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Abstract. Biosphere–atmosphere interactions strongly influ-
ence the chemical composition of the atmosphere. Simu-
lating these interactions at a detailed process-based level
has traditionally been computationally intensive and resource
prohibitive, commonly due to complexities in calculating ra-
diation and light at the leaf level within plant canopies. Here
we describe a surrogate canopy physics model based on the
MEGAN3 detailed canopy model parameterized using a sta-
tistical learning technique. This surrogate canopy model is
specifically designed to rapidly calculate leaf-level temper-
ature and photosynthetically active radiative (PAR) for use
in large-scale chemical transport models (CTMs). Our sur-
rogate model can reproduce the dominant spatiotemporal
variability of the more detailed MEGAN3 canopy model to
within 10 % across the globe. Implementation of this surro-
gate model into the GEOS-Chem CTM leads to small lo-
cal changes in ozone dry deposition velocities of less than
5 % and larger local changes in isoprene emissions of up
to ∼ 40 %, though annual global isoprene emissions remain
largely consistent (within 5 %). These changes to surface–
atmosphere exchange lead to small changes in surface ozone
concentrations of ±1 ppbv, modestly reducing the northern
hemispheric ozone bias, which is common to many CTMs,
here from 8 to 7 ppbv. The use of this computationally ef-
ficient surrogate canopy model drives emissions of isoprene
and concentrations of surface ozone closer to observationally
constrained values. Additionally, this surrogate model allows
for the further development and implementation of leaf-level
emission factors in the calculation of biogenic emissions in

the GEOS-Chem CTM. Though not the focus of this work,
this ultimately enables a complete implementation of the
MEGAN3 emissions framework within GEOS-Chem, which
produces 570 Tg yr−1 of isoprene for 2012.

1 Introduction

The biosphere plays an important role in modulating the
abundance and variability of trace gases and aerosol in the at-
mosphere. Direct emissions of gas-phase species are drivers
of the majority of the natural reactivity in the atmosphere and
are important precursor sources to pollutants and climate-
relevant species like ozone and particulate matter (Guenther
et al., 2012; IPCC, 2013; Safieddine et al., 2017). On the
other hand, vegetation serves as a direct sink for these same
species through a process known as dry deposition (Lelieveld
and Dentener, 2000; Silva and Heald, 2018). The physical
structure of the vegetation can also influence the production
and loss of atmospheric constituents through changes to at-
mospheric turbulent transport and reductions in the actinic
flux below the canopy (e.g., Makar et al., 2017). Addition-
ally, chemical reactions occurring within the plant canopy act
as a source and sink for reactive species in the above-canopy
atmosphere (Goldstein et al., 2004; Makar et al., 1999). Ul-
timately, the balance between the role vegetation plays as
a chemical source and sink is a controlling factor for the
abundance and variability of trace gases and aerosol across
many regions of the globe (e.g., Geddes et al., 2016; Silva et
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al., 2016; Unger, 2014). It is thus important to properly ac-
count for these processes when simulating the composition
and chemistry of the atmosphere.

Explicitly simulating biosphere–atmosphere interactions
necessitates a detailed representation of physical, chemical,
and biological processes that occur at the scale of an indi-
vidual plant. This is typically achieved by integrating a set
of energy and radiative balance equations vertically through-
out a canopy (e.g., Ashworth et al., 2015, 2016; Goudriaan
and Laar, 1994). This sort of physical model of the canopy
calculates the environmental parameters that drive the bio-
logical and chemical processes, which ultimately impact the
atmospheric fluxes of trace gases and aerosol (Guenther et
al., 2012; Lamb et al., 1996). These canopy models tend to
be computationally quite expensive and are based on mea-
surements taken at very fine resolution (e.g., meter or less),
while most atmospheric chemical transport models operate
on the 10–200 km scale. Reconciling these differences in
scale and addressing the steep computational requirements
inherent in both canopy models and atmospheric chemical
transport models are critical challenges in simulating chemi-
cally relevant interactions between the biosphere and the at-
mosphere.

Given the computational costs, atmospheric chemical
transport models approximate canopy physics and the re-
sulting effects on biosphere–atmosphere interactions through
various parameterizations. (e.g., Guenther et al., 2006; We-
sely, 1989; Zhang et al., 2003). Most of these parameteriza-
tions are based on observed relationships and are intended to
reduce the computational load around the calculation of the
temperature of leaves and the amount of light (specifically
photosynthetically active radiation, PAR) reaching leaves
throughout the canopy. These model parameterizations com-
monly assume that the temperature of leaves is equal to the
air temperature just above the plant canopy (e.g., Guenther
et al., 2006; Millet et al., 2010) or are based on parame-
terizations that ignore leaf temperature entirely (e.g., We-
sely, 1989). The parameterizations for leaf-level PAR vary
widely, from assuming that the PAR reaching leaves in the
canopy is equal to the flux of PAR incident on the top of
the canopy, to having some sort of reduced-complexity mul-
tiplicative factor that represents the bulk canopy effects (e.g.,
shading of leaves, Guenther et al., 2006; Wang et al., 1998).
To our knowledge, the overall impact of these parameterized
assumptions on the fidelity of modern chemical transport
models has not been comprehensively characterized. How-
ever, for biogenic isoprene emissions, these canopy approxi-
mations can lead to regional differences of greater than 20 %
relative to a fully detailed canopy model (Guenther et al.,
2006).

Direct representation of these processes is a necessary step
to improve model reliability and validity, particularly in a
rapidly changing Earth system (Committee on the Future of
Atmospheric Chemistry Research et al., 2016). Currently,
many processes related to canopy energy and radiative bal-

ance are not represented in models of atmospheric chemistry
due to computational constraints. In this work, we present a
reduced-complexity canopy model to calculate leaf tempera-
ture and PAR for use in large-scale chemical transport mod-
els. This reduced-complexity model removes the need for ap-
proximating the bulk effects of plant canopies on leaf-level
PAR and leaf temperature, and it allows for a more explicit
process-based representation of these effects on biosphere–
atmosphere interactions at the leaf level. Our reduced model
reproduces the output of the more detailed vegetation model
well, without the large computational overhead.

2 MEGAN3 canopy model

We develop and implement a computationally efficient sur-
rogate of the MEGAN3.0 canopy model (https://bai.ess.uci.
edu/megan, last access: 4 September 2019), an update from
previous versions of MEGAN (Guenther et al., 2006, 2012).
This canopy model calculates leaf temperature and leaf-level
PAR for a five-layer plant canopy for both sunlit and shaded
leaves, whereby each canopy layer represents a fraction of
the total plant canopy. The model is originally based largely
on Goudriaan and Laar (1994) and a brief description fol-
lows; for more information see Guenther et al. (1999, 2006,
2012).

In the MEGAN3 canopy model the fraction of sunlit leaves
in the canopy decreases exponentially as a function of the
local solar elevation angle, canopy leaf area index (LAI), a
clustering coefficient that accounts for leaf geometries, and a
canopy transparency coefficient representing the fraction of
the canopy that does not intercept incident radiation. The leaf
temperature is calculated from a system of energy balance
equations based on Goudriaan and Laar (1994) and Leuning
et al. (1995), with a maximum absolute difference between
the air temperature and leaf temperature of 10 ◦C. Leaf-level
PAR is computed as a function of incoming radiation inci-
dent to the canopy top, the sunlit fraction of leaves, LAI, and
a suite of geometric and radiative lookup table characteris-
tics, predominantly based on Goudriaan and Laar (1994), Le-
uning et al. (1995), and Spitters (1986). The full MEGAN3
canopy model takes as input time (day and hour), geograph-
ical location (latitude and longitude), air temperature, inci-
dent radiation on the top of the canopy, wind speed, hu-
midity, air pressure, LAI, and a set of canopy character-
istics (canopy biomass distribution, clustering coefficients,
etc.) in the form of a lookup table that varies by six vege-
tation types. The six vegetation types are needleleaf trees,
tropical forest trees, temperate broadleaf trees, shrubs, herba-
ceous plants, and crops. It is important to note that differing
canopy model choice and parameter selection can result in
substantial changes to the ultimate estimates of biosphere–
atmosphere exchange (Keenan et al., 2011).
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The MEGAN3 canopy model has been specifically devel-
oped for use in simulating biogenic emissions and has been
extensively applied in related studies (e.g., Chen et al., 2018;
Geron et al., 2016; Guenther et al., 2006). Additionally, the
MEGAN framework has been widely adopted across a vari-
ety of regional and global models (e.g., GEOS-Chem, WRF-
CHEM, and CESM). Thus, the MEGAN3 canopy model is a
good candidate for surrogate model development because it
enables a direct implementation of improved process-based
canopy physics into a variety of 3D models without the need
for substantial model architecture development.

3 Surrogate model development

To begin the surrogate model development, we first use a
variable selection approach to evaluate and rank which of the
suite of model input variables are most important for the sim-
ulation of both leaf-level PAR and temperature. To do this,
we use a machine-learning regression method for model sim-
plification and parameterization, specifically LASSO (least
absolute shrinkage and selection operator; Hastie et al.,
2001). As applied here, LASSO is a regression method that
calculates linear coefficients through a modified least squares
cost function, with the addition of a penalized L1 norm (the
sum of the absolute value of the coefficients). While LASSO
was originally developed as a complete regression method,
we follow the recommendations of Hastie et al. (2001) and
use LASSO only for variable importance ranking and dimen-
sionality reduction of the input variable space to the model.

We apply the linear LASSO method for rankings across
a full year of 3-hourly simulated canopy physics from the
MEGAN3 canopy model at the global scale for the year
2012. Input meteorology is from MERRA-2 assimilated me-
teorological fields at 2◦× 2.5◦ horizontal resolution (Gelaro
et al., 2017) and the vegetation distribution from the Olson
et al. (2001) land maps. LAI is derived from the MODIS
TERRA MOD15A2 product (Myneni et al., 2002, 2007)
regridded to 2◦× 2.5◦ horizontal resolution and a monthly
timescale. These input data are identical to those used in the
GEOS-Chem chemical transport model (CTM), described
below for direct comparison with prior work and ease of im-
plementation into that CTM. The spatial distribution of veg-
etation and LAI is summarized in Figs. 1 and 2, respectively.
In general, forested land classes have the highest LAI values
and are spread throughout the tropics and the northern lati-
tudes. Crops, grasses, and shrubs are located predominantly
in transitionary landscapes and near regions of larger popu-
lation (e.g., India, central North America, etc.), and they tend
to have lower LAI values.

The LASSO importance rankings are remarkably consis-
tent for both sunlit and shaded leaves and for all vertical lev-
els of the canopy. For each quantity, the two highest ranked
variables are consistent at each layer throughout the canopy
and have substantially larger importance to the final result

Figure 1. The percent of each 2◦× 2.5◦ grid box occupied by each
vegetation class used in this work. Panel (a) is forested vegetation,
and panel (b) is crops, grasses, and shrubland.

Figure 2. Annual average LAI from MODIS for the year 2012.

than any additional variable. For brevity we discuss only
those first two variables here. The two most important vari-
ables for the calculation of leaf temperature are air temper-
ature and wind speed. Air temperature dominates in impor-
tance for the calculation of leaf temperature, with a larger
coefficient emerging at a higher L1 norm penalty weighting.
Other variables that are physically important in nature (e.g.,
solar radiation) do not appear important in the LASSO rank-
ings due in part to how they covary with air temperature and
how the rankings are derived separately for sunlit and shaded
leaves. For the calculation of leaf PAR we find that the two
most important variables are PAR out of the lowermost at-
mospheric grid box (incident on the canopy) and the local
vegetation LAI. We use these selected variables to develop a
simplified parameterization for leaf temperature and PAR.
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Table 1. Regression coefficients for the canopy surrogate model.
Canopy level 1 represents the top of the canopy.

Canopy A B C D

level

Sunlit leaves 1 −13.891 1.064 1.083 0.002
2 −12.322 1.057 1.096 −0.128
3 −1.032 1.031 1.104 −0.298
4 −5.172 1.050 1.098 −0.445
5 −5.589 1.051 1.090 −0.535

Shaded leaves 1 −12.846 1.060 0.871 0.015
2 −11.343 1.053 0.890 −0.141
3 −1.068 1.031 0.916 −0.368
4 −5.551 1.051 0.941 −0.592
5 −5.955 1.053 0.956 −0.743

We model leaf temperature for a given canopy level, i
(Ti,leaf, K), as linear with 2 m air temperature (Tair, K):

Ti,leaf = Ai +Bi × Tair, (1)

where Ai and Bi are fitted parameters per canopy level (i).
This ignores the addition of the second most important vari-
able, wind speed. However, the addition of wind speed to the
regression only improves the performance of the model by
less than 1 % in total bias and R2; thus, for simplicity, we
neglect this variable.

For the calculation of leaf-level PAR at a given canopy
level (PARi,leaf, µmolm−2 s−1), we use an exponential Beer’s
law analog, including the influence of leaf area index (LAI)
and the PAR incident to the top of the canopy (PARtoc,
W m−2):

PARi,leaf = PARtoc× exp(Ci +Di ×LAI), (2)

where Ci and Di are fitted parameters per canopy level (i).
This exponential functional form is chosen due to the ob-
served and simulated relationships between LAI and canopy
light interception (Engel et al., 1987; Goudriaan and Mon-
teith, 1990) following a similar functional form.

We fit Eqs. (1) and (2) for all layers of the canopy and
for sunlit and shaded leaves, resulting in 20 total free param-
eters necessary to model the entire plant canopy across the
globe. In this regression method, we ignore the role of dif-
fering vegetation classes and apply the regression agnostic to
vegetation type. This is done to keep the total necessary num-
ber of free parameters low (20 versus 120) and because this
more parsimonious model performs quite well (see Sect. 3.1)
without the need for additional vegetation-type-specific coef-
ficients. The resulting surrogate model coefficients are sum-
marized in Table 1.

The final quantity necessary for the canopy model is the
fraction of sunlit and shaded leaves. Here, that fraction in
each layer of the plant canopy is calculated directly following
the MEGAN3 code (see Guenther et al., 2006, 2012), without

any model simplification. The sunlit fraction is calculated as
follows:

Kb = 0.5×
C1

sinβ
α1

sinβ
, (3)

sunlit fraction= exp
(
Kb×

LAI
1−α2

× f

)
, (4)

where β is the solar angle above the horizon,Kb is the extinc-
tion coefficient for black leaves, C1 is the canopy-clustering
coefficient, C2 is the canopy transparency, and f is the frac-
tion of biomass in the canopy light travels through to reach
a given leaf (the vector [0.05, 0.23, 0.5, 0.77, 0.95]). Consis-
tent with the MEGAN3 parent canopy model, we assume a
Gaussian distribution of biomass in the canopy, centered in
the middle canopy layer, a canopy transparency of 0.2, and a
leaf-clustering coefficient of 0.9.

From this relatively simple three-function parameteriza-
tion (leaf temperature, leaf PAR, and sunlit leaf fraction), we
are able to implement more physically realistic parameteriza-
tions for biosphere–atmosphere interactions in atmospheric
chemical transport models.

3.1 Surrogate model performance

Here, we evaluate the surrogate model performance for all
vegetation globally.

3.1.1 Temperature

The surrogate-model-simulated annual canopy average leaf
temperature distribution and performance for 2012 are sum-
marized in Figs. 3 and 4. In Fig. 3, the average for each
canopy layer is calculated as a sum of the sunlit and shaded
leaves, weighted by the sunlit fraction of that layer. In turn,
the canopy average is calculated as the weighted sum of
the layer averages, weighted by the fraction of the canopy
biomass in each layer. The annual average temperature is
shown in Fig. 3a, where it largely follows a latitudinal gra-
dient. The warmest temperatures are ∼ 310 K in the tropics,
and the coldest average leaf temperatures are ∼ 280 K in the
northern high-latitude boreal regions. The surrogate model is
linear with the 2 m “near-surface” air temperature and there-
fore follows that spatial distribution directly.

The surrogate model for leaf temperature performs well,
with the annual average spatial R2 and mean bias relative to
the full model shown in Fig. 3b and c, respectively. Across
all regions, the R2 is very high, indicating that a linear re-
lationship between 2 m air temperature and canopy average
temperature is a good approximation for capturing the vari-
ability of the full MEGAN3 canopy model. The temperature
R2 drops below 0.90 only in coastal regions and grid boxes
that contain very little vegetation, representing less than 5 %
of all vegetated areas. The temperature surrogate bias is also
generally quite low, as shown in Fig. 3c. The majority of
regions have an absolute mean bias of less than 1 K, and
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more than 90 % of the annual average mean biases are less
than 2 K. The surrogate model generally computes tempera-
tures that are biased cool over highly vegetated tropical and
subtropical regions, and it slightly overestimates temperature
over northern boreal forests (by ∼ 0.1 K). The most substan-
tial overestimations occur in or near the hot and arid regions
of the globe and always in regions where there is little veg-
etative cover at all. On a relative scale these biases are quite
small; all are less than 1 % of the total magnitude. The model
development process described in Sect. 3 removed the veg-
etation type discrimination in the parent MEGAN3 canopy
model. This leads to some spatial coherence in the global bias
patterns, whereby regions dominated by coniferous forests,
grasses, and shrubs (e.g., boreal Northern Hemisphere and
the western United States) tend to be slightly biased warm,
and the other vegetation types are biased slightly cool.

The vertical profile of annual average leaf temperature is
shown in Fig. 4a. The broad shape of the canopy profile is
consistent across vegetation types and the globe. The upper
canopy layers are cooler than the lower canopy layers, as
an insulating effect from air temperature occurs within the
canopy. The higher-order variability (e.g., small differences
between adjacent layers at the top and bottom of the canopy)
stems from the more detailed representation of canopy en-
ergy balance in the full MEGAN3 model, which includes the
influence of terms like PAR, relative humidity, LAI, and wind
speed. However, this higher-order variability is quite consis-
tent, allowing it to be reproduced in the simplified surrogate
model.

Similar to the spatial performance, the overall surrogate
model performs well throughout the canopy. The surrogate
model temperature R2 is shown in Fig. 4b. The values are all
near 1.0, with the lowest value of 0.97 in the middle of the
canopy, where the transition from cooler to warmer leaves is
slightly more difficult for the surrogate model to capture. As
demonstrated in Fig. 4c, the bias throughout the canopy is
low as well. On a global annual average, the surrogate model
is biased cool but only slightly (on both a relative and abso-
lute scale). The highest-magnitude bias is at the top canopy
layer at −0.04 K.

3.1.2 Photosynthetically active radiation

The annual canopy average leaf-level PAR for 2012 is shown
spatially in Fig. 5a. In Fig. 5, canopy temperature averages
are calculated using the same method as for canopy temper-
ature. Annual average PAR varies from ∼ 200 µmolm−2 s−1

to greater than 600 µmolm−2 s−1. This spatial variability is
a function of both PAR incident on the top of the canopy
(largely related to cloud cover and solar angle) and the
canopy LAI. Leaf-level PAR in the surrogate model varies
linearly with incident PAR and decreases exponentially with
LAI. Additionally, the reduction under high LAI is exacer-
bated due to a higher fraction of shaded leaves in high-LAI
canopies, which have substantially lower average PAR. The

Figure 3. Surrogate model performance for the annual canopy av-
erage leaf temperature in 2012. Panels are as follows: (a) annual
average surrogate model leaf-level temperature (Kelvin), (b) R2

between the surrogate and the full model leaf-level temperature,
and (c) annual average leaf-level temperature bias (surrogate–full
model, K).

highest leaf-level PAR values are generally located in arid
regions, where LAI and the number of cloudy days are quite
low. The lowest values are located in the equatorial tropical
rainforests and the northern boreal forests. The low leaf-level
PAR values in the rainforest are coincident with the highest
LAI values globally, leading to very strong shading effects
below the first canopy layer. The northern boreal forests have
low leaf-level PAR, in part due to relatively high LAI but also
due to reduced incoming PAR in the winter months when the
solar angle is low.

The annual average performance of the surrogate leaf-
level PAR relative to the full model is shown in Fig. 5b
and c. The temporal R2 over a full year in Fig. 5b is gen-
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2574 S. J. Silva et al.: Development of a reduced-complexity plant canopy physics surrogate model

Figure 4. Surrogate model performance for the annual average
vertical canopy temperature profile in 2012. Panel (a) shows the
vertical average surrogate model leaf-level temperature (Kelvin).
Panel (b) shows the surrogate model R2 against the full model.
Panel (c) shows the leaf-level temperature bias (K) of the surrogate
model compared to the full model.

erally quite high, indicating that the surrogate formulation
captures the majority of the temporal variability inherent in
the full model. The R2 values range from 0.92 to 1.0. The
highest R2 values are in regions with low LAI, where the
effects of shading and other canopy physical processes are
greatly reduced. The worst model R2 performance is over
two characteristic regions: higher elevations with low vege-
tation densities (i.e., global deserts in Central Asia and South
America) and those with the highest LAI. Both regions rep-
resent extreme scenarios for canopy radiative physics. The
higher-elevation regions with low vegetation densities have
very little leaf shading at all throughout the year, and thus the
canopy physics represented with a simple exponential decay
are no longer as relevant. In the high-LAI regions, the ele-
vated importance of shading and resulting complexity in the
PAR calculation are more challenging for the simplified rep-
resentation of the surrogate model. However, this poor per-

Figure 5. Surrogate model performance for the annual canopy av-
erage leaf PAR in 2012. Panels are as follows: (a) annual average
surrogate model leaf-level PAR (µmolm−2 s−1), (b) R2 between
the leaf-level PAR simulated using the surrogate and the full model,
and (c) annual average leaf-level PAR bias (surrogate–full model,
µmolm−2 s−1).

formance still has a quite high R2, with the lowest value of
0.92. The annual average model biases are generally within
±40 µmolm−2 s−1, with a few more extreme values reaching
±200 µmolm−2 s−1. The surrogate model is broadly biased
high over regions with lower LAI and slightly low over re-
gions with high LAI. In a relative sense, these changes are
nearly all within 10 %–15 %, with a maximum normalized
mean bias of 0.4.

The average vertical distribution of leaf-level PAR
throughout the canopy and the associated surrogate model
performance are shown in Fig. 6. To explore the additional
dependence on LAI, the quantities shown are separated into
three LAI ranges. These are as follows: a low range with LAI

Geosci. Model Dev., 13, 2569–2585, 2020 https://doi.org/10.5194/gmd-13-2569-2020
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less than 0.5, a midrange with LAI between 0.5 and 5, and a
high-LAI range containing canopies with a total LAI greater
than 5. The low LAI range represents ∼ 40 % of all vegeta-
tion throughout the year, the middle range represents nearly
60 %, and the high-LAI range contains only a small fraction
of all vegetation (∼ 1 %).

The average distribution of PAR across canopy levels is
shown in Fig. 6a. As LAI increases, there is a substantial re-
duction in leaf-level PAR deeper into the vegetated canopy.
This is particularly obvious with the high-LAI range, con-
sistent with substantial shading and light interception above
the bottom of densely vegetated canopies. On the other hand,
the variability throughout the low-LAI canopies is quite
small. This LAI dependence explains in part the relatively
low canopy average leaf-level PAR throughout the tropi-
cal forests in Fig. 5a. The variability in the PAR at the top
canopy layer (canopy level 1 in Fig. 6a) stems from two
major sources. The first is simply the spatial distribution of
these LAI ranges in relationship to the annual average in-
cident PAR to the canopy top. Very high LAI values oc-
cur primarily over the tropics, where sunlight is consistently
high throughout the year and the seasonal effects of chang-
ing solar angles is small. The opposite is true for many of
the regions with smaller LAI values, which are distributed
more evenly across the globe. A second-order effect in the
MEGAN3 canopy model is that of in-layer attenuation of
light and shading throughout the canopy, whereby leaves in a
given layer may intercept light and shade leaves lower within
that same layer. This has the effect of reducing the layer aver-
age leaf-level PAR as a function of leaf geometries and LAI,
and it explains why the highest canopy layer average leaf-
level PAR is not the same as the average PAR incident on the
top of the canopy.

Figure 6b and c summarize the statistical performance of
the surrogate model vertically through the canopy in terms
of the R2 and the mean bias, respectively. Overall, the sur-
rogate model reproduces the PAR variability compared to
the full parent model well. For both the low and middle LAI
ranges (LAI less than 5), all R2 values are greater than∼ 0.9.
The only substantially lower R2 values are from the lower
canopy in high-LAI regions, where PAR is generally quite
small (see Fig. 6a). The surrogate model struggles somewhat
to capture this lower canopy variability, due in large part to
the increased complexity of resolving canopy shading and ra-
diative physics in high-LAI canopies. However, the ultimate
influence on the total canopy-scale bias is generally low.

The vertical distribution of that bias is shown in Fig. 6c.
Broadly, the absolute PAR bias is low (less than 5 % on a rel-
ative scale) and decreases throughout the canopy. All biases
are positive except for the top canopy layer for high-LAI-
range canopies; this poor fit is likely related to the limited
representation of high-LAI regions in the full dataset (only
∼ 1 % of all vegetated area) and is not present if a lower
cutoff for high LAI ranges is used (e.g., LAI> 3). The de-
creasing magnitude throughout the canopy is largely related

Figure 6. Surrogate model performance for the annual aver-
age vertical canopy PAR profile in 2012 as a function of LAI.
Panel (a) shows the vertical average surrogate model leaf-level PAR
(µmolm−2 s−1) for low-LAI (red), midrange LAI (blue), and high-
LAI canopies. Panel (b) shows the surrogate model R2 against the
full model. Panel (c) shows the leaf-level PAR bias (µmolm−2 s−1)
of the surrogate model compared to the full model. Level 1 is the
top of the canopy.

to the decreasing overall leaf-level PAR (see Fig. 6a). It im-
portant to note that the bias terms are all sensitive to the
choice of LAI bin ranges, and the variability in bias at each
level can be quite large (e.g., above 50 µmolm−2 s−1 in the
top canopy layer). For both the high and middle LAI ranges,
the absolute magnitude of the PAR bias decreases through-
out the canopy, and the bias remains relatively constant for
low-LAI-range vegetation. On a relative scale, these biases
are all quite small, with a normalized mean bias usually less
than 5 %. The exception to this is the lowest layer of the high-
LAI-range canopies. In this low canopy layer the magnitude
of the bias is quite low, as is the total magnitude of leaf-level
PAR; the resulting difference between small numbers leads
to a relatively large normalized mean bias of ∼ 0.3.

An essential function of canopy models used in CTMs is
to calculate the amount of light that falls on already light-
saturated leaf surfaces. This regulates the effect of a change
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Figure 7. The annual grid box average fraction of light-saturated
leaves as simulated by the full and surrogate models throughout the
canopy for the year 2012. The color bar represents the number of
observations in a given hex. The 1 : 1 line is shown in black.

in PAR incident on the canopy on various biological and
physical processes (e.g., biogenic emissions). We estimate
the fraction of leaves that are light-saturated using the γPAR
formulation from the MEGAN algorithm (Guenther et al.,
2006, 2012). This variable aims to capture the amount of
light saturation on a given leaf and ranges from 0 to 1, with
higher values corresponding to more saturated leaves. To ex-
plore light saturation, we examine cases in which the γPAR
value is greater than 0.9. A scatterplot of the annual aver-
age fraction of leaves that are light-saturated (γPAR ≥ 0.9)
per model grid box for both the full model and the surro-
gate model throughout the canopy is shown in Fig. 7. The
surrogate model reproduces the full model fraction of light-
saturated leaves well, generally to within ∼ 5 %, with a me-
dian bias of −2 %.

Ultimately, this assessment demonstrates that the surro-
gate model reproduces the parent MEGAN3 canopy model
well for both leaf temperature and leaf-level PAR. The expo-
nential relationship between leaf-level PAR and canopy inci-
dent PAR and the linear relationship between leaf tempera-
ture and near-surface air temperature capture the majority of
the information inherent in the parent model. Some higher-
order variability in the absolute magnitude of the variables is
missing from this surrogate model; however, the biases are
generally all within ∼ 10 %.

4 Chemical transport model description

We evaluate the impact of the canopy model pa-
rameterization on atmospheric composition using
the GEOS-Chem v12.3.0 chemical transport model
(http://www.geos-chem.org, last access: 30 May 2020,
https://doi.org/10.5281/zenodo.2620535, The International
GEOS-Chem User Community, 2019). GEOS-Chem is a

computational model for simulating atmospheric chemistry,
including a detailed HOx–NOx–BrOx tropospheric chemical
mechanism (Bey et al., 2001; Mao et al., 2013; Travis et al.,
2016). We drive GEOS-Chem with MERRA-2 meteorology
at 2◦×2.5◦ spatial resolution with 47 vertical layers (Gelaro
et al., 2017). The time steps for convection and chemistry
are 10 and 20 min, respectively. Identically to the canopy
model input data, we use LAI values from the MODIS Terra
MOD15A2 product (Myneni et al., 2002, 2007) and plant
functional types (PFTs) from the Olson et al. (2001) dataset.
Fire emissions are from the Global Fire Emissions Database
v4 (GFED4; Giglio et al., 2013), and global anthropogenic
emissions are from the Community Emissions Data System
inventory (CEDS; Hoesly et al., 2018). Regional emissions
over the United States, Africa, and Asia are from the
NEI 2011 (Travis et al., 2016), DICE-Africa (Marais and
Wiedinmyer, 2016), and MIX (Li et al., 2017) emissions
inventories, respectively. Soil NOx emissions are calculated
following Hudman et al. (2012). Simulations are shown for
the years 2012 and 2013, with the first year discarded for
spin-up when considering gas-phase chemical impacts.

4.1 MEGAN emissions

The biogenic emissions scheme in GEOS-Chem v12.3.0,
MEGAN2.1, is based on Guenther et al. (2006, 2012) and
Millet et al. (2010). The emissions of a given compound
are calculated from base canopy-level emission factors mul-
tiplied by “activity factors” representing standard processes
that govern biogenic emissions (temperature, PAR, light de-
pendence, etc.) and “stress factors” modeling the effect of
vegetative stress (heat, drought, etc.) on biogenic emissions.
Each of these activity and stress factors vary with the envi-
ronmental state. The base emission factor itself varies with
vegetation type, and these activity factors respond to leaf
temperature, leaf-level PAR, leaf age, leaf area index, soil
moisture, and atmospheric CO2 concentrations. The base
emission factors used in this work are consistent with those
used in GEOS-Chem v12.3.0; an example for isoprene is
shown in Fig. 8. The emission factors are highest in forested
regions and lowest over areas with little vegetation (e.g.,
deserts). These emission factors are regridded from the orig-
inal resolution of 0.25◦×0.3125◦ to match the GEOS-Chem
resolution of 2◦× 2.5◦.

As GEOS-Chem v12.3.0 has no representation of plant
canopy physics, the LAI, temperature, and PAR activity fac-
tors are all reparameterized following Guenther et al. (2006)
in the standard model. In this parameterization, leaf temper-
ature is assumed to equal air temperature in the calculation
of the temperature activity factor. The LAI and PAR activity
factors are calculated in an approach known as the parame-
terized canopy environment emission activity (PCEEA) ap-
proach that does not include any description of the vertical
distribution of vegetation and only includes responses to the
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Figure 8. Base isoprene emission factors used in this work.

LAI, PAR incident to the top of the canopy, and the solar
zenith angle.

We modify the MEGAN implementation in GEOS-Chem
to allow for the representation of canopy physics described
in Sect. 3. In order to properly scale all emission factors
to the plant canopy using a canopy model, a normaliza-
tion factor must be applied at a set of standard environmen-
tal and ecological conditions (Guenther et al., 2006, 2012).
This normalization factor varies depending on the choice of
those standard conditions and the canopy model used. In
MEGAN2.1 these standard conditions are LAI of 5, cur-
rent air temperature of 303 K, current incident PAR at the
canopy top of 1500 µmolm−2 s−1, and a 10 %/80 %/10 %
split of growing, mature, and senescent leaves (Guenther et
al., 2012; Kaiser et al., 2018). We calculate other necessary
standard conditions, specifically the 24 h average air temper-
ature and PAR, from the meteorological fields conditional on
locations that meet the previously described standard con-
ditions. In situations in which all of the previous instanta-
neous standard conditions (e.g., current temperature 303 K,
current PAR 1500 µmolm−2 s−1, and LAI 5) are jointly met
to within ±10 %, we calculate the 24 h average prior mete-
orological conditions from the global reanalysis fields and
use the mean of those calculations as the standard 24 h av-
erage conditions. The resulting standard conditions for 24 h
average temperature and 24 h average PAR are 298.5 K and
740 µmolm−2 s−1, respectively. These standard conditions
result in a normalization factor of 0.21 using the surro-
gate canopy model developed in this work. The value of
0.21 is lower than those used in implementations of previ-
ous MEGAN model versions in other models such as CLM
(0.3) and WRF-Chem (0.57) (Guenther et al., 2012). It is im-
portant to note that the normalization factor approximately
scales with the square of the current temperature conditions
and linearly with the current PAR conditions. For the 24 h
average conditions, the scaling is reduced to approximately
linear for temperature and as a square root for PAR. Given
this, small deviations from these standard conditions (e.g.,
those that could arise from different 24 h averaging method-
ology) can lead to substantial changes in the normaliza-

tion factor. Additionally, consistent with previous work these
standard conditional calculations are likely variable across
model meteorological configurations and should be recalcu-
lated on a model-specific basis (Guenther et al., 2012). Since
this normalization factor is applied consistently to all emis-
sions globally at all times, it linearly modulates all biogenic
emissions. As such, the total emissions calculated by the
MEGAN2.1 emissions framework are highly sensitive to the
parameter choices made in this normalization processes.

In GEOS-Chem v12.3.0 we update the activity factors as-
sociated with PAR, LAI, and temperature as well as the nor-
malization to take advantage of our new canopy surrogate
model. This enables a full implementation of the most re-
cent MEGAN3 emission activity algorithm in the GEOS-
Chem model. In the PCEEA implementation of MEGAN
in the base version of GEOS-Chem, activity factors are cal-
culated separately for PAR (γP), LAI (γLAI), and tempera-
ture (γT ) and then multiplied together following Guenther et
al. (2006):

γPCEEA = γLAIγT γP. (5)

Following MEGAN3, we implement PAR and tempera-
ture activity factors that are calculated jointly per canopy
level and summed together weighted by the vertical canopy
biomass distribution. In this work, as in previous non-
PCEEA versions of the MEGAN framework (Guenther et al.,
2006, 2012), the effect of LAI is calculated through direct
multiplication of the emission factor by LAI as opposed to
an activity factor formulation, along with a canopy normal-
ization factor (CCE).

γCanopy = CCELAIγTP (6)

γTP =

5∑
l=1

wlγPγT (7)

These activity factors for PAR, LAI, and temperature are the
same as those in Guenther et al. (2012) as averages through-
out the canopy weighted by the biomass fraction within a
given canopy layer (wl). There is an additional canopy depth
emission activity response applied to the light-dependent ac-
tivity factors, which is intended to model the variability of
emissions throughout the canopy (e.g., Harley et al., 1996).
This canopy depth activity factor is a multiplicative factor
that varies linearly as a function of LAI and canopy depth,
with a value between 0 and 1.3. For clarity, we refer to the
MEGAN emissions implementation in GEOS-Chem using
the γPCEEA activity factors as “MEGANPCEEA” and those us-
ing the γCanopy activity factors as “MEGANCanopy”. While
γT in the MEGANPCEEA approach follows a similar func-
tional form to that in MEGANCanopy, the lack of vertical
canopy structure in the MEGANPCEEA configuration leads to
a very different treatment of the joint effects of temperature,
PAR, and LAI on emissions. Specifically, the MEGANPCEEA
approach aims to approximate the joint effects of shading and
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temperature change within a canopy, whereas MEGANCanopy
aims to directly simulate those processes. We use the canopy
physics surrogate model described in Sect. 3 to calculate the
leaf temperature and PAR in the MEGANCanopy implemen-
tation.

Though stress factors in the MEGAN framework allow for
the additional capability to evaluate the impact of vegetative
stress processes on emissions (e.g. Geron et al., 2016), we do
not enable those processes in this study. The other activity
factors (leaf age, soil moisture, and CO2 inhibition) are the
same in both MEGANCanopy and MEGANPCEEA.

4.2 Dry deposition

Dry deposition in GEOS-Chem v12.3.0 is calculated through
a resistor-in-series approach based on the Wesely (1989)
parameterization, originally described and implemented in
Wang et al. (1998). In this approach, the dry depositional
flux of gas-phase species is calculated as the surface concen-
tration of that gas multiplied by a transfer velocity known as
the “dry deposition velocity”. A recent assessment of the dry
deposition velocity parameterization in GEOS-Chem found
that biases in simulated dry deposition velocities are in gen-
eral quite low, though there is evidence that missing key pro-
cesses may be responsible for missing variability in the sim-
ulation (Silva and Heald, 2018).

Prior to this work, canopy effects were not directly con-
sidered in GEOS-Chem dry deposition and only approxi-
mated in bulk using a polynomial decomposition scheme
(Wang et al., 1998) that calculated a single constant jointly
representing both a multiplicative factor (1+ b/PARleaf, b =
50 µmolm−2 s−1) to the stomatal resistance from Baldocchi
et al. (1987) based on leaf-level PAR and a normalization of
the stomatal resistance by LAI. Here, we replace the polyno-
mial decomposition scheme and use the leaf-level PAR cal-
culations from the canopy surrogate to directly calculate the
multiplicative factor and then explicitly normalize by LAI.
The LAI normalization in the original polynomial decompo-
sition calculates values that are a factor of ∼ 1.7 higher than
those calculated through direct normalization when using the
surrogate model. To maintain the same magnitude of the sim-
ulated dry deposition velocities as in the standard model,
which are generally unbiased (Silva and Heald, 2018), we
scale the stomatal resistance by a factor of 0.6.

5 Surrogate model integration into GEOS-Chem

Implementing the updated canopy surrogate in a global
model directly impacts the surface–atmosphere exchange
processes of biogenic emissions and dry deposition, which
together influence the chemical composition of the atmo-
sphere. In this section we outline the changes to both surface
processes, focusing on isoprene emissions and ozone dry de-

position, followed by the changes to surface-level ozone con-
centrations in the GEOS-Chem model.

The impact of the canopy model on isoprene emissions
in 2012 is summarized in Fig. 9. The annual average iso-
prene emissions using the MEGANCanopy emissions imple-
mentation are shown in Fig. 9a, with the highest emissions in
the tropics and subtropics, as well as the southeastern United
States. Though not distinct in Fig. 9, the boreal forests are
a substantial emitter of biogenic species during the summer
months. The relatively small emissions from this region dur-
ing the winter months reduce the prominence of these emis-
sions on the annual average. The global annual total of iso-
prene emitted in 2012 from the MEGANCanopy configuration
is ∼ 350 Tg C yr−1.

The annual average differences in the simulated iso-
prene emissions following implementation of the surrogate
canopy model (MEGANCanopy – MEGANPCEEA) are shown
in Fig. 9b. In general, emissions decrease over forested re-
gions and increase over non-forested (grasses, crops, and
shrubland) areas. The highest absolute changes are the de-
crease in the equatorial Amazon and the increase in north-
ern Australia. On a relative scale, the forested and non-
forested differences are more apparent. This relative change
(MEGANCanopy/MEGANPCEEA) is shown in Fig. 9c. While
there are relatively modest decreases in tropical and boreal
forests, the emissions increase in the heavily cropped Indian
subcontinent and sub-Saharan Africa shows the largest rel-
ative change. Though the spatial variability in the relative
difference is substantial, the annual global isoprene emis-
sions from the canopy model are within 5 % of the origi-
nal model version (∼ 340 Tg C yr−1). These results are con-
sistent with those from Guenther et al. (2006), who found
that the global total biases in isoprene emissions were low,
but spatial variability was large, when using a parameter-
ized approach (MEGANPCEEA) over a direct canopy model
implementation in the MEGAN framework (as in the surro-
gate model application, MEGANCanopy). On aggregate, these
changes are all well within the stated uncertainty of the
MEGAN isoprene emissions of approximately a factor of 2
(Guenther et al., 2012).

It is not possible to directly parse the individual process
contributions to the total emissions changes due to the fun-
damentally different coupled treatments of the influence of
temperature, PAR, and canopy structure on biogenic emis-
sions through the activity factors in both the MEGANCanopy
and the MEGANPCEEA configurations. However, a compari-
son of the isoprene differences between the two simulations
against LAI, leaf-level PAR, and leaf temperature (Fig. 10)
indicates that the changes are most strongly driven by the
leaf-level PAR and LAI effects. The isoprene emissions
changes are directly proportional to leaf-level PAR, inversely
proportional to LAI, and show no substantial relationship to
leaf temperature. The forested and non-forested differences
in Fig. 9 can be explained further by the correlations shown
in Fig. 10. The forested areas with the largest decreases in
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Figure 9. Annual average (2012) isoprene emissions simulated
in GEOS-Chem driven by the surrogate model canopy physics
(MEGANCanopy). Panel (a) shows the annual average emissions.
Panel (b) shows the difference between the surrogate model and
the base version of simulated emissions. Panel (c) shows the rela-
tive difference between the surrogate model and the base version of
simulated emissions (surrogate–base model).

isoprene emissions tend to have high LAI values and lower
canopy average leaf PAR, whereas the opposite is true for
the non-forest locations. The relationships in Fig. 10 support
the interpretation that the leaf-level PAR and LAI effects are
the largest drivers of change in biogenic isoprene emissions
between the two model versions. Overall, these results in-
dicate that the representation of canopy radiative physics is
more important than thermodynamically resolving the dif-
ference between air and leaf temperature for simulating bio-
genic emissions in the MEGAN framework.

There are few spatial constraints on isoprene emissions
that can act as independent validation data for the new
model framework. However, recent work over the southeast-

Figure 10. Difference in annual average isoprene emissions be-
tween the surrogate canopy model (MEGANCanopy) and the base
simulation (MEGANPCEEA) (atoms C cm−2 s−1; see Fig. 9b) as a
function of LAI, leaf-level PAR (µmolm−2 s−1), and leaf tempera-
ture (K). Grid boxes dominated by water were filtered and removed
from these figures. The color bar represents the number of observa-
tions in a given hex.

ern United States (Kaiser et al., 2018; Travis et al., 2016; Yu
et al., 2016) indicates that the base version of GEOS-Chem
used here (v12.3.0), which uses MEGANPCEEA, overesti-
mates isoprene emissions by 15 %–40 %. The MEGANCanopy
configuration reduces isoprene emissions in most locations in
the southeastern United States by∼ 10 % and locally leads to
reductions as large as ∼ 20 %, bringing the model into better
agreement with these observational constraints.

The MEGAN emissions framework calculates the emis-
sions of other non-isoprene biogenic species as well, in-
cluding monoterpenes. The influence of the canopy surro-
gate model on monoterpene emissions is shown in Fig. 11.
The annual total monoterpene emissions in 2012 from
MEGANCanopy are ∼ 95 Tg C yr−1. These emissions are
shown in Fig. 11a and are highest over the densely vege-
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tated regions of the world, in particular the tropics. Sim-
ilar to isoprene emissions, monoterpene emissions in the
northern-latitude forests peak during summer months. The
implementation of the canopy surrogate model reduces
global annual total monoterpene emissions by approximately
20 %. The annual average absolute and relative changes to
monoterpene emissions due to the canopy surrogate model
(MEGANCanopy – MEGANPCEEA) are shown in Fig. 11b
and c, respectively. Simulated monoterpene emissions dif-
fer from isoprene emissions in that monoterpene emissions
are more sensitive to temperature, with an additional influ-
ence of a light-independent emission factor that varies with
leaf temperature (Guenther et al., 2012). There is a fairly
constant 20 %–30 % decrease across regions with lower LAI
values, including the African savannahs and the Indian sub-
continent. The highest absolute changes are in transitional
areas near high-LAI forests with warmer temperatures (the
tropics and subtropics). The high-LAI areas of the tropical
and northern forests show smaller decreases of∼ 5 %. These
changes, while substantial, are well within the stated un-
certainty ranges in monoterpene emissions of the MEGAN
model (300 %–400 %; Guenther et al., 2012).

Changes in simulated ozone dry deposition velocities in
2012 are summarized in Fig. 12. Figure 12a shows the an-
nual average spatial distribution of ozone dry deposition ve-
locities. The values vary from less than 0.1 cm s−1 over the
global oceans to above 0.5 cm s−1 in densely vegetated re-
gions like the tropical rainforests.

The impact of the updated canopy model on ozone dry
deposition velocities is in general quite small, with an aver-
age change of near zero (∼ 0.004 cm s−1). The annual av-
erage relative change is shown in Fig. 12b and the abso-
lute difference in Fig. 12c, both in relation to the base ver-
sion of GEOS-Chem v12.3.0. These changes are nearly all
within ±5 %, or ±0.01 cm s−1, with a maximum change of
15 % (0.04 cm s−1). Relative changes track most strongly
with broadleaf and coniferous forested areas. This is con-
sistent with those regions being most sensitive to stomatal
deposition (Silva and Heald, 2018), as the canopy scheme
implemented here changes dry deposition only through the
calculation of the stomatal resistance term.

The small overall changes to surface–atmosphere ex-
change processes associated with the updated canopy scheme
produce only a modest impact on simulated atmospheric
composition. We describe the changes to surface ozone here
as an illustrative example.

The annual average spatial difference in surface ozone be-
tween a simulation using the canopy physics described here
and the base version of GEOS-Chem is shown in Fig. 13.
These changes are all generally quite small; all are within
10 % of the base simulated annual averages. The changes are
generally within ±1 ppbv, with the largest absolute changes
over regions with the largest changes in isoprene emissions.
The distribution of differences largely follows well-known
NOx–VOC ozone formation patterns. The NOx-limited re-

Figure 11. Annual average (2012) monoterpene emissions simu-
lated in GEOS-Chem driven by the surrogate model canopy physics.
Panel (a) shows the annual average emissions. Panel (b) shows the
difference between the surrogate model and the base version of sim-
ulated emissions. Panel (c) shows the relative difference between
the surrogate model and the base version of simulated emissions
(surrogate–base model).

gions of the world, in particular the remote tropics, show
an inverse relationship with isoprene emissions. This is con-
sistent with ozone titration by isoprene in the presence of
low NOx . The largest changes in ozone over the VOC-
limited regimes of India and China directly correspond to the
changes in isoprene emissions, with enhanced isoprene emis-
sions over the Indian subcontinent increasing ozone concen-
trations and the decrease in isoprene emissions over China
leading to a decline in ozone. The overall influence of the
changes in ozone dry deposition velocity is fairly negligible.
Even regions where the dry deposition velocity change is the
largest (e.g., the Amazon) are dominated by the shift in iso-
prene emissions.
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Figure 12. Annual average (2012) ozone dry deposition veloci-
ties simulated in GEOS-Chem when driven by the surrogate model
canopy physics. Panel (a) shows the annual average dry deposition
velocities (cm s−1). Panel (b) shows the difference between the sur-
rogate model and the base version of simulated dry deposition ve-
locities (cm s−1). Panel (c) shows the relative difference between
the surrogate model and the base version of simulated dry deposi-
tion velocities (surrogate–base model).

In total, the changes in surface ozone concentrations
slightly ameliorate known biases. There is a persistent high
bias (∼ 10 ppbv) across chemical transport models in simu-
lating surface ozone concentrations over the continental mid-
latitudes (Travis et al., 2016). The addition of the new canopy
physics parameterization very modestly reduces this bias in
GEOS-Chem (approximately 8 ppbv) by about 1 ppbv, driv-
ing simulated ozone closer to observations.

Figure 13. Annual spatial average surface ozone difference (ppbv)
between the updated model version with surrogate canopy physics
and the base version of GEOS-Chem (surrogate–base).

6 Implementation of MEGAN3 emission factors

In addition to improved process representation, the canopy
surrogate model presented here allows for the direct ap-
plication of new emission factors generated using the
MEGAN3 Emission Factor Processor (https://bai.ess.uci.
edu/meganTS6, last access: 4 September 2019), which al-
lows users to generate emission factors from various input
datasets. While the focus of this work is on the impact of
representing canopy physics, we include a description of this
full implementation of MEGAN3 in the GEOS-Chem model
for completeness. We calculate landscape-average emission
factor distributions using the global growth form and eco-
type distributions, the emission type speciation, and the leaf-
level emission factor database available from the MEGAN3
Emission Factor Preprocessor. All MEGAN3 Emissions Fac-
tor Preprocessor options are kept at their default values (i.e.,
confidence rating J = 0 and 20 total species classes). The
land cover and emissions data are the same as those used for
MEGAN2.1 except that the land cover updates described by
Yu et al. (2017) were used for the contiguous US. The up-
dated land cover is based on high-resolution (30 mm) PFT
and detailed vegetation types and is expected to more accu-
rately represent the land cover distributions in this region.
The spatial distribution of the MEGAN3 activity factors is
shown in Fig. 14. It is important to note that these new emis-
sion factors are input at the leaf level with units on a per
LAI basis as opposed to the canopy-scale factors used in pre-
vious versions of MEGAN (applied earlier in this paper),
which makes direct comparisons of emission factor magni-
tudes infeasible. This canopy to leaf-level change ultimately
has the consequence of removing the need for the normal-
ization factor in the activity factor calculation (see Sect. 4.1).
When these emission factors are scaled to the same units as
in MEGAN2.1 (i.e., the per LAI basis in the MEGAN3 emis-
sion factors is accounted for) using the MODIS LAI product
applied in this work, the resulting emission factors are rel-
atively similar (within ±75 %), though the MEGAN3 emis-
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Figure 14. MEGAN3 isoprene emission factors
(µgm−2 h−1 LAI−1).

sion factors are lower than those used with MEGAN2.1 in
GEOS-Chem. Generally, more than half of all changes are
within 1000 µgm−2 h−1, and 90 % of all emission factors are
within 3000 µgm−2 h−1. This comparison is not exact due
to the fact that the MODIS LAI product used here is differ-
ent from the input vegetation files used to create the original
MEGAN2.1 emission factors. Despite the differences in ab-
solute magnitude, the spatial patterns in emission factors in
Fig. 14 are very similar to those used earlier in this work
(Fig. 8), with a spatial R2 of 0.91.

We implement the MEGAN3 emission factors in GEOS-
Chem v12.3.0 using the canopy surrogate model activity fac-
tor formulation. For clarity, we refer to “MEGAN3Full” as the
emissions implementation in GEOS-Chem v12.3.0 using the
MEGAN3 leaf-level emission factors and MEGAN3 activity
factors with canopy physics calculated following the canopy
surrogate model described in Sect. 3. The annual isoprene
emissions simulated using MEGAN3Full are higher than us-
ing the MEGAN2.1 canopy-scale factors in GEOS-Chem (as
in both MEGANCanopy and MEGANPCEEA) but more in line
with previous work (Guenther et al. 2012). Specifically, an-
nual total isoprene emissions for 2012 are∼ 570 Tg C yr−1 in
MEGAN3Full, which is a factor of 1.6 larger than those con-
figurations discussed earlier in this paper. The largest con-
tribution to these differences is not the differences in emis-
sion factor maps but is instead the removal of the normal-
ization factor of 0.21, which additionally removes the need
for the somewhat arbitrary choice of “standard conditions”
for emissions (see Sect. 4.1). This 570 Tg yr−1 emissions to-
tal is much more similar to the magnitude of global emis-
sions from versions of MEGAN2.1 implemented outside the
GEOS-Chem model (535–578 Tg yr−1) given by Guenther
et al. (2012) and within the stated uncertainty range for
MEGAN isoprene emissions (Guenther et al., 2012). These
annual average isoprene emissions using MEGAN3Full are
shown in Fig. 15 below. In general, the spatial pattern in the
emissions in Fig. 15 matches those from the MEGANCanopy
configuration (Fig. 9), with an R2 of ∼ 0.8.

Figure 15. Annual average (2012) isoprene emissions simulated in
GEOS-Chem driven by the surrogate model canopy physics and the
MEGAN3 emission and activity factors.

Since the isoprene emissions calculated using the
MEGAN3Full algorithm are so much larger than those used
in previous versions of GEOS-Chem, they alter the com-
position of the atmosphere significantly. For example, an-
nual average surface ozone concentrations in the southeast-
ern US increase by nearly 5 ppbv relative to the base ver-
sion of GEOS-Chem v12.3.0 (which uses MEGANPCEEA),
exacerbating the existing model bias further (Travis et al.,
2016). However, MEGAN3Full represents a more up-to-date
and physical characterization of biogenic emissions. Future
work reconciling the differences between these bottom-up
isoprene emissions estimates and top-down constraints from
measurements of composition (e.g., Kaiser et al., 2018) is
needed.

7 Conclusions

We describe a novel method for simulating canopy physics
relevant to atmospheric chemistry at very low computa-
tional cost. Our surrogate canopy model is based on the de-
tailed canopy model in the MEGAN3 code base and simpli-
fied using a statistical learning technique for the determina-
tion of variable importance. This updated scheme allows for
an improved physical process representation of biosphere–
atmosphere interactions, including a full implementation of
the MEGAN3 emissions scheme activity factors and a more
direct implementation of the light and LAI dependence of
dry deposition.

When implemented into a chemical transport model, this
canopy scheme impacts the spatial distribution of isoprene
emissions but maintains the global total to within 5 %. Con-
sistent with prior work (Kaiser et al., 2018), isoprene emis-
sions are reduced over the southeastern United States, with
local absolute changes that can exceed 30 %. This difference
in surface–atmosphere exchange ultimately has a modest im-
pact on surface ozone, with absolute annual average changes
generally less than 1 ppbv, though it does drive ozone con-
centrations closer to observed values. The surrogate model
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additionally allows for integrating new leaf-level emission
factor maps into GEOS-Chem, which we show leads to sub-
stantial changes in biogenic emissions.

In a rapidly changing Earth system, it is critical to rep-
resent chemical, biological, and physical processes with as
high fidelity as possible. Surrogate models that allow for
the rapid implementation of computationally expensive pro-
cesses can play a key role in representing these processes.
The work presented in this paper represents a step toward
further explicit descriptions of biosphere–atmosphere inter-
actions in models of atmospheric chemistry. Future work
should include more detailed observational constraints and
characterization of in-canopy chemical reactions, turbulent
exchange, and biological processes, as well as their resulting
impacts on the abundances of trace gases in the atmosphere.

Code availability. The MEGAN3 and GEOS-Chem model
codes are available at https://bai.ess.uci.edu/megan/
data-and-code (last access: 4 September 2019), and
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