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We define a class of machine-learned flow-based sampling algorithms for lattice gauge theories that are
gauge invariant by construction. We demonstrate the application of this framework to U(1) gauge theory in
two spacetime dimensions, and find that, at small bare coupling, the approach is orders of magnitude more
efficient at sampling topological quantities than more traditional sampling procedures such as hybrid
Monte Carlo and heat bath.

DOI: 10.1103/PhysRevLett.125.121601

Many important physical theories are described by
Lagrangians that are invariant under local symmetry trans-
formations that form Lie groups; such theories are named
gauge theories. For example, the standard model of particle
physics, which is our most accurate description of nature
at the shortest length scales, is a quantum field theory
centered around the action of three gauge groups [1–4],
and several important condensed matter systems can be
described by effective gauge theories [5–8]. In the strong-
coupling limit, these theories are nonperturbative, and
numerical formulations on discrete spacetime lattices offer
the only known way to compute properties of interest from
first principles.
Calculations within lattice frameworks typically proceed

by estimating expectation values of observables using
Markov chain Monte Carlo (MCMC) to sample from
thermodynamic distributions or Euclidean-time path inte-
grals. In both cases, samplesU (typically high dimensional)
are drawn from an exponentially weighted distribution
pðUÞ ¼ e−SðUÞ=Z, where the physics is encoded in an
energy or action functional SðUÞ, and the normalizing
constant Z is unknown. When MCMC sampling from the
distribution pðUÞ is efficient, precise physical predictions
can be made from the theory. However, as the model
parameters are tuned towards criticality, e.g., to describe
universal properties of condensed matter theories or to
access the continuum or large-N limits of quantum field
theories, critical slowing-down (CSD) can cause the com-
putational cost of sampling to diverge [9,10].

Specialized approaches have been developed to
avoid CSD for specific theories [11–20]. For several
theories of interest, however, CSD obstructs calculations.
This is true, in particular, for the lattice formulation of
quantum chromodynamics (QCD) [21–23], which enables
calculations of nonperturbative phenomena arising from the
standard model of particle physics. Recently, there has been
progress in the development of flow-based generative
models which can be trained to directly produce samples
from a given probability distribution; early success has been
demonstrated in theories of bosonic matter, spin systems,
molecular systems, and for Brownian motion [24–34].
This progress builds on the great success of flow-based
approaches for image, text, and structured object generation
[35–42], as well as non-flow-based machine learning
techniques applied to sampling for physics [43–48]. If
flow-based algorithms can be designed and implemented
at the scale of state-of-the-art calculations, they would
enable efficient sampling in lattice theories that are currently
hindered by CSD.
In this Letter, we develop a provably correct flow-based

sampling algorithm designed for lattice gauge theories with
continuous gauge groups. Our approach is immediately
applicable to U(1) gauge theory and can be applied to non-
Abelian gauge theories, such as lattice QCD, upon develop-
ment of bijective maps acting on single elements of the
gauge group. Here, we demonstrate the application of this
approach to U(1) gauge theory in two spacetime dimen-
sions. In this theory, the field strength tensor fluctuates
independently on each lattice site, and therefore, there is no
critical limit corresponding to infinite correlation length;
however, in the limit of small bare coupling, topological
freezing results in severe difficulties when general sam-
pling methods are applied. Hybrid Monte Carlo (HMC)
[49] and heat bath (HB) [50–52] are two widely used
MCMC approaches that are applicable to pure gauge
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theories with continuous gauge group (HMC is also
applicable to a much broader class of theories, including
gauge theories with fermion content). Both methods
explore topological sectors very slowly, as seen in the
Markov chain histories of topological charge depicted in
Fig. 1. For 2D U(1) gauge theory, in particular, there are
also a number of specialized calculation techniques that do
not suffer from topological freezing, including a cluster
algorithm [53], complex Langevin [54], dual variable
approaches [55–57], and direct integration of the path
integral [57]. We use the latter to check the accuracy of the
numerical methods under study. In contrast, our flow-based
algorithm is generally applicable to pure-gauge theories
with continuous gauge groups; yet it produces independent
samples of field configurations with appropriate frequency
from each topological sector, enabling far more accurate
estimation of topological quantities at a given computa-
tional cost when compared with similarly general methods.
Critical to the success of this approach is enforcing exact
gauge symmetry in the flow-based distribution: when the
symmetry is enforced, we can successfully train flow-based
models at a range of parameters approaching topologically
frozen, while without it, models of similar scale fail to learn
the distributions under the same training procedure.
Flow-based sampling.—Flow-based generative models

allow sampling from an expressive family of distributions
by applying an invertible function f to samples U from a
fixed, simple prior distribution defined by a density rðUÞ
[58]. The resulting samples U0 ¼ fðUÞ are distributed
according to a model density qðU0Þ. The invertible function
is constructed specifically to allow efficient evaluation of
the Jacobian factor for any given sample, so that the
associated normalized probability density,

qðU0Þ ¼ q½fðUÞ� ¼ rðUÞ
���� det ∂fðUÞ

∂U
����
−1
; ð1Þ

is returned with each sample drawn. This feature enables
training the flow model, i.e., optimizing the function f, by
minimizing the distance between the model probability
density qðU0Þ and the desired density pðU0Þ using a chosen

metric. Any deviation from the true distribution due to an
imperfect model can be corrected by a number of tech-
niques; in this Letter, we apply independence Metropolis
sampling [26]. (Reweighted observables can also be used
[59,60]. This is efficient when measurements of the action
are more costly than measurements of observables.)
A powerful approach to defining a flexible invertible

function f is through composition of several coupling
layers, f ≔ gm∘…∘g1. Coupling layers act on samplesU by
applying an analytically invertible transformation (such as a
scaling) to a subset of the components UA ≔ fUi∶i ∈ Ag,
where the superscript i indexes components of the multi-
dimensional sample U and the set A indicates the compo-
nents that are transformed. The remaining (unmodified)
components UB, defined by UB ¼ UnUA, are given as
input to a feed-forward neural network that parametrizes
the transformation. This variable splitting guarantees
invertibility despite the use of noninvertible feed-forward
networks.
Gauge-invariant flows.—Lattice gauge theories can be

defined in terms of one gauge variable UμðxÞ per nearest-
neighbor link ðx; xþ μ̂Þ of the lattice. Thus, samples live in
the compact manifoldGNdV , where G is the manifold of the
gauge group, Nd is the spacetime dimension, and V is the
lattice volume. The physical distribution pðUÞ is exactly
invariant under a discrete translational symmetry group
with V elements and a continuous V-dimensional gauge
symmetry group, meaning that the density associated with
any transformed field configuration Ũ is identical to that of
the untransformed configuration, pðŨÞ ¼ pðUÞ. Under a
gauge transformation, links UμðxÞ are transformed by a
group-valued field ΩðxÞ as

UμðxÞ → ŨμðxÞ ¼ ΩðxÞUμðxÞΩ†ðxþ μ̂Þ: ð2Þ

In the flow-based approach, symmetries correspond to
flat directions of the probability density that must be
reproduced by the model. Exactly encoding symmetries
in machine learning models can improve training and
model quality compared with learning the symmetries
over the course of training [25,28,61–65]. The incorpo-
ration of translational symmetries into models is possible
using convolutional architectures, as studied for example,
in Ref. [61]. To address gauge symmetry, one could attempt
to use a gauge-fixing procedure to select a single configu-
ration from each gauge-equivalent class, leaving only
physical degrees of freedom; however, the only known
gauge fixing procedures that preserve translational invari-
ance are based on implicit differential equation constraints
[66], which do not have a straightforward implementation
in flows. Here, instead, we introduce a method to preserve
exact gauge invariance in flow-based models.
When a flow-based model is defined in terms of coupling

layers, its output distribution will be invariant under a
symmetry group if two conditions are met: (1) The prior

FIG. 1. Standard approaches (HMC and HB) to MCMC
sampling for U(1) gauge theory explore the distribution of
topological charge Q very slowly compared with the flow-based
approach introduced here. Results are shown for coupling β ¼ 7
on a 16 × 16 lattice, see Eq. (6). The first (second) half of the
Markov chain history is displayed for HMC (HB).
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distribution is symmetric; (2) Each coupling layer is equiv-
ariant under the symmetry, i.e., all transformations commute
through application of the coupling layer [61,63,67–69].
Choosing a prior distribution that is symmetric is

typically straightforward, for example, a uniform distribu-
tion with respect to the Haar measure over gauge links is
both translationally and gauge invariant. Using gauge-
equivariant coupling layers with such a prior distribution
then defines a gauge-invariant flow-based model.
Gauge-equivariant coupling layers.—We construct an

explicitly gauge-equivariant and invertible coupling layer
g∶GNdV → GNdV by splitting the input variables into subsets
UA andUB. In terms of these subsets, we define the action of
the coupling layer to be gðUA;UBÞ ¼ ðU0A; UBÞ, where link
Ui ∈ UA is mapped to

U0i ¼ hðUiSijIiÞSi†; ð3Þ

in which h∶G → G is an invertible kernel which is explicitly
parametrized by a set of gauge-invariant quantities Ii

constructed from the elements of UB. Here, Si is a product
of links such that UiSi forms a loop that starts and ends at a
common point x, and, therefore, transforms under the
gauge symmetry to ΩðxÞUiΩ†ðxþ μ̂ÞΩðxþ μ̂ÞSiΩ†ðxÞ ¼
ΩðxÞUiSiΩ†ðxÞ. With this definition, the coupling layer is
gauge equivariant if the kernel satisfies

hðXWX†Þ ¼ XhðWÞX†; ∀ X;W ∈ G; ð4Þ

which implies that U0i → Ũ0i transforms according to
Eq. (2),

Ũ0i ¼ h½ΩðxÞUiSiΩ†ðxÞjIi�ΩðxÞSi†Ω†ðxþ μ̂Þ
¼ ΩðxÞU0iΩ†ðxþ μ̂Þ: ð5Þ

To ensure invertibility, the product of links Si must not
contain any links in UA.
For an Abelian group, the transformation property in

Eq. (4) is trivially satisfied by any kernel. In the U(1) gauge
theory considered below, therefore, we define the kernel
using invertible flows parametrized by neural networks. For
non-Abelian theories, it has been shown that it is possible to
construct invertible functions on spheres [70] and surjective
functions on general Lie groups [71]. If these approaches
can be generalized to produce invertible functions with
convergent power expansions, they will satisfy the neces-
sary kernel transformation property, since hðXWX†Þ ¼P

n αnðXWX†Þn ¼ XhðWÞX†.
An example of a variable splitting suitable for both

Abelian and non-Abelian gauge theories is given by the
pattern depicted in Fig. 2. In this example, the set of
updated links UA consists of vertical links spaced by four
sites, and the productsUiSi are 1 × 1 loops adjacent to each
Ui. This is sufficiently sparse such that every Si is

independent of all updated links in UA, and a nontrivial
set of invariants Ii (e.g., all traced 1 × 1 loops that are not
adjacent to updated links) can be constructed to parametrize
the transformation. Composing coupling layers using
rotations and offsets of the pattern allows all links to be
updated. (For example, composing eight such layers is
sufficient to update all links in 2D.)
Using gauge-equivariant coupling layers constructed in

terms of kernels generalizes the “trivializing map” proposed
in Ref. [72]. There, repeatedly applying a specific kernel
based on gradients of the action theoretically trivializes a
gauge theory, i.e., maps the Euclidean time distribution to a
uniform one. The family of gauge equivariant flows defined
here includes the trivializing map in the limit of a large
number of coupling layers and arbitrarily expressive kernel,
indicating that, in this limiting case, exact sampling as
described in Ref. [72] is possible. However, the approach
presented here allows for more general and inexpensive
parametrizations of h. These can be optimized to produce
flows that similarly trivialize the theory andwhichmay have
a lower cost of evaluation than implementations of the
analytical trivializing map [73].
Application to U(1) gauge theory.—Gauge theory with a

U(1) gauge group defined in two spacetime dimensions is
the quenched limit of 1þ 1D electrodynamics, i.e., the
Schwinger model [74]. The full Schwinger model repro-
duces many features of quantum chromodynamics (con-
finement, an axial anomaly, topology, and chiral symmetry
breaking) while being analytically tractable. Even in the
quenched limit, the well-defined gauge field topology
results in severe slowing-down of MCMC methods for
sampling lattice discretizations of the model as the coupling
is taken to criticality. We consider the lattice discretization
given by the Wilson gauge action [75]

SðUÞ ≔ −β
X
x

RePðxÞ; ð6Þ

FIG. 2. An example of a variable splitting based on a tiled 4 × 1

pattern with an actively updated link Ui ≡ UμðxÞ and 1 × 1 loop
UiSi ≡ PμνðxÞ located at x, a passively updated 1 × 1 loop at
x̃ ¼ x − ν̂, and two frozen traced 1 × 1 loops at xþ ν̂ and xþ 2ν̂
included in the set Ii.
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where PðxÞ is the plaquette at x defined in terms of link
variables UμðxÞ ∈ Uð1Þ

PðxÞ ≔ U0ðxÞU1ðxþ 0̂ÞU†
0ðxþ 1̂ÞU†

1ðxÞ; ð7Þ
and x ¼ ðx0; x1Þ runs over coordinates in an L × L square
lattice with periodic boundary conditions. Physical infor-
mation may be extracted from the model by considering
expectation values of observables O under the Euclidean
time path integral

hOi ≔ 1

Z

Z
DUOðUÞe−SðUÞ; ð8Þ

where
R
DU denotes integration over the product of Haar

measures for each link, and Z ¼ R
DUe−SðUÞ. In this study,

three key observables were considered: (1) Expectation
values of powers of plaquettes; (2) Expectation values of
l × lWilson loopsWl×l ¼ Q

x∈l×l PðxÞ; (3) Topological
susceptibility χQ ¼ hQ2=Vi, where topological charge
Q ≔ ð1=2πÞPx arg ½PðxÞ� is defined in terms of plaquette
phase in the principal interval, arg ½PðxÞ� ∈ ½−π; π�.
To investigate slowing-down due to topological freezing,

we studied the theory at a fixed lattice size, L ¼ 16, using
seven choices of the parameter β ¼ f1; 2; 3; 4; 5; 6; 7g; the
topology is increasingly frozen as β → ∞. For each
parameter choice, we trained gauge invariant flow-based
models using a uniform prior distribution and a composi-
tion of 24 gauge-equivariant coupling layers. The kernels h
were chosen to be mixtures of noncompact projections
[70], which are suitable for U(1) group elements; in
particular, we used six components for each mixture and
parametrized each transformation with a convolutional
neural network. The model architecture was held fixed
across all choices of β, ensuring identical cost to draw
samples for each parameter choice. To train the models,
we minimized the Kullback-Leibler divergence between
the model density qðUÞ and the target density e−SðUÞ=Z.
Training was halted when the loss function reached a
plateau. For this proof-of-principle study, we did not
perform extensive optimization over the variable splitting
pattern, neural network architecture, or training hyper-
parameters, and it is likely that better models can be
trained, for example, using automatic hyperparameter
and architecture searches [76].
After training, the flow-based models were used

to generate proposals for an independence Metropolis
Markov chain [26], producing ensembles of 100000
samples each. For comparison, ensembles of identical size
were produced using the HMC and heat bath algorithms.
For all choices of β, we fixed the HMC trajectory length to
achieve > 80% acceptance rate when using a leapfrog
integrator with five steps. Each HB step was defined as one
sweep, i.e., a single update of every link. To within 10%,
the computational cost per HMC trajectory was equal to
the cost per proposal from the flow-based model in a

single-threaded CPU environment, while the cost per heat
bath step was half that of HMC or flow.
Using samples from a flow-based model as proposals

within a Markov chain ensures unbiased estimates after
thermalization; at the finite ensemble size used here, all
observables were found to agree with analytical results
within statistical uncertainties. Of the observables we
studied, local quantities like powers of plaquettes and
expectation values of small Wilson loops were estimated
up to two times as precisely by HMC and HB than by the
flow-based algorithm. However, Fig. 3 shows that, for
observables with larger extent such as Wl×l with l ≥ 4,
and particularly for χQ, large autocorrelations in the HMC
and HB samples, in some cases on the order of the Markov
chain length or longer, result in estimates that have lower
precision than the flow-based estimates and have under-
estimated uncertainties, despite accounting for measured
autocorrelations.
For Markov chain methods, the characteristic length of

autocorrelations for an observable O can be defined by the
integrated autocorrelation time τintO [77]. Figure 4 compares
τintQ for HMC and HB to that in the flow-based algorithm as
an indicator of how well the three methods explore the
distribution of topological charge. For all three methods,
τintQ grows as β is increased. However, this problem is far
less severe for the flow-based algorithm than for HMC or
HB. For example, the autocorrelation time in the flow-
based algorithm is approximately ten at the largest value of
β, whereas τintQ ≈ 4000 for HB and τintQ ≈ 15000 for HMC.
Accounting for the relative cost per step of each Markov
chain, the flow-based Metropolis sampler is, therefore,
roughly 1500 times more efficient than HMC and 200 times
more efficient than heat bath in determining topological
quantities. A promising possibility for further development
is mixing flow-based Markov chain steps with HMC

FIG. 3. Left: estimates of average Wilson loops hWl×li
measured on the most frozen ensemble studied here (β ¼ 7).
Right: estimates of topological susceptibility measured on the
three most frozen ensembles studied here (β ¼ 5, 6, 7). All values
are plotted as ratios to the exact results. The flow-based estimates
are consistent with the exact values, while the HMC and heat bath
estimates have larger and underestimated uncertainties due to
long autocorrelation times on the order of the Markov chain
length or longer.
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trajectories or heat bath sweeps to gain the benefits of
standard Markov chain steps for local observables and of
the flow-based algorithm for extended and topological
observables.
Summary.—Critical slowing-down of sampling in lattice

gauge theories is an obstacle to precisely estimating
quantities of physical interest as critical limits of the
theories are approached. Topological freezing is a particu-
larly severe slowing-down preventing estimation of quan-
tities coupled to gauge field topology in many lattice gauge
theories. Flow-based models enable direct sampling from
an approximation to the distribution of interest, from which
estimates of physical observables can be derived that are
exact in the infinite-statistics limit. Here, we introduce
flow-based models constructed to satisfy exact gauge
invariance and find that applying this approach to a two-
dimensional Abelian gauge theory enables more efficient
estimation of topological quantities than the two other
algorithms that are applicable to general lattice gauge
theories, HMC and heat bath.
While the numerical investigations in this Letter dem-

onstrate the efficiency of the proposed sampling approach
in a region of parameter space where HMC and heat bath
suffer significantly from topological freezing, it remains to
be investigated how the algorithm scales in the thermody-
namic and continuum limits. In the thermodynamic limit,
one naively expects an exponential degradation of the
independence Metropolis acceptance rate with volume
(given a fixed model); the experimental question will be
how the model complexity must be scaled to maintain the
acceptance rate. In the continuum limit, it will be important
to efficiently construct correlations over large length scales,
which may be enabled by architectures such as hierarchical
models [78,79] and dilated convolutions [80].
The approach presented here is generally applicable to

gauge theories defined by Lie groups, including non-
Abelian theories such as QCD. To extend this method to

such theories, expressive invertible functions must be
defined as the kernels of gauge equivariant coupling layers.
There are several possible avenues forward; for example,
Ref. [70] defines flows on spherical manifolds and
Ref. [71] defines surjective (though not bijective) maps
on Lie groups, both using neural network parametrizations.
Future work will explore constructing kernels based on
generalizations of these methods and, thus, producing
gauge invariant flows for non-Abelian theories like QCD.
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Mach. Learn. Res. 89, 3244 (2019).

[72] M. Lüscher, Commun. Math. Phys. 293, 899 (2009).
[73] G. P. Engel and S. Schaefer, Comput. Phys. Commun. 182,

2107 (2011).
[74] J. S. Schwinger, Phys. Rev. 128, 2425 (1962).
[75] K. G. Wilson, Phys. Rev. D 10, 2445 (1974).
[76] P. Balaprakash, M. Salim, T. D. Uram, V. Vishwanath,

and S. M. Wild, in 2018 IEEE 25th International
Conference on High Performance Computing (HiPC)
(Conference Publishing Services, New Jersey, 2018),
pp. 42–51.

[77] N. Madras and A. D. Sokal, J. Stat. Phys. 50, 109 (1988).
[78] L. Dinh, J. Sohl-Dickstein, and S. Bengio, arXiv:1605

.08803.
[79] A. Bhattacharyya, S. Mahajan, M. Fritz, B. Schiele, and

S. Roth, in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (IEEE Xplore,
New Jersey, 2020), pp. 8415–8424.

[80] F. Yu and V. Koltun, arXiv:1511.07122.

PHYSICAL REVIEW LETTERS 125, 121601 (2020)

121601-6

https://doi.org/10.1103/PhysRevD.73.094507
https://doi.org/10.22323/1.091.0032
https://doi.org/10.22323/1.091.0032
https://doi.org/10.1103/PhysRevD.90.074502
https://doi.org/10.1103/PhysRevD.90.074502
https://doi.org/10.1103/PhysRevLett.121.260601
https://arXiv.org/abs/1809.10188
https://doi.org/10.1103/PhysRevD.100.034515
https://doi.org/10.1103/PhysRevD.100.034515
https://arXiv.org/abs/2001.00585
https://arXiv.org/abs/1910.00753
https://doi.org/10.1126/science.aaw1147
https://doi.org/10.1126/science.aaw1147
https://doi.org/10.1103/PhysRevX.10.021020
https://doi.org/10.1103/PhysRevX.10.021020
https://arXiv.org/abs/1905.11600
https://arXiv.org/abs/1905.11600
https://arXiv.org/abs/1905.13177
https://arXiv.org/abs/1905.13177
https://arXiv.org/abs/2001.09382
https://arXiv.org/abs/1912.09092
https://arXiv.org/abs/1410.8516
https://arXiv.org/abs/1605.08803
https://arXiv.org/abs/1605.08803
https://arXiv.org/abs/1807.03039
https://arXiv.org/abs/1902.00275
https://arXiv.org/abs/1905.10347
https://arXiv.org/abs/1901.10548
https://arXiv.org/abs/1903.01434
https://arXiv.org/abs/1906.12320
https://doi.org/10.1103/PhysRevB.95.035105
https://doi.org/10.1103/PhysRevE.96.051301
https://doi.org/10.1103/PhysRevD.100.011501
https://doi.org/10.1103/PhysRevD.100.011501
https://doi.org/10.1103/PhysRevLett.122.080602
https://doi.org/10.1103/PhysRevLett.122.080602
https://doi.org/10.1021/acs.jpclett.9b02173
https://doi.org/10.1021/acs.jpclett.9b02173
https://doi.org/10.1038/s42256-019-0028-1
https://doi.org/10.1038/s42256-019-0028-1
https://doi.org/10.1016/0370-2693(87)91197-X
https://doi.org/10.1103/PhysRevLett.43.553
https://doi.org/10.1103/PhysRevLett.43.890.2
https://doi.org/10.1103/PhysRevLett.43.890.2
https://doi.org/10.1016/0370-2693(82)90696-7
https://doi.org/10.1016/0370-2693(85)91632-6
https://doi.org/10.1016/0370-2693(85)91632-6
https://doi.org/10.1103/PhysRevD.45.2098
https://doi.org/10.1016/0370-2693(85)90262-X
https://doi.org/10.1016/0370-2693(85)90262-X
https://doi.org/10.1103/RevModPhys.52.453
https://doi.org/10.1088/1126-6708/2009/08/008
https://doi.org/10.1088/1126-6708/2009/08/008
https://doi.org/10.1103/PhysRevD.92.114508
https://doi.org/10.1103/PhysRevD.92.114508
https://arXiv.org/abs/1912.02762
https://doi.org/10.1103/PhysRevLett.61.2635
https://doi.org/10.1103/PhysRevLett.61.2635
https://arXiv.org/abs/1808.03856
https://arXiv.org/abs/1909.13739
https://arXiv.org/abs/2002.04913
https://arXiv.org/abs/2002.12880
https://arXiv.org/abs/2002.02428
https://doi.org/10.1016/j.cpc.2011.05.004
https://doi.org/10.1016/j.cpc.2011.05.004
https://doi.org/10.1103/PhysRev.128.2425
https://doi.org/10.1103/PhysRevD.10.2445
https://doi.org/10.1007/BF01022990
https://arXiv.org/abs/1605.08803
https://arXiv.org/abs/1605.08803
https://arXiv.org/abs/1511.07122

