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CHIRAL VS CLASSICAL OPERAD

BOJKO BAKALOV, ALBERTO DE SOLE, REIMUNDO HELUANI, AND VICTOR G. KAC

Abstract. We establish an explicit isomorphism between the associated graded
of the filtered chiral operad and the classical operad, which is important for
computing the cohomology of vertex algebras.

1. Introduction

This is the second in a series of papers aimed at computing the cohomology of
vertex algebras. In our first paper [BDSHK18], for a vector superspace V with
an even endomorphism ∂, we introduced the chiral operad P ch(V ). This is an
explicit description in local coordinates of the chiral operad of Beilinson and Drin-
feld [BD04], associated to a D-module on a smooth algebraic curve X , where the
geometric language of D-modules is replaced by the linear algebraic language of (in-
tegrals of) lambda-brackets. We are taking X = A

1 and the D-module translation
equivariant.

The operad P ch(V ) “governs” vertex algebra cohomology in the following sense.
To each vector superspace V over a field F of characteristic zero, with an even
endomorphism ∂, it canonically associates a Z-graded Lie superalgebra

W ch(V ) =

∞⊕

k=−1

W ch
k (V ) , where W ch

k (V ) = P ch(V )(k + 1)Sk+1 , (1.1)

such that

W ch
−1(V ) = V/∂V , W ch

0 (V ) = EndF[∂] V . (1.2)

This Lie superalgebra is an explicit description in local coordinates of the Lie super-
algebra constructed by Tamarkin in [Tam02] in his study of deformations of chiral
algebras, in the particular case of translation equivariant chiral algebras on A

1.
The space W ch

k (V ) consists of all elements from P ch(V )(k+1) that are invariant
under the action of the symmetric group Sk+1, and the Lie bracket on W ch(V )
is defined via the ◦i-products of the operad P ch(V ). For the construction of the
Z-graded Lie superalgebra associated to an arbitrary linear operad, see [Tam02,
LV12, BDSHK18].

An odd element X ∈ W ch
1 (ΠV ) satisfying [X,X ] = 0, where ΠV stands for V

with the reversed parity, defines on V the structure a non-unital vertex algebra.
Consequently, (W ch(ΠV ), adX) is a differential graded Lie superalgebra whose co-
homology is the cohomology of the vertex algebra V defined by X , with coefficients
in the adjoint module. Alternatively, a non-unital vertex algebra structure on V is
equivalent to a morphism of operads Lie → P ch(V ) [BD04, Sec. 3.3.3]. The image
of the binary operation [ , ] ∈ Lie(2) is given by the (parity shifted) operation X .

1991 Mathematics Subject Classification. Primary 18D50; Secondary 17B63, 17B69, 05C25 .
Key words and phrases. Chiral and classical operads, Γ-residue and Γ-Fourier transform.

1

http://arxiv.org/abs/1812.05972v2


Let us recall the definition of the operad P ch(V ) associated to a vector superspace
V with an even endomorphism ∂. For a non-negative integer n, let

O⋆T
n = F[(zi − zj)

±1 | 1 ≤ i < j ≤ n] ,

the algebra of Laurent polynomials in zi − zj . Denote by ∂i the endomorphism of
V ⊗n acting as ∂ on the i-th factor. Introduce the superspace

Vn = V [λ1, . . . , λn]/〈∂ + λ1 + · · ·+ λn〉 ,

where all variables λi have even parity and 〈Φ〉 stands for the image of the endo-
morphism Φ. The superspace of n-ary chiral operations P ch(n) := P ch(V )(n) is
defined as the set of all linear maps [BDSHK18, Eq. (6.11)]

X : V ⊗n ⊗O⋆T
n → Vn , v ⊗ f 7→ Xλ1,...,λn

(v ⊗ f) , (1.3)

satisfying the following two sesquilinearity axioms (i, j = 1, . . . , n):

Xλ1,...,λn
(v ⊗ ∂zif) = Xλ1,...,λn

((∂i + λi)v ⊗ f) ,

Xλ1,...,λn
(v ⊗ (zi − zj)f) = (∂λj

− ∂λi
)Xλ1,...,λn

(v ⊗ f) .
(1.4)

Note that P ch(n) = W ch
n−1(V ) is given by (1.2) for n = 0, 1. In [BDSHK18], we also

introduced the action of Sn on P ch(n) and the ◦i-products to make P ch(V ) into an
operad.

Now suppose that V is equipped with an increasing filtration of F[∂]-submodules

F−1 V = {0} ⊂ F0 V ⊂ F1 V ⊂ F2 V ⊂ · · · ⊂ V . (1.5)

Taking the increasing filtration of O⋆T
n by the number of divisors, the filtration (1.5)

induces an increasing filtration on V ⊗n ⊗ O⋆T
n . The latter induces a decreasing

filtration on P ch(n). The associated graded pieces grr P ch(n), r ≥ 0, form a graded
operad denoted by grP ch.

On the other hand, in [BDSHK18] we introduced the operad P cl(V ), which “gov-
erns” the Poisson vertex algebra cohomology in a similar way. Moreover, assuming
that V is Z-graded by F[∂]-submodules, we have the associated Z-grading on the
space of n-ary operations P cl(n) := P cl(V )(n)

P cl(n) =
⊕

r∈Z

grr P cl(n) .

Next, assuming that V is endowed with the filtration (1.5), we have the linear map

grr P ch(V )(n) → grr P cl(grV )(n) , r ≥ 0 . (1.6)

These constructions are recalled in Section 3. We proved in [BDSHK18] that the
map (1.6) is an injective morphism of operads. The surjectivity of this map was
proposed as a conjecture.

The main result of the present paper is that the map (1.6) is an isomorphism,
provided that the filtration (1.5) is induced by a grading by F[∂]-modules (Theorem
5.1). In fact, we construct explicitly a map, inverse to (1.6), using the notions of
Γ-residue and Γ-Fourier transform introduced in Section 4.

Theorem 5.1 is important since it allows to compare the vertex algebra and
Poisson vertex algebra cohomology. For example, using the obvious fact that this
theorem holds (without any assumptions) for n = 0, 1 and the results of [DSK12,
DSK13] on variational Poisson cohomology, we calculated in [BDSHK18] the 0-th
and 1-st cohomology of the vertex algebra of free bosons, computing thereby its
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Casimirs and derivations. The connection between the classical and variational
Poisson cohomology is discussed in the forthcoming paper [BDSHKV19].

Our operad P cl(V ) was shown to be related to Beilinson and Drinfeld’s operad
of classical operations in [BDSHK18, Appendix]. The isomorphism of Theorem 5.1
is stated in [BD04, Sec. 3.2.5] for the trivial filtration of V in the geometric context
under the assumption that the corresponding D-module is projective.

As pointed out by a referee, a more appropriate terminology would have been the
operads of chiral and of classical operations for P ch(V ) and P cl(V ), respectively.
We opted for the shorter names chiral and classical operads.

Throughout the paper the base field F has characteristic 0.

Acknowledgments. This research was partially conducted during the authors’ visits
to RIMS in Kyoto and to the University of Rome La Sapienza. We are grateful
to these institutions for their kind hospitality. We thank the referees for their
valuable comments. The first author is supported in part by a Simons Foundation
grant 584741. The second author was partially supported by the national PRIN
fund n. 2015ZWST2C_001 and the University funds n. RM116154CB35DFD3 and
RM11715C7FB74D63. The third author is partially supported by the Bert and
Ann Kostant fund.

2. The chiral operad

In this section, we recall the definition of the chiral operad P ch(V ) from [BDSHK18,
Sec. 6].

2.1. The spaces O⋆T
n . Here and further, we will consider rational functions in the

variables z1, z2, . . . and use the shorthand notation zij = zi−zj. For a fixed positive
integer n, we denote by On = F[z1, . . . , zn] the algebra of polynomials, and by

OT
n = F[zij ]1≤i<j≤n = Ker

n∑

i=1

∂zi

the subalgebra of translation invariant polynomials. Let O⋆
n be the localization of

On with respect to the diagonals zi = zj for i 6= j, i.e.,

O⋆
n = F[z1, . . . , zn][z

−1
ij ]1≤i<j≤n,

and let

O⋆T
n = F[z±1

ij ]1≤i<j≤n.

We also set O0 = OT
0 = O⋆

0 = O⋆T
0 = F. Note that O1 = O⋆

1 = F[z1] and
OT

1 = O⋆T
1 = F. At times we will denote O⋆

n = O⋆
n(z1, . . . , zn), if we want to

specify the variables z1, . . . , zn.
We introduce an increasing filtration of O⋆

n given by the number of divisors:

F−1 O⋆
n = {0} ⊂ F0 O⋆

n = On ⊂ F1 O⋆
n =

∑

i<j

On[z
−1
ij ] ⊂

· · · ⊂ Fr O⋆
n =

∑
On[z

−1
i1,j1

, . . . , z−1
ir ,jr

] ⊂ · · · ⊂ Fn−1 O⋆
n = O⋆

n.

(2.1)

In other words, the elements of Fr O⋆
n are sums of rational functions with at most r

poles each, not counting multiplicities. The fact that Fn−1 O⋆
n = O⋆

n was proved in
3



[BDSHK18] (it is a consequence of the proof of Lemma 8.4 there). By restriction,
we have the induced increasing filtration

Fr O⋆T
n = Fr O⋆

n ∩O⋆T
n .

2.2. The operad P ch(V ). Let V = V0̄ ⊕ V1̄ be a vector superspace endowed with
an even endomorphism ∂. For every i = 1, . . . , n, we will denote by ∂i the action
of ∂ on the i-th factor of the tensor power V ⊗n:

∂iv = v1 ⊗ · · · ⊗ ∂vi ⊗ · · · ⊗ vn for v = v1 ⊗ · · · ⊗ vn ∈ V ⊗n. (2.2)

Consider the space

V [λ1, . . . , λn]
/〈

∂ + λ1 + · · ·+ λn

〉
, (2.3)

where here and further, 〈Φ〉 denotes the image of an endomorphim Φ.
The space of n-ary chiral operations P ch(n) := P ch(V )(n) is defined as the set

of all linear maps [BDSHK18, Eq. (6.11)]

X : V ⊗n ⊗O⋆T
n → V [λ1, . . . , λn]

/〈
∂ + λ1 + · · ·+ λn

〉
,

v1 ⊗ · · · ⊗ vn⊗f(z1, . . . , zn) 7→ Xλ1,...,λn
(v1 ⊗ · · · ⊗ vn ⊗ f)

= Xz1,...,zn
λ1,...,λn

(v1 ⊗ · · · ⊗ vn ⊗ f(z1, . . . , zn)) ,

(2.4)

satisfying the following two sesquilinearity conditions:

Xλ1,...,λn
(v ⊗ ∂zif) = Xλ1,...,λn

((∂i + λi)v ⊗ f) , (2.5)

Xλ1,...,λn
(v ⊗ zijf) = (∂λj

− ∂λi
)Xλ1,...,λn

(v ⊗ f) . (2.6)

For example, we have:

P ch(0) = HomF(F, V/〈∂〉) ∼= V/∂V, (2.7)

P ch(1) = HomF[∂](V, V [λ0]/〈∂ + λ0〉) ∼= EndF[∂](V ). (2.8)

The Z/2Z-grading of the superspace P ch(n) is induced by that of the vector super-
space V , where O⋆T

n and all variables λi are considered even.

Remark 2.1. The spaces V ⊗n ⊗ O⋆T
n and (2.3) are canonically modules over the

algebra D of translation invariant differential operators in n-variables. Taking the
quotient in (2.3) means that the sum of coordinate vector fields is the diagonal
vector field. Equations (2.5)–(2.6) are equivalent to stating that X is a morphism
of D-modules.

One can also define an action of the symmetric group and compositions of chiral
operations, turning P ch(V ) into an operad (see [BDSHK18, Eq. (6.25)]). However,
these structures will not be needed in the present paper, hence we do not recall
their definition.

2.3. Filtration of P ch(V ). Now suppose that V is equipped with an increasing
filtration of F[∂]-submodules

F−1 V = {0} ⊂ F0 V ⊂ F1 V ⊂ F2 V ⊂ · · · ⊂ V . (2.9)

Since O⋆T
n is also filtered by (2.1), we obtain an increasing filtration on the tensor

products

Fs
(
V ⊗n ⊗O⋆T

n

)
=

∑

s1+···+sn+p≤s

Fs1 V ⊗ · · · ⊗ Fsn V ⊗ Fp O⋆T
n ,
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if s ≥ 0, and Fs(V ⊗n ⊗O⋆T
n ) = {0} if s < 0. This induces a decreasing filtration of

P ch(n), where Fr P ch(n) for r ∈ Z is defined as the set of all elements X such that

X
(
Fs(V ⊗n ⊗O⋆T

n )
)
⊂ (Fs−r V )[λ1, . . . , λn]/〈∂ + λ1 + · · ·+ λn〉 , (2.10)

for every s. Then, as usual, the associated graded spaces are defined by

grr P ch(n) = Fr P ch(n)/Fr+1 P ch(n). (2.11)

In fact, the composition maps are compatible with the filtration (2.10) and, there-
fore, the associated graded (2.11) is a graded operad (see [BDSHK18, Prop. 8.1]).

3. The classical operad

Here we recall the definition of the classical operad P cl(V ) from [BDSHK18, Sec.
10].

3.1. n-graphs. For a positive integer n, we define an n-graph as a graph Γ with
n vertices labeled by 1, . . . , n and an arbitrary collection E(Γ) of oriented edges.
We denote by G(n) the collection of all n-graphs without tadpoles, and by G0(n)
the collection of all acyclic n-graphs, i.e., n-graphs that have no cycles (including
tadpoles and multiple edges). For example, G0(1) consists of the graph with a single
vertex labeled 1 and no edges, and G0(2) consists of three graphs:

1 2
,

1 2
,

1 2
.

E(Γ) = ∅ , E(Γ)={1→2} , E(Γ)={2→1}
(3.1)

By convention, we also let G0(0) = G(0) = {∅} be the set consisting of a single
element (the empty graph with 0 vertices).

A graph L will be called a line if its set of edges is of the form {i1 → i2, i2 →
i3, . . . , in−1 → in} where {i1, . . . , in} is a permutation of {1, . . . , n}:

L =
i1 i2

· · ·
in

.

(3.2)

An oriented cycle C in a graph Γ is, by definition, a collection of edges of Γ forming
a closed sequence (possibly with self intersections):

C = {i1 → i2, i2 → i3, . . . , is−1 → is, is → i1} ⊂ E(Γ) . (3.3)

There is a natural (left) action of the symmetric group Sn on the set G(n) of
n-graphs, which preserves the subset G0(n) of acyclic graphs. Given Γ ∈ G(n)
and σ ∈ Sn, we define σ(Γ) to be the same graph as Γ, but with the vertex that
was labeled 1 relabeled as σ(1), the vertex 2 relabeled as σ(2), and so on up to
the vertex n now relabeled as σ(n). For example, if L0 is the line with edges
{1 → 2, 2 → 3, . . . , n− 1 → n} and σ ∈ Sn, then σ(L0) = L is the line (3.2) where
ik = σ(k).

3.2. The operad P cl(V ). As before, let V = V0̄ ⊕ V1̄ be a vector superspace en-
dowed with an even endomorphism ∂. As a vector superspace, P cl(n) := P cl(V )(n)
is defined as the vector superspace (with the pointwise addition and scalar multi-
plication) of all maps

Y : G(n)× V ⊗n → V [λ1, . . . , λn]/〈∂ + λ1 + · · ·+ λn〉 , (3.4)

Γ× v 7→ Y Γ
λ1,...,λn

(v) , (3.5)

5



which depend linearly on v ∈ V ⊗n, and satisfy the cycle relations and sesquilinearity
conditions described below. The Z/2Z-grading of the superspace P cl(n) is induced
by that of the vector superspace V , by letting Γ and the variables λi be even.

The cycle relations state that if an n-graph Γ ∈ G(n) contains an oriented cycle
C ⊂ E(Γ), then:

Y Γ = 0 ,
∑

e∈C

Y Γ\e = 0 , (3.6)

where Γ\e ∈ G(n) is the graph obtained from Γ by removing the edge e and keeping
the same set of vertices. In particular, applying the second cycle relation (3.6) for
an oriented cycle of length 2, we see that changing the orientation of a single edge
of Γ ∈ G(n) amounts to a change of sign of Y Γ.

To write the sesquilinearity conditions, let us first introduce some notation. For
a graph G with a set of vertices labeled by a subset I ⊂ {1, . . . , n}, we let

λG =
∑

i∈I

λi , ∂G =
∑

i∈I

∂i , (3.7)

where as before ∂i denotes the action of ∂ on the i-th factor in V ⊗n (see (2.2)).
Then for every connected component G of Γ ∈ G(n) with a set of vertices I, we
have two sesquilinearity conditions:

(∂λj
− ∂λi

)Y Γ
λ1,...,λn

(v) = 0 for all i, j ∈ I , (3.8)

Y Γ
λ1,...,λn

(
(∂G + λG)v

)
= 0 , v ∈ V ⊗n . (3.9)

The first condition (3.8) means that the polynomial Y Γ
λ1,...,λn

(v) is a function of the
variables λΓα

, where the Γα’s are the connected components of Γ, and not of the
variables λ1, . . . , λn separately.

In [BDSHK18, Eq. (10.11)], we also defined the action of the symmetric group
and compositions of maps in P cl(V ), turning it into an operad. However, these
structures will not be needed in the present paper.

3.3. Grading of P cl(V ). Suppose now that V =
⊕

t∈Z
grt V is graded by F[∂]-

submodules, and consider the induced grading of the tensor powers V ⊗n:

grt V ⊗n =
∑

t1+···+tn=t

grt1 V ⊗ · · · ⊗ grtn V .

Then P cl(V ) has a grading defined as follows: Y ∈ grr P cl(n) if

Y Γ
λ1,...,λn

(grt V ⊗n) ⊂ (grs+t−r V )[λ1, . . . , λn]/〈∂ + λ1 + · · ·+ λn〉 (3.10)

for every graph Γ ∈ G(n) with s edges (see [BDSHK18, Rem. 10.2]).

3.4. The map from grP ch(V ) to P cl(V ). For a graph Γ ∈ G(n) with a set of
edges E(Γ), we introduce the function

pΓ = pΓ(z1, . . . , zn) =
∏

(i→j)∈E(Γ)

z−1
ij , zij = zi − zj . (3.11)

Note that pΓ ∈ Fs O⋆T
n if Γ has s edges.

Lemma 3.1. Let Γ ∈ G(n) be a graph with s edges, containing a cycle C ⊂ E(Γ).
Then:

(a) pΓ ∈ Fs−1 O⋆T
n ;

(b)
∑

e∈C pΓ\e = 0.
6



Proof. The proofs of both statements are contained in the proof of [BDSHK18,
Lem. 8.4]. �

Let V be filtered by F[∂]-submodules as in (2.9). Then we have the filtered
operad P ch(V ) associated to V and the graded operad P cl(grV ) associated to the
graded superspace grV . These two operads are related as follows [BDSHK18, Sec.
8].

Let X ∈ Fr P ch(V )(n) and Γ ∈ G(n) be a graph with s edges. Then for every
v ∈ Ft V ⊗n, we have v ⊗ pΓ ∈ Fs+t(V ⊗n ⊗O⋆T

n ) and, by (2.10),

Xλ1,...,λn
(v ⊗ pΓ) ∈ (Fs+t−r V )[λ1, . . . , λn]/〈∂ + λ1 + · · ·+ λn〉 . (3.12)

We define Y ∈ grr P cl(gr V )(n) by:

Y Γ
λ1,...,λn

(
v + Ft−1 V ⊗n

)
= Xλ1,...,λn

(v ⊗ pΓ)

+ (Fs+t−r−1 V )[λ1, . . . , λn]/〈∂ + λ1 + · · ·+ λn〉

∈ (grs+t−r V )[λ1, . . . , λn]/〈∂ + λ1 + · · ·+ λn〉 .

(3.13)

Clearly, the right-hand side depends only on the image v̄ = v+Ft−1 V ⊗n ∈ grt V ⊗n

and not on the choice of representative v ∈ Ft V ⊗n. We write (3.13) simply as

Y Γ
λ1,...,λn

(v̄) = Xλ1,...,λn
(v ⊗ pΓ) . (3.14)

The fact that Y ∈ grr P cl(grV )(n) was proved in [BDSHK18, Cor. 8.8].
If X ∈ Fr+1 P ch(V )(n), then the right-hand side of (3.13) (or (3.14)) vanishes.

Thus, (3.13) defines a map

grr P ch(V )(n) → grr P cl(grV )(n) , X̄ = X + Fr+1 7→ Y . (3.15)

Theorem 3.2 ([BDSHK18]). The map (3.15) is an injective homomorphism of
graded operads.

We will not need the full statement here (see [BDSHK18, Thm. 10.12]), but let
us observe that (3.13) is compatible with the actions of the symmetric group Sn.
In [BDSHK18, Rem. 10.15], we also posed the question whether the map (3.15)
is an isomorphism. The main result of the present paper is Theorem 5.1 below,
which says, in particular, that this is indeed the case under the assumption that V
is graded as an F[∂]-module.

4. Γ-residues and Γ-Fourier transform

4.1. Lines. Given a positive integer n, let L(n) ⊂ G(n) be the set of graphs that
are disjoint unions of lines, i.e., graphs of the following form:

Γ =
i11 i12

· · ·
i1k1

i21 i22

· · ·
i2k2

· · ·
ip1 ip2

· · ·
ipkp

= L1 ⊔ L2 ⊔ · · · ⊔ Lp ,

(4.1)
where k1, . . . , kp ≥ 1 are such that k1 + · · ·+ kp = n, and the set of indices {iab} is
a permutation of {1, . . . , n} such that

i11 = 1 < i21 < · · · < ip1 , iℓ1 = min{iℓ1, . . . , i
ℓ
kℓ
} , ℓ = 1, . . . , p . (4.2)

In (4.1), Lr denotes the r-th connected component of Γ (which is a connected
oriented line of length kr). For example, when kr = 1 the line Lr consists of the

7



single vertex indexed ir1. We also denote by L(n, p) ⊂ L(n) the subset of graphs Γ
as in (4.1) with the fixed number p of connected components.

Consider the vector space FG(n) linearly spanned by the set G(n). The cycle
relations in FG(n) are the following elements:

(i) all graphs Γ ∈ G(n) containing a cycle;
(ii) all linear combinations of the form

∑
e∈C Γ\e, for Γ ∈ G(n) and all oriented

cycles C ⊂ E(Γ).

Note that if we reverse an arrow in a graph Γ ∈ G(n), we obtain, modulo cycle
relations, the element −Γ ∈ FG(n).

Lemma 4.1. The set L(n) spans the space FG(n) modulo the cycle relations.

Proof. Let Γ ∈ G(n). First, we claim that, modulo cycle relations, we can assume
that the vertex 1 is a leaf, i.e., there is no more than one edge in or out of it. Indeed,
if there are ℓ ≥ 2 edges in or out of 1, then up to reversing arrows (i.e., up to a sign
modulo cycle relations), we can assume that there are two edges as follows:

1

Then, modulo cycle relations, this is equivalent to

1
≡ −

1
−

1

Hence, Γ is equivalent to a linear combination of graphs in which there are ℓ − 1
edges in or out of the vertex 1. Proceeding by induction, we get the claim.

Next, suppose that 1 is a leaf of Γ connected with an edge to the vertex i (if 1 is
an isolated vertex, let i = 2). Denote by Γ′ ∈ G(n− 1) the subgraph of Γ obtained
by deleting the vertex 1 and any edge attached to it. Notice that, under the natural
embedding of G(n− 1) into G(n), every cycle relation in G(n− 1) corresponds to a
cycle relation in G(n). By induction on n, Γ′ is equivalent, modulo cycle relations,
to a disjoint union of lines, one of which starts at the vertex i and the others satisfy
the conditions (4.2). Then Γ is also a disjoint union of lines, one of which starts
with 1. This completes the proof. �

Remark 4.2. In fact, in Theorem 4.7 below we will prove that the set L(n) is a
basis for FG(n)/R(n), where R(n) is the subspace spanned by the cycle relations.

4.2. Γ-residues. Given i 6= j ∈ {1, . . . , n}, we define the residue map

Reszjdzi : O
⋆
n(z1, . . . , zn) → O⋆

n−1(z1,
i

ˇ. . ., zn) (4.3)

where
i

ˇ. . . means that the variable zi is skipped. It is defined as the residue of
a function f(z1, . . . , zn), viewed as a function of zi, at zi = zj, and is given by
Cauchy’s formula. Explicitly, let

f(z1, . . . , zn) = z−ℓ−1
ij g(z1, . . . , zn) ∈ O⋆

n , (4.4)

where ℓ ∈ Z and g has neither a zero nor a pole at zi = zj . Then

Reszjdzi f(z1, . . . , zn) =
1

ℓ!

∂ℓg

∂zℓi
(z1, . . . , zj

︸︷︷︸

i

, . . . , zn) if ℓ ≥ 0 , (4.5)
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and it is zero for ℓ < 0.
Next, given a line L = i1 → i2 → · · · → ik, we define the map

Resw dL : O⋆
n(z1, . . . , zn) → O⋆

n−k+1(z1,
i1...ik
ˇ. . . , zn, w) , (4.6)

given by

Resw dL f(z1, . . . , zn) = Reszik dzik−1
· · ·Reszi2dzi1 f(z1, . . . , zn)

∣∣∣
zik=w

. (4.7)

For example, if L is a single vertex i (i.e., k = 1), then the residue map (4.6) is
just the substitution zi = w, while if L = i → j is of length 2, then we recover the
residue map (4.3):

ReszjdL f(z1, . . . , zn) = Reszjdzi f(z1, . . . , zn) .

Finally, let Γ ∈ L(n) be a disjoint union of lines L1 ⊔ · · · ⊔Lp as in (4.1). In this
case, we define the Γ-residue map

Resw1,...,wp
dΓ: O⋆

n(z1, . . . , zn) → O⋆
p(w1, . . . , wp) , (4.8)

given by

Resw1,...,wp
dΓ = Resw1

dL1 ◦ · · · ◦ Reswp
dLp . (4.9)

Note that, by definition, we have

Resw1,...,wp
dΓ(zif) = wℓ Resw1,...,wp

dΓf if i = iℓkℓ
, 1 ≤ ℓ ≤ p . (4.10)

In the following lemmas we list some elementary properties of the Γ-residue maps,
which will be needed later.

Lemma 4.3. For every Γ ∈ L(n), the Γ-residue map (4.8) preserves the translation
invariance of functions, i.e.,

Resw1,...,ws
dΓ: O⋆,T

n (z1, . . . , zn) → O⋆,T
p (w1, . . . , wp) .

Proof. It is enough to prove it for the map (4.3), in which case it is obvious. �

Lemma 4.4. Let Γ ∈ L(n) be a graph as in (4.1); in particular, |E(Γ)| = n − p.
Then

Resw1,...,wp
dΓ: Fr O⋆

n(z1, . . . , zn) → Fr+p−n O⋆
p(w1, . . . , wp) . (4.11)

In particular,

Resw1,...,wp
dΓ(Fr O⋆

n) = 0 for r < |E(Γ)| . (4.12)

Proof. By the definition (4.7)-(4.9) of the Γ-residue map, it is enough to prove that

Reszjdzi : Fr O⋆
n(z1, . . . , zn) → Fr−1O⋆

n−1(z1,
i

ˇ. . ., zn) .

This is immediate, by Cauchy’s formula (4.5). Indeed, if f ∈ Fr O⋆
n is as in (4.4)

with ℓ ≥ 0, then g ∈ Fr−1O⋆
n, and hence the right-hand side of (4.5) lies in

Fr−1O⋆
n−1. By induction, we get (4.11). Equation (4.12) is an obvious consequence

of (4.11). �

Lemma 4.5. Let Γ ∈ L(n) be as in (4.1). For a function f ∈ O⋆
n, and i ∈

{1, . . . , n}, we have

Resw1,...,wp
dΓ (∂zif) =

{
∂wℓ

Resw1,...,wp
dΓ f if i = iℓkℓ

, 1 ≤ ℓ ≤ p ,

0 if i 6∈ {i1k1
, . . . , ipkp

} .
(4.13)
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Proof. If f(z1, . . . , zn) ∈ O⋆
n is as in (4.4), then by Taylor expanding g, viewed as

a rational function in zi, at zi = zj , we have

f(z1, . . . , zn) =

∞∑

m=−ℓ−1

zmij fm(z1,
i

ˇ. . ., zn) , fm =
1

(m+ ℓ+ 1)!

∂m+ℓ+1g

∂zm+ℓ+1
i

∣∣∣
zi=zj

.

Then, by Cauchy’s formula (4.5), we have

Reszjdzif = f−1 . (4.14)

It follows from (4.14) that

Reszjdzi
∂f

∂zi
= 0 , and Reszjdzi

∂f

∂zk
=

∂

∂zk
Reszjdzif if k 6= i . (4.15)

Equation (4.13) is an immediate consequence of (4.15) and the definition (4.7)-(4.9)
of the Γ-residue. �

Proposition 4.6. Let Γ,Γ′ ∈ L(n) be such that |E(Γ′)| = |E(Γ)|. Then, for every
q ∈ On, we have

Resw1,...,wp
dΓ pΓ′(z1, . . . , zn)q(z1, . . . , zn) = δΓ,Γ′q(z1, . . . , zn)

∣∣
zia

b
=wa ∀a,b

.

Proof. If |E(Γ)| = |E(Γ′)| = 0, the statement trivially holds. Let e = i → j be the
first edge of the first line of Γ that is not a single vertex. In other words, e = 1 → i12
if k1 ≥ 2, and, in general, e = iℓ1 → iℓ2 for the smallest ℓ such that kℓ ≥ 2.

Observe that if neither i → j nor j → i is an edge of the graph Γ′, then pΓ′ has
no pole at zi = zj, and hence

Reszjdzi pΓ′q = 0 .

If instead e = i → j is an edge of Γ′, then

pΓ′ =
1

zij
pΓ′\e .

Hence, by Cauchy’s formula (4.5), we have

Reszjdzi pΓ′q = (pΓ′\e q)
∣∣
zi=zj

= pΓ̄′(z1,
i

ˇ. . ., zn) · q|zi=zj ,

where Γ̄′ is the graph obtained from Γ′ by contracting the edge e into a single vertex
labeled j. We then have

Resw1,...,wp
dΓ pΓ′q = Resw1,...,wp

dΓ̄ pΓ̄′q|zi=zj ,

where Γ̄ is the graph obtained from Γ by contracting the edge e into a single vertex
labeled j.

Note that both Γ̄ and Γ̄′ have the same number of edges and lie in L(n−1) after

the relabeling of the vertices ϕ : {1,
i

ˇ. . ., n} → {1, . . . , n− 1} given by

ϕ(m) =






m, for m < j ,

i , for m = j ,

m− 1 , for m > j .

As a consequence, we get by induction that

Resw1,...,wp
dΓ̄ pΓ̄′q|zi=zj = δΓ̄,Γ̄′q(z1, . . . , zn)

∣∣
zia

b
=wa ∀a,b

.

10



If Γ̄ 6= Γ̄′, then Γ 6= Γ′. Conversely, if Γ̄ = Γ̄′, then Γ = Γ′ since they both lie in
L(n) and i < j. The claim follows. �

Theorem 4.7. The set L(n) is a basis for the quotient space FG(n)/R(n), where
FG(n) is the vector space with basis the set of graphs G(n), and R(n) is the subspace
spanned by the cycle relations (i) and (ii) from Section 4.1.

Proof. We already know by Lemma 4.1 that L(n) spans FG(n) modulo cycle rela-
tions. Hence, we only need to prove linear independence. Let

∑

Γ∈L(n)

cΓΓ ∈ R(n) , cΓ ∈ F .

Since the cycle relations are homogeneous in the number of edges, we can assume
that all the graphs Γ appearing above have the same number of edges, s. Then,∑

Γ∈L(n) cΓΓ is a linear combination of graphs Γ1 ∈ G(n) with s edges and not

acyclic, and of
∑

e∈C Γ2\e, where Γ2 ∈ G(n) has s + 1 edges and contains a cycle
C. It follows from Lemma 3.1(b) that

∑

Γ∈L(n)

cΓpΓ (4.16)

is a linear combination of pΓ1
, where Γ1 ∈ G(n) have s edges and are not acyclic.

Let Γ ∈ L(n) be as in (4.1) with p = n − s. Applying Resw1,...,wp
dΓ to (4.16),

we get cΓ by Proposition 4.6. On the other hand, by Lemma 3.1(a) and equation
(4.12), we get cΓ = 0. �

4.3. Γ-Fourier transforms. Let Γ = L1 ⊔ · · · ⊔ Lp ∈ L(n) be a disjoint union of
lines as in (4.1). We define the Γ-exponential function as

EΓ
λ1,...,λn

(z1, . . . , zn) =

p∏

ℓ=1

ELℓ

λ
iℓ
1
,...,λ

iℓ
kℓ

(ziℓ1 , . . . , ziℓkℓ
) ∈ OT

n [[λ1, . . . , λn]] , (4.17)

where, for a line L = i1 → i2 → · · · → ik, we let

EL
λi1

,...,λik
(zi1 , . . . , zik) = exp

(
−

k−1∑

a=1

ziaikλia

)
. (4.18)

For example, if k = 1 and L consists of the single vertex i, then EL
λi
(zi) = 1. If

k = 2 and L has one edge i → j, then EL
λi,λj

(zi, zj) = e−zijλi .

Definition 4.8. For Γ ∈ L(n, p) and f ∈ O⋆
n, the Γ-Fourier transform of f is

FΓ
λ1,...,λn

(f ;w1, . . . , wp) = Resw1,...,wp
dΓ f(z1, . . . , zn)E

Γ
λ1,...,λn

(z1, . . . , zn) . (4.19)

If we do not need to specify the variables w1, . . . , wp, we will use the simplified
notation FΓ

λ1,...,λn
(f).

Example 4.9. If p = n and Γ = • · · · • has no edges, the corresponding Fourier
transform is

F•···•
λ1,...,λn

(f ;w1, . . . , wn) = f(w1, . . . , wn) .

Example 4.10. If p = 1 and Γ = L = 1 → · · · → n is a single line, the correspond-
ing Fourier transform is

F1→···→n
λ1,...,λn

(f ;w) = Reswdzn−1 · · ·Resz2dz1e
−

∑n−1

i=1
(zi−w)λi f(z1, . . . , zn−1, w) .
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Note that, by Lemma 4.11 below, if f ∈ O⋆T
n , then

F1→···→n
λ1,...,λn

(f ;w) = F1→···→n
λ1,...,λn

(f ; 0) ∈ F[λ1, . . . , λn]

since O⋆T
1 = F. In particular, the Fourier transform is independent of w.

Lemma 4.11. Let Γ ∈ L(n) be as in (4.1) and f ∈ O⋆
n. Then FΓ

λ1,...,λn
(f) ∈

O⋆
p[λ1, . . . , λn]. If f ∈ O⋆T

n , then FΓ
λ1,...,λn

(f) ∈ O⋆T
p [λ1, . . . , λn].

Proof. For the first claim, note that the Γ-residue and the Γ-exponential are defined
as products over the lines L1, . . . , Lp in Γ. Hence, it is enough to consider the case
of a single line L = i1 → i2 → · · · → ik. We have

k−1∑

a=1

ziaikλia = zi1i2λi1 +

k−1∑

a=2

ziaik λ̃ia ,

where λ̃ia = λia + δa,2λi1 . Expanding the exponential e−zi1i2
λi1 , since f has a pole

at zi1i2 of finite order, we obtain that

Reszi2dzi1 f(z1, . . . , zn)E
L
λi1

,...,λik
(zi1 , . . . , zik)

is a polynomial in λi1 . Proceeding by induction, we get the first claim. The
second claim follows from Lemma 4.3 and the fact that the Γ-exponential (4.17) is
translation invariant. �

Lemma 4.12. Let Γ ∈ L(n) with |E(Γ)| = s. Then FΓ
λ1,...,λn

(Fr O⋆
n) = 0 for all

r < s.

Proof. It follows immediately from (4.12). �

Lemma 4.13. Let Γ,Γ′ ∈ L(n) with |E(Γ)| = |E(Γ′)|. Then FΓ
λ1,...,λn

(pΓ′) =
δΓ,Γ′ .

Proof. It is an obvious consequence of Proposition 4.6. �

Lemma 4.14. For Γ ∈ L(n, p) as in (4.1) and f ∈ O⋆
n, we have

FΓ
λ1,...,λn

(∂zif) =






(
∂wℓ

−
kℓ−1∑

a=1

λiℓa

)
FΓ

λ1,...,λn
(f) if i = iℓkℓ

, 1 ≤ ℓ ≤ p ,

λi FΓ
λ1,...,λn

(f) if i 6∈ {i1k1
, . . . , ipkp

} .

(4.20)

Proof. It follows from Lemma 4.5 and the definition (4.17)–(4.18) of Γ-exponential
functions. �

Lemma 4.15. For Γ ∈ L(n, p) as in (4.1) and f ∈ O⋆
n, we have

FΓ
λ1,...,λn

(zif) = (wℓ − ∂λi
)FΓ

λ1,...,λn
(f) , (4.21)

for i ∈ {iℓ1, . . . , i
ℓ
kℓ
}, 1 ≤ ℓ ≤ p. Note that ∂λi

FΓ
λ1,...,λn

(f) = 0 for i = iℓkℓ
.

Proof. It follows from the definition (4.17)–(4.18) of the Γ-exponential and equation
(4.10). �
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4.4. Convolution product. In this section, we define a bilinear convolution prod-
uct

O⋆
p × F[Λ1, . . . ,Λp] → F[Λ1, . . . ,Λp] , (F,Q) 7→ F ∗Q(Λ1, . . . ,Λp) , (4.22)

as follows. First, we introduce the map

ιw1,...,wp
: O⋆

p(w1, . . . , wp) → F((w1)) · · · ((wp−1))[[wp]] , (4.23)

defined as the geometric series expansion in the domain |w1| > |w2| > · · · > |wp|.
Then, for F ∈ O⋆

p and Q ∈ F[Λ1, . . . ,Λp], we let

F ∗Q(Λ1, . . . ,Λp) = ιw1,...,wp
F (w1, . . . , wp)

∣∣
wℓ=−∂Λℓ

Q(Λ1, . . . ,Λp) . (4.24)

Let us explain why the right-hand side of (4.24) is a well-defined polynomial.

We expand the formal Laurent series F̃ = ιw1,...,wp
F and the polynomial Q as

F̃ =
∑

a∈Zp

ca1,...,ap
wa1

1 · · ·wap
p and Q =

∑

b∈Z
p
+

db1,...,bpΛ
(b1)
1 · · ·Λ(bp)

p .

Here and below we use the divided power notation Λ
(bℓ)
ℓ := Λbℓ

ℓ /bℓ! for bℓ ≥ 0 and

Λ
(bℓ)
ℓ = 0 for bℓ < 0. Then we have

F̃ (w1, . . . , wp)
∣∣
wℓ=−∂Λℓ

Q(Λ1, . . . ,Λp)

=
∑

a,b

ca1,...,ap
db1,...,bp(−1)a1+···+apΛ

(b1−a1)
1 · · ·Λ(bp−ap)

p .
(4.25)

We claim that the sum in the right-hand side of (4.25) is finite. Indeed, the sum
over b ∈ Z

p
+ is finite. For every fixed b, the sum over ap is finite; for every ap the

sum over ap−1 is finite, and so on. Hence, (4.25) is a well-defined polynomial.
Note that (4.23) is an algebra homomorphism. However, the convolution product

(4.22) does not define an action of the algebra O⋆
p on the space of polynomials. For

example, we have

1

w1 − w2
∗
(
(w1 − w2) ∗ 1

)
= 0 while

w1 − w2

w1 − w2
∗ 1 = 1 .

Nevertheless, we have the following lemma.

Lemma 4.16. For every F ∈ O⋆
p(w1, . . . , wp) and Q ∈ F[Λ1, . . . ,Λp], we have

(ℓ = 1, . . . , p) :

(wℓF ) ∗Q = −∂Λℓ
(F ∗Q) , (4.26)

Λℓ(F ∗Q)− F ∗ (ΛℓQ) = (∂wℓ
F ) ∗Q . (4.27)

Proof. For simplicity of notation, let ℓ = 1. By linearity, we can assume that

F = wa1

1 · · ·w
ap
p and Q = Λ

(b1)
1 · · ·Λ

(bp)
p , where ai ∈ Z, bi ∈ Z+. Then using (4.25),

we find:

(w1F ) ∗Q = (−1)1+a1+···+ap Λ
(b1−a1−1)
1 Λ

(b2−a2)
2 · · ·Λ(bp−ap)

p ,

∂Λ1
(F ∗Q) = (−1)a1+···+ap Λ

(b1−a1−1)
1 Λ

(b2−a2)
2 · · ·Λ(bp−ap)

p ,

Λ1(F ∗Q) = (−1)a1+···+ap (b1 + 1− a1)Λ
(b1+1−a1)
1 Λ

(b2−a2)
2 · · ·Λ(bp−ap)

p ,

F ∗ (Λ1Q) = (−1)a1+···+ap (b1 + 1)Λ
(b1+1−a1)
1 Λ

(b2−a2)
2 · · ·Λ(bp−ap)

p ,

(∂wℓ
F ) ∗Q = (−1)1+a1+···+ap a1Λ

(b1+1−a1)
1 Λ

(b2−a2)
2 · · ·Λ(bp−ap)

p .
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The claim follows. �

Note that neither side of (4.26) is necessarily equal to −F ∗ (∂Λℓ
Q). Indeed, in

the same setting as in the proof of Lemma 4.16, we have

F ∗ (∂Λ1
Q) = (−1)a1+···+ap Λ

(b1−a1−1)
1 Λ

(b2−a2)
2 · · ·Λ(bp−ap)

p ,

unless a1 < b1 = 0, in which case F ∗ (∂Λ1
Q) = 0, while the right-hand side above

is not 0.

5. Relation between chiral and classical operads

5.1. Preliminary notation. Let V be a superspace with an even endomorphism
∂, which is Z+-graded by F[∂]-submodules:

V =
⊕

s∈Z+

Vs . (5.1)

We have the induced increasing filtration by F[∂]-submodules

Ft V =

t⊕

s=0

Vs , (5.2)

and the associated graded grV is canonically isomorphic to V .
Let Y ∈ grr P cl(n) and let Γ ∈ L(n, p) be as in (4.1). Recall that, for v ∈ V ⊗n,

by the sesquilinearity axiom (3.8), Y Γ
λ1,...,λn

(v) is a polynomial in the variables

Λℓ = λLℓ
= λiℓ1

+ · · ·+ λiℓ
kℓ

, ℓ = 1, . . . , p . (5.3)

By an abuse of notation, we shall then alternatively write

Y Γ
Λ1,...,Λp

(v) = Y Γ
λ1,...,λn

(v) , Γ ∈ L(n, p) .

Recall also that, for i = 1, . . . , n, ∂i : V
⊗n → V ⊗n denotes the action of ∂ on the

i-th factor. For a polynomial

P (x1, . . . , xn) =
∑

cj1,...,jnx
j1
1 · · ·xjn

n ,

we will use the notation

P (x1, . . . , xn)
(∣∣

xi=∂i
v
)
=

∑
cj1,...,jn∂

j1
1 · · · ∂jn

n v . (5.4)

5.2. The inverse map. Given f ∈ O⋆T
n and v ∈ V ⊗n, we define

Xλ1,...,λn
(v ⊗ f) =

n∑

p=1

∑

Γ∈L(n,p)

FΓ
λ1+x1,...,λn+xn

(f) ∗ Y Γ
Λ1,...,Λp

(∣∣
xi=∂i

v
)
. (5.5)

Let us explain the meaning of this formula. By Lemma 4.11, the Γ-Fourier transform
is a finite sum

FΓ
λ1+x1,...,λn+xn

(f) =
∑

a∈Z
n
+

Fa(w1, . . . , wp) (λ1 + x1)
(a1) · · · (λn + xn)

(an)

with coefficients Fa ∈ O⋆T
p . According to the notation (5.4), we apply the xi as ∂i

on the vector v in the argument of Y Γ
Λ1,...,Λp

. Then we take the convolution product
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(4.22) of each Fa with Y Γ
Λ1,...,Λp

, which is a polynomial in Λ1, . . . ,Λp. As a result,

each summand in the right-hand side of (5.5) is

∑

a,b∈Z
n
+

λ
(a1)
1 · · ·λ(an)

n Fa+b ∗ Y
Γ
Λ1,...,Λp

(
∂
(b1)
1 · · ·∂(bn)

n v
)
. (5.6)

Finally, we make the substitution (5.3) to get a polynomial in λ1, . . . , λn with
coefficients in V .

Theorem 5.1. Let V be a superspace with an even endomorphism ∂, endowed
with a Z+-grading (5.1) by F[∂]-submodules, and with the associated increasing
filtration (5.2). Then for Y ∈ grr P cl(V )(n), formula (5.5) defines an element
X ∈ Fr P ch(V )(n). The obtained linear map grr P cl(V )(n) → Fr P ch(V )(n) send-
ing Y 7→ X induces a map grr P cl(V )(n) → grr P ch(V )(n), which is the inverse
of the map (3.15). Consequently, the homomorphism of operads grP ch(V )(n) →
grP cl(grV )(n) defined by (3.15) is an isomorphism.

Proof. First, we prove that for f ∈ O⋆T
n the right-hand side of (5.5) is a well-

defined element of the quotient space V [λ1, . . . , λn]/〈∂ + λ1 + · · · + λn〉, i.e., it
does not depend on the choice of the representative of Y Γ in the quotient space
V [Λ1, . . . ,Λp]/〈∂ + Λ1 + · · ·+ Λp〉. Indeed, suppose

Y Γ
Λ1,...,Λp

(
∂
(b1)
1 · · · ∂(bn)

n v
)
= (∂ + Λ1 + · · ·+ Λp)Qb ∈ 〈∂ + Λ1 + · · ·+ Λp〉 ,

for some Qb ∈ V [Λ1, . . . ,Λp]. Then, by Lemma 4.16, we have

F a+b ∗ Y
Γ
Λ1,...,Λp

(
∂
(b1)
1 · · · ∂(bn)

n v
)

= Fa+b ∗
(
(∂ + Λ1 + · · ·+ Λp)Qb

)

= (∂ + Λ1 + · · ·+ Λp)(Fa+b ∗Qb)−
(
(∂w1

+ · · ·+ ∂wp
)Fa+b

)
∗Qb

= (∂ + λ1 + · · ·+ λn)(Fa+b ∗Qb) ≡ 0 ,

since Fa+b is translation invariant.
Next, we check that the map

X : V ⊗n ⊗O⋆T
n → V [λ1, . . . , λn]/〈∂ + λ1 + · · ·+ λn〉

satisfies the sesquilinearity relations (2.5)–(2.6), i.e., it is a chiral map X ∈ P ch(n).
For i 6∈ {i1k1

, . . . , ipkp
}, we have, by Lemma 4.14,

Xλ1,...,λn
(v ⊗ ∂zif)

=

n∑

p=1

∑

Γ∈L(n,p)

FΓ
λ1+x1,...,λn+xn

(∂zif) ∗ Y
Γ
Λ1,...,Λp

(∣∣
xi=∂i

v
)

=

n∑

p=1

∑

Γ∈L(n,p)

(λi + xi)F
Γ
λ1+x1,...,λn+xn

(f) ∗ Y Γ
Λ1,...,Λp

(∣∣
xi=∂i

v
)

= Xλ1,...,λn
((λi + ∂i)v ⊗ f) .

15



Next, let i = iℓkℓ
, 1 ≤ ℓ ≤ p. By Lemmas 4.14 and 4.16, we have

FΓ
λ1+x1,...,λn+xn

(∂zif) ∗ Y
Γ
Λ1,...,Λp

(∣∣
xi=∂i

v
)

=

((
∂wℓ

−
kℓ−1∑

a=1

(λiℓa
+ xiℓa

)
)
FΓ

λ1+x1,...,λn+xn
(f)

)
∗ Y Γ

Λ1,...,Λp

(∣∣
xi=∂i

v
)

=
(
Λℓ −

kℓ−1∑

a=1

λiℓa

)
FΓ

λ1+x1,...,λn+xn
(f) ∗ Y Γ

Λ1,...,Λp

(∣∣
xi=∂i

v
)

−FΓ
λ1+x1,...,λn+xn

(f) ∗

((
Λℓ +

kℓ−1∑

a=1

xiℓa

)
Y Γ
Λ1,...,Λp

(∣∣
xi=∂i

v
))

= λiF
Γ
λ1+x1,...,λn+xn

(f) ∗ Y Γ
Λ1,...,Λp

(∣∣
xi=∂i

v
)

+ FΓ
λ1+x1,...,λn+xn

(f) ∗ Y Γ
Λ1,...,Λp

(∣∣
xi=∂i

∂iv
)
.

For the last equality, we used the sesquilinearity (3.9) of Y Γ. This proves (2.5).
Next, let us prove equation (2.6). Let i ∈ {iℓ1, . . . , i

ℓ
kℓ
} and j ∈ {ih1 , . . . , i

h
kh
}. By

Lemma (4.15) and equation (4.26), we have

FΓ
λ1+x1,...,λn+xn

(zijf) ∗ Y
Γ
Λ1,...,Λp

(∣∣
xi=∂i

v
)

=
(
(wℓ − wh − ∂λi

+ ∂λj
)FΓ

λ1+x1,...,λn+xn
(f)

)
∗ Y Γ

Λ1,...,Λp

(∣∣
xi=∂i

v
)

= (−∂Λℓ
+ ∂Λh

)
(
FΓ

λ1+x1,...,λn+xn
(f) ∗ Y Γ

Λ1,...,Λp

(∣∣
xi=∂i

v
))

+
(
(−∂λi

+ ∂λj
)FΓ

λ1+x1,...,λn+xn
(f)

)
∗ Y Γ

Λ1,...,Λp

(∣∣
xi=∂i

v
)

= (−∂λi
+ ∂λj

)
(
FΓ

λ1+x1,...,λn+xn
(f) ∗ Y Γ

Λ1,...,Λp

(∣∣
xi=∂i

v
))

.

For the last equality we used the chain rule and ∂λi
Λℓ′ = δℓ,ℓ′ . This proves (2.6).

Hence, X ∈ P ch(n).
Next, we prove that X lies in the r-th filtered space Fr P ch(n), provided that

Y ∈ grr P cl(n). Let f ∈ Fs O⋆T
n and v ∈ Ft(V ⊗n). By Lemma 4.12, FΓ

λ1,...,λn
(f) =

0 unless |E(Γ)| = n− p ≤ s. In this case, by the definition (3.10) of the grading of
P cl, we have

Y Γ
Λ1,...,Λp

(v) ∈ (grn−p+t−r V )[λ1, . . . , λn]/〈∂ + λ1 + · · ·+ λn〉

⊂ (Fs+t−r V )[λ1, . . . , λn]/〈∂ + λ1 + · · ·+ λn〉 .

The claim follows from the facts that the filtration of V is invariant under the
action of ∂ and the convolution product does not act on the coefficients (in V ) of
the polynomials.

To complete the proof of the theorem, we are left to check that, for X as in (5.5),
the image of X under the map (3.15) coincides with Y . Indeed, by definition (3.13),
the image of X under (3.15) maps Γ′ ∈ G(n) with s edges and v̄ = v+Ft−1 V ⊗n ∈
grt V ⊗n to

Xλ1,...,λn
(v ⊗ pΓ′) =

n∑

p=1

∑

Γ∈L(n,p)

FΓ
λ1+x1,...,λn+xn

(pΓ′) ∗ Y Γ
Λ1,...,Λp

(∣∣
xi=∂i

v
)

+ (Fs+t−r−1 V )[λ1, . . . , λn]/〈∂ + λ1 + · · ·+ λn〉 .

(5.7)

Since pΓ′ ∈ Fs O⋆T
n , by Lemma 4.12 the sum over p in (5.7) can be restricted by

the inequality n − p = |E(Γ)| ≤ s = |E(Γ′)|. On the other hand, if n − p < s, by
16



(3.10) we have

Y Γ
Λ1,...,Λp

(v) ∈ (Fs+t−r−1 V )[λ1, . . . , λn]/〈∂ + λ1 + · · ·+ λn〉 ;

hence the corresponding terms vanish in (5.7). We can thus restrict the sum over
p in (5.7) to |E(Γ)| = |E(Γ′)|. In this case, by Lemma 4.13, we have

FΓ
λ1,...,λn

(pΓ′) = δΓ,Γ′ .

Therefore, the right-hand side of (5.7) becomes Y Γ
λ1,...,λn

(v), completing the proof.
�

5.3. Examples. In this section, we write down explicitly formula (5.5) in some
special cases. First, assume that Y ∈ P cl(V )(n) is such that Y Γ = 0 unless |E(Γ)| =
0. For example, this happens for Y ∈ gr0 P cl(V )(n), provided that V = V0 has
trivial grading (5.1). Under the above assumption, only the summand with p = n
and the n-graph with no edges Γ = • · · · • is non-vanishing in (5.5). Thus, by
Example 4.9, we get

Xλ1,...,λn
(v ⊗ f) = f(w1, . . . , wn) ∗ Y

•···•
λ1,...,λn

(v) . (5.8)

Next, assume that Y ∈ P cl(n) is such that, for Γ ∈ L(n), Y Γ = 0 unless Γ is the
single line 1 → · · · → n. In this case, by Example 4.10, we obtain

Xλ1,...,λn
(v ⊗ f) = Res0dzn−1Reszn−1

dzn−2 · · ·Resz2dz1

× f(z1, . . . , zn−1, 0)Y
1→···→n

(
e−

∑n−1

i=1
zi(λi+∂i)v

)
.

(5.9)

In the case n = 1, formulas (5.8) and (5.9) reduce to Xλ(v⊗ c) = c Y •(v), where
c ∈ O⋆T

1 = F. Finally, we consider the case n = 2. In this case, L(2) consists only
of the two graphs • • and 1 → 2. Hence, by (5.8) and (5.9), we get

Xλ1,λ2
(v ⊗ f) = f(w1, w2) ∗ Y

• •
λ1,λ2

(v) + Res0dz1f(z1, 0)Y
1→2
Λ1

(
e−z1(λ1+∂1)v

)
.

Note that Y • • has values in V [λ1, λ2]/〈∂ + λ1 + λ2〉 ≃ V [λ], where we set λ1 = λ
and λ2 = −λ−∂. Hence, we denote its values as Y • •

λ (v). Recall also that Y 1→2
Λ1

(v)

is independent of Λ1, so we omit the subscript Λ1. Moreover, since O⋆T
2 = F[z±1

12 ],
we may take f(z1, z2) = zm12, m ∈ Z. Under this setting, the previous formula can
be rewritten as follows:

Xλ(v1⊗v2⊗zm12) = (−1)m∂m
λ Y • •

λ (v1⊗v2)+(−1)m+1Y 1→2
(
(λ+∂)(−m−1)v1⊗v2

)
.

(5.10)
As before, we are using the divided power notation: λ(−m−1) = 0 for m ≥ 0
and λ(−m−1) = λ−m−1/(−m − 1)! for m < 0. Equation (5.10) agrees with the
corresponding formulas in the proof of Theorem 10.10 of [BDSHK18].

5.4. Relation to the operad Lie. Let V = F be the 1-dimensional vector space
considered as an F[∂]-module with ∂ = 0. We see from (1.3)–(1.4) that P ch(2) is
a 1-dimensional vector space. Indeed any operation is determined by the image
of z−1

12 ∈ O⋆T
n . In fact, it follows from [BDSHK18, Eq. (6.25)] that P ch(2) is the

non-trivial representation of the symmetric group S2 on two elements. Let us call
µ ∈ P ch(2) the operation such that µ

(
z−1
12

)
= 1. Consider the operad Lie of Lie

algebras, in which the vector space Lie(n) of n-ary operations has as a basis the
set {

[xσ(1), [xσ(2), [· · · , xσ(n)] · · · ]]
∣∣ σ ∈ Sn, σ(1) = 1

}
. (5.11)
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In particular, Lie(2) is the non-trivial 1-dimensional representation of S2, with a
basis [x1, x2]. As an application of Theorem 5.1, we obtain the following.

Theorem 5.2 ([BD04, Sec. 3.1.5]). There is a unique isomorphism of operads

P ch(F) ≃ Lie , such that P ch(2) ∋ µ 7→ [x1, x2] ∈ Lie(2) .

Proof. By Theorem 5.1, it is enough to prove the isomorphism of graded operads
P cl(F) ≃ Lie. Let Y ∈ P cl(n) and Γ ∈ G(n). We see from (3.9) that Y Γ vanishes
unless Γ is connected, in which case Y Γ : F → F. It follows that P cl(n) is the quo-
tient of FGc(n) by the cycle relations (3.6), where Gc(n) is the subset of connected
graphs.

The vector space Lie(n) has dimension (n− 1)! and has a basis given by (5.11).
On the other hand, we see from Theorem 4.7 that a basis for P cl(n) is given by
connected lines in L(n). It follows that dimP cl(n) = dimLie(n) = (n − 1)!. The
line

Γ =
1 σ(2)

· · ·
σ(n)

is associated to the operation (5.11). One sees readily that this assignment is
compatible with operations; therefore, the map Lie(n) → P cl(n) is an isomorphism.
Uniqueness follows since any operation in Lie is a composition of binary operations.

�
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