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ABSTRACT

A decentralized Bayesian hypothesis testing problem is considered. It is ana-
lytically demonstrated that for the binary hypothesis problem, when there are two
peripheral sensors with statistically independent Gaussian-distributed observations
(conditioned on the true hypothesis), then there is no loss in optimality in using
identical peripheral sensor decision rules.

A conditionally dependent binary hypothesis Gaussian problem is analyzed;
strong evidence is supplied that suggests that a threshold strategy is optimal. A
conditionally dependent Erlang problem is also analyzed, for which the same con-
clusion (as for the Gaussian problem) is drawn.

The nonlinear Gauss-Seidel algorithm is tested on a conditionally dependent,
binary hypothesis testing problem. Another numerical method, the Chernoff expo-
nent minimizer, is also described

A conditionally independent parameter estimation problem is analyzed. A ver-
sion of the Cramer-Rao bound is developed. Three heuristically motivated numer-
ical methods are tested on the parameter estimation problem.

Thesis Supervisor: Dr. John N. Tsitsiklis
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Chapter 1

Introduction

This work is concerned with decentralized detection theory. To impart some appre-
ciation of why this theory is useful, we begin by explaining a possible application.
As the application will show, the general problem is multidisciplinary. Thus, to
yield a tractable theory, abstraction of many of the problem’s details is necessary.
We will discuss that we do this abstraction by analyzing simple probabilistic models
of real physical systems. With respect to these models, decentralized detection the-
ory is very similar to the much more established discipline of centralized detection
theory.

Although centralized and decentralized detection theory do both analyze similar
mathematical models, there are important nontrivial differences between the two
theories. We highlight these differences, and point out the focuses of the decentral-
ized theory. Finally, we discuss the contributions of this thesis.

1.1 Ingredients of a Decentralized Detection
Problem

The following scenario motivates the need for a decentralized detection theory. Fol-
lowing the scenario is a summary of the ingredients that are common to all of the
detection problems that we will analyze.

1.1.1 Military Application

Somewhere in the battlefield, buried under camouflage, there is an hostile military
target. Trying to ascertain the presence or absence of the target is a detection
system. The system consists of three radar sensors, each geographically separated
from the others, and a fusion center. The fusion center is inside of a manned tank;
it is the centralized location where the information from the three radar sensors is
combined and processed into a final answer to the question: is the enemy present
or not? At this point, the scenario divides into two possibilities.



Centralized Detector

In a centralized detection scheme, each sensor transmits its entire observation to the
fusion center. There, an onboard computer merges all of the sensors’ measurements,
and somehow processes them all into a final decision.

Decentralized Detector

Practical difficulties may prohibit the use of the centralized scheme. Suppose, for
example, that there are space constraints in the tank. Suppose, in fact, that the
situation is so tight that the tank operator must act in lieu of an onboard computer
as the processor for the fusion center. Clearly, that operator would be flooded with
more information than she could handle if the sensors just dumped all of their data
on her.

Other difficulties might arise with the centralized scheme, even if there were
a sophisticated central computer processor. A likely possibility is that bandwidth
limitations preclude transmission of the bulk raw observations from sensors to fusion
center.

One eminently reasonable way to handle these difficulties is to equip the radar
sensors with local processing capabilities. Then, each sensor boils down its own
observation to its essence— down to something that can be captured with only a few
bits of information. These few bits are transmitted to the fusion center (requiring
much less communication bandwidth), and a human fusion center can fairly readily
assimilate the summary information into a final decision.

This alternative is a decentralized detection scheme. It has arisen rather nat-
urally from two needs. First is the need to “share the work,” so that no single
central location is burdened with an overwhelming amount of processing. Second is
the need to limit the the communication burden at the peripheral sensor locations.

1.1.2 More General View

Of course, this detection paradigm is not restricted to the purview of military
surveillance. In general terms, we can summarize the problem as follows.

Summary of problem

There is a source that generates an output. The output is transformed (i.e., usually
meaning that it is corrupted), and once transformed, it is observed by a collection of
sensors. The reason for the sensors is that there is some interesting source attribute
whose value we wish to know.

In a centralized scheme, the sensors act as a dummy interface between the
observations and the central location. All of the measurements from the sensors
are sent to the fusion center, where they are combined to reconstruct the value of
the interesting source attribute.

In a decentralized scheme, each sensor locally processes it own observation,
thereby capturing some aspect of the observation in the form of a single letter



from a D-valued alphabet. In this study, D will be very small (typically 2, 3, or 4);
in practice, D could be much larger. The sensor messages are all sent to the fusion
center, where they are combined to reconstruct the value of the interesting source
attribute.

Differences between centralized and decentralized systems

There are several important differences between centralized and decentralized de-
tection systems. For one, the decentralized system fusion center must make a final
decision on the basis of less information than the centralized fusion center. This
follows because the peripheral sensors (in the decentralized system) are only sending
summaries to the fusion center; information can only be lost, not gained, in this
summarizing process.

Second, the decentralized system has much simpler communication requirements
than the centralized system. Thus, in light of the first difference, there is perfor-
mance tradeoff between accuracy of final decision (favoring the centralized system)
versus bandwidth requirements (favoring the decentralized system).

Third, the real-time computation requirements at the fusion center are much
simpler in the decentralized system. Typically the decentralized detection fusion
rule will be a simple look-up table; in one column is each combination of bits that
the fusion center receives as messages from the peripheral sensors, while in the other
column is a final decision corresponding to each bit combination. This sort of look-
up table would clearly not be reasonable in a centralized scheme; continuous-valued
waveform observations are not susceptible to being organized into a table.

Lastly is the issue of the off-line computation needed to find the optimal proces-
sors. As we will see, finding the optimal decentralized detection processor (i.e., the
summarizing decision rules to be used at the peripheral sensors, plus the look-up
table at the fusion center) is much more difficult than finding the optimal processor
in the centralized system. It is not at all obvious why the decentralized system is
so much more difficult to design, and will only become clear as the theory unfolds.

1.2 Decentralized Detection Theory

Decentralized detection theory provides insights into the tradeoffs in the design
of real detection systems. It is a mathematical theory for analyzing mathematical
models of detection scenarios. In what follows, we give an example of a decentralized
detection problem in the prototypical form of all of the problems that we analyze.
We discuss the reason that we have posed the problem as we have, and then we
discuss the specific issues that the theory addresses.

1.2.1 Example Problem

The random variable X models the presence or absence of a target.
With probability 1/8, X = 1 (target present), while with probability
7/8, X = 0 (target not present). The value of X is conveyed to two
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sensors through the environment which is modeled as a noisy channel.
The random variables Y;, ¥ model the observation at sensors 1 and 2,
respectively. In particular, Y; = X + W; (i = 1,2), where Wy, W, are
jointly Gaussian random variables with known means and covariance.
Each sensor independently processes its own observation into a one bit
message, which is sent to the fusion center. OQur challenge is this: what
summarizing rules should we use at the sensors and what rule do we use
to combine the messages (into a final decision) at the fusion center?

1.2.2 Comments on Formulation

There are several noteworthy features of this example.

Probabilistic model

Most importantly, the detection problem is modeled probabilistically. In all of our
work, we assume that conditional on the true value of the source, there is a known
probability distribution for the observations at the sensors. A probabilistic model is
certainly not meaningful or appropriate for all situations. This is not our concern,
for no theory is all-encompassing. For many problems, probabilistic models have
been used with remarkable success, and it is in these cases that the theory is most
useful.

Focus of theory

As the example suggests, the central focus of decentralized detection theory is to
find, for a given probabilistic model, the optimal decision rules for the peripheral
sensors and for the fusion center. Formally, this set of rules is known as a strategy.
A strategy is said to be optimal if it minimizes the expected value of some given
cost criterion. In hypothesis testing, we use the probability of error cost criterion,
and in parameter estimation, we use the mean-square error cost criterion.

The next chapter will show that there exist necessary conditions for optimality
of a strategy. These conditions take the form of a set of coupled nonlinear functional
equations, which can sometimes be solved numerically, but can virtually never be
solved analytically. Since in general it is hopeless to find an optimal strategy,
much of decentralized detection theory focuses on finding good, though suboptimal
strategies.

Some of the questions that theory attempts to answer are as follows. Is it easy
to find suboptimal strategies that perform reasonably well? Can one show that
asymptotically, as the number of sensors goes to infinity, that some suboptimal
alternative performs only negligibly worse than the optimal? What are efficient
techniques for numerically finding strategies? What is the tradeoff between number
of sensors and number of bits sent per sensor? For example, is it better to have 12
sensors transmitting 1 bit messages each or 4 sensors transmitting 3 bit messages
each? In one guise or another, we will examine all of these issues.

10



Simplicity of probabilistic model

Note that no justification has been given for the probabilistic model that is used. For
that matter, the model is very simple; it is doubtful that it corresponds to some real
physical situation with any high degree of accuracy. We might have alternatively
begun as follows:

We want to analyze the problem of detecting some tactical (i.e., mil-
itary) target that is deployed beneath heavy foliage. We begin the anal-
ysis with a treatment of the electromagnetic interaction between radar,
foliage and target. From that analysis, we conclude that a deterministic
treatment is too difficult. Instead, we should model the electromagnetic
signature of the tank as a random process with known first and second
order statistics, while everything else (receiver noise, foliage interference
and attenuation) is lumped together into a second random process that
corrupts the first process. Then, we have two hypotheses: (1) there is
no tank present-the observed waveform is a sample of only the second
random process; (2) there is a tank present— the observed waveform is
a sample of the combined process.

Though this latter formulation is reasonable for a complete treatment of some
specific detection problem, it is not appropriate for developing theory. The difficulty
is that the mathematical complexity of most realistic models obscures the issues that
interest us. This tractability issue is particularly true with decentralized detection
theory, where we will see that even the simplest of operational situations (such as
the first version of the target detection problem), is challenging to analyze.

In conclusion, we analyze probabilistic models without very much concern for the
model’s correspondence to physical reality. Usually a given model is motivated by
some important aspect of a real situation, but we do not dwell on the analogy. Also,
to reiterate, we always assume that part of the model is a probability distribution
for the observations at the sensors.

1.3 Contributions of this Thesis

The decentralized detection problem was introduced a decade ago in [T'S81] (many
more references will be given in the next chapter). From the discipline’s inception,
most research has focused on the binary hypothesis testing problem for the special
case of independent sensor observations, conditional on the true hypothesis. In the
context of our radar detection problem, for example, the conditional independence
restriction means that the noise corrupting the electromagnetic signature observed
by any given sensor is statistically independent of the noise corrupting the signature
received by any other sensor.

As we will see in the next chapter, the conditional independence assumption
leads to significant simplifications to the search for optimal decision rules for the
sensors. The reason is that with no loss of optimality, each sensor can use a like-
lihood ratio test to yield its decision. However, while the assumption yields com-
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putational advantages, it does not always make physical sense. For example, if two
radar sensors are in close proximity, then they are quite likely to have correlated
noise corruption.

A primary focus of this work will be the binary hypothesis testing problem with
conditionally dependent observations. For the general binary hypothesis, condition-
ally dependent problem, the optimal peripheral sensor rule will NOT be a likelihood
ratio test. However, we will see that for certain problems, the likelihood ratio test is
optimal. The complete argument of this result is analytically intractable. However,
we can carry the analysis far enough to motivate the result, at which point we can
finish the analysis with numerical methods.

The next focus is on numerical methods for finding good, though possibly sub-
optimal, strategies for the hypothesis testing problem. We set up two explicit
decentralized detection problems, and analyze them with different numerical meth-
ods. The methods that we try are not new, but what is novel is that we bring the
methods together so that a direct performance comparison can be made. This is
in contrast to much of the literature, where only a single technique is tried on a
given problem. In general, the results of the numerical experiments provide some
comfort that good (though suboptimal) strategies can be found without excessive
computation.

" Third, we consider the parameter estimation problem. We derive some general
bounds on performance. Then, we set up a particular problem. For the given
problem, we use different search techniques to find good, but suboptimal, strategies.
We compare the strategies found by the different techniques.

12



Chapter 2

Preliminaries

In this chapter, we introduce many definitions and concepts that will be useful
throughout the rest of the work. Most of this material is well-known in the decen-
tralized detection field, and so many references will be given. Here is an outline of
this chapter.

First, there is a comment on notation convention. Our notation conforms fairly
closely with standard practice, and will be followed throughout the thesis.

Next is a formal statement of our version of the Bayesian hypothesis testing
problem. Roughly speaking, the scenario is as follows. There is a finite set of
mutually exclusive events (formally known as hypotheses), each with a known prior
probability of occurring. One of these events occurs, and its occurrence manifests
itself as some observable quantity at a collection sensors. Each sensor transmits a
summary of its observation to a central location. At that location, all the summaries
are combined to make a (hopefully good) guess of which event really occurred. The
problem is to coordinate all the decision rules so as to get the best possible guess.

Following the problem formulation is the definition of a strategy. This is a
formal term for the collection of decision rules used by the sensors. We discuss both
deterministic and randomized strategies. Then, we develop necessary conditions for
optimality of a strategy.

As will become apparent, there is (in general) no closed-form analytic expres-
sion for an optimal strategy. Thus, numerical methods are needed. One numerical
method is a sort of exhaustive search over all strategies. We discuss the com-
putational complexity of this brute force approach, and thereby demonstrate the
combinatorial complexity of the problem.

Lastly, there is a brief discussion of the Neyman-Pearson variant of the decen-
tralized detection problem. This variant is useful when either it is not meaningful
or is not possible to assign prior probabilities to the hypotheses.

2.1 Notation Convention

This is a summary of the notation convention that is used throughout this paper.
First, with a few exceptions as noted, upper-case letters are used to denote random

13



variables, while lower-case letters are used to denote realizations of random vari-
ables. For example, Pr(X = z) is the probability that the random variable X takes
on the particular value z.

The primary exception to this rule is that H; is used, as opposed to hj, to
denote the occurrence of the jth hypothesis. This exception is made in order to
conform to standard usage. Another exception is that upper-case letters are used to
denote certain important constants and parameters. For example, M is the number
of hypotheses, and N is the number of peripheral sensors. Context will hopefully
eliminate any possible confusion about whether a variable is random or not.

The unconditional marginal distribution of continuous random variable Y is
denoted by fy(y), while its conditional marginal distribution (conditioned on, say,
H,) is denoted by fym, (y|H1). The unconditional joint distribution of continuous
random variables Y, ..., Yy is denoted by fy,, yy(y1,..,yn), while their joint
conditional distribution (conditioned on H) is denoted by fy,, .yyim (Y1, -y Y| H1).

A different notation is used for the distribution of discrete random variables.

The unconditional, joint probability that discrete random variables Uy, ..., Uy are
equal to u,, ..., uy, respectively, is denoted by Pr[U; = uy, ..., Uy = uy], or
sometimes more succinctly by Pr[uy, ..., uy]). The notation for the conditional,

marginal probability for U, and for all the other permutations, should now be self-
evident and so we belabor the point no further.

When there is no ambiguity, the limits on integrals and summations are omitted.
For multiple integrals, we define

hy hn
/g(yl,---,yzv) dy;..dyy = [ /l 9(v15 -, yn) dyr...dyn, (2.1)
1 N

where Uy, hq, ..., Iy, hy are limits whose values are supplied by context. Similarly,
for multiple summations, we define

By hy
> gug, oy uy) = > > glug, ..y un). (2.2)
Uy, UN uy =l un=lyn
The relation
W ~ N(a,b)

means that W is a real scalar Gaussian random variable with mean a and variance
b; that is,

exp[—(w — a)?/2b] .

fw(w) = V2mh
The notation
f(u) ~g(u), w— oo (2.3)

means that in the limit of u going to infinity, f(u) is asymptotically equal to g(u);
formally, this is

. fw) _
u]'lglo o(a) =1. (2.4)
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Note that our symbol for asymptotic equality is the same symbol used to denote
Gaussian random variables. Context will always resolve this ambiguity.

We define
_ 1 2
®(z) = m/_wexp(—t /2) dt. (2.5)

This is the cumulative distribution function for a zero-mean, unit variance Gaussian
 random variable. There is no closed-form solution to the integral, but its values are
widely tabulated. We will exclusively use the ®(-) notation for this integral.

There are some important parameters that are defined in Section 2.2. For com-
pleteness, we also define them here: N is the number of peripheral sensors; M is
the number of hypotheses; D is the alphabet size of the messages at the peripheral
sensors.

The notation

H>
>
Y; < T (26)

H,

is used throughout much of this thesis to denote a particular type of decision rule.
The definition of (2.6) is deferred to Section 3.2, where the notation is first used.
This concludes a fairly complete summary of our notation convention. There
are some notational quirks that we have not mentioned, but these are all defined at
the time of their use, and additionally, their use is confined to a single section.

2.2 Formulation of Bayesian Hypothesis Testing
Problem

We formulate the Bayesian version of the decentralized hypothesis testing problem.
Then we make some comments about the particular way that we have made our
formulation.

2.2.1 Formulation

We have an environment that is in one of M (M > 2) possible states. Each state of
the environment corresponds to one hypothesis; when the environment is in state
i (1 <i < M), we say that hypothesis H; has occurred or that H; is true. The
hypotheses occur with positive a priori probabilities Pr(Hy), ..., Pr(Hp).

Detecting the state of the environment are N (N > 1) peripheral sensors. Sensor
i (1 <1 < N) receives scalar, real-valued environment observation y;. We assume
that conditioned on hypothesis H, the realizations of the sensor observations obey
the known joint probability density function fy,, vya(Y1,-- yn|H).

Each peripheral sensor, upon receiving its observation, evaluates a message, u; =
vi(y:) € {1,..., D}, where 7;(-) is deterministic, and D is typically small (typically,
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D is 2, 3, or 4). Each peripheral sensor sends its message to the fusion center,
which we label as the zeroth sensor. We assume that we have noiseless channels for
the transmission of these messages. The fusion center uses the N peripheral sensor
messages to evaluate a final decision, uo = Yo(u1,...,un) € {1, ey M}

When the true hypothesis is H, the cost of a fusion center decision of uo is
C(uo, H), where

cei={ 7 i3 @)

This is known as the probability of error cost criterion.
The M-ary hypothesis decentralized detection problem can now be summarized
as follows:

Given
e a priori probabilities, Pr(Hi), ..., Pr(Hp), and

e joint probability density function, fy, . ynia(¥1,. yn|H) for each
hypothesis,

we want to minimize
E[C(Uo, H)] = ZPr i) Prlvo(Us, ., Un) # §lHjl, (2.8)

where

Pf[‘Yo(Ul, ---,UN) # HIH] =
/0[70(71(3/1), oy ANYN))y HY fon,oum 8 (W1, - YN | H) dyr...dyn(2.9)

In (2.8) and (2.9), we have explicitly shown the dependence of the ex-
pected cost (E[C(Uy, H)]) on each of the decision rules.
What choice of Yo(+)y71(+)y s YN () will minimize this ezpectation?

The decentralized Bayesian hypothesis testing problem was first formulated in
[TS81]. We will have more to say about their groundbreaking work, and also about
the work of other early contributors, after we discuss person-by-person optimality
conditions in Section 2.4.

2.2.2 Comments on the Formulation

We comment on aspects of our formulation that could be generalized or modified.

Our restriction to scalar observations at the peripheral sensors is made mostly
to simplify our numerical examples in later chapters. In an analytical sense, our
results are easily extensible to the case of vector observations at the peripheral
sensors. In [LS82], authors go even farther, as they consider waveform observations
at the peripheral sensors. Even this case is closely related to the results that we

16



will obtain. In particular, if it is possible to break each waveform observation into
a set of Karhunen-Loeve coefficients, then we are led to a vector of coefficients at
each peripheral sensor, which, in turn, takes us back to our comment about vector
observations. Let it simply be said that the scalar observation version of the problem
will present more than enough difficulty.

We have assumed that the sensor observations have a probability density. This
is mostly for notational convenience. Most of the results that we obtain extend
readily to the case of discrete sensor observations. In fact, many of our numerical
examples will be with discrete problems.

In some of the formulations in the literature, the fusion center receives not only
the N peripheral sensor messages, but also an observation, Yy, of its own. There are
some complications that arise in conjunction with this more generalized formulation.
We defer consideration of these issues to future work.

Some authors consider a more general cost criterion in which the only restriction
is that

Clirj) > Clisi)y i #7.
This generalization renders some of our results more algebraically burdensome with-
out adding insight. For this reason, we avoid the generalization. For the same

reason, we avoid the generalization of letting the number of messages, D, be a
sensor-dependent quantity.

2.3 Strategies

We define a deterministic strategy to be any collection of decision rules, v =
(Yo, -, 7n ). We define T; to be the set of all deterministic decision rules for sensor
i. Then, the set of all deterministic strategies, I', is given by I' = T'o x ... X I'y.

As a generalization of deterministic strategies, we also consider randomized
strategies. Associated with any randomized strategy is a finite collection of de-
terministic strategies, 7', ..., 7", 7 > 1, and a random variable C' with probability
mass function Pr[C = i] = P;, 1 < i < r. Random variable C is independent of
everything else in the detection problem. When C' = i, then deterministic strategy
4%, 1 < i< ris used. We define the set of all randomized strategies by I'.

In the Bayesian formulation of the last section (Section 2.2), we explicitly re-
stricted attention to deterministic strategies. The next proposition shows that that
restriction is harmless.

Proposition 1
inf J() = inf J()- (2.10)

Proof: From the definitions of I, and I'*, it is obvious that I' C I'*. But from
elementary probability, we also know that if v* € I', then

Tv) = P,
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for deterministic strategies v/ € I'. Thus, we easily conclude that (2.10) holds.
QED. This result is from [T89).

When we later consider the Neyman-Pearson version of the problem, we will
need the added generality of randomized strategies.

2.4 Bayesian Person-by-Person Optimality Con-
ditions

We develop necessary conditions for an optimal strategy. These conditions are very
important, and in one guise or another, they will be used in almost every section
that follows.

The conditions for the fusion rule are different from the conditions for the pe-
ripheral sensor rules, and so we treat the two types of rules separately.

2.4.1 Fusion Rule

For the fusion rule, we have the following proposition.

Proposition 2 With respect to fized peripheral sensor decision rules
Y1(*)y --» YN (+), the optimal fusion rule is

'yo(ul,...,uN) = a'r_'g mazx {PT‘(HJ) PT‘[’lLl,...,’lLNIHj]}. (211)

i=1..M
Proof: We first expand (2.8) to the convenient form

E[C(Up,H) = > Prlus,...,un] Prlyo(us, ..., un) # Hluy, .oy un]. (2.12)

UL o) UN
The choice of yo(+) that will minimize E[C(Up, H)] is the same as the choice of 7o(-)
that will minimize each of the summands on the right-hand side of (2.12). This is

so because each summand corresponds to a different set {uy,...,un} of messages at
the fusion center. Each summand is minimized via the fusion rule

M
Yo(uy, -y un) = arg min {Pr[uh ey UN) ZPI[HJ'IU'I, - un|C(d, Hj)}
d=1,...M j=1
M
= arg min ZPI‘[‘ILI,...,'lLN'Hj]PI‘(Hj)C(d,HJ')
d=1,...M i=1
= arg max {Pr[u,...,un|H;|Pr(H;)} (2.13)
i=1,..,

From the first line to the second line, we used Bayes rule,
Pr[H|uy,...,un]Pr[us,...,un] = Pr[H] Prlus, ...,un|H].
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Then the next equality follows easily from the form of C(uo, H)), and so the result
is proved. QED.

The rule in (2.11) is familiar from classical centralized hypothesis testing theory
as the maximum aposteriori probability (MAP) rule. This should not be surprising.
We can view the set of peripheral sensor messages as a vector of observations that
the fusion center receives (this interpretation of the peripheral sensor messages was
first made in [CV86]). Once the probability mass function (PMF) is computed via

Pr[U; = uy,y o, Uy = uy|H] =

[ o [ P (s, o un H)dys - dyw,

¥y (u1) Tn (uw)

(where v; !(u) is the portion of the real axis for which 4;(y) = u), then the central-
ized interpretation becomes complete.

Though the form of the fusion rule is familiar, the decentralization of our problem
still adds complications. Most importantly, an optimal strategy’s fusion rule can
only be explicitly stated when optimal peripheral sensor rules are known. But, as
we will see in the next section, the optimal peripheral sensor rules are mutually

dependent and are also dependent on the optimal fusion rule. Everything is tightly
intertwined.

2.4.2 Peripheral Sensor Rules

The following proposition gives necessary conditions for optimal peripheral sensor
decision rules.

Proposition 3 With respect to fized sensor decision rules

Yo(+)s ooy Yic1()y Yig1()s oy Y (),
the optimal peripheral sensor rule, v;(-) is
M
vi(y:) = ‘Zi%,.’.’ff)” ngfy,.m,.(y.-lH,-)Pr(H,-)a.-(d,H,-,y;), (2.14)
where
a;(d, H,y;) = Pr[vo(Uy, ..., Ui_1,d,Uiy1, ..., Un) # H|H,y;]. (2.15)

Proof: To keep the notation less burdensome, we derive (2.14) for the particular
case, 71(+). The generalization to v;(-) will then follow easily.
To find the optimal 74(-), we expand (2.8) to the convenient form,

E[C(Uy, H)] = /E{C[‘)’o(’Yl(yl),Uzy---,UN),H”yl} fr, (y1) dyx (2.16)
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The choice of () that will minimize E[C(U,, H)] is the same as the choice of 71(+)
that will minimize the integrand in (2.16). Hence, for each value of ¥;, we have the
optimal v;(-) relation

1(y) = ac,lr_g1 rm'Dn fl’l(yl)E{C[’YO(d, Uz, ..., Un), H]|y1} (2.17)

d=1,....D

M
= arg min fr,(%1) ZPI[HJ'lyl] Prlyo(d, Uz, ..., Un) # H;|H;,y(2.18)
i=1

In (2.18), we expanded the expectation in (2.17). But then, by Bayes rule,

le (yl) Pr[Hjlyl] = PI[HJ] fY1|Hj(y1|Hj)7

and so (2.18) is equivalent to (2.14). QED
We see that for each peripheral sensor rule, the optimality conditions are com-
pletely specified once the a-coefficients are known; however, the a-coefficients are a
~ function of all of the other sensor rules. Once again, we see a tight interdependence
of the optimality conditions.

2.4.3 Necessity and Sufficiency: Person-by-person
Optimality

We introduce an important definition.

A strategy is person-by-person optimal (pbp-optimal) if for 0 < i <
N, and for fixed 7;(-) (0 < j < N,j # i), we have () satislying (2.11)
when i = 0 or satisfying (2.14) when ¢ > 0.

Conditions (2.11) and (2.14) are pbp-optimality conditions. All globally optimal
strategies are pbp-optimal, but the converse is not true. The following example
shows that a suboptimal strategy can be pbp-optimal.

¢ Example
We have a source that transmits a signal, S, that is either zero or

one. In particular,

G- 0 under hypothesis H,
~ | 1 under hypothesis H, °’

with Pr(H,) = Pr(H,) = 1/2.
Receiving the signal are two peripheral sensors. The signal observa-
tions are contaminated by Gaussian noise,

Yi=8+W, W,~N(0,1), i=1,2
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with W; and W, independent.

Finally, v;(y:) € {1,2},7 = 1,2. Our goal is to find a strategy, v that
minimizes the probability of error.

Surprisingly, one pbp-optimal strategy is the rule

1Y) =7(y) =1, Vy,
for the peripheral sensors, and the rule
70("‘1’"'2) = 1, V'Uq,’u,z.

for the fusion center. The pbp-optimality of this can be directly checked
by evaluating (2.11) and (2.14).

This strategy has a probability of error of 0.5. If it is the optimal
strategy, then the discipline of decentralized detection is doomed. Ac-
tually, the optimal strategy has a cost of 0.271; the issue of finding a
strategy with that optimal cost will be explored in Chapter 4.

Note that a pbp-optimal strategy is not necessarily even locally optimal; while
perturbing no single sensor rule can improve performance, pbp-optimality says noth-
ing about the simultaneous perturbation of many sensor rules.

2.4.4 Rapprochement: General Pbp-Optimality Conditions

So far, we have considered the pbp-optimality conditions for the general case of any
number of hypotheses and for any sort of observation probability density function.
The form of the conditions (a set of (N +1) coupled nonlinear functional equations) is
not particularly insightful. There is no known closed-form solution to the equations.
In fact, for many problems, it is more realistic to do an exhaustive search of all
strategies (in some discretized version of the observation space Y;, ..., Yy) than it
is to solve the pbp-optimality conditions.

In the next section, we consider the binary hypothesis problem with mutually
independent observations, conditioned on either hypothesis. We will see that for
this special case, likelihood ratio tests can optimally be used for the peripheral
sensor rules. Thus, the situation is not as uniformly bleak as it might now appear.

2.5 Binary Hypothesis Problem with Condition-
ally Independent Observations

If the peripheral sensor observations are mutually independent, conditioned on the
true hypothesis, then

le,...,YNIH(ylv ---,yN|H) = fY1|H(y1|H) Tt fYN|H(yN|H)' (2-19)

In the sequel, when (2.19) holds, and there is no ambiguity, we will succinctly refer
to (2.19) as the conditional independence property.

Conditional independence is a very restrictive property. Equation 2.19 is violated
in at least two important cases:
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® Detection of a known signal in sensor-by-sensor correlated noise,
e Detection of an unknown signal in noise.

If, for example, we are modeling a system with geographically distributed sensors,
then closely situated sensors are likely to have correlated noise in their observations.
Conditional independence is thus not only restrictive in a pure mathematical sense,
but is also restrictive in a practical, modeling sense.

2.5.1 Threshold Strategies

On the positive side, though, conditional independence leads to considerably more
structure in optimal strategies for the binary hypothesis testing problem. To pre-
cisely describe this structure, we need some definitions; the following is patterned

after [T89].

Suppose that there are thresholds t,,...,tp_, satisfying 0 < ¢ <
«+» < tp_1, and that there are intervals I} = [0,¢], 1, = [t1,1,],..., Ip =
[tp-1,00]. Then, decision rule v;(-) is called a monotone threshold rule
if

Yi(y:) = d onlyif Li(y) € I,

where

_ frum, (3| Hy)
From (vil Hy)

More generally, decision rule v;(+) is called a threshold rule if there
exists a permutation mapping o : {1,...,D} - {1,..., D} such that s o,
is a monotone threshold rule.

Finally, we say that any strategy is a threshold strategy if all of the
peripheral sensors use threshold rules.

Li(yi)

2.5.2 When threshold strategies are optimal

The following proposition states when threshold strategies are optimal.

Proposition 4 Assume that an optimal strategy exists. Also, let
M = 2 (i.e., binary hypothesis testing problem) and let (2.19) hold.
Then, there exists an optimal strategy that is a deterministic monotone
threshold strategy.

This is one of the most significant results in decentralized detection theory. It
was first established (for a special case) in [TS81], and since then has been refined
by various authors. Since the proof can be found in many places, we only outline
the portion that is insightful to work later in the thesis.
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Outline of Proof: We manipulate (2.14) and (2.15) in order to prove the re-
sult. First, note that in the conditionally independent case, a(d, H,y;) (defined in
Equation 2.15) is independent of y;; hence we can write a(d, H).

The simplification of the a-coeflicients, together with the fact that M = 2, means
that (2.14) can be rearranged to

%(¥:) = arg min [bi(d, 1) + bi(d, 2)L(y:)], (2.20)

d=1,...,D

where b;i(d,j) = Pr(Hj)a;(d, H;) and the likelihood ratio is assumed to be well-
defined. The key to proving this result is to note that for fixed d, the expression
in parentheses in (2.20) is a line (as a function of L). Thus, there are D lines
corresponding to the D different messages, and any given message is optimal only
for the portion of the L-axis for which the corresponding line is the minimum. But,
it is easy to see that the minimizing range of L (corresponding to a given message)
can be expressed as the interval 77 < L < T", for some T',T". There will never
be two (or more) disjoint regions in L-space for which a given message is uniquely
optimal. Thus, we have established that there exists an optimal strategy that is a
deterministic threshold strategy. We omit the proof that there exists an optimal
determinisitic monotone threshold strategy. QED

This proof has been based on [T89], where the geometric argument is carried
out more fully, and where the proof covers the monotone threshold strategy case.

When the conditional independence assumption is relaxed, there is no longer a
guarantee of existence of an optimal strategy within the class of threshold strategies.
Thus, the conditional independence / binary hypothesis combination is a powerful
one. In particular, as we will see in sections to follow, it allows for drastic reduction
in the number of strategies that must be examined in the search for an optimal
strategy.

2.5.3 Historical Notes

As mentioned earlier, the Bayesian decentralized detection problem was first con-
sidered in [TS81]. They only examined the binary hypothesis, two sensor, binary
message case. In that work, the fusion center was always fixed a priori; they did not
note the fusion center pbp-optimality conditions. However, their work did contain
all of the ingredients necessary to prove Proposition 3 in its generality here.

In [S86], the author attempted to extend the pbp-optimality conditions to the
M > 2, N > 2 case. Unfortunately, his derivation is vague, and is quite difficult
to follow. As in [TS81], the author does not consider data fusion. In [CV86], the
fusion center pbp-optimality conditions were finally proved.

The work in [RN87] was the first to explicitly show the interplay between the
optimal fusion center and the optimal peripheral sensor rules. Unlike earlier works,
which assumed one fixed (fusion center or set of peripheral sensors) and then opti-
mized with respect to the other, [RN87] demonstrated the need to simultaneously
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optimize with respect to both the fusion rule and with respect to the peripheral
sensor rules. '

Our derivations are most closely patterned after [T89], which provides an excel-
lent overview of the whole field of decentralized detection.

2.6 Strategies with Identical Peripheral Sensor
Rules

This section continues the examination of the structure of optimal strategies. So far,
we have shown that for the binary hypothesis, conditionally independent problem,
an optimal strategy can always be chosen to be a threshold strategy. Here, we
consider the binary hypothesis testing problem with peripheral sensor observations
Y1, ..., Yy that are identically distributed conditional on either hypothesis.

By symmetry, one might expect that there exists an optimal deterministic strat-
egy in which all of the peripheral sensors use identical decision rules. If this were
true, then it would drastically reduce the computational complexity of searching for
an optimal strategy.

Unfortunately, in spite of the intuitive appeal of the conjecture, it is not true. We
separately examine the issue further in the conditionally independent and dependent
cases. The reason for treating the cases separately will be evident as the discussion
unfolds.

2.6.1 Conditionally Independent Observations

Consider the binary hypothesis testing problem with Y, ..., Yy identically dis-
tributed and conditionally independent, given either hypothesis. There is an exam-
ple in [T88] of an instance of such a problem in which the peripheral sensor rules
cannot be identical in the optimal strategy.

The identical sensor rule does not always hold for an arbitrary number of sensors,
N, (as the example in [T88] proves) but it does hold asymptotically as N — oo for
the probability of error cost criterion. This was shown in [T88] by using a particular
form of Chernoff bounds from [SGB67].

Returning to the finite N case, one might wonder about worst case reduction
in performance when all of the peripheral sensors are constrained to use the same
decision rule. Limited results are available. In [PA90], the authors define the relative

deterioration of performance by
errTor — PETTOT
itdentical optimal

Perror

optimal

relative deterioration =

For the case of N = 2, the authors show that the least upper bound on the relative
deterioration is 1. Their analysis is not readily extensible to the N > 2 case; no
worst case deterioration results are available for more than two peripheral sensors.

Despite the above caveats, experimental results in both [SR83] and [RN87] show
that for many particular problem instances with N = 2 or 3, the optimal strategy
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does use identical peripheral sensor rules. Also, in Chapter three, we analytically
demonstrate that for the Gaussian problem in the example of Section 2.4.3, there
is no loss in optimality in using identical peripheral sensor rules.

2.6.2 Conditionally Dependent Observations

Now consider the binary hypothesis testing problem with Y, ..., Yy identically
distributed (given either hypothesis), but conditionally dependent.

The following example shows that if identical deterministic decision rules are
used at the peripheral sensors, then

1. Performance can be far from optimal, even if an infinite number of peripheral
sensors are used,

2. The relative deterioration can be infinite when two peripheral sensors are used.

Both of these results are in contrast to the properties of the conditionally indepen-
dent problem, as discussed in the previous section.

e Example

We have a source that transmits a signal, S, to a set of N peripheral
sensors. The observation model is

Pr[W =31 = 1/2, j=0,1;
Pr[S=kl = 1/3, k=0,1,2,
Y, = §+WwW.

We define H; to be true when W = 0 (i.e., the channel between the
source and sensors is not corrupted), and we define H, to be true when
W =1 (i.e., the channel is corrupted). We want to minimize the prob-
ability of error.

Suppose that the fusion center is colocated with the source (so that
the fusion center always knows what the source transmitted). Also, let
D =2, and let N = 2. We want to find a strategy that minimizes the
probability of error.

If we are not constrained to use identical rules, then the following
strategy will clearly have an error of 0:

_J 0 for y;=0,1
71(1/1) - { 1 for 1 =2,3 ’
_ 0 for Y = 072
72(:’!2) - { 1 for Yy = 1,3 ’
)0 iff2uy duy =
Yo(ur, uz) = { 1 otherwise
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On the other hand, for deterministic identical sensor rules, it is im-
possible to achieve a probability of error of zero, no matter how many
sensors we employ. To see this, note that since ¥; =¥, = ... = Y (un-
der either hypothesis), it follows that with identical rules, U; = U, =
... = Un. Therefore, with no loss of information, we need only examine
U, which represents only a single bit of information. Clearly, a single bit
does not convey enough information to the fusion center for determining
whether the peripheral sensor observations have been corrupted. Thus,
optimal performance cannot be achieved with deterministic identical
rules. Also, note that for N = 2, the relative deterioration is infinite.

Despite the caveat of this example, we will see through numerical experimenta-
tion in later chapters that identical decision rule strategies often perform at or just
slightly below optimality. The example is a worst-case result, but is probably not
typical.

2.7 Computational Complexity of Binary
Hypothesis Problem

Suppose that the observation space at each peripheral sensor is discrete with cardi-
nality A. Then, as an alternative to solving the pbp-optimality conditions for finding
an optimal strategy, there is the option of doing an exhaustive search. That is, the
alternative is to exhaustively consider the cost of all deterministic strategies, and to
choose one that has minimum cost. This alternative is borne from the perpective
that the pbp-optimality conditions are too difficult to solve, and so the problem of
searching for an optimal strategy should be treated as a purely combinatorial one.

Here is a summary of what follows. After introducing some special notation and
addressing some secondary details, we count the number of monotone threshold
strategies that are possible in a binary hypothesis testing problem. This number
is relevant to the conditionally independent problem. Next, we count the number
of general strategies that are possible in a binary hypothesis testing problem; this
number is relevant to the conditionally dependent problem.

Finally, we count the number of identical rule general strategies and identical
rule monotone threshold strategies. From the discussion in Section 2.6, we know
that these identical rule strategies are not guaranteed to be optimal, but (as we will
see) the reduction in the number of strategies over which we must search may more
than compensate for the resulting suboptimal performance.

2.7.1 General Considerations

The following are some general comments that pertain to our entire computational
complexity discussion.
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Notation

As we discuss exhaustive searches over strategies, we need a shorthand notation
to describe particular decision rules. To describe our notation, first suppose that
A =5 and D = 3. Then, we define the following equivalence

1 yi = 1,2,
Peripheral sensor i uses the rule 11223 <= ;(y;) =< 2 iff y;=3,4
3 Y; = 5.

Equivalent Peripheral Decision Rules

The following definition describes when two peripheral sensor decision rules are
equivalent.

Two peripheral sensor rules, y(:) and 4/(-), are said to be equivalent
if there exists a permutation mapping o : {1,...,D} — {1,...,D} such
that y(y) = o(7'(v)), Vy.

The set of all decision rules that are equivalent is called an equivalent
class.

We describe the above relationship as one of equivalence, because two equivalent
decision rules convey identical information to the fusion center. If we are exhaus-
tively searching for an optimal strategy, then there is no reason to examine more
than one decision rule from each equivalent class. Note that if all D messages are
used in a decision rule, then there are D! rules in the given rule’s equivalent class.

Insistence that all messages be used

The following proposition will help us yield modest computational savings when A
is small.

Proposition 5 Assuming that A > D, an optimal strategy can al-
ways be found that uses all D message values in all of the peripheral
sensor rules.

Proof (Outline): This result is essentially obvious. An example will convey why
it must be so. Suppose that D = 3, A = 5, and as part of an optimal strategy,
peripheral sensor ¢ uses the rule 11222. Then, peripheral sensor i can also use the
rule 11223. The fusion center merely has to compensate by treating both 2s and 3s
from peripheral sensor 7 as 2s. QED.

Fusion

As we systematically search over different strategies, we need only vary the periph-
eral sensor rules. For each set of peripheral sensor rules the corresponding optimal
fusion rule follows automatically from Proposition 2.11.
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Complexity of computing strategy cost

The probability of error for any given strategy can be computed with O(N 4 + DV)
arithmetic operations [T89]. The first term accounts for the effort needed to read the
given strategy. The second term accounts for the computation needed to consider
each combination of messages that the fusion center receives.

2.7.2 Conditionally Independent, Binary Hypothesis

If the conditional independence assumption (2.19) holds, then by Proposition 4, we
can restrict attention to the class of threshold strategies. With this in mind, we
count the number of threshold rules that must be considered at any one peripheral
sensor when A > D. From this number, the total number of strategies that we must
consider will follow easily.

Suppose that we insist that all D messages be used in any decision rule (see
Proposition 5). Then it is easy to see that the number of different threshold rules
(per peripheral sensor) that we must consider is the same as the number of solutions
to

1+ ...+zp=A4,

where z4,...,zp are constrained to be positive integers. Call this number C(D,A).
Then, it is clear that it satisfies the recursive formula

A-D+1
C(D,4) = Y. C(D-1,4—k)

k=1

A-1
= > CO(D-1,k),
k=D-1

with the initialization C(D = 1,A4) = 1. Thus, for D = 2, there are 4 — 1 possible
decision rules per sensor; for D = 3, there are 1/2(A2 — 34 + 2) decision rules per
sensor, etc.

In general, then, we need to consider C¥(D, A) different strategies at a cost of
O[(NA + DY)(CM(D, A))] arithmetic operations.

2.7.3 Conditionally Dependent, Binary Hypothesis

In the conditionally-dependent case, the computational complexity becomes much
more formidable. In general, we can place no a priori structure on the form of
optimal peripheral sensor rules. Thus, for each peripheral sensor rule, we must
examine one rule from each of equivalent class.

Non-skipping rules

To help us systematically restrict our search to one rule from each of equivalent
class, we introduce the following concept. '
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A decision rule is said to be a non-skipping decision rule iff the fol-
lowing holds:

inf{y : v(y) =1} < inf{y:7(y) =i} 1<i<D, j>i.

A strategy composed of non-skipping peripheral sensor rules is said to
be a non-skipping strategy.

Thus, 1123123 is a non-skipping rule, while 1132132 is not.
We now can prove the following proposition.

Proposition 6 With no loss of optimality, we can restrict attention
to non-skipping strategies.

Proof: We show that every decision rule is equivalent to some rule within the
class of non-skipping rules. Thus, we can restrict attention to non-skipping rules
(and hence, non-skipping strategies) with no loss of optimality.

To show that every rule is equivalent to some rule within the class of non-skipping
rules, consider the arbitrary rule ~(-). Let z; = min{y : ~(y) > 1} (the minimum
exists, since Y is discrete, with a finite number of possible values). If y(z) # 2,
then perform a permutation mapping on (), in which 1zy) — 2,2 — v(z1), and
everything else stays the same. Label the resulting decision rule v*(+).

Now, let ¢, = min{y : Al (y) > 2} If y1(z2) #+ 3, then perform a permutation
mapping on v'(-) in which 1(zz) — 3,3 — v(z,), and everything else stays the
same. Label the resulting decision rule v3(-). Note that this mapping will not
disrupt the locations of the decision regions for which the message is 1 or 2.

We continue this procedure until all D message values have been accounted for.
Since D is finite, we will eventually arrive at a non-skipping rule. Since the rule at
every intermediate step is equivalent to the starting rule, we conclude that the final
rule is equivalent to the starting rule. QED.

Operation count

We can again develop a recursive equation for the number of decision rules per
peripheral sensor that must be considered. Again, we insist that all [ message
values be used in any rule. Then

0D, A)= % [DA 5 ( > ) G(k,A)] (2.21)

k=1

with the initialization C(D = 1,4) = 1. The term in brackets corresponds to
the number of decision rules that use the maximum number of symbols (D). The
division by D! accounts for the number of decision rules in each equivalent class
for rules that use all D symbols. From (2.21), it follows that for D = 2, there are
94-1 _ 1 decision rules per sensor, for D = 3, there are

-2t 4]
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decision rules, etc. When A is large, there is only a (D!)" savings of limiting the
search to non-skipping strategies, as opposed to searching every possible strategy.
However, when A is small, the savings can be greater.

Overall, the complexity is O(CY(D, A)(N A + DV)).

NP-Completeness

One might wonder whether we can somehow cleverly reduce the computation of
finding an optimal strategy in the conditionally dependent case. Unfortunately, a
main result of [TA85] would indicate that this possibility is very unlikely.

In [TA85], the authors consider the following problem:

We are given finite sets Y7, Y3; a rational number K; a rational
probability mass function p: Y; xY; — @Q; and a partition {4g, 4;} of
Y1 xY;. Do there exist y; : V; — {0,1}, 7 = 1,2 such that J(71,7;) < K?

Here,
J(r,72) = Y. p(ynve)m(vi)ra(yz) +
(y1,y2)EA0
S by, y2)[1 — 7y )v2(2))-
(v1,92)€4,

This problem can be shown to be NP-complete.

In a sense, the above NP-complete problem is the simplest possible decentralized
detection problem that has conditionally dependent observations. This simplicity
is in the sense that a centralized detector for the problem would trivially have zero
probability of error. Thus, all difficulties in finding an optimal strategy are solely
the result of decentralizing the problem.

Any NP-completeness result really only refers to the worst case. Thus, there
may well be structured subclasses of conditionally dependent problems for which the
optimal strategy can be found efficiently. In general, though, the NP-completeness
result indicates that research effort should be dedicated to search algorithms for
approzimately optimal strategies.

In the next chapter, we will examine some very specific subclasses, where optimal
strategies can be found efficiently. Then, in the chapters that follow, we will consider
heuristically-based search algorithms for approximately optimal strategies.

2.8 Neyman-Pearson Variant of Binary Hypoth-
esis Testing

Consider now a variant of the binary hypothesis testing problem in which it is not
reasonable to assign a priori probabilities to the two hypotheses. In that case, we
solve

Maximize JP(~)
Subject to JF('y) = a,
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where JP(v) = Pryo(11(¥1), - Yv(Yn)) = 2|H,] (the probability of detection), and
IF () = Prlvo(71 (Y1), oy 7w (Yay)) = 2|H,] (the probability of false alarm). This is
known as the Neyman-Pearson variant of the binary hypothesis testing problem.

We now prove the following proposition, which will help us solve the Neyman-
Pearson problem in a later chapter.

Proposition 7 Suppose that deterministic strategy v is optimal for
the Bayesian problem when the a priori hypothesis probabilities are

Pr(H,), Pr(H,).

Then, v is also optimal for the Neyman-Pearson problem corresponding
to a = JF(~).

Proof: First, note that by Proposition 2.10, v is optimal not just over I, but
also over I'*. Now, suppose by way of contradiction, that

v el st. JF(y)=a, JP()> IP(y).
If this were true, then we would have

Pr(Hy)(1 = J¥(7")) + Pr(H,)(1 — JP(v)) <
Pr(H1)(1 = J"(7)) + Pr(H,)(1 — JP(v)),

which would mean that v* has a lower probability of error than + for the Bayesian
problem. Since this contradicts the optimality of v over all I'* for the Bayesian
problem, we conclude that no such v* exists. Thus, the optimality of v for the
Neyman-Pearson problem when o = JF(v) is established. QED.

Unfortunately, the converse of Proposition 7 is not true. That is, there is no guar-
antee that for some given a, there exist Pr(H,), Pr(H;) such that the corresponding
Bayesian optimum strategy satisfies J¥ (7) = @. Under stronger conditions, though,
the converse of Proposition 7 is true, as is summarized in the following.

Proposition 8 Suppose that the 2-dimensional set
Q= {(J"(),7°(7)l €T}

is convez. Then, for any given o,0 < a < 1, there exists some choice
of Pr(H,), Pr(H;) such that the corresponding Bayesian problem has a
deterministic optimum strategy v satisfying J¥(v) = a.

The following proof is very closely based on the proof of a related result in [T89).
We could just refer to that proof, but the details are just slightly different enough
to justify inclusion of the proof here. So, for completeness sake, here is the proof.

Proof: Note that our optimization problem is equivalent to maximizing g,
subject to g1 = a, with (g1,¢2) € Q. Let ¢} € [0,1] be the maximum of ¢, subject to
these constraints. Clearly, the point (e, g3) lies at the upper-boundary of Q. Then,
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because @ is convex, the supporting hyperplane theorem guarantees that there exist
scalars cy, ¢; such that (a, ¢;) maximizes ¢,q; + ¢3¢ over the set Q.

Now, note that the set ) is contained in the unit rectangle and the set includes
the points (0,0), (1,1); hence, by simple geometry, we must have ¢; < 0, ¢ > 0. For
this reason, the point (a,¢) must maximize —cg; + gz, where ¢ = —¢;/c, (and so
consequently ¢ > 0). With no loss of generality, we can let ¢ = Pr(H,)/(1 — Pr(H,))
for some choice of Pr(H;). But using this last expression for ¢, we see that (a,q})
also minimizes Pr(H,)q, — Pr(H;)q,, which is exactly the probability of error in the
Bayesian problem. Hence, we have shown by construction that there exist a priori
probabilities, Pr(H,), Pr(H,) such that the corresponding Bayesian problem has an
optimal strategy satisfying J* = . QED.

Note that the proof of this proposition depends heavily on the convexity of Q.
Unfortunately, an example in [R87] shows that the set @ is not necessarily convex,
and so care must be taken in applying Proposition 8. '

There are many aspects of the decentralized Neyman-Pearson theory that we
have not touched. Excellent discussions of the subject can be found in [T89], [T89a].
Our proof of Proposition 7 is a simplified rearrangement of the proof in [T89a].
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Chapter 3

Case Studies

3.1 Introduction

The last chapter began with a fairly general viewpoint toward the decentralized hy-
pothesis testing problem. In that general setting, we derived the person-by-person
optimality conditions; those general conditions did not provide very much insight
into the structure of optimal strategies. We then focused on the binary hypoth-
esis, conditionally independent observation problem. In that specialized setting,
we noted that optimal strategies can always be found within the class of threshold
strategies. We found no such powerful result for the conditionally dependent ob-
servation problem. Nor did we find any powerful results for the M-ary (M > 2)
hypothesis testing problem.

In this chapter, we will further specialize our analysis. Through four case studies,
we will show that for particular problems, we can find optimal strategies with
aesthetically pleasing structure.

3.2 Case Study 1: Conditionally Independent
Gaussian Problem

Consider the following signal model, wherein the observation at each peripheral
sensor is a signal immersed in Gaussian noise:

PI‘[S = sj] = PI'(HJ) >0, .7 =1,2, s> s
Y: =S+ W, i=1,2,
W; ~ N(0, %), 0 < o? < oo, (3.1)

with the Gaussian random variables W;, W, statistically independent. For D = 2,
what is the optimal strategy?

Note that conditional on the true hypothesis, ¥; and Y, are independent and
identically distributed. As discussed in Chapter two, there is no guarantee (in
general) that the optimal strategy will use the same decision rules at both peripheral
sensors. However, for this particular problem, we have the following proposition:
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82> gy, o>, Pr[H,-]>0, J=1,2

there exists an optimaql determinz'.stic Monotone threshold Strategy thay
uses peripherqg] sensor ryleg

H, ) H,
> 52 — & 51 — s 2
L(y;) < Xp [ L+ T2 | = oy, < I (3.2)
H, H,
with
Li=1 = T, _ (3.3)

for some finite T

In the above Proposition, we define

,
2 “J 1l yw<r

Y o T = 7:(1/)—{2 %> T (3.4)
H,

Optimality result is analytically demonstrated. We begin with a heuristj, argument
which motivates the result. Then we 8ive the fy]] argument, ip detai],



It turns out that if the fusion rule is the OR rule,

1 wmi=w =1,
Yo(u1,uz) = { 2 otherwise, 39)
or the AND rule,
_) 2 ui=uy =2,
Yo(ur,uz) = { 1 otherwise, o0

then the corresponding f(-) has a very nice property. In particular, for either of
these fusion rules, the corresponding f(-) satisfies

af (t)

12\
< Ta

<0, —oo<t< oo. (3.8)

The significance of (3.8) will readily follow from two observations:

1. From (3.5), it follows that any pbp-optimal pair of thresholds T}, T, satisfy
,-T = f(Tl) - f(Tz)-
2. From (3.8) it follows that any pair of finite thresholds T}, T} satisfy

f(T) - f(Iz) £ T - Th,
with equality if and only if T} = T5.

Combining points 1 and 2, we conclude that for AND and OR fusion rules, all
corresponding pbp-optimal threshold strategies (3.2) have equal thresholds (i.e, T} =
T,).

It turns out that there always exists a globally optimal strategy that uses AND or
OR fusion. Thus, since all globally optimal strategies are pbp-optimal, we conclude
that there always exists a globally optimal threshold strategy (3.2) that has equal
thresholds.

In the next section, we will tie all of these ideas together in detail. The trickiest
part will be proving the validity of (3.8).

3.2.2 Proof

In this section, we give a detailed proof of Proposition 9. We break the proof into
a number of steps.

Canonical form

Suppose that in the context of (3.1),

31 Zkl, 32:k2, VO"—_—‘O,
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and that the optimal threshold strategy (3.2) uses thresholds
T1 = tl) Tz = tz.

Then, it is easy to see that for the scaled parameter values

_kz—kl

0 ?
the optimal threshold strategy (3.2) can use the scaled thresholds

51 =0, 8 oc=1,

t, —k t, — k
T1=-101, T2=201.
Therefore, if Proposition 9 is true for
81 = 0, Sy > 0, o = ]_, (39)

then the proposition must also be true for arbitrary sy, 55,0 (with s, > sy, o > 0).
We will prove the proposition for the less notationally burdensome case (3.9),
and as this discussion shows, we can do this with no loss of generality.

Fusion rules: AND and OR

We prove the following lemma.

Lemma: Consider the detection problem described in (3.1). With
no loss of optimality, the fusion rule can be constrained to the class of
OR (3.6) and AND (3.7) fusion rules.

Proof: We prove this by exhaustive enumeration of the other possible fusion
rules.
There are only six possible deterministic fusion rules. They are

Uy Uz | Ug U Uz | Ug Uy Uy | Ug Uy Uy | Ug
1 1 1 1 1 1 1 1 1 1 1 1
1 2 1 1 212 1 2 1 1 212
2 1 1 2 1 2 2 1 2 2 1 1°
2 2|2 2 212 2 2 2 2 2|2
(1) (i1) (ii) (iv)
plus the two “degenerate” rules

U1 U | Ug U1 Uy | Yo

1 1 1 1 1 {2

1 2 1 1 2|2

2 1 1 2 1 (2

2 2 1 2 22
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Rules (i) and (ii) are AND and OR fusion, respectively; we now systematically
eliminate the need to ever use any of the other fusion rules.

First, consider rule (iii); suppose that it is an optimal rule. There is no loss
in optimality in computing (iii) as Yo(u1,u2) = u1. When computed this way, it is
clear that rule is independent of u,. Thus, without loss of optimality, v2(:) can be
changed to any arbitrary rule. Suppose that it is changed to the rule -

72() = 7 (")-
Then, with this new 7,(-), it is clear that
Pr[U, = 1,U, = 2|H;] = P1[U; =2,U, = 1|H;], j=1,2.
Thus, MAP fusion satisfies
volUy = 1,Us = 2) = 7o(Uh = 2,U, = 1).

Hence, since MAP fusion is optimal, we can substitute fusion rule (i) or (ii) for
fusion rule (iii), without loss of optimality. We conclude that we never have to use
the fusion rule (iii).

A virtually identical argument (which we omit) shows that we never have to use
fusion rule (iv).

Next, consider the degenerate fusion rule, (vi). Let 4 be some strategy that uses
(vi). Then, it is clear that

J(v) = Pr[H,].

We show that v is not optimal by constructing a strategy with lower probability of
error.
To wit, consider the strategy, 7' in which

L v(:) is
H;
2 PI'[Hl]

< PI'[Hz] ’
H,

L(y1) (3.10)

2. 44() is arbitrary, and
3. vo(u1,u2) = uy.
Then,

J(#") = Pr(H,)Pr[Us = 2|H,] + Pr(H;)Pr[Up = 1| H,]
— Pr(H,) + Pr(H,)Pr[Us = 1|H,) — Pr(H,)Pr{Us = 1|H,]

= Pr(H,) +/7_1(U1=1) [Pr(Ha) frijis (v | Ha) = Pr(H) fram, (v1 | )| dyn
< Pr(Hy).
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The inequality in the last line is a consequence of two facts. First is the form of the
rule in (3.10). Second is the positiveness of Pr[H,], Pr[H,], which we have assumed
throughout this development. This inequality proves that the optimal fusion rule
can never be (vi) when the prior probabilities are positive.

A virtually identical argument (which we omit) shows that we never have to use
the fusion rule (v). Thus, we can now conclude that there is no loss in optimality
in restricting attention to AND and OR. fusion. The lemma is proved. QED.

Pbp-optimality condition for thresholds '

In Section 3.2.1, we stated that for any fixed fusion rule, the peripheral sensor pbp-
optimality conditions can be expressed as a pair of coupled equations that relate
Ty, T3; see (3.5). This section gives a derivation of f(-) for OR and AND fusion.

The key is to tailor the peripheral sensor pbp-optimality condition (see Propo-
sition 3) to this particular problem. We expand (2.14) to

H;
Pt (9 o) Pr(Ho)ai(2, Hy) — ai(1, Hy)] S
meI(y,-IHI)Pr(Hl)[al(l, H,) - aq(2, Hy). (3.11)

Then, using the identity (for D = 2),

ai(d, H;) = Pr[Us # j|U; = d, H;j]
= PI‘[U0=3—]"U,':(1,HJ‘], j=1,2,

(3.11) becomes

H>
>
fyi.lgz(y,'IHg)Pr(Hz)[PI'(Ug = 2IU¢ = 2,H2) - PI‘(UO = ZIU{ = 1,H2)] -

H,
Py (vl Hy)Pr(H,)[Pr(Us = 2|U; = 2, Hy) — Pr(Uy = 2|U; = 1,H,))(3.12)

It is readily verified that for OR, fusion,
Pr[Uy = 2|U; = 2, H;) - Pr[U, = 2U; =1,H;] = Pr[Us_; = 1[Hj], (3.13)
while for AND fusion,
Pr[Us = 2|U; = 2, H;] — P1[U, = 2lU; =1,H;] = Pr[Us_; = 2|H;]. (3.14)
Hence, assuming that

PrlU; = d|H;] >0, d,i,j=1,2, (3.15)
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it follows that (3.12) can be expressed as

H;
>
Li(y;) < %
H,
where
_ Pr(Hy) Pr[U, =2|U; =2, H,] — Pr[U, =2|U; =1, Hy] (3.16)
&= PI'(Hg) PI'[UO = 2'Uz = 2,H2] - PI[UO = 2'U,,, = l,Hz]. )
Or, alternatively, (3.12) can be expressed as
H,
> .
vi o Ty 1=12 (3.17)
H,
where
o? 82 — §?
T; = 21 | log oy . 3.1
52—31[ 202 +oga] (3.18)

As a note, one can show that if Pr(H;) > 0, Pr(H,) > 0, then there always exists
an optimal threshold strategy that satisfies (3.15). The details (which we omit) are
similar to those in the discussion of why “degenerate” fusion rules are never needed.

In terms of the threshold rule in (3.17) and (3.18), our expression for a; (3.16)
can be simplified. For OR fusion,

PI‘[UO = 2|Uz = 2,Hj] - PI‘[UO = lez = 1,HJ'] = PI'[U3_,' = ]'IHJ]
= Pr{Ya_; < T3_;|Hj]
= ®(Tsi—s;), (3.19)

for i = 1,2, and § = 1,2. The first line follows from (3.13); the second line follows
from (3.17), and the third line follows from the probability distribution of Y; (see
(3.1)). Similarly, for AND fusion,

Pr[Uo = 2|U, = Z,Hj] — PI‘[UO = 2,U1, = ].,HJ'] = PI‘[U;;_,' = 2|Hj]
= Pr[Ys_; > T5_;|H}]
= @(Sj - T3_,’), (3.20)
fori=1,2and j =1,2.

The following lemma summarizes this discussion, and casts the results in a form
that will be useful for what follows.
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Lemma: Consider the detection problem described in (3.1) with
81 = 0,5, > 0,0 = 1. With no loss in optimality, the peripheral sensor
rules can be constrained to the form (3.17). If OR fusion is used, then

Ty = fu(T2), To= fulTh),

where

For(t)) = 31—2 {%g +1n [gig:;] +1n [%” . (3.21)

If AND fusion is used, then
Tl = fund(Tz), T2 - fand(Tl)y

where

Fana(t) = 5—12 {%3 +1n [EEZ:” +1In [%] } . (3.22)

Bounds on derivative of f(-)

We prove the following lemma.

Lemma:

—1<%(:)<0, —00 < t < oo, (3.23)

for both OR and AND fusion, where for(+) is defined in (3.21) and fand(+)
is defined in (3.22).

Proof: We readily compute

dfz‘ft) — 32\}2_7'. [g(t) — g(t — -9'-;)] ,

and
dfa:;:(t) — 5252_71- [9(52 - t) - g(—t)] ’
where
_exp(—t?/2)
0=
Note that

dfand(u)l _ dfor(u) I
» u=t du u=s8z2—t-

d
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Hence, if (3.23) is valid for OR fusion, then it is also valid for AND fusion. Thus,
we concentrate on characterizing the derivative of fo.(-).
Our approach is to show that

dg(u)
du

where g(-) is defined in (3.25). This is useful because it implies that

-2 < < 0, (3.26)

—5V2r < g(t) —g(t—s2) < 0,

which, in light of (3.24), implies the validity of (3.23).
To establish (3.26), first note that

%:) = —g(u) [u + J—;—;g(u)] : (3.27)

Now, we bound this derivative by separately considering negative and nonnegative
values of u.
For negative u, we exploit the bound [AS64]

2 exp(—u?/2) \/5 —exp(—u?/2)
T |ul + Vu? + 4 T |u| + y/u? +8/7

This bound implies that

o (1l + vt 8/m) < olw) < /5 (l+ Ve +4), w<o, (3:28)

and

Thus, combining (3.27), (3.28) and (3.29), we obtain the surprisingly simple bound

-2 < iii(u—) — §, u < 0.
du T

IA

Now we bound the derivative of g(-) for nonnegative u. This turns out to be
much simpler than for negative u. Proceeding,
u exp(—u?)
A T
lexp(—1)
®(0)
= 2exp(—-1), u=>0.
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Also,
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Combining these last two results, we conclude that

M > —2exp(—1)——4—

du V2T
> —4/2m, u > 0.

Also, it is easy to see that

M<O, u > 0.
du

In summary, we can combine all of the above results to see that for all u, (3.26)
is valid. Thus, from the discussion immediately after (3.26), we conclude that (3.24)
is valid. Thus, the lemma is proved. QED.

Final step

A review of the discussion in Section 3.2.1 will show that all of the components of
the proof have now been established. Thus, the proposition is proved. QED.

3.2.3 Generalizations

The above analysis raises at least two questions. First, does Proposition 9 hold
when there are more than two peripheral sensors? Second, does the proposition
hold for a more general class of distributions for the peripheral sensor observations
(i-e., for non-Gaussian distributions)? In this section, we examine both of these
issues. The discussion has a twofold purpose. It acts both as a reformulation of the
central ideas in this Case study, and also as a guideline for future research.

Generalization to arbitrary number of sensors

Consider the binary hypothesis detection problem in which the peripheral sensor
observations Y7,...,Yy are independent and identically distributed, conditional on
the true hypothesis, and in which D = 2.

Suppose that there exists an optimal strategy with the following properties:

1. The peripheral sensor rules are of the form

H;
>
L('yi) z ;.

H,
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2. The inequality
Pr{Up = 2|Us = 2, H;] > Pr[Us = 2|U; = 1, H,], j=1,2
holds for 1 <1 < N.
3. The optimal fusion rule is of the form
(K =k)=2, iff k>k" (3.30)

where k* is an integer, 0 < k* < N, and where K is the random variable

K= fj(Uk —1). (3.31)
k=1 .

This is known as a k-out-of-N rule.

As we now show, these three properties lead to the possibility of a conceptually
straightforward extension to Proposition 9.

Proceeding, properties 1 and 2 allow us to express the pbp-optimality conditions
by the set of N coupled equations

o; = f,-(al, ...,a,-'_l,ai_H, ...,aN), 1 S 1 S N, (332)

where f;(+) is implicitly defined by the right-hand side of (3.16). This set of equations
is dependent on the fusion rule.
For k-out-of-N fusion rules, it is easy to see that (3.16) becomes

. PI'(H]) PI'[K,: =k* — 1|H1]

% = Pr(H,) PrlK: = b —1|Hy)’ (3.33)
where
' N
Ki= 3 (Ue=1). (3.34)
k=1
ki

By symmetry, the right-hand side of (3.33) is independent of 7, and hence, Property
3 allows us to express (3.32) as

ai = f(al,...,ai_l,a,v_l,l,...,aN), ]- S 7' S N, (335)

where f(-) is now implicitly defined by the right-hand side of (3.33). Note, also,
that by symmetry,

f(al, sy Qi1 Qi 1y eeey aN) = f(ﬂl’ ---th—l)’ (3'36)

where (1, ...,0n-1 is any permutation of the values oy, ...,0;_1, @i11, anN.
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This last symmetry result, renders it straightforward to show that a sufficient
condition to guarantee that a,,...,ay are identical in an optimal strategy is that

0
-1< ﬁ (ﬂl,---,ﬂN—l <1, 0< :Bla"')ﬂN—l < oo) (337)
1
Actually, this condition is sufficient to guarantee that a;,...,ay are identical in any
pbp-optimal strategy.
To demonstrate this sufficiency, note that for any o; and a; (¢ # j) in a pbp-
optimal strategy, we must have (by definition)

a; — ;= f(a, ey @1, Qig1y ey ) — F(O1, ey 01, @1y ooy ON)- (3.38)
But, also, by the sufficiency condition and by the symmetry expressed in (3.36),

la; — aj| 2 |f(alv sy Q1 Gy, maaN) - f(al’ sy QG 1y Oy ooy aN)l’ (339)

with equality if and only if o; = ;. Thus, we conclude that when properties 1-3
hold, and also (3.37) holds, then all pbp-optimal strategies have

o == ap.

This result is aesthetically pleasing, but is not practically useful. There are at
least two difficulties. First, there is no known way to show that property 3 (i.e.,
optimality of k-out-N fusion rules) holds. Second, there is no way to analytically

demonstrate that (3.37) holds for N > 2.

Generalization to non-Gaussian distributions

There is no apparent way to extricate the dependence of the proof of Proposition 9
from the details of the Gaussian distribution. It would seem that a completely
different proof would be needed, and it is unknown whether such a proof exists.

Nevertheless, the given proof does provide an outline of one approach to a test
whether a identical rule strategies are optimal in any given problem. For the two
peripheral sensor case, the key is to construct (for each possible fusion rule) the
coupling function, f(-), and to show that

d
-1< Ef(t) <1, —oco0<t<oo. (3.40)

3.2.4 Conclusion

The key result of this section is Proposition 9. The result is new. The motivation
for it was the nonlinear Gauss-Seidel algorithm (see next chapter).
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Figure 3.1: Observation model for Gaussian problem

3.3 Case Study 2: Conditionally-Dependent
Gaussian Problem

Consider the following signal model, wherein the observation at each peripheral
sensor is a signal immersed in Gaussian noise: :

Pr[S = j — 1] = Pr(H;), i=12,
Y,=5S+W4+ W, 1<i< N,
W ~N(0,p), Wi~N(0,(1-p)), =~ 0<p<Ll (3.41)

with all of the Gaussian random variables W, Wy, ..., Wy mutually independent.
Note that conditional on the true value of the binary discrete random variable, S,
the peripheral sensor observations, Yi,..., Yy are still correlated; they all share the
common noise component, W. Also note that conditioned on either hypothesis,
the correlation coefficient between Y;, Y;, ¢ # j, is p. This observation model is
pictorially represented in Figure 3.1.

When D = 2 (i.e., code alphabet size of two at each peripheral sensor), what is
the optimal strategy? '
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3.3.1 Motivation

To motivate the following analysis, consider the above model for p = 0. In that case,
the peripheral sensor observations become conditionally independent, and so from
Proposition 4, there exists an optimal deterministic monotone threshold strategy,
v'. Now, suppose that p is infinitesimally small, but nonzero. Then, Proposition 4
no longer holds. Nevertheless, one could reasonably conjecture that as p smoothly
increases from 0, there exists an optimal strategy that smoothly (in some sense, to
be determined) moves away from 7'.

Along these lines, we argue as follows. We conjecture that there exists a pbp-
optimal strategy in which the peripheral sensors all use the identical rule

Hz Hz
> 1 >

L(y:) _ exe(T(p)—3) = u _ T(p), (3.42)
Hl Hl

where T'(p) depends only on the correlation coefficient, p, and where the direct
thresholding form of the test follows from the definition of the likelihood ratio.
Next, for fixed p, we find a threshold, T such that the resulting strategy (threshold
rule at all of the peripheral sensors and MAP rule at the fusion center) is indeed
pbp-optimal. Finally, we note that for the case of p = 0, we have proved (for the
case N = 2) that the corresponding identical threshold strategy is globally optimal.
Also, for the N > 2, there is experimental evidence that the identical threshold
strategy is globally optimal. Thus, it is likely that the strategy corresponding to
T(p), p > 0 is also globally optimal.

Somewhat disappointingly, we will not be able to obtain analytical results at
every stage of this development. At the analytically insurmountable points of the
development, we will turn to numerical experimentation. Then, at the end, we will
summarize our findings.

3.3.2 Recasting of Pbp-Optimality Conditions for D = 2
| Case

Our restriction that D = 2 allows us to rearrange the peripheral sensor pbp-
optimality condition (2.14) to a more insightful form. Under a critical assumption
that will be discussed below, the results in this section are general; they will be
used for our Gaussian problem and also for the Erlang problem to be introduced in
the second Case study.

We can expand (2.14) to

H,
Fram (yil H2)Pr(Hz)[ai(2, Ha, y:) — ai(1, Hs, y:)] f
Frim (yil Hy)Pr(Hy)[ay (1, Hy, y:) — a1(2, Hy, ). (3.43)

46



Then, using the identity (for D = 2),

ai(dv Hjiyl:) = Pr[UO # ]lUl = dvyia-Hj]
= Pr[U0=3_j|Ui:d:yi’Hj]s (j=172)’

(3.43) becomes
H>
>
Frii (i Ha)Pr(Hy)[Pr(Uo = 2|U; = 2,4, Ha) — Pr(Uo = 2Ux = L,y;, Ha)] T

H,
Jym, (vi| Hy)Pr(H, ) [Pr(Us = 2|U; = 2,y;, Hy) — Pr(Uy = 2|U; = 1,y;, Hy)](3.44)
Now, under the critical assumption that
Pr[Uo = 2|U; = 2,y;, Hy] > Pr[Uy = 2|U; = 1,y;, Ho], 1<i< N, Vy; (3.45)
we can rearrange (3.44) to
H;
Li(y:) ai(y:), (3.46)

where
as(y:) = Pr(H,) Pr[Uy = 2|U; = 2,y;, Hi] — Pr[Uo = 2|U; = 1, y;, H,]
Y= Pr(H,)  Pr[Us = 2|U; = 2, i, Hy] — Pr[Uo = 2|U; = 1,43, Ha|

(3.47)

Disregarding for a moment our perhaps tenuous assumption (3.45), our result
(3.46) is quite interesting. We have shown that in the D = 2 case, we can express
the pbp-optimal sensor rule as a data-dependent likelihood ratio test. In the next
subsection, we exploit this result in our Gaussian problem. For that specific prob-
lem, we show that for a properly-selected threshold, T', the strategy described by
(3.42) is pbp-optimal.

3.3.3 Finding Threshold for Pbp—Optimal Strategy

Consider the strategy described by (3.42). The following steps are directed toward
showing that for special values of T in (3.42), the corresponding strategy is pbp-
optimal. Unfortunately, it does not seem feasible to carry out the full demonstration
analytically. Thus, the following argument is really only a detailed motivation of
the idea. The full validity of the argument for special cases will be carried out
numerically in Section 3.3.6.

1. If the rule (3.42) is used (regardless of its optimality), then by symmetry, the
number of 2-messages that the fusion center receives (denoted by k),

K = i (U — 1) (3.48)
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is a sufficient statistic for the fusion rule.

Also, by symmetry, the statistic

Ki= 3 (Ue—1) (3.49)

is meaningful; we will find this statistic useful in the what follows. In words,
K; is the total number of 2-messages that the fusion center receives from all
sensors excluding sensor 1.

. When the rule (3.42) is used, the fusion rule becomes monotonic with respect
to the k-statistic introduced in point 1. In other words, the pbp-optimal fusion
rule becomes

(k) =2 iff k> k",

for some integer k£, 0 < k* < N; that is, it becomes a k-out-of-N rule.

To see this result, we first express our original fusion pbp-optimality condition
(2.11) as a likelihood ratio test,

-
Priuy,..,un|H,] > Pr(H;)
e - - ==, 3.50
() Prluy,..,un|H:] < Pr(H,) (3.50)
H,

Since for our problem, K is a sufficient statistic for the fusion rule, it follows

that (3.50) can be simplified to

Pr[K = k|H,] > Pr(H;)
Pr[K = k|H,] < Pr(H,)

Yo(k) : (3.51)

Hence, by showing that the left-hand side of (3.51) is nondecreasing with k&,
we will establish that the k-out-of-N rule is pbp-optimal. We defer the proof
until Section 3.3.4; the details are tedious, and we do not wish to interrupt
the flow of the present argument.

For now, we treat the value of k* as a parameter. At the end of this section,
we will show how to select the optimal k*.

. Again, suppose that the rule (3.42) is used. Then, we can use the fusion
monotonicity result in point 2 to show that (3.45) holds. In particular, k-out-
of-N fusion means that
N-1
Pr[Uo =2|U; = d,y;, Hs) = >, Pr[K;=kly;, Hs), d=1,2, (3.52)
k=k*+1-d
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and hence, for k* > 0, it follows that

Pr[Us = 2|U; = 2,y;, Hy] — Pr[Uy = 2|U; = 1,y;, H,)
= PI‘[K,‘ =k" - 1|y,-, Hz]
> 0, (3.53)

thus establishing (3.45) for the case of k* > 0. This result will allow us, in the
next step, to use the special form of the pbp-optimality condition expressed
by (3.46).

4. Suppose that peripheral sensors 2,..., N are using the rule (3.42), that the
fusion center is using a k-out-of-N rule, and that we want to find the corre-
sponding pbp-optimal rule for sensor 1, v;(-). By the result of point 3, we can
use (3.46). We denote this form of the decision rule with the special notation

H;

Z I &
Li(yl) < al(yl,k aT)y

H

thus explicitly showing the dependence of the data-dependent threshold on k*
(fusion rule) and on T (other peripheral sensor rules).

5. Now comes the most critical step. We attempt to find a threshold T, such
that the rule in point 4 satisfies the equivalence

Li(y:) 2 oi(y, ¥, T) <= y >T. (3.54)

If such a threshold exists, then the pbp-optimal rule for sensor 1 is to use a
direct thresholding rule with threshold T'. But then, by symmetry, threshold
rule T is pbp-optimal for all of the peripheral sensors, and so we have an
identical-rule pbp-optimal strategy.

We need to prove that there exists a T' that satisfies (3.54). Toward that end,
we first simplify our general expression for a}(-) (see Equation 3.47); by the result
in point 3, it follows that

Pr[H,] P:[K; = k* — 1|y;, H,,T]
Pr[H,) Pr[K; = k* — 1|y;, H,, T

a;(yi, &, T) = (3.55)

For our Gaussian problem,

PI‘[K,' =k — ]-lyi’HJ',T] =
( N-1 ) /°° exp{—{w — (s; + p(y — 5;))1*/2p(1 — p)}
b1 ) oo V2mp(l—p)

(G E) e e
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with s; = 7 — 1, j = 1,2. The messy details of establishing this identity are
relegated to Section 3.3.4

The expression in (3.56) is not at all pleasant, and as a result, there is no
apparent way to prove that (3.54) has a solution. It is somewhat helpful to note
that the only values of T' that can possibly satisfy (3.54) are solutions to

Li(yi‘) = a::(yi)k*aT)lT=y,-- (3.57)

Unfortunately, in general, proving existence of a T that satisfies (3.57) is also in-
tractable. Thus, we content ourselves with an asymptotic analysis and with numer-
ical experimentation.

First, we show that for a very special symmetric case, (3.57) has a solution that
can be seen by inspection. We then use asymptotic techniques to show that as
p — 0, this threshold solution to (3.57) also behaves correctly in (3.54) as |y;| — co.

Finally, we pursue the solution to (3.57) and to (3.54) numerically. For the cases
that we consider, we will see that a pbp-optimal identical threshold strategy exists,
and can be found routinely.

As a final note, the optimal value of k* is not known apriori. Hence, for each
possible value of k*, we solve for the optimal T' (assuming that it exists), and then
we compute

kE*—1 N
J(‘)’) = PI'[Hz] Z PI'[K = lez,T] + Pr[Hl] Z PI'[K = lely T]
k=0 k=k*

The value of k* that minimizes this expression is the optimal value of k*.
In the next section is a proof that the fusion rule is monotonic. Then, the
development outlined above begins in Section 3.3.5.

3.3.4 Mathematical Details

In this section, we fill in two of the missing details from the last section. First, we
prove that if the peripheral sensors all use the decision rule (3.42), then the fusion
rule is monotonic. Second, we prove the identity (3.56).

Proof that fusion rule is monotonic

The following proposition establishes the monotonicity of the fusion rule.

Proposition 10 Suppose that for some threshold T, the rule in
(3.42) is used at all of the peripheral sensors. Then, regardless of the
value of T, the ratio

Pr(K = k|H,)
PT(K = kIHl),

(3.58)

s nondecreasing. In this expression, K 18 defined in (3.48).
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The monotonicity of (3.58) can be expressed explicitly by
et (1w (1) [o (52)) "
[ e~ (n—20)?/2¢7 [1 _ 3 (%)] [ ( )]N—k Pl <
e 1 (1)) [o (5]
[, e~(n—s0)*/2¢? [ (T n)]k+1 [q) (T_;n)]zv_k_l P

which must hold for 0 < k < N — 1, and VT'. In the context of (3.41), e = /p, and
0 =41-p.

The following lemma is needed for the proof.

(3.59)

Lemma Let g(z) be any smooth, monotonically decreasing function.
Let f(x) be any nonnegative, smooth function. Then, the ratio

z f(z) e9=) dz
Jo f(z) e=(®) da

monotonically decreases as the scalar c increases, provided that the ratio
is finite.

(3.60)

Proof: For c; > ¢; and z, > z; > 0, it follows that

cifg(zr) —g(z2)] < cfg(z1) — g(z2)] =
wleclg(wz)-l-czg(ml) +mzec1g(z1)+czg(mz) < z:lem.g(:r:l)-+-cz.q(=z:z)_I_wzecw(a:z)+c29(:c1)€3_61)

where we have used the monotonicity of g(z). From (3.61) it follows that
11
/ / f(z1) f(z2) [z1 ec19(@2)teag(@) Ts eclg(z1)+r:zg(mz)] dz, dz, <
1] T
1 41
/ / f(z1) f(zz) [z gr9(m)teaglz2) 5 eClg(mz)+czg(m1)] dzy dz.,
0 z :

for the nonnegative f(z) in the lemma statement. But, using the factorization
identity

fol /: a(z,) b(zy) + a(z3) b(z,) dz; dzy = [/01 a(z) d:c] [l/;l b(z) d:v] ,
with

a(z) = =z f(z) e,
b(z) = f(z) e,
it follows that

[/: z f(z) e9) da:] [/01 f(z) e9® d:z:] <

[/01 z f(z) er9® dw] [/: f(z) €29 dw] ,
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or,
Jo = f(z) 9 da < Jiz f(z) e9) dg
o f(z) e29@) de — [ f(z) e19() dgp
0 0
which is the desired result. QED.

The rest of the proof is a tedious application of algebra and elementary calculus.
Proceeding, we let

-T -T
s{,=800 , 3’12510 , cr=§, (3.62)
where s¢, s1,¢€,8,T all defined above. Also let
’ /
Cg = s—g, cC1 = 5_;
o o
With the identification
1 1
_ 10 y2[s _ L Nk N—k—1
F(e) = expl[@7 (@)} — 5551} (1 - o) 2V,
(a positive function over the [0,1] interval), and
9(z) = —&71()

a strictly decreasing function), and with the change of variables m = ®~1(z), the
g g
inequality (3.60) in the lemma becomes
[, 7 (Bl [B(m))Y T B(om) dm
[ T ) @) dm ©
o M2 [(—m))* [$(m)]" ! B(m) dm
[, R B(-m)F [@(m)" " dm

oo €

(3.63)

Taking the reciprocals of both sides, reversing the inequality, and subtracting
unity from both sides, (3.63) becomes

[ e PR (B(-m)]* (@) dm
[, e~ (m+a 2127 [(@(—m)|* [&(m)]V* dm -

[ e HT 7 (@(—m)* [B(m)]" ™+ dm

[, e (m)F @) dam 36
With slight algebraic rearrangement, (3.64) becomes
[ 2T 1@ (—m)]* [$(m)]" T dm
oo e tmt a2 [ (—m)]* [&(m)]VF dm
[ e [@(m))” @ [y 1] dm
S et /27 (@ (—m)]* [d(m)F [5hs —1] dm '

But substituting (3.62) into (3.65) yields (3.59), which is the desired result.
QED. |
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Proof of Equation 3.56

We prove that if all of the peripheral sensors use the decision rule in (3.42), then
the identity (3.56) is valid.

We will find it most convenient to establish (3.56) for the special case of 7 = N.
However, note that by symmetry, Pr[K; = k — 1|Y; = y, H;, T is independent of 1,
and so once the result is established for : = N, the result is also established for all
i.

By conditioning on the true value of the common noise component, W (see
(3.41)), we obtain

Pr[Kn =k — 1l|yn, H;,T] =
| fwmm, a(wlyw, By, T) Pr{Kn = k — 1w, yy, H;, T) dw.  (3.66)
In this expression,
fwiv,m;,r(wlys, H;,T) ~ N(p(y — 5;),0(1 — p)). (3.67)
Also, V
Pr[Ky = k — jw, H;, T]

= ( ’Z_’ll ) (1:[11 Pr[U; = 2|w,H,-,T]) (Aﬁl Pr{U; = 1|w,H,-,T])

i=k

N-—
= ( k 1 ) Pr[Ul = 2, -.-,Uk—l = 27 Uk = 17""UN—1 = llw’H‘”T]

[ N—
= 1:_11 ) (Pr[U, = 2|w,HJ.’T])k—1 (Pr[U, = 1|waHj,T])N_k

- L ) (Pr[Wh > T — s — w])** (Pr(Wy < T — s —w])" ™"

_ N-1 ) (g w+s—T ]k_l (D(T—s—w> Nk (3.68)
B Ji-p VI-p ' '
The second line follows by symmetry; all of the possible permutations of Uy, ..., Uy_;
that yield Ky = k—1 are equally likely. The third line follows from the independence
of Uy, ...,Un, conditional on W. The fourth line follows from symmetry, and the
fifth line follows from the form of the decision rule (3.42) used at the peripheral
sensors. Finally, the last line follows from the particular form of the probability
distributions, as described in (3.41).

Finally, substituting (3.67) and (3.68) into (3.66) establishes the desired result.
QED.

3.3.5 Asymptotic Analysis

Ideally, we would like to analytically show that for any p, 0 < p < 1, (3.57) has a
solution, T, such that (3.54) is satisfied. Unfortunately, there is no apparent way to
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carry out that full analysis; in lieu of it, we offer the following asymptotic analysis,
for the case of Pr(H,) = Pr(H,) = 1/2.

In general, our expression for a}(-) in (3.55) must be evaluated numerically.
However, note that for N odd, k = [%1, and y =1/2,

Pr[K; = k — 1{Hy,4i, T]r=y=1/2 = Pr[K; = k — 1|H3, y;, Tr=y=1/2
= (¥ b, T)lr=y=rz = 1. (3.69)

Since L(y;)|y=1/2 = 1, we conclude that T'=y = 1/2 is a solution to (3.57).

Now, we want to determine if T = 1/2 also satisfies (3.54). The full behavior
of a}(:) can only be handled numerically, but as p — 0, we can show that (3.54) is
satisfied for y —» —o0, and y — oo.

The Gaussian PDF, in the integrand of (3.56), becomes an impulse as p — 0;
formally, one can show [BO78] that '

Pr{K; =k — 1|H,y;, T] ~ ( i ) [@(s;(y ) e(—s5(w)V*, p— 0,

and so

[@(s1(yNI* [2(=sa(w)]

oilks v T~ ) T (saly)) T F

p—0,

where

() = Sp=slos oy —s) - T}, 512

Then, since [BO78]
. Tgwﬁ exp(—z?/2), =z — —oo,
Q(m)N 1— 1_1_ex —22/9 ’
o p(—z%/2), z — oo,
it follows that

N
a; [k = [—2-] Yir T ='1/2] ~ exp(kpy;), y— —oo, or y— oo,

and so for kp < 2,
, N
a; [k = [3-‘ Ui, T = 1/2] < L(y), y— —oo,

o [k - [g] i, T = 1/2,] > L(w), y— oo. (3.70)
Equation 3.70 shows that if the threshold computed in (3.69) is used at all of the
peripheral sensors, then the pbp-optimality condition (3.54) is satisfied for p —
0, [y| — oo.

From a practical point of view, this analysis is not very useful. We have not
been able to characterize the behavior of a!(y) for either moderate values of p or for
moderate values of y. The numerical approach that we pursue in the next section
will be more fruitful. '
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Figure 3.2: a!(y:, k*,T)|r=,; as a function of y for various values of p.

3.3.6 Numerical Results

In Section 3.3.3, we established that the key to finding a pbp-optimal, identical
threshold strategy is to solve (3.54) for T'. As we have shown through asymptotic
analysis, this is intractable analytically. Here, we numerically search for a solution
for the specific case of N =2, k* = 2, Pr(H,) = Pr(H,) = 1/2. As it will turn out,
a numerical solution to (3.54) is straightforward (and, more importantly, exists),
thus lending additional credence to the idea of a pbp-optimal identical threshold
rule strategy.

We break the solution of (3.54) into two steps. First, we solve (3.57), and second
we show that our solutions to (3.57) are also solutions to (3.54).

Figure 3.2 shows a numerical solution to (3.57) for three different values of p
(p = 0.1,0.5,0.9). Note that for each of these three p values, the (decreasing) a(y)
curve intersects the (increasing) L;(y) curve only once. Thus, for these cases, (3.57)
has a unique solution.

Note that a threshold strategy satisfying (3.57) is not guaranteed to also satisfy
(3.54). To confirm satisfaction of the latter, we plot both sides of (3.54) in Figure 3.3
for the cases p = 0.1,0.9. Note that for the limited range of y plotted, both sides
of (3.54) are monotonically increasing, but L(y) increases more quickly of the two.
Thus, for these cases, (3.54) has a unique solution that can be found by solving
(3.57). '

In Table 3.3.6, we show the dependence of 7™ on p. Note that as p — 1, T™ —
1/2. This is an intuitively pleasing result. In the limit of p = 1, the observations at
the two peripheral sensors become identical; since this is only a binary hypothesis
testing problem, the fusion center need only use one peripheral sensor to make
its final decision. But then, the final decision is essentially made at the active
peripheral sensor, which itself can perform a classical centralized likelihood ratio
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Figure 3.3: a!(yi, k*,T*) as a function of y for various values of p.

correlation | optimum
coefficient | threshold
0.0 -0.0135
0.1 0.00615
0.5 0.116
0.9 0.323
0.99 0.444
0.999 0.482

Figure 3.4: Relation between correlation coefficient and optimum threshold in
threshold strategy.

test. The optimal threshold for that centralized test is T = 1/2 (since the two
hypotheses are equally likely), in agreement with the trend in Table 3.3.6.

3.3.7 Conclusion

The analysis of this section is new. It was motivated by the method used in [RN87|
to find pbp-optimal strategies (with identical thresholds at all peripheral sensors)
for the conditionally indpendent problem.

The method of analysis is not limited to just the Gaussian problem. It is in-
tuitively plausible that for any problem whose observations can be modeled as in
Figure 3.1, an identical threshold strategy could be optimal.

The following summarizes the sufficient conditions for optimality of an identical
threshold strategy.
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1. When the rule
Lw) 2T (3.71)

is used at the peripheral sensors, the inequality in (3.45) is satisfied.

2. When condition 1, holds, we can use the special form of the peripheral sensor
pbp-optimality condition, as expressed in (3.46) and (3.47). Then, if there
exists a threshold T such that

Li(y:) > ai(y:) = L) >T, 1<i<N, (3.72)

then the threshold strategy in (3.71) (with the corresponding MAP rule at
the fusion center) is pbp-optimal.

For our Gaussian problem the symmetry of the observation model (Figure?)
made it fairly easy to establish condition 1. Condition 2 was analytically intractable,
but for specific cases the condition could be numerically established.

In the next section, we will analyze another problem in which the peripheral
sensor observations can be modeled by Figure 3.1. We will find that the analysis
method used in this section is again useful.

3.4 Case Study 3: Conditionally Dependent Er-
lang Problem

Consider the following signal model wherein the observation at each peripheral
sensor is a sum of two exponential random variables. The A-parameter is always
the same for both summands, but is different by hypothesis. We have

PI‘[A = AJ] = PI‘(HJ'), ] = 1,2, Al > Az,
=W+ W, 1<i<n,,
fwim;(w|Hj) = Aj exp(=Ajw), w >0,

with all of the exponential random variables W, Wy, ..., Wy mutually independent.
When D = 2, what is the optimal strategy?
For reference, note that

inlHj(yilHJ'). = A?yi eXP(—}‘jyi),

L) = (;‘—) expl(h — o)yl (3.73)

This observation model is pictorially represented in Figure 3.1. Note that this same
figure was used for the Gaussian problem observation model (in the last section).
Thus, although the probability distribution of observations is certainly different
between the Gaussian problem and this problem, the two observation models do
have a common underlying structure.
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3.4.1 Motivation

In the sense of Figure 3.1, this problem has the same structure as the Gaussian
problem. Since threshold strategies were found to be optimal in that problem, we
are motivated to try threshold strategies for this problem. In particular, we try to
find a pbp-optimal strategy in which the peripheral sensors all use the identical rule

H> y H,
> (A} >

50) 2 (32) el -] e 2 (3.74)
H, H,

Recall that in Section 3.3.3, we provided a pair of sufficient conditions for the
optimality of the strategy (3.74). For the Gaussian problem, we analytically demon-
strated that the first of the two conditions is always satisfied, and we numerically
demonstrated that the second condition is satisfied. Here, we test the validity of
the two conditions for our Erlang problem.

As it will turn out, the mathematics is a bit more tractable here than it was
in the Gaussian problem, and so we can get closer than we could there to a full
analytical proof of the validity of the two conditions. Still, we cannot complete the
analytical proof, and so we ultimately resort to numerical experimentation.

There is really nothing conceptually new in this section. The analysis here is
a streamlined reprise of the analysis in the last section, and as such, that section
should certainly be read first.

3.4.2 Verification of First Condition

To establish the validity of Condition 1 (see Equation 3.45), we use exactly the
same line of reasoning that we used for the Gaussian problem. To reiterate, we
note that if the peripheral sensor rule (3.74) is used (regardless of its optimality)
then, by symmetry, k& (defined in Equation 3.48) becomes a sufficient statistic for
the fusion rule. Also, as we prove below, if the peripheral sensor rule in (3.74) is
used, then the fusion rule becomes monotonic with respect to the k statistic. In
turn, this fusion monotonicity property means that Equations 3.52 and 3.53 hold,
thus establishing the validity of (3.45). Thus, once we prove that the fusion rule is
monotonic, Condition 1 will be verified.
The following Proposition demonstrates the monotonicity of the fusion rule.

Proposition 11 Suppose that for some threshold T, the rule in
(3.74) is used at all of the peripheral sensors. Then, regardless of the
value of T, the ratio

Pr(K = k|H,)
P'I‘(K = k|H1),

(3.75)

is nondecreasing. In this ezpression, K is defined in (3.48).
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Proof: For notational convenience, we define

Fdexp(—At)dt, >0
Ej(<) ={ . Pé, Yo, w21 (3.76)

In words, Ej(z) is the CDF for an exponential random variable. Now, the mono-
tonicity of (3.75) can be expressed explicitly by the inequality

j;)m Az CXP(—)\z‘f‘)[l — EAz(T — r)]k+1[E,\z(T _ T.)]N—k—l dr
& Mexp(=Ar)[L — By (T — r)[M1[Es (T — r)|¥-*-1 dr
I Ayexp(=2Ar)[1 — Ey, (T — ) ¥ Ex, (T — 7))V % dr

>

s exp( A B (T BN (T a7
which must hold for 0 <k < N — 1.
To prove (3.77), we use the following lemma.
Lemma: The inequality
1z m(z) de < e m(w) dz
m(z)de ~  f?m(z)de’
holds for all Ly > Ly, m(z) > 0, and [ m(z)dz > 0.
Proof: First, note that
Ly L
0< DL:B m(z) dz <L Li< leLa: m(z) dz <L,
o m(z) dz Ji? m(z) de
and so
Ly L
blzm(z)de _ [i7zm(z)de
I <=5 . (3.78)
b m(z) de L m(z) de
But from the simple algebraic relationship
a c a a+c
ESE =>-g§b+d, for a,b,c,d > 0, (3.79)
it follows that (3.78) implies
g m(z)de _ fI2 2 m(z) do
L < L, ’ (380)
h m(z) dz b 2m(z) dz
where we have used (3.79) with the identification
L, L, L
a = /0 zm(z) dz, b= /0 m(z) dz, c¢= . z m(z) de,
L,
d = [ da.
. m(z) dz

But (3.80) is the desired result, and so we are done. QED.
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Now, the proof is a tedious application of algebra and elementary calculus. We
can rearrange (3.77) to

ffw Ay exp(Aqr)[1 — Ej, (1')]”4"1[174',\z (1‘)]”"‘“1 dr
JT Apexp(qr)[l — E;, (P)]*[Exy (r))N* dr -
JT  Arexp(M7)[1 — Ey, (2)FH [ Ea, (7)]V 7+t dr
ffoo A1 exp(A7)[1 — Ey (7)]*[Ex, (r)|N-* dr '

(3.81)

Now, note that for 7 = 1,2,

JE Ajexp(Ar)[1 — By (r)]FH B ()Y dr
ffm A; exp(A;r)[1 — E;\j(r)]"[EAj(r)]N—’“ dr
JE Ajexp(Ar)[1 — By, (r)]*[E, (r)]N 51 dr
JZoo Xjexp(Ajr)[L — By, (r)]*[ B (r)]V* dr

_1, (3.82)

and so (3.81) can be rearranged to

IT A exp(M7)[1 — Ex (7)]F[Ex, (r)]N % dr
f_Too A1 exp(Ai7)[1 — Ex (7)]F[Ex (7)) -*-1 dr -
JT Azexp(Agr)[L — Ex, (r)]*[Ex, (r)]¥* dr
ffoo Az exp(Aar)[1 — Ex, (r)]F[Ey, (r)|N-F-1 dr

(3.83)

By the easily-checked identity E), (z) = Ej,[(A1/A2)z], it follows that (3.83) can
be rearranged to

JOPID f(r)EBag(r) dr - [Zog f(7) Bpy(r) dr

JOPRT () de T [T f(r)dr (3.84)
where
F(r) = Azexp(Aa(r))[1 — Exy(r))*[1 — Ex (r)]V 1
Finally, using the substitution ¢ = Ej,(r) (3.84) becomes
e as
where
L = Ex(T), L,= EA,(-;—:T), m(z) = exp[2X, Ex ()L — 2]z ~*1,

But the result of the Lemma guarantees that (3.85) is valid, thus proving the propo-
sition. QED.
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3.4.3 Verification of Second Condition

There is no apparent way to prove the validity of condition 2 (see Equation 3.54
or 3.72). We can, however, prove that (3.57) always has a unique solution. This is
computationally useful, because it narrows down to a single threshold the candidate
threshold solutions to Equation 3.54.

To prove that (3.57) has a unique solution, we first need to catalog some con-
ditional probabilities. First, it is readily verified (by application of Bayes’ law)
that

1
Frv.(rly:) = 5 0SS (3.86)

1

This result can be used to establish the value for Pr[K; = k — 1|y;, H;,T]. In
general,

PI‘[Ki=k—1|y,;,Hj,T] =

( o~ ) /0 " fam(rly)[1 = By (T — 1)U By (T — r)V - dr  (3.87)

Using (3.86), Equation 3.87 can be simplified as follows:
1. For1 <k <N -1,
PI‘[K,;ZI(:—].'y,',HJ',T] = =

() [ om0 - ) - explaT - )Y dge

2. Fork=N,y<T,

v1
Pr(K: = k —1lyi, Hy,T) = [~ fexpl=2(T — ]|V o

3. Fork=N,y>T,

T T1
Pr[K = k — 1|y, H;, T) = y_y—— +/0 lexp[-X(T - PVt dr. (3.89)

Using the definition of a'(-) (see Equation 3.55), together with (3.88)-(3.89), we
see that

Pr[H] 1L = Bau(y — ) ' [Baly — )V dr
Pr{Hy] [§[1 = Ex,(y —r)]* HEx(y —7)]N* dr
Pr[H:] f¥lexp(=2i7)]* "1 — exp(=A1r)]N~F" dr

= PI'[Hz] ff?[exp(—AzT‘)]k*_lll — exP(—Azr)]N—k* dr ’(3'90)

a'(y,-, k', T)|r=y
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for 1 < k* < N. Coupling (3.73) with (3.90), it is clear that (3.57) will have a
unique solution if and only if

(j—j)zexp[(/\l )] =

Pr[Hy] Jfexp(=hm)* ~1[1 — exp(= M)V dr
Pr[H,] [ lexp(—dor)F 11— exp(—Aor)F dr’

(3.91)

has a unique solution.

Since A; > A;, the likelihood ratio on the left-hand side of (3.91) monotonically
increases (by inspection). As we presently show, the a/(-) on the right-hand side of
(3.91) monotonically decreases. Hence, there exists a single intersection of the two
sides of (3.91), and that intersection point is the solution.

We can show that a/(Y; = y;,k*, T = y;) monotonically decreases by using two
steps. First, we let

f(r) = [exp(—)\lr)]k_l[l—exp(—/\lr)]N_k,
g(r) = [exp(=Xar)* 7M1 — exp(—Xor) ¥ ",

For » > 0, one can show (by tediously computing the derivative) that the ratio
f(r)/g(r) monotonically decreases with r.
The second step is to note that for y > r > 0,

f(r) > M = g(y)f(r) > f(y)g(r)

g(r) ~ 9(y) , ,
= ov) [ £y dr = ) [ g(r) dr

4 i) dr
dy Jrg(r)dr ="

Hence, we have established that o/(Y; = y;,k*, T = y;) is monotonically decreasing.
Thus, (3.57) has a unique solution. QED.

In light of (3.88) it is clear that if £* < N, then &/(-) is constant (as a function
of y;) for y; > T. Hence, since L(y;) monotonically increases, we conclude that any
solution to (3.57) will also satisfy (3.54) in the region y; > T (when k* < N). This
brings us agonizingly close to analytically showing that (3.54) always has a solution.
Unfortunately, there is no apparent way to show that solutions to (3.57) are also
solutions to (3.54) in the region y; < T'. Hence, we resort to a numerical approach
in the next section.

3.4.4 Numerical Results

In the last section, we showed that there is always a unique solution to (3.57). For
the specific case of N = 3, k* = 2, Pr(H,) = Pr(H,) = 1/2, Figure 3.5 numerically
shows that the unique solution to (3.57) is also a solution to (3.54).
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Figure 3.5: a!(y;, k*,T*) and L(y;) functions of y;.

Conclusion

We have again seen the pbp-optimality of a threshold strategy in a conditionally de-
pendent problem. Unfortunately, no general principles have concomitantly emerged;
we only have a qualitative feeling of encouragement that conditionally dependent
problems are not always as nasty as the general theory says that they are capable
of being.

3.5 Case Study 4: Multiple Hypothesis Gaussian
Problem

Beyond stating the pbp-optimality conditions, we have not discussed the multiple
hypothesis Bayesian detection problem. Little has been written in the literature
on this problem, and virtually nothing is known about the structure of optimal
strategies, even for specific cases.

In this section, we establish a slight amount of structure for an optimal strategy
of a particular Gaussian detection problem. First, we formulate the problem, and
then we prove a proposition concerning optimal strategies for that problem.

3.5.1 Problem Statement

Consider the following observation model, wherein the observation at each periph-
eral sensor is a signal immersed in Gaussian noise:

Pr[S = s;] = Pr(H;), 1<j<M
Y,=85+WwW, 1<i<N,
W; ~ N(0,0%), (3.92)
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with all of the Gaussian random variables W, ..., Wy mutually independent, and
with sy,...,9a an arbitrary collection of real scalars. What is the optimal strategy,
for a given value of D? Note that conditional on the true hypothesis, the peripheral
sensor observations are independent.

3.5.2 Structure of Optimal Decision Rules

It is clear that without loss of optimality, each of the peripheral sensors can use a
decision rule of the form

dl) Yi S Tlh
dy Ty < y; < Ty
Yi(m) =4 . ’ (3.93)
dk,‘-{-l, Y; > Tk,‘ia
where
ki 2 1a
d € {1,.,D}, d#dy, 1<I<kE,
T; < Tu<..< Tkii- (394)

This is just a formal way of saying that with respect to the real-axis observation
space, any decision rule can be expressed as a set of decision regions. For example,
if D = 2, then any decision rule can be expressed as alternating regions of “send
message 1” and “send message 2.” Note that sensor ¢ has k; different thresholds,
each acting as an alternation point from one message region to the next message
region.

In general, there is no known bound on the number of regions needed for an
optimal decision rule for the multiple hypothesis testing problem. However, for the
Gaussian problem just described, there is an upper-bound on k; (Vi). The following
proposition establishes that bound.

Proposition 12 For the Gaussian problem described in (3.92), there
always exists a strategy of the form (3.93) where

D(D —1)

1<i< N.
Proof: We will need the following lemma for the proof.

Lemma: Let ay,0,...,an,8n be an arbitrary collection of finite,
real scalars, where a; # 0 for at least one value of 7, 1 <1 < N. The
equation

N
Z a;exp(fiz) = 0
=1

has no more than N — 1 finite real roots.
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Proof: We establish the lemma by induction. For N = 1, there are clearly no
finite real roots. Now, assume that the lemma is true for N = k& > 1, and consider

the case N = k + 1. Then it is easy to see that

R {'°z avexp(fna)| = R{exp(ihore) avis + 3 anexpl(8. - el

n=1

v k
= R {ak+1 + Z a, exP[(ﬂn — Brt1 )-”3]

n=1

k
< R { (8 ~ Bust)an expl(6s ~ Brr)e
< (h—2)+1.

}

b+

Here, we have used the notation R{-} to denote the number of finite real roots of the
enclosed expression. The equalities on the first and second lines are straightforward.
The third line follows because the number of roots of a sum of real exponentials is
upper-bounded by one more than the number of roots of the derivative of the sum
of exponentials. The final line follows from the induction hypothesis. QED.

Returning now to the proposition, we first prove the result for the special case
of D = 2. The generalization to arbitrary D, D > 2, will then readily follow.

For D = 2, the peripheral sensor pbp-optimality condition (2.14) can be written

as
M
Y(y) = arg min D bi(d, H;) fy.m, (y|H;),
d=1,2 j=1
where

b(d,H;) = Pr[Hjla:(d, Hj,y:)
= Pr[Hjla(s, Hy),

where the second form follows since a(-) is independent of y;.

A simple rearrangement of (3.95) yields the rule

H.
1 M-1 \ >z
e | 2 ciexpl=(y — 55)°/20] | 20,
j=0
, m

or, equivalently, after multiplying both sides by exp(y?/20?),

H,
M-1
>
(Z o exp(ﬂjy)) <0
i=0
. Hl
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where Cij = b,(d = 1,HJ'+1) - b,(d = 2,Hj+1), and

_5§
a;; = CieXp -—20_2 ’
_ . 2
Bi = silo"

The form of the decision rule in (3.96) makes it clear how to find the thresholds,
T;; for the decision rule (3.93). In particular, each real root (with respect to y;) of
the function on the left-hand side of (3.96) marks the location of a threshold. Thus,
any upper bound that we can find for the number of real roots of that function is
also an upper bound on the number of thresholds in an optimal rule. But from the
lemma, we immediately obtain the upper bound of M — 1, thus establishing the
proposition for the special case of D =2.

Now, we generalize the result to arbitrary D. To motivate the generalization,
consider the case of D = 3. It is straightforward to see that the number of decision
region transitions cannot be more than the number of intersections (as in (3.96))
between decisions 1 and 2 plus between 1 and 3, plus between 2 and 3. But, from
the D = 2 analysis, the maximum number of intersections for each of theseis M —1.

In general, we must consider l: ) pairs of intersections, which yields the upper-

bound in the Proposition. QED.
This result is entirely new. The generalization to D > 2 was suggested by [T91].

3.5.3 Comment

Note that our proof of this bound is critically dependent on having the same noise
variance, o2, for all of the peripheral sensor observations.

Also, it is unknown whether the bound in the proposition is tight; intuition
would seem to suggest that it is not. The problem is that when D = 2, we might
expect that k; = 1, while the upper-bound (for D = 2) is M — 1. A simple test
would be to try finding a set of pbp-optimal regions (by utilizing, say, the nonlinear
Gauss-Seidel algorithm), and to count how many regions result. We leave this issue
to future work.
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Chapter 4

Numerical Methods 1

4.1 Nonlinear Gauss-Seidel

The nonlinear Gauss-Seidel algorithm is a general purpose technique for minimizing
multivariable functions. The principal is very simple. In the context of our problem,
we begin with some strategy, v°, that we expect might perform adequately. Next,
we generate a sequence of strategies with nonincreasing (and hopefully decreasing)
cost, by successively optimizing each of the decision rules. We choose the rule for
sensor 1 in the (k + 1)th strategy of the sequence via

’Y?H = arg min J(’Y{)ﬂ-l’---a’Yf_Jﬁla’Yi"thv'"’ﬁ\f)’ (4.1)

Yi

where J(7o, ..., Yn) is strategy probability of error, and where all rules but v;(-) are
held fixed. We continue this procedure until the cost decrease (from one iteration
to the next) is less than some user-supplied constant, EPS.

The FORTRAN-like code fragment in Figure 4.1 summarizes the algorithm.
In the sections that follow, we do operations counts for the various parts of the
algorithm. The details of these counts are quite tedious; without loss of continuity,
the uninterested reader can skip directly to Section 4.1.7.

4.1.1 Initialization

Finding a reasonable initial strategy is not necessarily easy, and is more an art than
a science. For now, we assume that its challenges have been surmounted; we will
revisit the issue in the next chapter, in the context of some specific examples.

4.1.2 Fusion

The fusion rule is stored as a table. There are DV different combinations of messages
that the fusion center can receive, and each combination needs its own explicit entry
in the table. To fill in the table, we use the pbp-optimality condition (2.11), which
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INTTTIALIZE 71, ...,YN
k=0 Icount of number of iterations
BUILD_FUSION_TABLE(Y3; 7Y, -, Y¥)
error_min = J(7°)
DO
po:=1, N !Optimize w.r.t. each peripheral sensor

7£c+1 = Aqu_MIN (7tl)c+ ye 77zk+11’7n7;+1a "va)
BUILD_FUSION_TABLE(yA ! y¥ 2 L v vk k)
END DO
k=k+1
error = error_min
error_min = J(v*) lerror of current best strategy
WHILE((error - error_min) > eps)

Figure 4.1: Code fragment for heart of nonlinear Gauss-Seidel algorithm.

requires that we first compute
Pr[U; = u1,...,Un = un|H;], 1< ug,.uy <D, 1<;7< M. (4.2)

Depending on whether Uy, ...,Uy are conditionally independent or dependent, we
use different methods to compute these joint PMFs.

Conditionally independent case

In the conditionally independent case, the following identity is used to simplify the
computation of the joint PMFs,

N
PI‘[Ul = Uy ooy UN = uN|Hj] = HPI’(U., = 'U;,"Hj). (43)

i=1

There are NM D distinct marginal PMF terms of the form Pr[U; = j|H,],1 <1 <
N,1<j<D,1<k< M. We compute them all in advance, and then we
combine them appropriately to generate the M DY joint PMF terms of the form
(4.2). The cost of doing the numerical integration to compute a single marginal
PMF is denoted by O(I). Then, the total cost of constructing the fusion table is
O(NMDI + M D¥) arithmetic operations.

Note that no matter how large N is, only one dimensional numerical integration
is required to generate the joint PMF terms, and hence to generate the fusion table.
This is in marked contrast to the conditionally dependent case, as we will presently
see. :
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Conditionally dependent case

In the conditionally dependent case, we can no longer factor a joint PMF into a
product of marginal PMFs. Thus, we are forced to numerically evaluate M DY dis-
tinct N-dimensional integrals, each requiring O(I”") effort. In all, then, constructing
the fusion table requires O[M(DI)"] arithmetic operations. If I is large, then this
becomes quite formidable.

4.1.3 Parametrization of Peripheral Sensor Rules

We first describe the methods that we use to parametrize the decision rules. Then,
we discuss the computational complexity of actually finding the rule parameters.

For the binary hypotheses, conditionally independent problem, each sensor uses
a threshold rule. We parametrize each rule by a two-column array; in one column
are D — 1 likelihood ratio thresholds, and in the other column are D messages. For
example, the decision rule

2 L{y) < 0.3
Yi(y) =4 1 for 0.3 < L(y) < 1.1 (4.4)
3 L(y) > 1.1
would be stored in the array as
0.3 2
111 (4.5)
blank 3.

In light of Proposition 4, the second column of the array in (4.5) may seem
superfluous. However, Proposition 4 does NOT preclude non-monotone threshold
strategies from being optimal. Since there is nothing in the Gauss-Seidel algorithm
that constrains strategies to be monotone, and non-monotone strategies can be
optimal, we do indeed need to keep track of the information in the second column
of the array in (4.5).

For all multiple hypotheses problems and for all conditionally dependent prob-
lems, we again parametrize by a two-column array. Now, however, there are two
differences from the case discussed above. An example will clarify.

For our example, we consider the decision rule

1 y < —0.5
Yi(y) =< 2 for —05<y<23 . (4.6)
1 y>2.3

We would store this rule in the array

2 blank
-0.5 1

2.3 2 (4.7)
blank 1.

69



The 2 at the top of the left column denotes the number of thresholds in the rule.
This counter is needed because we do not know in advance how many thresholds the
rule will use; this is the first difference from the binary hypothesis, conditionally in-
dependent case. The second difference is that the thresholds are with respect to the
y-values themselves (rather than with respect to, say, some likelihood ratio). This
is an arbitrary choice for the binary hypothesis, conditionally dependent problem,
but is a necessity for all multiple hypothesis problems.

In the sections that follow, we describe the computational complexity of finding
the thresholds for the rules.

4.1.4 Once a-Coeflicients are Known

The pbp-optimality condition for the peripheral sensor rules is given in (2.14). Note
that part of that condition are the a-coefficients, which are defined in (2.15). For
now, we assume that the values of these a-coefficients are known and we describe
how we then proceed in, first, the special case of a binary hypothesis, conditionally
independent problem and, second, in all other cases. Later, we will return to fill in
the missing details concerning the a-coefficients.

Binary hypotheses

Recall from the derivation of Proposition 4 that for the binary hypothesis prob-
lem (with conditionally independent observations), we can reformulate (2.14) as in
(2.20).

Thus, we have D lines corresponding to the D different messages, and for each
message we must find the portion of the L-axis for which the corresponding line
in the minimum. Given a set of lines, yg = c1g + caz, 1 < d < D, the following
is a systematic procedure for finding where line d has the lowest ordinate (i.e., is
minimum). We carry out the procedure D times, once for each message.

For d = 1, we must solve the (D — 1) simultaneous equations

ryjz < 1y, 2<j<D, (4.8)
where
™; = b(l,Z) - b(]a 2) T = b(]al) - b(]'a 1) (49)

Clearly, these should be very straightforward to solve. The code fragment in Fig-
ure 4.2 collapses this set of inequalities into a single inequality,

left_edge < x < right_edge. (4.10)

There are probably more elegant ways to solve for the decision regions, though this
method is both conceptually simple and adequately fast for the values of D that
are of interest. With computational cost O(D?), we can fill in the two-dimensional
array (described above) for the parametrization of a single sensor’s rule.
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left_edge = 0
right_edge = oo
Doj=2,D
IF (r3; .eq. 0) THEN
IF (r1; < 0) THEN
ERROR
RETURN
ENDIF
ELSE IF (ry; < 0) THEN
left_edge = MAX(left_edge, 71;/72;).
ELSE
right_edge = MIN(right_edge,ry;/72;).
ENDIF
END DO

Figure 4.2: Code fragment to find endpoints of decision region

All Other Cases

For the given sensor, we define C sample points on the sensor’s real-axis observation
space. We let ¢, = ¢; + (kK —1)A, 1 < k < C, where ¢ is the k-th sample point.
We select C, ¢1, and A so that the resulting points are satisfactorily representative
of the whole observation space. The exact meaning of this will become clear as the
discussion progresses.

We evaluate dj, = 7i(y)ly=c,» 1 < k < C, using the pbp-optimality condition as
it is expressed in (2.14). Thus, for each k, we must find the minimum amongst D
summations of M terms each. Since, for now, we are assuming that we already
know the a-coefficients, it follows that we can straightforwardly find d,, ..., d¢ with
a total of O(M DC) arithmetic operations.

For concreteness, we explain the next step through an example. Suppose that

exp(~(y — 5;)"/20"
fram; (y|Hj) = \/57—“:_ )
that M = 2, D = 3, and that C = 7. Suppose, further, that we have computed
(dy,y..yd7) = (1,1,2,2,3,3,3). This set of values of di suggest that there are two
thresholds, ¢, < Ty < ¢z and ¢4 < Ty < c¢5 such that the pbp-optimal decision rule
is '

ji=1,2, (4.11)

1 y<T)
7i(y) =4 2 for H <y<Tp . (4.12)
3 y=>1

If we have sampled the y-axis finely enough (we will return to this issue momen-
tarily), then the rule in (4.12) will indeed have the correct form. Then, we can find
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T, more accurately by noting that it is the value of y for which the function g, 5(y)
crosses zero, where

M .
9a1,4,(¥) = D fram; (y|H;)Pr(H;)lai(d = dv, H;) — ai(d = d5, Hj)].  (4.13)

i=1

Hence, we build the function g;5(y) and look for a root of it in the interval ¢, < y <
c3; the y-coordinate of that root is Ty. In a similar manner, T} is the root of g,3(y)
in the interval ¢; < y < ¢5. Since finding a bracketed root of a one-dimensional
function is routine, this procedure turns out to work quite well. With computational
cost O(M DC) (ignoring, for now, the a-coefficients), we can fill in the 2-D array
(as described in (4.7)) for the parametrization of a single sensor’s rule.

We have mentioned that sampling is an important issue. In the context of
our example, a finer sampling of the y-axis might reveal that we should use two
thresholds between c; and c3. Similarly, a broader range of sampling might reveal
the need for a threshold at, say, c; — 1.66. The point is that we must have values
for C, c¢; and A that allow us to be fairly certain that we do not miss a transition
from one decision region to another.

Numerical experimentation indicates that common-sense and trial-and-error work
quite well for finding appropriate sampling parameters. For example, in our Gaus-
sian problem, above, most of the observations will fall in the region

81+32—30'SyS51+52

+ 30 | (4.14)

thus common sense suggests trying ¢; = [(s1 + $2)/2] — 30, and C =~ 6a/A. This
choice will likely handle the sampling range issue. Selecting a value for A to handle
the sampling fineness issue is more tricky. Trial and error seems to be helpful.
For instance, if in the above Gaussian example we had computed (di,...,d7) =
(1,2,1,3,2,1,2), then we would suspect that we missed some transitions between
decision regions, which would dictate trying a smaller A (and so a larger C'). This
issue cannot be discussed intelligently in the abstract. We will return to it in the
context of specific problems in the next chapter.

4.1.5 Computing a-Coefficients

Now, we discuss computation of the a-coefficients, which are defined in (2.15).
Note that each coefficient is a sum of O(D¥ 1) probabilities, where each summand
is the value of a (N — 1)-dimensional joint PMF. For example, for sensor 1, we are
summing probabilities of the form Pr[U, = uy, ..., Uy = un|Hj] for various values
of uy, ..., uy and k.

The issues involved in computing these probabilities are the same as the issues
involved in computing the probabilities that are needed to fill in the fusion table;
in particular, the probabilities are fairly easy to compute in the conditionally in-
dependent case and are quite difficult to compute in the conditionally dependent
case. See Section 4.1.2 for details.
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There is another issue that separates the conditionally independent and depen-
dent cases. In the conditionally independent case the a-coefficients are independent
of y. Thus, when they are used to update a peripheral sensor’s decision rule (see
previous section), they need only be computed once at the beginning of the rule
update. Then, that same set of coefficients can be used to evaluate the pbp-optimal
~;(-) for any desired value of y. This can be done with a total of O(NM DI+ M DY)
arithmetic operations per sensor rule update.

On the other hand, in the conditionally dependent case, the a-coefficients are
not independent of y. Hence, they must all be recomputed for every value of y
for which we want to know the pbp-optimal v;(y). This adds severe computational
overhead. In particular, this can be done with O(CM (ID)")) arithmetic operations
per sensor rule update.

4.1.6 Computing Probability of Error

Computing the probability of error for a given strategy requires the same order of
computational effort as does computing the fusion rule for a given strategy.

4.1.7 Summary of Computational Complexity

The following summarizes the number of arithmetic operations needed for one it-
eration of the Gauss-Seidel algorithm. Here, we define a single iteration to be the
collection of operations between successive increments to the counter k in the code
fragment of Figure 4.1. Also, as stated before, O(I) is the number of arithmetic
operations needed to numerically evaluate a single one-dimensional integral, while
C is the number of cells into which we divide each sensors’ real-axis observation
space.
In the binary hypothesis, conditionally independent case,
arithmetic operations

= N[O(D?*)+ O(NMDI + MD"™)] +

NO(NMDI + MD")
= O(N?’MDI + NDV). (4.15)

iteration

In the multiple hypothesis, conditionally independent case,

arithmetic operations

= N[O(MDC)+O(NMDI + MDV)] +

NO(NMDI + MDY)
= O[NMDC + N*MDI + NMD"]. (4.16)

iteration

In all conditionally dependent problems,

arithmetic operations

= N[O(MDC)O[CM(ID)N]] + NO[M(DI)"]
= O[ND(MC)*(ID)N + NM(ID)"). (4.17)

iteration
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4.1.8 Practical Experience

I tested this algorithm on the Gaussian problems that are described in the first two
case studies of the previous chapter. For the conditionally dependent problem, the
algorithm is not very useful for N > 2; the required numerical integration is too
burdensome. For the N = 2 case, on the other hand, the algorithm will converge
(for D = 2,M = 2) in a matter of minutes (on a VAX workstation). Very low
values of C can be used; I had success with C' =~ 5.

4.1.9 Cohvergence

At each step of the algorithm, the strategy cost is monotonically nonincreasing and
is bounded below (zero cost is a lower bound). These two properties guarantee
that the cost will converge. The difficulty is that the cost to which the algorithm
converges might only correspond to the cost of a pbp-optimal strategy rather than
to the cost of a globally optimal strategy.

In practive, however, the algorithm has been found to work quite well. For
conditionally independent Gaussian problems (like the one analyzed in Case Study
1 in the previous chapter), the Gauss-Seidel has been found to work extremely well.
In experiments that I have done on a VAX workstation, with M =2, D = 2 or 3,
and with 2 < N < 7, the routine does indeed converge to a pbp-optimal strategy.
The convergence occurs within roughly five iterations and, in terms of real time,
is virtually instantaneous. Furthermore, for the Gaussian problem, it seems that
most pbp-optimal strategies are also globally optimal; hence the algorithm seems
to be finding globally optimal strategies virtually instantaneously.

4.1.10 Applicability to Neyman-Pearson Problem

The Gauss-Seidel algorithm, as we have presented it, is not directly applicable
to the Neyman-Pearson problem. Our algorithm has been based on the Bayesian
pbp-optimality conditions, which do not accommodate prior specification of a false
alarm rate. The tantalizing part is that from Proposition 7 we know that what-
ever optimum our Gauss-Seidel algorithm does yield will also be an optimum of a
Neyman-Pearson problem for some false alarm rate, but not likely the false alarm
rate that we want. However, under the critical assumption that the set of points
Q= {(JF(7),JD(7))|7 € F} is convex, we can make progress.

Suppose that we want to achieve a false alarm rate of a. Our convexity assump-
tion, coupled with Proposition 8, means that if we scan the set of Bayesian optimal
strategies corresponding to different values of Pr(H,), then we are guaranteed to
find a strategy with the desired false alarm probability @. As Pr(H;) monotonically
increases from zero to one, the false alarm rate of the Bayesian optimum will also
monotonically increase from zero to one.

To efficiently scan the Bayesian optima, we treat the Neyman-Pearson problem
as a root-finding exercise. In particular, any root of the nonlinear equation

a—-Ji(y(P))=0 (4.18)
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corresponds to an optimal strategy for the Neyman pearson problem. In this ex-
pression, P, = Pr(H;) is the independent variable, and 4’ is the optimal Bayesian
strategy for the given value of P,. If we are fortunate, our detection problem will
not have very many pbp-optima that are not also global optima. Then, in numer-
ically solving (4.18), we can harness the Gauss-Seidel algorithm to evaluate v'(P)
efliciently.

4.1.11 Historical Notes

The nonlinear Gauss-Seidel algorithm was described in [TPK89], though it was
probably used by other researchers prior to 1989. In [TPK89], a Gaussian detection
problem is solved with the algorithm, thus demonstrating that from a practical

perspective, the algorithm can have very satisfactory performance. The algorithm
is also briefly discussed in [T89].

4.2 Chernoff Exponent Minimizer

One difficulty with the Gauss-Seidel algorithm is its great combinatorial complexity
when there are a large number of peripheral sensors. One way to reduce compu-
tational complexity is to exclusively search over strategies that use identical sensor
rules. Unfortunately, there is no apparent way to streamline the Gauss-Seidel algo-
rithm so that its search is so restricted. Thus, we consider a heuristically-based al-
ternative search algorithm for the binary hypothesis testing problem. The Chernoff
ezponent minimizer provides a natural way to search for good (though suboptimal)
identical decision strategies. To motivate the method, we first pause to explain the
theoretical utility of the Chernoff exponent. Then, we derive the algorithm.

4.2.1 Background on Chernoff Exponent

Suppose that we want to quantify the benefit (in terms of decreasing probability
of error) of increasing the number of peripheral sensors in a decentralized detection
system. For any given strategy, with a given number of peripheral sensors, the exact
probability of error expression is (when the hypotheses are equiprobable)

1 .
Jerror () =3 > min {Pr[uq,...,un|H;]}. (4.19)
1oyt !

This expression provides virtually no insight into how Je...-(7) decreases as more
sensors are added to the system. The problem is that there is no decoupling of the
error reduction contribution of each sensor. This is where the Chernoff exponent
plays a role.

Consider the simple inequality (seemingly plucked out of thin air)

min(z,y) < 2y, =,y>0, 0<s<1. (4.20)
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We apply (4.20) to (4.19) to yie;ld

Terrn (1) < 5 exp(u(s)), (4.21)

where

log Z PI‘1 ”U;l, UN|H1]PI',[U1,...,1LN|H2] . (422)

ULy UN

The inequality in (4.21) holds in general, but is most useful when the peripheral
sensor observations are independent conditioned on the true hypothesis.

When the conditional independence property holds, then by routine algebra,
(4.22) can be rearranged to

exp(p(s)) = Y. Prlug,... uN|H1 I exp(sL(uk)), (4.23)

ULy UN k=1
where L(-) is the log likelihood ratio,

o Prn(¥e) = wl)
L) =108 B 5y = e )

(4.24)

We assume that the summation in (4.23) is only over the N-tuples (uy, ..., uy)
satisfying
Pr[ul, reey ‘U.NIH1] 74 0.

Equation 4.23) expresses exp(u(s)) as a conditional expectation of a product of
conditionally independent random variables. Since in general

E f[x =ﬁE(Xi), (4.25)

when Xi,..., X, are mutually independent (and the expectation exists), we can
further rearrange (4.23) to

N
exp(p(s)) = [[ explui(v:, 9)), (4.26)
p(s) = ;F’i(%‘,s), (4.27)
where
wi(vi, 8) = log Z_: Pr'~*[u;|H,|Pr’[u;| Hy | . (4.28)

Our notation explicitly brings out the dependence of p;(-) on the decision rule used
at peripheral sensor z.
We summarize these findings in the following proposition.
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Proposition 13 For any set of peripheral sensor decision rules,
there ezists a fusion rule such that the overall strategy, v, satisfies

[1 = JP()] + T"(7) < explu(s™)), (4.29)

where JP(v) and JF(5) are defined in Section 2.8, and where s* min-
imizes p(s) over 0 < s < 1. In (4.29) p(s) is in general defined as in
(4.22) but for the special case of conditionally independent peripheral
sensor observations, p(s) decouples as in (4.27) and (4.28).

Some additional points will make the bound in (4.29) more useful. First, in
general pu(s) is guaranteed to be non-positive. Omne can readily show (though we
will not here) that the only way p(s) can be identically equal to zero is for the joint
distribution of Uy, ..., Ux to be identical conditioned on either hypothesis; in all other
cases, p(s) will be strictly negative. This is important, because it suggests that in
the conditionally independent case, the probability of error will drop exponentially
fast (with N) for any reasonable set of decision rules.

Our second point concerns the asymptotic tightness of (4.29). Suppose that
the conditional independence property holds, and that the marginal distributions
of the peripheral sensor observations are identical, given either hypothesis. If all
of the peripheral sensors use the decision rule v,(-) and the fusion center uses the
MAP rule, then under some technical assumptions (likely to be satisfied in cases of
interest), the overall strategy will satisfy

. log Jerror (¥ “
ggrgo——Nu = p1(7,5")- (4.30)

The proof of this result is fairly involved; see [SGB67] and [T88] for details.

4.2.2 Why the Chernoff Exponent?

We can now see the possible merit of basing a strategy search algorithm on the
minimization of the Chernoff exponent. The exponent provides a measure of dis-
similarity between the joint peripheral sensor message distributions under the two
hypotheses. Naturally, we want the dissimilarity to be as great as possible, so that
the fusion center’s decision problem is as easy as possible. We also have reassur-
ance that at least asymptotically (as N — o0), the exponent provides a very good
measure of distributional distance.

The second, more important reason for considering the Chernoff exponent is that
in the conditionally independent case, minimization of the exponent decouples into
a separate, independent optimization problem for each sensor rule. This decoupling
occurs in a natural way that was seemingly unachievable with the Gauss-Seidel
algorithm.

4.2.3 Algorithm Derivation

There are two versions of the algorithm: one for the conditionally independent
case and one for the conditionally dependent case. We derive the conditionally
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independent version in detail; then, because the conditionally dependent version is
so similar, we do not derive it, but instead only summarize the algorithm steps.

Minimizing with respect to s

The algorithm that we will describe treats s as a constant; with respect to any
fixed value of s, 0 < s < 1, the algorithm find the best decision rule, v;(-). One
practical way to minimize p;(7y;,s) with respect to s as well, is to repeatedly rerun
the algorithm, each time with a different value of s; by so “sweeping” the values of
s, the v;(-) that truly minimizes the Chernoff exponent can be found.

Conditionally independent case

For each peripheral sensor, we wish to minimize p;(7;, s). Incidentally, note that if
the marginal distributions of Y7, ...,Yy are all identical, then all of the sensor rules
for the Chernoff exponent minimizing strategy will be identical. The procedure is
the same for minimizing each of the p;(vi,s) terms, so we focus only on p,(-).

The first step is to initialize v;(-) to some rule that we expect will effect reason-
ably different distributions for Pr(U,|H;) and Pr(U,|H,). As with the Gauss-Seidel
algorithm, there is no known optimal method for carrying out this initialization.

Next, using the initial decision rule, we compute

_ Pr(U; = uy|Hy

L(U1 = UI) - PI‘[U1 _ u1[H1]

(4.31)

for 1 < u; < D. This likelihood ratio is used in the next step, which is also the
most critical step.
To improve on the initial v;(-), we note that
D .
exp(pi(m1,8)) = D Pr'™'[d|H)]Pr’[d|H,]
d=1
D
= Y (1 —s)Pr{d|H,|L°(d) + sPt[d|H,]L*"(d)

d=1
D
= [du 20 - o) Gl )L () +
s frim (Y1 H2) L* 7 (71 (1)) (4.32)
Now, we update v;(-) via
71(41) = arg min {(1 = 5) fripm, (w1 | H: ) L*(d) + s fy (31 | H2) LN (d) }, (4.33)

where we use the old values of L(-), as computed in the first step. For each value
of y, this rule minimizes the integrand of (4.32) with respect to the fixed L(-). The
rule’s structure is quite similar to the pbp-optimality condition’s structure (2.14).
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It is clear that this updated 7;(:) will not increase (and will hopefully decrease)
the value of (4.32) when used with the old value of L(:) is used. What is not clear is
whether any gains we have made will be lost when L(-) is updated to its new value
as effected by the new ~(-).

Fortunately, updating L(-) to its correct new value further lowers the value of
(4.32). To see this, consider the problem from the perspective of finding a functional
g(u) that minimizes

D
A(g(), ) = Y(1 — s)Pr(d|Hy)g*(d) + sPr(d|Ha)g ™' (d).

d=1

Taking derivatives,

Fosd — a(1  Pefus Hilg" ) — (1 = o)Prlual il (),
and so
Oh(v1,s) _
Blguy)] He=Ew) = 0.
Also, at the stationary point (with respect to g(u)),
% Jotwn=zu) = Prlus| Hi]L*7(u)s(1 - s)

> 0.

Hence, the minimizing function is g(u) = L(u), and so we update L(-) to its correct
new value.

Following the update of L(-), we have a new, improved decision rule. Then,
the whole procedure is repeated. We summarize the overall algorithm in the
FORTRAN:-like code fragment in Figure 4.3. The code is hopefully self-explanatory.
Comments

A few comments are in order concerning the above derivation. Most importantly,
note that (4.33) can be equivalently expressed as

71(€y1)) = arg min [b1a + b2al(y)], (4.34)
d=1,...,.D
where the constants b4, byq are given by
bia = (1 —s)L°(d), bya=sL*"'(d), 1<d<D.
Also,

_ fyim,(y|Ha)

O o 1)
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INITTALIZE 74(-)
CoMPUTE L(-)
mu_min = CHERNOFF_EXPONENT(7;, L)

k=0
Do
yhH ARg My CHERNOFF_EXPONENT (+¥, L)
1
UPDATE L(-).
k=k+1

mu = mu-min
mu_min = CHERNOFF_EXPONENT(~¥, L)
WHILE (mu - mu_min > eps)

Figure 4.3: Code fragment for conditionally independent Chernoff exponent mini-
mizer

which is distinctly different from L(-).

Note that (4.34) has exactly the same form as (2.20). The conclusion, then,
is that a threshold rule can always be used to minimize the Chernoff exponent
(in the conditionally independent case). Though our derivation (patterned after
[FG87], [LLG90]) is appropriate for developing the algorithm, the derivation belies
the simple underlying principle that makes threshold rules optimal.

In particular, one can readily show that the Chernoff exponent is a convex
function of the probabilities Pr[v;(Y;) = d|H;], 1 <d < D, j = 1,2. More precisely,
let @ be the 2D-vector

Q = [Q{ Qg]Tv
where
Q;j = [Pr[yi(Y1) = 1|H}} ... Pr[ya(Y3) = D|H,))T, j=1,2.

Then, p;(Q;s) is concave in Q. Now, it is shown in [T89] that in general, there
exists a deterministic threshold strategy that minimizes f(Q) for any f(-) that is
continuous and concave in Q. We will not pursue this point further; we only mention
it in passing.

Conditionally Dependent Case

For the conditionally dependent case, the optimization of the peripheral sensor
rules no longer decouples. However, it is possible to develop an iterative algorithm
in which the optimization of the rules is coupled. The algorithm is a rather natural
extension of our conditionally independent case algorithm. For this extension, the
goal is to minimize (4.22). For that reason, we only summarize its steps.
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1. Initialize decision rules v;(-), ..., vn(-).
2. Compute L(U; = uy,...,Uy = upy) for 1 < uy, ...,uy < D.

3. Fix decision rules y,(:), ..., 7n(-), and also fix L(-). Now, update 7,(-) via
n(y) =

argmin Y, (1= 8)fvm, (%1 H1)Prlua, ..., unlys, Hi|L(d, us, ..., un) +

d=1,...D wua,.uyn

sfyvim, (1 | H2)Prug, ...y un|yy, H,]L*7Y(d, uy, ey UN) (4.35)

4. Update L(-).

5. Repeat steps 2 through 4 (N — 1) more times, each time optimizing the next
decision rule (i.e., 72(-), then 3(-), ...) while holding all of the other rules fixed.

6. At this point, we have completed one pass of optimizing the whole strategy.
Now, we can start all over, again beginning by optimizing ~,(-).

4.2.4 Historical Notes

Our derivation of the algorithm is patterned after [FG87] and [LLG90]. In both of
these papers, a key point was missed. That is, as shown in [T89], for the condi-
tionally independent problem, a strategy that minimizes the Chernoff exponent can
always be found within the class of threshold strategies. In [LLG90], the authors do
numerical experiments with a Gaussian problem that is very similar to the Gaus-
sian problem that analytically consider in Chapter 3. In [LLG90], the authors did
not compare their numerically-derived “optimal” strategy with the true optimal, or
with the “optimal” from a Gauss-Seidel algorithm.

4.2.5 Practical Experience

I implemented the conditionally dependent version of the Chernoff exponent mini-
mizer to find strategies for the Gaussian problem described in the second case study
of the previous chapter. I did NOT minimize with respect to s, but rather fixed s
at the value one-half. The reason for fixing s was that the algorithm would have
otherwise been prohibitively slow.

For this particular (Gaussian) problem, the Chernoff exponent minimizer did
not compare well with the nonlinear Gauss-Seidel algorithm. The difficulty is that
for the conditionally dependent case, the Chernoff minimizer has virtually identical
computational complexity to the Gauss-Seidel algorithm. The Gauss-Seidel directly
optimizes the cost criterion that we are actually interested in (i.e., the probability
of error), unlike the Chernoff exponent minimizing algorithm. In fact, I found for
the Gaussian problem, that as the Chernoff exponent decreased, the probability of
error would increase. This ill behavior might disappear with larger values of N or
D, but those larger values are too computationally complex to actually run.
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In conclusion, I did not have very much success with the Chernoff exponent
minimizer. ‘

4.3 Product of Marginals

As we have seen, finding an optimal strategy for a conditionally dependent problem
can be computationally expensive. We consider here a heuristic for reducing this
computation.

The idea is simple. We formulate a nearby problem (in a sense to be shown) that
is conditionally independent. Since conditionally independent problems are much
less computationally burdensome than their conditionally dependent counterparts,
we can hopefully solve our nearby problem easily. Then, we try using the resulting
strategy in our original, conditionally dependent problem. If we are fortunate, the
performance will be adequate.

We choose the density for our nearby, conditionally independent problem in the
following eminently reasonable way as follows,

b N
Frnos, Ws oo N H) = T Frogm; (el H;)- (4.36)
=1 -

In words, we use the product of the marginal densities from our original problem
as the joint density in our nearby problem.

The following example shows that, in general, there is no limit to how poorly
this heuristic will perform.

e Example

Suppose that the true, conditionally dependent joint-density is

fyivam, (Y1, y2|H) =
exp[—(¥i +¥3)/2] 3 <0, and y, >0, or

T " 3 >0 and y, <0, (4.37)
and
fro 1w, (Y1, 92| Ha) =
exp[—(y; +y§)/2]’ 120, and y; >0, or , (4.38)

T y1 <0 and gy, <O.
Note that under either hypothesis, the marginal densities are

2
exp(—y*°/2 ) .
fY.'|Hj(yi7Hj) = —(m/ ), ) :.1,2, ] = 1,2 (439)

Thus,

exp(—(yi +¥3)/2]
2w ’

b )
Frovam, (Wi, v2|Hy) = i=12, (4.40)
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and so the nearby problem has the same joint-distribution, conditioned
on either hypothesis. Thus, an optimal strategy for the nearby problem
is for the fusion center to simply always decide in favor of H;. This will
have a probability of error of 0.5 in the original problem.

On the other hand, the following strategy (based on the actual PDF)
has a probability of zero in the original problem:

0 s < 0 .
yily:) = { ! zi So, i=L2 (4.41)

The MAP rule is used at the fusion center.
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Chapter 5
Numerical Methods II

5.1 Random Array Problem

The Gaussian problem that we have considered is rather benign in the sense that
all reasonable sirategies seem to have roughly the same performance. There has
been only a negligible difference between the optimal solution and the suboptimal
alternatives. In retrospect, we can see why this is so.

1. Excluding degenerate cases (see example in Chapter 2), there are virtually no
pbp-optimal strategies that are not coincidentally globally optimal. Thus, the
Gauss-Seidel does not get stuck far from the optimal.

2. The optimal strategy has been experimentally found to always be a threshold
strategy using identical rules at the peripheral sensors.

3. The problem is insensitive enough to suboptimality that an optimal fusion rule
(which is always possible to use) can compensate for most of the deficiencies
of suboptimal peripheral sensor rules.

One serious difficulty that we had with the Gaussian problem was that numerical
integration was a greater stumbling block than were any of the combinatorial issues.
Since we are really not interested in numerical integration issues, we would like to
find a problem that is challenging combinatorially while requiring trivial numerical
integralion.

In this section, we examine a problem that fits our desired description. First,
we formulate the problem, and describe some of the implementation issues associ-
ated with the numerical experimentation. Then we summarize the experimentation
results.

5.1.1 Problem Formulation

This problem is a special case of the NP-complete problem that was described in
Section 2.6 of Chapter 2. We are given a square S x S incidence matrix its entries
are all zeros and ones), A,, and its complement, 4, = E — A;, where E is a matrix
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Figure 5.1: Example probability mass function.

of all ones (i.e. E;; =1,1 <1i,7 <S). From the matrices, we construct the joint
PMF

. A)ij ..
le,Yzlll,,('L,JIHk) = ( zl;)]7 1< 1,] < Sy k= 112’ (51)

and z, is the normalizing constant

s S .
2l = ZZ(Ak)ij, k= 1,2. (52)

To make the conditional marginal distributions identical (i.e., fy, i, (y|Hi) =
froim (y|He), k =1,2), we constrain A; to be symmetric (which then automatically
makes A, symmetric). Lastly, we constrain

S
1<) (41)iy<S—-1 (5.3)
i=1
so that fy\u, (y|Hx) >0, Yy, k=1,2.

We assume that Pr(H,) = Pr(H,;) = 1/2. Also, each peripheral sensor has a
code alphabet of size D. We want to find a strategy that minimizes the probability
of error.

Figures 5.1 and 5.2 show the conditional PMFs that correspond to the S = 3
matrix

011 100
Ai=|1 00|, 4,=]01 1]. (5.4)
100 011

The plots make clear the triviality of the centralized version of this problem. That
is, knowledge of both y; and y, uniquely specifies the true hypothesis, and so if a
sensor had access to both of these values, then it can always achieve perfect detection
performance. On the other hand, the decentralized version is quite nontrivial.

In a sense, this problem is rather whimsical, because it seems so devoid of any
real-world application. However, we are not treating it as a link to a genuine
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Figure 5.2: Example probability mass function.

detection system, but rather as a worst-case scenario for our detection algorithms.
Intuitively, we might expect that unlike the Gaussian problem, this one will have
many pbp-optima (many, perhaps, far from optimal). Also, there is no apparent
reason to believe that a threshold strategy will be optimal, or that an identical
peripheral sensor rule strategy will be optimal.

5.1.2 Incidence Matrix Generation

We describe the random matrix generator that we used to generate S x S incidence
matrices that satisfy the constraints listed in the last section. As we will see, the
generated matrices come from a uniform distribution over all valid (as constrained
in the last section) S x S matrices.

In the first step of the generation process, we ignore the constraint in (5.3).
Without this constraint, we are left with the problem of selecting uniformly from
the class of § x S symmetric incidence matrices. But this is easy. We generate
S(S + 1)/2 independent, identically distributed (iid) Bernoulli random variables,
X1,y Xs(s541)72 with Pr(X; = 0) = Pr(X; =1) = 1/2, Vi. These values are then
arranged into a lower-triangular § x S matrix. For example, in the 3 x 3 case, we
would generate 6 Bernoulli random variable values, and we would arrange them as

T

L9 T4y . (5-5)

L3 Ty Tg

Actually, the configuration in (5.5) completely specifies the symmetric matrix;
we reflect values across the diagonly to yield the complete matrix

T1 T2 &3 A
A]_: Ty T4 ITp . (5.6)

3 Ty T

It is easy to see that this procedure selects uniformly from the set of 25(5+1)/2
symmetric incidence matrices.
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The second step of the generation process is to check whether the constraint in
(5.3) is satisfied. Tfit is, then we generate A, = E — A;, and we are done. If (5.3) is
not satisfied, then we discard our current A;, and we begin the whole process from
scratch. There are perhaps efficient methods that bypass this rejection step, but
the algorithm just described is conceptually simple and in practice seems to work
virtually instantaneously (for the matrix sizes that we are interested in).

5.1.3 Exhaustive Search

Because the observation space at each peripheral sensor is discrete, it is possible to
do an exhaustive search over all strategies. In this section, we show the results of
a simple numerical experiment in which we do exhaustive searches. These searches
will be for the case of D = 2.

We use the random-array generator that was described in the last section. Each
new S x S array yields a new optimal-strategy search problem. We compare the
performance of the optimal strategy from each of the following four classes:

1. General strategies (this is where the global optimum will always be found),
2. General strategies with the same rule used at both peripheral sensors,

3. General threshold strategies (this is NOT guaranteed to be optimal, since the
problem is not conditionally independent),

4. Threshold strategies with the same threshold at both peripheral sensors.

Table 5.1.3 summarizes the findings for this experiment. The table requires some
explanation. For each value of S (S = 5,7,8), we created three different random
arrays, and for each array, we searched for the optimum strategies. That is why, in
the table, there are three rows of error values of each value of S. In the General
Strategies / All column, the error of the globally optimal strategies are given. In
the columns corresponding to the other three classes of strategies, the deterioration
of the error-relative to the error of the optimal strategy—is given. The deterioration

is defined by

Error of suboptimal strategy

Deterioration =

(5.7)

Error of optimal strategy

Thus, a strategy with a deterioration of unity is optimal, while a deterioration
greater than unity is suboptimal. The values of S used in this experiment are quite
modest. This is because for S > 8, the run-time for an exhaustive search becomes
excessive. ‘

Of course, the best general strategy is always globally optimal. Also the best
threshold strategy always performs at least as well as the best threshold strategy
with identical rules. Beyond these two statements, though, there are only trends,
not certain relationships between the performance of different techniques. Usually,
but not always, the globally optimal strategy uses identical rules at the peripheral
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General Strategies | Threshold Strategies
All Identical | All Identical

Number to consider 225 15 16 4
(5 =5)
0.1987 1.000 1.677 1.677
Deterioration | 0.1667 1.428 1.952 1.952
0.1603 1.000 1.959 1.959
Number to consider | 3,969 63 36 6
(§=1)
0.2241 1.000 1.022 1.022
Deterioration | 0.2284 1.064 1.000 1.064
0.2724 1.059 1.408 1.448
Number to consider | 16,129 127 49 7
(5 =8)

0.2210 1.000 1.413 1.413
Deterioration | 0.2282 1.000 1.546 1.546
0.1875 1.000 1.444 1.444

sensors. Also usually, but not always, the identical-rule, general strategy performs
better than the general threshold strategy. It is unknown whether these qualitative
trends in the performance of different strategies could somehow be captured by an

analytical relationship. This very issue has frusturated researchers for at least a
decade.

5.1.4 Nonlinear Gauss-Seidel

In this section, we consider the sensitivity of the Gauss-Seidel algorithm to different
initializing strategies. The discussion will be rather informal. This informality is
appropriate, because the only purpose of this experiment is to obtain a qualitative
feel for the performance of the Gauss-Seidel algorithm.

We used the random-array generator to construct three different instances of the
hypothesis testing problem; the constructed instances have dimensions S = 10, 20,
and 30, respectively.

For each instance, the Gauss-Seidel algorithm was run three times. Each time
it was run, it was initialized with a different strategy. These initializing strategies
were chosen randomly.

Note that, in general, there does not seem to be a great deal of sensitivity to the
initializing strategy. Usually, within three to four iterations, the algorithm reaches
a pbp-optimum cost level.

Unfortunately, the dimesion of these instances is too large to find the globally
optimal strategy. Hence, it is only a conjecture that the strategy performance shown
in the figures is close to optimal.
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Figure 5.3: Progress of Nonlinear Gauss-Seidel Algorithm, from various initializing
strategies for S = 10.
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Figure 5.4: Progress of Nonlinear Gauss-Seidel Algorithm, from various initializing
strategies for S = 20.
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Figure 5.5: Progress of Nonlinear Gauss-Seidel Algorithm, from various initializing
strategies for S = 30.
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Chapter 6

Parameter Estimation

6.1 Introduction

In this chapter, we consider a decentralized parameter estimation problem. First, is
a formal statement of the problem. As we will see, the formulation is very similar to
that of the hypothesis testing problem (see Chapter 2), with two critical differences.
The first difference is that the underlying hypothesis has a continuous rather than
discrete (e.g., Hy, H,) distribution. The second difference is that the cost criterion
is now the mean-square error (MSE).

Next, are two lower bounds on the MSE of any decentralized strategy. The
first is related to the a posteriori mean, E(A|Y; = y;,...,Yy = yy), where A is the
random parameter. The second is a version of the Cramer-Rao bound for biased
estimates of random parameters.

Next is a derivation of the person-by-person optimality conditions. From a
computational standpoint, it will turn out that these conditions are not very useful
for finding a good strategy; the conditions require too much computation (especially
numerical integration). For this reason, we consider alternatives to using the pbp-
optimality conditions.

In the context of a particular decentralized parameter estimation problem, we
consider three suboptimal alternatives to the pbp-optimality conditions. The three
alternatives are based on different “educated” guesses about how a low-MSE strat-
egy might be structured; after guessing a structure, we try to find the best strategy
within the structured class that we have guessed.

6.2 Formulation

Here is the formal problem statement.

6.2.1 Problem Statement

We have a scalar random parameter, A, that has probability density f4(a), L, <
a < L,, with L,, L, possibly infinite. Detecting the parameter are N peripheral
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sensors, with sensor 7 (1 <1 < N) receiving scalar, real-values observation y;. We
assume that conditional on A, the realizations of the peripheral sensor observations
obey the known joint PDF fy, _ vyyia(vy1,...,yn|a), with

fY,....,YN|A(y1, ---ny|a') = lelA(y1|a) Tt nylA(lea’)’ (6-1)

meaning that conditional on the true parameter value, the peripheral sensor obser-
vations are independent.

Each peripheral sensor, upon receiving its observation, evaluates a message u; =
vi(y;) € {1,...,D}. All N messages (one from each peripheral sensor) are sent to
the fusion center, where the final decision, ¥o(u1,...,un), is made. The goal is to
find a deterministic strategy, v, that minimizes the mean-square error,

J(7) = E{[A — vo(m:1 (Y1), -, v (¥N))’}- (6.2)

The expectation on the right-hand side of (6.2) is over A, and Y3, ..., Y.

6.2.2 Comment on the Formulation

As with all parameter estimation problems, there is some arbitrariness in the choice
of what error criterion to use. One reason that we have chosen to use the MSE is that
it is well-established criterion in the literature on centralized parameter estimation
[VT68]. A related reason is that the criterion lends some analytic tractability to
the problem; we will find that we can analytically establish some bounds on the
MSE of decentralized strategies.

It is, however, important to bear in mind that other error criteria are also
possible. One alternative is the expected ahsolute value of the error,

E{|A = vo(72 (Y1, - v (YN )]}

We will leave consideration of the alternatives to future work.

Also note that we have restricted attention to the conditionally independent
case. This is consistent with our choice to avoid multiple hypothesis, conditionally
dependent hypothesis testing problems. Simply put, we do not consider the condi-
tionally dependent parameter estimation problem because it is more difficult than
the conditionally independent problem, which is itself difficult enough.

6.3 Lower Bounds for Mean-Square Error

In this section, we establish two lower bounds on the MSE of decentralized param-
eter estimation strategies.

6.3.1 Relation to Aposteriori Mean

We prove the following proposition.
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Proposition 14 The following inequality holds for any N -peripheral
sensor strategy, v:

T(v) 2 B{E(AIY;, ., Yi) — AT}, (6.3)
where the left-hand side is defined in (6.2).
Proof: Note that we can rewrite (6.2) as
J(v) = E{[(A - E(A[Yy, ..., Yy))+
(E(AY1, ..., Yi) = Yo(ma(Y2), oy rw (Y2)))I} (6.4)

where we have simply added and subtracted E(A|Y,...,Yn). But the right-hand
side of this can be expanded into three terms. First is

B{[A - B(A[Ys, .., Yv)I?}, (6.5)

which is the mean-square error of the (centralized) aposteriori mean estimator.
Second is

2E{[A — E(AIY1, o, YW)[B(AIYi, oo, Yir) = 3o(ma(F2), cry(VW)))}. (6:6)

Since the orthogonality principle says that
E{[A - E(AIYh, ..., Y¥)llg(Yr, .., YN)]} =0 (6.7)

for any function g(Y3, ..., Yy), it follows that (6.6) is identically zero. The third term
in the expansion of (6.4) is

E{[E(A|Yy, ..., ¥x) = Yo(11 (Y1), - w8 (Y )1’} (6.8)

which is the mean-square error between the centralized aposeteriori mean estimator
and the decentralized strategy estimator. Since this last term must be greater than
or equal to zero, the inequality (6.3) is established. QED.

This proof has been based on [LR90].

6.3.2 Comment on Aposteriori Mean Bound

This last result has an interesting interpretation. Combining Equations 6.5 through
6.8, we obtain

Iv) = E{A-B(AN,..Yn)I} +
B{[B(AIYs, -, Yi) = w(n(V)s o ()Y (69)

Since the strategy - is independent of the first term on the right-hand side, the best
the strategy can do is to minimize the second term on the right-hand side. But
minimizing the second term is the same as minimizing the mean-square difference
between the centralized aposteriori mean estimator and the decentralized strategy
estimator. Thus, the optimal decentralized strategy “mimics” the centralized apos-
teriori mean estimator as best it can. '
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6.3.3 Cramer-Rao Bound

The bound in Proposition 14 is often difficult to compute. In this section, we
consider (a version of) the Cramer-Rao bound, which can sometimes be easier to
compute than the above bound.

Proposition 15 The mean-square error of any estimator A(Y) sat-
isfies the inequality

E{[A(Y)- A

1—B(A4))?
SR L 0 S
E{ (& fra¥,4)]"}
where the ezpectations on both sides are over both A and Y. In this
ezpression, Y = [V, Y, ... Yx|T; also,
B(A) = fala = L)B(4ja = L) — fa(a = [1)B(4;a = L), (6.11)
with

(6.10)

B(A;a) = E[A(Y)|A = d] — a. (6.12)

Two technical conditions that must be satisfied for the bound to hold
are the inequalities

Ly 6f7_A(37,a) e af}_’,A(gva')
/1;1 60: da < oo ~/;oo a(l

Proof: First, we multiply both sides of (6.12) by fa(a), and differentiate with
respect to a:

dj < oo.  (6.13)

d 1 9
L a@Bia) = - [ fraa)dy + [7 240D ir) o) gg. (614)
Now, integration with respect to a yields
. 0
fa(a)B(A;a)[? = —1 + /L 1 / fr A(y’ [A( - d] df da. (6.15)

Note that the left-hand side of this last expression is §(A). For the right-hand
side, '

7, dln fy ,(7,a _
afy,gfly a) _ fg,a(y )fY'A(y,a), (6.16)

and hence, by the Cauchy-Schwarz inequality, the integral on the right-hand side
of (6.15) is bounded by

2

[/ 7 a8 g o) dg da) <

B{{A(Y) — AP}E{(5s 10 fr (Y, AP}, (6.17)

Finally, applying this last inequality to (6.15) yields (6.10), thus establishing the
proposition. QED
This proof has been based on some minor modifications of the Cramer-Rao

bound discussion in [VT68].
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6.3.4 Comment on Cramer-Rao Bound

With regard to this last bound, note that as the estimator A(:) changes, the bound
(6.10) changes, through its dependence on B(A). This has the unfortunate conse-
quence that if 3 A s.t. B(A) = 1, then (6.10) becomes the useless (though correct)
inequality

E{[A(Y) — 4]?} > 0. (6.18)

Thus, to make (6.10) useful, it is necessary to somehow constrain ﬂ(fi) Then,
the bound will be valid for all estimators satisfying the constraint. Fortunately,
constraining ﬂ(A) is, in its own right, a reasonable thing to do. This is because
constraining A(A) is equivalent to constraining the bias of the estimator A(-).

We defer discussing particular constraints on ﬂ(A) until we introduce the spe-
cific parameter estimation problem that will be the focus of the second-half of this
chapter.

6.3.5 Comment on Both Bounds

One shortcoming of the bounds in Propositions 14 and 15 is that neither one has
any D-dependence. To more carefully describe the consequences of this lack of D-
dependence, let I'(D) be the set of all deterministic strategies that have message
alphabet-size D at the peripheral sensors. Then, clearly, I'(D,) C I'(Dy), for D, >
D,, and thus, J(v') > J(¥?), where 47 is an optimal strategy for 77 € T'(D;), j =
1,2. Thus, unless J(7”) = J(y?') for some small D and all D' > D, it follows that
our bounds cannot be tight for the values of D that are of interest to us.

In the specific parameter estimation problem that we consider later in this chap-
ter, the Cramer-Rao bound will turn out to be J(vy) > k/N, where k is some con-
stant, and N is (as usual) the number of peripheral sensors. For the same problem,
we will find a strategy that satisfies J(y) = k'/N for some k' > k. Thus, the bound
will not be met with equality (as we have discussed that it likely cannot be), but
the order of decay, O(%), is the same for both the bound and the actual strategy.
Thus, at least heuristically, there is some reason to believe that the actual strategy
is performing quite satisfactorily. It is in this comforting, heuristic sense that the
Cramer-Rao bound will be useful in our work.

6.4 Person-by-Person Optimality Conditions

The following is a development of necessary conditions for an optimal strategy.
First, we discuss the fusion rule, and then the peripheral sensor rules.

6.4.1 Fusion Rule

For the fusion rule, we have the following proposition.
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Proposition 16 With respect to fized peripheral sensor decision rules
Y1(+)5 -y YN (+), the optimal fusion rule is

Yo(t1y .oy un) = E[Aluy, ..., un], } (6.19)
which is the aposteriori mean.

Proof: We first expand (6.2) to the convenient form

L
J(y) = Z Pr[U; = uq,...,Uy = uN]/L [@ = yo(u1, ..., un)]? -
ULy U N 1
fAlUl,...,UN(a|u17""uN) da" ‘ (6.20)

Note that because the peripheral sensor rules are fixed, it follows that

PI'[’U,l, S) u’N] and fAIUx,..., UN(aluh crey uN)

are fixed. Thus, of the terms in (6.20), the fusion rule can only influence the value
of vo(u1, ..., un). For each summand (i.e., each combination (u,, ..., un)) the
optimal fusion value 4o(u,, ..., uy) is the value, r, that minimizes the integral

Lz
/1;, [a, - T']ZfA|U1, .y UN(a,lul, cany uN) da.

But it is well-known that the mean of the aposteriori density is the minimizer; that
is, 7 = yo(u1, ..., uy) = E(A|u,, ..., uy), thus proving the proposition. QED.
This result is not at all surprising. Just as with hypothesis testing, we can
view the set of peripheral sensor messages as a vector of observations that the
fusion center receives. Thus, from the perspective of the fusion center, the prob-
lem is a classical centralized parameter estimation problem with associated density
faw,,..un(@ly, ..., uy). Since the minimizer of the mean-square error (in the cen-
tralized problem) is the aposteriori mean, the fusion rule (6.19) must be optimal.

6.4.2 Peripheral Sensor Rules

The following proposition gives necessary conditions for optimal peripheral sensor
decision rules.

Proposition 17 With respect to fized sensor decision rules
Yo(-)y -y Yie1()s Yira(4)s vy ¥ (o),
the optimal peripheral sensor rule v;(-) is
L
’Yi(yi) = arg min ] fria(yila)bi(d, a) da, (6.21)
d=1,..D0 I
where
bi(d,a) =
E{lvo(n (Y1), - vic1(Yio1), &, vi41(Yita), s v (Ywv)) — AJ’| A €6.2])

We do not prove this result, since it requires only a trivial modification of the
proof of Proposition 3. '
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6.4.3 Need for Alternatives to Pbp-Optimality Conditions

As one can see from (6.21), and (6.22) the peripheral sensor pbp-optimality con-
dition is not very helpful for providing insight into the structure of the optimal
strategy. Furthermore, consider the computational complexity of using the condi-
tion in, say, the Gauss-Seidel algorithm. Computing (6.21) requires integrating an
iterated summation of probabilities which themselves require integration to com-
pute. This is very messy, and not very insightful; for these reasons, we do not exploit
the peripheral sensor pbp-optimality condition to search for optimal strategies. On
the other hand, the fusion center condition is straightforward, and we will exploit
it when possible.

6.4.4 Breakpoint Quantizer Strategy
We define a breakpoint quantizer strategy.

Suppose that there are thresholds ¢;, ..., tp_; satisfying —oo <
t; <ty < ... <tp_; < oo, and there are intervals I = [~00,#], I, =
[t1,t2], -y Ip = [tp_1,00]. Then, decision rule v;(-) is called a monotone
breakpoint quantizer rule if

7i(y:) = d only if y; € L. (6.23)

More generally, decision rule ;(-) is called breakpoint quantizer rule
if there exists a permutation mapping o : {1, ..., D} — {1, ..., D} such
that o o +; is a monotone breakpoint quantizer rule.

Finally, a strategy is a breakpoint quantizer strategy if all of the pe-
ripheral sensors use breakpoint quantizer rules.

Note that this definition is closely related to the concept of a threshold strategy.
The difference is that a threshold strategy is defined with respect to a likelihood
ratio; since there is no likelihood ratio in the parameter estimation problem, the
concept of the breakpoint quantizer is needed.

We will try breakpoint quantizer strategies for the estimation problem that is
introduced in the following section.

6.5 Gaussian-Corrupted Parameter Estimation
Problem

For the rest of this chapter, we concentrate on the following parameter estimation
problem.

We have a scalar random parameter, A, that has uniform distribu-
tion,

1
fA(a):f, 0<ac<lL.
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Peripheral sensor i receives scalar observation, y;,
Yi=A+W, W;~N(0,0), 1 <i<N,

with A, Wy, ..., Wy all mutually independent.

For a given value of D (D > 2), we want to find a strategy that
minimizes the mean-square error (6.2).

We are also interested in the tradeoff between number of peripheral
sensors and number of bits transmitted per peripheral sensor. For exam-
ple, if the fusion center cannot receive more than 12 bits, then is it better
to have 12 sensors transmitting 1 bit each, or 6 sensors transmitting 2
bits each, or 4 sensors transmitting...?

In the sections that follow, we experiment with various suboptimal strategies.
Until section 6.10.3, we exclusively consider the case of D = 2. In section 6.10.3,
we consider larger values of D in an experiment concerning the tradeoff between
N (number of peripheral sensors) and D (message alphabet size per sensor). First,
however, we tailor the above Cramer-Rao bound to this problem.

6.6 Reconsideration of Cramer-Rao Bound

In the context of this particular parameter estimation problem, we reconsider the

Cramer-Rao bound, as developed in Section 6.3.3. In particular, recall that for the

bound (6.10) to be useful, we must somehow constrain B(A) (see Equation 6.11).
Suppose we limit attention to estimators satisfying

B(4;a)< fL, a=0 and a =L, (6.24)

where B(-) was defined in (6.12), and where f is any fixed value in the range 0 < f <
1/2. This means, for example, that if f = 1/4, 4 has a valid range of 0 < 4 < 10,
and the true value is 4 = 5, then our estimator must produce an estimate with
an expected value somewhere in the interval 2.5 < E[AY)|A = 5] < 7.5. For
estimators satisfying the constraint (6.24), it follows from (6.11) that
B < fa(A=D)B(dia=L)| + fa(4 = 0)|B(dia = 0)|
< 2f (6.25)

and so (6.10) becomes

B (V) (V) = AP} 2 (1= 201 1n fya(v, )}
(1-2f)0?

2> N ) (6.26)
which is considerably more useful than (6.18). The first line follows immediately
from the identification A(Y) = Yo(71(Y1), .., Yw(¥Yw)). The second line follows

from straightforward evaluation of the expectation.
Thus, we see that by introducing a reasonable bias constraint, it is possible to
make the Cramer-Rao bound meaningful.
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6.7 Design 1: Indicator Functions to Simulate
Expectation

In this section, we consider a strategy that has particularly simple structure. Let
the peripheral sensors use breakpoint quantizer rules,

07 Y: < T,',
1 otherwise

Yi(y:) = { ; (6.27)

where

n = Lo

‘This set of thresholds is evenly spaced about L/2, in increments of A.
For the fusion center, we abandon the computationally expensive a posteriori
mean (6.19), and instead we use the simple summation rule

Yo(t1, ey un) = A [Z ui] - A [Z (1- ui)i| , (6.28)

ieT+ ieT—

where Tt is the set of i’s for which T; > 0, and T~ is the set of i’s for which T; < 0.

Note that fixed N, there is only a single degree of freedom in the design of this
strategy. The degree of freedom is in choosing the optimal spacing (i.e., the value of
A) between the breakpoints. We show how to find the optimal A in section 6.7.2.
To make explicit the dependence of J(y) on N and A, we express the strategy MSE
error by J(v; N, Q). '

This strategy, which was introduced in [GBL85], is beautifully simple. Its succes
is related to the identity

oo 0
E(X) = [ [ Prx > 2] d:c] - [ [ Prix <z)da]. (6.29)
0 — 00 .
This identity can be readily verified via integration by parts and holds for any
random variable, X, that has a mean.

The following proposition exploits (6.29) to yield the asymptotic performance
of this strategy.

6.7.1 Asymptotic Performance
Proposition 18 For A = 1/+/N,

I\III—I»I:Q E[70(U1’ ety UN)lA = a’] =a, (630)

meaning that the strategy is asymptotically unbiased.
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Proof: To prove that the strategy is asymptotically unbiased,

I%i_rgoE[’YO(UI) =y UN)'“‘]

- % —i; Elu]| — % LET:_ 1- E[u.—]]
_ % ; Prly; > Tla]| — % [XT: Prly; < mal]
= () ][ ()

where we have used the relation

Prly; <Tile] T; €T,

E[Uila] = { Prly; > Tifa] TieT* (6-31)

and where we have used the identity (6.29). QED

From (6.26), this is the optimal order of error decay, and so asymptotically, this
strategy is quite good. The results in Propostion 18 motivate our interest in testing
the strategy for finite V.

6.7.2 Performance for Finite Number of Sensors

Figure 6.1 shows how the mean-square error depends on A when L = 10,0 =
1,N = 5. The figure suggests that for the finite N case, it is worthwhile to
optimize J(N,A) with respect to A.

To do this optimization, we note that

T(v,a) = | " Bl(16(Us, s Un) — a)?la] da, (6.32)

where

E[(v(U1y...,Un) — a)’la] = E[(yo(Us, ey UN))?|a] — 2aE[v(Uy, ..., Un)la] + a?,

with
E[(vo(Us, -+, Un))?|a]
A2
~ Y EU)+ X BUda) T EUle)
;# |
+ Y E(Uila) > E(Ujla)-2 ) E(Uila) 3  E(Ujla).  (6.33)
€T~ jer- ieT+ JET—
J#i
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Figure 6.1: Design 1 dependence of mean-square estimation error on A when
L =10,0 = 1,N = 5. Here, A,y = 1.94. The discontinuity of the derivative
at A = 2.5 is due to one of the peripheral sensor thresholds moving from T* to T
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Figure 6.2: Design 1 mean-square estimation error as a function of number of
sensors. The overlay dotted curve is 5.26/N, so the decay rate is certainly O(%).

The dashed curve is the MSE when the optimal MAP rule (6.19) is used in place
of the suboptimal rule in (6.28).
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The summands in (6.33) are computed via (6.31), and the integration (6.32) is not
time-consuming. Hence, finding the optimal A is computationally feasible.

Figure 6.2 is a plot of J(N, A,y ) as a function of N. Note that the error decay
is almost perfectly O(;). Thus, even for finite NV, the error decay rate seems quite
reasonable.

One might wonder how much has been lost by using the suboptimal fusion rule
(6.28) in lieu of the pbp-optimal fusion rule (6.19). The dashed line in Figure 6.2
shows that there is very little difference in the MSE between the two fusion rules;
since (6.28) is considerably easier to compute than (6.19), the slight loss in MSE
optimality is worthwhile.

In Section 6.8.3, we will compare this strategy design to the other designs to be
introduced

6.8 Design 2: Breakpoint Quantizer Strategy

In this section, we again consider breakpoint quantizer strategies, but we no longer
constrain the thresholds to be evenly spaced as they were in the last section. Once
we give up the even spacing, we can no longer use the fusion rule (6.28). Hence, we
use the pbp-optimal fusion rule (6.19).

Because D = 2, we can compactly summarize the decision rules used at the
peripheral sensors by the N-vector,

T=[T T, .. Tx|%, (6.34)

where T; is the breakpoint in the breakpoint quantizer rule at peripheral sensor 1.
To make explicit the dependence of J(v) on N and on T, we write J(v; T, N).
Note that J(v;N,T) is completely determined by N and T

_ 1 (L
J(T,N) = z‘/ da > [yo(v1,-yun) — a)® [[Pr(U; = uyla). (6.35)
0 ul,.."uN "r
In (6.35),
L
Yo(utyeeey UN) =/0 a faw,,..ux(alty,...,un) da, (6.36)

where by Bayes’ rule,

N Pr[U; = ula]
Jo TIX, Pr[U; = u;la] da’

fAlU],,UN(a'lul, seey uN) =

with

a-T;
o

Pr[U; = u;|a] = { ® gzﬂ; w=1 .

¢

'u,,-=2

For fixed N, we can minimize J(N,T) over the N-dimensional T-space, and thereby
find the optimal breakpoint quantizer strategy.
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Unfortunately, the N-dimensional minimization of J(N,T) is not at all trivial.
One difficully is that the function is not convex, and thus, there is no guarantee that
a local minimum is also the global minimum. This same difficulty is familiar from
the hypothesis testing problem, where there is no guarantee that a pbp-optimal
strategy is also globally optimal. This difficulty, in fact, is common to minimiza-
tion of all non-convex functions. A perhaps more serious difficulty is that every
evaluation of J(v,T) is extremely (computationally) expensive.

To ease the computational burden, we reduce the dimension of the minimiza-
tion problem. We do this dimension reduction by imposing symmetry on T. We
consider two different extremes of symmetry. First, we reduce the dimension of the
problem to one, by requiring that all sensors use the same threshold. Then, we
consider a less extreme dimension reduction, to a dimension of L%J, by requiring
that the thresholds be symmetric about L/2. Naturally, this dimension reduction
will adversely affect the performance of the resulting strategy, but the sacrifice in
performance will be offset by the reduction in computational complexity.

Here is an outline of what follows. First, we describe the minimization technique
that we use to search over T-space for a strategy that minimizes J(N,T). Then,
we numerically experiment with the technique.

6.8.1 Powell’s Multidimensional Direction Set Method

There are standard numerical techniques for finding local minima of multivariable
functions. The most efficient techniques use the gradient of the function. Unfor-
tunately, the gradient of J(N,T) is analytically intractable. Thus, we have two
options:

1. Numerically estimate the gradient, and use this estimate in one of the standard
minimization techniques that requires the gradient, or

2. Use a completely different technique that does not need gradient information
at all.

Brent [B73] has suggested that the first of these options is aesthetically un-
pleasing. His argument is that when the gradient information is not analytically
available, it follows that using technique 1 is akin to “crowbaring” the numerical
minimization technique into a form that is usable on the given function. We agree
with Brent’s contention, and so we follow the second of the above options. In the
following section, we describe Powell’s direction set method [PFTV88|, which is an
improved version of Brent’s direction set method [B73].

Powell’s method is described quite lucidly in [PFTV88|. The following is a brief
summary of that discussion. '

The key to the method is to break the minimization problem down into a se-
quence of one-dimensional minimizations along intelligently-chosen directions in the
N-dimensional T-space. Each of these one-dimensional minimizations is called a line
minimization. Formally, each line minimization proceeds as follows:
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We have scalar-valued function g(z) of N-dimensional variable z,
Given a starting point, P, and direction, 4, both in N-space, we find
the value of the scalar A that minimizes g(P + A8). Once this value is
found, the line minimization is complete.

It is quite straightforward to carry out each of the one-dimensional minimiza-
tions, and so we direct the reader to [PFTV88] for a discussion of that issue. The
more challenging issue is to find good directions, 6, for the line-minimizations.

A naive choice is to use the principal coordinate directions €1, ..., €y for the line
minimizations, where & = [1 0 ... 0]7, etc. This is equivalent to a sort of modified
Gauss-Seidel algorithm. To see the similarity, suppose that we wished to update
the rule for the first peripheral sensor.

A Gauss-Seidel approach holds all other peripheral sensor rules fixed, and also
holds the fusion rule fixed. With respect to all of these, it finds the pbp-optimal
rule for the first sensor. Note that there is no guarantee that the pbp-optimal rule
will be a breakpoint quantizer rule, and, in fact, quite likely the rule will NOT be
a breakpoint quantizer rule.

The line-minimization approach again holds all of the other peripheral sensor
rules fixed. However, the fusion rule is now simultaneously updated along with the
first peripheral sensor’s rule. Also, the peripheral sensor rule is not updated to the
pbp-optimal rule, but rather, to the optimal breakpoint quantizer rule. Thus, there
is a tradeoff here. On the one hand, simultaneously updating the fusion rule and
the peripheral sensor rule is more computationally expensive than merely updating
the peripheral sensor rule. This favors the Gauss-Seidel approach. On the other
hand, constraining the rule to always be a breakpoint quantizer keeps the structure
of the strategy very simple. This favors the line-minimization technique.

Minimizing along the principal coordinate directions actually works quite well
for some functions, but can be disastrously slow for others. The reasons for this are
discussed in [PFTV88].

Powell suggested a fairly straightforward algorithm for choosing the directions of
the line minimizations. In general, his method works better than does the method
that uses the principal coordinate directions.

Here is the basic idea:

1. Let
QiZéi, 1<z:<N

be the set of initializing directions for the line minimizations. In this expres-
sion, the vectors €; are the directions of the principal axes.

2. Start at some initializing point, Py. As with initializations of all other algo-
rithms in this thesis, there is no optimal algorithm for selecting the initializing
point.

3. Fori=1, .., N, do a line 'minimization, starting at P;,_;, and moving in the
direction @Q;. Let P, = B, + AQ;, where ) is the min_im_.izing sca.lgr in the
line minimization. Keep track of (Ag);, where (Ag)i = g(Pi1) — g(P).
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4. Replace the Q; corresponding to the maximum (Ag); with Py — Py; keep all
of the other line minimization directions the same. Now, let P, = iy (thereby
creating an an improved initializing point), and return to step 1.

For an explanation of why this works, refer to [PFTV88| or to [AT70].

To express the computational complexity of searching for the minimizer of
J(N,T), we let a unit of computation be the calculation of a single expectation
(6.36). Then, computing J(N,T) requires O(2") effort for each value of 7. The
minimization of J(N,T) requires O(N?) line minimizations, and each line minimiza-
tion requires O(1) function evaluations. Hence, the overall complexity is O(N22V)
function evaluations.

This complexity is overwhelming for values of N > 5. For this heuristic to be
practical, we need further computational complexity reductions.

6.8.2 Reduction of Complexity: Single Breakpoint

We can most drastically reduce the computational complexity by requiring that
all of the peripheral sensors use the same threshold (breakpoint). Symmetry then
simplifies the fusion rule to

N
70('”‘1’ -,--,"'N) = ’)’0("’)’ k= Zui’
i=1

where
L
Yo(k) =/0 a fax(alk) da,
with
_ Pr[K =k|q]
Fawc(el®) = 05 1~ kla) da” (6:37)
and

Pr{K = k|a] = ( ’: ) [<I> ("‘ ;T)]k [1 .y (“;T)]IM. (6.38)

Mean-Square Error

The mean-square error of this strategy is completely determined by N and the

scalar T"
J(N,T):é%/;da lyo(k) — a? ( I:) [@ (“’T) ‘ [1—<1> (“;T)]N_'fs.sg)

a

With respect to T', we can routinely do the one-dimensional optimization of J(N,T).
However, without doing any calculation at all, we might intuitively expect that the
optimal T will be L/2. This hunch is partially confirmed by the relation

0

a—TJ(N,T)'TzL/g = 0. (640)
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To show (6.40), first note that (6.37) and (6.38) imply that
T = L/2 — fA|k(a|k) = fA|k(L — a,|N — k) — ’)’o(k) =L - ’YU(N — ’@41)

Now, for notational convenience, we let

i) = g [ dototty o 3 ()] - (57)]

so that

J(N T) = %i:; ( ) JU(N,T). (6.42)

We can now use (6.41) to show that
T=L/)2 = J,(N,T)=—-Jy_,(N,T). (6.43)
To prove this for the case of k = 0, note that |

e—(l}/2—r:|.)z/2::r2

\V2ro

e—(L/2—a)2/20'z

V2ro

L
JYN,T) = /0 da[y0(0) — a?’N® Y (L/2 — a)

- /0 " dalyo(N) — o’ N&Y*(a — L/2)
= —Jy(N,T).

The verification for other k pairs is similar, but more tedious; we omit the details.
Finally, substituting (6.43) into (6.42) yields the result that

0
aT

A review of the above analysis will show that it heavily depends on symmetry.
There is no apparent way to analytically find the derivative of J(N,T') (with respect
to T') at any threshold other than T' = L/2. Thus, it is unknown (in general) whether
J(N,T) could have a derivative of zero at other thresholds. Hence, we have NOT
shown that T' = L/2 is the optimal threshold; we have only shown that it is a strong
candidate for being the optimal threshold.

In Figure 6.3, we show that, indeed, T = L/2 can be the optimal threshold.

J(N,T)=0 (6.44)

Asymptotic Considerations

It would be nice if we could somehow derive an analytic asymptotic form for
J(N,T,p:) as N — oo. Unfortunately, there is no apparent way to do this; however,
we do have the following weaker result:

Proposition 19 For the breakpoint quantizer strategy that uses a
single breakpoint (threshold),

Jim J(N, Tope) = 0. (6.45)
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Figure 6.3: Design 2 (single threshold case) dependence of mean-square estimation
error on T when L = 10,0 =1, N = 5. Clearly T, = L/2.

Proof: We first recall that (6.37) yields a lower MSE than any other fusion rule.
Now consider the alternative fusion rule

Yo(k) = Topt + 037" (%) : | (6.46)

This fusion rule is motivated by the Strong Law of Lafge Numbers, which says that

limy. * =@ (E—_Tﬂ) wp. 1 —s
N o
k
Bmy_eo Topt +0®7! (]_V-) =a w.p. 1. (6.47)

Hence, the MSE of this alternative fusion rule, J'(N,T,y), goes to zero; since

J(N,Topt) < J'(N,Topt), the result follows. QED.

Results

Figure 6.4 is a plot of J(N,T = L/2) as a function of N. Note that according
to the analytic curve that was fit to this MSE, the limiting MSE is 0.3. Since
Proposition 19 says that the MSE converges to zero, we conclude that the analytic
fit can only have a limited range of validity. Nevertheless, for the range of N plotted,

the fit is quite good, and it shows that the single-breakpoint strategy does NOT
have O(4%) MSE decay (for the range of N plotted).

6.8.3 Reduction of Complexity: Symmetric

Breakpoint Strategy
A less extreme reduction in complexity comes from constraining the thresholds to
be symmetric about L/2. For example, suppose I = 10, and T} = 1,T; = 4;

if N = 5, then we only have 2 degrees of freedom in selecting the thresholds,
and T3 = 5,Ty = 6,75 = 9. This is symmetry constraint has the aesthetically
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Figure 6.4: Design 2 (single threshold case) mean-square estimation error as a
function of number of sensors. The overlay dotted curve is 0.30 + L}v@'

Number of Indicator | Single Threshold | Multiple Thresholds
Sensors || (Section 6.7) | (Section 6.8.2) (Section 6.8.3)
3 1.74 1.52 1.17
5 1.05 1.20 0.78
7 0.75 1.03 0.59
9 0.59 0.92 0.48

Figure 6.5: Mean-square error of optimal strategy from each of three different design
techniques. This is for L = 10,0 = 1.

pleasing consequence that the estimator is unbiased when the true parameter value
is A = L/2. With the constraint, we need to search over a [N/2| dimensional
space for the minimum of J(N,T). This search still has complexity O(N?2"), but
there is a constant multiplicative reduction to roughly 2¥/2 the computational effort
required for N arbitrarily placed thresholds.

Table 6.5 provides an example of how well a symmetric breakpoint strategy can
perform.

As one would expect, the multiple breakpoint strategy has the best performance.
What the table does not show is the great computational burden required to search
for the optimal breakpoint strategy. To find the optimal N = 7 strategy (T} = T> =
2.5, Ty = 3.7, Ty, =5, Ty = 6.3, T = Ty = 7.5) took 1.5 hours of CPU time on a
VAX workstation. To find the optimal N = 9 strategy (T1 =T, = T3 =245, T} =
44, Ts = 5, Te = 5.6, Ty = Tg = Tp = 7.55) took 17 hours of CPU time. Clearly,

there is a strong law of diminishing returns at work here.
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6.9 Design 3: Quantizer

Now we consider designing a strategy in which each of the N peripheral sensors
tries to determine a different bit of an N-bit quantized version of A. In this way,
we break the parameter estimation problem into a collection of binary hypothesis
testing problems (is the bit high or low?). The fusion center then uses the N bits
to reconstruct the quantized version of A.

To coordinate the strategy, we define

L

vy 0Sk<2V -1

2 :(2k+1)

Note that these z values are evenly spaced over the valid parameter range. Periph-
eral sensor i is given the hypothesis testing problem

H,: [z,—lil-J is even,
Hy: |35 isodd, (6.48)

where K is the random variable defined by

K = arg min |4 — z],.

?

Thus, peripheral sensor 1 is trying to determine the value of the lowest bit, periph-
eral sensor N is trying to determine the value of the highest bit, etc.

Minimizing the probability of error in the bit decisions of the peripheral sensors
is a difficult task. The difficulty is that the two hypotheses are not conditionally
independent (and for that matter, they are not even approximately conditionally
independent). A reasonable decision rule to try is

0 if k—’,-(f—{l even
vily:) = {1 Ltzherlvise ’ (6.49)
where
kK(y:) = argmin |y; — z,.
k

One can readily show that in the absence of noise (i.e., ¥; = a,Vi) the strategy
using (6.49) and the fusion rule

N
Yo(s1, e, UN) = 2, Wwith wug = Z('”'i) 21,

i=1

has a mean-square error of
, 1
E[(A - 70(U17 Tty UN))A] = vﬁ(z—NL)z'
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Figure 6.6: Pr[U; = 1|a] for N = 5, when the rule in (6.49) is used. The solid line
is the highest bit (i = 5), the dashed line is the second highest bit (: = 4), and the
dotted line is the lowest order bit (i = 1).

Since this error decreases exponentially with N, one could speculate that even with
noise in the observations Y;, the error might still be tolerable.

Figure 6.6 conveys the unfortunate problem with the conjecture. Note that for
the lowest order bit, Pr[U; = 1]a] ~ 1/2, independent of A. Thus, with the decision
rule (6.49), peripheral sensor 1 achieves Perrror &~ 1 /2 on its hypothesis testing
problem. As N increases, this same difficulty will be faced by all the three (or so0)
peripheral sensors that are working on the highest three bits. Thus, increasing N
does not buy additional decreases in the MSE.

This discussion would seem to indicate impossibility of the hypothesis testing
problem faced by sensors solving for the lower-order bits. One workaround would
be to coordinate many peripheral sensors to work on a single low-order bit. For
example, a group of sensors could use the methods of Section 6.7 to find a, and then
to classify the bit. But using this method to classify the bit means that that the
hypothesis testing problem corresponding to that bit is as difficult as solving for a
itself. In other words, we have gained nothing by breaking the parameter estimation
problem into a series of binary hypothesis testing problems, because some of these
constituent problems are as difficult as the original parameter estimation problem. |
In conclusion, we abandon this quantization heuristic as not very useful.
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6.10 Multiple Bits Per Sensor

6.10.1 Generalization of Design 1: Indicator Functions Re-
visited

We now consider a multiple-bit/sensor generalization of the strategy considered in
Section 6.7. This generalization is, we believe, new. Again, the peripheral sensors
use breakpoint quantizer rules, but now, since each sensor can transmit k,(k > 1)
bits we can have 2¥ — 1 thresholds per sensor. The i-th threshold of sensor j, Tj; is
defined by

Tii = Tu+l[E—-1)+ (2" -1)( -1)]A,

L (Z-1)N-1
Ty, = 5_( 2) A. (6.50)

Thus, as in the single bit/sensor case, the thresholds are evenly spaced about L/2
in increments of A.

We have two types of peripheral sensor decision rules. If for sensor j, T;; < 0,Vi
or T;; > 0,4 (that is, if the thresholds for sensor j do not straddle zero), then

97 y; < le) -
vi(y;) = i, T <y; STy, 1<i<2%-2, . (6.51)
2k — 1, Yi > T(Z"—l)j,

If, on the other hand, the thresholds for sensor 7 straddle zero, then we use the
decision rule

—m + 1) y; < T1j7
7i() =9 —m+i+1, Ty <y; <L, 1<i<28-2, (6.52)
2k —m, Yi 2 Tiar_vyj
where
m = arg min T;; > 0. (6.53)

2

Clearly, at most one sensor will use this second type of rule, while all of the other
sensors will use the first type of rule.
For the fusion center, we use the rule

+ Atgtraddle (6.54)

Yo(u1, -y un) = A [Z u,-] -A [Z (2°—1—w)

ieTt €T~

where Tt is the set of peripheral sensors for which T;; > 0,Vi and T~ is the set
of peripheral sensors for which T;; < 0,V¥i. Also, ug .44l correpsonds to the
peripheral sensor whose thresholds straddle zero; if there is no such straddler, then

Ustraddle = 0-
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6.10.2 Asymptotic Bias

Proposition 20 For A =1/,/(2k — 1)N, we have

Alrirn Elyo(u1,...,un)|a] = a. (6.55)
— 00
meaning that the strategy is asymptotically unbiased.

Proof: The proof is a simple modification of the proof of unbiasedness in Propo-
sition 18. For simplicity, we assume that no sensor has thresholds that straddle
Zero.

I}I_T}go E[vo(u1, .., un)|a]

iET+ €T~
2k_1 2k 1
= A Z ZE( Z Z]-_E(Ijt)
zeT"’ j=1 ieT— j=1
2k_1 2k_1
= A Y Y Py 2Tila)| —A |3 > Pr(yi < Tyila)
[ieT+ j=1 €T j=1
— o0 a—=zx 0 r—a
= a, (6.56)

where [;; is an indicator function: Ij; = 1 iff y; > Tj;.
This result motivates our interest in testing the algorithm for the finite N case.

6.10.3 Tradeoff Between Number of Sensors and Number
of Bits Per Sensor

In Table 6.7, we show the performance tradeoff between N (number of peripheral
sensors) and D (message alphabet size per sensor), for the multiple-breakpoint
technique introduced in the last section. In particular, when the product DN is
held constant, what (positive integer) values for N and D yield the lowest mean-
" square error?

The table indicates that for this particular problem, it is better to use as many
sensors as possible (and thus, to use D = 2 at each sensor). This is an intuitively
satisfying result. The reason that it is satisfying relates to the conditional inde-
pendence of the sensor observations. Roughly speaking, by “spreading” the sensor
observations over as many sensors as possible, the Gaussian corruption tends to
even out more than if, say, only two sensors receive observations.
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Number of | Number of | Mean-Square
Sensors Bits Error
12 1 0.445
6 2 0.589
4 3 0.684
3 4 0.746
20 1 0.272
10 2 0.416
5 4 0.609

Figure 6.7: Tradeoff between number of sensors and number of bits per sensor. This
is for L = 10,0 = 1.
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