhood of a determined value. Indeed, the formula above can be written as

rγ2by = µ+O(1)

which implies

y =
µ

rγ2b
+O

(
1

|rγ2b|

)
.

Therefore, in this case one has #S(n1) . N2N3. The b = 0 case can be treated in the same way which we
omit. �

5. Proof of Proposition 2.1: case by case study, case 0

In this section, we treat the case: N2 ≫ N1 ≥ N3. We will prove
∣∣∣∣∣∣

∑

N2≫N1≥N3

Ns0
2

ˆ

N1(PN1u1, PN2u2, PN3u3)h̄φ(t/δ)

∣∣∣∣∣∣
. δǫ1 , for some ǫ1 ≫ ǫ0, (5.1)

where ui is either wi with ‖wi‖Xs0,b0 ≤ 1 or

ui = φ(t)eit∆γu0 = φ(t)eit∆γ

∑

n

gn(ω)
|n| ein·x, x ∈ T2,

and ‖h‖X0,1−b0 ≤ 1.
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First observe that, in this case, the Wick ordered nonlinearity is the same as the usual cubic nonlinearity,
i.e. N = N1 and N2 = 0. We only need to prove (up to an exceptional set of probability e−δ−c

) that
∣∣∣∣∣∣

∑

N2≫N1≥N3

Ns0
2

ˆ

R×T2
PN1u1PN2u2PN3u3h̄φ(t/δ)

∣∣∣∣∣∣
. δǫ1 for some ǫ1 ≫ ǫ0. (5.2)

There are several subcases. We start with subcase 1 : ui = wi, i = 1, 2, 3. Let s1 be chosen such that
ǫ0 ≪ s1 ≪ s0. Via (3.22) and observing that one has h = PN2h in the integral in this case, we obtain

∣∣∣∣
ˆ

R×T2
PN1u1PN2u2PN3u3h̄φ(t/δ)

∣∣∣∣

.N2s1
1 ‖PN1u1‖X0,b0 ‖PN2u2‖X0,b0‖PN3u3‖X0,b0 ‖PN2h‖X0,1−b0 δ

s1
8

.N−s0/2
1 ‖u1‖Xs0,b0 ‖u3‖Xs0,b0 ‖PN2u2‖X0,b0 ‖PN2h‖X0,b0 .

(5.3)

Sum over N2 ≫ N1 ≥ N3, and the desired estimate follows.
Next we discuss subcase 2: at least one ui is φ(t)

∑
|ni|∼Ni

gni

|ni|e
inixein2

i t. We only study the case

u1 = φ(t)
∑

|n1|∼N1

gn1
|n1|e

inixein2
1t, as other cases can be treated similarly.

Let N2,0 be a large parameter such that N100
2,0 = 1

δ . Note that up to an exceptional set of probability

e−δ−c ∼ e−Nc′
2,0 , we have

{
|gn(ω)| ≤ Ns1

2,0, |n| ≤ N2,0,

|gn(ω)| ≤ Ns1
2 , |n| ∼ N2 ≥ N2,0.

(5.4)

In particular, one always has for all ui that
{

‖PNui‖X0,b0 . Ns1
2,0, N ≤ N2,0,

‖PNui‖X0,b0 . Ns1 , N ≥ N2,0.
(5.5)

and, dropping another exceptional set of probability e−δ−c

if necessary, one has

‖PN1u1‖L∞
t,x

≤ Ns1
1 , N1 ≤ N2, N2,0 ≤ N2. (5.6)

Now we split the subcase 2 further into the following subsubcases.
In subsubcase 2.1, we restrict ourselves to the regime N2 ≤ N2,0, and use estimate (3.22) to derive
∣∣∣∣
ˆ

R×T2
PN1u1PN2u2u3h̄φ(t/δ)

∣∣∣∣ . δs1/8N2s1
1 ‖u1‖X0,b0 ‖u2‖X0,b0 ‖u3‖X0,b0 ‖h‖X0,1−b0 . δs1N2s1

1 . (5.7)

Summing over N1, N3 ≤ N2 ≤ N2,0, one obtains . δs1N3s1
2,0 and the desired estimate follows.

We are left with subsubcase 2.2, where N2 ≥ N2,0. We will prove
∣∣∣∣
ˆ

R×T2
PN1φ(t)u1PN2φ(t)u2φ(t)PN3u3φ(t)h̄

∣∣∣∣ . N
−1/10
2 , (5.8)

which will then imply the desired estimate by summing (5.8) over N1, N2, N3.
As remarked above, we only prove estimate (5.8) for the case that u1 is random. Using (3.23) and Lemma

3.10, one derives ∣∣∣∣
ˆ

R×T2
PN1φ(t)u1PN2φ(t)u2φ(t)PN3u3φ(t)h̄

∣∣∣∣

.N2s1
2 ‖φ(t)PN2u2‖X0,1/3‖φ(t)PN3u3‖X0,1/3‖φ(t)PN2h‖X0,1/3 .

(5.9)

Let Fi(τi, ni) be the space-time Fourier transform of φ(t)ui, i = 1, 2, 3, and F4(τ4, n4) be the Fourier
transform of φ(t)h, the integral being estimated is non-zero only if

{
n1 − n2 + n3 − n4 = 0,
τ1 − τ2 + τ3 − τ4 = 0,

(5.10)
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which implies
∑

i

(−1)i(τi − n2
i ) = n2

1 − n2
2 + n2

3 − n2
4 = −2〈n2 − n1, n2 − n3〉 ∼ N2

2 , since N2 ≫ N1, N3. (5.11)

Observe that the Fourier transform of φ(t)u1 is essentially supported on |τ1 − n2
1| . 1, thus, at least for

one i ∈ {2, 3, 4}, one has N2
2 . |τi − n2

i |, hence one can upgrade estimate (5.9) to
∣∣∣∣
ˆ

R×T2
PN1φ(t)u1PN2φ(t)u2φ(t)PN3u3φ(t)h̄

∣∣∣∣

.N2s1
2 N

2(−1/6−ǫ0)
2 ‖φ(t)PN2u2‖X0,b0 ‖φ(t)PN3u3‖X0,b0 ‖φ(t)PN2h‖X0,1−b0

.NCs1
2 N

−1/6
2 . N

−1/10
2 .

(5.12)

To make the above argument rigorous, one may decompose φ(t)u1 into

(P|τ |≤N2φ(t))u1 + (P|τ |>N2φ(t))u1, (5.13)

where the first term corresponds to frequency localization at |τ1 − n2
1| ≤ N2 ≪ N2

2 , and hence the above
argument can be applied. For the second term, one simply observes that

‖P|τ |>N2φ(t)‖L∞
t

. N−100
2 . (5.14)

This concludes the proof.

6. Proof of Proposition 2.1: case by case study, case (a)

In this section, we consider case (a): N2(I) . N1(II), N2(I) ≥ N3(II). We aim to prove for all
w1, v2, w3 satisfying

‖w1‖Xs0,b0 . 1, ‖w3‖Xs0,b0 . 1, v2 = φ(t)eit∆γ

(∑

n2

gn2(ω)
|n2|

ein2·x
)
,

and ‖h‖X0,1−b0 . 1 that, up to an exceptional set
∣∣∣∣∣∣

∑

N2.N1,N2≥N3

Ns0
1

ˆ

N1(PN1w1, PN2v2, PN3w3)h̄φ(t/δ)

∣∣∣∣∣∣
. δǫ1 , for some ǫ1 ≫ ǫ0. (6.1)

Fix N100
2,0 = 1

δ and recall that any loss of δ−Cǫ0 will be irrelevant in the analysis. The values of the
parameters ǫ0 ≪ s1 ≪ s0 will be determined later.

By dropping a set of probability e−δ−cs1 , we will assume the following throughout the whole section:

{
|gn(ω)| ≤ N2,0, |n| ≤ N2,0,

|gn(ω)| ≤ |n|s1 , |n| > N2,0.
(6.2)

And one has in particular {
‖PN2φ(t)v2‖X0,b0 . Ns1

2,0, N2 ≤ N2,0,

‖PN2φ(t)v2‖X0,b0 . Ns1
2 , N2 > N2,0.

(6.3)

6.1. Standard reduction. The goal in this subsection is to reduce the estimates of this case to Lemma 6.4
and Lemma 6.5, which will be stated at the end of this subsection.

Note that in the discussion of all the cases (b)–(l), there will be a similar reduction argument. We will
present the full details of the reduction in this case, and only sketch it in other cases.

We first split the summation
∑

N2.N1,N2≥N3
into two parts N2 ≤ N2,0 and N2 > N2,0.
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6.1.1. The low frequency part: N2 ≤ N2,0. We aim to prove

∑

N2≤N2,0,N2.N1,N2≥N3

Ns0
1

∣∣∣∣
ˆ

N1(PN1w1, PN2v2, PN3w3)h̄φ(t/δ)
∣∣∣∣ . δǫ1 , for some ǫ1 ≫ ǫ0. (6.4)

Observe that, when N1 ≫ N2, one can replace the h in (6.4) by PN1h, and when N1 ∼ N2, h can be
replaced by P<N1h.

Thus, via estimate (3.17) and (6.3), one has
• If N1 ∼ N2 (in particular, N1 . N2,0),

Ns0
1

∣∣∣∣
ˆ

N1(PN1w1, PN2v2, PN3w3)h̄φ(t/δ)
∣∣∣∣

.δs1/8N2s1
2 ‖PN1w1‖Xs0,b0 ‖PN2v2‖X0,b0 ‖PN3w3‖X0,b0 ‖h‖X0,1−b0

.δs1/8N4s1
2,0 ‖PN1w1‖Xs0,b0N

−s1
1 .

(6.5)

• If N1 ≫ N2,

Ns0
1

∣∣∣∣
ˆ

N1(PN1w1, PN2v2, PN3w3)h̄φ(t/δ)
∣∣∣∣

.δs1/8N2s1
2 ‖PN1w1‖Xs0,b0 ‖PN2v2‖X0,b0 ‖w3‖X0,b0 ‖PN1h‖X0,1−b0

.δs1/8N3s1
2 ‖PN1w1‖Xs0,b0 ‖PN1h‖X0,1−b0 .

(6.6)

The desired estimate will follow if one sums over the associated N1, N2, N3 and apply Cauchy inequality in
the sum on N1.

Remark 6.1. We point out that the low frequency case is always the easier part in random data problems,
and essentially follows from deterministic estimates usually used in the local well-posedness argument, we
will not repeat this part in the rest of the article.

6.1.2. Reduction to resonant part. Now we are left with the case N2 > N2,0, we aim to prove

∑

N1≥N2≥N3,N2>N2,0

Ns0
1

∣∣∣∣
ˆ

φ(t/δ)h̄N1(PN1φ(t/δ)w1, PN2φ(t)v2, PN3φ(t/δ)w3) dxdt
∣∣∣∣ . N−ǫ1

2,0 (6.7)

for some ǫ1 ≫ ǫ0.
We will not explore the time localization φ(t/δ) in this part. Observe that φ(t)h = φ(t)φ(t/δ)h, we may

hence define h̃ as φ(t/δ)h and use φ(t)h̃ in the following estimate. Note that we still have ‖h̃‖X0,1−b0 . 1.
For the sake of brevity, we still denote h̃ as h.

Our aim is to prove for fixed N1, N2, N3 satisfying N2 . N1, N2 ≥ N3, N2 > N2,0 that
• If N1 ≫ N2,

Ns0
1

∣∣∣∣
ˆ

φ(t)h̄N1(PN1φ(t)w1, PN2φ(t)v2, PN3φ(t)w3) dxdt
∣∣∣∣ . N−ǫ1

2 ‖PN1w1‖Xs0,b0 ‖PN1h‖X0,1−b0 , (6.8)

• if N1 ∼ N2,

Ns0
1

∣∣∣∣
ˆ

φ(t)h̄N1(PN1φ(t)w1, PN2φ(t)v2, PN3φ(t)w3) dxdt
∣∣∣∣ . N−ǫ1

2 ‖PN1w1‖Xs0,b0 ‖P<N1h‖X0,1−b0 . (6.9)

We will focus on the proof of (6.8), and it will be easy to see that (6.9) follows similarly (almost line by
line).

Observe that, since N1 ≫ N2 ≥ N3, one has

Ns0
1

∣∣∣∣
ˆ

φ(t)h̄N1(PN1φ(t)w1, PN2φ(t)v2, PN3φ(t)w3) dxdt
∣∣∣∣

= Ns0
1

∣∣∣∣
ˆ

φ(t)PN1hN1(PN1φ(t)w1, PN2φ(t)v2, PN3φ(t)w3) dxdt
∣∣∣∣ .

(6.10)
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To carry on the proof of (6.8), we introduce another parameter M = N100s1
2 . One may split wi, i = 1, 3,

and v2 as

φ(t)wi := P|τi−n2
i |<Mφ(t)wi + P|τi−n2

i |>Mφ(t)wi, φ(t)v2(t) = P|τ |<Mφ(t)v2 + P|τ |>Mφ(t)v2, (6.11)

and the same for h.

Remark 6.2. with such a splitting one may lose the time localization. This can be overcome by writing
for example P<Mφ(t) as φ̃(t)P<M

˜̃φ, such that φ, φ̃ are Schwarz uniform in M . Or, one may further require
φ(t) = ψ̃(t)4, and indeed split as φ(t) = φ1(t) + φ2(t) where φ1(t) = |P|τ |<M ψ̃(t)|4. To make the proof
clean, we leave further details to the interested reader, and allow ourselves to freely multiplying an extra time
localization ψ(t) in the proof.

Via (6.11), one can naturally split the left hand side of (6.8) into 24 parts. Each part is of the form
Ns0

1

∣∣´ N1(PN1f1, PN2f2, PN3f3)PN1f4
∣∣, where fi = P|τi−n2

i |<Mφ(t)wi, or P|τi−n2
i |>Mφ(t)wi for i = 1, 3,

f2 = P|τ |<Mφ(t)v2 or P|τ |>Mφ(t)v2, and f4 = P|τ−n2|<Mφ(t)h or P|τ−n2|>Mφ(t)h.
Then, applying (3.20), one has for some Schwartz function ψ(t) that

Ns0
1

∣∣∣∣
ˆ

N1(PN1f1, PN2f2, PN3f3)PN1f4

∣∣∣∣ .Ns0
1

∣∣∣∣
ˆ

N1(PN1f1, PN2f2, PN3f3)PN1f4ψ(t)
∣∣∣∣

.Ns1
2 ‖PN1f1‖Xs0,1/3‖PN2f2‖L∞

t,x
‖PN3f3‖X0,1/3‖f4‖X0,1/3

+‖PN1f1‖Xs0,1/3‖PN2f2‖X0,b0 ‖PN2f3‖X0,1/3‖PN1f4‖X0,1/3 .

(6.12)
(In the second line, we add a time localization ψ(t), following Remark 6.2. Also recall we have s1 ≫ ǫ0.)

Unless fi = P|τi−n2
i |<Mφ(t)wi, i = 1, 3, f4 = P<Mφ(t)h, and f2 = P|τ |<Mφ(t)v2, at least one of the

following estimates will be true (after dropping an extra set of probability e−Nc
2 if necessary):

• ‖PN1f1‖Xs0,1/3 . N−10s1
2 ‖PN1f1‖Xs0,b0 ,

• ‖PN2f2‖L∞
t,x

+ ‖PN2f2‖X0,b0 . N−10s1
2 ,

• ‖PN3f3‖X0,1/3 . N−10s1
2 ‖PN3f3‖X0,b0 ,

• ‖PN1f4‖X0,1/3 . N−10s1
2 ‖PN1f4‖X0,1−b0 ,

and we always have
‖PN2f2‖X0,b0 + ‖PN2f2‖L∞

t,x
. Ns1

2 . (6.13)
The desired estimate follows by inserting the above ones into (6.12).

Remark 6.3. The numerology in the above calculation is in fact very simple modulo lower order terms. The
term

´

N1(PN1u1, PN2u2, PN3u3)hψ(t) can essentially be thought as
´

PN1u1PN2u2PN3u3h̄ψ(t), and will only
miss the desired estimate by at most a factor N10s1

2 via (3.14). On the other hand, when there is some ui = vi,
which is hence already essentially localized at |τ − n2| . 1, then for all the rest of the functions h, uj, one
can gain at least 1/2 − ǫ0 − 1/3 derivative. Therefore, unless all the other terms have space-time frequency
localization in |τ − n2| < N100s1

2 , the desired estimate will automatically follow.

Now, we are left with the case where fi = P|τi−n2
i |<Mφ(t)wi, i = 1, 3, f4 = P|τ−n2|<Mφ(t)h, and f2 =

P|τ |<Mφ(t)v2.
Let d1(n, t), r2(n, t), d3(n, t), H(n, t) be the space Fourier transform of P|τ1−n2

1|<Mφ(t)w1, P|τ |<Mφ(t)v2,
P|τ3−n2

3|<Mφ(t)w3, P|τ−n2|<Mφ(t)PN1h. We abbreviate d1(n, t), r2(n, t), d3(n, t), H(n, t) as d1(n), r2(n),
d3(n), H(n) respectively. Observe that





N2s0
i

∑
n∼Ni

‖di(n)e−in2
i t‖

H
b0
t

. ‖PN1wi‖2
Xs0,b0 ,

r2(n2, t) = ψ(t) gn2
|n2| , for some Schwartz function ψ,∑

|n|∼N1
‖H(n)e−in2t‖

H
1−b0
t

. ‖PN1h‖2
X0,1−b0 .

(6.14)

(One may observe, for example, that ‖di(n, t)e−in2t‖
H

b0
t

∼ ‖di(n, t)ein·x‖Xs0,b0 . We also point out that
we have estimated P|τ |<Mφ(t) just as some Schwartz function ψ(t). Furthermore, one may observe that
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‖di(n, t)e−in2t‖Lp
t

= ‖di(n, t)‖Lp
t
.) We will show that

Ns0
1

∣∣∣∣
ˆ

φ(t)h̄N1(PN1φ(t)w1, PN2φ(t)v2, PN3φ(t)w3) dxdt
∣∣∣∣

=Ns0
1

∣∣∣∣∣∣
∑

|ni|∼Ni,n1−n2+n3=n

ˆ

d1(n1)r2(n2)d3(n3)H(n) dt

∣∣∣∣∣∣
.N−ǫ1

2 ‖PN1w1‖Xs0,b0 ‖PN1h‖X0,1−b0 ‖PN3w3‖Xs0,b0 , for some ǫ1 ≫ ǫ0.

(6.15)

Observe further that d1(n1, t), r2(n2, t), d3(n3, t), and H(n, t) are Fourier supported in |τi −n2
i | . M, i =

1, 2, 3 and |n− τ2| . M . Thus for the integral
´

d1(n1)r2(n2)d3(n3)H(n) dt to be non-zero, one necessarily
has

n2
1 − n2

2 + n2
3 − n2 = O(N100s1

2 ). (6.16)

We thus have

Ns0
1

∣∣∣∣∣∣
∑

|ni|∼Ni,n1−n2+n3=n

ˆ

d1(n1)r2(n2)d3(n3)H(n) dt

∣∣∣∣∣∣

≤Ns0
1

∑

|ni|∼Ni,n1−n2+n3−n4=0,

n2
1−n2

2+n2
3−n2=O(N100s1

2 )

∣∣∣∣
ˆ

d1(n1)r2(n2)d3(n3)H(n) dt
∣∣∣∣ .

(6.17)

To summarize, to prove (6.8), we are left with showing the following:

Lemma 6.4. Let N1 ≫ N2 ≥ N3, then one has for some ǫ1 ≫ ǫ0 that

Ns0
1

∑

|ni|∼Ni,n1−n2+n3−n4=0,

n2
1−n2

2+n2
3−n2=O(N100s1

2 )

∣∣∣∣
ˆ

d1(n1)r2(n2)d3(n3)H(n) dt
∣∣∣∣

.N−ǫ1
2 ‖PN1w1‖Xs0,b0 ‖PN1h‖X0,1−b0 ‖PN3w3‖Xs0,b0 .

(6.18)

We also write down the corresponding lemma that will imply (6.9).

Lemma 6.5. Let N1 ∼ N2 ≥ N3, then the same estimate (6.18) holds if one replaces the PN1h by P<N1h.

One can easily check that the proof of Lemma 6.4 also works for Lemma 6.5 (almost line by line).

6.2. Random data type estimate: Proof of Lemma 6.4. Recall that we always assume (6.2) and that
we are in the regime N1 ≫ N2 ≥ N3.

First note that for all n3 ∼ N3, we have

‖d3(n3)‖L∞
t

= ‖d3(n3)e−in2
3t‖L∞

t
. ‖d3(n3)e−in2

3t‖
H

b0
t

∼ ‖d3(n3)ein3·x‖X0,b0 ≤ ‖PN3w3‖X0,b0 .
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Now, for all |n3| ∼ N3 fixed, we have

∑

|ni|∼Ni,i=1,2, n1−n2+n3−n=0,

n2
1−n2

2+n2
3−n2=O(N100s1

2 )

∣∣∣∣
ˆ

d1(n1)r2(n2)d3(n3)H(n) dt
∣∣∣∣

.‖PN3w3‖X0,b0

∑

|ni|∼Ni,i=1,2, n1−n2+n3−n=0,

n2
1−n2

2+n2
3−n2=O(N100s1

2 )

‖d1(n1)‖L2
t
‖r2(n2)‖L∞

t
‖H(n)‖L2

t

.‖PN3w3‖X0,b0


 ∑

|n|∼N1

‖H(n)‖2
L2

t




1/2

×



∑

|n|∼N1

{ ∑

|ni|∼Ni,i=1,2, n1−n2+n3−n=0,

n2
1−n2

2+n2
3−n2=O(N100s1

2 )

‖d1(n1)‖L2
t
‖r2(n2)‖L∞

t

}2




1/2

.‖PN3w3‖X0,b0 ‖PN1h‖X0,1−b0 ×


N

1+100s1
2

∑

|ni|∼Ni,i=1,2, n1−n2+n3−n=0,

n2
1−n2

2+n2
3−n2=O(N100s1

2 )

{‖d1(n1)‖L2
t
‖r2(n2)‖L∞

t
}2




1/2

.‖PN3w3‖X0,b0 ‖PN1h‖X0,1−b0 ×


N1+100s1

2

∑

|ni|∼Ni,i=1,2,〈n2−n1,n2−n3〉=O(N100s1
2 )

‖d1(n1)‖2
L2

t
N−2+2s1

2




1/2

.

(6.19)
In the second step above, we used Cauchy inequality in n, while in the second to last step, we used Lemma
4.3. Observe as well that ‖H(n)‖L2

t
≤ ‖H(n)e−int‖

H
1−b0
t

, ‖r2(n2)‖L∞
t

. |N2|s1−1 up to an exceptional set,

and ‖d1(n1)‖L2
t

≤ ‖d1(n1)e−in2
1t‖L2

t
.

Furthermore, by the counting lemma (Lemma 4.4), one has for n1, n3 fixed that

♯{|n2| ∼ N2 : 〈n2 − n1, n2 − n3〉 = O(N100s1
2 )} . N100s1

2 max

(
N2

N
1/3
1

, 1

)
. (6.20)

To summarize, we derived that

Ns0
1

∑

|ni|∼Ni,n1−n2+n3−n4=0,

n2
1−n2

2+n2
3−n2=O(N100s1

2 )

∣∣∣∣
ˆ

d1(n1)r2(n2)d3(n3)H(n) dt
∣∣∣∣

.Ns0
1 N2

3 ‖PN3w3‖X0,b0 ‖PN1h‖X0,1−b0


N−1+2s1

2

∑

|n1|∼N1

‖d1(n1)‖2
L2

t
N200s1

2 max(
N2

N
1/3
1

, 1)




1/2

.N2
3N

Cs1
2 N

−1/2
2

[
max

(
N2

N
1/3
1

, 1

)]1/2

‖PN1w1‖Xs0,b0 ‖PN1h‖X0,1−b0‖PN3w3‖Xs0,b0 .

(6.21)

It is easy to see that the desired estimate will follow if there holds N1/100
2 ≥ N3.

When N3 ≥ N
1

100
2 , we may directly go back to (6.8). Applying (3.15) and using (6.3), we have

Ns0
1

∣∣∣∣
ˆ

φ(t)h̄N1(PN1φ(t)w1, PN2φ(t)v2, PN3φ(t)w3) dxdt
∣∣∣∣

.NCs1
2 ‖PN1w1‖Xs0,b0 ‖PN2φ(t)v2‖X0,b0N

−s0
3 ‖P3w3‖X

s0,b0 ‖PN1h‖X0,1−b0

.NCs1
2 N−s0

3 ‖PN1w1‖Xs0,b0 ‖PN1h‖X0,1−b0 .

(6.22)

Estimate (6.8) then follows since N3 ≥ N
1/100
2 and s1 ≪ s0.
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7. Proof of Proposition 2.1: case by case study, case (c)

In this case, we have N1(I) & N2(II) ≥ N3(II), and we aim to prove for all v1, w2, w3 satisfying

v1 = φ(t)
∑

n1

gn1(ω)
|n1|

ein1x, ‖w2‖Xs0,b0 . 1, ‖w3‖X
s0,b0 . 1,

and ‖h‖X0,1−b0
. 1, that (up to an exceptional set)

Ns0
1

∣∣∣∣
ˆ

φ(t/δ)h̄N1(PN1v1, PN2w2, PN3w3) dxdt
∣∣∣∣ . δǫ1 , for some ǫ1 ≫ ǫ. (7.1)

7.1. Standard reduction: a (detailed) sketch. We first sketch a reduction, with an argument similar
to the one in Subsection 6.1. There is indeed some difference between the reduction process in case (a) and
case (c), mainly due to the difference of the form of the first term (with the highest frequency). Hence, we
will still provide a rather detailed sketch. In all the remaining cases, we only briefly sketch the reduction.

We may fix N1,0 large satisfying 1
δ = N100

1,0 . By dropping a set of probability up to e−N
−cs1
1,0 , we have

{
|gn(ω)| ≤ Ns1

1,0, |n| ≤ N1,0,

|gn(ω)| ≤ Ns1
1 , |n| ∼ N1 ≥ N1,0.

(7.2)

By further dropping a set of probability e−N
−cs1
1,0 if necessary, one has

{
‖PN1φ(t)v1‖X0,b0 . Ns1

1,0, N1 ≤ N1,0,

‖PN1φ(t)v1‖X0,b0 + ‖PN1φ(t)v1‖L∞
t,x

. Ns1
1 , N1 ≥ N1,0.

(7.3)

We will assume (7.2) and (7.3) thoughout this section. Now, split into two parts N1 > N1,0 and N1 ≤ N1,0.
For the low frequency part N1 ≤ N1,0, we may use (7.3) and apply the deterministic estimate (3.17), one
thus derives the analogues of (6.5) and (6.6) below

Ns0
1

∣∣∣∣
ˆ

N1(PN1v1, PN2w2, PN3w3)h̄φ(t/δ)
∣∣∣∣

.δs0/8Ns0+Cǫ0
1,0 Ns0

2 ‖φ(t)v1‖X0,b0 ‖w2‖Xs0,b0 ‖w3‖Xs0,b0 ‖h‖X0,1−b0

.δs0/8Ns0+Cǫ0
1,0 Ns0

2 Ns1
1,0.

(7.4)

(Note that here we only need one estimate rather than two estimates as in (6.5), (6.6).)
Summing over N1 ≤ N1,0 and the associated N2, N3, and using the fact that δ−1 = N100

1,0 , we derive the
desired estimate

∑

N1≤N1,0,N1&N2≥N3

Ns0
1

∣∣∣∣
ˆ

N1(PN1v1, PN2w2, PN3w3)h̄φ(t/δ)
∣∣∣∣ . δǫ1 , for some ǫ1 ≫ ǫ0. (7.5)

For the remaining part N1 > N1,0, we will write φ(t/δ)h as φ(t)φ(t/δ)h and note that one still has
‖φ(t/δ)h‖X0,1−b0 . 1. For notational convenience, we will still denote φ(t/δ)h by h, and will prove for all
N1 & N2 ≥ N3 with N1 > N1,0 that

Ns0
1

∣∣∣∣
ˆ

N1(PN1v1, PN2w2, PN3w3)h̄φ(t)
∣∣∣∣ . N−ǫ1

1 , for some ǫ1 ≫ ǫ0. (7.6)

Then (7.1) will follow from summing (7.6) over N1, N2, N3.
To see (7.6), we first introduce a parameter M = N100s0

1 .

Remark 7.1. If one wants to get a rather large s0 < 1, one may need to choose M more carefully. The
following argument should still be fine if one chooses M = O(N (6+)s0

1 ), where 6+ denotes any number larger
than 6. However, it is unclear to us whether further improvement is possible. We don’t further discuss this
issue here.
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As in Subsubsection 6.1.2, we may split the functions φ(t)v1 = P|τ |<Mφ(t)v1 + P|τ |>Mφ(t)v1, φ(t)wi =
P|τi−n2

i |<Mφ(t)wi + P|τi−n2
i |>Mφ(t)wi, i = 2, 3, and φ(t)h = P|τ−n2|<Mφ(t)h + P|τ−n2|>Mφ(t)h. Applying

the deterministic estimate (3.19), we reduce the proof of (7.6) to the following estimate

Ns0
1

∣∣∣∣
ˆ

N1(PN1ψ(t)v1, PN2P|τ2−n2
2|≤Mφ(t)w2, PN3P|τ3−n2

3|≤Mφ(t)w3)P|τ−n2|≤Mφ(t)h
∣∣∣∣ . N−ǫ1

1 , (7.7)

for some ǫ1 ≫ ǫ0. Here ψ(t) = P|τ |<Mφ(t) is a Schwartz function.
Write

ψ(t)v1 =
∑

n1

r1(n1, t)ein1·x, P|τi−n2
i |φ(t)wi =

∑

ni

di(ni, t)eini·x, i = 2, 3, P|τ−n2|<Mφ(t)h =
∑

n

H(n, t)ein·x,

(7.8)
and abbreviate the coefficients as r1(n1), di(ni) and H(n) as before, one has

Ns0
1

∣∣∣∣
ˆ

N1(PN1ψ(t)v1, PN2P|τ2−n2
2|≤Mφ(t)w2, PN3P|τ3−n2

3|≤Mφ(t)w3)P|τ−n2|≤Mφ(t)h
∣∣∣∣

≤Ns0
1

∣∣∣∣∣∣∣∣∣

∑

ni∼Ni,n1−n2+n3=n, n2 6=n1,n3

n2
1−n2

2+n2
3−n2=O(M)=O(N100s0

1 )

ˆ

r1(n1)d2(n2)d3(n3)H(n) dt

∣∣∣∣∣∣∣∣∣
.

(7.9)

Observe that one has in this case the following estimates:





N2s0
i

∑
ni

‖di(ni)e−n2
i t‖2

H
b0
t

. ‖PNiwi‖2
Xs0,b0 . 1, i = 2.3,

r1(n1, t) = ψ(t) gn1 (ω)
|n1| ein1·x+in2

1t, where ψ Schwartz,∑
n∼N1

‖H(n)e−in2t‖2
H

1−b0
t

. ‖PN1h‖2
X0,1−b0 .

(7.10)

We also point out that ‖f(t)eiθt‖Lp
t

= ‖f‖Lp
t
. Thus, it remains to prove the following lemma:

Lemma 7.2. Assuming (7.10), for N1 > N1,0, one has (up to an extra exceptional set of probability e−Nc
1 )

that

Ns0
1

∣∣∣∣∣∣∣∣∣

∑

ni∼Ni,n1−n2+n3=n, n2 6=n1,n3

n2
1−n2

2+n2
3−n2=O(M)=O(N100s0

1 )

ˆ

r1(n1)d2(n2)d3(n3)H(n) dt

∣∣∣∣∣∣∣∣∣
. N−ǫ1

1 , for some ǫ1 ≫ ǫ0. (7.11)

7.2. Random data type estimate: Proof of Lemma 7.2. We derive three different estimates, which,
combined together, will imply the desired bound.

First, one can directly go back to (7.6), and use estimate (3.15) and (7.3) to derive

Ns0
1

∣∣∣∣
ˆ

N1(PN1v1, PN2w2, PN3w3)h̄φ(t)
∣∣∣∣

.Ns0
1 Ns1+Cǫ0

1 ‖PN1v1‖X0,b0N
−s0
2 ‖PN2w2‖Xs0,b0N

−s0
3 ‖PN3w3‖Xs0,b0

.(N1N
−1
2 N−1

3 )s0NCs1
1 .

(7.12)

One can see easily that the same bound works for the left hand side of (7.11) as well. When N1 ∼ N2, one
can directly use (7.12) to derive the desire estimate unless lnN3 ≪ lnN1. In particular, There is no need to
consider the subcase N1 ∼ N2 ∼ N3.
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Next, by applying Cauchy inequality in n, one obtains

Ns0
1

∣∣∣∣∣∣∣∣∣

∑

ni∼Ni,n1−n2+n3=n, n2 6=n1,n3

n2
1−n2

2+n2
3−n2=O(M)=O(N100s0

1 )

ˆ

r1(n1)d2(n2)d3(n3)H(n) dt

∣∣∣∣∣∣∣∣∣

.Ns0
1

(∑

n

‖H(n)‖2
L2

t

)1/2



∑

n

∥∥∥
∑

ni∼Ni,n1−n2+n3=n, n2 6=n1,n3

n2
1−n2

2+n2
3−n2=O(N100s0

1 )

r1(n1)d2(n2)d3(n3)
∥∥∥

2

L2
t




1/2

.Ns0
1



∑

n

∥∥∥
∑

ni∼Ni,n1−n2+n3=n, n2 6=n1,n3

n2
1−n2

2+n2
3−n2=O(N100s0

1 )

r1(n1)d2(n2)d3(n3)
∥∥∥

2

L2
t




1/2

(7.13)

In all the summations below, we always have |ni| ∼ Ni, n1−n2+n3 = n, n2
1−n2

2+n
2
3−n2 = O(M), n2 6= n1, n3,

and we sometimes omit them for notational convenience.
One also observes that n1 − n2 + n3 = n and n2

1 − n2
2 + n2

3 − n2 = O(M) imply

〈n2 − n1, n2 − n3〉 = O(M), 〈n3 − n, n3 − n2〉 = O(M). (7.14)

We have the following further estimate:
∑

n

∥∥∥
∑

ni∼Ni,n1−n2+n3=n, n2 6=n1,n3

n2
1−n2

2+n2
3−n2=O(N100s0

1 )

r1(n1)d2(n2)d3(n3)
∥∥∥

2

L2
t

.
∑

n

(∑

n2

‖d2(n2)‖L∞
t

∥∥∥
∑

n1,n3

r1(n1)d3(n3)
∥∥∥

L2
t

)2

.
(∑

n2

‖d2(n2)‖2
L∞

t

)∑

n,n2

∥∥∥
∑

n1,n3 6=n2,〈n2−n1,n2−n3〉=O(M)

gn1

|n1|
ein2

1tψ(t)d3(n3)
∥∥∥

2

L2
t

,

(7.15)

where we used Cauchy inequality in n2 in the last line. Since ‖d2(n2)‖L∞
t

. ‖d2(n2)ein2·x‖X0,b0 , when
N1 ≫ N2, the above is further bounded by

.N−2s0
2

∑

n,n2

∥∥∥
∑

n1,n3 6=n2,〈n2−n1,n2−n3〉=O(M)

gn1

|n1|
ein2

1tψ(t)d3(n3)
∥∥∥

2

L2
t

.N−2s0
2 sup

n,n2

♯{n3 : 〈n3 − n2, n3 − n〉 = O(N100s0
1 )}

∑

ni: n2 6=n1,n3,

〈n3−n2,n3−n〉=O(N100s0
1 )

‖r1(n1)d3(n3)‖2
L2

t

.N−2s0
2 N100s0

1 max(
N3

N
1/3
1

, 1)
∑

ni: n2 6=n1,n3,

〈n3−n2,n3−n〉=O(N100s0
1 )

N−2+2s1
1 ‖d3(n3)‖2

L2
t

.NCs0
1 N−2

1 max(
N3

N
1/3
1

, 1) sup
n3

♯{(n1, n2) : 〈n2 − n1, n2 − n3〉 = O(N100s0
1 ), n2 6= n1, n3}

∑

n3

‖d3(n3)‖2
L2

t

.NCs0
1 N−2

1 max(
N3

N
1/3
1

, 1)N1N2.

(7.16)
In the above sequence of estimates, we used Hölder’s inequality in the second line, and a variant of the
counting Lemma 4.4 in the third line (note that we assume N1 ≫ N2, thus one necessarily has |n| ∼ N1). In
the last line we applied the counting Lemma 4.5. Moreover, note that the ψ(t) in r1(n1) gives enough decay
in t, hence one has ‖di(ni)‖L∞

t
= ‖di(ni)e−n2

i t‖L∞
t

. ‖di(ni)e−n2
i t‖

H
b0
t

.
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To summarize, when N1 ≫ N2, one has the second estimate

Ns0
1

∑

ni∼Ni,n1−n2+n3=n, n2 6=n1,n3

n2
1−n2

2+n2
3−n2=O(M)=O(N100s0

1 )

∣∣∣∣
ˆ

r1(n1)d2(n2)d3(n3)H(n) dt
∣∣∣∣ . NCs0

1
N

1/2
2

N
1/2
1

max

(
N

1/2
3

N
1/6
1

, 1

)
. (7.17)

One may also make use of the Frobenius norm that is more suitable when one deals with random data
since it exploits better the independence of the random variables involved. The Frobenius norm together a
version of the Cauchy-Schwarz inequality recalled in (C.7) will give the third estimate. We start from (7.13)
again. By the same argument in (7.15), one has

∑

n

∥∥∥
∑

ni∼Ni,n1−n2+n3=n, n2 6=n1,n3

n2
1−n2

2+n2
3−n2=O(N100s0

1 )

r1(n1)d2(n2)d3(n3)
∥∥∥

2

L2
t

.
∑

n,n3

∥∥∥
∑

n1,n3 6=n2,〈n2−n1,n2−n3〉=O(M)

gn1

|n1|
ein2

1tψ(t)d2(n2)
∥∥∥

2

L2
t

,

(7.18)

and by applying the recalled Cauchy-Schwarz inequality (C.7), we can further bound this expression by

.N2
3 sup

n3

∑

n

∥∥∥
∑

n2

A(n, n2)d2(n2)
∥∥∥

2

L2
t

.N2
3 sup

n3


max

n

(∑

n2

‖A(n, n2)‖2
L∞

t

)
+


∑

n6=n′

∥∥∥
∑

n2

A(n, n2)A(n′, n2)
∥∥∥

2

L∞
t




1/2

 ,

(7.19)

where we defined

A(n, n2) = A(n, n2, t) =

{
r1(n+ n2 − n3), if 〈n− n3, n2 − n3〉 = O(N100s0

1 ),
0, otherwise.

(7.20)

In the last line we also used
∑

n2
‖d2(n2)‖2

L2
t

. 1. For the sake of convenience, we also define

σ(n, n2) =

{
gn+n2−n3

N1
, if 〈n− n3, n2 − n3〉 = O(N100s0

1 ),
0, otherwise

(7.21)

for later use.

Remark 7.3. By dropping an extra set of probability e−Nc
1 , one can in fact estimate

max
n

(∑

n2

‖A(n, n2)‖2
L∞

t

)
+


∑

n6=n′

∥∥∥
∑

n2

A(n, n2)A(n′, n2)
∥∥∥

2

L∞
t




1/2

as

max
n

(∑

n2

|σ(n, n2)|2
)

+


∑

n6=n′

∣∣∣
∑

n2

σ(n, n2)σ(n′, n2)
∣∣∣
2




1/2

.

To see this, observe that N1 ∼ |n1| = (n2 − n3 + n|, and for any fixed t ∈ [0, 1], the estimate of

max
n

(∑

n2

|A(n, n2)(t)|2
)

+


∑

n6=n′

∣∣∣
∑

n2

A(n, n2)(t)A(n′, n2)(t)
∣∣∣
2




1/2

.

is just the same as

max
n

(∑

n2

|σ(n, n2)|2
)

+


∑

n6=n′

∣∣∣
∑

n2

σ(n, n2)σ(n′, n2)
∣∣∣
2




1/2

.

Now one can simply mimic the argument in the proof of Lemma 3.10 to go from a single t to a collection of
{tn} in [0, 1] so that |ti − tj | ≤ N−3

1 . and then go to L∞
t [0, 1]. Then, finally, one can use the fact that there

is a Schwartz function ψ(t) multiplied inside each r1 to go from L∞
t [0, 1] to L∞

t (R). We omit the details.
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In the following and throughout the rest of the article, we will estimate instead the term

max
n

(∑

n2

|σ(n, n2)|2
)

+


∑

n6=n′

∣∣∣
∑

n2

σ(n, n2)σ(n′, n2)
∣∣∣
2




1/2

,

and we don’t repeat the similar reduction in the rest of the article.
We fix n3. Note that for each n, there are at most ∼ N2N

100s0
1 choices of n2 so that |n2| ∼ N2 and

〈n3 − n, n3 − n2〉 = O(N100s0
1 ). Hence,

max
n

(∑

n2

|σ(n, n2)|2
)

. N2N
Cs0
1 N−2

1 . (7.22)

For the non-diagonal term, we first observe that for all n 6= n′ fixed, up to an exceptional set of probability
e−Ncǫ

1 , one can apply Lemma 3.9 to derive
∣∣∣∣∣
∑

n2

σ(n, n2)σ(n′, n2)

∣∣∣∣∣ .ǫ N
ǫ/2
1 E

(∣∣∣
∑

n2

σ(n, n2)σ(n′, n2)
∣∣∣
2
)1/2

. (7.23)

This implies that
∣∣∣∣∣
∑

n2

σ(n, n2)σ(n′, n2)

∣∣∣∣∣

2

.ǫ N
ǫ
1E
∣∣∣
∑

n2

σ(n, n2)σ(n′, n2)
∣∣∣
2

∼ N ǫ−4
1 ♯{n2 : 〈n3 − n2, n3 − n〉 = O(N100s0

1 ), 〈n3 − n2, n3 − n′〉 = O(N100s0
1 ), n2 6= n1, n3}.

(7.24)

Therefore, dropping an exceptional set of probability N4
1 e

−Ncǫ
1 ∼ e−Nc

1 , we have
∑

n6=n′

∣∣∣
∑

n2

σ(n, n2)σ(n′, n2)
∣∣∣
2

.N ǫ−4
1 ♯{(n, n′, n2) : n 6= n′, 〈n3 − n2, n3 − n〉 = O(N100s0

1 ), 〈n3 − n2, n3 − n′〉 = O(N100s0
1 ), n2 6= n1, n3}.

(7.25)
Counting first all the possible pairs of (n, n2) by N1+Cs0

1 N2 (Lemma 4.5), and by the Wick ordered condition
n3 6= n2, which further gives at most ∼ N1+Cs0

1 possible n′, we derive

∑

n6=n′

∣∣∣
∑

n2

σ(n, n2)σ(n′, n2)
∣∣∣
2




1/2

. N−1+Cs0
1 N

1/2
2 , (7.26)

which obviously dominates the bound (7.22) for the diagonal term.
To summarize, we can go back to (7.18) and derive our third estimate

Ns0
1

∑

ni∼Ni,n1−n2+n3=n, n2 6=n1,n3

n2
1−n2

2+n2
3−n2=O(M)=O(N100s0

1 )

∣∣∣∣
ˆ

r1(n1)d2(n2)d3(n3)H(n) dt
∣∣∣∣ . NCs0

1 N
−1/2
1 N

1/4
2 N3. (7.27)

To complete the argument, note that the case N1 ∼ N2 will follow from estimates (7.12) and (7.27).
Indeed, consider two subcases. In the case N1 ≥ N100

3 , we use estimate (7.27), and when N1 < N100
3 , we

use estimate (7.12). When N1 ≫ N2 (hence estimate (7.17) also holds), we also consider several subcases.
In subcase N2N3 ≥ N

11/10
1 , we use estimate (7.12). In the case N2N3 < N

11/10
1 and N3 ≥ N

1/3
1 , we use

estimate (7.17). In the case N2N3 < N
11/10
1 and N3 < N

1/3
1 , if N2 ≤ N

9/10
1 , we use estimate (7.17). Finally,

if N2N3 < N
11/10
1 , N3 < N

1/3
1 but N2 > N

9/10
1 , there must hold N3 ≤ N

1/5
1 , hence one can use estimate

(7.27).



Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2020 Springer Science+Business Media, LLC, part of Springer Nature.

RANDOM DATA 24

8. Proof of Proposition 2.1: Remaining cases

We present the proof of the remaining cases. Note that in each case, the desired estimate will be reduced
to the resonant part similarly as in the previous two sections, and we will only briefly sketch the reduction.
It is unclear whether Case (a) and Case (c) are the hardest two cases, however, all the essential arguments
required to treat the rest of the cases have already appeared in the previous two sections.

We will use the following notations throughout the section. Let ‖wi‖Xs0,b0 . 1, i = 1, 2, 3, vi =
φ(t)

∑
|ni|∼Ni

gni
(ω)

|ni| eini·x+in2
i t, and ‖h‖X0,1−b0 . 1.

Let M be a parameter that will be specified in each of the cases, ri(ni, t) be the space Fourier transform
of (P|τ |<Mφ(t))vi, and di(ni, t) be the space Fourier transform of P|τi−n2

i |<Mφ(t)wi, i = 1, 2, 3, and H(n, t)
be the space Fourier transform3 of P|τ−n2|≤Mφ(t)h. We will sometimes abbreviate ri(ni, t), di(ni, t), H(n, t)
as ri(ni), di(ni), H(n) respectively.

Similarly to (6.14) and (7.10), one always has the following estimates:




N2s0
i

∑
ni

‖di(ni)e−n2
i t‖2

H
b0
t

. ‖PNiwi‖2
Xs0,b0 . 1,

ri(ni, t) = ψ(t) gni
(ω)

|ni| eini·x+in2
i t, where ψ is a Schwartz function,

∑
n∼N1

‖H(n)e−in2t‖2
H

1−b0
t

. ‖PN1h‖2
X0,1−b0 .

(8.1)

8.1. Case (b): N1(II) ≥ N3(I) ≥ N2(II). This part is similar to Case (a). After handling the low-
frequency part using deterministic estimates and localization in time, we aim to prove for all N3 ≥ N3,0

(where N100
3,0 = δ−1), one has up to an exceptional set of probability e−Nc

3 that
• when N1 ∼ N3,

Ns0
1

∣∣∣∣
ˆ

N1(PN1w1, PN2w2, PN3v3)h̄φ(t)
∣∣∣∣ . N−ǫ1

3 ‖PN1w1‖Xs0,b0 ‖P<N1h‖X0,1−b0

∼ N−ǫ1
1 ‖PN1w1‖Xs0,b0 ‖P<N1h‖X0,1−b0 ;

(8.2)

• when N1 ≫ N3,

Ns0
1

∣∣∣∣
ˆ

N1(PN1w1, PN2w2, PN3v3)h̄φ(t)
∣∣∣∣ . N−ǫ1

3 ‖PN1w1‖Xs0,b0 ‖PN1h‖X0,1−b0 . (8.3)

Note that up to an exceptional set of probability e−Nc
3 , we can assume that

|gn3(ω)| + ‖PN3φ(t)v3‖X0,b0 ≤ Ns1
3 (8.4)

for all N3 ≥ N3,0, |n3| ∼ N3.
It also suffices to assume

N3 ≥ N1000
2 . (8.5)

Indeed, if N3 < N1000
2 , from the deterministic estimate (3.15) and the bound (8.4), one obtains

Ns0
1

∣∣∣∣
ˆ

N1(PN1w1, PN2w2, PN3v3)f̄φ(t)
∣∣∣∣ . NCs1

3 N−s0
2 ‖PN1w1‖Xs0,b0 ‖f‖X0,1−b0 , (8.6)

where f = PN1h or P<N1h, hence (8.2) and (8.3) follow.
In the following, we will only prove (8.2), as estimate (8.3) follows similarly (almost line by line). Note

that in all the summations below we always have |ni| ∼ Ni, which we sometimes omit from the notation.
Let M = N100s1

3 , similarly as in Case (a), one can reduce (8.2) to the following estimate:

Ns0
1

∣∣∣∣∣∣∣∣

∑

n1−n2+n3=n, n2 6=n1,n3
n2

1−n2
2+n2

3−n2
4=O(M)

ˆ

d1(n1)d2(n2)r3(n3)H(n) dt

∣∣∣∣∣∣∣∣

.N−ǫ1
3 ‖PN1w1‖Xs0,b0 ‖P<N1h‖X0,1−b0 ‖PN2w2‖Xs0,b0 .

(8.7)

3As one sees in the previous two sections, the function h here is actually φ(t/δ)h, whose X0,1−b0 norm is also bounded
uniformly in δ.
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To see this, note that one automatically has |n| . N1, and recall that
∑

n2
‖d2(n2)‖2

L∞ . 1. By first
applying Cauchy-Schwarz in n and then in n2, one has

Ns0
1

∣∣∣∣∣∣∣∣

∑

n1−n2+n3=n, n2 6=n1,n3
n2

1−n2
2+n2

3−n2
4=O(M)

ˆ

d1(n1)d2(n2)r3(n3)H(n) dt

∣∣∣∣∣∣∣∣

.Ns0
1 ‖P<N1h‖X0,1−b0



∑

n

∥∥∥
∑

n1−n2+n3=n, n2 6=n1,n3
n2

1−n2
2+n2

3−n2
4=O(M)

d1(n1)d2(n2)r3(n3)
∥∥∥

2

L2
t




1/2

.Ns0
1 ‖P<N1h‖X0,1−b0



∑

n,n2

∥∥∥
∑

n1−n2+n3=n,n2 6=n1,n3,
n2

1−n2
2+n2

3−n2
4=O(M)

d1(n1)r3(n3)
∥∥∥

2

L2
t




1/2

.

(8.8)

Recall also n2
1 − n2

2 + n2
3 − n2

4 = O(M) together with n1 − n2 + n3 = n imply that

〈n3 − n2, n3 − n〉 = O(M). (8.9)

By applying Cauchy-Schwarz in n3 (note that the inner sum can be viewed as over n3 only) and recalling
‖r3(n3)‖L∞

t
. N−1+s1

3 (outside an exceptional set), the above can be further bounded as

.Ns0
1 ‖P<N1h‖X0,1−b0

( ∑

n,n2,n3

‖d1(n1)‖2
L2

t

)1/2

N−1+s1
3

(
sup
n,n2

#{n3 : 〈n3 − n2, n3 − n〉 = O(M)}
)1/2

.‖P<N1h‖X0,1−b0 ‖PN1w1‖Xs0,b0N
Cs1
3 N

−2/3
3

(
sup
n1

#{n2, n3 : 〈n2 − n1, n2 − n3〉 = O(M), n2 6= n1, n3}
)1/2

,

where in the second step above, we have applied a variant of Lemma 4.4 to conclude

sup
n,n2

#{n3 : 〈n3 − n2, n3 − n〉 = O(M)} . N
2/3+100s1
3 .

Indeed, since N1 ∼ N3, after dividing into . N100s1
3 parts, all the n3 lie in an annulus of radius ∼ R . N3

with thickness ∼ O( 1
R ). By Lemma 4.1, there are at most ∼ R2/3 . N

2/3
3 such points.

Furthermore, we apply Lemma 4.3 to count

sup
n1

#{n2, n3 : 〈n2 − n1, n2 − n3〉 = O(M), n2 6= n1, n3} . N2
2N

1+100s1
3 ,

which implies that

Ns0
1

∣∣∣∣∣∣∣∣

∑

n1−n2+n3=n, n2 6=n1,n3
n2

1−n2
2+n2

3−n2
4=O(M)

ˆ

d1(n1)d2(n2)r3(n3)H(n) dt

∣∣∣∣∣∣∣∣

.‖P<N1h‖X0,1−b0 ‖PN1w1‖Xs0,b0N
Cs1
3 N2N

−1/6
3 .

Recall that we have reduced to the case N3 ≥ N1000
2 , hence the desired estimate is obtained.

8.2. Case (d): N1(I) ≥ N3(II) ≥ N2(II). This case is almost identical to Case (c). By the deterministic
estimates, it suffices to show for all N1 ≥ N1,0 (where N1,0 = δ−1), one has up to an exceptional set of
probability e−Nc

1 that

Ns0
1

∣∣∣∣∣∣∣∣∣

∑

ni∼Ni,n1−n2+n3=n, n2 6=n1,n3

n2
1−n2

2+n2
3−n2=O(M)=O(N100s0

1 )

ˆ

r1(n1)d2(n2)d3(n3)H(n) dt

∣∣∣∣∣∣∣∣∣
. N−ǫ1

1 , for some ǫ1 ≫ ǫ0. (8.10)
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Note that by removing an exceptional set of probability e−N
−cs1
1,0 if necessary, we will assume in this

subsection that

|gn1(ω)| + ‖PN1φ(t)v1‖X0,b0 + ‖PN1φ(t)v1‖L∞
t,x

. Ns1
1 , ∀|n1| ∼ N1 > N1,0. (8.11)

There still holds the same bound (7.12) as in Case (c). Moreover, one still has (7.15), as it has nothing
to do with the relative sizes of N2, N3, and when N1 ≫ N3, the bound (7.17) still holds true as well (with
the choice M = N100s0

1 ). Indeed, the only step that one needs to check here is that

sup
n,n2

#{n3 : 〈n3 − n2, n3 − n〉 = O(M)} . N100s0
1 max

(
N3

N
1/3
1

, 1

)
,

which follows from the same proof of Lemma 4.4 and the assumption that N1 ≫ N3.
We claim that the desired bound follows from (7.12) and (7.17). To see this, when N1 ∼ N3, if one further

has N2 > N
1/9
3 ∼ N

1/9
1 , one can apply (7.12). Otherwise, N2 ≤ N

1/9
3 , (7.17) suffices. When N1 ≫ N3,

we address two difference subcases. If we are in the subcase that N1/3
1 ≥ N3, then one automatically has

N2 . N
1/3
1 hence (7.17) implies the desired estimate. In the subcase that N1/3

1 < N3, suppose in addition
one has N2N3 > N

10
9

1 , then we apply (7.12), otherwise the desired decay in N1 follows from (7.17). The
proof of Case (d) is complete.

8.3. Case (e): N1(II) ≥ N2(I) ≥ N3(I). By a similar reduction process as in Case (a), let N2,0 be a large
parameter satisfying N100

2,0 = δ−1, we will focusing on proving for all N2 ≥ N2,0 that, up to an exceptional set
of probability of e−Nc

2 and a common exceptional set independent of N2, with probability e−Nc
2,0 , we have

• when N1 ∼ N2,

Ns0
1

∣∣∣∣
ˆ

φ(t)h̄N1(PN1w1, PN2v2, PN3v3)
∣∣∣∣ . N−ǫ1

2 ∼ N−ǫ1
1 , (8.12)

• when N1 ≫ N2,

Ns0
1

∣∣∣∣
ˆ

φ(t)h̄N1(PN1w1, PN2v2, PN3v3)
∣∣∣∣ . N−ǫ1

2 ‖PN1w1‖Xs0,b0 ‖PN1h‖X0,1−b0 . (8.13)

As usual, the part N2 ≤ N2,0 will be handled by the purely deterministic estimate (3.15), and by localizing
in time ∼ N−100

2,0 .
One may assume, by dropping a set of probability e−Nc

2,0 , that
{

|gn| ≤ Ns1
2,0, |n| ≤ N2,0,

|gn| ≤ Ns1
2 , |n| ∼ N2 ≥ N2,0.

(8.14)

Remark 8.1. In the original paper of Bourgain [4], Case (e) is not the hardest case, however, one should
be particularly careful in our irrational setting. This is because our counting lemma in the irrational case
is weaker compared to the ones in [4], hence any loss of N ǫ

1 will be unfavorable. Since the random data
argument can gain at most a (negative) power of N2, our counting Lemma 4.5 becomes useless in Case (e).

Remark 8.2. One should also be very careful about dropping exceptional sets of small probability when the
highest frequency is of type (II). For example, in our current Case (e), all large deviation type arguments
require one to drop a set of probability e−Nc

2 , thus one cannot apply random data type argument for too many
times. For instance, if one drops N2

1 different sets with probability e−Nc
2 , one immediately loses control of

the total probability. Moreover, in Case (e), one also needs to sum in N1. Therefore, it is crucial that, for a
fixed N2 and for all N1, one can apply at most NC

2 times essentially different random data type arguments.
This is an issue existing even in the rational tori case. We will add some more details along the proof for
the convenience of the reader.

From the remark above, one observes that the potentially most troublesome situation will be when lnN1 ≫
lnN2. Hence, in the following we will only focus on proving (8.13), and only briefly comment on necessary
changes needed for proving (8.12).
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Let M = N100s1
2 , we may further reduce (8.13) to the following estimate:

Ns0
1

∣∣∣∣∣∣∣∣∣

∑

|ni|∼Ni, n1−n2+n3−n=0
n2

1−n2
2+n2

3−n2=O(M)

ˆ

d1(n1)r2(n2)r3(n3)H(n) dt

∣∣∣∣∣∣∣∣∣
. N−ǫ1

2 ‖PN1w1‖Xs0,b0 ‖PN1h‖X0,1−b0 . (8.15)

By applying Cauchy-Schwarz in n, we have

Ns0
1

∣∣∣∣∣∣∣∣∣

∑

|ni|∼Ni, n1−n2+n3−n=0
n2

1−n2
2+n2

3−n2=O(M)

ˆ

d1(n1)r2(n2)r3(n3)H(n) dt

∣∣∣∣∣∣∣∣∣

.Ns0
1 ‖PN1h‖X0,1−b0



∑

n

∥∥∥
∑

n1−n2+n3=n, n2 6=n1,n3
n2

1−n2
2+n2

3−n2
4=O(M)

d1(n1)r2(n2)r3(n3)
∥∥∥

2

L2
t




1/2

.

(8.16)

For the sake of brevity, in the following we oftentimes omit the condition |ni| ∼ Ni in the summation.
Dividing {n1 : |n1| ∼ N1} into finitely overlapping balls {J} of radius ∼ N2, we are left with showing for
each J that, up to some exceptional set of small probability e−Nc

2 ,

∑

n∈J

∥∥∥
∑

n1−n2+n3=n, n2 6=n1,n3
n2

1−n2
2+n2

3−n2
4=O(M)

d1(n1)r2(n2)r3(n3)
∥∥∥

2

L2
t

. N−s
2 ‖PJw1‖2

X0,b0 , (8.17)

where we have observed that n1 ∈ J implies n ∈ J̃ (a doubling of J) and we still denote J̃ as J for the sake
of notational convenience. Moreover, we will prove the above estimate for some s ≫ s1. In particular, any
loss of NCs1

2 in the estimate will be irrelevant.
Note that for each fixed N1, there are ∼ N2

1 /N
2
2 such J , hence one should be careful when applying

random data type argument to avoid dropping too many exceptional sets. Observe, every time one applies
large deviation type argument to estimate sums of Gaussians and multiple Gausssians, one needs to drop an
exceptional set of probability e−Nc

2 , and such set, a priori may depend on J . If one naively drops all such
sets, a priori one may need to drop in total a set of probability ∼ N2

1
N2

2
e−Nc

2 , which could be enormous when
N1 ≫ N2. Also recall we also need to sum for all N1 ≥ N2. This problem will even arise when one studies
the problem on rational tori. We will explain how to address this issue in detail in Subsubsection 8.3.1, and
other cases will follow similarly.

Note that for the case N1 ∼ N2, the decomposition into {J} is unnecessary.
To prove (8.17), we first define

A(n, n1) = A(n, n1)(t) =





∑
n1−n2+n3=n, n2 6=n1,n3
n2

1−n2
2+n2

3−n2
4=O(M)

r2(n2)r3(n3), if n1, n ∈ J,

0, otherwise,

and

σ(n, n1) =





∑
n1−n2+n3=n, n2 6=n1,n3
n2

1−n2
2+n2

3−n2
4=O(M)

gn2 (ω)gn3(ω)
N2N3

, if n1, n ∈ J,

0, otherwise.

Then, similarly as in Remark 7.3, one has the left hand side of (8.17) bounded by

. ‖PJw1‖2
X0,b0


max

n∈J

∑

n1∈J

|σ(n, n1)|2 +


∑

n6=n′

∣∣∣
∑

n1∈J

σ(n, n1)σ(n′, n1)
∣∣∣
2




1/2

 , (8.18)

where we have applied (C.7) and recalled that
∑

n1∈J ‖d1(n1)‖2
L2

t
. ‖PJw1‖2

X0,b0 . In the following, it suffices
to bound the two terms in the brackets by N−s

2 .
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The diagonal term is easier. Note that if n2 6= n3, for n ∈ J fixed, one has
∑

n1∈J

|σ(n, n1)|2

.(N2N3)−2NCs1
2 sup

n
#{(n2, n3) : n = n1 − n2 + n3, n2 6= n1, n3, 〈n3 − n2, n− n3〉 = O(M)}

.(N2N3)−2NCs1
2 N2

3N2 = N−1+Cs1
2 .

(8.19)

In the first step above, we applied Lemma 3.9 to get |∑ gn2gn3 |2 . NCs1
2

∑
1 , by dropping an exceptional

set if necessary, and in the second step, we counted n3 naively and then n2 using Lemma 4.3.
We are thus left with the non-diagonal term. Expanding σ(n, n1) and σ(n′, n1), our goal is to show that


∑

n6=n′

∣∣∣
∑

n1∈J

σ(n, n1)σ(n′, n1)
∣∣∣
2




1/2

= (N2N3)−2


∑

n6=n′

∣∣∣
∑

(∗)

gn2gn3gn′
2
gn′

3

∣∣∣
2




1/2

. N−s
2 (8.20)

for some number s ≫ s1. Here we have simplified the notation by using (∗) to denote the set of (n1, n2, n3, n
′
2, n

′
3)

satisfying 



n1 ∈ J,

n = n1 − n2 + n3, n2 6= n1, n3, 〈n− n1, n− n3〉 = O(M),
n′ = n1 − n′

2 + n′
3, n

′
2 6= n1, n

′
3, 〈n′ − n1, n

′ − n′
3〉 = O(M).

(8.21)

In the following, we will prove (8.20) case by case.

8.3.1. Case I: n2, n3, n
′
2, n

′
3 are distinct. Denoting the corresponding summation in

∑
(∗) by

∑
(∗),1 and

applying again Lemma 3.9 up to dropping a set of measure e−Nc
2 , one has

∣∣∣
∑

(∗),1

gn2gn3gn′
2
gn′

3

∣∣∣
2

. NCs1
2

∑

(∗),1

1.

Hence, denoting the corresponding contribution of Case I in the left hand side of (8.20) by (8.20)1, one
obtains

(8.20)1 . (N2N3)−2NCs1
2 (#{n1, n2, n3, n

′
2, n

′
3 : (∗∗)})1/2

, (8.22)

where (∗∗) denotes the conditions




n1 ∈ J,

n2 6= n1, n3, n
′
2 6= n1, n

′
3,

〈n2 − n1, n2 − n3〉 = O(M), 〈n′
2 − n1, n

′
2 − n′

3〉 = O(M).
(8.23)

By first counting naively n1 ∈ J , one has

#{n1, n2, n3, n
′
2, n

′
3 : (∗∗)} . N2

2

(
N2

3 max

(
N2

N
1/3
1

, 1

))2

,

where we have then counted n3 naively, and applied Lemma 4.4 (recalling that N1 ≫ N2). Therefore,

(8.20)1 . NCs1
2 max(N−1/3

1 , N−1
2 ) ≤ N

−1/3+Cs1
2 .

Note that in the case N1 ∼ N2, the same estimate remains true, as the counting Lemma 4.4 still implies
the same bound. Similarly, in Case II, III, IV, V below, Lemma 4.4 always provides the same counting result.

Before we go to the next case, we explain the issue about not dropping too many exceptional sets. This
needs to be taken care of since the relation





n1 ∈ J,

n = n1 − n2 + n3, n2 6= n1, n3, 〈n− n1, n− n3〉 = O(M),
n′ = n1 − n′

2 + n′
3, n

′
2 6= n1, n

′
3, 〈n′ − n1, n

′ − n′
3〉 = O(M).

(8.24)
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a priori depends on J . Note that we need only to worry about the case N1 ≫ N2, N3. Without loss of
generality, we may assume also n ∈ J . We write J = aJ + BN2 , n = aJ + m,n′ = aJ +m′, n1 = aJ + m1,
and relation (8.24) as





m1 ∈ BN2 ,

m = m1 − n2 + n3, n2 6= n1, n3, 〈m−m1,m− n3〉 = −〈m−m1, aJ〉 +O(M),
m′ = m1 − n′

2 + n′
3, n

′
2 6= n1, n

′
3, 〈m′ −m1,m

′ − n′
3〉 = −〈m′ −m1, aJ〉 +O(M).

(8.25)

The point is, though, there are potentially many choice of aJ , the above relation is empty unless

−〈m−m1, aJ〉 +O(M) = O(N2
2 ), −〈m′ −m1, aJ 〉 +O(M) = O(N2

2 ).

Thus, we can always write relation (8.25) into O(M) many union of the following,




m1 ∈ BN2 ,

m = m1 − n2 + n3, n2 6= n1, n3, 〈m−m1,m− n3〉 = a+O(1),
m′ = m1 − n′

2 + n′
3, n

′
2 6= n1, n

′
3, 〈m′ −m1,m

′ − n′
3〉 = b+O(1),

(8.26)

where a, b ∈ Z and |a|, |b| . N2
2 . Thus, the total exceptional set one needs to drop, for all N1 and J , will be

at most N2
2 e

−Nc
2 , which is allowed.

We don’t repeat this discussion of the exceptional set in the later part of the article.

8.3.2. Case II: n2 = n′
2 (n3 6= n′

3). Denote the corresponding summation in
∑

(∗) as
∑

(∗),2, one has from
n2 = n′

2, (8.14) and Lemma 3.9 that, up to dropping an exceptional set
∣∣∣
∑

(∗),2

gn2gn3gn′
2
gn′

3

∣∣∣
2

. NCs1
2

∑

n3,n′
3

(#S(n, n′, n3, n
′
3))

2, (8.27)

where by Lemma 4.3

#S(n, n′, n3, n
′
3) := #{n1, n2 : (n1, n2, n3, n2, n

′
3) satisfies (∗)} . N1+Cs1

2 .

Hence, remember the definition of (∗∗) in (8.23), one further has

(8.20)2 . (N2N3)−2NCs1
2 N

1/2
2 (#{n1, n2, n3, n

′
3 : (n1, n2, n3, n2, n

′
3) satisfies (∗∗)})1/2

. (8.28)

By counting n1 ∈ J naively first, then counting (n2, n3) using Lemma 4.4, lastly counting n′
3 via Lemma

4.3, one obtains

#{n1, n2, n3, n
′
3 : (n1, n2, n3, n2, n

′
3) satisfies (∗∗)} . N2

2N
2
3 max

(
N2

N
1/3
1

, 1

)
N3N

Cs1
2 ,

which implies that
(8.20)2 . NCs1

2 N
−1/2
3 max(N−1/6

1 , N
−1/2
2 ) ≤ N

−1/6+Cs1
2 . (8.29)

8.3.3. Case III: n3 = n′
3 (n2 6= n′

2). Denoting the corresponding summation in
∑

(∗) as
∑

(∗),3, similarly as
in Case II, one has ∣∣∣

∑

(∗),3

gn2gn3gn′
2
gn′

3

∣∣∣
2

. NCs1
2

∑

n2,n′
2

(#S(n, n′, n2, n
′
2))

2, (8.30)

where by trivially counting n3,

#S(n, n′, n2, n
′
2) := #{n1, n3 : (n1, n2, n3, n

′
2, n3) satisfies (∗)} . N2

3 .

Hence, remember the definition of (∗∗) in (8.23)

(8.20)3 . (N2N3)−2NCs1
2 N3 (#{n1, n2, n

′
2, n3 : (n1, n2, n3, n

′
2, n3) satisfies (∗∗)})1/2

. (8.31)

By trivially counting n1 ∈ J , n3, and applying Lemma 4.4 to n2 and n′
2, one obtains

#{n1, n2, n
′
2, n3 : (n1, n2, n3, n

′
2, n3) satisfies (∗∗)} . NCs1

2 N2
2N

2
3 max

(
N2

2

N
2/3
1

, 1

)
.
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Therefore,

(8.20)3 . NCs1
2 max

(
N

−1/3
1 , N−1

2

)
≤ N

−1/3+Cs1
2 . (8.32)

8.3.4. Case IV: n2 = n′
3, n3 6= n′

2. Denoting the corresponding summation in
∑

(∗) as
∑

(∗),4, similarly as
above, one has

∣∣∣
∑

(∗),4

gn2gn3gn′
2
gn′

3

∣∣∣
2

. NCs1
2

∑

n3,n′
2

(#S(n, n′, n3, n
′
2))

2, (8.33)

where by Lemma 4.3,

#S(n, n′, n3, n
′
2) := #{n1, n2 : (n1, n2, n3, n

′
2, n2) satisfies (∗)} . N1+Cs1

2 .

Plugging into the above, one obtains, again remember the definition of (∗∗) in (8.23)

(8.20)4 . (N2N3)−2NCs1
2 N

1/2
2 (#{n1, n2, n3, n

′
2 : (n1, n2, n3, n

′
2, n2) satisfies (∗∗)})1/2

. (8.34)

Same as in Case III, by trivially counting n1 ∈ J , n3, and applying Lemma 4.4 to n2 and n′
2, one obtains

#{n1, n2, n3, n
′
2 : (n1, n2, n3, n

′
2, n2) satisfies (∗∗)} . NCs1

2 N2
2N

2
3 max

(
N2

2

N
2/3
1

, 1

)
.

Therefore, observing that in this case one must have N2 ∼ N3,

(8.20)4 . NCs1
2 N−1

3 N
−1/2
2 max

(
N2

N
1/3
1

, 1

)
. N

−1/2+Cs1
2 max(N−1/3

1 , N−1
2 ) ≤ N

−5/6+Cs1
2 . (8.35)

8.3.5. Case V: n3 = n′
2, n2 6= n′

3. This case can be treated in the exact same way as Case IV.

8.3.6. Case VI: n3 = n′
2, n2 = n′

3. In this case we again haveN2 ∼ N3. Denoting as
∑

(∗),6 the corresponding
sum in

∑
(∗), one has

∣∣∣
∑

(∗),6

gn2gn3gn′
2
gn′

3

∣∣∣
2

. NCs1
2 (#S(n, n′))2 , (8.36)

where

S(n, n′) := {n1, n2, n3 : (n1, n2, n3, n3, n2) satisfies (∗)},
and in this case means that n1, n2, n3 are distinct, n = n1 − n2 + n3, n′ = n1 − n3 + n2, and

〈n− n1, n− n3〉 = O(M), 〈n′ − n1, n
′ − n2〉 = O(M).

The above implies that n+ n′ = 2n1, hence #S(n, n′) . N1+Cs1
2 by Lemma 4.3.

As a result, again remember the definition of (∗∗) in (8.23)

(8.20)6 . (N2N3)−2NCs1
2 N

1/2
2 (#{n1, n2, n3 : (n1, n2, n3, n3, n2) satisfies (∗∗)})1/2

. (8.37)

From (∗∗), one has

〈n2 − n1, n2 − n3〉 = O(M), 〈n3 − n1, n3 − n2〉 = O(M),

hence |n2 − n3|2 = O(M). Trivially counting n2, n3, and applying Lemma 4.3 to count n1 ∈ J , one has

#{n1, n2, n3 : (n1, n2, n3, n3, n2) satisfies (∗∗)} . NCs1
2 N2

2N
2
3N2,

thus

(8.20)6 . NCs1
2 N−1

3 . N−1+Cs1
2 . (8.38)

This concludes the proof of Case (e).
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8.4. Case (f): N1(II) ≥ N3(I) ≥ N2(I). By the same reduction as in Case (e), let N100
3,0 = δ−1 and

M = N100s1
3 . It suffices to consider the high frequency part N3 ≥ N3,0. Our goal is to show that, up to

an exceptional set of probability ∼ e−Nc
3 and a common exceptional set (independent of N3) of probability

e−Nc
3,0 , there hold

• when N1 ∼ N3,

Ns0
1

∣∣∣∣
ˆ

φ(t)h̄N1(PN1w1, PN2v2, PN3v3)
∣∣∣∣ . N−ǫ1

3 ∼ N−ǫ1
1 , (8.39)

• when N1 ≫ N3,

Ns0
1

∣∣∣∣
ˆ

φ(t)h̄N1(PN1w1, PN2v2, PN3v3)
∣∣∣∣ . N−ǫ1

3 ‖PN1w1‖Xs0,b0 ‖PN1h‖X0,1−b0 . (8.40)

We will also assume, by dropping a set of probability e−Nc
3,0 that

{
|gn| ≤ Ns1

3,0, |n| ≤ N3,0,

|gn| ≤ Ns1
3 , |n| ∼ N3 ≥ N3,0.

(8.41)

Again, we will focus on proving (8.40). By a similar reduction as for Case (c), it suffices to show

Ns0
1

∣∣∣∣∣∣∣∣∣

∑

|ni|∼Ni, n1−n2+n3−n=0
n2

1−n2
2+n2

3−n2=O(M)

ˆ

d1(n1)r2(n2)r3(n3)H(n) dt

∣∣∣∣∣∣∣∣∣
. N−ǫ1

3 ‖PN1w1‖Xs0,b0 ‖PN1h‖X0,1−b0 , (8.42)

which, by the same argument as in Case (e), will follow from showing for each J (of size ∼ N3) that, up to
some exceptional set of small probability e−Nc

3 ,

∑

n∈J

∥∥∥
∑

n1−n2+n3=n, n2 6=n1,n3
n2

1−n2
2+n2

3−n2
4=O(M)

d1(n1)r2(n2)r3(n3)
∥∥∥

2

L2
t

. N−s
3 ‖PJw1‖2

X0,b0 (8.43)

for some constance s ≫ s1. We will derive two different bounds, each of which works better in different
regimes of N1, N2, N3.

First, by applying Hölder’s inequality to the inner sum, one obtains that the left hand side of (8.43) is
bounded by

.
∑

n∈J

sup
n

#{n2, n3 : n = n1 − n2 + n3, 〈n3 − n2, n− n3〉 = O(M)}
∑

n1,n2,n3

‖d1(n1)r2(n2)r3(n3)‖2
L2

t

.NCs1
3 N2

2 max

(
N3

N
1/3
1

, 1

) ∑

n,n1,n2,n3

N−2
2 N−2

3 ‖d1(n1)‖2
L2

t

.NCs1
3 max

(
N3

N
1/3
1

, 1

)
N−2

3 ‖PJw1‖2
X0,b0 sup

n1

#{n2, n3 : n2 6= n1, n3, 〈n2 − n1, n2 − n3〉 = O(M)}.

(8.44)

In the second line above, we applied (8.41) and Lemma 4.4 (the estimate holds true in both cases N1 ≫ N3
and N1 ∼ N3). One can then trivially count n2 and apply Lemma 4.3 to count n3 to further bound the
above by

. NCs1
3 max

(
N3

N
1/3
1

, 1

)
N−2

3 ‖PJw1‖2
X0,b0N

2
2N3 ≤ NCs1

3 N2
2 max(N−1/3

1 , N−1
3 )‖PJw1‖2

X0,b0 . (8.45)

We now turn to a different estimate of the left hand side of (8.43). In fact, we claim that by the same
argument as in Case (e), one also obtains in our current case that

∑

n∈J

∥∥∥
∑

n1−n2+n3=n, n2 6=n1,n3
n2

1−n2
2+n2

3−n2
4=O(M)

d1(n1)r2(n2)r3(n3)
∥∥∥

2

L2
t

. NCs1
3 N

−1/6
2 ‖PJw1‖2

X0,b0 . (8.46)
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We first explain how to complete the proof of (8.43) using the two estimates (8.45) and (8.46) above. In
the case N2 > N

1
6 − 1

100
1 , the desired estimate follows from (8.46). Now suppose N2 ≤ N

1
6 − 1

100
1 . If N3 ≤ N

1/3
1 ,

the bound in (8.45) becomes NCs1
3 N2

2N
−1
3 . Hence, in the subcase when N2 ≤ N

1
2 − 1

100
3 , this is good enough. If

N2 > N
1
2 − 1

100
3 , one can again apply (8.46) to obtain the desired bound. It is left to check the case N3 > N

1/3
1 ,

where (8.45) becomes NCs1
3 N2

2N
−1/3
1 . Observe that this does imply the desired result, since we are already

in the regime N2 ≤ N
1
6 − 1

100
1 .

It thus suffices to verify (8.46). Note that most of the estimates in Case (e) still hold, as they do not
depend on the relative sizes of N2, N3. More precisely, the estimate (8.19) for the diagonal term, and the
final bounds obtained in Case VI, V, VI for the non-diagonal term still hold true (with an extra factor NCs1

3 ).
We are now left to examine Case I, II, III.

8.4.1. Case I: n2, n3, n
′
2, n

′
3 are distinct. We start with estimate (8.22), which still holds true in Case (f).

Note that

#{n1, n2, n3, n
′
2, n

′
3 : (∗∗)} = #{n, n2, n3, n

′
2, n

′
3 : (∗ ∗ ∗)},

where (∗∗) is in Case (e), given in (8.23), and (∗ ∗ ∗) denotes the conditions




n ∈ J,

n3 6= n, n2, n
′
3 6= n, n′

2,

〈n3 − n2, n− n3 = O(M), 〈n′
3 − n′

2, n− n′
3〉 = O(M).

(8.47)

We first count n ∈ J naively (recalling that |J | ∼ N3), we then count n2 naively and n3 using Lemma 4.4,
and repeat for (n′

2, n
′
3). This leads to

#{n, n2, n3, n
′
2, n

′
3 : (∗ ∗ ∗)} . NCs1

3 N2
3

(
N2

2 max

(
N3

N
1/3
1

, 1

))2

.

Note that this bound holds true in both cases N1 ≫ N3 and N1 ∼ N3. Hence, one obtains

(8.20)1 .(N2N3)−2NCs1
3 (#{n1, n2, n3, n

′
2, n

′
3 : (∗∗)})1/2

.(N2N3)−2NCs1
3 N2

2N3 max

(
N3

N
1/3
1

, 1

)

.NCs1
3 max(N−1/3

1 , N−1
3 ) ≤ N

−1/3+Cs1
3 . NCs1

3 N
−1/3
2 .

(8.48)

8.4.2. Case II: n2 = n′
2 (n3 6= n′

3). In our current case, after dropping an exceptional set, one still has
estimate (8.22), where

#S(n, n′, n3, n
′
3) :=#{n1, n2 : (n1, n2, n3, n2, n

′
3) satisfies (∗)}

.#{n2 : 〈n3 − n2, n− n3〉 = O(M)} . NCs1
3 N2.

Hence, remembering the definition of (∗∗) in (8.23), one has

(8.20)2 . (N2N3)−2NCs1
3 N

1/2
2 (#{n1, n2, n3, n

′
3 : (n1, n2, n3, n2, n

′
3) satisfies (∗∗)})1/2

. (8.49)

By counting n2 first naively, then n3 naively, then n1 by Lemma 4.3, and lastly n′
3 by Lemma 4.3 as well,

one obtains

#{n1, n2, n3, n
′
3 : (n1, n2, n3, n2, n

′
3) satisfies (∗∗)} . NCs1

3 N2
2N

2
3N3N3,

which implies

(8.20)2 . NCs1
3 N

−1/2
2 . (8.50)
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8.4.3. Case III: n3 = n′
3 (n2 6= n′

2). Note that after dropping an exceptional set, estimate (8.30) still holds
true in Case (f). But this time, we count #S(n, n′, n2, n

′
2) more carefully. It suffices to count n3 satisfying

〈n3 − n2, n− n3〉 = O(M). By Lemma 4.4, one has

#S(n, n′, n2, n
′
2) .




NCs1

3 N
2/3
3 , if N1 ∼ N3,

NCs1
3 max

(
N3

N
1/3
1
, 1
)
, if N1 ≫ N3.

In the second estimate above, we used the fact that |n| ∼ N1 when N1 ≫ N3. Same as before, where
remembering the definition of (∗∗) in (8.23),

(8.20)3 . (N2N3)−2NCs1
3 (#S(n, n′, n2, n

′
2))

1/2 (#{n1, n2, n
′
2, n3 : (n1, n2, n3, n

′
2, n3) satisfies (∗∗)})1/2

.
(8.51)

By counting n1, n2, n′
2 trivially, and then n3 using Lemma 4.3, one has

#{n1, n2, n
′
2, n3 : (n1, n2, n3, n

′
2, n3) satisfies (∗∗)} . NCs1

3 N2
3N

4
2N3.

Combining the above bounds together, one obtains

(8.20)3 .(N2N3)−2NCs1
3 (#S(n, n′, n2, n

′
2))

1/2
N

3/2
3 N2

2

.NCs1
3 N

−1/2
3 ·




N

1/3
3 , if N1 ∼ N3,

max
(

N
1/2
3

N
1/6
1
, 1
)
, if N1 ≫ N3

.NCs1
3 N

−1/6
3 ≤ NCs1

3 N
−1/6
2 .

(8.52)

The proof of Case (f) is thus complete.

8.5. Case (g): N1(I) ≥ N2(I) ≥ N3(II). By deterministic estimates, it suffices to show for all N1 ≥ N1,0

(where N1,0 = δ−1), one has up to an exceptional set of probability e−Nc
1 that

Ns0
1

∣∣∣∣∣∣∣∣∣

∑

ni∼Ni,n1−n2+n3=n, n2 6=n1,n3

n2
1−n2

2+n2
3−n2=O(M)=O(N100s0

1 )

ˆ

r1(n1)r2(n2)d3(n3)H(n) dt

∣∣∣∣∣∣∣∣∣
. N−ǫ1

1 , for some ǫ1 ≫ ǫ0, (8.53)

where M = O(N100s0
1 ).

By dropping an exceptional set of probability e−Nc
1,0 , one may assume that

|gn(ω)| . Ns1
1 , ∀|n| ∼ N1 ≥ N1,0. (8.54)

Our goal is to show that, up to an exceptional set of probability e−Nc
1 , there holds

Ns0
1

∣∣∣∣
ˆ

φ(t)h̄N1(PN1v1, PN2v2, PN3w3)
∣∣∣∣ . N−ǫ1

1 . (8.55)

Apparently, (8.55) can be reduced to the following estimate:

Ns0
1

∣∣∣∣∣∣∣∣∣

∑

|ni|∼Ni, n1−n2+n3−n=0
n2

1−n2
2+n2

3−n2=O(M)

ˆ

r1(n1)r2(n2)d3(n3)H(n) dt

∣∣∣∣∣∣∣∣∣
. N−ǫ1

1 . (8.56)
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We first derive an estimate that will handle the regime N3 ≤ N
1− 1

100
1 . To see this, applying Cauchy-

Schwarz in n, one obtains

Ns0
1

∣∣∣∣∣∣∣∣∣

∑

|ni|∼Ni, n1−n2+n3−n=0
n2

1−n2
2+n2

3−n2=O(M)

ˆ

r1(n1)r2(n2)d3(n3)H(n) dt

∣∣∣∣∣∣∣∣∣

.Ns0
1

(∑

n

‖H(n)‖2
L2

t

)1/2



∑

n

∥∥∥
∑

n1−n2+n3=n, n2 6=n1,n3
n2

1−n2
2+n2

3−n2
4=O(M)

r1(n1)r2(n2)d3(n3)
∥∥∥

2

L2
t




1/2

.Ns0
1



∑

n

∥∥∥
∑

n1−n2+n3=n, n2 6=n1,n3
n2

1−n2
2+n2

3−n2
4=O(M)

r1(n1)r2(n2)d3(n3)
∥∥∥

2

L2
t




1/2

.

(8.57)

Then, applying Cauchy-Schwarz again to the inner sum above, one has, after dropping an exceptional set
of probability e−Nc

1 ,

.Ns0
1 N−1

1 N−1
2



∑

n

∣∣∣
∑

n1−n2+n3=n, n2 6=n1,n3
n2

1−n2
2+n2

3−n2
4=O(M)

‖d3(n3)‖L2
t

∣∣∣
2




1/2

.Ns0
1 N−1

1 N−1
2

(∑

n

∑

n1,n2,n3

‖d3(n3)‖2
L2

t

)1/2(
sup

n
#{n2, n3 : 〈n3 − n2, n− n3〉 = O(M)}

)1/2

.NCs0
1 N−1

1 N−1
2 N

1/2
2 N

1/2
3

(
sup
n3

#{n1, n2 : n2 6= n1, n3, 〈n3 − n1, n3 − n2〉 = O(M)}
)1/2

,

(8.58)

where in the last step above, we have applied Lemma 4.5. Another application of Lemma 4.5 implies that

. NCs0
1 N−1

1 N−1
2 N

1/2
2 N

1/2
3 N

1/2
1 N

1/2
2 . NCs0

1 N
−1/2
1 N

1/2
3 . (8.59)

Hence, the desired estimate follows if N3 ≤ N
1− 1

100
1 .

The other case N3 > N
1− 1

100
1 in fact follows directly from the estimates in Case (e). Note that the relative

sizes of N1, N2, N3 in these two cases are the same, so all the counting in Case (e) remain true here. We
briefly sketch the argument here. It suffices to show, up to an exceptional set of small probability e−Nc

1 , that
∑

n

∥∥∥
∑

n1−n2+n3=n, n2 6=n1,n3
n2

1−n2
2+n2

3−n2
4=O(M)

r1(n1)r2(n2)d3(n3)
∥∥∥

2

L2
t

. N−ǫ1
1 . (8.60)

We would like to apply again version of the Cauchy-Schwarz inequality in (C.7), but this time with

σ(n, n3) =
∑

n1−n2+n3=n, n2 6=n1,n3
n2

1−n2
2+n2

3−n2
4=O(M)

gn1(ω)gn2(ω)
N1N2

.

For the diagonal term, the exact same counting as in (8.19) gives, for any fixed n,
∑

n3

|σ(n, n3)|2 . (N1N2)−2NCs0
1 N2

3N2 . NCs0
1 N−1

2 , (8.61)

which is good enough since N2 ≥ N3 > N
1− 1

100
1 .

The six cases for the non-diagonal term work similarly. In particular, Case I (all n1, n
′
1, n2, n

′
2 distinct),

Case III (n1 = n′
1, n2 6= n′

2), and Case VI (n1 = n′
2, n2 = n′

1) can be carried out in the exact same way.
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In Case II (n2 = n′
2, n1 6= n′

1), one has up to an exceptional set that
∣∣∣
∑

(∗),2

gn1gn2gn′
1
gn′

2

∣∣∣
2

. NCs0
1

∑

n1,n′
1

(#S(n, n′, n1, n
′
1))

2 (8.62)

Here, by Lemma 4.3,

#S(n, n′, n1, n
′
1) := #{n2, n3 : n1, n2, n3, n

′
1, n2 satisfies (∗′)} . NCs0

1 N3,

with (∗′) denotes conditions




n1 ∈ J,

n = n1 − n2 + n3, n2 6= n1, n3, 〈n− n1, n− n3〉 = O(M),
n′ = n′

1 − n′
2 + n3, n

′
2 6= n′

1, n3, 〈n′ − n′
1, n

′ − n3〉 = O(M).
(8.63)

The rest of the argument proceeds in the exact same way as Case II in Case (e).
Since Case IV and V can be dealt with in the same way, we only briefly discuss Case IV (n2 = n′

1, n1 6= n′
2)

here. By dropping an exceptional set, one has the following analogue of (8.33):
∣∣∣
∑

(∗),4

gn1gn2gn′
1
gn′

2

∣∣∣
2

. NCs0
1

∑

n1,n′
2

(#S(n, n′, n1, n
′
2))

2, (8.64)

where by Lemma 4.3,

#S(n, n′, n1, n
′
2) := #{n2, n3 : (n1, n2, n3, n2, n

′
2) satisfies (∗′)} . NCs0

1 N3.

The rest of the argument again proceeds in the same way as in Case IV of Case (e), which is left to the
reader. The proof of Case (g) is complete.

8.6. Case (h): N1(I) ≥ N3(II) ≥ N2(I). This case can be estimated in the same way as Case (g), where
again if N3 > N

1− 1
100

1 , the bounds in Case (f) apply. Note that, compared to Case (f), one can think about
N1(I), in Case (h), as N1(II), except one suffers a loss N2s0

1 . The computation in Case (f) gives a gain of
N−s∗

3 , where s∗ can be computed explicitly. Thus, when s0 is small enough and N3 ≥ N
1

100
1 , the extra loss

of N2s0
1 can be neglected. We omit the details.

8.7. Case (i), (j): N1(I) ≥ N2(II) ≥ N3(I) or N1(I) ≥ N3(I) ≥ N2(II). As before, we focus on showing
for all N1 ≥ N1,0 (where N1,0 = δ−1), up to an exceptional set of probability e−Nc

1 , there holds

Ns0
1

∣∣∣∣∣∣∣∣∣

∑

ni∼Ni,n1−n2+n3=n, n2 6=n1,n3

n2
1−n2

2+n2
3−n2=O(M)=O(N100s0

1 )

ˆ

r1(n1)d2(n2)r3(n3)H(n) dt

∣∣∣∣∣∣∣∣∣
. N−ǫ1

1 , for some ǫ1 ≫ ǫ0, (8.65)

where M = O(N100s0
1 ).

We may assume dropping an exceptional set of probability e−Nc
1,0 that

|gn(ω)| . Ns1
1 , ∀|n| ∼ N1 ≥ N1,0. (8.66)

We aim to show that, up to an exceptional set of probability e−Nc
1 , there holds

Ns0
1

∣∣∣∣
ˆ

φ(t)h̄N1(PN1v1, PN2w2, PN3v3)
∣∣∣∣ . N−ǫ1

1 . (8.67)

Similarly as before, (8.67) will follow from the following estimate:

Ns0
1

∣∣∣∣∣∣∣∣∣

∑

|ni|∼Ni, n1−n2+n3−n=0
n2

1−n2
2+n2

3−n2=O(M)

ˆ

r1(n1)d2(n2)r3(n3)H(n) dt

∣∣∣∣∣∣∣∣∣
. N−ǫ1

1 . (8.68)
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We will first introduce an estimate that allows one to reduce to the regime N2 > N
1− 1

100
1 . To see this,

following the same Cauchy-Schwarz argument as in (8.57), (8.58), one obtains, after dropping a set of
probability e−Nc

1 ,

Ns0
1

∣∣∣∣∣∣∣∣∣

∑

|ni|∼Ni, n1−n2+n3−n=0
n2

1−n2
2+n2

3−n2=O(M)

ˆ

r1(n1)d2(n2)r3(n3)H(n) dt

∣∣∣∣∣∣∣∣∣

.NCs0
1 N−1

1 N−1
3 N

1/2
2 N

1/2
3

(
sup
n2

#{n1, n3 : n2 6= n1, n3, 〈n3 − n1, n3 − n2〉 = O(M)}
)1/2

.NCs0
1 N−1

1 N−1
3 N

1/2
2 N

1/2
3 N

1/2
1 N

1/2
3 . NCs0

1 N
−1/2
1 N

1/2
2 ,

(8.69)

where in the last two steps we have applied Lemma 4.5. Hence, if N2 ≤ N
1− 1

100
1 , the desired estimate follows.

Next, we may apply the same estimate as in Case (c) to deal with the case N3 ≤ N
1/5
1 . Indeed, introducing

an extra factor of Ns0
3 (since the third input function in the current case is random) to (7.27), one has

Ns0
1

∣∣∣∣∣∣∣∣∣

∑

|ni|∼Ni, n1−n2+n3−n=0
n2

1−n2
2+n2

3−n2=O(M)

ˆ

r1(n1)d2(n2)r3(n3)H(n) dt

∣∣∣∣∣∣∣∣∣
. NCs0

1 N
−1/2
1 N

1/4
2 N3, (8.70)

which is enough to handle the case N3 ≤ N
1/5
1 .

To summarize, we have reduced the desired estimate to the regime N2 > N
1− 1

100
1 and N3 > N

1/5
1 . The

rest of the argument is essentially repeating that of Case (e). Define

σ(n, n2) =
∑

n1−n2+n3=n, n2 6=n1,n3
n2

1−n2
2+n2

3−n2
4=O(M)

gn1(ω)gn3(ω)
N1N3

.

Then, one has

Ns0
1

∣∣∣∣∣∣∣∣∣

∑

|ni|∼Ni, n1−n2+n3−n=0
n2

1−n2
2+n2

3−n2=O(M)

ˆ

r1(n1)d2(n2)r3(n3)H(n) dt

∣∣∣∣∣∣∣∣∣

.NCs0
1


max

n

∑

n2

|σ(n, n2)|2 +


∑

n6=n′

∣∣∣
∑

n2

σ(n, n2)σ(n′, n2)
∣∣∣
2




1/2



1/2

.

(8.71)

Again, the diagonal term is easier to deal with. After dropping a set of small probability and applying
Lemma 4.5, one has

max
n

∑

n2

|σ(n, n2)|2 . NCs0
1 N−2

1 N−2
3 N2N3 . N−1+Cs0

1 . (8.72)

For the non-diagonal term, rewrite

∑

n6=n′

∣∣∣
∑

n2

σ(n, n2)σ(n′, n2)
∣∣∣
2




1/2

= (N1N3)−2


∑

n6=n′

∣∣∣
∑

(∗)′′

gn1gn3gn′
1
gn′

3

∣∣∣
2




1/2

, (8.73)

where (∗′′) denotes the set of (n1, n2, n3, n
′
1, n

′
3) satisfying

{
n = n1 − n2 + n3, n2 6= n1, n3, 〈n− n1, n− n3〉 = O(M),
n′ = n′

1 − n2 + n′
3, n2 6= n′

1, n
′
3, 〈n′ − n′

1, n
′ − n′

3〉 = O(M).
(8.74)

We discuss three subcases in the following, and omit the symmetric ones. Note that they proceed very
similarly as the corresponding cases in Case (e).
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8.7.1. Case I: n1, n3, n
′
1, n

′
3 are distinct. By dropping an exceptional set, one obtains

(8.73)1 . NCs0
1 (N1N3)−2(#S)1/2, (8.75)

where S denotes the set (n1, n2, n3, n
′
1, n

′
3) satisfying

{
n2 6= n1, n3, n

′
1, n

′
3,

〈n2 − n1, n2 − n3〉 = O(M), 〈n2 − n′
1, n2 − n′

3〉 = O(M).
(8.76)

Counting n2 trivially first, then applying Lemma 4.5 twice, one has

#S . NCs0
1 N2

2 (N1N3)2,

which implies
(8.73)1 . NCs0

1 N−1
1 N2N

−1
3 . N

−1/5+Cs0
1 . (8.77)

8.7.2. Case II: n1 = n′
1 (n3 6= n′

3). Similarly as in Case II of Case (e), one obtains

(8.73)2 . NCs0
1 (N1N3)−2 (#S(n, n′, n3, n

′
3))

1/2 (#S)1/2
, (8.78)

where remembering the definition of (∗′′) in (8.74)

#S(n, n′, n3, n
′
3) = #{n1, n2 : (n1, n2, n3, n1, n

′
3) satisfies (∗′′)} . NCs0

1 N1

by Lemma 4.3, and S denotes the set of (n1, n2, n3, n
′
3) satisfying (8.76). Hence, by counting n2 trivially,

then counting n1, n3 via Lemma 4.5, and finally counting n′
3 according to Lemma 4.3, one obtains

#S . NCs0
1 N2N1N3N3.

Combining together, one has

(8.73)2 . NCs0
1 (N1N3)−2N

1/2
1 N

1/2
1 N

1/2
2 N3 . NCs0

1 N−1
1 N

1/2
2 N−1

3 . N
−1/2+Cs0
1 . (8.79)

8.7.3. Case III: n1 = n′
3 (n3 6= n′

1). Following the same calculation as in Case III of Case (e), one has, up
to a small exceptional set,

(8.73)2 . NCs0
1 (N1N3)−2 (#S(n, n′, n3, n

′
1))

1/2 (#S)1/2
, (8.80)

where
#S(n, n′, n3, n

′
1) = #{n1, n2 : (n1, n2, n3, n

′
1, n1) satisfies (∗′′)} . NCs0

1 N1

according to Lemma 4.3. In the above, S consists of (n1, n2, n3, n
′
1) so that (n1, n2, n3, n

′
1, n1) satisfies (8.76).

One thus has
#S . N2

3 (NCs0+1
1 N2)N1

by Lemma 4.5 and 4.3 similarly as before. Therefore,

(8.73)2 . NCs0
1 (N1N3)−2N

1/2
1 N1N

1/2
2 N3 . NCs0

1 N
−1/2
1 N

1/2
2 N−1

3 . N
−1/5+Cs0
1 . (8.81)

This concludes the proof of Case (i) and (j).

8.8. Case (k), (l): N1(I) ≥ N2(I) ≥ N3(I) or N1(I) ≥ N3(I) ≥ N2(I). Considering only the case
N1 ≥ N1,0, where N100

1,0 = δ−1. Our goal is to show that

Ns0
1

∣∣∣∣
ˆ

N1(PN1v1, PN2v2, PN3v3)h̄φ(t)
∣∣∣∣ . N−ǫ1

1 , for some ǫ1 ≫ ǫ0 (8.82)

up to an exceptional set of probability e−Nc
1 .

Let M = O(N100s0
1 ), by a similar reduction argument as in Case (c), it suffices to prove that

Ns0
1

∣∣∣∣∣∣∣∣

∑

ni∼Ni,n1−n2+n3=n, n2 6=n1,n3
n2

1−n2
2+n2

3−n2=O(M)

ˆ

r1(n1)r2(n2)r3(n3)H(n) dt

∣∣∣∣∣∣∣∣
. N−ǫ1

1 , for some ǫ1 ≫ ǫ0. (8.83)
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Following the same argument in (8.57), one has

Ns0
1

∣∣∣∣∣∣∣∣

∑

ni∼Ni,n1−n2+n3=n, n2 6=n1,n3
n2

1−n2
2+n2

3−n2=O(M)

ˆ

r1(n1)r2(n2)r3(n3)H(n) dt

∣∣∣∣∣∣∣∣

.Ns0
1



∑

n

∥∥∥
∑

n1−n2+n3=n, n2 6=n1,n3
n2

1−n2
2+n2

3−n2
4=O(M)

r1(n1)r2(n2)r3(n3)
∥∥∥

2

L2
t




1/2

.

(8.84)

Suppose n1, n2, n3 are all distinct, then by dropping a set of probability e−Nc
1 and recalling the presence

of Schwartz function ψ(t) in each ri(ni, t), one can bound the above by

.NCs0
1 (N1N2N3)−1 (#{n1 6= n2 6= n3 : 〈n2 − n1, n2 − n3〉 = O(M)})1/2

.NCs0
1 (N1N2N3)−1(N2

2N
2
3N1)1/2 . N

−1/2+Cs0
1 ,

(8.85)

where in the second line above we trivially counted n2, n3 and applied Lemma 4.3 to count n1.
Now, suppose n1 = n3. For fixed n, one thus has n = 2n3 −n2 and |n3 −n2|2 = O(M), hence |n3 −n|2 =

O(M). By losing a factor of NCs0
1 , we can assume that |n3 − n|2 = µ + O(1), where µ . NCs0

1 , in other
words, n3 lies in an annulus of radius ∼ R and thickness ∼ O( 1

R ), with R . NCs0
1 . Applying Lemma 4.1,

one sees that the total number of such n3 is at most . R2/3 . NCs0
1 .

Therefore, by Cauchy-Schwarz, outside an exceptional set of probability e−Nc
1 , one has

(8.84) .NCs0
1 (#{n3 : fixing n})1/2 (N1N2N3)−1 (#{n2, n3})1/2

.NCs0
1 (N1N2N3)−1N2N3 . N−1+Cs0

1

(8.86)

by trivially counting n2, n3.
The proof of Case (k) and (l) is hence complete, so is the proof of Proposition 2.1.

Appendix A. Time localization of Xs,b

In this section, we summarize several standard time localization facts for the Xs,b space, and also briefly
recall the proof of Lemma 3.5. The presentation mainly follows that from [6]. Here φ is a fixed time cut off
function. There are several basic facts about the Xs,b space that we can recall below. We have

‖φ(t/δ)u‖Xs,b .b ‖u‖Xs,b, 0 < b <
1
2

(A.1)

‖φ(t/δ)u‖Xs,b .b δ
1−2b

2 ‖u‖Xs,b

1
2
< b < 1. (A.2)

Also, Hausdorff-Young inequality gives the following estimate which is useful in the interpolation

‖φ(t)u‖L4
t,x

.ǫ ‖u‖
X1/2, 1

4+ǫ , (A.3)

which can be compared to estimates (95), (96) on page 26 of [6].
In what follows, one should think 1 ≫ sp ≫ ǫ > 0. We will only do proof for (3.12) in Lemma 3.5.
Via Strichartz estimate and interpolation of Hausdorff Young inequality, one can obtain

‖φ(t)u‖L4
t,x

.ǫ ‖u‖
X3ǫ, 1

2 −ǫ (A.4)

(One may change the 3 in the above to any number larger than 2.) Similarly, for p > 4, one can obtain

‖φ(t)u‖Lp
t,x

.ǫ ‖u‖Xsp+10ǫ,ǫ (A.5)

There are the following two Hölder inequalities,
(1)

‖φ(t/δ)u‖L4
t,x

≤ ‖φ(t/δ)u‖θp

L2
t,x

‖φ(t)u‖1−θp

Lp
t,x

, (A.6)

where one has 1
4 = θp

2 + 1−θp

p . θp = sp

1+sp
≥ 1

2sp
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(2)
‖φ(t/δ)u‖L2

t,x
≤ δ1/4‖φ(t)u‖L4

t,x
(A.7)

One derives

‖φ(t/δ)u‖L4
t,x

≤‖φ(tδ)u‖θp

L2
t,x

‖φ(t)u‖1−θp

Lp
t,x

≤‖φ(tδ)u‖θp

L4
t,x
δθp/4‖φ(t)u‖1−θp

Lp
t,x

.ǫ‖u‖θp

X3ǫ, 1
2 −ǫ

‖u‖1−θp

Xsp+10ǫ, 1
2 −ǫ

δ
θp
4

(A.8)

Note that
θp =

sp

1 + sp
≥ 1

2
sp. (A.9)

Thus, to summarize, when s ≪ 1, and ǫ ≪ s, one has

‖φ(t/δ)u‖L4
t,x

.ǫ ‖u‖
Xs+10ǫ, 1

2 −ǫδ
s
4 , (A.10)

which, for convenience, can be written as

‖φ(t/δ)u‖L4
t,x

.ǫ ‖u‖
Xs, 1

2 −ǫδ
s/8. (A.11)

Localizing at frequency N , this gives Lemma 3.5 for balls B of radius N , which are centered at origin
point. To prove general B centered at n0, one simply observes

∑

n∈B

ane
inxein2teiλt =

∑

|n−n0|≤N

ane
i(n−n0)(x+2n0)ei(n−n0)2teiλtein0xe−in2

0t (A.12)

and the L4
t,x norm of a function is invariant under multiplying ein0xe−in2

0t and doing space translation in x
variable by n0. This ends the proof.

Appendix B. Proof of Lemma 3.6, 3.7, 3.8

We briefly sketch the proof of those three Lemmata here.
We start with Lemma 3.8. Let h(n, t), fi(n, t) be space Fourier transform of h, fi, and we will also short

handedly write them as h(n), fi(n). We only prove
∣∣∣∣
ˆ

φ(t/δ)hN2(PN1f1, PN1f2, PN1f3)
∣∣∣∣ . (δ1/4‖PN1h‖X0,1−b0

‖f1‖X0,b0 sup
|n|∼N1

Πj 6=1‖fj(n)einx‖X0,b0
). (B.1)

To see this, observe
∣∣∣∣
ˆ

φ(t/δ)hN2(PN1f1, PN1f2, PN1f3)
∣∣∣∣ =

∣∣∣∣∣∣
∑

|n|∼N1

ˆ

φ(t/δ)h̄(n)f1(n)f̄2(n)f3(n)

∣∣∣∣∣∣
.‖φ(t/δ)‖L2

t
‖φ(t)h(n)‖L2

t
‖φ(t)f1‖L∞

t
sup

|n|∼N1

Πj 6=1‖fj‖L∞
t
.

(B.2)

Now we have, (note that one only has one mode in all the estimates below)

‖φ(t)h(n)‖L2
t

. ‖h(n)einx‖X0,1−b0 , ‖fi(n)‖L∞
t

. ‖fi(n)einx‖X0,b0 (B.3)

then, (B.1) will follow from (B.2) by Cauchy Schwarz.
We turn to Lemma 3.6. We start with (3.14) to (3.17). Estimates (3.14), (3.16) follows from (3.11), (3.12)

via Hölder inequality. We point out that the naive loss will be NCǫ
1 rather than max(N2, N3)Cǫ, but this

can be handled by a standard L2 orthogonality argument, See, for example,[6], [2] for more details. Now we
show how to derive (3.17) from (3.16). We shall see that (3.15) can be derived similarly form (3.14).

Recall that we used the notation

fi(x, t) =
∑

n

fi(n, t)einx, i = 1, 2.3 (B.4)

i.e. fi(n, t) is the space Fourier transform. For the sake of convenience, we denote fi(n, t) with fi(n).
Similarly, we wrtie h =

∑
h(n, t)einx.
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Given (3.16), in order to derive (3.17), we need to further prove
• If N1 ∼ N2

∑

n1∼|N1|,n3∼N3

∣∣∣∣
ˆ

φ(t/δh̄(n1)f1(n1)f̄2(n3)f3(n3)
∣∣∣∣ . δ1/10(max(N2, N3))Cǫ0‖h‖X0,1−b0

∏

i

‖PNifi‖X0,b0

(B.5)
• If N2 ∼ N3

∑

n1∼N1,n2∼N2

∣∣∣∣
ˆ

φ(t/δ)h̄(n1)f1(n1)f̄2(n2)f3(n2)
∣∣∣∣ . δ1/10(max(N2, N3))Cǫ0‖h‖X0,1−b0

∏

i

‖PNifi‖X0,b0

(B.6)
• If N1 ∼ N2 ∼ N3,
ˆ

|φ(t/δ)hN2(PN1f1, PN1f2, PN1f3)| . δ1/10(max(N2, N3))Cǫ0‖h‖X0,1−b0

∏

i

‖PNifi‖X0,b0 (B.7)

Estimate (B.7) follows from Lemma 3.8. The proof of estimates (B.5) and (B.6) are similar, and we only
work on (B.5). Note that the integration on the left side is only in t. One has, (by Sobolev embedding in
the t variable if necessary), that

‖h(n1)‖L2
t

. ‖h(n1)ein1x‖X0,1−b0 ,

‖f(n1)‖L∞
t

. ‖f(n1)ein1x‖X0,b0 ,

‖fi(n3)‖L∞
t

. ‖fi(n3)ein3x‖X0,b0 .

(B.8)

Then the desired estimates follow from a Hölder inequality in t and Cauchy Schwarz inequality in n1, n3.
Estimates (3.18), (3.20), (3.21) are of similar flavor. We prove (3.18) and leave the rest to the interested
readers. Estimate (3.18) follows from the following four estimates.

•∣∣∣∣
ˆ

ψ(t)h̄PN1f1PN2 f̄2PN3f3

∣∣∣∣ . (max(N2, N3))Cǫ0 |h‖X0,1/3‖ sup
J

‖PJf1‖L∞
t,x

‖f2‖X0,1/3‖f3‖X0,1/3 , (B.9)

• If N1 ∼ N2,
∑

n1∼|N1|,n3∼N3

∣∣∣∣
ˆ

ψ(t)h(n1)f1(n1)f̄2(n3)f3(n3)
∣∣∣∣ . ‖PN1f1‖X0,b0‖PN1f2‖X0,1/3‖PN3f3‖X0,1/3‖PN3h‖X0,1/3 ,

(B.10)
• If N2 ∼ N3,
∑

n1∼N1,n2∼N2

∣∣∣∣
ˆ

ψ(t)h(n1)f1(n1)f̄2(n2)f3(n3)
∣∣∣∣ . ‖PN1f‖X0,b0‖PN2f2‖X0,1/3‖PN2f3‖X0,1/3‖PN1h‖X0,1/3

(B.11)
• If N1 ∼ N2 ∼ N3∣∣∣∣
ˆ

ψ(t)h̄N2(PN1f1PN2 f̄2PN3f3)
∣∣∣∣ . min(‖PN1h‖X0,1−b0 ‖fi‖X0,b0 sup

|n|∼N1

∏

j 6=i

‖fj(n)einx‖X0,b0 (B.12)

Again estimate (B.12) follows from Lemma 3.8. We will only prove estimate (B.9), (B.10). The proof of
(B.11) is similar to that for (B.10).

We start with (B.9). We may only consider the case N2 ≥ N3, as the case N2 ≤ N3 can be proved
similarly.

We may further only consider the case N1 ≫ N2, otherwise one may replace PJ by P<N1 . Observe that
(using L2 orthogonality),
ˆ

ψ(t)h̄PN1f1PN2 f̄2PN3f3 =
∑

J

ˆ

ψ(t)h̄PJf1PN2 f̄2PN3f3 =
∑

J

ˆ

ψ(t)PJ h̄PJf1PN2 f̄PN3f3. (B.13)

For each J , we may estimate as follows,∣∣∣∣
ˆ ˆ

ψ(t)PJ h̄PJf1PN2 f̄PN3f3

∣∣∣∣ . ‖φ(t)PJh‖L
L3

t,x

‖φ(t)PJf1‖L∞
t,x

‖φ(t)PN2f2‖L3
t,x

‖φ(t)PN3f3‖L3
t,x
, (B.14)
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where without loss of generality assumed ψ(t) = φ(t)4 for some well localized φ(t).
Using Estimate (3.7) to control the L3 norm in (B.14) and applying a Cauchy Schwarz in J , the desired

estimate then follows.
Lemma 3.7 can be proved similarly as Lemma 3.6.

Appendix C. A Cauchy-Schwarz type inequality

We summarize a (deterministic) Cauchy-Schwarz type inequality, that is often used in random data type
problems. For simplicity, let aij , bj be real numbers, assume that

∑

j

b2j . 1, (C.1)

which of course implies ∑

j,j′

b2jb
2
j′ . 1. (C.2)

Then, we have
∑

i

|
∑

j

aijbj |2 =
∑

i

∑

j,j′

aijaij′bjbj′ =
∑

i

∑

j

aijaijb
2
j +

∑

i

∑

j 6=j′

aijaij′bjbj′ (C.3)

Note that ∑

i

|
∑

j

aijaijbj |2 . sup
j

∑

i

a2
ij (C.4)

and, by Cauchy inequality,
∑

i

∑

j 6=j′

aijaij′bjbj′ =
∑

j 6=j′

bjbj′
∑

i

aijaij′ . (
∑

j,j′
b2jb

2
j′)1/2{

∑

j 6=j′

|
∑

i

aijaij |2}1/2 (C.5)

To summarize, and by simple generalization to the complex case, one has

Lemma C.1. Assume
∑

j |bj |2 . 1, then

∑

i

|
∑

j

aijbj|2 . max
j

∑

i

|aij |2 +


∑

j 6=j′

|
∑

i

aij āij′ |2



1/2

(C.6)

One can also easily write down, via the dual estimate,

Lemma C.2. Assume
∑

j |bj |2 . 1, then

∑

i

|
∑

j

aijbj |2 . max
i

∑

j

|aij |2 +


∑

i6=i′

|
∑

j

ai′j āij |2



1/2

(C.7)
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