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ABSTRACT

THERMAL EXPANSION, HEAT CAPACITY AND STRUCTURAL RELAXATION

MEASUREMENTS IN THE GLASS TRANSITION REGION

by

JOHN SCARSETH HAGGERTY

Submitted to the Department of Metallurgy on January 10, 1966 in partial
fulfillment of the requirements for the degree of Doctor of Science.

Thermal expansion, density and specific heat measurements were
made on the glasses and supercooled liquids of three inorganic glass
forming systems to evaluate the TgV AQVAEP term of the Davies and Jones

expression., The three glasses studied were ASZSB’ Lillie No. 1, a

soda-lime-silica glass, and Pyrex, a borosilicate glass with Corning
designation number 7740, The length-temperature and enthalpy-temperature
data were fitted to polynomial expressions by least square curve fitting
techniques and are presented with standard deviations. Thermal
expansivities and specific heats needed for the above and subsequent
calculations were obtained by differentiation of these expressions.

These measurements combined with compressibility data appearing
in the literature made possible the calculation of the Grineisen constants,
%5, for these glasses. The values observed for both siliceous glasses
indicate that the vibrational modes with negative 7i's are suppressed

by additions of Na and Ca into the silica network. The value of ; for
vitreous A8233 was lower than anticipated.

A discontinuity in the thermal expansion coefficient of Pyrex
which was observed at approximately 260°C was attributed to the high
borate phase of the two phase glass undergoing a glass transition.

The structural relaxation resulting from sudden temperature
changes in the transition region indicc:ted that a spectrum of relaxation



times with a maximum value is needed to describe this nonlinear process.
It was found that over the temperature range investigated the

"equilibrium structural relaxation time'" was exponentially dependent

on temperature with an activation energy the same as that observed for
shear relaxation times. Fictive and actual temperature have approximately
the same influence on the observed effective relaxation time. The initial
structural relaxation time resulting from an infinitely small change of
temperature is numerically close to the shear relaxation time, though

the "equilibrium structural relaxation" time is approximately thirty

times the value for shear.

Thesis Superviscr: J.H, Heasley
Title: Assistant Professor of
Ceramics
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I. TINTRODUCTION

Tn the absence of crystallization a liquid will transform into
a glass if it is continuously cooled below its crystalline melting point.
The transformation to a glass is characterized by a decreased
compressibility, heat capacity and usually, thermal expansivity, while
the volume, entropy and enthalpy are continuous across the transition.
To this extent, the glass transition appears to be a second order
transition.

If the free energy surfaces of two phases have a common slope
at the line of intersection, the phase transition is called second
order. At any specified pressure there is a unique transition
temperature. The expression for a second order transition, which is
analogous to the Clapeyron equation for a first order transition,
relating the rate of change of the transition temperaturé with pressure

is given by

dT _ 4B Ao
dP ~ Ax v

and is called the Ehrenfest equation. The A quantities are the
differences between the values of compressibilities, volumetric
expansivities and heat capacities of the two phases on either side of

the transition. An interesting review of second order transitions is



o

L)

given in Chapter XVIII of Slater's Introduction to Chemical Physics .

It is well recognized that the glass transition as observed
experimentally is not a true second order transition, but occurs for
the kinetic reason of increasing resistance of the structure to
configurational change. As a consequence, the transition does not
occur at a temperature, but over a narrow range of temperatures,
and the range over which it occurs is a function of the cooling rate.
By this argument a glass differs from its liquid only in the sense that
its time constant for configurational relaxation is long compared to
the time scale of the observation and thus its configuration can be
considered to be fixed.

Davies and Jones(z) have demonstrated that for a transition of
this kind the differences between the supercooled liquid and glassy
compressibilities, thermal expansivities and heat capacities are

related by the following expression

48 X0
o 2 LY a6

The equality exists only under the condition that a single ordering
parameter is sufficient to characterize the excess thermodynamic properties
of the glass over those of the liquid. An example of a single ordering
parameter description, is the Hirai-Eyring(3) liquid model for which

all excess thermodynamic properties are functions only of the number of

" " t i i i to th Tool(4>
holes'" present. This model is completely equivalent to e



fictive temperature description of the state of a glass since the
number of ""holes'" is uniquely defined by the fictive temperature.
. (5 . .

Goldsteln( ) has shown that either the left or right hand term can be
equal to the pressure rate of change of the glass transition temperature
depending on which excess thermodynamic property is comstant at the

L . . D (6) . (5,7)
transition. The observations of O0'Reilly and Goldstein for
several organic glass formers and 5203 indicate that the pressure

dependence of the glass transition is given by

dT
ar ¢ A S

which suggest that the transition occurs at a fixed value of excess
entropy or enthalpy but not volume as has been suggested in the past.
The rate dependence of the glass transition suggests at least
three anomalies could occur with suppression of the tramsition
: (8)
temperature., The most well known is the so-called Kauzmann
paradox. Kauzmann pointed out that in the absence of a transition the
entropy of the supercooled liquid would be lower than that of the
crystal on the order of 20 to 40 degrees below the normally observed
o ) )
transition temperature., It has been observed experimentally that
the values of %g decrease more rapidly with decreasing transition
temperatures than TgV'%%% . This suggests that if the tramnsition

temperature were suppressed sufficiently with slow cooling rates, the

inequality of the Davies and Jones equation would be violated. At



temperatures slightly below the observed transition temperature the

w.L.r.

expression for shear viscosity predicts that the shear
relaxation time constant will reach an infinite value. This expression,
which has been empirically found to represent viscosity data over a
wide temperature range, has recently been derived by Adam and Gibbs(lo)
in such a way as to give it a better theoretical basis., Perhaps
coincidentally, all three anomalies occur at approximately the same
temperature.

It is a direct consequence of the lack of a good theoretical
understanding of the liquid state that the glass transition has been
primarily studied experimentally. Despite the fact that these
anomalies remain unresolved in the sense that it is not known what
intervenes to prevent the violations of the Third Law and the inequality
of the Davies and Jones expression with a hypothetical infinitely slowly
cooled liquid, there have been surprisingly few experimental studies of -
the transition. Reliable property measurements of the supercooled
liquids of inorganic glass-forming materials are practically nonexistent.
This is particularly true for the siliceous glasses which make up the
bulk of the inorganic glasses.

A series of experiments were undertaken to measure the values
of the glassy and supercooled liquid heat capacities and thermal
expansivities of three inorganic glass-forming systems. The three

materials studied were (1) arsenic trisulfide, a single component

glass-former for which only the glassy expansivity has been reported,



(2) a soda-lime-silica glass whose viscosity has been studied and

(3) a commercial borosilicate glass whose viscosity, glassy expansivity
and glassy heat capacity have been reported. These éroperty
measurements, combined with room temperature density measurements,

permit the evaluation of the TgV %%” term of the Davies and Jone:z

2
expression which apparently equals the rate of change of the glass

transition temperature with pressure. Structural relaxation studies
were made in the transition region in an attempt to define the
transition temperature of an infinitely slowly cooled liquid by means
of an appropriate extrapolation,

A great deal of insight can be gained regarding the vibrational
modes and thus the structure of a solid by combining thermal expansion,
specific heat and compressibility measurements from temperatures
approaching absolute zero to those exceeding the characteristic
temperature. Fortunately low temperature measurements have been
made for glasses of composition similar to the two siliceous ones
studied since the experiments reported here were not made below room
temperature. Thus observations regarding the differences in their
properties could be made which were consistent with the proposed
operative modes of vibration which have been used to explain the

anomalous properties of vitreous silica,



II. LITERATURE SURVEY

A, Thermal Properties of Solids

If an equation of state existed for solids their behavior with
changes in temperature and pressure would be completely specified. Even
though regular crystalline solids are the simplest form of matter to
understand next to perfect gases, no simple analytic equation of state
always holds and in general it is represented by a power series
expressing either volume as a function of pressure and temperature Or
pressure as a function of volume and temperature. Experimentally the
former is most conveniently determined but the latter is preferred
since statistical mechanical models are made in terms of Helmholtz
free energy where pressure 1is expressed as a function of volume and
temperature. Slater(ll) gives a fairly complete discussion of the
experimental determination of the individual terms of the power series,
their meaning, the conversion of V= V(P T) to P =P(V,T) and the
incorporation of the P = P(V, T) equation with Cp data to write
expressions for E = E(TL, V), S = S(T,V) and A = A(T, V). Even though
empirical equations of state are quite useful for making thermodynamic
and engineering calculations they give no direct information regarding

the effect that changes of external pressure and temperature have on



atoms and their motions. A much more significant accomplishment is to
arrive at an equation of state based on positions and velocities of
the atoms. Clearly, if the model is correct the two approaches will
give the same predicted results.

The discussion and derivations which follow were applied
by Slater only to crystalline solids with rather strict assumptions
as will be noted below. The resulting expressions for thermodynamic
parameters are only approximate; however, they are sufficient for
many purposes. Ln some cases it has been possible to obtain good
agreement between a statistical mechanical model and the observed
behavior for crystalline solids. No such results have been published
for glasses, but it has been found useful to apply the models that
describe crystalline solids to glasses to better understand their
behavior in terms of molecular motions and interactions. It is for
this reason that a simple statistical mechanical model is reviewed.

If a crystalline solid consists of N atoms it has been found
that dynamically it can be treated as a set of 3N oscillators, each
vibrating at some characteristic frequency vi. To the extent the
restoring forces are linear functions of displacement, the
oscillations will be independent of each other; thus, each behaves as
a simple harmonic oscillator whose frequency is independent of its

own amplitude and the amplitudes of the other oscillators.



With these assumptions expressions for E, A, S and P are readily
derived (12, 13 for examples). The quantized energy of the ith

oscillator is

i 1
= - v
€ni (ni + 2) h i

. , . . .t
where n,, an integer, is the quantum number associated with the i b

oscillator. A system quantum state is specified by the 3N component

vector Dys0osNgyeee,Dgy and the system energy of this state is

. . C e . . th
The single-oscillator partition function of the i~ e’z ent for &

Maxwell-Boltzman distribution is

1
€
0 i
_ . kT
q.i"'
n,
1

Thus the canonial partition function (Q)

H ¢ = e-A/kT

i

O
n

i



where A is the Helmholtz free energy can be written as:

h
P bt R e - Bt SR sy
Z KT z kT $ kT 2KT okT 2KT
Q = e e cooe 'ZiJe e e ese €
oy ) "IN
I T UL Lot »  Man™ay
Q___ek’l‘.zek’r .ZekT Ze KT .
M ny PN
3N av,
Eo = EZ 2
i

is the energy as a function of volume at the absolute zero in temperature.

The final expression for Q can be shown to be equal to

hv,
-

1- e kT
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The thermodynamic functions can be readily solved for and can be

shown to be

38 !
. kT
A= - KT /n{Q) = Eo + }: kT 4n 1 -e
i
/ 3
3N by !

_oA| © kT kT
S—BTJ—kZ<zn 1- e + 5 )
\" 1 i

\ e kT -1
hy,
1
| o T
E - agznlgz o+ Z KT _,
> (- 31)
kT v i
hv,
1
hv

Las}

i

[]
O/'O/
<y

L
—

]
01(y
<] =

O
L

—
+
<l
w
H~MZ
~
Ho
///7:
-
=
]
H

where

1%
=L _ai.]
i~ v
i i oV T

OE

and == is expressed as an empirical function by Slater. The
NV Iy P

derivative expressions for the specific heat at constant volume (Cv)
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and volumetric expansion coefficient (@) are directly obtained from the

above expressions and are

2
(hv) kT
c = BE] kT
v 3T, ~
< -1>
and
2 ) T
1 JV 1 JdS
@=5 ﬁL v a—] Z

where B is the volumetric compressibility

VL |

Comparison of the expressions for Q and Cv shows immediately

w

[}

]
<l
OJ!OJ
]

the reason for qualitatively similar behavior of the two. Each term
in the expression for ¢ is directly proportional to an equivalent

term in CV for the same oscillator. Thus both CV and O approach
limiting values at high temperatures and approach zero as T approaches
absolute zero.

(14)

Grineisen simplified the expressiomns for ¢ and C, by

assuming the quantities 7 equal to each other and to a constant';
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which he regarded as an empirical comnstant. The 71’5 can thus be

removed from the sumaation and

yBC
vV

v

is obtained by substitution; this is the well known Griineisen
relation. Experimentally'; defined this way lies between 1 and 3

for most crystalline materials indicating that the lattice frequencies
vary between being inversely proportional to the volume and inversely
proportional to the cube of the volume.,

The expression for 71 relates the change in frequency of an
oscillator to the change in volume at constant temperature. It is
interesting to note that the 75 for a linear oscillator is zero as
is shown below. If the two springs of unstretched length L, are
attached to a mass m and compressed to a total length L as shown in
Figure 1, the total force on the mass resulting from a displacement

Ox from the equilibrium position is

R(L, -3 - K - K@, -3) - Kx

e
[

F = - 2KXx

where K is the spring constant. The restoring force F is thus

independent of the compression (Lo - %) of the springs; hence the
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natural frequency Vo of this linear oscillator

o1 [z
fo) 2 m

is also independent of the degree of compression indicating that y = O.
Thus it can be seen that the existence of thermal expansivity different
from zero (a 7y different from zero) results from the asymmetry of the
potential well between two atoms and its value depends on the shape

of the well and thus the type of bonding.

In general the frequency of an atom would be expected to
increase with compression since the restoring forces are increased,
resulting in a positive y., There is no reason to expect that the
potential wells for the three normal modes of vibration have the same
shape, hence the 7i's should not be expected to have the same value
even in the case of a regular lattice of like atoms.

To this point the treatment applies equally to glasses and
crystals. It would be expected that even in terms of this simplified
model a great many more Vi's and 7i‘s would have to be specified
for an amorphous structure than for a regular crystalline lattice if
thermodynamic variables were to be calculated from the derived
expressions.

It appears that negative values of y have to be anticipated
when unlike atoms are included in the system of oscillators. This

will be discussed in more detail with respect to the expansion



15

coefficient of vitreous silica; however, some experimental results

. . ; (15) (16)
for crystalline lattices are cited here. Barron and Blackman
found a large variation of values .for 7i’s, ranging from large
positive values to negative values for ionic crystals of the rock

(17)

salt type. In a later publication, Blackman examined the 7i's

to be expected from a two dimensional model lattice. The lattices
that he examined were of two types: (1) an ionic lattice consisting
of a square array of alternate positive and negative ions, and

(2) a hexagonal lattice with a short range central interaction force.
The ionic lattice had a wide variation of 7i's including negative

ones while the hexagonal lattice had a narrow range of all positive

. Se
1

(16)

According to Blackman the occurrence of negative 7i's
decreases the usefulness of the Grineisen relation, since as long as
the 143 values are positive the relation can be justified as a useful
approximation, but once negative values are admitted the relation
loses its general character, He further indicates that there appears
to be only two conditions where the Gruneisen relation can be used.
The first is where all the y values are equal. While this condition
is unlikely, one can use the expression to a good approximation when
the distribution of 75 values is sharply peaked around its average

value. The second depends on finding some average value'; which is

independent of volume. The first condition is nothing more than a
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restating of Griineisen's principle assumptions, but, the validity of
the second is not clear and further even if it were valid, it is not
clear that introduction of negative 7i's would be inconsistent with
it,

This statistical mechanical derivation demonstrates the intimate
relation between & and Cv' It is also obvious from this treatment
that both & and Cv are properties sensitive to the atomic structure
and that with polymorphic transitions, different values of & and Cv
can be expected as different modes of vibration with their associated
different 7i's and vi's become possible, For the same reason it would
fully be expected that the observed values for Cv and ¢ of a glass
would be different from those of a crystal of the same composition

. . . 18
contrary to statements appearing in the 11terature( ). Further,

's

o's would probably be more sensitive to atomic structure than Cv
since the introduction of new modes of vibration can either add or
subtract from the observed expansion coefficients, depending on the
sign of 7i's.

A point made by Kingery(lg) should be noted here. Since the
values of @ and Cv are strongly dependent on temperature until the
characteristic temperature is reached, it is most satisfactory to
compare the values for Cv and o of different materials and of

different polymorphic phases of the same material at or above their

characteristic temperatures.
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Even though thermal expansion and specific heat properties
are closely related, most experimental studies have been confined
to one or the other. Thiz fact plus the generally poor specification
of the glass systems investigated makes it logical to review the

reported experimental investigation of Cv and & behavior separately.
1. Thermal Expansion

As was pointed out above, thermal expansion is extremely
sensitive to atomic structure. Thus, since many substances with
different atomic configurations and bonding types are found to form
glasses, they should best be discussed and compared only within
specific groupings. Possible groupings are those based on tétrahedral

elements (Sioz, Ge02, BeF.,, and P,0.) and those based on triangular

27 275

elements (B203 and ASZSB)' Other groups could include hydrogen

bonded and high polymer materials which form glasses. Besides the
differences between the 2lasses noted above, the effect on thermal
expansivity of additions into the host glass formers have to be
accounted for., These can arise either by the intentional introduction
of foreign atoms as is typical in commercial siliceous glasses or by
deviations from the stochiometric compositions. Since the thermal
expansivity of even the simplest glasses is not understood completely

it appears that an understanding of all the effects mentioned above

is a long way off. The following discussion will primarily be limited
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to silicate glasses, not because they are fundamentally more important,
but because the majority of inorganic glasses are silicates., Also

no attempt is made to report the voluminous papers giving "new and
revised" empirical constants for the effects on expansivity for
various additions to SiOz.

The thermal expansion coefficient of the pure 8102 glass is
one of the lowest known in the temperature range of 100 to 1000°c.

The fact that its expansivity is lower than any measured value for
the many crystalline forms of SiO2 and that it contracts on heating
from O to 200°K have been considered to be anomalies.

This anomalous behavior in expansion as well as other apparent
anomalies in low temperature specific heat, compressibility, and the
temperature dependence of elastic moduli have not been completely
resolved(go) to date, but an explanation for the expansion behavior
has been proposed that is consistent both with a statistical machanical
model and the other apparent anomalies.

It has been suggested that in the open amorphous silica
structure vibrational modes other than axial ones are possible,
notably a transverse vibration of an oxygen atom between a pair of

(21,22, 23) This vibrational mode is apparently not

| (24)

silicon atoms.
strong in any of the polymorphic crystalline phases. Smyt
postulated that the frequency of this transverse mode decreases as

volume is reduced, thus makin . for this mode negative. A negative 7.
) 87’1 i
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produces a negative term in the sum defining the expansicn coefficient,

This effect explains both the negative expansivity at low
temperatures and low expansivity at temperatures exceeding 200°K.

Since the transverse vibrational mode has a lower characteristic
temperature than any of the other longitudinal modes in vitreous
silica, it dominates at low temperatures to an extent that the total
expansivity is negative. At higher temperatures modes with positive
7i's raise the total expansitivity. However, the large negative term
in the sum keeps it low.

Experimental evidence of the existence of low characteristic
temperature modes in vitreous silica with negative 7i's appears good.
The low temperature CV can only be explained if extremely low frequency
Einstein modes are present. Some have proposed characteristic

2
(25’26’“7} Though it is not clear

o
temperatures near 10, 30, and 50 K.
that modes of so low characteristic temperature need be present, at
least one mode having a characteristic temperature near 370°K is

(24)

apparently required to get good agreement, The existence of
negative 7i's is consistent both with the negative and low expansivity
at low temperatures and with the increase in compressibility with

(20,27) It is noteworthy that the anomalous low

increasing pressures.
temperature O and Cv behavior disappears when the atomic structure is

varied slightly in such a way that the low temperature modes with

negative 7i's are suppressed., Quartz shows neither the negative



(27)

expansivity nor excess heat capacity demonstrated by vitreous silica,
On the other hand the low density cubic cristobalite shows an excess
heat capacity, though less than the vitreous form. It has been
suggested that cristobalite would also show a negative expansivity at

(20, 28) though this has not been confirmed experimentally.

low temperatures
This is consistent with the suggestions that vitreous silica has a
structure similar to that of cristobalite. Vitreous GeO2 has an
expansivity more than an order of magnitude greater than that of

(29) This appears consistent with the behavior observed

vitreous SiOz.
for quartz since GeO2 exists with either the rutile or quartz
30) ,_ . . . . .
structures in its crystalline forms and not in the open cristobalite
form., It appears that the transverse modes are suppressed in GeO2 even
in the vitreous form and that its structure must be more similar to that
of quartz than cristobalite.
(31) L

Megaw has proposed that thermal expansion 1s inversely
proportional to the square of the valence of the ions constituting the
structure and directly proportional to the coordination number for
ionic materials and has cited several examples of ionic crystals which
agree with this proposal. This suggestion is only a statement that the
observed expansivity is inversely proportional to the attractive force
between two ions.

In most articles appearing in the literature, differences in

the effects on expansivity btetween different substituted ions is
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explained in terms of field strengths. Two of the better systematic
studies showing substitutional effects on simple silicate glasses

. . (32)
are those by Shartsis, Spinner and Capps and another by

Karkhanavala and Humme1(33). The details of the two experimental

(

programs were reviewed 34) by the author previously and will not be
repeated since they are relevant here only in terms of their
conclusions, which can be summarized as:

1) When substitutions are made within a group of the

periodic table, lower field strength ions will give

higher expansivities.

2) Over a limited range the expansivity is proportional

to the mole percent of the added ion.

With many components, as in commercial glasses, interactions become
complex. However, it has been observed that there is a striking
similarity between the magnitude of the empirical proportionality
constants used in additive equations to calculate thermal expansion,

h.(35’36’37) The correlation

and the listing of elements by bond strengt
between bond strength of the substituted ion and the resulting
expansivity seems to be true even between groups of the periodic table,
Even though bond strength appears to explain observed behavior it has

not been combined with the statistical mechanical model of the

expansion of vitreous silica. The effect on expansivity of substituted
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atoms into the silica network must be explained in terms of their
effect on the proposed transverse vibrational mode.

If it is assumed that the effect of an addition on the observed
expansivity is primarily a result of its effect on the proposed
transverse vibrational mode, a qualitative understanding of the
obsarved substitutional effects and correlations is possible. Ions
which substitute directly for Si+4 ions in the SiO2 network taking four
fold coordination with oxygen would not be expected to influence the
transverse vibrational mode as much as those entering the network at
interstices or substituting for Si+4 with different coordination
numbers., Formation of non-bridging oxygens completely eliminates
an oscillator capable of vibrating in this mode. Any interference
with this mode should lead to an increase in the observed expansivity,
with substitutions which eliminate it being most influential.,. Thus the
effect of substitutions on expansivity can be qualitatively understood
in terms of the position they take in the network and network defects

(35)

created. If this concept is combined with Sun's model relating
the position a substituting atom takes in the network as a function
of its bond strength, the observed correlation between bond strength
and expansivity is consistent with this explanation of substitutional
effects.

Since this model is highly qualitative and the structure of

glasses is not understood it is of questionable value to speculate as



23

to the exact interactions of specific ions. It follows from the
Zachariasen and Warren model of silicate glasses that the introduction
of monovalent or divalent ions such as sodium, potassium or calcium
will go into the interspaces in the network while forming a non-
bridging oxygen. Thus the introduction of these ions would be
expected to be very effective in reducing the transverse vibrational
mode by both eliminating one bond which vibrates in this manner for
every non-bridging oxygen that is formed and by blocking the free
transverse vibration of others by taking up a modifier position at the
interspaces of the network.
3 +3 . .
Introduction of B ~ into the SiO, network has little effect
e

on the observed expansivity of vitreous silica. Vycor brand glass
contains approximately 4% B203 yet its expansivity is only

-7 o . -7 o
7.5 x 10 ° (cm/cm C) compared with 5.5 x 10 (cm/ecm C) for pure

. . +3 . . .
8102. In terms of this model the B ions have substituted directly
+4
for the Si ions of the SiO2 network without interfering with the
transverse mode of vibration.
L . 43,

It is interesting to note that Al ions can be added to an

alkali-silicate glass with a reduction in the observed expansivity
. . +3 . . . . .

even though introduction of Al 3 ions directly into vitreous silica
will increase the thermal expansion, though not so much as ions like

1

Na© P K%l, or Cé+2. This might be explained in terms of the network

(38)

defects, as proposed by Stevels. According to him an 2lkali ion
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is bound to the electronic defect created by substituting an A1+3 ion
for a Si+4 ion, With the so-called Q:P center the Si-0-Si bond is
reformed. While the exact influence on the transverse mode of
vibration is speculative, however, it seems plausible that with the
bonding of the alkali ion to the substituted A1+3 ion and the
elimination of a broken Si-0-Si bond, that it is more likely to be
operative,

This interpretation of substitutional effects on glassy
expansivity is clearly only qualitative and applies only to gross effects.
In contrast to the bond strength and/or field strength explanations of
substitutional effects, it is based on an accepted statistical mechanical
treatment and further is based on effects which are apparently responsible
for the anomalous properties of vitreous silica at low tempe.atures. It
is clear that any vibrational modes which are active at low temperatures

will also be present at high temperatures, and also that they will be

influenced by changes in the network structure due to substitutions.

2, Heat Capacity

The derived expression for specific heat at constant volume
based on the harmonic oscillator model can be evaluated only if the
distribution of frequencies (or harmonics) is known., Two well-known

solutions are the Einstein and Debye models.
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The Einstein solution assumes that all the quantized oscillators

vibrate at the same frequency which is independent of temperature, giving

/ hL' / by,
\ T ol

e on Rl

This expression gives values for specific heat rising from zero to the

classical value of 3R at high temperatures in agreement with the Third
Law and the experimental law of Dulong and Petit., For elemental crystals
values of V (or 6, the characteristic temperature) can be found such that
the Einstein formula gives a fairly good approximation to the observed
specific heats except at very low temperatures. Close to the absolute
zero, the Einstein formula predicts a specific heat falling too sharply
to zero., It is observed that specific heat falls more slowly and is
approximately proportional to T3 at low temperatures.

The Debye model allows all frequencies (harmonics) of vibration
up to a maximum cutoff frequency whose wavelength corresponds roughly
to the lattice spacing of a crystal., A distribution of frequencies is
used which is approximately wedge shaped and weighted to high frequencies.
Each quantized harmonic has a characteristic temperature. The expression

resulting from these approximations is

%
1 xaex
C = 9Nk — </n %
v 3 X 2
X (e” - D)
o o
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where
vV
X = Ez and X = : max
- kT ’ i o kT

It cannot be integrated analytically. However, numerous tabulations of
the integral exist. This expression predicts that the specific heats of
all substances will be the same at the same fraction of the corresponding

Debye temperatures (GD), where

Similar to the Einstein formula, the predicted value of specific heat is
zero at the absolute zero and rises to 3R at high temperatures. At low
temperatures it predicts that CV is proportional to T3 which is observed
to be true for a variety of substances. For crystalline compounds the
general expression for specific heat has to be interpreted as being
summed over all harmonics of all the atoms making up the crystal., An
analytical solution is extremely complex, and has only been done success-
fully for a few cases. In molecular crystals it is usually possible to
separate the vibrations according to inter- and intra-molecular vibrations
to good approximations(39> even though the different modes are coupled
together to some extent. In CaCO3, for instance, it is possible to

. . . . . +2
separate the vibrations into a low frequency vibration of the Ca ~ and

-2
3

bonate ion. With this spectrum the specific heat of the crystal can be

co ions as a whole and the high frequency vibrations within the car-



represented by using a Debye expression for the acoustical frequencies
and a number of Einstein terms to account for the intramolecular
vibrations., The alkali halides can be represented fairly accurately
in a manner similar to elemental crystals. No distinction between the
ions need be made, and thus the specific heat can be treated as being
a Debye function where N is the number of ioms.

In glasses, solving of the general expression for specific
heats is made even more complex than for crystalline compounds because
of the random structure with resulting coupling of vibrations and
scattering of displacement waves., It would also be expected that each
type of ion would find itself in a variety of local environments due to
the randomness of the structure, hence the mathematical treatments used
in the Debye model could not be applied directly. Lt appears therefore
that the most promising treatment for calculation of specific heats of
glasses is to use the Einstein method(ao) where each type of ion is
assumed to vibrate in a number of modes with fixed quantized frequencies.

Smyth has used this model to represent the specific heat of

(40)

vitreous silica and obtained good agreement except at very low
temperatures, The deviation at low temperatures is not surprising
since this deviation for the Einstein expression has been observed
and pointed out for elemental crystals. It has been proposed that
the low temperature behavior can be explain:d by the presence of Einstein

modes lying near 10, 30, and 50°K(25926:27)

though it is not clear that
the difference in calculated and observed specific heats is not due

entirely to failure of the Einstein model to fit at low temperatures.
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The model used by Smyth to calculate the specific heat per mole

of Si0.,, is three independent oscillators with a silicon frequency (VSi),

2
two independent oscillators with a longitudinal oxygen frequency (%,)
and four independent oscillators with a transverse oxygen frequency (VT).

The molar heat capacity is then given by

( A
Psi e
hVSi 2 %T < ) j_”; 2 3
Cv =R ﬁ 2 >

It was found that the '"best'" characteristic temperatures <€i =-E;j>
for the silicon, oxygen transverse and oxygen longitudinal modes
respectively were O5. = 1100°K, GT = 370°K, and QL = 1220°K. The
calculated values for this equation are compared with experimentally
observed values in Figure 2, It is suggested by Smyth that because of
the coupling between neighbors a much greater number of frequencies
would be encountered than the three used and that their proper inclusion
would allow a much better fit.

Sharp and Ginther(41) report both attempting to fit the low
temperature specific heat of vitreous silica to the usually observed
T3 law and the high temperature behavior to the Debye function with
little success., It would seem that if a number of different modes were
vibrating, each with a different maximum frequency, vmax’ and hence

different Debye temperature each contributing to the total specific heat
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that the Debye relationship derived for elemental crystalline solids would
not applye.

It appears from the success of Smyth's simple model to predict
the heat capacity behavior of 8i0, that at least simple glasses can be
treated to a first approximation in a manner similar to crystals. As can
be seen in Figure 2 the experimentally observed specific heat approaches
the classical 3R value of 0.297 (cal/gr °c) for §i0,. It should be
pointed out that the approximation that the specific heats at constant
pressure and volume are equal is particularly good for vitreous SiO2

since it has such a low expansivity. A calculation using expression

indicates that the difference is only approximately 10-5 (cal/gr OC)-
Contrary to the statement by Stevels(37) that the sharp rise in

the experimental value of Cv at temperatures above 1300°C cannot be

explained it seems obvious that this is nothing other than the character~-

istic behavior observed at the glass transition. The fact that the Cv

does not reach the approximately constant value of the supercooled

liquid is probably a manifestation of the employed experimental tech=

ﬁique and the heat treatments given the sample., Similarly shaped

curves were obtained for B203 in its transition region by Thomas and

Parks,(42) but it could be altered considerably depending on heat

treatment.
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There are numerous studies reporting the effects on heat capacity
from additions to silica. See references 37, 41, and 43 for summaries.

(43) indicates that the

However, they will not be reviewed here. Morey
empirically derived relationships for Cp are additive and further that
the additive relations for specific heat hold over a wider composition

(41) derive expres-

range than for other properties., Sharp and Ginther
sions which reportedly fit experimental heat data with an accuracy
generally better than 1% in the range from 0 to 1300°C, The fact that
such good agreement between empirical additive equations and experi-
mental results is possible appears related more to the fact that the
variation in specific heats between differen: substances is small
compared to thermal expansion, for instance, than to the idea that
heat capacity of a mixture is characterized by the bond strengths and
masses of the component atoms. As was pointed out in the discussion of
molecular compounds; the component ions can oscillate as molecules and
hence introduce completely different frequency distributions.

The empirical relations and terms which might be interpreted
as partial molar specific heats do not lend themselves to theoretical
interpretation. The constants are generally not based on the pure
components but rather on the effect they have on the siliceous glass,
The relations derived by Sharp and Ginther are indicated to be employ-
able to temperatures on the order of 1300°C which clearly includes the
transition region of all siliceous glasses where a discontinuity in

the specific heat occurs. Since they represent both the glassy and
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supercooled liquid specific heats by one equation it is impossible even to
use them to isolate the oscillatory component and the configurational
components of specific heat.

In general the heat capacity studies of glasses are carried out
on an empirical basis, but it appears from Smyth's results for SiO2
that reasonable calculations can be made based on the harmonic
oscillator model for single component glasses. It would seem that if
sufficient information of the details of the glass structure were
available, there would be nothing to prevent similar calculations for
multicomponent glasses, though it would be anticipated that they would
be considerably more complex. It is seen in Figure 2 that the heat
capacity of vitreous SiO2 approaches the classical 3R per gram atom
value. However, there is no general requirement that the heat capacity
of a glass reach it prior to the intervention of the giass transition.
Indeed, in the case of B203 which has a bond strength similar to SiO2

in magnitude§35) the heat capacity is only approximately 6/10 the

(37) Detailed studies of heat

classical value at the glass transition.
capacity are useful for constitutional studies of glass as is demon-
strated by combination of property measurements of vitreous SiO2 at
. . (20)

low temperatures to explain what appeared to be anomalous preperties.

(44) . :
Tarasov claims to have developed a quantum theory of heat capacity
which enables him to distinguish chain, layer, and three-dimensional
network structures from one another. Application of this theory has

lead to interesting though not unquestioned(as) conclusions regarding

glass structure,
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B. Thermal Properties of Liquids

The liquid phase is the least well understood of the three
phases (crystalline solid, liquid and gas) matter is found in. Histor-
ically, studies of liquids have been approached either by way of dense
gas models or by extensions of the lattice theory of solids to liquids.
Both approaches have reason, since at conditions near the critical point
there is very little or no distinction between a liquid and a gas; on
the other hand, it is well known from X-ray studies that at conditions
near the melting point considerable short-range order exists which
appears to be similar to the corresponding crystalline state. It is
not surprising that imperfect gas theories of liquids are suitable
near the critical point, that disordered-crystal theories work near
the melting point and that both fail badly at points in between.(46)

At present attempts to arrive at a correct equation of state
of liquids are being made from two directions., The first is the formal
mathematical approach combining the intermolecular forces and statis-
tical mechanics., Though it is possible to write a formal and exact

1) e

theory, the solution by this approach has not been achieved.
second approach is from a physical model which is as faithful to
reality as can be devised and yet be soluble. Impressive results have

been achieved by both approaches, though at present there is no com=-

pletely satisfactory equation of state for liquids.
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The statistical mechanical approach will not be reviewed other
than to give briefly a partial solution that has been attained, because
it applies only to simple liquids. At present it can not be extended
to give useful information about the complex, multicomponent liquids
with directional bonding typically found as glass formers. It is
mentioned because it is probable that an understanding of the liquid
state will be achieved only within the framework of the statistical
mechanical approach with the implementation of suitable approximations.

It can be shown with certain important assumptions that the
equation of state for N molecules or atoms in a "simple'" liquid phase

is

o]
PV _ N d U(r) 3
NKT - 1 7 VKT f g(r) =gy 4mr dr
[¢]

where U(r) is the potential energy of interaction between molecules
and g(r) is a pair correlation function, i.e., a radial distribution

(47,48,49) The pair correlation function, g(r), can be meas-

function,
ured experimentally and the potential energy of interaction can
presumably be calculated on the basis of molecular bonding forces.
Direct calculation of either g(r) or the configurational integral
represents an impossible task and currently many approximate techniques

are being employed in an attempt to obtain useful solutions (see refer-

ences 47 and 48 for discussion and other references). A solution for
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the equation of state for liquids in terms of the formal statistical

mechanical treatment is the so-called "significant structures theory"

(
(50,51) e liquid is viewed as a

proposed by Eyring and coworkers,
mixture of crystal-like and gas-like regions, which are represented

by crystal and ideal gas partition functions., The agreement of this
solution with experimental results is surprisingly good in view of

the unrealistic model that has been assumed. Even though this solution
is obtained within the framework of a statistical mechanical solution
based on a molecular model, it should be regarded as empirical. A
derivation for the heat capacity at constant pressure and volumetric

thermal expansion coefficient of a liquid which follows from this

model will be given later.
There are a number of molecular descriptions of liquids appearing
. . . . (52,53)
in the literature, among which are those described by Bernal,
Tilton,(SA) Cohen-Turnbull,(55’56’57) Frenkel,(se) and the above-
(50,51,3,59)

mentioned model of Eyring and colleagues. A very

important model is one developed by Gibbs and DiMarzio(6O) for linear
polymer-melts, or rubbers., This theory is based on the kinetic theory

of rubber elasticity(61) and thus can only be extended to inorganic glass
forming melts qualitatively. Recently the Gibbs-DiMarzio model was
extended by Gibbs and Adam(lo) to explain the empirically derived and

(9

semi-theoretically justified W.L.F. equation which relates shear

viscosity to temperature,
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Of the models mentioned above, only the Frenkel and Eyring
models have been developed to a point where quantitative calculations
can be made for complex melts. The two models are quite similar in
concept and mathematically are distinguished only by the Eyring model's
taking into consideration the difference in size between a "hole'' and
a molecule, The Eyring solution has had successes, but fails to agree
with some experimental results. The Eyring model is described in
detail because it has led to some significant results even though it
is difficult to accept it as realistic.

According to the Hirai-Eyring hole model of liquids an equi-
librium exists between "holes' and phonons associated with the liquid
"lattice." Each hole is characterized by a molar volume v, and the
molar excess energy over the no hole situationm, Eh' The molecules
are in rapid motion, jumping into vacancies and smearing out the empty
space. This loosening leads to the disappearance of long range order
and to the appearance of mobile structures of less symmetry than
crystals show. Since liquids both supercool and superheat, it is
presumed that there are no regions of order large enough to act as
nuclei for crystal growth and no holes large enough to act as nuclei
for bubble formation.

The free energy increase* due to introducing Nh holes of free

energy Fh into a liquid of No molecules is

This derivation is a corrected version of the one appearing in the
Hirai-Eyring reference 3. It has been submitted to Eyring and accepted
as correct,



37

~ N nN
| _h o .
T ) R €~ Ty  ETREAE
" 4

where n is the volume ratio of molecules to holes (n = Vo/vh). The
number of holes, Nh’ at equilibrium can be determined by the condition

where AF is minimized, i.e.,
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where f¢n(g) = -sh/k. If the molar volume of the liquid V is the sum

of the molecular (solid) and hole volumes, i.e.,
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the volumetric expansion coefficient can be written as
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where
. 19
S V oT P
and
_ 1%
th._VaT P .

Clearly the hole expansivity th) is what is referred to as the con-
figurational expansion coefficient in the glass literature and is the

difference between the supercooled liquid and glass expansivities.

G, = A = (aliquid -aglass)@Tg

The configurational thermal expansivity can be solved for in the

following way. The total hole volume is

Vh = Nh vh
and
th= vthh
so that
ehﬁ-th
[ -
ah=if_vilJ =zh?_l\i‘-3] _ bmy _h _ KT
h V dT P V OT P V oo R_Z
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When

n= Vo/vh

is substituted and the approximation made that

then

€, -

1 h
= = e ™ @
ah c kT2

The heat capacity at constant pressure can be solved for in a similar

manner by saying

where CpS and Cph are the heat capacities due to the molecules and_
holes respectively. The Cph is not the heat capacity of the holes,
but rather represents the thermal energy that must be added to the
liquid to change the number of holes, N, , as temperature is increased
consistent with the expression for Nh(T). The meaning of C h is
analogous to ah in that it is the difference between the supercooled

liquid and glassy specific heats at the glass transitiom, or the



configurational specific heat,

ON
—e 8| ¢ B
Cph—enBTJ “cno
P
- o\R>

In both the expressions for ah

should contain the enthalpy of

energy of hole formation, €pe

those derived by Eyring(3’59)

that €, >> Pv

h h’
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If C is written as
ph

and Cph

hole formation, €

the term prior to the exponent

h + th, and not just the

The expressions were written to agree with

which presumably result from the approximation

though no comment was made in the noted references.

In a manner similar to that employed above, an expression for

liquid compressibility (B) can

be derived. With correct expressions for

CP, ¢, and B an equation of state can be derived giving V = £(P,T) for

liquids.
(59)

dynamic

holes present. In other words,

of the liquid state.

In terms of the Eyring hole model discussed above, all thermo-

properties of a liquid are functions of the number of so-called

this is a single ordering parameter model

The most significant failure of the Eyring hole model to agree

with experiments results from its glass being described by a single

ordering parameter.

It has been shown that the behavior in the vicinity

(62,2,5)

of the glass transition is described by the expression

VT

£
g ACP = o0
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where Tg is the glass transition temperature and the A quantities are
the quantities attributed to holes by Eyring. The inequality persists
whenever more than one ordering parameter is needed to describe the
excess thermodynamic properties of the glass., It appears from the
experimental data that exists(S’é) that one ordering parameter is not
sufficient to describe a glass and indicates that while the Eyring
model may agree with some experimental results, it is clearly an over-
simplification.

A second significant failure of the hole model of liquids is

(47!63) which apparently results

in its prediction of the liquid entropy
because hole or quasi-crystalline models inherently overestimate the
molecular order. This error is greater for simple monatomic liquids
than for liquids where fhe correlation between molecules is very strong
because of orientation dependent forces such as hydrogen or covalent
bonds. Typical glass forming liquids are characterized by a high
degree of directional bonding. It appears to be impossible to explain
negative expansion coefficients of liquids in a manner which is
consistent with the Eyring hole model. Such behavior is known to

exist for water from O to 4°C and has been observed indirectly for

(64,65) This behavior is

vitreous silica from 1100°C to 1500°C.
prcbably caused by bond rearrangements and thus can not be accounted

for by a model which does not include directional bonding.

Despite these inadequacies, the model does remarkably well
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in generating thermodynamic properties of liquids compared with other

(63) One of the earliest successes of the hole model was to

(47)

models.
explain the law of rectilinear diameters. It has also been
applied with good agreement to the dynamic properties of liquids which

3,39)

include shear and bulk viscosity as well as structural

relaxation.(eé)
When the Eyring model is used to calculate the volume of

B203 melts, the agreement from the glass transition region to 200°¢C

above the melting point is within 5%. If a constant energy of hole

formation (eh) is assumed, the predicted volume exceeds the observed

value by approximately a factor of two at temperatures near the boiling

point. Despite the poor quantitative agreement, the V-T prediction in

the high temperature region is qualitatively correct. Since the total

liquid expansivity can be expressed as

o, = a +
) 8 o

where ag is the glassy expansivity and &X is the configurational
expansivity, the temperature where it attains a maximum can be solved

for by setting
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If it is assumed that ag is constant with temperature then

€ €
€ .....l-lE ___h
0__3[_;.(31{1‘ h _g_eRTJ
= ?-
oR TZ RTZ T3
and
b
RT - 2

at the point where az attains its maximum value. For temperatures
above that defined by the above relation the V-T curve should be
concave downward, and at very high temperatgres the liquid expansivity
should be equal to ag. Since the value of-?%r for BZO3 is 1.9(67) the
V-T curve should be concave downward for tempiratures above the glass
point. It can be observed from Figure 3 (compiled from sources(68’69’7o))
that the predicted behavior agrees qualitatively both with respect to the
negative curvature and the high temperature value of expansivity.
However, the high temperature values of volume are in poor quantitative
agreement with the observed values when a constant value for eh is
assumed.

Wunderlich(71) has used the Eyring hole model of liquids to
arrive at what he calls the '"rule of constant heat capacity increment."
In terms of this model, heat capacities of different substances should
be compared on the basis of one mole of fundamental units. According

to him the fundamental unit in the hole model is the molecular unit

which corresponds to a hole, which he has dubbed a '"bead'. With organic
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glass formers he found a relatively constant value for 39 substances of

AC = 2.7 0.5 [ cal J

P - °C mole beads
when the bead molecular weight was assumed to be that of 1 mer of the
polymer chain. Poor agreement was observed for inorganic glasses when
each oxygen was assumed to act as a bead, though he apparently made at
least one computational error in the case of B203 which when corrected
brings it into agreement with the value observed for organic materials.,

He further demonstrated that a value for ACP of

AC } = 2,9 [ _cal J
P cal 0C mole beads

Vo ~ .(3,59)
could be calculated on the basis of the observations that n = o= = 57/

h
and that the free volume at the glass transition is approximately
2 percent.

It is difficult to assess the significance of Wunderlich's

observation. However it is true that he has arrived at the constant
for a wide variety of‘materials by assuming a reasonable molecular group
to participate in the formation of a hole, and also he has calculated an
approximately equal value for ACp directly from the Eyring equations with

the use of observed values for n and free volume at the glass point.

Thus, the result appears to be consistent both with the model and with



independently observed results. Combination of ACP and A data at Tg
permits the calculation cof the volume ratio of atoms to holes (n) and
the energy of hole formation (Eh) without any assumptions other than
in(c) = 1 which experimentally appears to be justifiedf3’59’72)
In conclusion, the liyring relations resulting from the model
of liquids should be regarded as empirical even though they are
derived from a molecular model, both because the model is unrealistic
and it does not conform to certain important experimental results.
However, it is quite accurate in its predictions of thermodynamic
variables and also has been extended with some success to explain
liquid viscosities (shear and bulk). Even though it cannot be
regarded as a general solution for the equation of state of liquids,

the Eyring model does work fairly well, and in particular for super-

cooled liquids and melts near the melting temperature.
Ce Structural Relaxation in the Transition Region

It is recognized that there are two classes of relaxation
processes in the transformation region. The first is that treated by
visco-elasticity and is associated with stress relaxation and creep
phenomena where the structure is considered as fixed. The second is
structural relaxation of a glass toward the equilibrium supercooled
liquid structure after a sudden change in pressure or temperature. In
commercial applications the former class is associated with stress

relief and tempering and the latter with stabilization. The two classes
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can be compared two ways, phenomenonologically and mechanistically.
Mechanistically the processes of shear and structural (thermally)

and pressure induced) relaxation are similar. If it is considered that at

any temperature and pressure some equilibrium distribution of molecular

states will be established and the probability of occupancy of any

state P(1) is proportional to.

- E +PV,
i i
*T

P(i) o« e

where Ei and Vi are the energy and volume associated with the molecule
existing in state (i). The overall distribution is one where the free
energy is minimized. When the temperature is changed or when the
energies of the states are altered by the application of a shear or
hydrostatic pressure, a new distribution of molecules is required to
minimize the free energy. In general it can be said that the number of
molecules leaving state (i) will be equal to the product of the number
in state (i) and the molecular jump frequency. The system relaxes to
the new equilibrium distribution by these molecular jumps-and
equilibrium is established when the net rate of jumps into all molecular
states is equal to zero. It can also be said that increases in
temperature will tend to shift the distribution to higher energy states,
where increases in pressure will tend to shift it toward reduced volume
states. It is not necessarily true that higher energy states are

equivalent to smaller volume states, thus it would not be expected that
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In the treatment of these equations it is assumed that all the Ei's

are equal and only the qfs vary between elements giving distributions
of ‘ffs. The expressions for e(t) and ¢ (t) can also be written in the
integral form where the distribution of Ti's is treated as a continuous
function. Experimentally it is generally found that a single relaxation
time is not adequate to describe the observed viscoelastic behavior.

In principle an infinite number of Ti's extending to infinite relaxation
times might be needed; however, most results can usually be described

by either a finite number of Ti's or a continuous distribution of
relaxation times with a finite maximum value.

It is found from stress relaxation or creep experiments that
curves produced at different temperatures lie parallel to one another
and can be shifted along the time axis to coincide, making a master
curve,(?3) The activation energy calculated from the shift factor
is equal to the activation energy of shear viscosity. The so called
“time-temperature superpostion principle" is based on the premise that
the activation energies of the viscosities of the elements are equal.
This phenomena was first observed for organic materials in the transition
and rubbery regions, but has recently been found to apply to siliceous
glasses by I(urkjian.(,u{)‘~
The viscoelastic behavior of siliceous glasses has been

(73)

summarized '~/ as ''these facts seem to establish very nicely indeed

that the relaxation and creep functions of stabilized glass are more
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complicated than the single exponential, but if they are expressed

as a series of exponentials then each exponential has the same activation
energy, and also that stabilized glasz is a thermo-rheologically simple
linear viscoelastic substance."

It is important to note here that the existance of a
distribution of relaxation times does not neceszsarily imply a multiplicity
of independent molecular mechanisms. Goldstein<7)ICiteS several
examples where a distribution of relaxation times is needed to fit
observed results originating from one or at most two molecular
processes. On the other hand, if it was known that a variety of
molecular motions existed then a spectrum of relaxation times would
be expected. Thus the existance of a spectrum provides little insight
as to the molecular motions of a relaxation process.,

In contrast to the relatively simple solution that was
found for the rheological behavior of glasses, structural relaxation
of glasses in their transformation region is found to be non-linear.

In the present state of the study of nonlinear behavior, there is no
precise experimental procedure for determining a response function

which will adequately describe the behavior phenomenonol.ogically-('?)~
It is possible, however, to write expressions for volumetric
relaxation occurring because of sudden pressure and temperature

changes, and from there to gain some insight into the sources of the

nonlinearity.
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The differential equations for the structural relaxation

resulting from sudden changes in pressure (AP) and temperature (AT) are

1 fels)
AP =75 8- 5%
and
1 dd
AT-/_\QS-i- o de

V-V
where § is equal by definition to v m, g is defined as bulk
o0

viscosity in terms of the above expression and has the uaits of

poise similar to shear viscosity, and Mg is a viscous resistance to
thermal change and has the units (degree/time). If AB, AX, ng and 1,
are constant during the relaxation process and no distribution of
relaxation times exists, the differential equations can readily be
solved. For the volume relaxation due to change of pressure

;!
S(t) =-28AP(1 - e
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where
T =
g = SPg -

A similar expression for 8(t) can be written for sudden temperature
changes. If a spectrum of relaxation times exists, then the volume

response to a sudden pressure change is

Aler

a3

5(t)=-APf MB(t) (L-e ©) &
o

However, this expression assumes that AP and Ny are not functions of

§. An instantaneous "effective'' relaxation time T(t) can be defined

by
®© _t
f%@- (1 -e ¥ )dr
1 _ 1 4dd(t) _ Yo
() T3 dt y _t ’
JP B(t) (1 -e T )dr
Q

The extent of variation of t(t) during a relaxation process is a
qualitative measure of the breadth of the spectrum; however there is

(7)

no simple quantitative interpretation. It can be shown that if
the spectrum has a unique maximum relaxation time Tnax’ then 7T (w)
equals Tnax’ but if the spectrum is continuous 7(x) increases without
limit. Some other results of a spectrum and the non-linearity will
be discussed later iﬁ conjunction with Figure 4.

Three origins of nonlinearity have been considered(7). The

first, clearly the most important, is the dependence of the viscosity on
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the instantaneous thermodynamic state of the relaxing glass as well as
the external pressure and temperature. In its simplest form, this effect
is treated in terms of the volume alone and the equations derived on
this premise are equivalent to those obtained on the basis of fictive
temperature(4) or free volume theories(75). The second possible source
of non-linearity could arise from variations in &, B or Cp of the liquid
with temperature and pressure. Experimentally it appears that & and Cp
show very little variation in the transformation region; however, there
is some evidence of a relatively rapid variation in B in this region(76).
A third possible origin for non-linearity is a breakdown of the linear
relation between the driving force and flow. Of the three, the first

is evidently the most important, and a few attempts have been made to
incorporate it into quantitative models.

It is interesting to point out that in a non-linear relaxation
process, the observed behavior will necessarily be non-simple exponential
whether or not a distribution of relaxation times exists. However, like
linear viscoelastic materials, the presence of a spectrum of 7's is
indicated for non-linear materials if memory effects are observed. Thus
although there is no direct way to handle a spectrum in a non-linear process

in a quantitative manner, a clear cut experimental criterion exists for

telling whether a spectrum is present or not.
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Figure 4 is reproduced from Figure 1, page 101, of Goldstein's
article(7) and schematically shows what might be expected in a system
behaving non-linearly due to the dependence of the relaxation times on
the thermodynamic state in which there is also a spectrum of relaxation
times. The dotted lines denote the dependence of the initial mean
relaxation time (at Smax) on the volume, measured here by ®. 1In the
non-linear case, c¢ and d, Ti is clearly a function of Sifqhere the
subscript i denotes initial value after thz change in temperature or
pressure) while in the linear case, a and b, Ti is constant. In the
idealized free volume models, where no distribution of relaxation times
is considered and T is a function of V, and hence 8, only, the mean
relaxation time during the relaxation process would be represented by
the dotted lines. The solid curves represent the relaxation of the
volumes at the temperature and pressure of measurement. The behavior
depicted in a and c is that for a spectrum with a maximum time ?ﬁax'
That shown in b and d depicts what would be expected if the spectrum
were continuous. These curves do not extrapolate to the same T, but
rather the limiting T as & goes to zero is larger the larger the
initial amplitude [51[ . It would seem that contrary to the way the
relaxation curves were drawn in b and d that the T must approach
infinity as ®» 0 and the apparent existence of a T ax must in fact

be due to a presumed limit in experimental precision.
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There have been a number of stabilization experiments on
organic and inorganic glasses. Generally a spectrum of relaxation
times was not included in the equations used to describe the results
and the range of initial conditions was not wide. Empirical or
semi-empirical equations have been found to fit the observed data
satisfactorily.

As was mentioned above, the most plausible explanation for
the non-linearity in the transition region is the sensitivity of
viscous resistance to the thermodynamic state of the substance.
Commonly it is assumed that the volume alone is determining. The

€]

Williams-Landel-Ferry equation is derived on this assumption,
and has been found to give excellent representation of the shear
and dielectric relaxation processes above the transition region
for organic and some inorganic systems.

Even though the W.L.F. equation was originally proposed
as an empirical expression it can be derived directly on the basis

(77)

of Doolittle's free space equation for shear viscosity. The
y

Doolittle and W.L.F. equations are:

B
N1 =4Ae £
and
log qT _ -Cl (T - Tz)
17 (€, * T-T)
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, are
2

is a viscosity corresponding to the reference

respectively where f is the free volume fraction, B, C; and C
constants and

Ty

temperature T2. Commonly the reference T, that is used is the

experimental glass temperature Tg’ then the constants C1 and C2 can

be shown to be

¢ - 1
1 2.303 £
g

%

C, =%

where fg is the free volume fraction at the glass transition and AX

is the difference between the supercooled liquid and glass volumetric
expansivities at the glass transition. The W.L.F. equation predicts

an infinite viscosity at a temperature where the denominator goes to

zero, at T = T2 - C2. For most materials this anomaly occurs 20 to

40°C below the kinematic glass transition and if it is assumed that the
bulk viscosity behaves in a similar manner, it corresponds to a temperature
where complete structural relaxation cannot occur.

In an analogous though not mathematically identical manner,
Tool(4’78) proposed that the resistance to the approach of a glass to
its equilibrium volume was a function both of temperature and of the
instantaneous configuration. This formulation assumed a single ordering

parameter description of the instantaneous configuration and that a
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single relaxation time was uniquely determined by the configuration.
He used "fictive temperature," Tf, as a measure of instantaneous
configuration. A set of equivalent equations for length, volume,
density or refractive index relaxation can be derived from the Tool
expression; however the fictive temperature is in some ways a more
convenient parameter.(7) Tool's original equation for the relaxation

of the fictive temperature is

. Y
dT¢ T b
T Ae e (T - Tf) .
An infinite time it can be seen that T_= T. It is not clear why he

£

expressed the exponential dependence on temperature and structure in

T Tf A B

g h TT TT,

h
the e 8 and e form rather than the more familiar e and e £

form which results from rate theory; however, the two functional forms
behave similarly over a narrow temperature range, and the form used by
Tool is often more readily integrable. The Tool expression has been
found to represent refractive index relaxation reasonably well when

T. > T by Collyer,(79) but the agreement for T_. < T is generally

£
poor.(so)

£

. 80 .
thland( ) found it necessary to modify the Tool expression
to fit his results for isothermal volumetric stabilization of a

borosilicate crown glass. The following expression fit his data for
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volume dependent relaxation time. The derived equation is complex and
in general the agreement with observed results is poor. Kovacs attributes
the discrepancies in main to the existance of a spectrum of relaxation

times. The presence of a spectrum is clearly indicated in Kovacs' plot

of observed /n Tl ) vs. 8 values for polyvinyl acetate which is
eff
reproduced by Goldstein in(7). For Tf > T the effective relaxation

time varies by as much as one order of magnitude for the same b,
indicating memory effects, and hence the presence of a spectrum of
T's. For volumetric stabilization runs where Tf > T or &> 0, the

Tofg VS« & curves extrapolate to the same point at 8 = 0, indicating a

maximum value in the distribution of relaxation times. The behavior
for 8 < 0 is strikingly different from that observed for &> 0. For
volumetric stabilization runs where Tf < T the extrapolated Teffls to

® = 0 do not coincide, but increase with increasing initial amplitude

=3

8 . It is clear from these results that a spectrum needs to be taken
i

into account to adequately describe the behavior of polyvinyl acetate,
though at present it appears impossible to do.
Goldstein(gl) studied the volumetric relaxation of zinc

chloride glass to ascertain if ''single relaxation time'" behavior found

(76)

with acoustic means above its melting point remains in the trans-

formation region. Structural relaxation was observed at 100, 95, and

8800. Runs with Tf > T and Tf < T were made at 95°C; however, at lOOOC

only runs with T < T and at 88°c only runs with Tf > T were made. His
f

investigation led to the following conclusions.
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The /4n er

“eff
any one of the three stabilization temperatures fail to coincide. it

) vs d curves observed for various Tf's at

follows from this that a distribution of relaxation times is necessary
to describe volumetric relaxation. In contrast to Kovacs' polyvinyl
acetate results, where Teff‘s were observed to vary by a factor of
30 to 40 at any given 9, the maximum variation in Toff observed by
Goldstein for ZnCl2 was approximately a factor of two. This would
suggest, that though present, the spectrum of relaxation times is
narrow. Similar to Ritland's results, as recalculated by Goldstein,
the values of Toff at any stabilization temperature extrapolate to the
same point, independent of the initial Bi. This indicates that there is
apparently a finite maximum T in the distribution of relaxation times.
Eyring and Hirai(3’59) have derived expressions to describe
volumetric relaxation resulting both from hydrostatic pressure and
temperature changes requiring configurational changes of the liquid to
reach equilibrium as well as that associated with delayed elasticity.
The derivation is based on the hole model of liquids and consequently is
a single relaxation time - single ordering parameter model which experi-
mentally has been shown to be inadequate. The Tool equation for volu-
metric relaxation in the transition region follows directly from this
treatment, and as a result, the Eyring solutions have the same
inadequacies as the Tcol expression. This treatment does lead to the

prediction of the relaxation times for delayed elasticity, Tg, shear
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viscosity, TS = E;" and thermally induced volumetric configurational

relaxation TB T It follows from their treatment that
3

Tg> Ty > TB,T .
Clearly, the derivation predicts finite constants Teff's at =0
and T o ff should be a function of &, T and P only.

At approximately the same time that Eyring and Hirai
published references 3 and 59, Eyring was coauthor to a paper
which reportedly explained non-Newtonian relaxation in amorphous

(66). By using the Eyring rate theory, and an assumed

solids
biasing of the jump barrier due to an imaginary stress caused by
a deviation of a system from equilibrium, it was possible to derive

equations for relaxation of a system to equilibrium. The expression

obtained was

_ 44 _ . '
it Zkf sinh (Q'®)

V-V
where ¢ equals'v—:—éf, kf is the specific rate constant of the
[o] o]

reaction, and @' is a factor which is inversely proportional to
the absolute temperature. Since it can be shown that d fn(d) = d 4n(d)

it follows that

= 2 k. sinh (C'9) .
Teff £
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Thus in terms of this model, Togg — © 88 \Y —>Vm. T. Ree, who
presented the paper, indicated that their expression fitted the Ritland
relaxation data better than either the Tool or the Ritland expressions.
However, it is obvious that the Toff behavior predicted by this model
is not even qualitatively similar to that calculated by Goldstein from
the Ritland data. If Ritland's values for AX are employed in
conjunction with the values for kf and o' that Ree claimed fitted

Ritland's data, a value of 7 equal to 1,250 hours is calculated

eff
for (Tf-T) equal to 2°C at T equal to 520°C. Goldstein observed a

value of Te of approximately four hours for the same (Tf-T) at

ff

533°C. For an order of magnitude check it can be assumed that

where T is a constant and Q is the activation energy and is set
equal to that observed by Ritland, i.e., 125 kcal/mole. On this

basis, the To to be expected at 520°C should be approximately

ff
14.5 hours. Thus it can be seen that this model gives extremely poor
agreement with the observed derivative quantity Teff’ though it
apparently fits the volume vs. time data reasonably well. This
inconsistency may result because the integrated function is insensitive
to errors at small ¢'s.

Two other comments regarding this model are pertinent. The

first is that the value of &', though empirically determined to fit
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data, is made up of molecular parameters and thus should be constant
at constant temperatures. Ree indicates, however, that it was necessary
to use a value of &' = 0.5 for T < T and &' = 3.0 for T, > T at
T = 520°C to fit Ritland's data. It appears to be inconsistent with
the derivation that Q' should depend on whether Tf : T. The authors
showed that the Tool equation could be derived as a special case of
their expression. However, the approximation that sinh x =-% e* was
used. This approximation is good only for large positive values of
x, and thus the Tool expression is consistent with their expression
only for large values of Q. Experimentally it appears that the Tool
expression is a better approximation for small &'s than large.
Phenomenonologically the rheological properties of siliceous
glasses appear to be described by linear viscoelastic treatments;
however, the structural relaxation behavior due either to rapid
pressure or temperature changes cannot be described yet. The well
known Tool expression can only be considered as a first rough
approximation to structural relaxatiom, but it attempts to contain
what appears to be an essential feature, which is the dependence
of the resistance to structural change on the instantaneous
thermodynamic state of the system. Its failure to agree with observed
relaxation behavior can be attributed to the assumption that a single
ordering parameter Tf is adequate to describe the state of the system

and the neglecting of a distribution of relaxation times. The
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consequences of both assumptions were realized by Tool, and various
experiments appear to indicate that they were wrong. As was indicated
above, attempts to verify the Davies and Jones equation have indicated
the need of more than a single ordering parameter, and the presence

of a spectrum of relaxation times is clearly indicated by memory
effects.

Goldstein indicates(q) that at present there appears to be
no adequate phenomenological description of non-linear relaxation with
a distribution of T's. He indicates that even if a relaxation spectrum
could be determined for such small '"stresses'' that the response was
linear, it is not clear that the spectrum could be applied to the
non-linear case with modification of the introduction of a dependence
of the relaxation time spectrum on the instantaneous state. Ritland's
modification of the Tool expression appears to be an attempt to represent
the effects of a distribution of t's.

There is no direct mathematical relationship between the
distribution of T's observed for stress relaxation and creep measurements
and that observed for the non-linear volumetric relaxation. It does
appear, however, that similar to the distribution of t's observed by
Kurk jian, that for inorganic glasses there is a finite maximum T in the

(84)

distribution for volumetric relaxation. Goldstein suggests that

this extrapolated Teff’ representing a relaxation time when the glass

has relaxed to its equilibrium volume, and the "fictive'" and true
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temperature are equal, may be thought of as a "equiliprium" relaxation
time.

When the logarithms of the extrapolated Teff's observed by
Goldstein for ZnCl2 are plotted against the reciprocal of the absclute
temperature, within the experimental accuracy, the points lie on a
straight line, indicating a simple exponential dependence of Togf OO
temperature. Ritland reports a similar result, and further finds that
the activation energy calculated from the temperature dependence of Tofs
is equal to that observed for shear viscosity at the same temperature.
The equality of the activation energies for the two processes is
consistent with the Eyring-Hirai derivations.

It is not possible to compare the relative magnitude of the
relaxation times for the two processes with the Eyring-Hirai prediction
for the glass used by Ritland. Goldstein(83) has suggested that the
time constant for structural relaxation must be much larger than that

(84

for shear flow since Lillie ) was able to observe the change in
viscosity with changing structure while shear deformation was occurring.
This contradicts the predictions of the Eyring-Hirai derivation. To
date there have been no systematic studies of configurational volume
relaxation due to rapid pressure changes with the exception of one

(85

made by Mackenzie ) which does not lend itself readily to interpretation,
so it appears impossible to indicate the magnitude of the pressure induced

structural relaxation times relative to the temperature induced structural

relaxation times.



III., EXPERIMENTAL PROGRAM

To examine the relations and paradoxes discussed in the
Introduction, a number of physical properties would have to be studied.
Examination of the Davies-Jones relation requires measurement of the
volumetric expansivity, compressibility and epecific heat of the glass
and supercooled liquid as well as the rate of change of the glass point
with changing pressure. Further, it appeared from limited experimental

(76)

data from the literature that the inequality expressed in this
equation could be violated due to the rapid variation of A8 with Tg
compared with that observed for AQ and ACP, so the dependence of AR,
N and ACP on Tg should be experimentally determined. To compare the
observed time constants for structural relaxation with those for shear
viscosity, both with respect to their relative magnitude and to the
anomalous infinite time constant predicted by the W.L.F. equation, the
kinetics of the approach to the equilibrium structure after sudden
changes in pressure and temperature must be studied. Finally, if the
temperature at which the entropy of the supercooled liquid becomes
equal to that of the crystal, at the so-called Kauzmann paradox(s)

point, both the heat of fusion and the specific heat of the crystalline

material must be determined.

67
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It is evident that the experimental program implied above 1is
very extensive and would require four or five specialized pieces of
equipment to make the required measurements. The study undertaken
was limited to the following areas. It was believed that the A and
AB(Tg) measurements were to be made in another laboratory. However,
these measurements have apparently not been made. The first area of
investigation was that of structural relaxation behavior. According to
Goldstein(7) relaxation behavior is the outstanding experimental
characteristic of the glass transition, and any molecular theory must
explain it. It appeared from the literature that there was a good
chance that a maximum value in the distribution of relaxation times
might be expected and hence a Toff at & = 0 could be defined which
was independent of & initial. Goldstein referred to it as an

(81)

equilibrium relaxation time of the structure . According to the
Eyring-Hirai(B’sg) models, the equilibrium relaxation time is related
to the shear viscosity relaxation time, but, there appeared to be
some question as to whether the models predicted correct relative
magnitudes. It was also important to see whether the equilibrium
relaxation time behaved in a manner similar to that predicted by the
W.L.F. equation for the shear viscosity relaxation time, in that an
infinite relaxation time would be predicted at temperatures slightly

below the kinetic glass transition point. The terminal volume of a

structural relaxation experiment is by definition the equilibrium
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volume at that temperature; thus, experiments of this type at several
temperatures determined the specific volume of the supercooled liquid
as a function of temperature and hence its thermal expansivity.
Without the AB and dTg/dP measurements, it is not possible to
examine the Davies and Jones relations and to make any judgement
regarding the excess thermodynamic variable which determines the glass

transition; however, measurements of AX, AC_ and VT do allow the

8
calculation of the minimum values of AB and dIé/dP that are consistent

with the equations. If the O'Reilly(e) and Goldstein(s) observations
can be extended to the investigated glasses, these parameters allow the
calculation of dTé/dP.

To complete the areas of investigation indicated above, linear
thermal expansion and enthalpy measurements were made on the glasses
and supercooled liquids for three systems. Structural relaxation
measurements which extended over a time scale of several minutes to
over three months were carried out on one of the glass systems. The
other two were investigated only over time scales which readily allowed
the determination of supercooled liquid expansivities.

It can be shown that if both linear expansivity (a) and
volumetric expansivity (&) are based on the actual length or volume

respectively rather than some low temperature reference length or

volume
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for an isotropic material, It follows directly that

v T T
i .-.2.> - f 2 (T)dT = 3 f 2 4 (T)dT
Vl Tl T

1

T, T,
f Q(T)dT 3f < a(T)dT
T, T

V. =V, e =Vle 1

or

so that the specific volume of the supercooled liquid needed for the
evaluation of the TV%%L term can be calculated directly from linear
expansivities and low Eemperature density measurements if the fictive
temperature is known.

Implicit in the use of a drop calorimeter for the measurement
of specific heats of a supercooled liquid is the assumption that for
drops sufficiently above the formation range, the excess enthalpy
of the glass sample will be independent of the drop temperature. This
can be shown to be true to the extent that the fictive temperature is
a function only of the cooling rate. Solutions for transient heat

flow exist for various geometrical shapes (see 86 for example) which

have the form

T -T
o (x,t) _
T To = klt + k2

o

in

after a short time, where @w, To and T(x,t) are the environment, initial

and instantaneous temperature at time t and position x respectively
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and the constants k1 and k, are functions of the thermal conductivity,

2
the surface coefficient, specific heat, geometry of the sample and

the position (x) of the point in question. It follows that

dT
—x,t) _
dt B kl@» - T(x,t))

or that the instantaneous rate of cooling of every point is dependent
on its instantaneous temperature and independent of the initial drop
temperature To‘ From this it follows that each point in the sample
has the same cooling rate history, after the above relation for T(t)
applies, and thus all points in the sample would be expected to have
the same fictive temperature, independent of the initial drop temperature.
An experimental indication of the validity of this argument would be
demonstrated by the equality of the densities of samples dropped from
different temperatures, however as a proof, it is restricted to the
applicability of a single ordering parameter description of a glass,
A more legitimate, though experimentally less precise, proof would be
by the demonstration of the equality of the heats of solution of samples
dropped from different temperatures.

The three glass systems that were studied are (1) Lillie
No. 1, a soda-lime-silica glass which was mixed and melted in platinum
crudibles to duplicate a glass made by Lillie(84) (nominal composition

in weight %: NaZO, 20.96; Ca0, 9.05; R,0, (Fe

503 and A1203), 0.18; and

203
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Sio 69.73); (2) Arsenic Trisulfide (ASZS3) manufactured and

2)
contributed by the American Optical Company, Southbridge, Massachusetts;
and (3) Pyrex Brand glass manufactured by the Corning Glass Company

of Corning, New York, with code number 7740,

The Lillie composition was selected primarily because it is a
siliceous glass typical of the soda-lime class. Also, it has been
studied in the past with respect to viscosity(84) and thermal
expansivity;(87) Pyrex was selected as a representative borosilicate
glass, and ASZS3 because it is a single component glass former which

might be thought of as a '"simple glass', and its properties have not

been reported.



IV. APPARATUS EMPLOYED IN EXPERIMENTAL PROGRAM

To complete the experimental program outlined in the previous
section, two apparatuses were assembled. The first was constructed to
measure linear thermal expansion of glasses and their supercooled
liquids. This device was also used to study the relaxation behavior
in the transition region. The second was a calorimeter used to
measure specific heats at constant pressure of glass formers in their

glassy and supercooled liquid states.
A. Thermal Expansion and Relaxation Apparatus

The measurements of length as a function of time and
temperature were made by sighting on wires located at both ends of a
sample with telescopes mounted on cathetometers. An error analysis
had indicated that this technique was as accurate as the more precise
interferometer technique provided a 23.5 cm long sample was measured
with cathetometers capable of recording changes in length of one
u and provided the temperature was maintained constant along the
length of the sample. A study of the input power configuration
needed to produce a uniform temperature distribution was conducted
and the furnace described in the S.M. thesis submitted by the author(ss)

was constructed. The furnace, sample configuration, and cathetometers

used in this study were essentially the same as those described in the

73
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mentioned thesis except for an improved sample support which is
described below.

The samples were supported by a high thermal conductivity
bed (nickel plated copper) to reduce temperature gradients along
its length as shown schematically in Figure 5. Flame polished
sapphire rollers were placed between the ground surfaces of the bed
and the sample to allow changes in length to occur with a minimum
of resistance due to friction. If the sighting wires were located
exactly between adjacent rollers, ideally viscous deformationrwould
not influence the observed length of the sample. 1In practice it was
found that this condition could not be achieved and viscous
deformation had a small influence on the observed length. However
this support scheme minimized the effect of viscous deformations and
allowed length measurements to be made well above the glass transition
temperature.

The furnace temperature was regulated by a Honeywell Electro-
Volt proportional controller system. It was found that these
controllers would hold a set temperature to * 0.25°C for periods of
months when properly tuned. Occasional temperature variations in
excess of this spread would occur with wide fluctuations of line
voltage to the furnace. These fluctuations of temperature were of
short duration (less than two minutes) and rarely exceeded 1°C from

the set point.
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Fig. 5 Sample Configuration and High Conductivity Bed Used for Thermal
Expansion Studies



76

Thermal expansion measurements in the glassy region were made
by setting the controller to a set point and recording the length of
the sample after the temperature and thermal equilibrium had been
achieved. 1In the supercooled liquid region both thermal equilibrium
and structural equilibrium had to be achieved before an equilibrium
length could be measured. Hence the equilibrium length at any
temperature was taken as the terminal length (Lo ) of the corresponding
relaxation experiment.

The errors encountered in the measured expansion coefficients

are discussed in the presentation of results.
B. Calorimeter

A Bunsen ice calorimeter was constructed which followed
closely the details of one in use at the National Bureau of

(89,90,91,92 etc.) |, L. felt that this particular

Standards
transformation calorimeter combined a number of desirable features,
namely, an inherent high precison over a wide range of temperatures,
relative ease of achieving this accuracy in operation and rather
simple construction. A drop calorimeter has the disadvantage for

use with glass forming systems that high cooling rates are encountered
when the sample enters the calorimeter. This means that it is not
possible to make specific heat measurements of the supercooled liquid

in the transformation range due to the sluggishness of the structure

there.
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The principle of operation of this type of calorimeter is as
follows. Ice, water ard mercury are maintained in a closed fixed volume
which is in thermal contact with the sample receiving well of the
calorimeter. The mercury is connected to a mercury reservoir outside

the fixed volume chamber. As heat is introduced into the receiving
well, ice melts and mercury is drawn in from the outside reservoir to
maintain the constant cccupied volume. Calculation of the amount of
heat introduced is done by careful accounting of the mercury drawn
into the calorimeter from the reservoir.

The calorimeter, furnace and ice bath are shown schematically
in Figure 6. The discussion of the unit is limited here to pointing
out operating procedures and minor alteratioms of the apparatus which
has been described very throughly in the above noted references.

Similar units have been built which have substituted metal
vessels for the Pyrex vessels (P); however, it became obvious during
use that the recommendation of T. B. Douglas as to the absolute
necessity of being able to see the ice mantle was correct. This
pertains both to achieving the correct mantle profile during freezing
and to its inspection after a number of drops.

Stainless steel was substituted for Inconel in the
calorimeter well, mercury tempering coil and vessel caps. It was felt

that this metal provided adequate resistance to corrosion with
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FIGURE 6. Schmatic Diagram of 1
the Purnace and Ice Calorimeter.
A,calorimeter well; B,beaker of

mercury; C,glass capillary; D, ;
sample; E,ice bath; F,copper fins; |

G,gate; I,ice mantle; M,mercury;
N,thermocouples; P,Pyrex vessels;
R,mercury reservoir; S, copper
sleeve; T,mercury tempering coil;
V,valve; W,water.
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considerably reduced cost and improved fabrication properties.

The vessel caps were Helie arc welded to the calorimeter
well and the copper fins and spacers were silver soldered in place.
The well and fin assembly was electroless nickel plated to prevent
galvanic action between the stainless steel and copper.

House distilled water which had been passed through an ion
exchange column was used to fill the vessel. Its conductivity was

7 ( 1

less than 2 x 10 ' (———
ohm cm

). Dissolved gases were removed by a
vacuum distillation process. The water was stored under a vacuum
equal to its vapor pressure until it was introduced into the
calorimeter.

The calorimeter was filled by first evacuating the vessel by
means of a vacuum pump attached to the reservoir (R). After cthe
pressure had reached 20u of mercury, a predetermined amount of water
was allowed to enter the vessel through the tube connecting the
valve (V) and beaker (B), followed by enough mercury to fill the
remaining volume. The water was maintained under partizal vacuum
during the filling operation to prevent the resolution cf gases. A
detailed description of the filling procedure and machine drawings
of the glass vessels are given in appendices A and B.

It was necessary to stir the ice bath to maintain a uniform
temperature of 0°C with advanced melting of the ice in the bath.

This was done with three air 1ift pumps. These pumps provided
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considerable circulation without the vibration and hazards to the glass
calorimeter vessels encountered with mechanical paddles. The air used
for these pumps was passed through another ice bath so it entered at
OOC, thus eliminating it as a source of heat,

Under operating conditions the heat leak was found to be
approximately 1.2 calories per hour, corresponding to a drift rate
in the weight of the mercury reservoir of 0.02 grams of mercury
per hour. This value is approximately four times that reported by

(92)'

Ginnings and Corruccini Since the drift rate seemed to be fairly
sensitive both to the amount of crushed ice that was packed around the
valve (G) and calorimeter well, as well as to changes in room
temperature, it is probable that the path of the heat leak was one of
conduction along the tube of the calorimeter well. It was felt that
because the amount of heat lost due to the leak was usually on the
order of two parts in ten thousand in a typical drop, and that it
was quite reproducible and hence could be subtracted out, any attempt
to reduce the conductance of the calorimeter well either by lengthening
it or using thinner wall tubing was unnecessary.

The furnace is a wire wound Marshall Furnace with an internal
diameter of 1.0 inches and a hot zone 18.0 inches in length. The
windings are 40% rhodium- 60% platinum, which allow continous

operation to temperatures of 1550°C. The winding is divided into

12 zones which may be shunted to produce a uniform temperature
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distribution. For temperatures up to 650°C a nickel plated copper
sleeve (S) orie inch in outside diameter and 0.80 inches in inside
diameter and 12 inches long was inserted into the furnace to facilitate
maintaining a uniform temperature. Helium was introduced to the
furnace at all drop temperatures to improve thermal conductivity and
hence reduce temperature gradients as well as reduce the time needed
by samples to attain thermal equilibrium.

The temperature of the furnace was controlled by a Honeywell
proportional controller like the one used on the thermal expansion
apparatus. Temperatures were measured by means of three 907 platinum-
10% rhodium thermocouples (N). The potentiometer and galvanometer
that were used allowed readings of thermocouple voltages to two
microvolts corresponding to approximately 0.1%.

The operating procedure for a drop was as follows. A sample
(D) was lifted into the furnace by means of a wire and held till it
had achieved thermal equilibrium. If Newtonian heating is assumed
the sample configuration that was used should reach 99.99% of the
environment temperature in approximately 20 minutes at 450°c. A
minimum of one hour was always allowed to insure that equilibrium
was achieved. Just prior to the drop the mercury column was adjusted
to a reference mark in the capillary (C), the valve (V) closed and the
beaker weighed. The beaker was then replaced and the valve opened so

that mercury could flow into the vessel as ice melted. After the
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temperature of the sample had been measured the furnace was rotated into
place over the calorimeter, the gate valve (G) opened and the can

was released. Immediately after the drop the gate valve was closed

and the support wire detached so that the furnmace could be rotated

away from the calorimeter to minimize the heat introduced into the
calorimeter from the furnace. The beaker was weighed periodically

with the mercury column adjusted to the reference mark until a

constant drift rate of approximately 0.02 grams per hour occured.

With a good mantle the system achieved equilibrium in 1/2 to 3/4

hour after the drop.

Both siliceous glasses were contained in open stainless steel
cans which had been electrolytically plated approximately 0.001 inches
thickness with gold. Gold was used to reduce the corrosion of the
stainless steel by the atmosphere and the glass. Neither glass wets
gold. In addition, gold has a low emissivity, which was considered
to be an advantage since it results in a reduced initial cooling rate.
The arsenic trisulfide samples were contained in stainless steel cans
which had been sealed under vacuum by welding with an electron beam.

It was necessary to seal the As because of its high vapor pressure

S
2°3
and the toxicity of various arsenic oxides formed at temperatures in

o
excess of 200-225C.

A discussion of the probable errors in the determined values

of specific heats is made in a later section; however, a few remarks
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regarding precision of this calorimeter are made here.

The number of grams of mercury existing between the mercury
tempering coil and the beaker (B) is ideally comstant. Any change in
room temperature caused some slight change in the number of grams
contained in this region due to differences in expansion coefficients.
Hence if the mercury column was reset to the same reference point
in the capillary (C) the mass of the mercury in the beaker (B)
varied with changing temperature. When a gas fired furnace that was
in the vicinity of the calorimeter was put into operation, changes
in room temperature on the order of 30°F in one hour occured.

This difference in temperature caused a change in the mass of the
mercury in the beaker of approximately 0.1 grams, corresponding to
an error of six to eight calories. Even though operation of the
calorimeter was not attempted during conditions as severe as those
mentioned, the effect of room temperature variations was noted and
it is felt that it was a major source of error.

Recently Rossing(93) measured the enthalpy of Can from
0-1200°C on this calorimeter. Comparison of his results with

(94) (95)

those of Naylor and Krestovnikov and Karetnikov indicate
an approximate error of * 3 calories per drop in his measurements.
It is felt that this is a reasonable measure of the accuracy of

the calorimeter under operating conditions.
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The data obtained from the enthalpy and thermal expansion
measurements is recorded in Research Note-books Nos. 361, 386 and
398 which are filed with the Division of Ceramice, Department of

Metallurgy, Massachusetts Institute of Technology.



V. EXPERIMENTAL RESULTS

Enthalpy as a function of temperature and length as a function
of temperature as well as time in the transition region have been
experimentally measured for the glass systems as ASZS3, Lillie No. 1,
and Pyrex, Corning No, 7740. These properties were measured both in
the glassy and supercooled liquid states. The resulting AH(T) and L(T)
data for both states have been represented by equations derived by
least square curve fitting techniques and the derivative properties,
Cp(T) and a(T), were obtained by differentiation of the resulting
expressions. The effective time constants for volumetric relaxation
were calculated by graphically differentiating the length-time curves
with the use of a front surfaced mirror as described by Goldstein.(Sl)

It is well-known that values of the constants Z1sZgsreeer?y

which give the best fit to a set of n points represented by the general

expression

are those which minimize the total variance between the observed and

calculated values for g(x), where the variance is defined by
e, - 8G) )

_ O_2 _n
g(x) n- 2 ?

cal

\Y
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and o is the standard deviation of g(x). Physical significance can

g(x)
be attached to the values of the constants z, only if 1) the errors are
random; 2) the correct functional form for g(z) is known; and, 3) a
large number of points are used. Even when the above conditions are
met, significant variation in the constants {(or error if they are

known from some a priori physical theory) is expected with each series
of experiments or sampling of points.

Generally the more terms used in the g(x) expressionsthe smaller
the variance. An n term polynomial will fit exactly n experimental
points, that is, a set of constants z, fto z ~can be found such that
g(x) calculated will equal every g(x) observed and the variance will
be zero. Similarly, two straight lines can usually be found to fit a
set of data points with a smaller variance than either a single straight
line or a parabola since four constants can be selected freely to fit
the points rather than two or three. The same holds true for higher
orders of polynomials, It was in fact the use of the variance as a
qumerical criteria for the goodness of fit that led Booth and Dixon(96)
to the erroneous conclusion that a discontinuity existed in thermo-
electric power of rhodium. They found that two intersecting parabolas
fit their data "better' than a simple parabola. In the light of the
above remarks it should be expected that two equations with a total of

six terms would have a smaller variance than one with three terms.

The erroneous application of the variance as a measure of closeness
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(97)

of fit by the above authors was pointed out by Wensel and Tuckerman
(98)

and the more useful Gauss criterion for closeness of fit was
reviewed.

A numerical criterion for the relative closeness of fit of
two formulae fitted to the same n data points is given by the
expression

Se@),, - 8() )

ca
n 1

n-m

where m is the total number of freely adjustable constants. The
expression(s) giving the better fit has the smaller Q. In principle,
the best representation of a set of data may be found by fitting
various g(x)'s to it until a minimized Q is found. It is important
to note that even for this condition of minimum Q, no physical
significance can be attached to the form of the resulting expression.
It can only be said that this expression for g(x) is the best
representation of that particular set of data and that probably a
different expression would result with a minimized Q for a second set
of data subject to random errors from a similar series of experiments,
In the above discussion it was assumed that the mathematics
of calculating the constants to minimize the variance could be carried
out exactly., In the case of three term polynomial curve fitting,

6 . . .
terms of the order of x are found. In this series of experiments



88

where temperatures approached IOOOOC x = 103) numbers of the order
of 1018 were encountered in the calculation of constants z,, 2z, and

z With single precision arithmetic, computers carry only eight

3
or nine significant figures, which leads to computational errors
from rounding off which can exceed experimental errors.

It is for the above reason that a poorer fit in terms of the
Q criterion can be obtained with a correct functional form of g (x)
for a set of data than with an incorrect lower order one. Even if
the derived expression gives a reasonable fit with the correct
functional form, in that the variance is low, the individual constants
can be greatly in error when rounding occurs during calculations.
Error in the individual constants can be particularly serious if the
least square expressions are differentiated which is equivalent to
making calculations from the derived values of the constants,

If the correct functional form is used for g(x) and no
computational errors are encountered, it is possible to compute the
probable error in the derivative quantity g'(x), (CP(T) or a(T)).

For instance if AH was correctly represented by

M=A+CT

the probable error in Cp can be shown to be(99)

Il

2 2
P n G T) - ECT)
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where P . is the probable error in AH and is related simply to the

OH
standard deviation by(gg)

For higher order representations of AH or 4n(L), the expression for

the probable error in Cp, or a, is given by

2 (&) 1"

where the xi's are all the kinds of terms appearing in the expression
for CP and would thus be all the remaining constants after differentiation
of g(x) and the temperature. The values of Px. can be predicted from the
i
standard deviation of the least square expression g(x) if no machine
errors are encountered. However, with rounding errors in the least
square curve fitting procedure, it is impossible to estimate the PX.'S
i
and thus it is impossible to set accuracy limits on Cp's or a's obtained

in this way.

An expression of the form
2
H=A+ BT+ CT” + D/T

was used to represent the enthalpy data in the glassy region. This

(100

conforms in form to much data presented in the literature ) for

solids. Whenever the four term expression was used, a double precision
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least square analysis was employed. To represent enthalpy in the
supercooled liquid state and 4n (length) both in the glassy and
supercooled liquid states, two and three term polynomial expressions

were fitted, and the one selected which gave the best fit in terms of

the (0 test.

A, Thermal Expansion and Specific Volume

If the linear thermal expansion coefficient is calculated on
the basis of the actual length rather than a low temperature
reference length, the volumetric expansivity (a) is exactly equal to
three times the linear expansivity (a) for an isotropic material.
For a non-isotropic material, & = a, + a, + a4 where the ai's are

the three orthogonal linear expansivities.

The length-temperature data were fit to the functional forms

A + BT

fn L
and

/n L =A+ BT+ CT2 .

The linear expansion coefficient is thus

dL._ _ d/nl
LdT dT

= B + 2CT
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and is equal to B when a linear expression was found to fit best

(C= 0). In the actual least square curve fitting calculations,

Il

the function 4n L(T)' = 4n L(T) - K was used since variations in the
values of ¢n L(T) took place in the third place after the decimal
point over the entire range of temperatures. It was felt that this
shift in coordinates was necessary to produce a sufficiently rapidly
varying function over the temperature range so that a meaningful
curve fit might be obtained. It is thus necessary to add the value
K to the derived A values if the actual lengths of the samples are
to be calculated. A value of 5.459 was used for K for all
calculations except for Pyrex (1) and Pyrex (4) where a value of
5.460 was used., It should be noted that this shift in coordinates
has no effect on the values of the calculated expansivities, since
both A and K disappear when the derivative is taken, the standard
deviations of #4n L, A and B, or the value of Q. All equations
representing expansion data are fitted in degrees Centigrade.

The best expressions for 4n L = 4n L(T) are given below
for ASZS3 glass and supercooled liquid, Lillie No. 1 glass and
supercooled liquid and Pyrex supercooled liquid together with the
standard deviations for 4n L(T) and B when linear expressions for
fn L(T) are given. The results of three attempted fits to Pyrex
glass are given in more detail in Table 1 to demonstrate that its
glassy expansivity was best represented by two intersecting straight

lines.



ASZS3

/n LY

InL!

ASZS3

in L':

o
4oLt
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Glass

5.4273 x 1073 + 2.3394 % 107°T

-5

N

5 < Tg 105°C

= 2,499 x 10

= 89,81 x 10~

4.0169 x 1077

Supercooled Liquid

1,403 x 1072 + 12,966 x 107°T 162 < T g 233°C

5

134.52 x 1077

Lillie No., 1 - Glass

10,2

in L'=s -32,276 x 10‘5 + 0.93914 x 10’5T-+ 38,558 x 10 T

dan'

61 < T < 422°C

0.9196 x 10°°

Lillie No. 1 - Supercooled Liquid

/n L'

o
/nL !

)

Pyrex

]

n L'=

O-17,nI_.'

. 13.189 x 1073 + 3.7089 x 107°T 470 ¢ T g 540°C

12.002 x 107"

14.183 x 1077

supercooled Liquid

-2.3857 x 10°2 + 0.85472 x 107°T 486 < T < 565°C

0.1787 x 107°

0.243 x 10'7



93

6. Pyrex

TABLE 1 - PYREX GLASS EXPANSIVITY

a) Linear fit for all data points

Run 1 4 17
temperature range _C 24 to 403 147 to 413 34 to 443
number experimental points 17 21 21

A x 10° 26.34 -18.90 14.16
B x 10° 0.3421 0.3366 0.3241
o ., x 10° 1.535 0.7182 0.5134
4nL
o, x 1010 2.359 0.5158 0.2636
b) Parabolic fit for all data points

Run 1 4 17
temperature range °c 24 to 403 147 to 413 34 to 443
number experimental points 17 21 21

A x 10° 23.62 -22.73 13.06
B x 10° 0.3790 0.3670 0.3349
¢ x 109 -8.799 -5.520 -2.136
5
ot X 10 1.05 0.6396 0.4229
0.x 100 1.186 0.432 0.1887
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c) Data points divided into two temperature regions

Low region £nL' = A, + B.T

178
high region 4nlL's= A, + BZT
Run 1 | 4 17
Low temperature range, °c 24 to 250 147 to 271 34 to 279
High temperature range, °c 275 to 403 284 to 413 300 to 443
number experimental points 11/6 11/10 13/8
A, x 10° 24.83 -21.68 13.44
B, 10° 0.3538 0.3507 0.3283
A, x 10° 38.55 -18.37 16.87
B, x 10° 0.3050 0.3346 0.3166
o, % 10’ 0.4535 0.4642 0.2022
7 10’ 0.3995 0.4183 0.0519
intersection temperature Ti,OC 281.5 204.5 293.0
probable error in T, °c 31.5 91.0 43.5
o, 10° 0.8772 0.5468 0.3831
Q, * 10%0 0.8879 0.3342 0.1641

It can be seen that as was expected, the standard deviation of 4n L
decreased as more terms were added in the expression for g(x) to represent

the experimental data. It is evident though, from these results, that
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better fits were obtained as the number of terms increased since

Q4 < 93 < 92

for all three runs. The best fit was given by dividing the data into
two regions and fitting both with linear functions which intersect
at a temperature ’l‘i = 259.7 j'35.20C. A single four term polynomial
was not fitted to the Pyrex data for purpcses of comparing its 94
with the 94'3 calculated from the four freely chosen constants of the
two linear functions, since large rounding errors were encountered even
with the double precision arithmetic with four term fitting relative to
that encountered with two term fitting and thus it was not felt that a
comparison of the Qa'S would be meaningful.

The probable errors in Ti are calculated from the standard
1° Bl’ A2 and BZ' The large probable errors result

from the small difference in the slopes of intersecting lines, and thus

deviations in A

the Ti's are very sensitive to the values of the A's and B's. The
probable error of the average Ti (+ 35.2°C) was calculated by
substituting the probable errors of the individual Ti's into equation 40
reference §9. The values of the three observed Ti's are consistent
with their probable errors.

The variation observed between the linear expansion coefficients

(B's) for the three runs in both the high and low temperature regions is
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not consistent with their observed standard deviations. It is not clear
whether the variation is real and if not whether it results from

systematic errsrs or from an insufficiently large sample of points.

The average values for B, and B, are 0.3442 x 107> and 0.3287 x 10°°

(cm/CmOC) respectively. The probable errors in the average values

Bl and B2 cannot be calculated from the probable errors of the

individual Bi's since they are not large enough to cover the observed
range of Bi's. The probable errors were calculated by considering
each as a separate measurement, finding the standard deviation from the

mean and calculating the probable error of the mean by dividing PB
= 9’
by the square root of the number of measurements to give PB . Thus
i
the linear expansivities of the low and high temperature regions are

a. = . = 0.3442 + 0.0087 x 10°° cm
1 1 - o)
cm C

for T < 260°C

and
a.= B. = 0.3187 + 0.0087 x 107° /——cm
2 2 - 4 o
\Cm C
for T > 260°C
respectively.

The graphical representation of the thermal expansion

measurements for Lillie No. 1, A8283 and Pyrex, run one, are given

in Figures 7, 8, and 9 respectively. The lines are drawn from the
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equations given above which fit the observed data points best. The
linear and volumetric thermal expansion coefficients derived by
differentiation of the best fit equations are given in Figures 10,
11, and 12 for the three glass systems. The values shown for the
glassy expansivity of Pyrex in Figure 12 are the average values
Bl and B2 given above.

The specific volume of the supercooled liquid can be
calculated directly by combining the integrated volumetric expansivity
functions with room temperature densities of glasses of known fictive

temperature. In terms of the true expansivity these equations take

the following form,

dT - .

T
fn V(T) - fn V(T)= 3'[ a(T) dT
T

[ I,
vV(T) = V(Tl) exp'_ 3fT a(T) dT
1

where V(Tl) and T, are specific volume of the glass measured at the

1
temperature Tl' It is of course possible to calculate the specific
volume of the supercooled liquid over a temperature range by extending
the integration beyond the fictive temperature; however, only the values

at the fictive temperature (Tf) are given since the calculation is so

easily done by anyone interested in the values.
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The densities of the glasses were determined by measuring the
difference between the weights of glass samples weighed in air and in
toluene. The specific volumes of the glasses are given at T1 and Tf
in Table 2. The values at Tf were calculated by substituting the
expressions for a(T) derived from the best fits of the observed data
points into the above expressions. The results of two measurements of

the specific volume of the same Pyrex sample are given to demonstrate

the reproducibility of the measurements.

TABLE 2

SPECIFIC VOLUMES OF GLASSES AND SUPERCOOLED LIQUIDS

Pyrex (a) Pyrex (b) ASZS3 Lillie No., 1
Tl(OC) 25.8 24,6 25.8 24,5
vl(cm3/gr> 0.448503  0.448849 0.313105 0.401198
Tf(OC) 490 162 473
VTf(cm3/gr) 0.450580 0.316112 0.407349

Since the expected change in V due to a temperature change of 1.2°C is
only 5.55 x 10-6 cm3/gr, the observed differences between specific
volumes of Pyrex is due to experimental error and is 0.077 percent.
The specific volumes of the glasses calculated at Tf are equal by

definition to the specific volumes of the supercooled liquids at T = Tf,
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B. Enthalpy

The enthalpy data for all three systems was fit to an equation
of the form AH = A + BT + CT2 + D/T in the glassy region. It was
found that due to rounding errors made by the computer, the fit of the
four term expression for A8233 glass was so poor that the derived
equation passed well below every data point. The presence of large
rounding errors was indicated by the fact that the standard deviation
of the derived four term expression was considerably larger than either
of those computed with the derived two and three term polynomials.
The occurrence of the excessively large rounding errors with ASZS3 only
results from the relatively narrow temperature range over which the
equation was fit to experimental data. All of the enthalpy data is
represented by equations in which the temperature is in degrees Kelvin,
The AH is the difference in heat content between T and 273.18° Kelvin,
or if (T + 273.18) is substituted for T in the derived expressionms,
it is the difference in heat content between T and OOC. The graphical
representations of the equations and experimental data are plotted
in degrees centigrade vs. AHT-OOC so that the temperature scale
would be the same as that used to represent the thermal expansion
behavior.

The units that AH is reported in are (calories/gram) where the
calorie is defined as 4.1840 absolute joules by the National Bureau

. )
of Standards. There are at least three other calories, the 20°C,
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the 15°C and the mean calorie which are 4,181, 4.185 and 4,186
absolute joules respectively.(lol)
The best representations of the enthalpy data observed for

the three glass systems in both the glassy and supercooled liquid

states are given by the following equations.

Lo ASZS3 — Glass

-5,2
OH = -
'T-273.18 33.4670 + 0.10769T + 1.33x10 T

273.18 < T < 470°K

_ cal
o = 0.0524 S
gr C
2. ASZS3 — Supercooled liquid
AH - 60.2322 + 0.17285T + 0.82 x 107°12 &2h)
7-273.18 . ' : gt

375 < T < 875°K

_ cal
GIH = 0,0910 ég;-)
3. Lillie No. 1 — Glass
3
= -5 2 2,423518x10 cal
AHT-273.18- -36.3766 + 0.134679T + 9.658 x 10 "T - T (gr

273 < T < 850°K

_ cal
O N 0.3108 Qg;—)
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4y Lillie No. 1 — Supercooled liquid
- cal
MHy )7y 1 = - 158.8158 + 0.356962T (= )
850 < T < 1200°K
_ cal
Oy = 14297 7 )
o, = 0.516 x 10'2<————°a1>
C o
) gr C
5. Pyrex — Glass
-5.2 , 8 083172‘:103 cal
DBy 7318~ ~9%+8852 + 0.232481T + 4.3953x10 "T° + T G )
373 < T < 850°K
o = 0.4977 3
LH ’ gr
6. Pyrex — Supercooled liquid
_ cal
DHp g0q g = - 152.2888 + 0.347142T (0°)
850 < T < 1200°K
o, = 0.9548 &l
AH gr

q
!

- 0.2955 x 10”2 <53L>
C o
P gr C
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The graphical representation of the enthalpy data and equations
which fit best are given in Figures 13, 14 and 15 for the ASZS3,
Lillie No. 1 and Pyrex systems respectively. The lines drawn are
calculated from the equations given above. The heat capacities
derived by differentiation of the above expressions are represented

in Figures 16, 17 and 18 for the three glass systems.
C. Structural Relaxation

The structural relaxation following sudden changes in
temperature was followed by measuring length as a function of time at
the soak temperature. It can be shown that the effective time constant
calculated on a volume basis is the same as that calculated on a length

basis. Thus

L 1 d(V-Vw) B 1 d(L-Lm) ‘
T .. V-V dt L-L dt
eff oo <<}
V-V L-L
The value of d_, = = does not equal that of & = , and it can
\ \' L L°°
(o]
be shown that
SV =~ 3 6L .

All graphs and calculations have been made using length as the basis.
The relaxation of length resulting from a sudden change of

temperature from 475°C to 500°C is shown in Figure 19. Teff's were
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calculated at several (L-Lm)'s by graphically finding the slope of
the smooth line drawn through the experimental points with the use
of a front surfaced mirror. The mirror was placed on the paper

and rotated until the visible portion of the line and its reflection
appeared to form a continuous line. The plane of the mirror is
perpendicular to the tangent of the curve at this orientation.

Once the normal was established, the tangent was readily determined
either mathematically from the equation of the normal line, or
graphically. When the length is plotted vs. log(time) as it was in

Figure 19, T _c¢ 18 calculated as

1 _ slope of tangent
off 2.303 t(L-Lm)

T

The values of log L ) calculated for all relaxation experiments
T P

eff
made on Lillie No. 1 are shown in Figure 20. The nominal stabilized

and soak temperatures are shown on the figure for each run; the
measured values of initial and final temperatures for these runs are

summarized in Table 3, along with the Teff‘s extrapolated to SL = 0.

) vs. & data,

Linear expressions were fitted to the observed log(Tl L

eff
since it was felt that the curvature observed in some runs was
well within the error expected from the graphical differentiation

treatment. It should be remarked that even though the technique of

finding the slope by means of a mirror appears to be quite reproducible,
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provided that an inflection point is not nearby, that the calculated
Teff's are quite sensitive to the particular smooth line drawn through
the experimental points and also to the exact value of L used. The
errors due to an incorrect choice of Lm were increasingly large as

L-oL and thus To 's were not calculated for equivalent to (T-Tf)'s

ff
smaller than approximately 2°C. 1t was found that if the points

were plotted on semi logarithm paper, as in Figure 19, that frequently
a poor line was drawn through the early points, and since the initial
slope is comparatively small, large errors in Toff frequently resulted,

Often the Te 's for early points were calculated from plots on linear

ff
graph paper.

TABLE 3

INITIAL AND FINAL TEMPERATURE FOR STRUCTURAL RELAXATION RUNS
ON LILLIE NO. 1 WITH EXTRAPOLATED EQUILIBRIUM RELAXATION TIMES

o o . o
Run Initial T°C Final T C Toff @ 6L = 0 [hrs)

500 —» 520 498 .7 521.1 0.196
485 — 520 483.2 519.4 0.459
485 — 500 485.9 502.2 3.95
475 — 500 474.7 498 .7 3.23
520 — 500 520.2 499.9 4,72
540 — 500 538.7 500.6 2.555
475 — 485 474.,0 485.1 42,6
500 — 485 500.6 485.1 21.85
470 — 475 469 .4 L74 .4 189.0
540 — 475 539.5 474.7 64.1

500 — 470 499.9 469 .4 644.0
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In Figure 21 the logarithms of Toff at 6L = 0 and the shear
relaxation time defined as the quotient of the viscosity divided by
the shear modulus are plotted vs. the reciprocal of the absolute
temperature for Lillie No. 1. The shear viscosities were measured

(84)

over this temperature range by Lillie. The shear modulus for this

glass has not been measured; however, a value for G = 3 x ].0ll dyne/cm
was found in Morey(loz) for a glass of similar composition. It can be
seen that both sets of data are fit over the narrow temperature range
within the apparent scatter by straight lines. The slopes of the lines
represented by equations of the form

1
] = =
Og(f,) = A, + B, T

are

36.032 + 2.398 x 10° (°K)

B
structural

33.497 + 1.756 x 10° (°K)

Bshear

If it is assumed that the relaxation times are correctly represented

in terms of activation energies, they can be calculated to be

kcal
Estructural = 164.0 + 10.9 mole

and
_ kcal
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It is obvious from the calculated values of the activation
energies and their standard deviations that the two overlap and that

the activation energy could be the same for both relaxation processes.

(103)

To check this hypothesis, the '"Students ™ test was applied to

the two activation energies. This test gives the probability that a

sample could have come from a population whose mean value is X and

whose standard deviation is d_.

X
In this case
- _ 37 - kcal
E=X= 158.3 C;;TE)
Gé + oé 1/2 9 9 1/2

_ 1 2 (10.9)" + (8.0) " _ kecal
o = = = 6.76{——J(5)
_ 2 2 mole
E n 2
£ = difference in mean _ (164.0 - 158.3) _ (158.3-152.6)

- standard deviation of mean 6.76 6.76
t = 0.84

The table of the significance of the difference between two sample
(104) . .. . o q s

means indicates that there is a 60% probability that the two

activation energies come from the same sample, or were equal. Thus

the conclusion derived from the test is that the two relaxation

processes probably have the same activation energy E = 158.3 kcal/mole.
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It can be seen from Figure 21 that although the slopes of the
curves are apparently the same, the equilibrium structural relaxation
time exceeds the shear relaxation time by approximately a factor of
thirty at any temperature level.

The relaxation experiments were not made over a wide enough

temperature range with either Pyrex or As to make meaningful

253

calculations of the activation energies for T at 6L = 0. Precise

eff

viscosity measurements of As have not been reported and those for

2%3
Pyrex have been made only down to temperatures about 50°C above

the transition region. Thus to make a comparison of the shear and
volumetric time constants an extrapolation of the viscosity must

be made. The time constant for structural relaxation of Pyrex for

the quench from 566 to 468°C is 50 hours at BL = 0. The extrapolated
viscosity at this temperature is 4.17 x 1015 poise and the value

of the shear modulus is calculated to be 2.615 x 0% dyne/cm2

from values of E and u tabulated by Corning Glass Co. The time
constant for shear relaxation is thus 4.43 hours which is approximately
eleven times less than the structural relaxation time constant. There
is no reason to expect that the ratios of the two time constants should
be equal for the two glasses, but it was found that for both Pyrex

and Lillie No. 1, the so-called equilibrium structural relaxation

times are at least an order of magnitude larger than the shear relaxation

times, but apparently have the same temperature dependence.



VI. DISCUSSION OF RESULTS

A, Glassy Thermal Expansivity

The first evaluation of the results of the thermal expansion
measurements made in this experimental program is by comparison with
the results obtained by others for the same glasses. The thermal
expansion behavior of A8253 between 50 and 175°C has been studied(los)
and its reported expansivity is 23.7 x 10-6 (cm/cmOC). The best
value found for the data obtained in this program was 23.29 +* 0.28 x
10-6 (cm/cmoC) where the error indicated is the probable error as
calculated from the standard deviation of the slope. It can be seen
that the maximum probable value for the expansivity just equals
that observed by Glaze et al at the National Bureau of Standards
and the two values differ by 1.28 percent. Since no error limits
were indicated by Glaze et al, the values can be considered to be
equal.

Corning Glass Works reports(106)

the thermal expansivity of
glass number 7740 (Pyrex) to be 33 x 10.'7 (cm/cmOC) over the
temperature range 0 to 300°C. The equivalent average expansivity

is calculated to be 34.1 x lO.7 when the values for the two observed

linear regions are averaged over the temperature ranges that apply.

123
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This value deviates from that reported by Corning by 3.2 percent.

There appears to be no reported value for the thermal
expansivity of the soda-lime glass, Lillie No. 1. Bestul(87)
measured its expansivity in conjunction with a study of the
applicability of the W.L.F. equation to the viscosity of silicate
glasses, but reported only the value he measured for 4X, the
difference between the liquid and glassy volumetric expansivities.
Comparison of its expansivity with those calculated from the
numerous empirical additive expressions appearing in the
literature appears pointless since they vary considerably in their
predicted expansivities and generally include no temperature
dependence of thermal expansivity.

It can be seen from the above discussion that the observed
values for thermal expansivity are in good agreement with those
reported for ASZS3 and Pyrex. It is not possible to make any
comparisons other than the percentage difference between the
observed values since no probable error was indicated for the other
measurements. The difference between the observed average
expansivity and that reported by Corning for Pyrex is difficult to
access, since it was found that the data resulting from this
experimental program was best fit by two straight lines which

intersect at a temperature within the temperature range over which

the average expansivity is given by Corning. Since the temperature
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dependence of Pyrex's expansivity is not indicated and the average
expansivity is given only to two significant figures, the agreement
between the observed and reported expansivities is considered
adequate.

The differences between the glassy expansivities of the three
systems studied can be interpreted only qualitatively in terms of
the factors which have been discussed. The thermal expansion
behavior of vitreous SiOZ is not well enough understood to
thoroughly pursue the effects on thermal expansion of substitutions
into the silica network. Introduction of BZO3 into silica has
less effect on thermal expansion than the introduction of Ca0 and
Na20 since the expansivity of Pyrex is approximately one third
that of Lillie No. 1. Even though this result is consistent with
the correlation of the effect of bond strength of the introduced ion
on expansivity, it must be argued that the B+3 ions are able to
enter the silica network with less effect on the proposed
vibrational mode with a negative 7i than either Ca+2 or Na+1 ions.
The presence of modes with negative 7i 's in Pyrex is indicated
by two observations. The first is a large negative expansion

(107) and secondly its

(20,108)

coefficient at temperatures above 5%k
compressibility increases with increasing pressure The

soda-lime glasses, on the other hand, behave in a more typical

manner with respect to compressibility and low temperature thermal



126

expansion, in that the compressibility decreases with increasing
pressure(log) and the expansion coefficient is essentially greater
than zero for all temperatures greater than the absolute zero of
temperature(107). In the paper by White(107) it is repcrted that
the expansivity of a soda-lime glass becomes negative at
approximately 14°K and reaches a minimum value of -2 x 10~8
(cm/cmoC) at 119K a borosilicate glass with the Pyrex composition
has an approximate expansivity of -60 x 10‘8 (em/em°C) while SiO2
and Vycor have expansivities of approximately -85 x 10-8 (cm/cmOC).
The negative expansivity of the soda-lime glass is essentially
negligible., It appears from these observations that the vibrational
modes with negative 7i's can be essentially suppressed by the
i.scroduction of NaZO and Ca0 into the silica network.

It is tempting to attribute the large expansivity of
ASZS3, compared with the siliceous glasses, to the lack of
vibrational modes with negative 7i's. This assumption cannot be
justified by the calculated y which will follow shortly. Rather the
differences in the siliceous and ASZS3 glass structures appears to
be responsible for its relatively large expansivity. The structure

(110,111)

of vitreous As has been reported to be one in which

S
2°3
each arsenic atom is surrounded by three sulphur atoms and each

sulphur atom by two arsenic atoms, the total structure consisting

of chains, bands or layers. It appears that the high expansivity
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of A8283 is directly attributable to the existence of weak
intermolecular bands between the chains, bonds or layers while the
siliceous glasses are made up of a continuous network, bound by
primary bonds. The existence of negative 7i's in the siliceous
glasses serves to increase the difference in expansivity between a
material influenced by bonds of secondary strength and one which
contains only primary bonds.

The harmonic oscillator model predicts that, like specific
heat, the thermal expansion coefficient should be zero at 0%k and,
providing no modes with negative 7i's exist, should increase with
temperature and asymptotically approach a constant value at high
temperatures. Even with the inclusion of negative 7i's, the
expansivity should approach a constant value once all modes of
vibration exceed their characteristic temperatures. The asymptotic
constant value of expansivity can be positive or negative,
depending on the distribution of 7i's, but in the case of siliceous
glasses it is a relatively low positive number. Since the modes
of vibration with 7i's in siliceous glasses have low characteristic
temperatures(20’24), their expansivities would be expected to be
increasingly negative from OOK, reach a minimum, then increase to a
constant value with increasing temperature.

Thermal expansion measurements were not made at temperatures

below 25°C and the resulting data was fit only to polynomial
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expressions with a maximum of three terms so it is not possible to
interpret the results of this experimental program in terms of the
behavior discussed above. It is obvious from the results reported by
White(107) that the low temperature behavior is qualitatively correct
for the soda-lime and Pyrex glasses. No low temperature expansion
measurements are reported for vitreous ASZS3. The measurements made
for these glasses would indicate that over the temperature range
investigated the expansivity of ASZS3 is comstant, that of Lille No. 1
increases and that of Pyrex decreases with increasing temperature.
The behavior exhibited by Aszs3 and Lillie No. 1 is normal if it is
considered that A5283 has reached its characteristic temperature

and Lillie No. 1 is approaching its.

The behavior of Pyrex is anomalous since it has been argued
that all vibrational modes with negative 7i's have low characteristic
temperatures, hence it would be expected that its expansivity should
increase with increasing temperature. It was further found that its
expansion behavior was best fit by two intersecting lines, which would
indicate the presence of a phase transition. It is evident that if
a phase transition is taking place at approximately 26OOC, it cannot be
of the first order, since there is no discontinuity in volume across
it. Even though it is thermodynamically possible for a solid phase
to undergo a polymorphic second order phase transition with a

negative A&, it is felt that the most probable explanation of the
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discontinuity in slope is that Pyrex is a two phase glass and at
approximately 260°C one of the phases undergoes a glass transition.

It is well known that borosilicate glasses are prone to phase
separation. The fabrication process of Vycor glass has as a necessary
step the leaching out of the high borate phase after phase separation
has occured. Recently Charles(llz) studied the A.C. and D.C.
electrical properties of a Vycor type glass and commercial Pyrex.

It was his conclusion from this study that normal Pyrex glass should be
considered as completely phase separated rather than phase separable.
He further concluded from his measurements that the high borate phase
is continuous throughout the glass and has an estimated characteristic
pore diameter of 20&. The equality of the activation energies for
conduction for Pyrex and the phase separated Vycor type glass suggested
that the high borate phases of the two glasses were of virtually the
same composition which he estimated to be 1 Na20 . 2.4 B203 . 0.2 SiOZ.
He made no estimate of the volume fraction of the high borate phase
other than to suggest that it should contain virtually all of the
sodium.

Intuitively one might expect that because the expansivity of a
liquid is generally higher than that of its glass, the expansivity of a
phase separated ''composite'' body ought to increase when one component
goes through a glass transition. It can be shown that the change in

the expansion coefficient can be either positive or negative depending
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on the microstructure of the two phases and on their relative values of
expansivities and compressibilities before and after one phase has
undergone a transition from a solid to a liquid. It appears that the
high silica phase must be continuous in Pyrex and that the high borate
phase must have a higher thermal expansion coefficient than the high
silica phase to be consistent with the observed negative &X. The
results of the thermal expansion measurements by themselves give no
indication as to whether the high borate phase is continuous; however,
when combined with those of Charles it appears that both phases are
continuous. It is evident that in the case of Vycor that the high
silica phase must be continuous since the body remains intact after the
high borate phase is leached out.

It is apparent that since the low temperature thermal
expansivity of Pyrex must be treated as one of a composite body, the
glassy expansivity should be influenced by the thermal history of the
glass. Differences in both the high and low temperature regions were
observed among the three Pyrex samples which were greater than that
expected from the standard deviations. It is not possible to make any
correlation with thermal history regarding the differences observed
since the exact thermal histories of the three samples is not known.
All were taken from commerical Pyrex rods and heated to temperatures
in the vicinity of 550°C for short periods, then soaked at slightly

lower temperatures for periods ranging from several hours to several
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hundred hours. Also it is not clear that sufficient points were
included in each temperature region to insure a representative sample
of the error and thus to predict a correct probable error in the
slope from the observed standard deviations.

A large variation in the apparent transition temperature was
also observed in the three samples; however, it appears to be accounted
for by experimental error. The average transition temperature of
259.7 + 35.2°C is very close to the glass transition temperature
observed by Thomas and Parks(42) for B203 with calorimetric measurements.
Thus, it is consistent with the thermal expansion experiments that the
phase undergoing a glass transition has a very high 3203 concentration,

but it is not possible for them to make a judgment regarding the

composition suggested by Charles.

B. Glassy Specific Heat.

No attempt has been made to analyze the observed glassy specific
heats for the three systems studied in terms of the Debye or Einstein
models other than to compare the observed heat capacities with the
expected maximum 3R value per gram atom. This stems primarily from
the fact that detailed interpretation need be made in terms of the
heat capacity behavior from cryogenic temperacures to those exceeding

the characteristic temperature. This information was not available for
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the glasses studied, and in view of the difficulty of successful

(20)

interpretation of the specific heat of vitreous SiO2 , it appeared
to be out of the question to attempt a similar analysis for the
multicomponent siliceous glasses. This is particularly true for
Pyrex where the compositions of the two phases is not known.

It can be seen from the standard deviations of the least square
curve fits that the enthalpy data is well represented by the given
expressions. In the worst case, Pyrex, the standard deviation between
the expression representing enthalpies up to 140 calories per gram is
only approximately half a calorie per gram. As was pointed out in
the presentation of results, the relatively narrow temperature range and
the rounding errors made during calculations introduced significant
potential errors into the values of the constants, One of the
features of the computer program used for the four term least square
curve fitting was an indication of error in the calculated constants.
Unfortunately for the calculation of specific heats by differentiation
of the enthalpy expressions, the largest potential error was indicated
to be in the values of A and D. When the expressions for A H(T) are
differentiated, the A's disappear; however the value of D remains, and
it is the term containing D which introduces the curvature into the
CP(T) curve. Thus the details of the curvature of the CP(T) curves
shown in Figures 17 and 18 for Lillie No. 1 and Pyrex must be

interpreted with caution. The four term expression was found to fi
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the enthalpy data for A5283 so poorly that a three term polynomial
expression was used, hence no curvature of the heat capacity curve is
indicated.

On the basis of their compositions Lillie No. 1 was calculated
to have 2.8926 gram atoms per mole and Pyrex 3.2552. Arsenic
trisulfide has 5. The expected maximum heat capacities of 3R calories
per gram atom are 0,282, 0.313, and 0.1205 calories per gram per degree

centigrade for Lillie No. 1, Pyrex and As glasses respectively. It

283
can be seen from Figures 16, 17 and 18 that the observed heat capacities
are quite close to the 3R values in the transformation region. It

appears from the B and glycerin examples where the observed Cp's at

203
their glass transitions are only 0.6 and 0.25, the classical 3R values
respectively, that this cannot be considered to be a general rule.

No discontinuity in the enthalpy temperature curve of Pyrex was
apparent as was the case with its volume temperature curve. While the
&2 resulting from one phase of a two phase glass going through a glass
transition could be positive or negative, the A.Cp must be positive.
There are at least three reascns why it was not observed though it
must have been present. In this temperature range, the heat capacity
of siliceous glasses increases with increasing temperature. The
enthalpy-temperature curve will show a positive curvature whether or
not one phase goes through a glass transition and thus it would be
expected to be difficult to locate a point where the slope discontinuously.
increases, particularly if the curvature decreases after the transition as

is indicated by the specific heat curve of Pyrex. This effect is especially
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troublescme if the phase going through the transition is a low volume

112
(112) Finally the rapid cooling

fraction one as was indicated by Charles.
rates associated with a drop calorimeter would be expected to shift and
smear out the transition. For these reasons it would be anticipated that
a discontinuity in the enthalpy-temperature curve would be difficult to
observe with a drop calorimeter. It is probable that if a sufficient
number of drops were made in the low temperature region with samples that
were not canned as these were, that with the more precise measurements

and a proper statistical analysis the effect could be demonstrated, though

it would not be expected to be large.

C. The Griineisen Constant

(107) the observed value for the Grineisen con-

According to White
stant ; at any temperature is the weighted mean of the individual y_ 's

and is defined by

3N 3N
7 = Z 7:%1 Z S
i=1 i=1

where the weighting factors Ci are the contribution of each mode of vibration
to the heat capacity. It is clear that it represents an average which
reflects both the number fraction and the fraction of total strength of each

mode as a function of temperature. The value of'; is calculated from the

following expression.

— 0 _ V(D (D)
7= B, m

Compressibility measurements as a function of temperature have been
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made for Pyrex(ll3) and ASZSS(IOS) glasses. The elastic properties of
the Lillie glass have not been reported, so typical values for B for a
soda-lime glass was taken from the literature to make a single
calculation for ; at 100°c,

It is significant that the P(T) for Pyrex obtained by Birch(ll3)
shows a minimum at approximately 250-270°C. The increase in compressibility
is consistent with one phase of a two phase glass behaving as a liquid.
The decrease of compressibility with increasing temperature results
apparently only from a low thermal expansivity(zo) which is consistent with
the hypothesis that modes with negative 7i's are operative in Pyrex.
Values of'; for Pyrex were calculated for the temperature range from 100
to 250°C. It was felt that it was not safe to use the expressions for
heat capacity at temperatures below the lowest experimental point and it
is clear that the value of'; has little meaning if one phase is acting
as a liquid. The results of these calculations are shown in Figure 22.
The variation of 7 with temperature should probably not be considered
significant since the B(T) values were taken from a very coarsely plotted
graph and the CP(T) and Q(T) values are subject to experimental error.
An average value for 7 in this temperature region is 0.167. The low
value of ; is indicative of the operation of modes with low or negative
7i's. Previous observations would suggest that negative 7i's exist in
Pyrex.

It was necessary to use as a value for the compressibility of

Lillie No. 1 one which results from an empirical expression in Morey

. 4 . .
for a soda-lime glass(ll ) since no reported measurements of its elastic
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properties were found in the literature. When this value is combined
with those observed for Cp’ o and V, ; is calculated to be 0.545 at
100°C. The only significance that should be attached to the calculated
; for Lillie No. 1 is that it is over three times that observed for
Pyrex at the same temperature. It appears from these observations that
the higher thermal expansivity cf the soda-lime glass results from the
suppression of modes with negative 7i's in the SiO2 network,

Glaze et al(los) have measured the shear and Young's moduli
as well as the Poisson's ratio of vitreous As283. Combination of any
two of these properties permits the calculation of the compressibility.
The-;'s plotted in Figure 22 result from combining these calculated
compressibilities with the observed values for Cp’ a and V. Like that
observed for Pyrex the slight temperature variation of ; is not
considered significant since it is probably within that expected from
experimental errors. The low average 7 = 0.616 is considered to be
anomalous since it was not anticipated that modes with low 7i's
should be present and thus a more typical ; in the range of 1 to 3
was expected., The calculated ; for vitreous B203 is 1.6 at 25°C
which is within the observed range of‘;'s for iomnic compoundsglls).
Since the structures of ASZS3 and B203 are alike, at least in their
gross features, the reason for the low ; observed for ASZS3 is not
evident. Two basic differences between the glasses are in the
fractional ionic character of their bonds and in the ratio of the

molecular weights of the ions in triangular coordination to those
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(116)

surrounding it. It can be seen from the electronegativity scale

that the fractional ionic characters of B.O. and As.S, are 0.4 and
Mf 3 273 M
less than 0.l respectively. The ratio ﬁii = 2,34 while ﬁ; = 0,675,
S (3]

The full significance of these differences is not understood. However,
it is obvious that a comparison of the ; for ASZS3 with those of ionic
compounds is not justified, and that the large differences in the
ratios of the molecular weights of the component ions in B203 and
ASZS3 will certainly produce different lattice dynamics. At least

one sulfur compound, ZnS, is known to contain vibrational modes with
negative 7i's as is evident by the negative y's observed at low

(20)

temperatures. Extension of the property measurements needed for
the calculation of‘; to cryogenic temperatures should be useful in

explaining the low ; observed for ASZS3.

D. Thermal Expansion and Heat Capacity of Supercooled Liquids

1t was concluded from the literature survey of the thermal
properties of liquids that although the Eyring liquid model should be
regarded as empirical, it is the most successful equation of state for
liquids at temperatures in the vicinity of their melting points. The
agreement between observed and calculated thermodynamic properties
becomes increasingly poor as the boiling point is approached. All
indications suggested that the Eyring liquid model should be as

successful for supercooled liquids as those near their melting points.
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The expressions given below for the volumetric thermal
expansion coefficient and heat capacity are the corrected ones
resulting from the derivation given in the literature survey and
are not the same as those appearing in the original Eyring

(3)

references The so-called hole expansivity and heat capacity
are the differences between the supercooled liquid and glassy values.
The &XX and ACP notation for these terms will be used throughout the

remainder of the discussion. The expressions for &X and AC

resulting from the corrected Eyring model are

. ) eh + PVh
AL = % h2 e kT
kT
and
. ) ) Eh + PVh
Ac = 3K _h e kT
p C kT

where n is equal to the ratio of the volume of a molecule to that of

a hole and o is defined by

S
no=- i;

Independent measurements of X and ACP at the glass transition permit
the evaluation of €h and n provided some estimate of ¢ can be made,

It can be shown that € >> PV, so the pressure term will be dropped

h h’

with future usage of the expressions.
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The free volume (Vf) can be defined as the difference between

the liquid volumes and the occupied volume. Thus

<
]

V-v [a T + l}
f ol g

and
€
T Vo B kg
V.=V u/‘ XX AT =— e
f o) o (o3

are equivalent expressions. If Vf can be calculated from experimental

data and then plotted as /4nV vs-l/T, the extrapolated intercept at

f
l/T = 0 will equal VO/G. VQ is roughly defined as the occupied volume.
It has been more precisely defined either as the specific volume of the
ions in a close packed structure or the Van der Waal's volume.(117)
The two definitions do not give equal numerical values but their maximum
difference is only of the order of ten percent. Thus from experimental
measurements of V(T) a value for ¢ can be calculated.

In terms of the extrapolation described above, B203 is a unique

glass forming liquid since its specific volume has been measured over

a temperature range extending from its glass transition to almost its

(68,69,70)

boiling point. When a value of Vo = 0.336 cm3/gr is used

in conjunction with the data for V(T) used in Figure 3 in the literature

survey, the plot of gnV, vs. 1/T shown in Figure 23 results. The value

f
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of Vo is the average of those calculated both ways mentioned above.
The extrapolation of the line drawn through the points closest tc

and including the transition region, extrapolates to give a value

3)

for 1/0 = 1.1, The suggestion by Eyring that o was approximately

equal to one appears justified, and ¢ was set equal to one in all
subsequent calculations. With this approximation the values of

€y and n can be calculated directly from the observed values of

AC and AEP at the glass transition.

In general both the values of AX and Acp would be expected to be
dependent on the transition temperature. It was found that linear
expressions fit both the glassy and supercooled liquid length-temperature
curves best for both Pyrex and ASZS3, sc A% is independent of Tg for
these systems. The glassy length-temperature curve for Lillie No. 1

was found to be best fit by a three term polynomial, so AX for this glass
€

is dependent on Tg for this system. The value of E%r is quite

W

g
insensitive to small variations in AX so a value corresponding to a

Tg = 500°C wili be used to calculate eh for Lillie No. 1, The observed

values of ACP for all three systems vary with Tg as is shown in
€

Figures 24, 25, and 26. With a fixed value for the value of n

_n
RT °
g
is directly proportional to ACP, so the value of n must be specified

in terms of a transition temperature.

In Table 4 a summary of the experimental values for the three

systems studied plus B203 are given along with the derived values for
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TABLE

4

SUMMARY OF RESULTS ANALYZED IN TERMS OF EYRING LIQUID MODEL

. A x 10° “h v, ac_ 4, x 108

System Tg K cm3/cm3 °c RTg v cal/groC n cm
A5233 443 319.0 3.08 0.046 0.067 19.1 2.35
Lillie No., 1 773 71.55 4,36 0.016 0.0682 8.75 2,08
Pyrex 773 16.09 6.21 0.002 0.0605 4.5 1.53

%%
3203 520 550.0 1.845° 0.158 0.14 9.1 2.37
Lexan Poly-
carbonate™ 416 378.0 2.91 0.054
Polyvinyl
Chloride® 353 310.0 3.43  0.032
n-Propanol 95 400.0 4.84  0.007

*

Glycerol’ 183 240.0 4.70  0.009
Polyvinyl . . _
Acetate 298 400.0 3.31 0.036
Natural
Rubber™ 205 400.0 3.82  0.024
Polyisobutene. 198 450.0 3.90 0.020

Kk
ZnCl2 . 375 173.0 4,15 0.016

* Data taken from O'Reilly(6)
*% Data taken from Parks(lls)
whk Data taken from Goldstein(sl)
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€
S free volume fraction and the hole diameter dhc Also included
g

in the table are the configurational thermal expansion coefficients and
the glass transition temperatures for a number of other glass forming

systems. With the exceptions of B 03 and Pyrex, application of the

2
€
Eyring expressions for AX leads to similar values for -EE— for a wide
€ g
variety of glass formers. The numerical values for EET are approximately
g

1) calculated from heats of vaporization.

the same as those Wunderlich
One third of the values he observed for 35 organic systems lay between
3.0 and 3.4.

It would appear from these results that in terms of the Eyring

liquid a correlation between the glass transition temperature and energy
€

of hole formation exists. A uniform value of T leads to a constant
free volume fraction at Tg which in the past has %een suggested as a
criterion for the glass transition. With few exception the free volume
fractions calculated from the Eyring expressions are within an order of
magnitude agreement with the 2.5 percent value that has been taken as
the critical free volume fraction where a supercooled liquid transforms
into a glass.

Another correlation that has been observed(llg) at the glass

transition is that the ratio
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where Hv is the molar heat of vaporization. The observation by

Eyring(B) that
v H
n==2 ~ Y
Vh €

permits comparison of the observed AX and A@p data to this corre-

lation., If the Eyring expression for ACP is divided by RTgAa and

H
the above approximation is made, the quotient is §¥_ . Substitution
g
of the experimental values leads to the quotients 58.7, 37.9, 152

and 17.2 for As,S Lillie No. 1, Pyrex and B,0, respectively. The

273’ 273
values for ASZS3 and Lillie No, 1 are consistent with the variation
shown by Turnbull(llg), but it is found in terms of this correlation

Pyrex and B203 are again exceptions,

A final comparison of this data is with the so-called rule of

constant heat capacity increment proposed by Wunderlich(7l)

. Tt was
demonstrated by him that a uniform value for ACP of 2.7 + -.5 cal/mole®C
was observed for a large number of organic glass formers if they were
compared on the basis of the molecular weight of the fundamental or
smallest molecular unit whose movements may change the hole equilibrium.
He proposed that in oxide glasses the oxygen ions be taken as the
fundamental unit. For Lillie No. 1 there are 1.6995 oxygen ions per
mole of glass, thus the '"bead molecular weight" is 35.9 which gives

ACP = 2,44 cal/moleoC in agreement with Wunderlich's observation. The

similarly calculated values for ASZSB’ Pyrex and B203 are 3.3, 1.80 and
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3.23, Thus, all but Pyrex are included by his indicated standard
deviation. The value for Pyrex is within the spread of values
observed by him and since the value for ACP would be expected to be
low on the basis that one phase already exists as a liquid, it is
considered to be consistent with the behavior for other glass forming
materials.

In the one case where Pyrex and B203 were considered on the
basis of their heat capacities alone, they were found to behave in a
manner which was consistent with that observed for other glass formers
when analysed in terms of the Eyring model. This suggests that their
failure to agree with the other two correlations stems from an in-
adequacy of the Eyring liquid to properly describe their thermal
expansion. As was pointed out in the literature survey, the Eyring
liquid fails completely as a description of liquids which contract with
heating. Water is a well known example of a liquid which behaves in
this manner .over a limited temperature range, and silica is believed to
behave similarly. The reasons for the failure of the Eyring model to
describe B203 are not evident; however, there are at least two factors
which would make the expansion of Pyrex too complex to be described
adequately by the Eyring model. It should be noted though that when
the value for &X of B203, which Bestu1(87) found necessary to fit the
viscosity data by the W.L.F. equation is used in the above calculations,

the behavior of B203 at the glass transition is consistent with the
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correlations observed for the other materials. If it is presumed
that the Pyrex composition is still within the immiscibility region
after the transition to a supercooled liquid, then since the expansion
measurements of the supercooled liquid were made by soaking till the
presumed equilibrium structure was attained, it ic probable that the
compositions of the two phases had time to change with changing
temperature and would thus affect the specific volume of the two phase
liquid in a complex manner. A second factor to be considered is that
the composition of the phase going through a transition at approxi-
mately 500°C will have a high silica concentration. With Charles'(llz)
estimate of the composition of the minor phase and the suggestion that
it contained all of the Nazo, the silica concentration in the major
phase would be 96.7 mole percent., Even though it is not consistent
with the Pyrex expansion measurements that Charles' estimates are
numerically correct, the silica content of the major phase will clearly
be high and thus might be expected to be influenced by the same factors
which make supercooled silica an anomaly in terms of the Eyring liquid.
The best test of the Eyring liquid is by comparison of observed
and calculated volumes and enthalpies. It was pointed out earliex that
the calculated volumes £for B203 were within 5% of the observed values
from the glass point to 200°C above the melting point when a constant

energy of hole formation was assumed. At higher temperatures the

agreement became increasingly poor. Specific volumes at temperatures
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well above the glass points of the three systems studied have not been
reported so it is not possible to make a similar comparison for them.

The enthalpies of these systems were measured over a wide
enough temperature range to check the correctness of the Eyring specific
heat equations. According to the Eyring derivation the heat capacity of
a liquid is the sum of the vibrational specific heat of the atoms plus
the hole specific heat. It was observed that at the glass transition
the hole specific heat could be set equal to the difference between the
supercooled liquid and glassy heat capacities, Aﬁp. When differentiated,

the Eyring expression for A@p gives

€
2 h
- ——— e
p_mr (n) RO b,
dT T RT

thus with the values for eh observed for these systems the derivative
RT
g

should be positive: It can be seen from Figures 24, 25 and 26 that the
rate of change of the Acp's calculated from extrapolations of the least
square expressions are negative. The variation of ACP for these systems
arises from the variation of the glassy heat capacity since with the
exception of ASZS3 which has a small second order temperature dependence,
the liquid enthalpy curves were fit best by linear equations. It would

appear that since the supercooled liquid enthalpy measurements were made

at temperatures well above those where the vibration heat capacity should
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have reached a maximum constant value of 3R, that the rate of change
of heat capacity with temperature predicted by the above expression
should be compared with that observed for the supercooled liquids.
The rates of change for ACP predicted by the Eyring expression when
evaluated at the glass transition temperature are 0.090, 0.058 and

0.095 percent per degree Centigrade for As Lillie No. 1 and

2537
Pyrex respectively. It is obvious from the results of these calcula-
tions that the heat capacities of the supercooled liquids should have
been practically constant and it is not surprising that with the
experimental error and the rounding errors made during computations
that curvature in the enthalpy-temperature curves was not detected
for Lillie No. 1 and Pyrex. The heat capacity of A8233 liquid was
observed to increase by 0.0l percent over the temperature range of
200 to 6OOOC, which compares reasonably well with an averaged
calculated value of 0,035 percent. These calculations indicate that
if the vibrational component of the supercooled liquid specific heat
is considered to be constant, the Eyring model will agree well with
experimentally observed enthalpies.

It can be concluded from these observations that application
of the Eyring liquid to the thermal expansivity and heat capacity
properties of the three systems that were studied leads to numerical

correlations which are either consistent with or whose differences

are resolvable with those observed by others. The agreement of the
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specific heat relations were better than those of the expansion
relations. The failure of the thermal expansion relations clearly
stems from the model's being a gross oversimplification of the
molecular rearrangements involved in the changes of specific volume.
Like any other empirical relation, it is impossible to derive in-

formation regarding molecular processes from it.

E. Davies and Jones Expansion

As discussed in the Introduction, Davies and Jones(z) demonsttated
that at the glass transition the difference between the supercooled
liquid and glassy compressibilities, expansivities and specific heats
are related by the expression

é—@ VT S“—x .

X 2 g AC,

Goldstein(s) has shown that either term could be equal to the rate of
change of the transition with pressure depending on which excess
thermodynamic property governs the transition. The inequality exists
so long as more than one ordering parameter is needed to describe the
thermodynamic state of the glass., Without the compressibility
measurements it is impossible to make this comparison of the terms for
the three systems studied. The right hand term can be calculated from
the measurements that have been made and is presented for the three
glasses in Figure 27 as a function of the transition temperature. If

the observations of Goldstein(s) and O'Reilly(6) apply to these three
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materials, then the values of the term plotted in Figure 27 are equal
to the pressure dependence of the glass transition temperature which
is indicative that either excess entropy Or enthalpy controls the
transition.

It is apparent from Figure 27 that the value of VTg'%%L

varies faster with temperature than is suggested by the appearsnce of
temperature in the expression. The variation shown here is influenced
by the dependence of ACP on Tg which arises primarily from the
variation of the heat capacity of the glass. Even though the right
hand term decreases rapidly with temperature, it is probable that the
left hand term is even more strongly influenced by temperature.

(76) on Arochlor indicate

Compressibility measurements made by Litovitz
that the compressibility of the liquid is so strongly influenced by
temperature that it extrapclates to that of the glass (AR = Q) at
temperatures of the order of Tg - 50°C. The direction of the
inequality would require that the right hand term approach zero faster
than the left term. Clearly at finite temperatures this is achieved
only if A —» 0 faster than AB or ACP — o ; both of which are nonsense.
Thus it appears that in the event nothing interferes with the
extrapolated behavior, suppression of the glass transition temperature

would produce conditions which violate the inequality of the Davies and

Jones expression.
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It is interesting to point cut that the strong temperature
dependence of the left hand term is due to a variation of a liquid
property while that shown by the other appears to result from variation
of glass properties th temperature. The expansivity measurements of
the supercooled liquids were not extended ouver a wide enough temperature
range to give an indication of their temperature dependence; however,
the results shown for 3203 would indicate that it increases as Tg is
suppressed. The enthalpy measurements indicate that the heat capacity
of the liquid is influenced very little by temperature. The temperature
dependence of compressibility of the Eyring liquid is not consistent
with this behavior because it can be shown that the left and right hand

terms derived from it are equal at all temperatures. This results as

a consequence of its being a single ordering parameter liquid.
F. Structural Relaxation

At the beginning of this discussion it should be pointed out
that the relaxation experiments were not undertaken for the purpose
of developing a phenomenological description of the structural
relaxation process but rather as an attempt to determine whether a
temperature could be defined by means of an appropriate extrapolation
where the relaxation time constant reached an infinite value which
presumably would be the glass transition temperature of an infinitely

slowly cooled supercooled liquid. It is clear that both goals are
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intimately related; however, it appeared from a survey of the available
literature that a distribution of relaxation times with a finite
maximum could be expected. For purposes of satisfying the latter
objective the problem was intarpreted as one of extrapolating to a
temperature where Tmax approached an infinite value. The experimental
program was established to satisfy the latter objective and unfortunately
some information which would have been useful for the first objective
was lost. No attempt will be made to fit these results to a descriptive
equation, but rather where possible they will be compared with existing
ones to gain as much insight as possible into the factors affecting the
relaxation process.

The Tool equation for structural relaxation can be shown to

assume the form

ol
1 L
4n = constant + —_
Teff hAa
de
bstituti = - = ade.
when the substitutions 6L Aa(Tf T) and ot (T—Tf)dT are made

If the relaxation process was correctly described by this relation,

a plot of the experimental results in terms of the above equation,

as in Figure 20 would appear as straight lines whose slopes were E%;
and which extrapolate to the value of the 'constant! at 6L = 0., The
results of experiments carried out for Tf >< T at the same temperature

would intersect the SL = 0 axis with the sawe slope at the same point.
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It can be seen at a glance that the experimental results shown in
Figure 20 are not described by the Tool equation. While it is not
apparent from the figure whether the lines intersect the SL = 0 axis
at the same point, it is clear that lines approach the SL = 0 axis
with different slopes depending on whether SL is positive or negative.
It is also apparent from the four relaxation runs carried out
at 500°C that the effective time constant is not a unique function of
6L which is indicative of the presence of a memory effect. This was
pointed out by Goldstein(7) to be a direct consequence of the existence
of a distribution of relaxation times for both linear and nonlinear
relaxation processes. The maximum variation between T's at the same
value of 5L in Figure 20 is on the order of a factor of three. When
the results of the 500°C series are replotted in Figure 28 to include

's on

the extrapolated initial T 's, a maximum variation of T
eff eff
the order ten would be expected between the initial values of experiments
originating near & = 0 and those approaching it from large initial BL'S.
. . ., (81)
On the basis of the same comparison, Goldstein's results for ZnCl2
. o 1 (82)
show an apparent maximum variation of the order of two and Kovacs
for polyvinyl acetate more than two orders of magnitude. These results
for Lillie No. 1 indicated qualitatively that like Zn.Cl2 the spectrum
of relaxation times is narrow compared to that observed for polyvinyl
acetate, and presumably other high polymer glass formers, even though

it is not possible to describe the spectrum of a nonlinear process

quantitatively.
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It appears from the similarity in the dependence of the effective

(80) as replotted by Goldstein(81)

time constants on SL observed by Ritland
and those shown in Figure 20 that the Lillie No. 1 length-time curves
could be as well represented by the Ritland equation as Ritland's were.
This was not done since the Ritland equation does not take into account
the effect of a distribution of relaxation times and it must be concluded
that the relatively good fit achieved by this expression results from

its having four freely adjustable parameters rather than its being
inherently correct.

Like Goldstein's and Ritland's results, the values of T off at any
one fLemperature tend to extrapolate to the same value as BL - 0. This is
not as apparent from the curves plotted in Figure 20 where the indicated
temperatures are only nominal as in Figure 21 where the equilibrium
relaxation times are plotted against the.reciprocal of the absolute
experimental temperature. Considering that these points are obtained
from extrapolations of lines which were drawn through data points derived
by graphical differentiation, it is felt that the above statement is
consistent with the probable errors. The four 500°C runs indicate that
there is no correlation between the points lying above or below the line
depending on the direction of approach to & = 0 since they are equally
divided. A point made by Goldstein(81) that the extrapolation is made

less sure by the fact that the error in Te is larger the closer 8L =0

££f

is approached is well taken here; however, it is felt that the conclusion
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regarding the extrapolations is valid. As discussed in the literature
survey this result is indicative that a maximum value =xists in the
distribution of relaxation times governing the structural relaxation
process.
In the presentation of results, Section V, it was demonstrated
that both the shear and structural relaxation time constants were
21

adequately represented over the temperature range shown in Figure <41

by equations of the form

log (t) = A+ B

3l

It was also shown that there was a 60 percent probability that the
difference between the observed slopes was insignificant, or in other
words they were the same, considering the experimental errors.

Goldstein demonstrated that the equilibrium relaxation times of ZnCl2
were fitted within the experimental error by an equation of the above
form. Ritland observed that the activation energies for viscosity

and structural relaxation time were the same for the borosilicate

crown glass he studied. Thus the experimental results for Lillie No.l
are consistent with both those of Goldstein and Ritland in both respects
though neither came to both conclusions.

The expressions derived by Eyring(3) for the bulk viscosity



161l

and shear viscosity time constants are

T, = i— exp {[ej - TS, (8) - —3 PV, J/RT }

-3

and

_ b e - 1
Tg = T3 exp JL[e:j IS () + BV, }/RT

J

where ej is the height of the barrier in a diffusion like jump and
Sj(B) and Sj(S) are the entropies associated with the jumps in the

bulk and shear viscosities. Eyring tabulates the values for Sj(B)

and Sj(S) for a number of high polymer liquids which range from 3 to 25
entropy units and the maximum differences between Sj(B) and Sj(S) is

7 entropy units. On the basis of these results and the observation
that a Sj of 25 entropy units at 500°C is less than 10 percent of Gj
observed for the Lillie glass and that PV, is completely negligible
compared to €j at one atmosphere, it can be said that Eyring liquid
predicts essentially equal temperature dependencies for 7, and T..

B S
(59) , .
the structural relaxation time

According to the Eyring derivation
constant is numerical factor times Tgs SO ON & logarithmic basis the
structural and shear time constants have the same temperature derivative.

Thus the observed temperature dependencies for s and T, of Lillie No. 1

S
are consistent with that predicted by the Eyring liquid.
Even though the temperature dependencies of the two relaxation

processes are apparently equal in agreement with the prediction of the
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Eyring liquid, the prediction of this model that

is apparently not correct for Lillie No. l. The equilibrium structural
relaxation time constant exceeds the shear relaxation time constant by
approximately a factor of thirty as can be seen from Figure 21. It is
obvious that the Eyring model should not be expected to agree in detail
since it was derived on the basis that a single relaxation time and

not a distribution of T's described the kinetics of structural relaxation.
A more fair comparison of the time constants in relation to the Eyring
model is one of comparing the value of the initial time constant of
structural relaxation relative to the shear time constant. The dotted
line in Figure 28 represents the initial time constant at 500°C with
various fictive temperatures. At SL = 0, where the fictive and actual
temperatures are equal, the initial time constant for the structural
relaxation process is 0.56 hours which compares with a shear time
constant of 0.132 hours. The relative values are still wrong, but

they are within a factor of four when compared on this basis. It is
probable that the dotted line in Figure 28 is low since it was drawn

through the points determined by a linear extrapolation through the

experimental data. If there is any curvature in the log(n_l ) vs. ®

"eff
curves it is certainly concave upward, and thus since the initial portion

of the 540 to 500 and 520 to 500 curves was lost during the time the
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furnace stabilized, the extrapolated points will be low. The exact
shear modulus of Lillie No. 1 was not known, so a value was taken

(102)

from Morey for a similar glass. It is also known that the shear
modulus decreases with increasing temperature, so the numerical

value of the shear time constant is in doubt; however, it is probable
that the values shown on Figure 21 are low. It is not clear that

the combined probable low estimate of T's and a high estimate of

. :
eff:’6L=0
but théy should be considered to be numerically close.

are encugh to reverse the two numbers' relative magnitude
J

The two time constants which have been discussed are defined in
terms of experimentally determined parameters. The shear time constant,
defined as the quotient of the shear viscosity divided by the shear
modulus, behaves in a simple manner for Newtonian fluids. Thus with
siliceous glasses, the shear relaxation time constant is uniquely
defined at all temperatures and is not time dependent. The structural
relaxation time constant is also experimentally defined in a simple
manner, by the expression

1 p  d@-L)

Teff L—Hn dt

However, its behavior was observed to be complex. It can also be

defined in a way equivalent to the shear time constant by
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where g is a bulk viscosity and M is a modulus. The phenomenological
description equivalent to those obtained for linear viscoelastic
problems, of Teff(t), has not been solved., It has been shown that the
bulk viscosity is sensitive to the instantaneous thermodynamic state,
but without a correct solution for the equation of state of liquids
the exact dependence cannot be understood. It should also be pcinted
out that it is not clear what modulus should be used to represent the
driving force which returns the systems to equilibrium. Even if these
two factors were understood, the mathematics of nonlinear relaxation
with a distribution of relaxation times has not advanced to where a
solution could be made, so at this point it appears that the differences
between the shear and structural relaxation times cannot be resolved
any further.

Structural relaxation experiments carried out at the same
temperature but with different fictive temperatures permit the
comparison of the effect the actual and fictive temperatures have
on the initial effective time constant. This is what Ktovac.?.(82>

refers to as a type ''b" experiment. In Figure 28 the dotted line

passes through the points corresponding to the initial time constants

. s . d /in T d fn T
as the fictive temperature is varied. The ratio 4T to 5T
£

determines the relative effectiveness of T and Tf. Evaluation of
these parameters from the slope of the dotted line on Figure 28 and

the slope of the structural relaxation time constant in Figure 21
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indicates that temperature influences the initial effective time
constant 1.6 times more strongly than the fictive temperature. The
comments regarding the prob:sle error in the dotted line made with
respect to the comparison of the Eyring shear and bulk time constants
apply here with respect to the slope. It is probable that the slope

vs. &

of the dotted line is low, since the extrapolations of Toff L

for T > 'I‘g will be more in error than those for T < Tg because a

greater portion of the experimental points was lost during the cooling
runs., It is impossible to estimate what the effect would be, but

it is felt safer to say that the relative importances of the temperature
and fictive temperature are roughly the same rather than putting a
numerical value on their relative effectivenesses. This is the same

(81)

conclusion reached by Goldstein for ZnCl,.

It must be concluded from the fit of the lines drawn through
the equilibrium structural relaxation times in Figure 21 that with
the observed experimental scatter, no significant deviation from the
logarithmic representation of Teff can be inferved, and that these
experiments fail to permit an extrapolation which predicts infinite
relaxation times at temperatures differeat from absolute zero. The
same observation holds for the shear relaxation time constants shown
in Figure 21, yet Bestul(87) has demonstrated that over a wider
temperature range the W.L.F. equation and not a logarithmic one fits

the Lillie No. 1 viscosity. Thus, while there is no reason that the
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shear and the equilibrium structural relaxation times must have the
same temperature dependence, it must also be concluded that the
temperature range over which the experiments were made is not wide
enough to determine whether the equilibrium structural relaxation
times are described by a function other than a logarithmic one,
Extension of the experiments to much lower temperatures is impractical
since the stabilization run at 470°C too approximately three months
too complete, Even with a faster responding furnace the experiments
could not be extended to significantly higher temperatures with the
techniques employed in these experiments since excessive viscous
deformation would occur. It is probable that the question of whether
infinite equilibrium structural relaxation times will be attained

at finite temperatures cannot be experimentally answered unequivccably.



VII. SUMMARY AND CONCLUSIONS

In terms of the primary objective of this thesis, the
study of the Davies and Jones expression for inorganic glass
forming systems, it must be conceded that the results are incomplete
without the compressibilities of the glasses and supercooled liquids
as functions of temperature. At the initiation of the study it was
understood that these measurements were to be made by T. A. Litovitaz.
Unfortunately they have not yet been undertaken. Even though
without this data it was impossible to make any conclusion regarding
the equality or inequality of the terms of the Davies and Jones
expression or which excess thermodynamic property governs the
transition, it was possible tc make observations and conclusions
regarding other aspects of the behavior of the systems studied.

In the area of the glass transition the following
observations can be made for all three systems:

1) The evaluation of the term T V %%L and its temperature

P
dependence has been accomplished. The term varies in

a direction which would tend to preserve the inequality
of the Davies and Jones expression, but it was
conciuded from liquid compressibility measurements

on other supercooled liquids that the o&/«& term

crobably varied faster.
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It was not possibie to predict a transition temperature
for an infinitely slowly cooled liquid by extrapolation
of time constants since over the temperature Tange
studied the behavior was adequately represented DY 2
logarithmic expression. It is prbbable that an
unequivocable answer to this question cannot be achieved
experimentally.

Analysis of the 's and uCp's observed at the glass
transition with the Hirai-Eyring hole model of liquids
demonstrated that the experimental results agree with

correlations observed for other glass forming materials.

From the analysis of the thermal properties of glasses it can

be concluded that:

1)

2)

Pyrex, Corning Glass #7740, is phase separated. The
combined thermal expansion results and results of
electrical measurements by Charles suggest that both
phases are continuous. Even though the glass transition
of the minor phase was not demonstrated with the enthalpy
measurements, compressibility measurements were cited
which indicate that the transition takes place.

The values of the Gruneisen constant calculated for

both siliceous glasses reflect the effect of substitutions
on the modes with negative 7i's in the vitreous silica

network.



3)

The Gruneisen constant observed for vitreous ASOSB was
unusually low. However, without low temperature property
measurements no conclusions could be made regarlding the

reasons for its low value.

From the liquid property measurements it was observed that the

Eyring hole model liquid represented the heat capacities cf supercooled

liquids quite accurately. The thermal expansion measurements were not

studied over a wide enough temperature range to make a judgement

regarding the usefulness of the Eyring equations as represantative of”

the volume as a function of temperature. It is probable that the

Eyring model is not as accurate a representation of the expansion

behavior as it is of the heat capacity.

that:

The structurzl relaxation studies on Lillie No. 1 indicate

L)

2)

3)

4)

A spectrum of relaxation times is present which 1is
dependent on the state of the liquid. Hence the
relaxation process is nonlinear;

A maximum in the distribution of relaxation times
exists;

Fictive and actual temperatures have approximately the
same influence on the observed Cofg)

The activation energy of the equilibrium structural

relaxation time is equal to that of shear viscosity;



5)

The initial structural relaxation time resulting from
an infinitely small change of temperature (Bi — 0) is
numerically close to the shear relaxation time at the
stabilization temperature, though the equilibrium
structural relaxation time is approximately thirty

times the value for shear.



VIiI., SUGGESTIONS FOR FURTHER WORK

The glass and supercooled liquid compressibilities of the three
systems studied must be measured in order that both terms of the
Davies and Jones expression might be evaluated. Comparison of
the relative magnitudes of the two terms is a clear indication
of the adequacy of a single ordering parameter description of

these glasses.,

The effect of pressure on the transition temperature should be
measured. Its equality to one of the terms of the Davies and
Jones expression determines at which, if any, constant excess
thermodynamic property the transition occurs. The information
for areas of study suggested in items 1 and 2 can easily be

obtained from the same experimental program.

It is commonly assumed in the literature that all excess
thermodynamic properties resulting from sudden changes in
pressure or temperature in the transition region will relax
along the same path., This has not been demonstrated and
there appears to be no reason that this need be true.

Further a comparison of the paths of relaxation resulting from
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sudden pressure and temperature changes should be made. There
is essentially no data for structural relaxation resulting
from changes in pressure for inorganic glass forming systems.
The relaxation of volume due to sudden changes in press:re
can be made part of the experimental program suggested in

items 1 and 2.

The heat of fusion of ASZS3 should be evaluated so the
Kauzmann Paradox point of this glass might be calculated.
This temperature represents the lowest possible value to which

the glass transition temperature can be suppressed.

Thermal expansion, compressibility and heat capacity
measurements for ASZS3 glass should be extended to
temperatures as close to the absolute zero as practical

in order that the relatively low'; observed for this glass

might be explained.

It is clear that an understanding of the glass transition,
with the associated structural relaxation effects, will only
be achieved with a better theoretical model of the lijuid
state. For this reasnn, the most important area for future
work will be the implementation of suitable approximations
within the exact formalism of the statistical mechanical
solution for the ejquation of state for liquids as suggested

by Rice(47)‘
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APPENDIX A

CALORIMETER OPERATING NOTES

A, Water and Cleaning of Fin Assembly
1. Cleaning

The fin assembly of the chlorimeter was cleaned by first rinsing
it with acetone to remove oily materials, followed by thoroughly washing
it in chemical ware <oap and then by rinsing it in distilled water.
Precautions were taken to insure that the mercury tube was rinsed
after each cleaning operation. The glass vessels were cleaned with
chemical ware soap, and chromic acid, then thoroughly rinsed with

distilled water.
2. Water

It is obvious that it is not necessary to use purer water than
is justified by the cleaning processes used on the components of the
calorimeter; however every precaution should be taken to remove
dissolved gases. The water used in the calorimeter was deaerated
by a vacuum distillation process. It is essential that the water be
maintained at a vacuum equai to its vapor pressure until it is

introduced into the calorimeter.
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B. Filling the Vessels with Water and Mercury

The volumes to be occupied by the mercury and water should first
be determined; this is most easily done by filling the inner glass
vessel with water, then putting it in place over the fin assembly
while allowing the displaced water to run off. The retained volume
of water is equal to that which will be occupied by the mercury and
water. The volume of mercury should be measured. It shculd be
enough to just come up to, but not touch, the bottom fin. Finally,
for filling purposes the volume of water to be introduced into the
vessel (the difference between the tcotal vclume and the mercury
volume) should be placed in the inner vessel and the vessel put
into place over the fin assembly., The level of the water on the
fins should be noted as it will be critical in the filling
procedure,

The distilled, deaerated water is maintain2d under vacuum
in a flask which has two glass tubes passing through a rubber
stopper. Tube one extends to the bottom of the flask and tube two
extends to just clear the stopper but not enter the water., Both
glass tubes have sections of rubber tubing attached to them where
tubing clamps can be located. Rubber tube one is connected to
glass tube B (see Figure 6) and valve V is openad; the tube clamp
on rubber tube one remains closed. A vacuum pump is connected to R

and the assembly is pumped down. It is necessary to pump down at



ieast over night since the relatively large volume to be occupied by
the mercury and water must be evacuated through the long small
diameter mercury tempering tube.

Once the system has been evacuated, water is introduced bv
opening the tube clamp on tube one and just cracking slightly and
carefully the tube clamp on tube two after the vacuum pump at R
hac been clamped off. When air is allowed to enter tube two, water
will flow through the tubing into the calorimeter vessel. It should
be noted that water will also fill the reservoir below R. However,
this water may be ignored in the filling since the more dense
mercury will flow to the "I" “2icw the reservoir then down the
stainless steel tube without displacing the water in the reservoir,

When the water reaches the level which was determined as
described above, the valve V is closed. The stopper with tubes one
and two is then removed and tuke cne is inserted into mercury.

Care should be taken not to break the column of water which will
hold in tube one after it is removed from the water., After tube one
is inserted into the mercur, the valve V is opened and mercury will
flow into the system until it i- filled. It is imperative that the
rubber tubing to glass tubing joints not leak air (R, B to tube one,
etc.) and so they should be liberally coated with glyptol which can

be cleaned off later with acetone.
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Spots on the mercury glass interface will no doubt be noticed,
This results from the water having been in contact with the glass
prior to the mercury and the fact that water wets glass and mercury
does not. These spots apparently have no detrimental effect and
act like a lubricant for the mercury, making adjustments in the
capillary height easier.

After the water is removed from the reservoir below R, and the

glass ware cleaned up, the system is ready for operation.
C. Freezing a Mantle

The mantel is frozen about the fin assembly by lowering dry
ice into the calorimeter chamber. An open top capsule which is
connected to a wire has been found suitable for containing the dry
ice. Obviously the capsule should be as close to the internal
diameter of the calorimeter well as possible to give good thermal
contact. Dry ice should not be dropped directly into the calorimeter
as it will rest on the bottom of the well and freeze an excessively
thick layer of ice on the bottom fins. The danger exists that the
ice about the fins will extend to the wall of the inner vessel,
making it possible to break the glass vessel with continued freezing.
The final ice configuration should be similar to that shown in
Figure 6.

On the first freezing (or any freezing after the unit has been
allowed to warm up), a considerable amount of dry ice will be needed

, S , ,
to cool the calorimeter to O C. Once freezing starts, it proceeds
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quite rapidly and should be watched at all times.,

D. Wax Joints

The joints between the glass vcessels and the type 403 stainless
steel flanges were made with Apiezon "W'" wax. There are several W
type waxes; the one that was used and found satisfactory is the
one with the lowest temperature range. It is black in color.

The joirt*s are made by placing the calorimeter and the glass
vessels into an oven and heating them to 250-275°C, It was found
suitable to turn the calorimeter upside dc n and coat the inside
surfaces of the caps with the wax. The ou.side ground surfaces of
the glass are also coated with the wax. The vessels are then put
into place on the caps and the assembled unit is allowed to cool to
room temperature inside the furnace so a maximum of stress relaxation
occurs,

The wax has a very long working range and even though the
"softening point" is about 900C, it is not very fluid at 27500 and

hence must be applied slowly.
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APPENDIX B. DRAWING OF GLASS VESSELS
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All dimensions are in inches with the exceptions of B and C which are in
2illimeters and are the nominal dimensions of medium wall Pyrex tubing.
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